# Laser-Driven Magnetized Collisionless Shocks

Derek Schaeffer

Princeton University/PPPL

58<sup>th</sup> APS DPP San Jose, CA Oct. 31, 2016

### Collaborators

- A. Bhattacharjee, PU, PPPL
- W. Fox, PPPL
- G. Fiksel, U. Michigan
- D. Haberberger, LLE
- D. Barnak, LLE
- S. X. Hu, LLE
- K. Germaschewski, U. NH
- C. Niemann, UCLA
- C. Constantin, UCLA
- E. Everson, UCLA
- A. Bondarenko, UCLA
- S. E. Clark, UCLA
- P. Heuer, UCLA
- D. Winske, LANL
- D. Larson, LLNL















Supported by: DOE, NNSA, DTRA, and NSF



- Brief introduction to laboratory research on collisionless shocks driven by magnetic pistons
- Recent measurements of the formation and evolution of a high-M<sub>A</sub> shock on the Omega EP laser facility
- Results on the formation and structure of low- $M_A$  shocks on the LAPD
- Dimensionless criteria that describe the conditions under which shocks driven by magnetic pistons form



# Collisionless Shocks are Prevalent in Many Space and Astrophysical Systems





Supernovae Remnants







**Active Galactic Nuclei** 



- Collisionless shocks convert the ram pressure of incoming supersonic flows to thermal pressure over length scales much shorter than the collisional mean free path
- Shocks are interesting!
  - Complex nonlinear and time-dependent systems
  - Rich phenomenology sensitive to ambient conditions
  - Associated with high energy particle acceleration
- Shocks classification:
  - Electrostatic
  - Turbulent (i.e. Weibel-mediated)
  - Magnetized

Romagnani, *et al.*, PRL, 2008 Kuramitsu, *et al.*, PRL, 2011 Haberberger, *et al.*, Nature, 2011 Fox, *et al.*, PRL, 2013 Huntington, *et al.*, Nature, 2015

# Laboratory Experiments can Reproduce the Physics of Space and Astrophysical Collisionless Shocks in a Controlled Setting

- Spacecraft very successful but largely limited to 1D datasets and pre-formed shocks
- Early laboratory experiments also successful but of limited relevance to space shocks
  - The shocks were limited to M<6
  - The goal of the experiments was primarily shock heating (in particular electrons)
  - The experiments were limited to strictly perpendicular magnetic geometries
  - The available diagnostics were also limited to 1D datasets
- A new class of collisionless shocks experiments that utilize a laser-driven magnetic piston is now available
  - Wide range of Mach numbers (M<40)
  - 2D and 3D datasets
  - Quasi-perpendicular and quasi-parallel magnetic geometries

Russel, ASR, 1995

Paul, *et* al., Nature, 1965 Kurtmullaev, *et* al., J. App. Mech. Tech. Phys., 1965 Goldenbaum, *et al.*, PoF, 1967 Stamper, *et* al., PoF, 1969



Drake, PoP, 2000

# Laser-Driven Diamagnetic Cavity Acts as Piston, Launching Shocks in Ambient Plasma



 Piston plume drives diamagnetic current, creating magnetic cavity and leading magnetic compression

Wright, PoF, 1971 Vanzeeland, *et al.*, PoP, 2004 Schaeffer, *et al.*, PoP, 2012

# Piston Energy and Momentum Transferred Collisionlessly to Ambient Plasma





Berezin, *et al.*, Intl. J. Comp. Fluid Dyn., 1998 Hewett, *et al.*, JGR, 2011 Bondarenko, *et al.*, submitted, 2016

#### Dissipation in Subcritical (M<sub>A</sub><3) Shocks Provided by Drift Instabilities



Treumann, AAR, 2009 Balogh and Treumann, *Physics of Collisionless Shocks*, 2013

#### Dissipation in Supercritical (M<sub>A</sub>>3) Shocks Provided by Ion Reflection



Treumann, AAR, 2009 Balogh and Treumann, *Physics of Collisionless Shocks*, 2013

### Shock Physics Indicates What Experimental Features Are Necessary

- Super-Alfvénic (M<sub>A</sub> > 1)
  - Shock speed must be greater than upstream Alfvén speed
- Collisionless
  - Collisional mean free path > system size
- Large density and magnetic compressions
  - $n/n_0$  and  $B/B_0 > 2$
- Steep compression widths
  - Density/magnetic jump  $\gtrsim$  ion inertial length
- Shock separates from piston
  - Shock features should be distinct from piston

### Experimental Setup for Quasi-Perpendicular Shocks on Omega EP



- MIFEDS coils provide background magnetic field ~ 8T
- Heater beam ablates ambient plasma (n<sub>i,0</sub>≈10<sup>18</sup>) 12 ns before drive beams
- Drive beams create supersonic piston plumes that expand into ambient plasma
- Diagnostics:
  - Angular Filter Refractometry (AFR)
  - Shadowgraphy
  - Proton radiography

### AFR Diagnostic Measures Density Gradients



## Null Shots Show No Shock Features



 Without background magnetic field or ambient plasma, only piston plumes observed



### Propagating Density and Magnetic Compressions Observed with $B_0 \neq 0$ and $n_0 \neq 0$



# Propagating Density and Magnetic Compressions Observed with $B_0 \neq 0$ and $n_0 \neq 0$



- Expanding at 700 km/s, yielding  $M_{ms} \approx 12$
- Density compression **n**/**n**<sub>0</sub> ~ 3-4
- Magnetic compression B/B<sub>0</sub> ~ 2-4
- Compression width  $\Delta$  > 1 c/ $\omega_{\rm pi}$



# 2D PIC Simulations Indicate Formation of High-M<sub>A</sub> Shock



- CH piston plasma expanding into CH ambient plasma embedded in magnetic field
- Piston ions sweep out ambient ions and magnetic field
- At early times, this leads to the formation of a H shock, mixed with piston ions and the beginnings of a C shock
- At later times, a separate C shock forms behind the H shock, and the piston ions become trapped behind the C shock

# 2D PIC Simulations Indicate Formation of High-M<sub>A</sub> Shock



- The formation of a shock leads to a double "bump" density profile, corresponding to the leading shock and the trapped piston ions
- The density compression associated with the shock is n/n<sub>0</sub>~4
- The magnetic compression associated with the shock is B/B<sub>0</sub>>4
- The width of the density compression  $\Delta \sim 1 \rho_i$

# Data Profiles Show Density Evolution that is Consistent with High- $M_A$ Shock Formation



 Early time density compression mostly associated with pile-up of piston ions

Schaeffer, et al., submitted, 2016

 At late time clear double bump feature associated with shock and trapped piston

# The UCLA Facility Uniquely Combines a kJ-Laser and a Large Magnetized Plasma

| Plasma Length                        | 18 m                                |
|--------------------------------------|-------------------------------------|
| Plasma Diameter                      | 60 cm                               |
| Electron Density<br>(Main)           | 2x10 <sup>12</sup> cm <sup>-3</sup> |
| Electron Density (LaB <sub>6</sub> ) | 2x10 <sup>13</sup> cm <sup>-3</sup> |
| Electron Temp.                       | 5 eV                                |
| lon Temp.                            | < 1 eV                              |
| B Field                              | 0.2 – 1.8 kG                        |
| Rep. Rate                            | 1 Hz                                |



- Well-characterized ambient plasma
- Plasma large-enough for shock-piston separation → Shock physics decoupled from driver
- Flexible laser geometry: quasi-perpendicular, oblique, or quasi-parallel
- Large scale & low pressure ambient allows localized probe measurements

Goal: investigate shock formation, debris-ambient coupling, ion dynamics, etc.



#### **Raptor Laser**

| Wavelength          | 1053 nm |
|---------------------|---------|
| Pulse Length (FWHM) | 25 ns   |
| Energy per Pulse    | 300 J + |
| Rep. Rate           | 45 min  |

#### Experimental Setup for Quasi-Perpendicular Shocks in the LAPD



#### Mach ~2 Collisionless Shock Observed Separating from Piston



### Simulations Show Low-Mach Number Shock Formation



### **Criteria Necessary for Shock Formation**

- Super-Alfvénic  $(M_A > 1)$ 
  - Shock speed must be greater than upstream Alfvén speed
- Collisionless  $(\lambda_{ii}/D_0 > 1)$ 
  - Collisional mean free path > system size
- Sufficient experimental size  $(\rho/D_0 < 1)$ 
  - Ion gyro-orbits must fit within the experiment
- Sufficient piston magnetization  $\left(\rho_p/R_m < \sqrt{2}\right)$ 
  - Piston ions must have enough energy to accelerate ambient ions
  - R<sub>m</sub> is the characteristic length scale for piston coupling
- Sufficient ambient magnetization  $(\rho_a/R_* < 1)$ 
  - Ambient ions must be sufficiently accelerated
  - R\* is the characteristic length scale for ambient coupling

Are these criteria valid?

$$R_m = \left(3N_0 m_p / 4\pi m_a n_a\right)^{1/3}$$

$$R_* = (3N_0Z_p/4\pi Z_a n_a)^{1/3}$$

Bashurin, et al., J. App. Mech. & Tech. Phys., 1983 Drake, PoP, 2000 Clark, et al., PoP, 2013 Larson, et al., JRERE, 2016

#### Shock Experiments can be Predictively Organized by Formation Criteria



#### Shock Experiments can be Predictively Organized by Formation Criteria





- We have observed for the first time the formation and evolution of a laser-driven, high-M<sub>A</sub> (supercritical) collisionless shock. The results agree well with 2D PIC simulations.
- We have launched low-M<sub>A</sub> (subcritical) magnetized shocks and measured their formation and structure. Hybrid simulations reproduce the basic features observed in experiments.
- Shock experiments spanning large parameter ranges reveal that pistondriven shocks can be predictively organized by dimensionless formation criteria.

### **Future Directions**

- High-M<sub>A</sub> shocks and particle acceleration
  - How are particles injected into the shock acceleration process?
- Low-M<sub>A</sub> shocks and detailed shock structure
  - What dissipation mechanisms are at work in the shock layer?
- Varying magnetic geometry
  - Can quasi-parallel shocks be generated in the laboratory?
- Shocks and other highly-driven (i.e. lasers) systems
  - What, if any, interaction do shocks have with magnetic reconnection and turbulence, such as the Weibel instability?