Latches, the D Flip-Flop \& Counter D esign

ECE 152A - Winter 2012

Reading Assignment

- Brown and Vranesic
- 7 Flip-Flops, Registers, Counters and a Simple Processor
- 7.1 Basic Latch
- 7.2 Gated SR Latch
- 7.2.1 Gated SR Latch with NAND Gates
- 7.3 Gated D Latch
- 7.3.1 Effects of Propagation Delays

Reading Assignment

- Brown and Vranesic (cont)
- 7 Flip-Flops, Registers, Counters and a Simple Processor (cont)
- 7.4 Master-Slave and Edge-Triggered D Flip-Flops
- 7.4.1 Master-Slave D Flip-Flop
- 7.4.2 Edge-Triggered D Flip-Flop
- 7.4.3 D Flip-Flop with Clear and Preset
- 7.4.4 Flip-Flop Timing Parameters (2 ${ }^{\text {nd }}$ edition)

Reading Assignment

- Roth
- 11 Latches and Flip-Flops
- 11.1 Introduction
- 11.2 Set-Reset Latch
- 11.3 Gated D Latch
- 11.4 Edge-Triggered D Flip-Flop

Reading Assignment

- Roth (cont)
- 12 Registers and Counters
- 12.1 Registers and Register Transfers
- 12.2 Shift Registers
- 12.3 Design of Binary Counters
- 12.4 Counters for Other Sequences

Combinational vs. Sequential Logic

- Combinational logic
- Function of present inputs only
- Output is known if inputs (some or all) are known
- Sequential logic
- Function of past and present inputs
- Memory or "state"
- Output known if present input and present state are known
- Initial conditions often unknown (or undefined)

Gate D elays

- Recall from earlier lecture
. When gate inputs change, outputs don't change instantaneously

Feedback

- Outputs connected to inputs
- Single inverter feedback
- If propagation delay is long enough, output will oscillate

Feedback

- If the propagation delay is not long enough, the output will settle somewhere in the middle
- $V_{\text {in }}=V_{\text {out }}$

Feedback

- Ring Oscillator
- Any odd number of inverters will oscillate
- $1 / 2$ period $=$ total prop delay of chain

Feedback

- What about an even number of inversions?
- Two inverter feedback
- Memory (or State)
- Static 1 or 0 "stored" in memory

(a)

(b)

The Latch

- Replace inverters with NOR gates

The Set-Reset (SR) Latch

- NOR implementation
- Inverted feedback

(a) Circuit

S	R	Q_{a}	Q_{b}
0	0	$0 / 1$	$1 / 0$
0	1	0	1
1	0	1	0
1	1	0	0

(b) Truth table

The SR Latch

- R = Reset (clear)
- $\mathrm{Q} \rightarrow 0, \mathrm{Q}^{*} \rightarrow 1$
- S = Set (preset)
- $\mathrm{Q} \rightarrow 1, \mathrm{Q}^{*} \rightarrow 0$
- NOR gate implementation
- Either input = 1 forces an output to 0

The SR Latch (cont)

- Terminology
- Present state, Q
- Current value of Q and Q^{*}
- Next state, Q+
- Final value of Q and Q^{*} after input changes

The SR Latch (cont)

- Operation
- $\mathrm{S}=1, \mathrm{R}=0$: set to $1, \mathrm{Q}^{+}=1$
- $S=0, R=1$: reset to $0, Q^{+}=0$
- $S=0, R=0$: hold state, $\mathrm{Q}^{+}=\mathrm{Q}$
- $S=1, R=1$: not allowed
- $\mathrm{Q}^{+}=\mathrm{Q}^{*+}=0$, lose state

The SR Latch (cont)

- Timing Diagram
- RS inputs are "pulses"
- Temporarily high, but normally low

The SR Latch (cont)

- Characteristic Equation
- Algebraic expression of flip-flop behavior
- Plot characteristic table on map, find Q^{+}
- $\mathrm{Q}^{+}=\mathrm{S}+\mathrm{R}^{\prime} \mathrm{Q}$ (S = R = 1 not allowed $)$
$\left.\begin{array}{ccc|c|}S(t) & R(t) & Q(t) & Q(t+\epsilon) \\ \hline 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & - \\ 1 & 1 & 1 & -\end{array}\right\}$ inputs not allowed

The SR Latch (cont)

- Characteristic Equation
- $\mathrm{Q}^{+}=\mathrm{S}+\mathrm{R}^{\prime} \mathrm{Q}$ (S = R = 1 not allowed)
- Q becomes 1 when $S=1, R=0$
- Stays Q when $S=R=0$
- Q becomes 0 when $S=0, R=1$

The SR Latch (cont)

- State Table

	$\mathrm{NS}\left(\mathrm{Q}^{+}\right)$			
$\mathrm{PS}(\mathrm{Q})$	$\mathrm{SR}=00$	01	10	11
0	0	0	1	X
1	1	0	1	X

The SR Latch (cont)

- State Diagram

The SR Latch with NANDS

- NAND Based S'R' Latch
- $\mathrm{S}^{\prime}=\mathrm{R}^{\prime}=0$ not allowed
- Either input = 0 forces output to 1

The G ated SR Latch

- Also known as "transparent" latch
- Output follows input (transparent) when enabled

The Gated SR Latch (cont)

- Timing Diagram

The G ated SR Latch (cont)

- NAND Implementation

The G ated D ata (D) Latch

- NAND Implementation of transparent D latch

(a) Circuit

(b) Truth table

(c) Graphical symbol

The G ated D Latch

- Timing Diagram

The Edge Triggered D Flip-Flop

- The D Flip-Flop
- Input D, latched and passed to Q on clock edge
- Rising edge triggered or falling edge triggered
- Characteristic table and function

The Edge Triggered D Flip-Flop

- Most commonly used flip-flop
- Output follows input after clock edge
- Q and Q^{*} change only on clock edge
- Timing diagram for negative edge triggered flip-flop

The D Flip-Flop

- State Table

	$\mathrm{NS}\left(\mathrm{Q}^{+}\right)$	
$\mathrm{PS}(\mathrm{Q})$	$\mathrm{D}=0$	$\mathrm{D}=1$
0	0	1
1	0	1

The D Flip-Flop (cont)

- State Diagram

The Master-Slave D Flip-Flop

- Construct edge triggered flip-flop from 2 transparent latches
- Many other topologies for edge triggered flip-flops
- Falling edge triggered (below)

The Master-Slave D Flip-Flop (cont)

- Timing Diagram
- Falling edge triggered

The Master-Slave D Flip-Flop (cont)

- A Second Timing Diagram
- Rising edge triggered

The Edge Triggered D Flip-Flop

- "True" Edge Triggered D Flip-Flop
- Never transparent (unlike Master Slave)

The Edge Triggered D Flip-Flop

- Operation of Flip-Flop

Types of D Flip-Flops

- Gated, Positive Edge and Negative Edge

Timing Parameters

- CLK \rightarrow Q
- Delay from clock edge (CLK) to valid (Q, Q*) output
- Setup time $t_{\text {su }}$
- Stable, valid data (D) before clock edge (CLK)
- Hold time $t_{\text {hold }}$
- Stable, valid data (D) after clock edge (CLK)

Maximum Frequency

- Maximum frequency (minimum clock period) for a digital system
- CLK $\rightarrow \mathrm{Q}+$ propagation delay $+t_{\text {su }}$

Counter D esign with D Flip-Flops

- Design Example \#1: Modulo 3 counter
$\square 00 \rightarrow 01 \rightarrow 10 \downarrow$
$\uparrow \leftarrow \leftarrow \leftarrow \leftarrow \leftarrow$
- Requires 2 flip-flops
- One for each "state variable"

Counter D esign with D Flip-Flops

- State Diagram

Counter D esign with D Flip-Flops

- State Table

PS		NS	
A	B	A^{+}	B^{+}
0	0	0	1
0	1	1	0
1	0	0	0
1	1	X	X

Counter D esign with D Flip-Flops

- Next State Maps

$\mathrm{A}^{+}=\mathrm{B}$

$\mathrm{B}^{+}=\mathrm{A}^{\prime} \mathrm{B}^{\prime}$

Counter D esign with D Flip-Flops

- Implementation with D Flip-Flops
- What are the D inputs to flip-flops A and B?
- Recall characteristic equation for D flip-flop
- $\mathrm{Q}^{+}=\mathrm{D}$
- Therefore, $\mathrm{A}^{+}=\mathrm{B} \rightarrow \mathrm{D}_{\mathrm{A}}=\mathrm{B}$
- and... $B^{+}=A^{\prime} B^{\prime} \rightarrow D_{B}=A^{\prime} B^{\prime}$

Counter D esign with D Flip-Flops

- Implementation with positive edge triggered flip-flops

Counter D esign with D Flip-Flops

- Implementation with positive edge triggered flip-flops
- Timing diagram

Counter D esign with D Flip-Flops

- Design Example \#2:
- Modulo 3 counter with up/down* input
- Counter counts up with input = 1 and down with input = 0
- Implement with D flip-flops

Counter D esign with D Flip-Flops

- State diagram

Counter D esign with D Flip-Flops

- State table

U	A	B	A^{+}	B^{+}
0	0	0	1	0
0	0	1	0	0
0	1	0	0	1
0	1	1	X	X
1	0	0	0	1
1	0	1	1	0
1	1	0	0	0
1	1	1	X	X

Counter D esign with D Flip-Flops

- Next state maps and flip-flop inputs

$$
\mathrm{A}^{+}=\mathrm{D}_{\mathrm{A}}=\mathrm{UB}+\mathrm{U}^{\prime} \mathrm{A}^{\prime} \mathrm{B}^{\prime}
$$

$$
\mathrm{B}^{+}=\mathrm{D}_{\mathrm{B}}=\mathrm{U}^{\prime} \mathrm{A}+U A^{\prime} \mathrm{B}^{\prime}
$$

