Latches, the D Flip-Flop & Counter Design

ECE 152A – Winter 2012

Brown and Vranesic

- 7 Flip-Flops, Registers, Counters and a Simple Processor
 - 7.1 Basic Latch
 - 7.2 Gated SR Latch
 - 7.2.1 Gated SR Latch with NAND Gates
 - 7.3 Gated D Latch
 - □ 7.3.1 Effects of Propagation Delays

Brown and Vranesic (cont)

- 7 Flip-Flops, Registers, Counters and a Simple Processor (cont)
 - 7.4 Master-Slave and Edge-Triggered D Flip-Flops
 - □ 7.4.1 Master-Slave D Flip-Flop
 - □ 7.4.2 Edge-Triggered D Flip-Flop
 - □ 7.4.3 D Flip-Flop with Clear and Preset
 - □ 7.4.4 Flip-Flop Timing Parameters (2nd edition)

Roth

11 Latches and Flip-Flops

- 11.1 Introduction
- 11.2 Set-Reset Latch
- 11.3 Gated D Latch
- 11.4 Edge-Triggered D Flip-Flop

Roth (cont)

12 Registers and Counters

- 12.1 Registers and Register Transfers
- 12.2 Shift Registers
- 12.3 Design of Binary Counters
- 12.4 Counters for Other Sequences

Combinational vs. Sequential Logic

Combinational logic

- Function of present inputs only
 - Output is known if inputs (some or all) are known

Sequential logic

Function of past and present inputs

- Memory or "state"
- Output known if present input and present state are known
 - Initial conditions often unknown (or undefined)

Gate Delays

Recall from earlier lecture

When gate inputs change, outputs don't change instantaneously

Outputs connected to inputs

- Single inverter feedback
 - If propagation delay is long enough, output will oscillate

 If the propagation delay is not long enough, the output will settle somewhere in the middle

•
$$V_{in} = V_{out}$$

Ring Oscillator

- Any odd number of inverters will oscillate
 - $\frac{1}{2}$ period = total prop delay of chain

Name:	20.0115	40.0115	80.0HS	80.005	100.1
[I] EN_OSC [O]OSC					

What about an even number of inversions?

- Two inverter feedback
 - Memory (or State)
 - Static 1 or 0 "stored" in memory

The Latch

Replace inverters with NOR gates

The Set-Reset (SR) Latch

NOR implementationInverted feedback

February 6, 2012

The SR Latch

R = Reset (clear)
Q → 0, Q* → 1
S = Set (preset)
Q → 1, Q* → 0
NOR gate implementation
Either input = 1 forces an output to 0

Terminology

- Present state, Q
 - Current value of Q and Q*
- Next state, Q⁺
 - Final value of Q and Q* after input changes

Operation

- □ S=1, R=0 : set to 1, Q⁺ = 1
- □ S=0, R=1 : reset to 0, Q⁺ = 0
- □ S=0, R=0 : hold state, $Q^+ = Q$
- □ S=1, R=1 : not allowed
 - Q⁺ = Q^{*+} = 0, lose state

Timing Diagram

- RS inputs are "pulses"
 - Temporarily high, but normally low

Characteristic Equation

- Algebraic expression of flip-flop behavior
- Plot characteristic table on map, find Q⁺
 - $Q^+ = S + R'Q$ (S = R = 1 not allowed)

Characteristic Equation

- \square Q⁺ = S + R'Q (S = R = 1 not allowed)
 - Q becomes 1 when S = 1, R = 0
 - Stays Q when S = R = 0
 - Q becomes 0 when S = 0, R = 1

State Table

NS (Q+) PS (Q) SR=00 01 10 11 Х 0 0 0 1 1 1 1 0 Х

State Diagram

The SR Latch with NANDS

NAND Based S'R' Latch S' = R' = 0 not allowed Either input = 0 forces output to 1

The Gated SR Latch

Also known as "transparent" latch Output follows input (transparent) when enabled

The Gated SR Latch (cont)

Timing Diagram

February 6, 2012

The Gated SR Latch (cont)

NAND Implementation

The Gated Data (D) Latch

NAND Implementation of transparent D latch

The Gated D Latch

Timing Diagram

The Edge Triggered D Flip-Flop

The D Flip-Flop

- Input D, latched and passed to Q on clock edge
- Rising edge triggered or falling edge triggered
 - Characteristic table and function

The Edge Triggered D Flip-Flop

Most commonly used flip-flop

- Output follows input after clock edge
 - Q and Q* change only on clock edge
 - Timing diagram for negative edge triggered flip-flop

The D Flip-Flop

State Table

The D Flip-Flop (cont)

State Diagram

The Master-Slave D Flip-Flop

- Construct edge triggered flip-flop from 2 transparent latches
 Many other topologies for edge triggered flip-flops
 - Falling edge triggered (below)

The Master-Slave D Flip-Flop (cont)

Timing Diagram Falling edge triggered

The Master-Slave D Flip-Flop (cont)

A Second Timing Diagram Rising edge triggered

February 6, 2012

The Edge Triggered D Flip-Flop

"True" Edge Triggered D Flip-Flop Never transparent (unlike Master Slave)

The Edge Triggered D Flip-Flop

Operation of Flip-Flop

Types of D Flip-Flops

Gated, Positive Edge and Negative Edge

Timing Parameters

$\Box \ \mathsf{CLK} \to \mathsf{Q}$

Delay from clock edge (CLK) to valid (Q, Q*) output

• Setup time t_{su}

Stable, valid data (D) before clock edge (CLK)

\Box Hold time t_{hold}

Stable, valid data (D) after clock edge (CLK)

Maximum Frequency

 Maximum frequency (minimum clock period) for a digital system
 CLK → Q + propagation delay + t_{su}

Design Example #1: Modulo 3 counter
 00 → 01 → 10 ↓
 ↑ ← ← ← ← ←

Requires 2 flip-flops
 One for each "state variable"

State Diagram

State Table

PS		NS	
А	В	A+	B+
0	0	0	1
0	1	1	0
1	0	0	0
1	1	X	Х

Next State Maps

Implementation with D Flip-Flops
 What are the D inputs to flip-flops A and B?
 Recall characteristic equation for D flip-flop

- Q⁺ = D
- Therefore, $A^+ = B \longrightarrow D_A = B$
- and... $B^+ = A'B' \rightarrow D_B = A'B'$

Implementation with positive edge triggered flip-flops

February 6, 2012

 Implementation with positive edge triggered flip-flops
 Timing diagram

Design Example #2:

Modulo 3 counter with up/down* input

- Counter counts up with input = 1 and down with input = 0
- Implement with D flip-flops

State diagram

State table

U	А	В	A+	B+
0	0	0	1	0
0	0	1	0	0
0	1	0	0	1
0	1	1	Х	Х
1	0	0	0	1
1	0	1	1	0
1	1	0	0	0
1	1	1	Х	Х

Next state maps and flip-flop inputs

