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ABSTRACT

Artificial bandwidth extension (ABE) algorithms can improve
speech quality when wideband devices are used with narrowband
devices or infrastructure. Most ABE solutions employ some form of
memory, implying high-dimensional feature representations that in-
crease both latency and complexity. Dimensionality reduction tech-
niques have thus been developed to preserve efficiency. These entail
the extraction of compact, low-dimensional representations that are
then used with a standard regression model to estimate high-band
components. Previous work shows that some form of supervision is
crucial to the optimisation of dimensionality reduction techniques
for ABE. This paper reports the first application of conditional
variational auto-encoders (CVAEs) for supervised dimensionality
reduction specifically tailored to ABE. CVAEs, form of directed,
graphical models, are exploited to model higher-dimensional log-
spectral data to extract the latent narrowband representations. When
compared to results obtained with alternative dimensionality reduc-
tion techniques, objective and subjective assessments show that the
probabilistic latent representations learned with CVAEs produce
bandwidth-extended speech signals of notably better quality.

Index Terms— variational auto-encoder, latent variable, artifi-
cial bandwidth extension, dimensionality reduction, speech quality

1. INTRODUCTION

Legacy narrowband (NB) networks and devices typically support
bandwidths of 0.3-3.4kHz. In order to provide improved speech
quality, today’s wideband (WB) networks support bandwidths of
50Hz-7kHz. With the transition from NB to WB networks requiring
significant investment [1], artificial bandwidth extension (ABE) al-
gorithms have been developed to improve speech quality when WB
devices are used with NB devices or infrastructure. ABE is used
to estimate missing highband (HB) frequency components above
3.4kHz from available NB components, typically using a regression
model learned from an extensive pool of WB training data.

ABE algorithms use either a classical source-filter model [2, 3]
or operate directly on complex short-term spectral estimates [4—6].
In both approaches, the use of contextual information, or memory,
leads to more reliable estimation of HB components. Some spe-
cific back-end regression models [7-9] capture memory in the form
of temporal information whereas other solutions [4, 10, 11] capture
memory in the front-end instead, e.g., via delta features or static fea-
tures extracted from neighbouring frames. While the use of memory
improves ABE performance, it implies the use of higher dimensional
features and, therefore, more complex and computationally demand-
ing ABE regression models. This is undesirable given that ABE is
often required to function on battery-powered devices.

In trying to mitigate increased complexity, [12, 13] investigated
the inclusion of memory through delta Mel-frequency cepstrum co-
efficients (MFCCs) under the constraints of fixed dimensionality.
Gains in mutual information were, however, found to be offset by
reconstruction artifacts involved in MFCC inversion [13]. Our own
work [14] proposed an approach to include memory in the form of
static features from neighbouring frames. Dimensionality reduction
was used to preserve efficiency. Our subsequent work [15] showed
that memory in the form of log spectral coefficients can be used to
learn a compact, low dimensional feature representation for ABE us-
ing semi-supervised stacked auto-encoders (SSAE). The work pre-
sented in this paper aims to explore the use of generative model-
ing techniques to improve ABE performance further. The goal is to
model the distribution of higher-dimensional spectral data (that in-
cludes memory) and to extract higher-level, lower-dimensional fea-
tures that improve the reliability of the ABE regression model, with-
out affecting complexity. Essentially, we seek a form of dimension-
ality reduction (DR) that is tailored specifically to ABE.

Probabilistic deep generative models such as variational auto-
encoders (VAEs) and their conditional variant (CVAEs) are capable
of modeling complex data distributions. In contrast to bottleneck
features learned by stacked auto-encoders (SAEs), the latent repre-
sentation is probabilistic and can be used to generate new data. In-
spired by their successful use in image processing [16—18], they have
become increasingly popular in numerous fields of speech process-
ing, e.g., speech modelling and transformation [19, 20], voice con-
version [21], speech synthesis [22], speech enhancement for voice
activity detection [23], emotion recognition [24] and audio source
separation [25].

CVAEs generate data via the combination of latent and so-called
conditioning variables. The idea in the work reported in this paper
is that the conditioning variable can be optimised via an auxiliary
neural network in order to learn higher-level NB features, features
that are tailored to the estimation of missing HB components in an
ABE task. The novel contributions of this work are: (i) the first ap-
plication of VAEs and CVAEs to DR for regression tasks such as
ABE; (ii) the combination of CVAE with a probabilistic encoder in
the form of an auxiliary neural network which derives the condition-
ing variable; (iii) an approach to their joint optimisation; (iv) their
application to extract probabilistic NB latent representations for es-
timation of missing HB data in an otherwise standard ABE frame-
work and (v) use of the proposed approach to deliver substantially
improved ABE performance.

The remainder of this paper is organised as follows. Section 2
describes a baseline ABE algorithm. Section 3 explains the proposed
feature extraction scheme using VAE and CVAE. Experimental work
is described in Section 4 and conclusions are presented in Section 5.
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Fig. 1. A block diagram of the baseline ABE system. Diagram
adapted from [14].

2. BASELINE ABE SYSTEM

Fig. 1 illustrates the baseline ABE system. It is identical to the
source-filter model based approach presented in [14]. Accordingly,
only a brief overview is provided here. The algorithm comprises two
blocks: estimation and resynthesis.

During estimation, a NB speech frame s"° of 20 ms duration
with a sampling rate of 16kHz is processed using a 1024-point FFT
to extract 200-dimensional NB log power spectrum (LPSxg) co-
efficients x> which are mean and variance normalised (mvny) to
give xNo.. After being appended with the coefficients of 2 neigh-
bouring frames, dimensionality reduction (DR) is applied to the
resulting 1000-dimensional concatenated vector xhb. o to extract
10-dimensional features x)". Normalised HB features yr con-
sisting of 9 LP coefficients and a gain parameter are then estimated
using a conventional GMM-based mapping technique [2]. Inverse
mean and variance normalisation (mvny 1) is then applied, giving
HB features y'&

Resynthesis is performed in three steps. First (box in Fig. 1),
LP parameters a™°, g"® are obtained from speech frame s"® via
selective linear prediction (SLPng) to get the NB power spectrum
PSng. This is then concatenated with the HB power spectrum PSyg
(obtained from estimated HB LP parameters ", 4"8), giving the
WB power spectrum PSwg, and hence estimated WB LP parameters
gV aVB. Second (box 2), the HB excitation ™™ is estimated from
the spectral translation of the NB excitation u™"® at 6.8 kHz followed
by high pass filtering. NB and HB excitation components are then
combined to give the extended WB excitation a"B. Finally (box 3),
"B is filtered using a synthesis filter defined by §V® and &“® in
order to resynthesise speech frame 8"5. A conventional overlap and
add (OLA) technique is used to produce extended WB speech.

3. FEATURE EXTRACTION USING CONDITIONAL
VARIATIONAL AUTO-ENCODERS

We show in this section how the joint learning of VAE and CVAE
architectures can be used for feature extraction in order to improve
ABE performance.

3.1. Variational auto-encoders

A variational auto-encoder (VAE) [26] is a generative model
po(X,2) = po(z)pe(x|z) (with parameters 6) which assumes that
data {x}Y;, consisting of N i.i.d. samples of a random variable
x is generated from a continuous latent variable z. In practice,
the marginal likelihood py(x) and true posterior density pe(z|x)

both are intractable. To alleviate this problem, VAEs use a recogni-
tion/inference model g,(z|x) as an approximation to the posterior
po(z|x). The marginal likelihood over a single datapoint is given
by:

logp(x) = —Dxrqs(z[x)|lpe(z[x)] + L(0, ¢;x) (1)

where the first term represents the Kullback-Leibler (KL) divergence
(Dk1) between the approximate and true posterior distributions.
For simplicity, it is assumed that the approximate and true poste-
riors are diagonal multivariate Gaussian distributions whose respec-
tive parameters 6 and ¢ are computed using two different deep neural
networks.

Since the KL divergence is non-negative, £(6, ¢; x) represents
a variational lower bound on the marginal likelihood which can be
written as:

L(0, ;%) = =Drrlgs (2x)[[p(2)] + Eq, (z1x) [log po (x|2)] (2)

where D[] acts as a regulariser which can be computed an-
alytically. 1In practice, the prior p(z) = N (z;0,I) is assumed
to be a centered isotropic multivariate Gaussian with no free pa-
rameters. The second term is the expected negative reconstruc-
tion error and must be estimated by sampling. It is approximated
by + Zle log po(x|z") using L samples drawn from a recog-
nition network ¢g4(z|x). Sampling is performed using a differ-
entiable deterministic mapping such that 2z = 9o (%, e(”) =
p(x) + €D @ o(x) where € ~ N(0,I). p, = u(x) and
0z = o(x) are outputs of the recognition network g, (z|x). This is
called the reparameterization trick. The lower bound £ forms the
objective function which can be optimized with respect to parame-
ters 0 and ¢ using a stochastic gradient descent algorithm.

3.2. Conditional variational auto-encoders

A conditional variational auto-encoder (CVAE) is a conditional, gen-
erative model, po(y,z|x) = po(2z)po(y|x,z). For a given input
observation x, a latent variable z is drawn from a prior distribution
po(x) from which the distribution pe(y|x,z) generates the output
y [17,18]. To deal with intractability, CVAEs also use an approxi-
mate posterior ¢4 (z|x,y).

We adopt a different formulation than in [18], where we assume
that the latent variable is dependent only on the output variable y,
ie., g4(2z|x,y) = q¢(z]y). The variational lower bound on the
conditional likelihood pg (y|x) is then given by:

log po(y|x) > L(6, $;x,y)
= —Dk1[gs(2|y)|lpe(2)] + Eq, (ay) [log po(y[x,2)]  (3)

The second term is approximated by % Ele log po (y|x, z(l))
where 2" = g4(y,eV) = uly) + €V @ o(y) where ¢V ~
N(0,I). u, = u(y) and 0, = o(y) are outputs of the recog-
nition network g, (zly). In practice, L = 1 samples are used per
datapoint [26]. CVAE recognition network ¢4(z|y) and generation
network pg (y|x, z) are modeled using deep neural networks.

The output distribution pg(y|x,z) in Eq. 3 is chosen to be
Gaussian with mean f(x,z;6) and covariance matrix o2 * I, i.e.,
po(y|x,2z) = N(f(x,2;0),0% x I) where f is a deterministic
transformation of x and z with parameters 6. Therefore,

C—lly — f(x,2:0)|*/a )

where C' is a constant that can be ignored during optimisation. The
scalar @ = 202 can be seen as a weighting factor between the KL-
divergence and the reconstruction term [27].

log po(y|x,2) =



3.3. Extracting latent representations for ABE

This section describes the proposed scheme to jointly optimise VAE
and CVAE in order to learn latent representations tailored to ABE.
The scheme is illustrated in Fig. 2. Parallel training data consist-
ing of NB and WB utterances is processed in frames of 20ms dura-
tion with 10ms overlap. Input data x = x5 , consists of NB LPS
coefficients with memory (as described in Section 2). The output
datay = y™® consists of 9 LP coefficients and a gain parameter ex-
tracted from parallel HB data via selective linear prediction (SLP).

First, the VAE is trained whereby the encoder g, (zx|x) (bot-
tom of Fig. 2) is fed with input data x in order to predict the mean
Uz, and log-variance log(agx) that represent the posterior distribu-
tion gy, (zx|x). A corresponding decoder pe, (X|zx) (not shown in
Fig.2) is fed with input zx ~ ¢4, (zx|x) in order to predict the mean
ux of the distribution pg, (x|zx). This can be considered as some
form of pretraining to initialise weights of the encoder g4, (zx|X).
Note that, at this stage, the NB representation zx is learned without
any supervision from HB data. The VAE decoder is then discarded.
The encoder gy, (zx|x) is then used as the conditioning variable of
the CVAE (as shown in Fig. 2).

The CVAE is then trained to model the distribution of the out-
put y as follows. The HB data y is fed to the encoder gy, (zy|y)
(top-left network in Fig. 2) in order to predict the mean i, and
log-variance log(ogy) of the approximate posterior distribution
g, (zy|y) . The predicted parameters are then used to obtain the
latent representation zy ~ g, (zy|y) of the output variable y via
the reparameterization trick (see Section 3.2). Next, the latent vari-
able zx ~ qg, (zx|x), is used as the CVAE conditioning variable.
After concatenation, zx and zy are fed to the decoder pa, (y|zx, Zy)
(top-right network) in order to predict the mean py = p(zx,zy) of
the ouput variable y. Finally, the entire network is trained to learn
parameters ¢x, ¢y and 6y jointly. From Eq. 3 and 4, the equivalent
variational lower bound under optimisation is given by:

log po, (y|zx) > L(0y, ¢y, dx; 2x,¥) =
— [Di[gsy (2y [¥)|poy (2y)] + Iy — f(2x,2y;05)[*/a]  (5)

It is expected that, during optimisation of Eq. 5, parameters ¢«
of the encoder gy, (zx|x) are updated so that the framework learns
the latent representation zx that encodes information about the gen-
erated CVAE output y.

Finally, the encoder g4, (zx|x) (signified by the red components
in Fig. 2) is used to estimate the latent representation zx for every
x. The GMM regression mapping is then learned using joint vectors
Zx and y [2]. During the ABE estimation phase, the DR block (red
box in Fig. 1) is replaced by the encoder ¢4, (zx|x) and estimation is
performed in the same manner as described in Section 2. Note that
the networks gs, (zx|x) and pe, (y|zx, zy) together form a DNN,
with two stochastic layers zx and zy, that can itself be used for ABE
where zy is sampled from the prior distribution py,, (zy) = N (0,I)
during estimation phase. However, the aim of the work reported in
this paper is to use the latent representation zx learned using a CVAE
as a DR technique for ABE. The aim is to preserve the computational
efficiency of the regression model.

4. EXPERIMENTAL SETUP AND RESULTS

This section describes the databases used for ABE experiments,
baseline and CVAE configuration details and results. Experiments
are designed to compare the performance of ABE system that use
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Fig. 2. A feature extraction scheme using CVAE.

features learned from CVAE with those that use alternative DR tech-
niques. In all cases, performance is assessed with and without mean
and variance normalisation.

4.1. Database

The TIMIT dataset [28] was used for training and validation. ABE
solutions were trained with the 3696 utterances from the training
set and 1152 utterances from the test set (excluding core test sub-
set) using parallel WB and NB speech signals processed according
to the steps described in [6]. The TIMIT core test subset (192 ut-
terances) was used for validation and for network optimisation. The
acoustically-different TSP database [29] comprising 1378 utterances
was used for testing. TSP data were downsampled to 16kHz and
similarly pre-processed to obtain parallel WB and NB data.

4.2. CVAE configuration and training

The CVAE architecture ! is implemented using the Keras toolkit [30].
Encoders qq, (zx|x) and g4, (zy|y) consist of two hidden layers
with 512 and 256 units, and 1000 and 10 units for input layers
respectively. Their outputs are Gaussian-distributed latent variable
layers zx and zy consisting of 10 units for the means (i, , iz, and
log-variances 04, 0z, . The decoders p, (x|zx) and pa,, (y|2x, Zy)
have 2 hidden layers with 256 and 512 units. Output layers have
1000 and 10 units respectively. All hidden layers have ranh activa-
tion units whereas Gaussian parameter layers have linear activation
units. The modelling of log-variances avoids the estimation of
negative variances.

Training is performed jointly in order to minimise the negative
conditional log-likelihood in Eq. 5 using the Adam stochastic op-
timisation technique [31] with an initial learning rate of 10~3 and
hyperparameters £; = 0.9, 82 = 0.999 and ¢ = 10~3. Networks
are initialised according to the approach described in [32] so as to
improve the rate of convergence. To discourage over-fitting, batch-
normalisation [33] is applied before every activation layer. The
learning rate is reduced by half when the validation loss increases
between 5 consecutive epochs. First, the VAE is trained on input
data x for 50 epochs. The full CVAE is then trained for a further

Implementation ~ is  available at https://github.com/
bachhavpramod/bandwidth_extension



Table 1. Effect of weighing factor o on D1, and RE during both
training and testing phases. Results shown for the validation dataset.

@ 2 5 10 20 30
D 096 | 021 | 33e-4 | 1.5e-4 | 9.7e-5
training phase
. _RE 4.73 7.40 8.93 8.97 8.97
training phase
. RE 11.40 9.85 8.93 8.97 8.97
testing phase

Table 2. Objective assessment results. RMS-LSD and dcosu are
distance measures (lower values indicate better performance) in dB,
whereas MOS-LQOy,;; values reflect quality (higher values indicate
better performance).

DR method drMs-Lsp @B) | dcosH B) Ll\g%i/_B
PCA 6.95 1.43 3.21
PCA + MVN 7.35 1.45 3.14
SAE 12.45 2.96 1.95
SAE + MVN 7.54 1.50 3.03
VAE 8.64 1.67 2.75
VAE + MVN 8.60 1.67 2.75
SSAE 10.50 2.11 2.26
SSAE + MVN 6.80 1.34 3.28
CVAE 6.59 1.31 3.34
CVAE + MVN 6.69 1.30 3.31

50 epochs using input x and output y data. The model giving the
lowest validation loss is used for subsequent processing.

CVAE performance is compared to alternative SAE, SSAE and
PCA DR techniques. In accordance with our previous work [15],
SSAE and SAE setups have a common structure of (512, 256, 10,
256, 512) hidden units. The parameters were chosen based on our
investigations in [15].

4.3. Analysis of weighting factor o

Since better estimation of HB components is crucial to ABE per-
formance, the latent representation zx should contain informa-
tion that is informative of y. We therefore studied the impor-
tance of the weighing factor o on the reconstruction error (RE),
lly — f(zy,zx;0y)||* , both during training and testing phases.

Table 1 shows the D1, and RE values at the end of epoch with
the smallest validation loss for different values of «. Lower values
of « lead to higher values of Dg 1, suggesting that the approximate
posterior g4, (zy|y) is far from the prior distribution pe, (zy) =
N(0,1). This hypothesis is confirmed by the observation of higher
REs during testing than during training. This is because the de-
coder py,, (¥|zx, zy) reconstructs the output y using latent variables
zy sampled from the prior during festing, but from the approximate
posterior during training. Higher values of o give lower values of
Dk ., suggesting that the posterior distribution is closer to the prior
distribution. This hypothesis is confirmed by the observation of sim-
ilar REs for training and testing phases. These findings corrobo-
rate those of previous work [20]. Based upon REs for the validation
dataset, all experiments reported in the remainder of this paper cor-
respond to a value of o = 10.

Table 3. Subjective assessment results for the ABE systems with
CVAE, SSAE + MVN and PCA DR techniques in terms of CMOS.

Comparison A — B [ CMOS ‘
CVAE — NB 0.90
CVAE — PCA 0.13
CVAE — SSAE + MVN 0.10
CVAE — WB -0.96

4.4. Objective assessment

Objective spectral distortion measures include: the root mean square
log-spectral distortion (RMS-LSD); the so-called COSH measure
(symmetric version of the Ikatura-Saito distortion) [34] calculated
for a frequency range 3.4-8kHz, and a WB extension to the percep-
tual evaluation of speech quality algorithm [35]. The latter gives
objective estimates of mean opinion scores (MOS-LQOy).

Results are presented in Table 2. ABE performance with PCA
dimensionality reduction outperforms that with SAE and VAE tech-
niques, signifying the importance of supervised learning or so-called
discriminative fine tuning during feature extraction. While MVN
degrades performance for the PCA ABE system, it improves per-
formance for SAE and SSAE techniques significantly. The CVAE
ABE system is the best performing of all and, interestingly, perfor-
mance is stable with and without MVN. This is perhaps due to the
probabilistic learning of latent representations.

4.5. Subjective assessment

The results of comparative, subjective listening tests are illustrated in
Table 3 in the form of the comparison mean-opinion score (CMOS).
Tests were performed by 15 listeners who were asked to compare the
quality of 12 pairs of speech signals A and B listened to using DT
770 PRO headphones. They were asked to rate the quality of signal
A with respect to B on the scale of -3 (much worse) to 3 (much
better) with steps of 1. All speech files used for subjective tests are
available online?.

Speech files whose bandwidth is extended using the proposed
CVAE approach were judged to be of superior quality to original
NB signals (a CMOS of 0.90) though still inferior to original WB
signals (a CMOS of -0.96). However, the CVAE system produces
speech of better quality than alternative systems with CMOS of 0.13
and 0.10.

5. CONCLUSIONS

Conditional variational auto-encoders (CVAE) are directed graphical
models that are used for generative modelling. This paper presents
their first application to dimensionality reduction for computation-
ally efficient artificial bandwidth extension (ABE). When used with
a standard ABE regression model, the probabilistic, latent repre-
sentation produced using the proposed approach does not need any
post-processing such as mean and variance normalisation. The ABE
system reported in this paper produces speech of substantially bet-
ter quality, a result confirmed by both objective and subjective as-
sessment. Improvements are attributed to the better modelling of
high-dimensional spectral coefficients using CVAE. Crucially, they
are achieved without augmenting the complexity of the regression
model. Future work should compare or combine CVAEs with other
generative models such as adversarial networks.

Zhttp://audio.eurecom.fr/content/media
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