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o Miller-indices - A shorthand notation to describe 
certain crystallographic directions and planes in a 
material. 

Lattice directions are in direct space and are denoted 
by [ ] brackets. A negative number is represented 
by a bar over the number.

Directions of a form (also called family) -
Crystallographic directions that all have the same 
characteristics, although their ‘‘sense’’ may be 
different. Denoted by <> brackets, they are 
symmetrically equivalent

Lattice Points and Directions in 
the Unit Cell 
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o Miller-indices - A shorthand notation to describe 
certain crystallographic directions and planes in a 
material. 

Lattice planes are represented by the vector that is 
normal (perpendicular to them), these are 3D 
vectors in reciprocal (or dual) space (reciprocal 
space is nothing fancy - it is just a mathematical 
convenience !) 

Directions of a form (also called family) – lattice planes 
that all have the same characteristics, although 
their ‘‘sense’’ may be different. Denoted by {} 
brackets, they are symmetrically equivalent. Now if 
the lattice point represents more than one point the front side and the 
back side of one and the same plane may have very different chemical 
properties as different atoms will be exposed, e.g. ZnS structure

Lattice Planes in the Unit Cell are 
an altogether different matter !
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Coordinates of selected points in the unit cell. The 
number refers to the distance from the origin in 
terms of lattice parameters.

We start with the 
coordinates of 
lattice points in 
order to define 
the Miller indices 
of lattice 
directions
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Determining Miller Indices of Directions
Determine coordinates of two 
points that lie in direction of 
interest, 
u1 v1 w1   and  u2 v2 w2

calculations are simplified if the second 
point corresponds with the origin of the 
coordinate system

Subtract coordinates of second 
point from those of  first point
u’ = u1-u2, v’ = v1-v2, w’ = w1-w2

Clear fractions from the 
differences to give indices in 
lowest integer values. Write 
indices in [] brackets. Negative 
integer values are indicated with 
a bar over the integer, 

[uvw] and [uvw] are running in 
opposite directions 



24

Direction A
1. Two points are 1, 0, 0, and 0, 0, 0
2. 1, 0, 0, - (0, 0, 0) = 1, 0, 0
3. No fractions to clear or integers to reduce
4. [100]

Direction B
1. Two points are 1, 1, 1 and 0, 0, 0
2. 1, 1, 1, - (0, 0, 0) = 1, 1, 1
3. No fractions to clear or integers to reduce
4. [111]

Direction C
1. Two points are 0, 0, 1 and 1/2, 1, 0
2. 0, 0, 1 –(1/2, 1, 0) = -1/2, -1, 1
3. 2 (-1/2, -1, 1)  = -1,-2, 2

2]21[  .4
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Equivalency of crystallographic directions of a form in 
cubic systems.
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Determining Miller Indices of Planes

Identify the coordinate 
intersects of the plane, if plane 
is parallel to one of the axes, 
this intercept is taken to be 
infinite

Take the reciprocal of the 
intercept

Clear fractions, but do not 
reduce to lowest integers

Cite in (h k l) parentheses

Negative integer values are 
indicated with a bar over the 
integer

(h k l) is the same plane as 
(h k l) , just its back side
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Plane A
1. x = 1, y = 1, z = 1
2.1/x = 1, 1/y = 1,1 /z = 1
3. No fractions to clear
4. (111)

Plane B

1. The plane never intercepts the z axis, so x = 1, y = 2, and z = 
2.1/x = 1, 1/y =1/2, 1/z = 0
3. Clear fractions: 1/x = 2, 1/y = 1, 1/z = 0
4. (210)

Plane C

1. We shall move the origin, since the plane passes through 0, 0, 0. 
Let’s move the origin one lattice parameter in the y-direction. Then, 

x =    , y = -1, and z =
2.1/x = 0, -1/y = -1, 1/z = 0
3. No fractions to clear.

that seemed a bit arbitrary, we could have moved the origin in the –
y direction as well, then we would have gotten (010), which is just 
the back side of

)010( .4

∞

∞∞

)010(
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(b) Various planes in the cubic lattice
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Drawing Direction and Plane

Draw (a) the          direction and (b) the          plane in a 
cubic unit cell.

1]2[1 10]2[

Construction 
of a (a) 
direction and 
(b) plane 
within a unit 
cell
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SOLUTION

a. Because we know that we will need to move in the 
negative y-direction, let’s locate the origin at 0, +1, 0. 
The ‘‘tail’’ of the direction will be located at this new 
origin. A second point on the direction can be 
determined by moving +1 in the x-direction, 2 in the 
negative y-direction, and +1 in the z direction.

b. To draw in the          plane, first take reciprocals of 
the indices to obtain the intercepts, that is: 

x = 1/-2 = -1/2  y = 1/1 = 1  z = 1/0 =

Since the x-intercept is in a negative direction, and we 
wish to draw the plane within the unit cell, let’s move 
the origin +1 in the x-direction to 1, 0, 0. Then we can 
locate the x-intercept at 1/2 and the y-intercept at +1. 
The plane will be parallel to the z-axis.

10]2[

∞
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Same basic idea for lattice planes, i.e. their normals 
which are vectors in reciprocal (or dual) space
everything is easy in cubic systems, in other crystal 
systems we use reciprocal metric tensor, the 
reciprocal 3 by 3 matrix of the metric tensor
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Metric tensor (and its reciprocal) also define 
reciprocal lattice

ababc

cacab

cbcba

×==

×==

×==

−

−

−

1222
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)sin(*

)sin(*

)sin(*

γ

β

α

It is just a mathematical convenience, particularly 
useful for interpretation of (X-ray and electron 
diffraction) data

d* = H = h a1* + ka2* + l a3*= 1/d

In cubic systems simply: 
222 lkh

a
dhkl

++
=
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o Covalently bonded materials frequently have 
complex structures in order to satisfy the 
directional restraints imposed by the bonding.

o Diamond cubic (DC) - A special type of face-
centered cubic crystal structure found in 
carbon, silicon, α-Sn, and other covalently 
bonded materials.

Covalent Structures
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(a) The zinc blende unit cell, (b) plan view. There 
is usually a large covalent contribution to these 
bonds. The coordination is quite low for ionic bonds.  
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Fig. 1.33: The diamond unit cell is cubic. The cell has eight atoms.
Grey Sn (α-Sn) and the elemental semiconductors Ge and Si have
this crystal structure.
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Fig. 1.34: The Zinc blende (ZnS) cubic crystal structure. Many
important compound crystals have the zinc blende structure.
Examples: AlAs, GaAs, GaP, GaSb, InAs, InP, InSb, ZnS, ZnTe.




