Layered Light Field Reconstruction for Defocus Blur

KARTHIK VAIDYANATHAN, JACOB MUNKBERG, PETRIK CLARBERG, and MARCO SALVI

Intel Corporation

We present a novel algorithm for reconstructing high-quality defocus blur
from a sparsely sampled light field. Our algorithm builds upon recent de-
velopments in the area of sheared reconstruction filters and significantly
improves reconstruction quality and performance. While previous filtering
techniques can be ineffective in regions with complex occlusion, our algo-
rithm handles such scenarios well by partitioning the input samples into
depth layers. These depth layers are filtered independently and then com-
bined together, taking into account inter-layer visibility. We also introduce
a new separable formulation of sheared reconstruction filters that achieves
real-time preformance on a modern GPU and is more than two orders of
magnitude faster than previously published techniques.

Categories and Subject Descriptors: 1.3.7 [Computer Graphics]: Three-
Dimensional Graphics and Realism—Color, shading, shadowing, and
texture

General Terms: Algorithms

Additional Key Words and Phrases: Depth of field, reconstruction, defocus
blur, light field reconstruction, Fourier analysis

ACM Reference Format:

Karthik Vaidyanathan, Jacob Munkberg, Petrik Clarberg, and Marco Salvi.
2015. Layered light field reconstruction for defocus blur. ACM Trans. Graph.
34, 2, Article 23 (February 2015), 12 pages.

DOI: http://dx.doi.org/10.1145/2699647

1. INTRODUCTION

Depth of field is a widely used camera lens effect in computer-
generated imagery of movies and games today. Offline renderers can
accurately simulate depth of field by sampling numerous positions
on the lens using distribution ray tracing, stochastic rasterization, or
multilayer rendering. On the other hand, real-time renderers typi-
cally approximate this effect by blurring samples from a traditional
2D rasterizer, resulting in objectionable visual artifacts but fast per-
formance. Although significant research progress has been made in
the area of real-time stochastic rendering, the large number of sam-
ples required to produce noise-free images remains a key challenge
in making these higher-quality rendering approaches practical for
real time.

Authors’ addresses: K. Vaidyanathan (corresponding author), J. Munkberg,
P. Clarberg, and M. Salvi, Intel Corporation; email: karthik.vaidyanathan @
intel.com.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions @acm.org.

© 2015 ACM 0730-0301/2015/02-ART23 $15.00

DOIL: http://dx.doi.org/10.1145/2699647

Recent advances in light field reconstruction techniques have
made it possible to reproduce low-noise defocus blur images with
a small number of samples; however, the computational overhead
of these reconstruction algorithms precludes real-time performance.
Reconstruction techniques based on frequency analysis and sheared
filtering are particularly promising. These techniques suppress noise
by deriving reconstruction filters that tightly bound the sheared
frequency spectrum of the light field.

Unfortunately, these filters are ineffective in regions with com-
plex occlusion, such as when in-focus and out-of-focus objects
contribute to the same pixel. Moreover, variations in the light field
can lead to different filtering parameters for each pixel. This pre-
vents efficient separable filter formulations and greatly impacts
performance.

This article introduces a reconstruction algorithm for defocus
blur that significantly improves the reconstruction quality and per-
formance of sheared reconstruction filters. Our technique handles
regions with complex occlusion by partitioning the light field sam-
ples into depth layers. Since each layer has a reduced depth range,
the corresponding spectral bounds of the light field become nar-
rower, resulting in more effective reconstruction filters.

However, partitioning the light field into depth layers presents a
challenge since different layers can occlude each other in complex
ways. In order to address inter-layer occlusion, we derive filters
to reconstruct the average radiance and average visibility for each
layer. These estimates are then used to composite the partitions
from front to back and reconstruct the final pixel color. We also
analyze the impact of using an average visibility estimate instead
of the exact visibility, and show that reconstruction quality is not
compromised.

Finally, we introduce an algorithm for efficiently evaluating
sheared filters. Unlike previous work where a unique filter is eval-
uated per pixel, we divide the domain into tiles and use a small
number of fixed sheared filters within each tile. By deriving a novel
separable formulation for these filters, we show that filtering costs
can be amortized over the large number of pixels in a tile, enabling
real-time performance.

2. RELATED WORK

In recent years, substantial progress has been made in the area of
light field analysis and reconstruction for a wide range of applica-
tions, such as light field rendering, soft shadows, indirect illumi-
nation, motion blur, and camera defocus. The key insight is that,
although a light field is high dimensional, variations in the signal are
often highly anisotropic. Directions of slow variation can be both
sparsely sampled and reconstructed using wide filters for noise re-
duction, without significant loss of fidelity. This has been explored
in a multitude of recent papers.

Chai et al. [2000] analyze the spectrum of the light field for
plenoptic sampling and show that it is bounded by the minimum
and maximum depth values in the scene. They use this observa-
tion to determine a minimum sampling rate and a reconstruction
filter for light field rendering. They also show that the light field
frequency bounds become narrower when the scene is partitioned

ACM Transactions on Graphics, Vol. 34, No. 2, Article 23, Publication date: February 2015.

23:2 . K. Vaidyanathan et al.

into depth layers, and hence fewer samples are required for recon-
struction. However, they do not address occlusion between layers
and ignore visibility in their analysis. We extend their approach
by handling occlusion across depth layers and deriving an efficient
sheared reconstruction filter.

Light field frequency analysis [Durand et al. 2005] has also been
applied in many other areas. Soler et al. [2009] use frequency anal-
ysis for adaptive sampling with defocus blur. Egan et al. [2009] use
frequency analysis to derive a sheared reconstruction filter for mo-
tion blur. This work has also been extended to soft shadows [Egan
et al. 2011b; Mehta et al. 2012] and directional occlusion [Egan
et al. 2011a]. All these methods provide specialized derivations of
the bandlimits in their respective applications. Recently, Belcour
et al. [2013] presented a unified approach for predicting the band-
width of radiance in the 5D domain of space, angle, and time. Key
to their method is a compact representation of the variation and
anisotropy of radiance using 5D covariance matrices, from which
2D sheared filters in the image plane are derived.

We build on previous approaches to sheared filtering and derive
a sheared filter for defocus blur based on frequency analysis. How-
ever, as observed by Lehtinen et al. [2011], most previous sheared
filtering approaches revert to a less effective axis-aligned filter near
occlusion boundaries or in regions with varied motion, producing
a noisy result. To address this, we combine our analysis with par-
titioning into depth layers to effectively reduce the noise in the
reconstructed output. This avoids reverting to an axis-aligned filter
in areas with complex occlusion. Additionally, we design a separa-
ble sheared filter that avoids a complex search in the 4D light field
and amortizes the filtering cost over a large number of pixels. This
is key to our improved performance.

To composite the different depth layers, we introduce a new
approach inspired by previous work on analyzing the spectrum of
the visibility function [Durand et al. 2005; Lanman et al. 2008; Egan
et al. 2011b; Ramamoorthi et al. 2012]. We extend their analysis to
reconstruct the visibility function in addition to the radiance, and
use this to resolve visibility across layers. This ensures accurate,
low-noise results also in areas of complex occlusion.

There are also a multitude of nonfrequency-analysis-based meth-
ods that are applicable to rendering of defocus blur. Hachisuka
et al. [2008] use gradient-based adaptive sampling and reconstruc-
tion to render distribution effects. Their technique spends a consid-
erable amount of time searching in a high-dimensional data structure
to locate nearby samples. Lehtinen et al. [2011] combine higher-
dimensional reprojection and visibility reconstruction to upsample
light fields including motion, defocus, and soft shadows from very
few input samples. Their work was recently extended to indirect
illumination [Lehtinen et al. 2012]. The reprojection step also re-
quires a search in a higher-dimensional light field, and a complex
local visibility reconstruction, taking tens of seconds per frame even
with an optimized GPU implementation.

A separate line of research uses statistical noise estimation meth-
ods to perform denoising in Monte Carlo rendering of depth of
field and other distribution effects. Many modern methods [Sen and
Darabi 2012; Kalantari and Sen 2013] produce surprisingly good
results. However, these general methods naturally cannot compete
on equal terms with more specialized reconstruction filters, which
may exploit domain-specific knowledge (e.g., camera geometry and
sample depths) to provide better and more temporally stable results.
It should also be noted that many denoising algorithms rely on
noise estimation to guide adaptive sampling [Rousselle et al. 2012;
Kalantari and Sen 2013], which is a sensible strategy in ray-tracing-
based Monte Carlo rendering. However, our goal is primarily recon-
struction from uniformly sampled light fields, which may be created

ACM Transactions on Graphics, Vol. 34, No. 2, Article 23, Publication date: February 2015.

Image plane Lens
XA U4

Focal plane

1 F

Fig. 1. 'We parameterize our light field using an image plane coordinate x,
and a lens coordinate . In the illustration, we see that the two rays (x1, u1)
and (xg, 0) both hit the point p. Using similar triangles, we see that xo =

ZZ_FF is the circle of confusion at the image plane.

x1+ Zf—FFul,where c(z) =

efficiently using, for example, stochastic rasterization [Akenine-
Moller et al. 2007].

Shirley et al. [2011] introduce an image space denoising filter
for stochastically rendered images. Since their technique does not
consider the sheared nature of the light field, it tends to over-blur the
result for effective noise reduction. For defocus blur, they also stat-
ically partition the scene into a few layers to improve performance;
however, they use a separate filter per pixel that has a significant
computational cost.

Lee et al. [2010] render defocus blur by ray tracing into a layered
color and depth buffer. This technique allows for artistic control
of depth-of-field effects, but requires depth peeling to render the
multilayer frame buffer. Also since the layers are generated using a
pin-hole camera, visible parts of the scene can get occluded, result-
ing in visible errors. Lei and Hughes [2013] take a similar approach
by rendering a few sharp layers using a pin-hole camera. They then
splat and gather the samples on the image plane to approximate
defocus blur for a particular focus depth.

Finally, there are many simpler postprocessing algorithms for de-
focus blur [Potmesil and Chakravarty 1981; Demers 2004; Hammon
2007; Yu et al. 2011] that use a pin-hole rendering and depth buffer
to simulate defocus blur. These approaches lack visibility informa-
tion and often produce artifacts. However, they are commonly used
in real-time rendering due to their high performance and simplicity.

3. SHEARED FILTERS FOR DEFOCUS BLUR

Our filter design is based on the Fourier spectra for depth of field,
which has been previously derived by Soler et al. [2009]. For clar-
ity, we show the derivation of the Fourier transform and then use
the properties of the spectra to derive a sheared reconstruction fil-
ter. Our derivation closely follows previous work, such as Egan
et al. [2011b]. In later sections, we derive an efficient sheared filter
formulation that, combined with depth partitioning, results in an
effective and practical reconstruction technique.

Geometry Setup. For clarity of presentation, we first analyze
a 2D light field. We parameterize the light field using two parallel
planes: an image plane with coordinate x and a lens coordinate u
one unit away. This setup is shown in Figure 1.

Let p be a point in the scene, which is a source of radiance /. We
assume that the outgoing radiance from p does not vary when viewed
from different points on the lens and that p is visible from the entire
lens (occlusion will be handled later). If we have a finite aperture
(i.e., not a pin-hole camera) and p is out of focus at depth z, the
radiance from p will be smeared over multiple pixels. For example,

in Figure 1, p is hit both by a ray at (x¢, 0) (a ray from x, through
the center of the lens) and by the ray (x;, u;).

Due to our assumption that p is a Lambertian source visible from
the entire lens, the radiance [for the two rays are the same, that is,
I(x1, uy) = I(x9, 0). From the geometry of our setup, we see that

z—F
uy =x; +c(Quy, (D

=x +
X0 X1 ZF

where ¢(z) = &F
plane, that is, ¢(z) < O for points in front of the focal plane and
positive beyond.

This implies that, in the absence of occlusion, for a Lambertian
source at depth z, we have

I(x,u) =1(x 4+ c(2)u, 0). 2)

is the signed circle of confusion at the image

3.1 Frequency Analysis

The irradiance, e(x), at a point x on the image plane (typically the
center of each pixel) is given by integrating the radiance over the
lens'

e(x) = /l(x, u)a(u)du, 3)

where a(u) describes the shape and size of the camera aperture. For
the purpose of our analysis, we assume a(u) is a Gaussian centered
around u = 0.

In the following, we will use capital letters to denote Fourier
transforms, and let 2, and 2, represent the frequencies along the
x and u axes, respectively.? The integral in Eq. (3) can be seen as a
2D convolution of the product of / and a with a constant function 1
in u and a Dirac delta in x:

e(x) = (I(x, u)a(u)) * 5(x). (@]

Note that §(x) is defined in 2D space and represents a line along the
u axis.

Applying a 2D Fourier transform, we can express the spectrum
of the irradiance as a convolution evaluated at €2, = 0 (it is zero
elsewhere):

E(£2,) = (L(S2y, 2,) * 8(82,)A(€2,)) - 8(S2,)
= /L(QA7 QL{’)A(Qu’)dQu’ for Qu =0, (5)
where we have used that a(u) = a(—u) (shortly we rename
Q, = Q, for clarity). In the following sections, we will study the
bandlimits of L and A in order to derive an efficient reconstruction
filter.
3.2 Radiance Frequency Response

We denote the radiance at the center of the lens:
1°(x) = I(x, 0). (6)

As shown in Eq. (2), for a Lambertian source in the absence of
occlusion, we can express the radiance in direction (x, u) as

1(x, u) = 1°Cxc + c(Qu). 7

'We assume a constant lens form factor [Kolb et al. 1995] and ignore it in
our analysis.

2We work in ordinary frequencies, where the unit of €, is pixel ™! if x is
measured in pixels, and so on.

Layered Light Field Reconstruction for Defocus Blur . 23:3

slope: y c

/ .
; s Tavg
/ , .
c \, .
max y K

slope: / /// max
P IQ

C .
‘min

Fig. 2. Filter for the displayable frequencies in the (2, €2,,) plane (illus-
tration adapted from Egan et al. [2011b] ©) ACM 2011). The left illustration
shows a simple axis-aligned filter, using bandlimits given by the extents of
a pixel and the aperture function, respectively. The right illustration shows
a sheared filter capturing approximately the same frequency content.

Transforming this to the Fourier domain, we get [Egan et al. 2011b]:
L(Q, Q) = LUR:)8(2, — c(2)). (®)

It can be seen that the radiance frequency response of an emitter p at
depth z is sheared along the line 2, — ¢(z)2, = 0. Now, consider a
set of unoccluded emitters in a narrow depth range z € [Zmin, Zmax]-
As shown by Chai et al. [2000], the frequency response will be
mostly contained within a wedge bounded by the slopes ¢y, =
C(Zmin) and cmax = ¢(Zmax), Since c¢(z) is monotonically increasing
for z > 0. This is shown in Figure 2.

3.3 Frequency Bounds of Sheared Filter

In this section, we will first estimate bandlimits for the frequency
content of the product of the radiance and aperture function, and
then use these bounds to design a sheared filter.

From Eq. (5), we see that the frequencies that contribute to the
final irradiance are given by the product of L and A. We assume that
the aperture function a(u) is a Gaussian with standard deviation o, .
Although not physically realizable, a Gaussian aperture simplifies
the analysis® and makes it possible to formulate an efficient sep-
arable filter. In practice, the majority of the signal is captured by
the central peak, for instance, 99% lies within 30,. Following the
notation of Mehta et al. [2012], we express this Gaussian filter in
the primal domain as
2

u

w(u;o,) = e . O]

1
2mo,

For the purpose of our analysis, the corresponding bandlimit in the
frequency domain is defined as ;)™ = (2mo,)~!. Note that this is
not a strict bound since a Gaussian has infinite support. Similarly, a
screen space filter w(x; o,) can be defined. We use a Gaussian pixel
filter with standard deviation oy;,. We set the corresponding Fourier
domain bandlimit to SZg}j:" = (2ﬂapix)*1.

Given these bandlimits, a simple filter in the frequency domain
is given by

w(Ly; Q;‘;i") w(Q; Q). (10)

These bandlimits are shown in blue in Figure 2 (left). In the primal
domain, the corresponding filter over the pixel footprint and the
entire lens is

wsimple(xs M) = LU(.X; Upix)w(u; Gu)~ (] l)

3The Fourier transform of a Gaussian with standard deviation o is a scaled
Gaussian with standard deviation 1/(27¢) in ordinary frequencies.

ACM Transactions on Graphics, Vol. 34, No. 2, Article 23, Publication date: February 2015.

Fig. 3. Left: the primal domain filter from Eq. (15), obtained from the
frequency analysis, consisting of a filter along x and a sheared filter in u.
Right: the transformed filter from Eq. (23), which is a sheared filter in x and
a filter along u. This filter is obtained by modifying the filter widths and
shear (the slope from the left filter is included in black in the right illustration
to more clearly depict the difference). Note that the resulting 2D filter kernel
is exactly the same in both cases.

We use this filter if ¢y, and ¢y have different signs and max |c| >
Q[25" (ie., the frequency content lies in a wide wedge).

However, if ¢, and ¢y, are similar, a filter that more tightly
bounds the frequency content of LA can be derived by exploiting
Eq. (8). This is shown in Figure 2 (right).

We will first derive frequency bounds and the filter for the
case where the depth range does not cross the focal plane and
max |c| > €2,/ . For this case, we follow previous work [Egan
et al. 2011b] and bound the wedge in the frequency domain with a
parallelogram (Figure 2, right). The width W of the parallelogram

is given by
1 1
W= —-—, (12)
Cmin Cmax
and its slope is
Covg = M (13)
Cmin T Cmax

To transform the simple axis-aligned filter from Eq. (10) to the
sheared filter, we first scale the filter in €2, by a factor

w
Sa, =

x max
2Qm

(14)

Then, we apply a horizontal shear by 1/cqy in €2, per unit €2,,.
Similar to Egan et al. [2011b], we obtain an equivalent primal
domain filter by taking the filter from Eq. (11) and first applying the
inverse scaling 1/Sg, in the x dimension, followed by a negative
vertical shear by —1/c,e in u per unit x.
The resulting filter can thus be expressed as a product of two 1D
Gaussian filters:

Wihear (X, #) = w(x;0,) w (u + i;Ou) , (15)
Cavg
where
Gpjx 1
UX = i (16)
SQJ W

The resulting filter shape is shown in Figure 3 (left). This recon-
struction filter includes both the aperture function and a screen space
filter, where the width of the screen space filter is larger for samples
out of focus.

ACM Transactions on Graphics, Vol. 34, No. 2, Article 23, Publication date: February 2015.

Note that, while o, is directly determined by the aperture func-
tion, our selection of €7'** influences the spatial extent of the filter.
A larger cutoff necessitates inclusion of a wider range of spatial
frequencies, and thus a larger W in Eq. (16) with a narrower filter
as a result.

3.4 Transforming the Filter Axes

In this section, we show that the Gaussian filter in Eq. (15) can
alternatively be expressed as a product of an aperture filter that
is purely a function in # and a sheared screen space filter. We
later show that this modified filter can be efficiently evaluated as
a preintegration step computed once for each layer, followed by a
separable 2D filter in x and y.

To find such a suitable separable formulation, we first express
Wahear (X, 1) as a 2D elliptical Gaussian filter [Heckbert 1989] of the
form
e*%X(MTM)fle’ (17)

Wehear (X, U) = m

where x = (x, u), and

o, 01 -2
M= [0 GJ [0 1g]. (18)

To reformulate the filter as an aperture filter independent of x,
times a sheared screen space filter, that is, of the form

w(x + nu;o)w(u;o,), 19

we search for another warping matrix

ALY e
To obtain the same filter, we must enforce

N'N=M"M. @n
Solving Eq. (21), we obtain

2
0,0, o
o, = . o,=y, and n=——, (22)
Y CavgV

Cavg

2
wherey = |02 + 3. Ourreconstruction filter (shown in Figure 3,

right) can then be expressed as

X
Wehear(X, #) = w(x;0,) w <” + ;Uu>

Cavg
= wkx +nu;o)) wu;o,). (23)
—_—— — —
Wy wy

This means that we can obtain the exact same elliptical Gaussian
filter wghear(x, 1) by a modified scaling, followed by a shear in x
per unit u. Thus, we have derived a filter where the aperture filter
depends only on #, and we instead have a sheared screen space
filter in x. As we show next, this enables a very efficient filter
implementation.

u u
\
X X X
W\ filter* |8 N
’ AN

Scale with w, Project at u=0 Filter with w, in x

Fig. 4. Our filtering formulation described in (x, u) space. Each input
radiance sample /(x;, u;) is weighted by w,(u;), and is then projected to
u = 0 parallel to the line x + nu = 0 and accumulated. Finally, for each

pixel, the filter wy is evaluated over the accumulated values.

3.5 Efficient Filter Formulation

Let us return to the expression for the irradiance of a pixel x on the
image plane (Eq. (3)). It can now be estimated as

e(x) = /l(x,u)a(u)du

~ // I(x', wwx' — x, u)dudx’. (24)

In other words, for light field radiance samples in a small depth
range, we apply a filter kernel in (x, u) centered around the current
pixel when reconstructing the irradiance.

If the reconstruction filter is separable in x and u as shown by
Mehta et al. [2012], Eq. (24) is easily separable into an inner integral
over u, followed by a convolution in screen space.

However, for depth layers out of focus, we want to exploit the
sheared filter w = Wgpear(x, u) from Eq. (23)

%

e(x) // (X, W) Wehear (X" — x, u)dudx’

= f/ I, ww, ((x" — x) + nuw)w, (uw)dudx'
[Let g =x"+nu, dg =dx"]

/ [/ wa (g — nu, u)du] (g — x)dg

Ii(q)

/ L@w, G — g = (% w)(), 25)

since w, is symmetric.

Given a set of radiance samples, the outer integral is a convolution
in screen space with the filter w,, and the inner integral represents
a preintegration over the parameterized line (¢ — nu, u).

Evaluating the inner integral at a pixel x would normally require
an expensive search to gather samples along this line. We avoid
this search by projecting each sample along the line to # = 0 and
accumulating its weighted radiance at the target pixel ¢, thereby
transforming the gather operation into a scatter operation.

As shown in Figure 4, an efficient implementation of this filter is
given by the following steps:

(1) multiply each radiance sample /(x;, u;) with w, (u;);

(2) for all samples I(x;, u;) in the current depth layer, accumulate
I(x;, u;)w,(u;) at the pixel ¢ = x; + nu;;

(3) for each pixel, apply the screen space filter w,(x) over the
accumulated sums.

Evaluation of the inner integral (first and second steps) can be
performed once for each layer for all samples (e.g., in a tile), while

Fig. 5. In a majority of cases, the standard sheared filter (left) is used. For
small slopes, a sheared filter is instead derived from me and the height H
of the wedge (middle), and for very wide wedges, we revert to the simple

axis-aligned filter (right).

the third step is unique for each pixel within each layer. This is
in contrast to a naive filter implementation, where a sheared filter
kernel in (x, u) is repeated for each pixel in all layers. This efficient
filter formulation is key to our performance.

It should be noted that the accumulation of weighted samples
in step 2 may introduce very minor differences as, in practice,
the number of bins (pixels) is finite and thus some quantization is
introduced. This effect may be minimized by bilinearly splatting
each sample to the four nearest bins, although we have not found
this necessary.

Next, we will look at how small shears are handled and summarize
our approach in relation to previous work.

3.6 Filter Bounds for Small Shears

If max |c| < €™/ QIS the frequency wedge will be close to

the 2, axis, and we instead use the bandlimit Qg}i" to bound the
filter size. Following the derivation in Section 3.3, we derive a
parallelogram with height

H = Q;ix(cmax - Cmin)v (26)
and slope
1
77/ = E(Cmin + Cmax)~ (27)

The primal filter transform in this case is given by a scaling in u
followed by a shear in x

Wshear = U)(X + 77/ u; Upix) w(”; UI:/)v (28)

where

o = 20w 29)
Cmax — Cmin

Note that, in this case, we do not need to transform the filter axes, as

the Fourier domain transforms (a scale in €2, and a shear in 2, per

unit 2,) directly translate into an inverse scale in # and a (negative)

shear in x per unit # in the primal domain.

Finally, as mentioned earlier, we fall back on the simple axis-
aligned filter (Eq. (11)) if the depth range crosses the focal plane,
that is, ¢ and cpax are of different signs, and the frequency wedge
is very wide. Figure 5 illustrates the three types of filters. For all
cases, the efficient implementation described in the previous section
is used.

3.7 Discussion

Although our sheared filters have been derived along the lines of
previous work such as Egan et al. [2011b], the key difference is
the filter axis transformation. This enables a much more efficient
implementation, where the integral over the lens (#) can be reused
over many samples.

ACM Transactions on Graphics, Vol. 34, No. 2, Article 23, Publication date: February 2015.

23:6 . K. Vaidyanathan et al.

Mehta et al. [2012] use an axis-aligned filter with bandlimits
(5™ /min|c|, Q™) in (2, Q4), when max c| > €*/Q7*,
which means that their primal domain filter is narrower as frequen-
cies outside the wedge will be weighted in. With our sheared filter,
we expect a smoother result due to our larger filter kernel in the
primal domain.

Note that our derivation and the prior implementation extends
naturally to a 4D light field /(x, y, u, v). Since the shear is the same
in the (x, u) and (y, v) slices, the two frequency bounds are the
same. Both the aperture and the screen space filters are expressed as
products of two identical 1D Gaussians. Hence, after accumulating
the weighted samples at (g,, g,) = (x;, y;) + 1 (u;, v;), the screen
space filter w,(x, y) is separable in x and y as well.

4. DEPTH-LAYER COMPOSITING

When there is a large difference between the minimum and max-
imum depth inside a screen space region, the resulting frequency
bounds of the sheared filter can become very large. This leads to a
narrow reconstruction filter in the primal domain and limited noise
reduction.

Chai et al. [2000] observe that, if the light field samples are
partitioned into disjoint depth layers, one can derive a tighter filter
for each layer. This is easy to see, as the filter width is closely
related to ¢(z), which varies monotonically with depth for z > 0,
that is, in front of the lens (refer to Eq. (1)).

However, different layers may occlude each other and the radi-
ance corresponding to a layer may or may not contribute to the over-
all radiance. Therefore, we need a way of compositing the filtered
layers together that takes occlusion between layers into account.

Following Lehtinen et al. [2011], our light field samples can be
expressed as

(X, yis ui, v) —> (23, 1), (30)

for example, a depth z; and a radiance value /; are stored for each
4D sample (x;, u;) where x=(x, y) and u=(u, v).

Now assume that the samples are sorted into N depth layers,
where a layer j contains all light field samples within the depth
range [z‘}ﬂ“, Z?™]. The layers are ordered front to back, where
layer O is closest to the camera.

As a thought experiment, consider each layer j in isolation,
disregarding inter-layer occlusions. Let «;(x, u) € [0, 1] represent
the (unknown) layer opacity for a light field direction (x, u), and
1;(x, u) be the corresponding (unknown) layer radiance. With this,
we can express the radiance along (x,u) using standard alpha
blending [Porter and Duff 1984] as follows:

1(x, 1) = ap(x, w)ly(x, u)

Jj—1

N
+Y oxwiEw][[d —wEw). G

j=1 k=0

The final irradiance e(x) at a pixel is obtained by integrating
Eq. (31) over the aperture function as before (refer to Eq. (3)).
In practice, this formulation requires a high-resolution 4D repre-
sentation of opacity and radiance for each layer, which may be
prohibitively expensive. Our main idea is instead to approximate
the result by preintegrating the radiance and opacity over the lens
separately within each layer. Then, we composite the integrated
quantities.

Looking at a 2D slice (x, u), if we first introduce % ; to denote the
premultiplied opacity and radiance in layer j

hj(e,u) =o;(x, w)li(x, u), (32)

ACM Transactions on Graphics, Vol. 34, No. 2, Article 23, Publication date: February 2015.

we can expand the expression for the irradiance e(x) on the image
plane (Eq. (3)) by inserting Eq. (31), as follows:

e(x) = /l(x, u)a(u)du
= [tho 1 = ey + -+ Tatudu

= /hoa(u)du + /(l—ao)hla(u)du + - 33)

Now, for all layers j > 0, we make the approximation

Jj—1

/ [[—eoha@)du
k=0

j-1
~]_[/(1—ak)a(u)du./h,a(u)du, (34)
k=0

1—ay(x) ej(x)

that is, we directly use the product of the average opacities over
the lens for each layer in front of j when factoring in the radiance
from layer j. This is in contrast to the exact result obtained from
integrating over the opacity of layers in front of j within the lens
integral.

Using the shorthand notation e;(x) = f hj(x,uw)a(u)du and
a;(x) = f a;(x, u)a(u)du introduced in the last step of Eq. (34),
we can now express the approximated irradiance as

N j—1
e(x) ~ eo(x) + Y e;(0) [[= anx)). (35)
j=1 k=0

This can be seen as collapsing the lens dimension into a pin-hole
camera, where each pixel holds an irradiance value e;(x) and an
integrated opacity value @;(x) for each depth layer j. These values
are then composited together over the depth layers using regular
(premultiplied) alpha blending.

Discussion. With the formulation of Eq. (35) we have reduced
the blending over 4D depthslices in Eq. (31) to an approximate alpha
blending of 2D slices by preintegrating over the lens in each slice.
This is computationally much more efficient, but the approximation
in Eq. (34) may produce differences in partially occluded regions. To
illustrate this, consider two out-of-focus objects, each in a separate
layer. Both objects cover approximately the same area in (x, u)
space, as shown in Figure 6.

We can see in the image of the epipolar plane that, if |x| is
larger than a certain value, both objects are visible from mutually
exclusive regions of the lens and therefore do not occlude each
other. If we integrate over the lens, that is, evaluate Eq. (33), at such
a point, we expect an equal contribution from both partitions, as
there is no mutual occlusion, thus a yellow color that fades to black
as x increases. More precisely, in that region, f (1 — ag)hia(u) =
[hia(u), so the irradiance will be

e(x) = /(ho + hpa(u)du = eg(x) + e (x). (36)

However, using the approximation in Eq. (34), we have lost the
information of mutually exclusive visibility, and will instead get an
expression for the irradiance as

e(x) = eo(x) + (1 — @p(x))e; (x). (37

This effect is visible in Figure 7, where the green background layer
gets a smaller weight near the border. If the red circle is smaller, &,

Image plane Lens F
x

u

>
=
<
5
&~
HE s .
Integrate over u in epipolar image
—_— X —_—F> X
5 ——c(X) ——— c(X)
g — +
£ — — ,(x) — [-0(X)
% X
= e (X) — e (x)
S -)
Filter each layer Composite

Fig. 6. A comparison of our compositing technique against a reference
solution for a failure case with two out-of-focus objects. Note that the
reconstructed irradiance differs slightly from the reference solution. This is
due to our approximation in Eq. (34).

Input samples Our reconstruction Reference

Fig. 7. Verification of the case in Figure 6, rendered in pbrt [Pharr and
Humphreys 2010].

will be smaller, and the effect is less prominent. Also, if the lens
is smaller, the blurry region where this effect shows up is smaller.
These cases are shown in Figure 8. Note that, in realistic scenes,
the approximation of Eq. (34) is rarely noticeable, as we will see in
Section 7.

In the next section, we will see how to estimate the opacity term
a(x, u) for each layer, taking inter-layer occlusion into account.

5. LAYER OPACITY

In this section, we describe our layer opacity estimation and filtering.
We start by estimating opacity within each layer based on a sparse
set of light field samples. We then reconstruct the integrated opacity
over the lens for each layer @;(x) using a (layer-specific) sheared
filter.

Estimating Layer Opacity From Light Field Samples. Let
us again look at the problem in the 2D subspace (x, u). The opacity
a;(x, u) for a depth layer j is a scalar function with a value between
zero and one for each direction in the light field. If a ray (x;, u;)

Layered Light Field Reconstruction for Defocus Blur . 237

Reference Reference
Smaller lens Smaller red circle

Fig. 8. Variations of the case in Figure 6, rendered in pbrt. Note that if the
lens is smaller, fewer samples will hit layer 1 and the visibility approximation
will be less evident (left image pair). Also, if the foreground layer has less
coverage, the visibility approximation is again less intrusive (right image
pair).

=

oo o0elee
oo 0o 0ove 00

Epipolar image

Layer 0 Layer 1

Fig. 9. Sample distribution for each layer for the test scene in Figure 6.
The foreground layer (layer 0) has the best opacity (and radiance) estimate
as all samples are valid. The background layer (layer 1) has a degraded
estimate as some of the samples are occluded by the foreground and hence
unknown. Note that this is an illustrative example. In our implementation,
we use stochastically distributed light field samples.

passes through all layers {0, ..., j — 1} and hits something in layer
J,>we set aj(x;, u;) = 1. We then make two observations:

(1) Ifaj(x;, u;) =1, then o (x;, u;) =0, Vk < j,
(2) If oj(x;, u;) = 1, then a(x;, u;) = unknown, Vk > j.

The first observation simply states that there is a “hole” (zero
opacity) in all layers {0, ..., j — 1} for the ray (x;, u;). The second
observation implies that we have no information of the opacity for
layers further along the ray. In practice, this means that our opacity
estimate will be best for foreground layers and degrade with depth,
as fewer and fewer samples reach layers farther away from the
camera as shown in Figure 9.

Integrated Layer Opacity. At this point, we have a sparse set
of values in each layer representing opacity. In practice, each layer
contains samples within a depth range z € [z}“"‘, z™]. For each
layer and pixel, we want to integrate the opacity over the aperture
function. The result can be seen as an image rendered through a
pin-hole camera, where each pixel captures the integrated opacity
variation over the lens for a scene that only contains this depth layer.
We call this integrated opacity &;(x) for layer j

&j(x)zfaj(x,u)a(u)du. (38)

If we revisit Figure 1, we see that a point p will be hit by a
ray through pixel x, through the center of the lens. Furthermore,
due to the refraction in the lens, p will be hit by other rays. More
precisely, in the absence of occlusion, all rays (xo + c(2)u, u) will
hit p. Similarly to Eq. (7), we can express the opacity o;(x, u) of a
(small) point at depth z as a function of the opacity at the center of
the lens of an offset pixel, that is,

alx, u) = a(x + c(u). 39)

ACM Transactions on Graphics, Vol. 34, No. 2, Article 23, Publication date: February 2015.

23:8 . K. Vaidyanathan et al.

In other words, for a depth layer j at z, and a given pixel x, if
there is any sample on the parameterized line (x + c(z)u, u), there
is a sample visible from some point on the lens at this pixel. The
integrated opacity &;(x) is the (aperture-weighted) integral over all
samples parallel to the line x + ¢(z)u = O (refer to Figure 4).

Note the analogy with the analysis for the irradiance in
Section 3.3. We leverage those results and use the same recon-
struction filter whear as used for the radiance samples within a layer.
This is also similar to previous work for occluder spectra [Lanman
et al. 2008], and the visibility function in the context of soft shad-
ows [Egan et al. 2011b; Ramamoorthi et al. 2012].

Following Eq. (25), the reconstructed opacity &;(x) integrated
over the lens for a pixel x in layer j can be written as

&)(x) ~ f [/ W (q — nu, u>du} wix — g)dg. (40)

laj(q)

where we have used the substitution ¢ = x + 1 u. Note that n is a
layer-specific value.

6. IMPLEMENTATION

In this section, we look at some practical aspects of how to put
together the components (i.e., the sheared filters, layer compositing,
and opacity estimates) described in the previous sections into an
efficient implementation.

6.1 Practical Filter

In practice, &;(x) and the irradiance e;(x) for a layer j are eval-
uated according to the pseudocode in Algorithm 1. This includes
a preintegration step that evaluates the inner integrals in Egs. (25)
and (40), followed by a 2D screen space filter.

ALGORITHM 1: Filter at pixel x for layer j
for all light field samples (x;, u;, z;) do
q=x;i+nu;
if z; in depth range of layer j then
I, (q) + = w,(u;)
L(q) + = 1(x;, up)w, (u;)
n(q) + = w,(u;)
else
if z; is in layer k > j then
n(q) + = w,(u;)
end if
end if
end for
for all pixels ¢; in kernel of w, do
{a(x) + = Ia(qi)wx(x - qt)
Ie(x) + = Ie(qi)wx(x - ql)
i(x) + = n(g)w.(x — q;)
end for _

= _ I _ L
a_,(x) = G e_,(x) = G0

> Pre-Integration

> Normalization factor

> Hole in current layer

> Screen space filter

> Normalization step

We have shown the filter applied to (x, u) for clarity, but it is
trivial to extend it to the full 4D light field. Note that we do not store
the irradiance and layer opacity functions explicitly, but directly
accumulate the sums corresponding to the integrals in Eqs. (25)
and (40).

ACM Transactions on Graphics, Vol. 34, No. 2, Article 23, Publication date: February 2015.

5.0

45+ p
4.0
35}
3.0

c(z)

2.5
20 F
1.5}

1.0

1 2 3 4 5 6 7 8
Partition boundary

Fig. 10. Circle-of-confusion c¢(z) values at each partition boundary for
a certain depth range behind the focal plane. These partitions have been
selected such that the worst-case filter energy for each partition is constant.
Partitions in front of the focal plane are similar, but with negative values
of ¢(z).

We can see our method as collapsing the (x, y, u, v) light field
into two images as seen from a pin-hole camera for each depth
layer, wherein each pixel holds the integrated radiance and opacity
values, respectively. Finally, these pin-hole images are composited
together using Eq. (35). Note that, in practice, the opacity values
can be stored in the alpha component of an RGBA image.

6.2 Selecting Depth Partitions for Layers

We use a simple partitioning scheme with precomputed depth par-
titions, where the worst-case filter energy for each layer is approxi-
mately the same. To simplify our analysis, partitions are derived in
terms of circle of confusion c(z) instead of depth.

From Eq. (17), we can see that the energy of our reconstruction
filter depends on |M| = o,0,, therefore we can select partitions
such that the worst-case value of 0,0, is approximately constant.

For a given value of o,0,, such partitions can be easily derived
using Eq. (16), where cyin and cpax are given by the circle of confu-
sion at the partition boundaries. The number of layers depends on
the selected value of 0,0, where a larger value results in partitions
with narrower depth ranges and therefore produces more layers.

Figure 10 shows an example set of layer partitions where the
worst-case filter energy is constant. The partition size increases as
we move away from the focal plane and the end partitions have
infinite extents.

Note that the partition boundaries represent the worst-case values
of cmin and cmax. The actual range might be smaller depending on
the samples that map to a particular partition, which can be used
to derive better filters. Moreover, several partitions may not contain
any samples and therefore need not be processed. We optimize our
algorithm for these scenarios by analyzing the input samples to
determine the active partitions, as well as the actual range of c¢(z)
for each partition.

In order to avoid searching for the layer corresponding to each
input sample, we divide the range of ¢(z) into small, equally sized
bins of size 0.5 pixels. A sample can then be directly mapped to a
bin by quantizing the value of c¢(z) for this sample. If one or more
samples map to a bin, then the bin is marked as active. After all the
input samples have been processed, the active bins are analyzed to
determine the active layer and the corresponding shear range.

Since the number of bins is small compared to the number of
input samples, the cost of analyzing input samples is significantly
reduced with this approach. Note that, since each bin has a size of

Outer tile

Inner tile

P
X
Fig. 11. An inner tile and the filter footprints at the corners of the inner

tile. The filter footprints can cover samples outside the inner tile. An outer
tile includes these samples. Adjacent outer tiles can overlap each other.

Table I. Number of Bits Allocated for Output Terms

Stage I, Red | I, Blue | I, Green | I,
Pre-Integration 16 16 16 8 8
2D Filter 11 10 10 16 | 16

half a pixel, the partition boundaries are also quantized to multiples
of 0.5 pixels. For our implementation, we use 30 precomputed
partitions with 15 partitions on either side of the focal plane.

6.3 Tiling and Precision

The depth distribution of samples in the entire scene can span a
wide range of values, requiring a large number of partitions. To
address this problem and to facilitate parallel implementations of
our method, we divide the samples into tiles of size 32 x 32 pixels
and process each tile independently. Because we use a sheared
reconstruction filter, samples from outside a tile can contribute to
the filtered result inside a tile. We therefore add a border to define
an outer tile, which includes additional samples from neighboring
inner tiles required for analysis and filtering, as shown in Figure 11.

We use an outer tile size of 64 x 64 pixels, which provides an
additional ring of 16 pixels around the inner tile, therefore, the
maximum filter width that can be supported is 32 x 32 pixels. To
limit artifacts from filter truncation, we clamp o, to a quarter of the
maximum filter width, that is, 8 pixels.

For the GPU implementation, we use shared local memory to
store the intermediate results from the filtering steps for faster ac-
cess. This also allows us to leverage local integer atomic add op-
erations on the GPU to implement the preintegration step, where
samples are projected to the center of the lens and accumulated
on a 2D grid. For this purpose, some of the terms are stored with
reduced precision, which enables better utilization of the available
shared local memory by packing multiple terms into a single 32-bit
word. Table I shows the number of bits used to store different terms
at the output of each stage. We find that using reduced precision
does not result in any perceivable differences compared with the
floating point version. Figure 12 shows a comparison of images
reconstructed using the floating point CPU version and the GPU
version that uses reduced precision for storing intermediate terms.

The overall 4D reconstruction algorithm can now be summarized
as shown in Algorithm 2.

7. RESULTS

We evaluate the reconstruction quality with our algorithm based
on layered reconstruction (OUR), Lehtinen et al.’s [2011] tempo-
ral light field reconstruction (TLFR), as well as a modified ver-
sion of our algorithm where the sheared filters for each layer are
replaced with axis-aligned reconstruction filters based on Mehta
et al.’s work [2012] (OURAA). The reconstruction algorithms are
implemented strictly as a-posteriori techniques and therefore do not
rely on adaptive sampling. We do not directly use the approach of

Layered Light Field Reconstruction for Defocus Blur . 23:9

Diff 16x

Fig. 12. A comparison of reconstructed images using the floating point
CPU version (top left) and the GPU version with intermediate results stored
as reduced precision integers (top right). There are no perceivable differences
between the two images (bottom left). Some differences can be seen after
scaling the difference 16 times (bottom right).

ALGORITHM 2: Summary of the 4D reconstruction algorithm.
The final irradiance is given by e.

for all tiles on the screen do
Detect active partitions and range of ¢(z).
e=1(0,0,0,v=1
for all layers j from front to back do
Apply Algorithm 1 to layer j.

e+ =ve; > Composite using Equation 35.
v*=1-— &j
end for
end for

Mehta et al. [2012], as it relies on a-priori analysis of the light field
and adaptive sampling to handle regions with complex occlusion.
Without adaptive sampling, the image quality with Mehta et al.’s
approach can be quite poor, as shown in Figure 13.

Our analysis is limited to a simplified camera model with a Gaus-
sian aperture function for the lens, therefore we do not explore more
realistic camera effects like bokeh. The Gaussian aperture function
is truncated to a finite range of £30, for generating lens samples.

For axis-aligned filtering, we first integrate input samples over
the lens and then apply an axis-aligned Gaussian filter in screen
space. Similar to Mehta et al. [2012], we scale the axis-aligned filter
by a constant value % in order to preserve the tail of the spectral
response of the Gaussian lens. We use £ = 2 for our comparisons
as we observe significant overblurring in the reconstructed image
with larger values of k.

The input sample information for all the reconstruction algo-
rithms consists of the sample position (x, y, u, v), color, and depth z,
rendered with 8 samples per pixel at an image size of 1280 x 720
pixels. The input color values are tone mapped and then converted
to 24-bit color (8 bits per component).

For images reconstructed with TLFR, the light field information
is upsampled to 128 samples per pixel. We do not use importance
sampling over the lens for generating input samples for reconstruc-
tion. However, importance sampling is used for generating reference
images, as well as during upsampling with TLFR.

ACM Transactions on Graphics, Vol. 34, No. 2, Article 23, Publication date: February 2015.

23:10 . K. Vaidyanathan et al.

OurAA

Axis Aligned

Fig. 13. A region with complex visibility rendered with 8 samples per
pixel and reconstructed using an axis-aligned filter based on Mehta et al.’s
work [2012] (top left) and with a modified version (top right) that incorpo-
rates depth partitioning and handles inter-layer visibility using our algorithm.
Sheared filtering (bottom left) further improves the reconstruction quality
and compares well with a reference image (bottom right) rendered with
256 samples.

Our evaluation is based on three test scenes: CITADEL, SAN
MIGUEL, and DRAGON. CITADEL is a scene from the Unreal SDK by
Epic Games, Inc., and is representative of a typical real-time game
with moderate depth complexity and texture detail. DRAGON and
SAN MIGUEL are scenes included with the pbrt ray tracer [Pharr
and Humphreys 2010]. DRAGON has low depth complexity and a
high-frequency texture, while SAN MIGUEL has very high depth
complexity and is representative of a scene for offline rendering.

7.1 Quality

Figure 14 shows a comparison of the image quality for each of the
three test scenes using different reconstruction techniques, as well
as a reference image rendered with 256 samples per pixel. Our lay-
ered reconstruction technique achieves a significant improvement
in image quality and also handles regions with complex occlu-
sion, which can be especially observed in the SAN MIGUEL scene.
Figure 15 shows the different layers used to reconstruct this scene
as well as the differences between the reconstructed result and a
reference image.

7.1.1 Comparison with Axis-Aligned Filtering. An axis-
aligned filter has significantly larger spectral bounds than a sheared
filter and is therefore less effective at suppressing noise, as seen
in the DRAGON scene. This difference is less noticeable around the
shear extrema, where the shear slope is aligned with the x, y or u, v
axes, such as in the heavily blurred backgrounds of Figures 14(b)
and (d).

7.1.2 Comparison with TLFR. Compared to our technique,
TLFR has slightly more residual noise in some areas with very
large defocus blur, as seen in the background of Figures 14(b).
This is because our algorithm can potentially use all samples in a
32 x 32 tile for filtering, while TLFR is limited to the 128 locally
reconstructed samples.

However, the residual noise produced by TLFR has good spectral
characteristics compared to our algorithm, which tends to produce

ACM Transactions on Graphics, Vol. 34, No. 2, Article 23, Publication date: February 2015.

OurAA 256:spp

Fig. 14. The SAN MIGUEL (top), CITADEL (middle), and DRAGON (bottom)
scenes reconstructed with our layered light field reconstruction algorithm.
A comparison of different reconstruction techniques is also shown, includ-
ing references rendered with 256 samples per pixel. The CITADEL scene is
courtesy of Epic Games, Inc. (©) 2013, the DRAGON model is courtesy of
the Stanford 3D Scanning Repository, and SAN MIGUEL was modeled by
Guillermo M. Leal Llaguno (www.evvisual.com). The TLFR implemen-
tation is based on the source code provided by Lehtinen et al. [2011].

Layered Light Field Reconstruction for Defocus Blur . 23:11

L

Fig. 15. The different layers in the SAN MIGUEL scene are shown on the
left, where each layer has been color-coded as shown in the legend. The
layers blend together seamlessly as can be seen in the image on the right,
which shows the difference between the reconstructed result and a 256 spp
reference. The difference image has been scaled by 8x to highlight the
differences.

filtered low-frequency noise. Therefore, our algorithm may produce
perceptibly lower quality than TLFR in some regions close to the
focal plane, such as the floor in Figure 14(f).

TLFR tends to grow geometry around silhouette edges, which can
be seen around the base of the plant stem in Figure 14(b). This is the
result of errors in surface approximation, which relies on a global
estimate of the sample discrepancy that may be locally incorrect.
This approach is improved in Lehtinen et al. [2012], which derives
a local estimate of the sample discrepancy.

7.1.3 Visibility Approximation. The visibility approximation
introduced in Section 4 can produce slightly different results with
our algorithm in partially occluded regions. Figure 14(f) shows such
a case, where the lines in the partially occluded background region
appear to be bent or warped in the reference image as well as the
image produced with TLFR, but not in the image reconstructed with
our algorithm.

This warping effect is produced due to partial occlusion of the
background layer, where it is mostly visible from one corner of
the lens but mostly occluded when viewed from the other corners.
Therefore, the background warps to the view from this corner of the
lens.

Since our algorithm approximates inter-layer occlusion using
the integrated opacity (Eq. (35)), it cannot reproduce such effects
that result from variations in the occlusion function with respect
to different views from the lens. A more thorough analysis of the
visibility approximation with specific test cases has been presented
in Section 4.

7.1.4 Partially Occluded Regions. Partially occluded regions
have fewer samples available for reconstruction as shown in
Figure 9, which can affect reconstruction quality (see Figure 14(a)).
This presents a difficulty for a-posteriori reconstruction techniques,
but the problem can be mitigated in various ways.

For example, Shirley et al. [2011] adapt the size of the filter
for a partially occluded background pixel based on the circle of
confusion of the foreground layer, while Lehtinen et al. [2012] adapt
their reconstruction technique based on an estimate of the local
sample discrepancy. Currently, we do not adapt our reconstruction
filters based on the sample distribution and leave this for future
exploration.

7.1.5 Maximum Number of Layers. With fewer layers, the
depth range inside a layer is likely to increase, resulting in less
effective filters and more noise. Therefore, by selecting a smaller
number of layers, we can trade off image quality for faster recon-
struction times. Figure 16 shows the reconstruction quality for the
DRAGON scene with a different number of average layers. With very
few layers, the reconstruction filter might become ineffective in tiles

Avg. Layers = 1.6

Avg. Layers = 3.4 Avg. Layers = 1.9

Fig. 16. Reconstructed images with a decreasing number of average layers.
The corresponding execution times on the CPU are 7.5, 5.1, and 4.7 seconds
respectively.

Table II. GPU Platforms

Platform || Form Factor GPU TDP
GPU A || Discrete NVIDIA Geforce GTX 680|195 W (GPU)
GPUB ||Integrated |Intel Iris Pro 5200 47 W (CPU+GPU)

Table III. Comparison of Execution Time in ms

TLFR OUuR
Scene CPU |GPUA|| CPU |GPU A |GPU B | Avg. Layers
DRAGON 73,920 | 12,721 || 7,472 | 31.1 | 131.2 35
CITADEL 74,963 | 14,023 || 9,130 | 39.5 | 150.8 4.8
SAN MIGUEL || 113,907 | 22,333 || 14,072| 75.9 | 269.9 9.5

having a large depth complexity, which can make the transition be-
tween tiles more visible. This is seen in the region around the tail
of the dragon in Figure 16 (right).

7.2 Performance

We present performance results for a single-threaded CPU imple-
mentation of our algorithm, as well as a GPU implementation based
on Microsoft Direct3D 11 compute shaders. Both these implemen-
tations are compared to the original multithreaded CPU and CUDA
implementations of TLFR.

All CPU performance data is captured on a 6-core, 12-thread
Intel i7-3960X CPU running at 3.3 GHz on a Windows 7 64-bit
machine with 32GB of main memory. The performance of our GPU
implementation is measured on two different platforms, GPU A and
GPU B. These platforms have different power profiles as listed in
Table II. Performance of the CUDA implementation of TLFR is
measured only on GPU A, which is a CUDA-capable GPU.

Table III shows a comparison of execution times for the three
test scenes on the CPU as well as GPU platforms. Our algorithm
achieves real-time performance for typical scenes on GPU A and is
more than two orders of magnitude faster than TLFR.

Out of the three test scenes, SAN MIGUEL has the longest recon-
struction time due to its high depth complexity, which results in
more active layers per tile. Table IV shows execution times for the
different steps in our algorithm, measured on GPU A. The execution
time is dominated by the preintegration and 2D filtering steps. The
2D filter can possibly be further optimized using fast approximate
Gaussian filtering techniques [Akenine-Moller et al. 2008].

8. CONCLUSION

Effective reconstruction filters can go a long way in making light
field sampling practical and present an exciting opportunity for
enabling stochastic rendering in future real-time graphics pipelines.
We have presented a new reconstruction technique for sparsely

ACM Transactions on Graphics, Vol. 34, No. 2, Article 23, Publication date: February 2015.

23:12 . K. Vaidyanathan et al.

Table IV. Execution Time for Different Steps in ms

Algorithm step DrAGON | CITADEL | SAN MIGUEL
Select partitions 0.6 0.65 0.76
Pre-integration 20 25.75 493

2D filter, composite, etc. 10.5 13.1 25.84

sampled depth of field that, to our knowledge, is the first technique
with real-time performance.

By building on previous work on sheared filtering but trans-
forming the problem into a form much more amenable to efficient
implementation, we have shown that the cost of the filtering step
can be significantly reduced. We partition the light field in depth
and combine sheared filtering with our novel method for estimating
and filtering the opacity of each layer. This enables a very high
image quality without perceivable noise, even in regions of com-
plex occlusion. It would be interesting to explore the possibility of
extending these ideas to other problems such as motion blur, soft
shadows, and ambient occlusion.

ACKNOWLEDGMENTS

We thank the anonymous reviewers, Intel’s Advanced Rendering
Technology (ART) team, and Aaron Lefohn for all their feedback.
We also thank David Blythe, Tom Piazza, and Chuck Lingle for
supporting this research, and Uzi Sarel and Nir Benty for their help.
The CITADEL test scene is courtesy of Epic Games, Inc. (©) 2013, the
DRAGON model is courtesy of the Stanford 3D Scanning Repository,
and SAN MIGUEL was modeled by Guillermo M. Leal Llaguno (www .
evvisual.com). We are also grateful to Lehtinen et al. [2011] for
sharing the source code for their implementation.

REFERENCES

T. Akenine-Moller, E. Haines, and N. Hoffman. 2008. Real-Time Rendering
3™ Ed. AK Peters Ltd.

T. Akenine-Moller, J. Munkberg, and J. Hasselgren. 2007. Stochastic ras-
terization using time-continuous triangles. In Proceedings of the 22"?
ACM SIGGRAPH/EUROGRAPHICS Symposium on Graphics Hardware
(GH’07). 7-16.

L. Belcour, C. Soler, K. Subr, N. Holzschuch, and F. Durand. 2013. 5D
covariance tracing for efficient defocus and motion blur. ACM Trans.
Graph. 32, 3,31:1-31:18.

J.-X. Chai, X. Tong, S.-C. Chan, and H.-Y. Shum. 2000. Plenoptic sampling.
In Proceedings of the 27" Annual Conference on Computer Graphics
and Interactive Techniques (SIGGRAPH’00). ACM Press, New York,
307-318.

J. Demers. 2004. Depth of field: A survey of techniques. In GPU Gems, R.
Fernando, Ed., Addison-Wesley, 375-390.

F. Durand, N. Holzschuch, C. Soler, E. Chan, and F. X. Sillion. 2005. A
frequency analysis of light transport. ACM Trans. Graph. 24, 3, 1115—
1126.

K. Egan, F. Durand, and R. Ramamoorthi. 201 1a. Practical filtering for effi-
cient ray-traced directional occlusion. ACM Trans. Graph. 30, 6, 180:1—
180:10.

K. Egan, F. Hecht, F. Durand, and R. Ramamoorthi. 2011b. Frequency
analysis and sheared filtering for shadow light fields of complex occluders.
ACM Trans. Graph. 30, 2, 9:1-9:13.

K. Egan, Y.-T. Tseng, N. Holzschuch, F. Durand, and R. Ramamoorthi. 2009.
Frequency analysis and sheared reconstruction for rendering motion blur.
ACM Trans. Graph. 28, 3, 93:1-93:13.

ACM Transactions on Graphics, Vol. 34, No. 2, Article 23, Publication date: February 2015.

T. Hachisuka, W. Jarosz, R. P. Weistroffer, K. Dale, G. Humphreys, M.
Zwicker, and H. W. Jensen. 2008. Multidimensional adaptive sampling
and reconstruction for ray tracing. ACM Trans. Graph. 27, 3, 33:1-33:10.

E. Hammon Jr. 2007. Practical post-process depth of field. In GPU Gems 3,
H. Nguyen, Ed., Addison-Wesley, 583-606.

P. S. Heckbert. 1989. Fundamentals of texture mapping and im-
age warping. M.S. thesis, University of California, Berkeley.
https://www.cs.cmu.edu/~ph/texfund/texfund.pdf.

N. K. Kalantari and P. Sen. 2013. Removing the noise in monte carlo ren-
dering with general image denoising algorithms. Comput. Graph. Forum
32,2,93-102.

C. Kolb, D. Mitchell, and P. Hanrahan. 1995. A realistic camera model for
computer graphics. In Proceedings of the 22" Annual Conference on
Computer Graphics and Interactive Techniques (SIGGRAPH’95). ACM
Press, New York, 317-324.

D. Lanman, R. Raskar, A. Agrawal, and G. Taubin. 2008. Shield fields:
Modeling and capturing 3D occluders. ACM Trans. Graph. 27,5, 131:1-
131:10.

S. Lee, E. Eisemann, and H.-P. Seidel. 2010. Real-time lens blur effects and
focus control. ACM Trans. Graph. 29, 4, 65:1-65:7.

J. Lehtinen, T. Aila, J. Chen, S. Laine, and F. Durand. 2011. Temporal light
field reconstruction for rendering distribution effects. ACM Trans. Graph.
30, 4, 55:1-55:12.

J. Lehtinen, T. Aila, S. Laine, and F. Durand. 2012. Reconstructing the
indirect light field for global illumination. ACM Trans. Graph. 31, 4,
51:1-51:10.

K. Lei and J. F. Hughes. 2013. Approximate depth of field effects using few
samples per pixel. In Proceedings of the Symposium on Interactive 3D
Graphics and Games (I13D’13). ACM Press, New York, 119-128.

S. Mehta, B. Wang, and R. Ramamoorthi. 2012. Axis-aligned filtering for in-
teractive sampled soft shadows. ACM Trans. Graph. 31, 6, 163:1-163:10.

M. Pharr and G. Humphreys. 2010. Physically Based Rendering: From
Theory to Implementation 2™ Ed. Morgan Kaufmann, San Fransisco.

T. Porter and T. Duff. 1984. Compositing digital images. In Proceedings
of the 11'"" Annual Conference on Computer Graphics and Interactive
Techniques (SIGGRAPH’84). ACM Press, New York, 253-259.

M. Potmesil and I. Chakravarty. 1981. A lens and aperture camera model
for synthetic image generation. In Proceedings of the &§' " Annual Confer-
ence on Computer Graphics and Interactive Techniques (SIGGRAPH’81).
ACM Press, New York, 297-305.

R. Ramamoorthi, J. Anderson, M. Meyer, and D. Nowrouzezahrai. 2012.
A theory of Monte Carlo visibility sampling. ACM Trans. Graph. 31, 5,
121:1-121:16.

F. Rousselle, C. Knaus, and M. Zwicker. 2012. Adaptive rendering with
non-local means filtering. ACM Trans. Graph. 31, 6, 195:1-195:11.

P.Senand S. Darabi. 2012. On filtering the noise from the random parameters
in Monte Carlo rendering. ACM Trans. Graph. 31, 3, 18:1-18:15.

P. Shirley, T. Aila, J. Cohen, E. Enderton, S. Laine, D. Luebke, and M.
Mcguire. 2011. A local image reconstruction algorithm for stochastic
rendering. In Proceedings of the Symposium on Interactive 3D Graphics
and Games (I3D’11). ACM Press, New York, 9-14.

C. Soler, K. Subr, F. Durand, N. Holzschuch, and F. Sillion. 2009. Fourier
depth of field. ACM Trans. Graph. 28, 2, 18:1-18:12.

X. Yu, R. Wang, and J. Yu. 2011. Real-time depth of field rendering via
dynamic light field generation and filtering. Comput. Graph. Forum 29,
7,2099-2107.

Received October 2014; revised August 2014; accepted September 2014

