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Abstract
This paper presents a Haskell library for graph processing: DELTA-
GRAPH. One unique feature of this system is that intentions to per-
form graph updates can be memoized in-graph in a decentralized
fashion, and the propagation of these intentions within the graph
can be decoupled from the realization of the updates. As a result,
DELTAGRAPH can respond to updates in constant time and work
elegantly with parallelism support. We build a Twitter-like applica-
tion on top of DELTAGRAPH to demonstrate its effectiveness and
explore parallelism and opportunistic computing optimizations.

Categories and Subject Descriptors D.3.2 [Language Classifica-
tions]: Applicative (functional) languages; E.1 [Data Structures]:
Graphs and networks

Keywords Functional Data Structures, Graph Programming

1. Introduction
In this paper we take on the problem of graph processing in Haskell.
From social networks to gene regulatory networks, graphs are often
at the epicenter of modern computing. Many real-world graph
applications are update-intensive and highly dynamic [11, 24]. For
example, during a breaking news event, a graph of information
dissemination via Twitter might change very quickly.

We introduce DELTAGRAPH to provide language support for
efficient graph processing with intensive updates. Unlike existing
graph support where an update to graph node, edge, or topol-
ogy is realized immediately—a strategy we henceforth call eager
graphs—each intention to perform an update in DELTAGRAPH is
memoized in-graph in an order-preserving manner and gradually
propagated through the topological graph structure. Compared with
eager graphs, DELTAGRAPH has the following attractive traits:

• O(1) Reactiveness to Updates: Potentially expensive opera-
tions such as changes in topology or whole-graph mapping—
e.g., reformatting the birth date of all users in Twitter—do not
require an immediate traversal of the graph. They can be as
cheap as an O(1) operation to memoize the update intention.

• O(1) Local Propagation Steps: In DELTAGRAPH, each up-
date propagation step is local: it only involves a graph node
and its immediate neighbors in the topological structure. This

feature is useful for long-running systems with non-uniform
workloads—propagation can happen when workloads are low.
This is aligned in philosophy with opportunistic computing [8]
and cycle stealing [22].

• Pre-natal optimization: In update-intensive systems, a re-
cently updated node is often updated again. DELTAGRAPH op-
timizes for this case by removing update intentions that would
“counteract” each other before such intentions are realized. It
can further compose multiple related update intentions into one.

• Parallelism Friendliness: Two updates can be realized in par-
allel when they do not target nodes in the same neighborhood
in the graph topological structure. Under the same condition,
parallelism can be achieved between two update propagations
as well as one update realization and one update propagation.

DELTAGRAPH is implemented as an open-source Haskell li-
brary. Our evaluation is built over a real-world scale-free Twitter
graph with 1 million nodes and 5 million edges. Our experiments
explore different forms of in-graph lookups (single key lookups vs.
clique lookups), different ratios of updates and lookups, and dif-
ferent assumptions of data correlation among updates. We further
demonstrate the impact of combining DELTAGRAPH with oppor-
tunistic computing under realistic assumptions of arrival distribu-
tion and the impact of combining DELTAGRAPH with parallelism.
Our experiments show DELTAGRAPH can achieve a speedup of
50% over eager graphs in update-intensive settings, and a further
speedup of 30% when utilizing parallelization for propagation.

Design Challenges Graph support in pure functional languages
is an active research area [21, 13, 12, 15, 18, 19, 25, 17, 6], but
explicit support for graph updates is under explored. The design of
our system has faced some unique challenges.

The first challenge is to come up with a graph representation
which allows for efficient propagation and realization. In func-
tional languages, two graph representations are commonly used:
(1) node/edge graphs: the canonical graph-theoretic representation
where a graph is a set of nodes along with a set of edges connecting
them; (2) inductive graphs (e.g., [12, 25]): graph overlays on induc-
tive trees. DELTAGRAPH is based on inductive graphs to allow the
propagation of updates to follow the inductive structure as an ef-
ficient tree traversal. In contrast, propagation in node/edge graphs
would require a lookup for every step of propagation, which leads
to inefficiencies. Inductive graphs introduce their own share of sub-
tlety. For example, when a node in the inductive graph is deleted, all
of its child subtrees become detached from the rest of the inductive
structure. Reattaching these detached subtrees in a fashion consis-
tent with lazy propagation is a design issue of DELTAGRAPH.

The second challenge is to preserve the chronological order of
graph updates. For example, imagine a graph is first applied with
an update to add 2 to each node value (a whole-graph mapping up-



e ::= x | f | e e expression
| atom nk e
| insertNode nk e e
| insertEdge ek nk nk e
| deleteNode nk e
| deleteEdge ek e
| merge e nk ek e
| mapNodes e e
| foldNodes e e e
| lookupNode nk e
| lookupEdge ek e

f ::= λx.e function
nk node key
ek edge key
x, y variable
δ ::= InsertNode nk e update intention
| InsertEdge ek nk nk
| DeleteNode nk
| DeleteEdge ek
| MapNodes e
| Merge Γ nk ek

Figure 1: DELTAGRAPH: Expressions and Values

date), and is then subsequently applied with another update to mul-
tiply 3 to each node value. This results in a graph different from one
produced by reversing the order of the two updates. DELTAGRAPH
is carefully designed to maintain the order of these update inten-
tions. Order preservation is particularly challenging when com-
bined with propagation, where update intentions are memoized in
a decentralized fashion. In a nutshell, the chronological order must
be preserved across all propagation paths.

This paper makes the following contributions:

• A Haskell graph processing system with rapid support for up-
dates and efficient in-graph optimizations.

• The development of a MINITWITTER application to evaluate
the feasibility of DELTAGRAPH given different settings of ap-
plication characteristics, parallelization, and opportunistic com-
puting.

2. DELTAGRAPH Programming Model
The programming interface of DELTAGRAPH is simple: it provides
primitives to support elementary graph operations just as other
graph systems do. Indeed, the most unique aspect of DELTAGRAPH
lies upon how the graph operations are implemented, not the inter-
face itself. This gives DELTAGRAPH seamless interoperability with
existing systems that support similar operations.

2.1 Concrete Syntax
We define the syntax of DELTAGRAPH in Figure 1. Graph nodes
and edges are uniquely identified through node keys (nk) and edge
keys (ek). In DELTAGRAPH, graphs are first-class values. They
are either atomic graphs or graphs constructed through applying
operations on atomic graphs. The atom nk e expression creates a
singleton graph where nk is the node key and e is the node payload.
The graph operations we support are

• insertNode nk e e′, insert a node with key nk and payload e
into graph e′

• insertEdge ek nk nk′ e, insert an edge with key ek and two
attaching nodes nk and nk′ into graph e

• deleteNode nk e, delete the node with key nk from graph e

• deleteEdge ek e, delete the edge with key ek from graph e
• merge e nk ek e′, merge graphs e and e′ through a new

inductive edge with key ek; start the merge at the node with
key nk in graph e

• mapNodes e e′, map all nodes in graph e′ with mapping
function e

• foldNodes e e′ e′′, perform a fold over the graph e′′ with e as
the folding function and e′ as the base folding value

• lookupNode nk e, perform a lookup for the node with key
nk in graph e

• lookupEdge ek e, perform a lookup for the edge with key ek
in graph e

Figure 1 is a faithful specification of our library API, except for
two simplifications. First, here we only consider undirected edges
and thus treat the two insertion operations insertEdge ek nk nk0

and insertEdge ek nk0 nk as congruent. Second, we omit edge
payload from the abstract syntax. As a result, we do not include the
grammar for the expressions mapEdges and foldEdges.

Example 1 (Graph construction). In DELTAGRAPH, graphs are
constructed through a sequence of node and edge insertions. For
instance, the following is a source program in DELTAGRAPH which
constructs the graph illustrated to the right of it. For illustration
purposes, we liberally use integers for node/edge keys and node
payloads, typeset as node keys, edge keys, and payloads.

let x1 = atom 1 10

x2 = insertNode 2 20 x1

x3 = insertNode 3 30 x2

x4 = insertNode 4 40 x3

x5 = insertEdge 12 1 2 x4

x6 = insertEdge 13 1 3 x5

x7 = insertEdge 34 3 4 x6

in insertEdge 24 2 4 x7

1

2 3

4

11
13

24 34

Example 2 (Payload update). Node payloads are updated through
the mapNodes operation:

let x1 = . . .
in mapNodes (λ.n e→ if (n > 2) ∧ (e > 1)

then (e+ 400)
else e) x1

This expression applies a payload increase of 400 to every node in
the graph x1 with a key greater than 2 and a payload greater than 1.
As this example suggests, DELTAGRAPH resorts to graph mapping
for payload updates.



Γ ::= 〈nk; e; Π; Π̂; ∆; ∆̂〉 delta graph
Π ::= ek 7→ Γ inductive edges
Π̂ ::= ek 7→ nk back/cross edges
∆ ::= δ delta list
∆̂ ::= Γ disconnected components

Figure 2: DELTAGRAPH: Run-time Values

Example 3 (Forest). DELTAGRAPH can support forests:

let x1 = atom 1 10

x2 = insertNode 2 20 x1

x3 = insertNode 3 30 x2

x4 = insertNode 4 40 x3

x5 = insertEdge 12 1 2 x4

x6 = insertEdge 13 1 3 x5

x7 = insertEdge 34 3 4 x6

x8 = insertEdge 24 2 4 x7

y1 = insertNode 6 60 x8

y2 = insertNode 7 70 y1

in insertEdge 67 6 7 y2
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Notations For the rest of the presentation, we use the following
notations. Notation q1..n is a shorthand form for the sequence
q1, q2, . . . , qn, where q can be any meta-level element. We further
call q1 the head and qn as the tail. When the length of the sequence
does not matter, we further shorthand it as q. We use ε to represent
an empty sequence. Given two sequences ι and ι′, notation ι, ι′

represents their concatenation. When the sequence does not contain
duplicates, and the order among its elements does not matter, we
liberally treat it as a set, and apply common operators such as ∈,
⊆, \, and ∪. In our implementation, we use an efficient double-
ended queue for all sequences which require O(1) access to the
head and the tail.

We call a sequence in the form of [q1 7→ q′1, . . . , qn 7→ q′n]
a mapping, defined only when q1, q2, . . . , qn are distinct. Given
mapping µ, we denote µ(qi) for q′i for any i = 1..n, and dom(µ)
as {q1, . . . , qn} and ran(µ) as {q′1, . . . , q′n}. We overload µ \ q as
restricting µ to the domain of dom(µ)− {q}. For two mappings µ
and µ′, µ ] µ′ = (µ \ µ′), µ′ if ∀q ∈ dom(µ), q /∈ dom(µ′) or
µ(q) = µ′(q). The operator is otherwise undefined.

3. Dynamic Behavior Overview
In this section we introduce the dynamic behavior of DELTA-
GRAPH. We will cover run-time representation, graph lookup and
fold, and update realization. We delay propagation support to a sec-
tion of its own: Section 4.

3.1 Run-Time Values
A DELTAGRAPH graph at run-time—which we also call a delta
graph and represent with metavariable Γ—is a 6-tuple as shown
in Figure 2. For succinctness, we use this tuple form which in our
implementation is an algebraic data type. The components are

• a root key nk, the node key identifying the entry point of the
graph.

• a payload (expression) e, for the root node
• inductive edges Π, a mapping from edge keys to (sub) delta

graphs. This definition reveals the inductive nature of delta

graphs. Each element ek 7→ Γ says that the current node (the
one with the root key) is connected with a (sub)graph through
edge ek.

• back/cross edges Π̂, a mapping from edge keys to node keys.
Each element ek 7→ nk says that the current node is connected
to node nk through a back/cross edge.

• delta list ∆, a sequence of “memoized” update intentions.

• disconnected components ∆̂, a sequence of graphs discon-
nected from the current graph.

Other than the components common for representing induc-
tive graphs, the unique components here are the delta list and
disconnected components. Intuitively, a graph Γ with a delta list
δ1, . . . , δn is a “lazy” representation of a graph that would have
been produced by applying a sequence of eager updates δ1, . . . , δn
to Γ, in that order. The disconnected components represent all
graphs which have no current inductive attachment to the current
graph. This offers both a natural representation of forests as well
as a method of capturing the intention of merging a graph into the
current graph. The graphs to be merged are introduced at run-time
when a node is inserted into the graph without specifying an exist-
ing node to attach to or when a sub-graph becomes detached from
the inductive graph due to node or edge deletion.

In the rest of the paper we explicitly distinguish between a
logical graph—the logical structure in the mind of the programmer
such as the figures in Example 1 and Example 3—and the run-time
DELTAGRAPH graph. We use the following legend in our figures
to distinguish between a logical graph node and a DELTAGRAPH
graph node.

Logical Graph DELTAGRAPH

Further, we stylize inductive edges as solid lines and back edges as
dotted lines. We take the convention of visualizing each delta graph
as an inductive structure where the root is at the top, and leaves are
toward the bottom.

Example 4 (Run-time representations). Due to lazy propagation,
the same logical graph may have multiple run-time representations.
As an example, the logical graph illustrated in Example 1 can be
represented at run-time as the following, where all updates have
been realized:

〈1; 10; 13 7→ 〈3; 30; 34 7→ 〈4; 40; ε; ε; ε; ε〉; ε; ε; ε〉,
12 7→ 〈2; 20; ε; 24 7→ 4 ; ε; ε〉
ε; ε〉
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2 3

4

11

13

24 34

Or only some updates are realized:

〈1; 10; 12 7→ 〈2; 20; ε; ε; InsertEdge 24 2 4; ε〉,
13 7→ 〈3; 30; ε; ε;

InsertNode 4 40, InsertEdge 34 3 4; ε〉;
ε; ε; ε〉

1

2 3

11

13

∆2 = InsertEdge 24 2 4 ∆3 = InsertNode 4 40 | InsertEdge 34 3 4



Or none have been realized:

〈1; 10; ε; ε;

InsertNode 2 20,
InsertNode 3 30,
InsertNode 4 40,
InsertEdge 12 1 2,
InsertEdge 13 1 3,
InsertEdge 34 3 4,
InsertEdge 24 4 4

; ε〉

1

∆1 =
InsertNode 2 20 | InsertNode 3 30 | InsertNode 4 40 | InsertEdge 12 1 2 |
InsertEdge 13 1 3 | InsertEdge 34 3 4 | InsertEdge 24 4 4

3.2 Lazy Update
Any graph operation involving graph updates will be one-step re-
duced to appending an update intention (which we henceforth call
update label) to the tail of the delta list of the graph’s root. Given
a delta graph Γ = 〈nk; e; Π; Π̂; ∆; ∆̂〉, and an update operation
whose corresponding update label is δ, we define this append oper-
ation as:

Γ⊕ δ = 〈nk; e; Π; Π̂; ∆, δ; ∆̂〉
The notion of “corresponding update label” is straightforward: if
the update expression is insertNode nk e e′, then the corre-
sponding update label is InsertNode nk e; if the update ex-
pression is deleteNode nk e, the corresponding update label is
DeleteNode nk; and so on.

This very simple computation epitomizes the true spirit of
DELTAGRAPH: updates are an O(1) operation, as cheap as a se-
quence append. The most challenging part of lazy update evalua-
tion is how this particular update label is propagated through the
graph; we delay this discussion to Section 4.

3.3 Lookup and Fold
The node lookup procedure must only consider nodes that would
reside in the corresponding logical graph. This process needs care-
ful consideration in the presence of memoized updates. A solution
must (1) include graph nodes that would have been realized but are
still in the delta list; (2) exclude those that exist in the graph struc-
ture but will be deleted according to the (deletion) update labels in
the delta lists; and (3) obey the chronological order of the updates.

The lookupNode nkΓ expression reduces to (nodes(Γ))(nk)
in one step where nodes is defined in Figure 3. Function nodes
computes all of the nodes in the graph as a mapping (metavari-
able M ) from node keys to their corresponding payloads. The
function depends on the nodesDelta function also in Figure 3.
The key observation is that nodesDelta must take into account
the memoized node insertion labels according to (1) above, the
memoized node deletion labels according to (2) above, and must
be defined by preserving the order in the delta list according to
(3) above. Similarly, expression lookupEdge ek Γ one-step re-
duces to (edges(Γ))(ek) where edges is also defined in Figure 3.
Function edges computes edges in a delta graph as a mapping
(metavariable B) from edge keys to a 2-member set of nodes to
indicate the two nodes connected by the edge.

Our nodes and edges functions are mathematical in nature.
Our implementation is more efficient: for instance, a lookup does
not need to compute all node/expression mappings, and can just
evaluate to the first expression it encounters with the matching key.

The foldNodes e e′ Γ expression reduces to fek . . . (fe1 e′)
in one step where nk 7→ e1..k

= nodes(Γ). An example fold is the
expression foldNodes (∗) 1 e which folds the payload values of
all nodes of e together through multiplication with an initial value
of 1.

3.4 Update Realization
We now describe update realization, i.e., the actions taken when
the node/edge keys involved in an update label happen to relate to
the root node of the current graph. For example, given the update
label InsertEdge 12 1 2, when the current root node’s key is
either 1 or 2 then this edge insertion operation should be realized.
We now informally describe the behavior of realizing every update
label through visualization.

The graph below visualizes node insertion. A new node cannot
be immediately attached to the inductive structure so it is realized as
a singleton graph of its own in the disconnected components where
it will remain until an attachment opportunity presents itself.
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24 34

∆1 = InsertNode 6 6

1

2 3

4

11

13

24 34

6∆̂1 =

Edge insertions realize in two ways depending on how the
connecting nodes relate in the inductive structure.

First, an inductive edge may be inserted when one of the nodes
that the edge connects to is a separate graph in the current graph
node’s disconnected components. As seen below, the separate
graph is then replaced with a graph merging update. Eventually
the subgraph carried by the merging update label will be attached
inductively to the other connecting node. In the illustration below,
this can occur immediately as the graph can be attached to node 3.

1

2 3

4

11

13

24 34 ∆3 = InsertEdge 36 3 6| . . .

∆̂3 = 6

1

2 3

4

11

13

24 34 ∆3 = 〈 ;3; 36 〉6

Second, when both nodes are already realized then a back/cross
edge is inserted as shown below.
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2 3

4

11
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24 34 ∆3 = InsertEdge 32 3 2| . . .
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4

11
13

24 34
32

A node realizes a mapping update, depicted below, by applying
the function to its node key and expression and then propagating the
update down to each of its children. Each child repeats this process
until each node in the graph realizes the update.

1

2 3

4

11

13

24 34

f = λx.λy.y− 1

∆1 = MapNodes f| . . .

∆2 = . . . ∆3 = . . .

0

2 3

4

11

13

24 34

∆1 = . . .

∆2 = . . . |MapNodes f
∆3 = . . . |MapNodes f

Node and edge deletion are the trickiest updates to support as
they can lead to detached subgraphs, henceforth called orphans.
Here we informally visualize the process of node deletion. There
are two considerations when deleting a node: (1) all edges pointing
to the node must be deleted (2) the node itself must be deleted.
The graph that follows depicts both (1) and (2): node 2 removes its



Node Lookup

M ::= nk 7→ e

nodes(〈nk; e; Π; Π̂; ∆; ∆̂〉) 4
= nodesDelta(

⊎
Γ∈ran(Π)∪∆̂

nodes(Γ) ] (nk 7→ e),∆)

nodesDelta(M, ε)
4
= M

nodesDelta(M, (InsertNode nk e,∆))
4
= nodesDelta(M ] (nk 7→ e),∆)

nodesDelta(M, (Merge Γ nk ek,∆))
4
= nodesDelta(M ] (nk′ 7→ e′),∆) where Γ = 〈nk′; e′; Π′; Π̂′; ∆′; ∆̂′〉

nodesDelta(M, (DeleteNode nk,∆))
4
= nodesDelta(M \ nk,∆)

nodesDelta(M, (MapNodes f,∆))
4
= nodesDelta({nk 7→ f e | nk 7→ e ∈M},∆)

nodesDelta(M, (δ,∆))
4
= nodesDelta(M,∆)

Edge Lookup

B ::= ek 7→ {nk, nk}
edges(〈nk; e; Π; Π̂; ∆; ∆̂〉) 4

= edgesDelta(
⊎

Γ∈ran(Π)∪∆̂

edges(Γ) ] (nk×Π) ] (nk× Π̂),∆)

edgesDelta(B, ε)
4
= B

edgesDelta(B, (InsertNode nk e,∆))
4
= edgesDelta(B,∆)

edgesDelta(B, (Merge Γ nk ek,∆))
4
= edgesDelta(B ] ek 7→ {nk, nk′},∆) where Γ = 〈nk′; e; Π′; Π̂′; ∆′; ∆̂′〉

edgesDelta(B, (InsertEdge ek nk nk′,∆))
4
= edgesDelta(B ] ek 7→ {nk, nk′},∆)

edgesDelta(B, (DeleteNode nk,∆))
4
= edgesDelta(B \\ nk,∆)

edgesDelta(B, (DeleteEdge ek,∆))
4
= edgesDelta (B \ ek,∆)

edgesDelta(B, (δ,∆))
4
= edgesDelta(B,∆)

B \\ nk 4
= {ek 7→ B(ek) | nk /∈ B(ek)}

nk0 × ek 7→ Γ
4
= ek 7→ {nk0, nk} where Γ = 〈nk; e; Π; Π̂; ∆; ∆̂〉

nk0 × ek 7→ nk
4
= ek 7→ {nk0, nk}

Figure 3: Node and Edge Lookup

cross edge to node 4 and node 3 removes node 4. On larger graphs,
a back/cross edge to the deleted node could still exist in the rest
of the structure. For this reason, the realization of a node deletion
is followed by further propagation of the node deletion. A more
complicated example involving orphans is discussed in Example 5.
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∆4 = DeleteNode 4| . . .

∆2 = DeleteNode 4| . . .
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2 3
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Two graphs can always be merged if they have a connecting
edge. The following graph offers an example where a subgraph
containing nodes 6 and 7 is attached to the main graph by changing
the cross edge 36 into an inductive edge.
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36
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4. Propagation Support
In this section, we explore the design space in the propagation of
updates in DELTAGRAPH. Recall that we take the convention of vi-

sualizing the delta graph with the root at the top. As a result, we re-
fer to a propagation among delta graph nodes along a root-leaf path
as a vertical propagation, and informally use downward and up-
ward to refer to a leaf-bound and root-bound vertical propagation,
respectively. In contrast, we refer to update label movement within
a delta list as horizontal propagation. DELTAGRAPH supports all
three forms of propagation for different purposes, as illustrated in
Figure 4. Overall, the design is guided by several high-level princi-
ples:

• Update Label Management is Decentralized: every graph
node may be associated with its own delta list, carrying a set
of update labels. This is consistent with the definition of the
delta list, where each inductive subgraph carries its own delta
list; see all three subfigures of Figure 4.

• (Inter-Node) Vertical Order Matters. There is an implicit
chronological order among delta lists encountered in any path
from the root to a leaf: the delta list inside a more leaf-bound
graph node memoizes older updates than any inside a more
root-bound graph node along the same path. This property fol-
lows from our propagation style, where delta list items are prop-
agated downward, as seen in Figure 4a. In contrast, DELTA-
GRAPH supports upward propagation for items in the discon-
nected components, as seen in Figure 4b.

• (Intra-Node) Horizontal Order Matters. There is an implicit
chronological order for the update labels within each delta list.
A more head-bound update label within a delta list represents
an older update than a more tail-bound update label, a prop-



1

2 3

∆1 = δ|δ| . . . |δ

∆2 = δ|δ| . . . |δ ∆3 = δ|δ| . . . |δ

4∆̂3 = ∆4 = δ|δ| . . . |δ

(a) Downward Vertical Propagation

1

2 3

∆̂1 = Γ|Γ| . . .

∆̂2 = Γ|Γ| . . . ∆̂3 = Γ|Γ| . . .

(b) Upward Vertical Propagation

1

2 3

∆1 = δ|δ| . . . |δ

∆2 = δ|δ| . . . |δ ∆3 = δ|δ| . . . |δ

(c) Horizontal Propagation

Figure 4: Three Forms of Propagation

erty following the propagation style where a newly propagated
update label is appended to the tail of the delta list. This is il-
lustrated in Figure 4c.

4.1 Vertical Propagation
Graph nodes propagate update labels downward when the node and
edge keys involved in the label do not relate to the root node, e.g.,
an edge insert label which doesn’t mention the root node’s key,
or when the update affects the entire graph, e.g., a graph mapping
update.

Downward propagation passes an update label to all children of
the nodes in Π as well as all of the orphaned graphs in ∆̂. Figure 4a
visualizes the propagation path that update labels take to the delta
list of the children of node 1 and to the delta list of the orphaned
graph of node 3.

This process explains why on a root-to-leaf path, the update la-
bels in a leaf-bound delta list are older. All internal graph opera-
tions must adhere to the chronological order of updates. In a partic-
ular example, when a node is deleted, all of its update labels must
be propagated down to the orphaned graphs in the disconnected
components, the previous children of the deleted node.

The upward propagation specifically addresses orphans in the
disconnected components. Intuitively, the orphaned subgraph may
contain back/cross edges that reference a node in the inductive
structure that it was detached from, so by propagating it through
the graph we may find opportunities to reattach it. Such orphans
are propagated upward, and reattachment opportunities are sought
after along the upward propagation steps. Figure 4b visualizes the
propagation path that orphans take.

When an orphan moves up, the update labels of its new owner
are chronologically newer than the update labels of the orphan
according to Vertical Order Matters. The labels must be appended
observing this chronological order as the orphan moves its way up.

Example 5 (Node Deletion and Orphan Reattachment). In graph
(a) below, node 6 is ready for deletion.
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∆6 = DeleteNode 6| . . .

1

2 3

4

7 8

11

13

24 34

78
74

∆̂4 =

1

2 3

4

7 8

11

13

24 34

78

74

(a) (b) (c)

The realization of the DeleteNode 6 update label leaves an
orphaned subgraph which is outlined in a dashed rectangle in graph
(b). The orphan, consisting of nodes 7 and 8, the inductive edge 78 ,
and the back edge 74 , is stored inside the disconnected components
of node 4. Through orphan reattachment, the back edge 74 con-
necting nodes 4 and 7 is transformed into an inductive edge. Graph
(c) shows the final graph after reattachment. If, instead of a back
edge connecting 7 and 4, there was a back edge connecting 8 and
4, orphan reattachment would result in the following graph:
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4.2 Pre-natal Optimization
Horizontal propagation is the rearrangement of update labels in a
delta list in the hopes to optimize further operations. All labels
propagate from the tail to the head of a delta list as seen in Fig-
ure 4c. In other words, whenever an update is applied, it should
always be placed at the tail of a delta list, according to Horizontal
Order Matters.

In essence, horizontal propagation defines the ways that update
labels may be rearranged while retaining the logical meaning of
the updates. The goal is pre-natal optimization: update labels may
relate to one other and preprocessing may simplify the delta list
or simplify future operations. On the high level, we propagate node
deletion labels and node mapping labels to the head of the delta list.
On every update label swap we apply any changes the two labels
would have led to had they both been realized. We now describe
every swapping scenario.

Intuitively, a node which is inserted and immediately deleted
can be entirely forgotten: saving the cost of propagating and even-
tually realizing this node. Instead of swapping two update labels
such as InsertNode 6 6 and DeleteNode 6 we simply remove
them both.

A less intuitive scenario is when swapping a node deletion
label and an edge insert label. Consider the two update labels
InsertEdge 34 3 4 and DeleteNode 3. The edge insertion
label can safely be removed. However, we must keep the node
deletion label to continue propagating—the node it is deleting
still resides in the graph. This leaves us with a result of just
DeleteNode 3. If instead we were deleting the node with key
5 then the two labels would safely swap into DeleteNode 5,
InsertEdge 34 3 4. A node deletion label swaps with a graph
merge label by propagating the node deletion to the merging graph,
i.e., MergeΓ nk e, DeleteNode nk′ swaps to DeleteNode nk′,



Merge (Γ ⊕DeleteNode nk′) nk e. Node deletion update la-
bels can safely swap in any other situation.

Two mapping update labels can be combined into one through
function composition, i.e., the update labels MapNodes f and
MapNodes f′ combine into MapNodes f′ ◦ f. This rule in-
dicates an effective approach in the presence of frequent payload
updates: the earlier payload updates are de facto discarded. A
mapping node swaps with a node insertion label by first apply-
ing the function to the node expression, i.e., InsertNode nk e,
MapNodes f swaps to MapNodes f, InsertNode nk (f e).
Similarly, a mapping update label swaps with a graph merge label
by propagating the mapping update to the merging graph. For ex-
ample the update labels Merge Γ nk ek and MapNodes f swap
to become MapNodes f,Merge (Γ ⊕MapNodes f) nk ek.
Mapping update labels can safely swap with any edge insertion la-
bel.

The repeated application of horizontal propagation leads to a
normal form of a delta list following the structure ∆,∆′,∆′′ where
all labels in ∆ are of the form DeleteNode nk; all labels in ∆′

are of the form MapNodes f; and ∆′′ contains all other update
labels. DELTAGRAPH does not require delta lists to be in normal
form, but there is a practical benefit to perform normalization.
Recall that the nodes function in Section 3.3 inspects the delta
list in its original order to determine whether a node exists in the
logical graph. If this delta list is normalized, all the “should have
been deleted” nodes will be at the head of the list, and “should have
been inserted” nodes are in the ∆′′ portion of the normal form in
the definition above. Both may lead to faster lookups.

5. Implementation and Experimental Settings
We have implemented DELTAGRAPH as an open-source Haskell
library on top of GHC version 7.10.3. Our library supports several
addition features not discussed in the paper: (1) we support directed
graphs; (2) we support graph filtering in addition to mapping and
folding; (3) we support edge operations (map, filter, fold) in addi-
tion to node operations.

To validate the usefulness and efficiency of DELTAGRAPH,
we have implemented a simplified version of Twitter [1], which
we call MINITWITTER. As a social network, Twitter’s user base
forms a graph. MINITWITTER preserves a similar graph struc-
ture, where users are nodes and uni-directional ‘following’ rela-
tionships are represented by edges; when user A follows user B,
a directed edge is created from A to B. The payload of each node
is a string, uniquely identifying the user. MINITWITTER supports
lookup of users and their following status, adding users, following
other users, removing users, and unfollowing users. Such a rep-
resentation is sufficient to support tools that use Twitter data for
mining (e.g., the use of Cassovary for Twitter’s “Who to Follow”
service [14]). MINITWITTER is built as a client library on top of
DELTAGRAPH. The interface between the two is well-defined, so
that we can perform comparative studies.

MINITWITTER is built to process large numbers of “request
traces.” Each request trace is a long sequence (approximately one
million) of graph operations as in Example 1, where each operation
in that sequence can be either a (i) new user request; (ii) following
request; (iii) removal of user request; (iv) unfollowing request;
(v) user lookup; or (vi) following lookup. Informally, we also
call (i)(ii)(iii)(iv) update requests, and (v)(vi) lookup requests. The
request traces are generated from two sources.

• Real-world twitter data gathered using the Twitter API [2] re-
sulting in social network data which has been shown to be scale-
free [7]. This data was collected by mining user following rela-
tionships on a subset of twitter users.

• Uniformly generated graphs where each node has a uniformly
random chance of being attached to all other nodes.

Selecting both sources allows us to balance between real-world
common cases (scale-free graphs) and generality (randomly gen-
erated graphs). We run each experiment using both sources and
present both sets of results.

In Section 4.2, we discussed the benefit of normalization: even
though DELTAGRAPH does not require normalization, delta lists
in normal form may speed up lookups. During our experiments,
we found better performance is achieved in nearly all scenarios if
delta lists are maintained in the normal form. This is the setting for
our following experiments. When an update label is added to the
tail/head of a delta list, normalization is performed.

In scale-free graphs, some “hub” nodes are connected with a
disproportional number of edges (e.g., Obama in Twitter graphs).
These nodes cause inefficiencies in our implementation which ben-
efits from cheap propagation and normalization steps. To handle
large, “hub” nodes efficiently, our implementation treats them in a
fashion that can be analogously thought of them as multiple smaller
nodes. In other words, we handle the delta lists in “chunks,” and
normalization and propagation is only performed at the chunk level.
Thanks to this design, differences in results between the two differ-
ent graph sources are slight.

We additionally developed an eager, standard graph-theoretic
implementation which we call STANDARDGRAPH. Our implemen-
tation uses binary trees as an optimization over node and edge
sets—a strategy that is generally applied in mature graph libraries.
We also interfaced with an existing graph library FGL [12].

All of our benchmarking results are produced on an Intel(R)
Core(TM)2 Quad CPU Q8200 at 2.33GHz with 8GB of memory.
All results are the average over 30 runs. The standard deviation in
none of our experiments exceeds 3%.

6. Experimental Evaluation
In this section we discuss the experimental results of DELTA-
GRAPH. We divide our results into the impacts of delta propa-
gation, parallelization, and opportunistic computing; the different
forms of lookup; and a comparative study with other Haskell graph
libraries.

6.1 Delta Propagation
DELTAGRAPH allows for nondeterministic propagation. Intu-
itively, on one hand, an overly lethargic propagation may increase
the delta list length of root-bound nodes, which in turn negatively
impacts performance due to the increased amount of update la-
bels that lookup normalization must handle on those high traffic
nodes. On the other hand, an overly zealous propagation may also
be suboptimal, as nodes being queried could be propagated many
steps from the root and require more recursive steps to reach in
a lookup; in addition, it thwarts the possibility of pre-natal opti-
mization. Overall, we believe the grand question of “to propagate
or not to propagate” at any node of the inductive graph should be
influenced by two factors:

• The likelihood that elements in the delta list will be queried
in the future: the higher the likelihood, the more lethargic the
propagation should stay;

• The length of the delta list: the longer the list, the more zealous
the propagation should stay;

To experiment with this design decision, we run MINITWIT-
TER with DELTAGRAPH using (1) varying frequencies at which
propagation happens; (2) varying (maximum) delta list lengths that
propagation aims to maintain; (3) varying data correlations between
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Figure 5: The effect different propagation strategies and up-
date/lookup correlations have on DELTAGRAPH performance on
scale-free graphs (a-b) and on randomly generated graphs (c-d).
The X-axis is the interval between two propagations (as the num-
ber of requests in between).

updates and lookups. The frequencies are set by interspersing prop-
agations through requests (in the request trace), varying from every
propagation for 5, 10, 100, and 500 requests. The requests are cho-
sen uniformly between new users, removal of users, following re-
quests, unfollowing requests, user lookups, and following lookups.

The three delta list length maintenance strategies we experiment
with are (1) Log, where propagation will trim the delta list until it
only contains logK update labels, where K is the sum of the up-
date labels in its immediate children; (2) 50%, where the threshold
of trimming is set at K

2
; (3) Rand: a baseline strategy where the

propagation procedure is blind to the length of the delta list. The
number of labels it trims and propagates is chosen uniformly ran-
domly from the number of labels it has. In all three strategies, the
propagation procedure “cascades” trimming: it starts from the root,
propagates the trimmed labels to the root’s children, and then start
each children’s trimming, until all the way to the leaf.

Each of these strategies is run with high (H) correspondence
between the nodes/edges (users and following relationships) most
recently inserted and operated upon, plotted in Figure 5a, and low
(L) correspondence, plotted in Figure 5b. In the H setting, a node re-
cently inserted into the graph or updated would have a much higher
chance of being queried than older nodes do. Specifically, under
H, queries follow an exponential distribution over the nodes/edges
ordered by age with a mean of 10; newer inserts are exponentially
more likely to be queried than older ones. Under low correspon-
dence the exponential distribution has a mean of 1000. Each run
takes on the order of tens of seconds and the requests completed
per second is shown.

The difference between the high and low correspondence im-
mediately stands out. Intuitively, this says DELTAGRAPH is more
friendly for graph processing if update/lookup requests are strongly
correlated with recent update/lookups. In the real world, this is a
common phenomenon: not all Twitter users are equally active, and
some active contributors make frequent updates/lookups than oth-
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(a) Performance of DELTAGRAPH
with parallel handling of updates
and propagation
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(b) Performance of DELTAGRAPH
with parallel propagation down 1
(Par1) and 2 (Par2) levels of the re-
cursive structure
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randomly generated graphs
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Figure 6: The Effect of Parallelism

ers. The design of DELTAGRAPH happens to reward these frequent
users in terms of response rate.

We further see that mostly, the more frequent propagation hap-
pens, the higher the response rate of the system. Indeed, in the ex-
treme case where a propagation is issued for every 500 requests
(toward the right of the graph), the root node may have an overly
long delta list to hamper performance. The only exception to this
is that the Log strategy does better when propagated every 10 re-
quests than it does with every 5 requests. This shows that too much
propagation may also be harmful. The propagation overhead can
cost more than it saves if done too often.

The Log strategy dominates the other strategies in the scale-free
results by a larger margin and more consistently than it does for
the random graphs. This is more than likely due to hub nodes, even
though they are chunked, receiving many update labels. A relatively
active propagation strategy suits the high traffic well.

Next, let us visit the relative effectiveness of the three length-
based strategies. Overall, the strategy choice makes more differ-
ence for H than for L. Considering real-world graph requests often
come with some level of data correspondence, the H case is more
interesting. One interesting fact about Log is it has the sharpest
decline. It outperforms the other two strategies when propagations
are more frequent, but underperforms when propagation becomes
more rare. In other words, when used at the “right” time, Log can
be the best strategy. It should not be used when propagations are
rare: Log is the strategy which propagates the most update labels;
infrequent propagation of large numbers of labels hurts the strat-
egy’s performance greatly. The Rand strategy propagates blindly
and sporadically; sometimes propagating large numbers of labels
while sometimes only propagating a few. This imbalance causes its
poor performance in H.

6.2 Parallelization
Functional graphs are generally friendly for parallelization. For in-
stance, multiple lookups can be conducted in parallel, which of-
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Figure 7: DELTAGRAPH and Opportunistic Computing on scale-
free graphs (a) and randomly generated graphs (b)
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Figure 8: DELTAGRAPH, STANDARDGRAPH, and FGL on scale-
free graphs (a) and randomly generated graphs (b)

ten leads to enormous speedups. More relevant to this paper, is (1)
whether lookups and propagations can be conducted in parallel, and
(2) whether a propagation procedure can be divided into parallel/-
concurrent units by itself.

While a lookup is being processed, propagation can occur. The
referential transparency of Haskell (and pure functional languages
in general) allows this to happen without the need of any concur-
rency constructs. The lookup happens on the ‘old’ version of the
graph while the propagation procedure produces a ‘new’ copy. The
results in Figure 6a show Par-Delta (the implementation with
lookup and propagation happens in parallel) dominating Delta in
the first three ratios peeking at a speed up of 30% when the number
of updates and lookups are equal. The loss of speed up in the larger
ratios is due to there not being many opportunities to gain perfor-
mance. There are few lookups and the parallelization is not able to
increase speed by any noticeable amount.

To study (2) above, we run DELTAGRAPH except that when
an update label is propagated to a node’s children, each child
spawns a new thread for further propagation. Par1-Delta de-
scribes the scenarios when only the propagation to the root nodes’
children is parallelized: there is only 1 level of parallel propaga-
tion. Par2-Delta is when two levels of propagation: each root’s
grandchildren also conducts propagation in its own thread.

For this experiment, the correlation between updates and lookups
was high. The system we used had 4 cores. The results in Fig-
ure 6b show parallelization of propagation may help, but only to
an extent: Par1-Delta significantly outperforms Delta, but
Par2-Delta underperforms. This is a cautionary tale familiar to
parallel computing: excessive divide-and-conquer may leave too
little work for each thread, and too much cost on thread manage-
ment.

6.3 Opportunistic Computing
In this experiment we introduce the concept of request density into
the system. During periods of decreased request density, DELT-
AGRAPH is able to propagate nodes no longer being updated or
queried in the hopes of speeding up delta list normalization and
lookup times during the next increased density work load.

The system is implemented using two threads. There is a main
thread which handles all requests and a propagation thread which
will attempt to propagate when there are no pending requests. There
is no preemption in our system. The propagation thread is used as
speculative computing, where its computation is only valid if, dur-
ing its run-time, the main thread received no new requests. We im-
plement the request trace with a particular request density through
timer-guided issuance of requests. To mimic real-world scenarios,
we construct the experiment by generating an exponential distri-
bution of requests and tracked changes as the mean request arrival
time is varied. This is distinct from earlier experiments where re-
quests were being made unencumbered and without delay. Request
arrival modeling with exponential distribution is common in net-
work research.

Figure 7 shows the results, with the new experiments labeled
OC-Delta. The average response time in microseconds is plotted.
OC-Delta outperforms regular DELTAGRAPH and STANDARD-
GRAPH after a mean arrival time of 1E−3. Before then, the request
distribution prevents propagation from happening regularly. When
the distribution allows for more time in between requests the prop-
agation has much more of an impact and the average response rate
improves.

6.4 Single Key vs. Clique Lookup
The relative under-performance of DELTAGRAPH in low-update
scenarios of Figure 8 may appear disappointing. It may be quick
to dismiss DELTAGRAPH as fundamentally unsuitable for building
low-update graph processing systems.

This turns out depending on the nature of the lookup. For the
earlier experiments, we assumed each lookup operation to be a
single-key lookup. We implemented STANDARDGRAPH with bi-
nary search trees for its node/edge sets. FGL’s run-time relies on
a similar structure. In other words, the results from comparative
studies with single-key lookups may be skewered due to features
orthogonal to the focus of this paper.

To demonstrate the opposite scenario where DELTAGRAPH may
outperform STANDARDGRAPH and FGL in low-update scenarios,
we construct experiments where lookups are defined as clique anal-
ysis. On a graph with 10 thousand nodes and 100 thousand edges,
our experiments attempt to find 10 cliques of size 3 or more. DELT-
AGRAPH is able to outperform both STANDARDGRAPH and FGL
by 3 magnitudes, in both scenarios of a scale-free graph construc-
tion and a random graph construction. The key insight here is
DELTAGRAPH as an inductive graph encodes locality in its graph.
In one traversal, a significant number of cliques can be discovered
by following the inductive edges. Re-traversal only occurs when
the number of discovered cliques does not reach the threshold, and
back/cross edges need to be followed. In contrast, neither STAN-
DARDGRAPH nor FGL has graph locality encoded inside, so ev-
ery step of connectivity check in the clique analysis would entail a
traversal of the graph.

6.5 Comparative Studies
In this set of experiments, we run a variety of use scenarios on
MINITWITTER, powered by either DELTAGRAPH, or STANDARD-
GRAPH, or FGL. We vary the use scenarios through generating the
sequences of operations with different ratios between updates and
(single-key) lookups. For example, with a ratio of 10, there are 10
updates for every 1 lookup. Lookups follow the same high corre-



spondence pattern as described in the previous section. The Log
propagation strategy is used for DELTAGRAPH. The results are in
Figure 8, showing MINITWITTER backed by DELTAGRAPH can
handle between 110 and 150 thousand requests per second depend-
ing on the ratio of updates to lookups, giving it up to a 60% speed
up over STANDARDGRAPH. The only exception is when (single-
key) lookups start to outnumber updates. As we explained earlier,
both STANDARDGRAPH and FGL have key-based binary search
built-in, whereas DELTAGRAPH does not. This may explain their
good performance in lookup-heavy use scenarios. DELTAGRAPH
outperforms when processing highly dynamic graphs. This pro-
vides evidence on the effectiveness of DELTAGRAPH in update-
intensive graph applications.

7. Related Work
Lazy evaluation is well-understood in functional languages. DELT-
AGRAPH highlights the duality of laziness: the computation centric
laziness and data-centric laziness. Lazily evaluated languages and
incremental computing systems [28, 3, 5, 16, 4] achieve laziness
by memoizing, delaying, or reusing evaluations along a graph rep-
resenting a computation whereas DELTAGRAPH achieves laziness
by delaying expressions along a graph representing the data of a
computation. This leads to a dual exploration of the design space:
whereas the core design issue in computation-centric laziness is to
propagate changes along the dependency graphs of computations,
DELTAGRAPH propagates changes over the structure of the data
itself.

Existing graph support in functional languages mainly ad-
dresses two goals: representation and query. Two early graph sys-
tems are FGL [12], and King and Launchbury [21]. We described
FGL in the experimentation section. King and Launchbury is opti-
mized for graph data lookup, with an efficient representation suit-
able for depth-first search. It does not consider dynamic graphs
with update operations. Fegaras and Sheard [13] explored cata-
morphisms over graphs with embedded functions. Hamana [15]
designed an algebra to support cyclic sharing structures. Oliveira
and Cook [25] embedded an inductive graph language through
higher-order abstract syntax (HOAS). Their system demonstrates
some crucial advantages of inductive graphs, such as they serve as
a natural basis for providing correctness guarantees on represent-
ing sharing and cycles. Hidaka et al. [18] studied bidirectional
transformation of graphs in a query language setting. Inaba et
al. [19] further provided support for transformation correctness via
a monadic higher-order logic. More recently, an effort for querying
graphs [17] focused on ordered graphs. λT

FG [6] supports general
graph transformation over a variety of graphs (such as probabilistic
graphs) via monads. None of these efforts explore laziness in graph
support. The ideas behind DELTAGRAPH may enrich prior work
with the ability of adapting to more update-intensive, performance-
critical graph applications.

Dynamic data structures [27] and Just-In-Time data struc-
tures [9] [20] are examples where data representation may change
at run-time as an optimization effort. They share the high-level
view that a data structure can be viewed as a black box. The dif-
ferent representations dynamically constructed by those systems
are driven by the nature of lookup, not updates. Our focus on how
updates are propagated through the data structure is orthogonal and
complementary.

An array in functional languages can be represented as a version
tree [26] on the low level, whose updates lead to new versions.
DELTAGRAPH is different from version trees in that we do not
create multiple versions of the same graph, but instead propagate
changes through the graph.

In database systems [10, 23], caching queries/updates is rou-
tinely supported. In the broadest sense, this can be viewed as

a primitive form of data-centric laziness. The scope covered by
DELTAGRAPH would analogously entail a rigorous design and ver-
ification of databases involving the query language, the update API,
the database table design, the distributed cache design, and the data
propagation and consistency protocols.

8. Conclusion
DELTAGRAPH is a novel graph programming system suitable for
highly dynamic graphs. The solution improves the reactiveness of
graph updates, and is friendly for parallelism and opportunistic
computing.
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