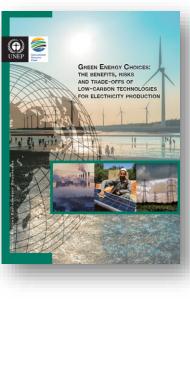
LCA of electricity generation technologies UNECE modelling activities – Carbon neutrality project 02.06.2021

Context of life cycle assessment task

Starting point: UNEP IRP report "Green Energy Choices"

Life cycle assessment (LCA) of electricity production technologies


Coal, natural gas, with and without CCS Hydropower Wind power Concentrating solar power Photovoltaic power Geothermal power

Impact assessment over 2010-2050 period

Two IEA scenarios (Baseline, Blue Map) and 9 world regions

s-electricity

Life cycle assessment

Definition

A method and tool for attributing environmental impacts to products and services

Considering impacts over the life cycle

Production, use, end-of-life

Considering impacts upstream in supply chains

Resource extraction, transport, etc.

And typically:

Considering hundreds of **emitted substances** and **extracted resources** Considering a range of impact types

Human health, ecosystem health, natural resource use

Holistic

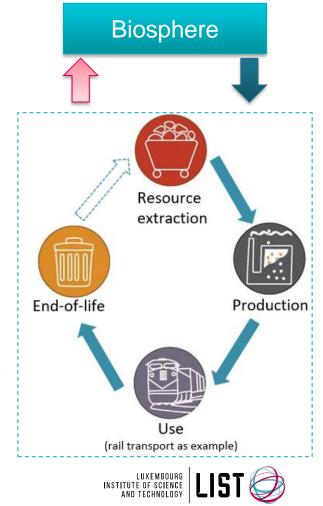


Figure: Adapted from Hellweg & Mila i Canals (2014)

Context of LCA task

Starting point: UNEP IRP report "Green Energy Choices"

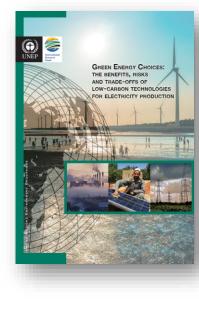
Limitations

Absence of state-of-the-art nuclear power and biomass

==> need for expertise on these technologies

Optimistic efficiencies?

Limited consideration of methane leakage in fossil fuel extraction


No direct emissions in hydropower

No consistent end-of-life treatment consideration across technologies

Energy scenarios outdated: use REMIND? MESSAGE? ...?

Update welcome!

Most data is 10 years Add newer technologies (namely small modular reactors)

s-electricity

Technologies

Full list

Photovoltaics

Polycrystalline silicon, ground-/roof-mounted CIGS, ground-/roof-mounted CdTe, ground-/roof-mounted

CSP

Trough

Tower

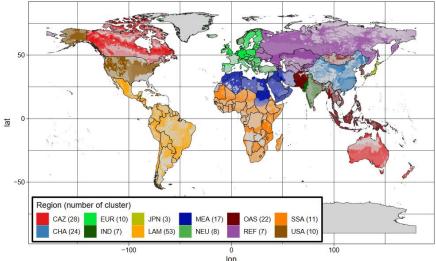
Coal

Existing PC, with and without CCSIntegrated gasification CC, with and without CCSCoal SCPC, with and without CCSPrese

Gas

NGCC, with and without CCS **Hydropower** 660 and 360 MW designs Wind **Onshore** Offshore, concrete and steel foundation **Nuclear power** Boiling water reactor Pressure water reactor

REgions


Why regionalizing?

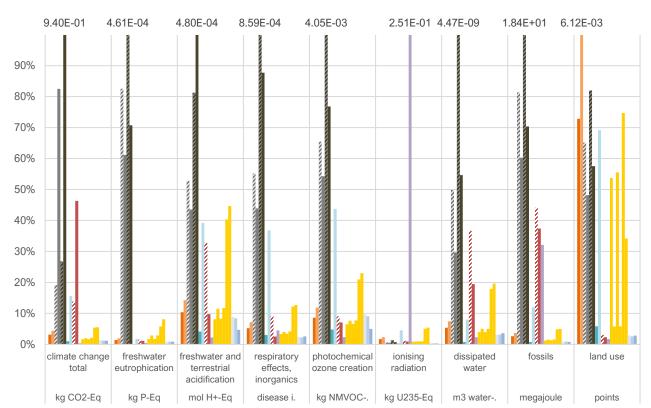
Data representativeness

Electricity mixes can be systematically adapted to region, year, and a given scenario (with REMIND "Base SSP2" as baseline), as well as a few other processes (cement...)

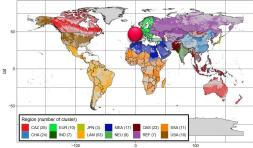
Adapting load factors to regional climate conditions

Solar irradiation Wind regimes

REMIND regions	Code
Canada, Australia & New Zealand	CAZ
China	CHA
European Union	EUR
India	IND
Japan	JPN
Latin America	LAM
Middle East and NorthAfrica	MEA
Non-EU member states	NEU
Other Asia	OAS
Reforming countries	REF
Sub Saharan Africa	SSA
United States	USA

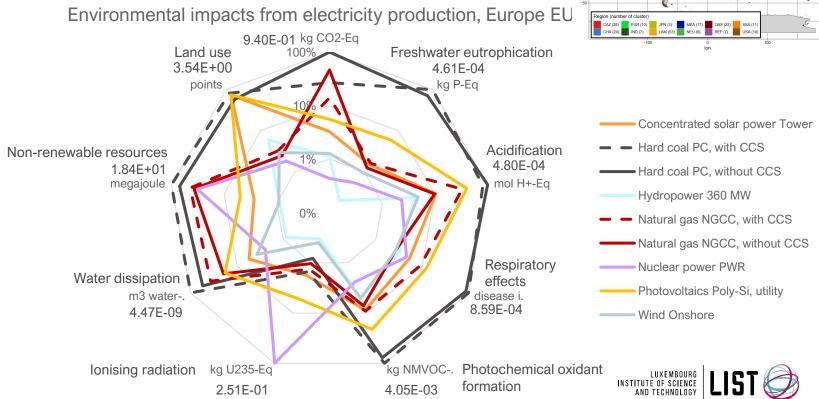

Progress meeting June 2nd, 2021

Preliminary results

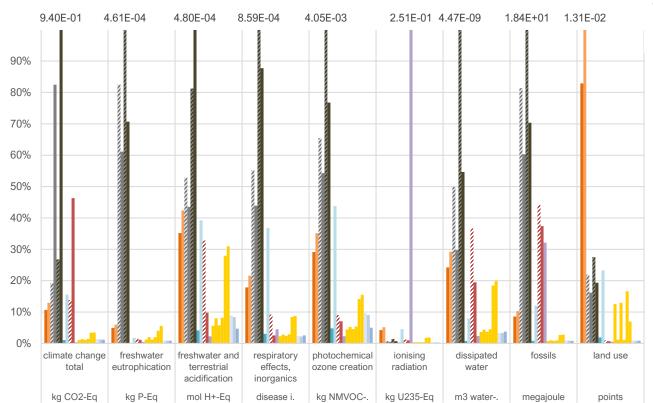


Results UNECE regions – EUR

8


Environmental impacts from electricity production, per kWh, Europe EU, 2020

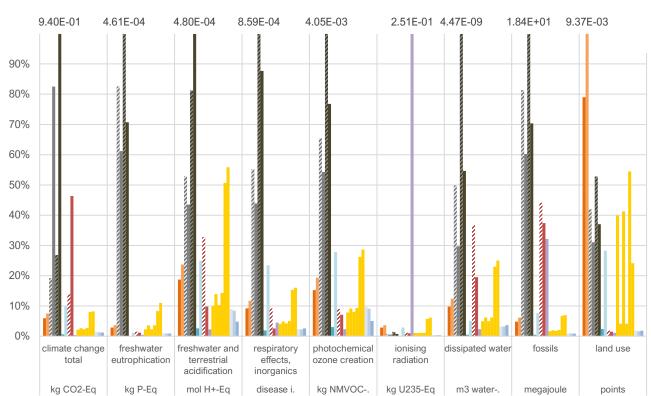
Concentrated solar power Tower Concentrated solar power Trough We Hard coal IGCC, with CCS ■ Hard coal IGCC, without CCS Hard coal PC, with CCS ■ Hard coal PC, without CCS Hydropower 360 MW Hydropower 660 MW **%** Natural gas NGCC, with CCS Natural gas NGCC, without CCS Nuclear power PWR Photovoltaics CIGS, utility Photovoltaics CIGS, roof Photovoltaics CdTe, utility Photovoltaics CdTe, roof Photovoltaics Poly-Si, utility Photovoltaics Poly-Si, roof Wind Offshore, concrete Wind Offshore, steel Wind Onshore


Results UNECE regions – EUR

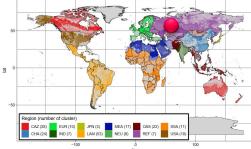
Different visualisation

at

Results UNECE regions – NEU



Environmental impacts from electricity production, per kWh, Europe non-EU, 2020


at

Concentrated solar power Tower Concentrated solar power Trough Mard coal IGCC, with CCS ■ Hard coal IGCC, without CCS Hard coal PC, with CCS ■ Hard coal PC, without CCS Hydropower 360 MW Hydropower 660 MW Natural gas NGCC, with CCS Natural gas NGCC, without CCS Nuclear power PWR Photovoltaics CIGS, utility Photovoltaics CIGS, roof Photovoltaics CdTe, utility Photovoltaics CdTe, roof Photovoltaics Poly-Si, utility Photovoltaics Poly-Si, roof Wind Offshore, concrete Wind Offshore, steel Wind Onshore

Results UNECE regions – REF

Environmental impacts from electricity production, per kWh, Reforming countries, 2020

Concentrated solar power Tower Concentrated solar power Trough ֎ Hard coal IGCC, with CCS ■ Hard coal IGCC, without CCS Hard coal PC, with CCS ■ Hard coal PC, without CCS Hydropower 360 MW Hydropower 660 MW X Natural gas NGCC, with CCS Natural gas NGCC, without CCS Nuclear power PWR Photovoltaics CIGS, utility Photovoltaics CIGS, roof Photovoltaics CdTe, utility Photovoltaics CdTe, roof Photovoltaics Poly-Si, utility Photovoltaics Poly-Si, roof Wind Offshore, concrete Wind Offshore, steel Wind Onshore

CONCENTRATED SOLAR POWER

Region	Capacity factor Solar Tower	Capacity factor Parabolic Through	Reference location
CAZ	55.00%	38.93%	Australia (-32.594,137.856)
CHA	49.26%	33.89%	China (41.507, 108.588)
EUR	49.23%	36.95%	Spain (37.442,-6.25)
IND	36.23%	29.25%	India (27.601,72.224)
JPN	14.40%	20.60%	Japan(33.22,131.63)
LAM	70.95%	55.80%	Chile (27.601,72.224)
MEA	55.78%	42.76%	Morocco (30.218,- 9.149)
NEU	14.40%	12.30%	Denmark(57.05,9.9)
OAS	29.27%	28.23%	Thailand (14.334,99.709)
REF	29.10%	23.70%	Russia(47.21,45.54)
SSA	55.19%	41.97%	South Africa (31.631,38.874)
USA	60.41%	37.49%	USA (35.017,-117.333)

Main parameters influencing the capacity factor:

Direct Normal Irradiation (DNI) and other meteorological parameters (e.g. latitude, wind, surface albedo)

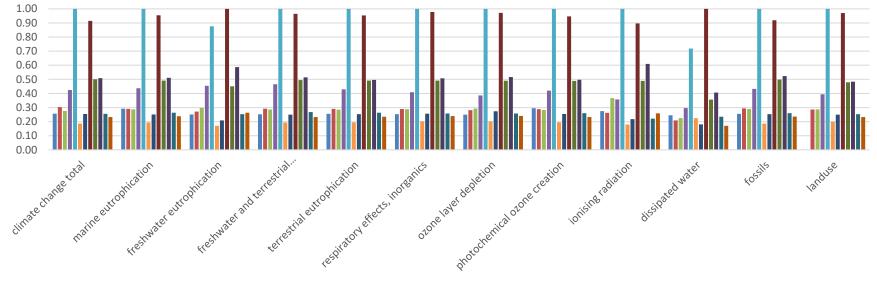
Plant size

Technology (solar tower or parabolic through)

Storage

Year of construction

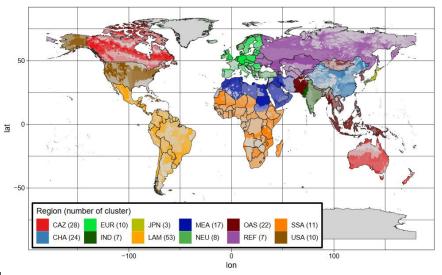
¹ Johan Lilliestam, Richard Thonig, Chuncheng Zang, & Alina Gilmanova (2021). CSP.guru (Version 2021-01-01) [Data set]. Zenodo. http://doi.org/10.5281/zenodo.4613099


² Chhatbar, K., & Meyer, R. (2011). The influence of meteorological parameters on the energy yield of solar thermal plants.

³ National Renewable Energy Laboratory (NREL). (2021). What Is the NSRDB? National Solar Radiation Database. https://nsrdb.nrel.gov/.

Influence of location for each technology

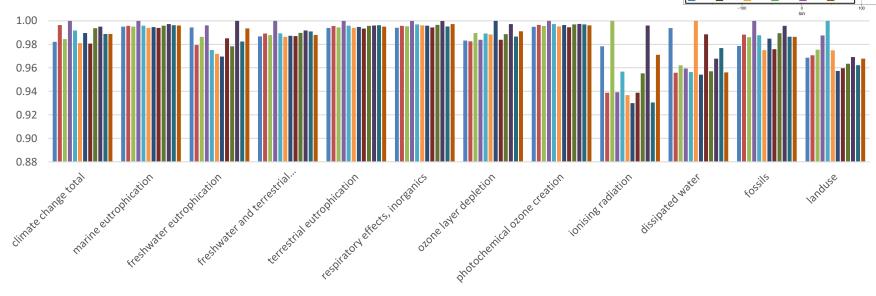
CSP, tower



■ CAZ ■ CHA ■ EUR ■ IND ■ JPN ■ LAM ■ MEA ■ NEU ■ OAS ■ REF ■ SSA ■ USA

WIND

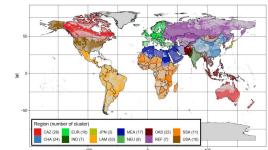
Region	Capacity factor On-shore	Capacity factor Off-shore		
CAZ	29.16%	30.50%*		
СНА	22.67%	22.68%		
EUR	22.83%	36.18%		
IND	17.80%	30.50%*		
JPN	25.00%	30.00%		
LAM	36.05%	30.50%*		
MEA	29.56%	30.50%*		
NEU	26.15%	31.43%		
OAS	22.67%	22.68%**		
REF	26.18%	30.50%*		
SSA	29.16%	30.50%*		
USA	33.35%	40.00%		



* Numbers not available. Average value is taken

** Numbers not available. Value for China is taken

17 IRENA. (2021). *Query Tool*. IRENA International Renewable Energy Agency. https://www.irena.org/Statistics/Download-Data.


Wind, offshore, gravity-based foundation

■CAZ ■CHA ■EUR ■IND ■JPN ■LAM ■MEA ■NEU ■OAS ■REF ■SSA ■0.99

Influence of location for each technology

Influence of location for each technology

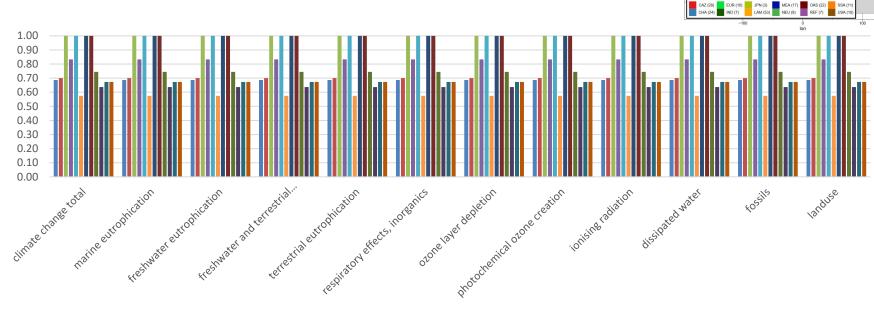

Hydro, 360MW

Table 5.3 Hydropower project capacity factors and capacity weighted averages for large hydropower projects by country/region, 2010–2019

-	2010-2014			2015-2019			
	5™ percentile (%)	Weighted- average (%)	95 th percentile (%)	5 th percentile (%)	Weighted- average (%)	95 th percentile (%)	
Africa	28	50	72	35	52	82	
Brazil	51	65	80	39	47	59	
Central America	27	48	64	36	53	56	
China	31	45	57	35	50	57	
Eurasia	27	31	58	31	55	67	
Europe	14	33	69	16	35	62	
India	30	47	62	22	42	65	
North America	18	31	80	34	52	75	
Oceania	25	29	42	39	45	48	
Other Asia	36	48	66	37	47	73	
Other South America	45	61	83	49	61	85	

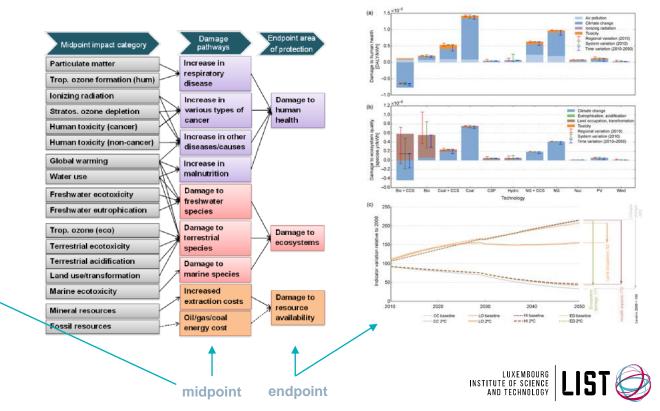
Source: IRENA Renewable Cost Database.

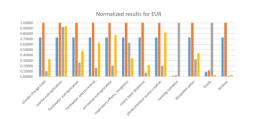
Influence of location for each technology

Hydro, 360MW

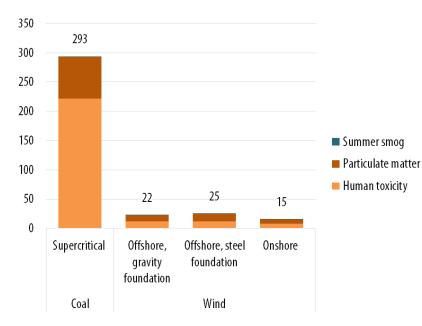
CAZ CHA EUR IND JPN LAM MEA NEU OAS REF SSA USA

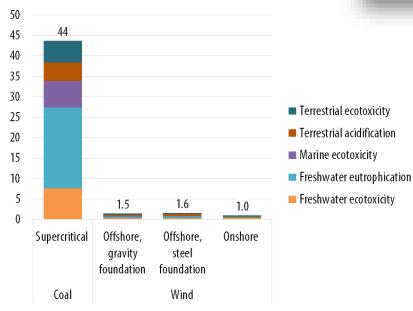
at


Region (number of cluster)


Results presentation/interpretation Options available for more policy-relevance

Results aggregation – Option 1


"Midpoint" vs. "endpoint" indicators

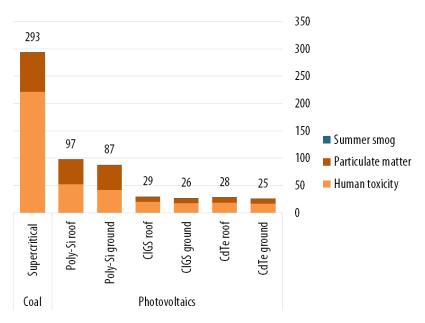


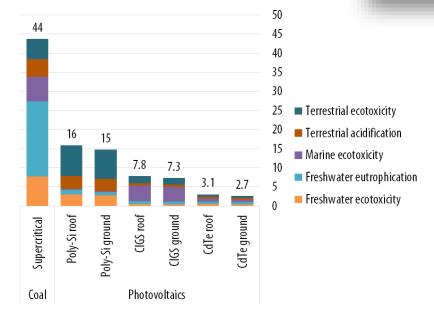
Results aggregation – Option 1 – Wind power

Human health impacts [DALY*/TWh]

Damage to ecosystems [species-yr/TWh]

*DALY = Disability-adjusted life year, a measure of overall disease Exc burden, excl. effects of climate change 23 23 24 23 23


Excluding effects of climate change and land use


REEN ENERGY CHOK

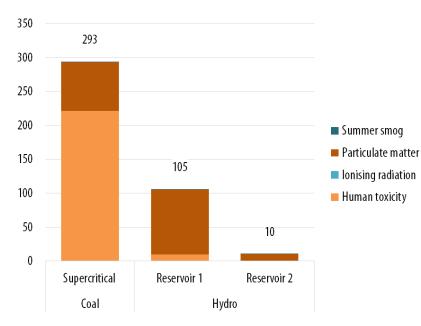
Results aggregation – Option 1 – Solar photovoltaics

Human health impacts [DALY*/TWh]

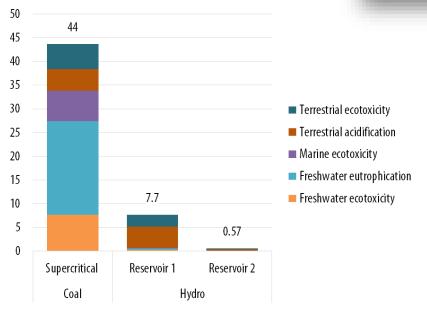
Damage to ecosystems [species-yr/TWh]

*DALY = Disability-adjusted life year, a measure of overall disease burden, excl. effects of climate change

Excluding effects of climate change and land use



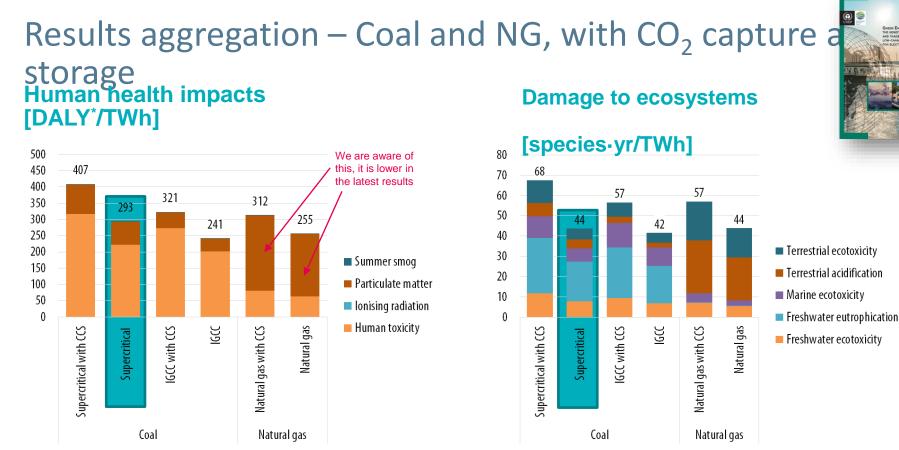
GREEN ENERGY CHOIC


/!\ All results preliminary

Results aggregation – Option 1 – Hydropower

Human health impacts [DALY*/TWh]

Damage to ecosystems [species-yr/TWh]

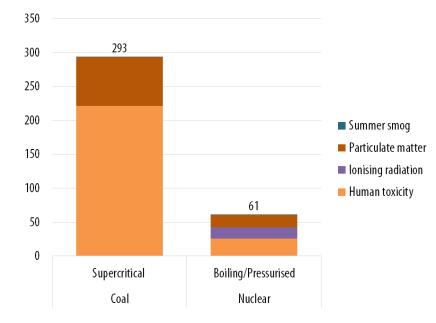


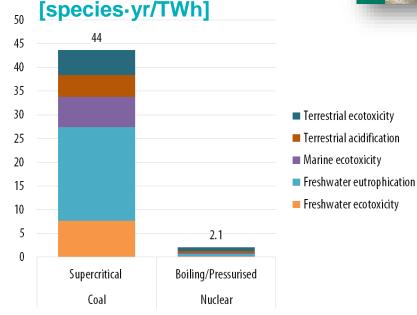
*DALY = Disability-adjusted life year, a measure of overall disease burden, excl. effects of climate change 25 /!\ All results preliminary

Excluding effects of climate change and land use

REEN ENERGY CHOR

*DALY = Disability-adjusted life year, a measure of overall disease burden, excl. effects of climate change /!\ All results preliminary

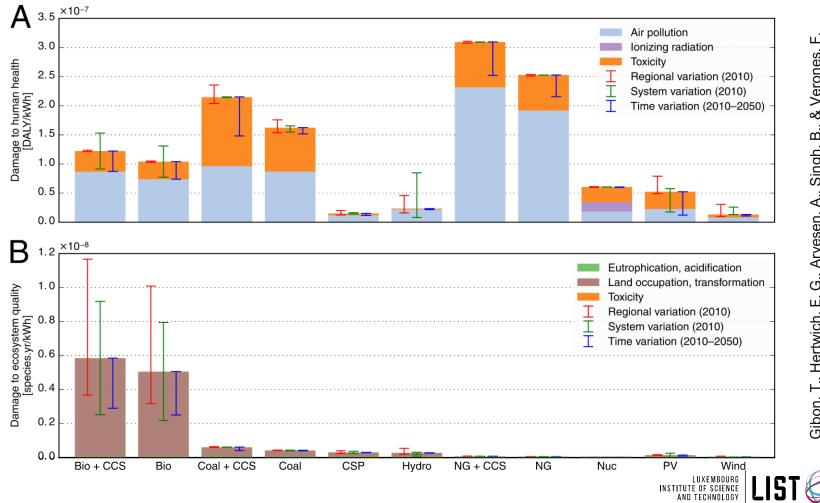

Excluding effects of climate change and land use


GREEN ENERGY CH

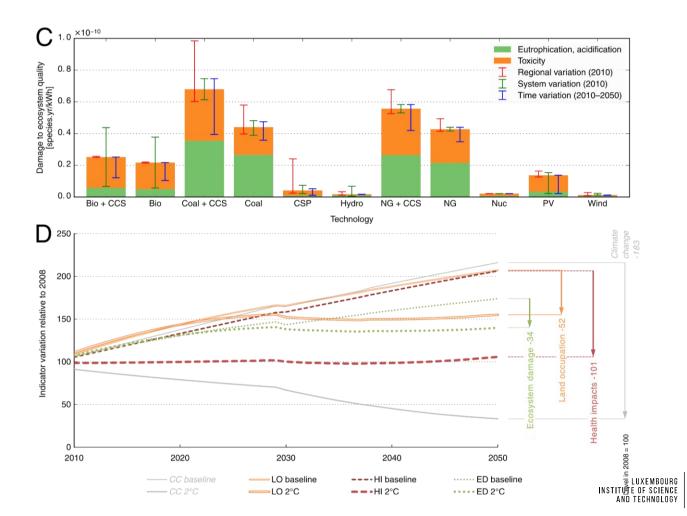
Results aggregation – Option 1 – Nuclear power

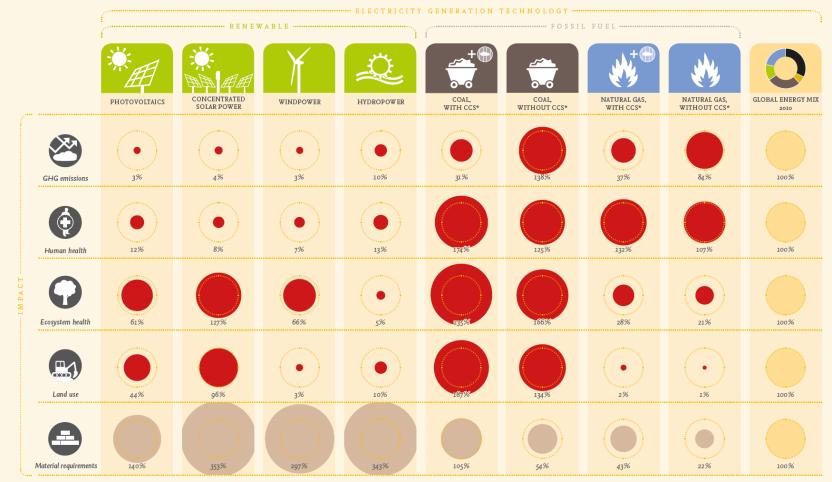
Human health impacts [DALY*/TWh]

Damage to ecosystems



*DALY = Disability-adjusted life year, a measure of overall disease burden, excl. effects of climate change /!\ All results preliminary


Excluding effects of climate change and land use



carbon electricity & Verones, ы. Б of low-12(3), 034023 Singh, eats ological thr Arvesen, Letters, с Ю ð Environmental Research Health benefits, ш Hertwich, Gibon, ' 2017)

carbon electricity. & Verones, F Singh, B., ological threats of low 12(3), 034023 4 Arvesen, Letters, õ с. Ю Environmental Research Health benefits, ш Hertwich, (2017). I Gibon, '

This infographic compares electricity generation technologies and highlights the environmental benefits, and trade-offs of each technology. The graphic presents an overview over the life cycle impacts and material requirements per unit of electricity produced by different technology groups compared to the global electricity generation mix in the year 2010. Indicators for materials are shown for reference; the environmental impacts associated with material production are already included in the results for the other indicators.

* Carbon capture storage (CCS) technology entails the capture of CO2 from large anthropogenic sources, transport of the CO2 to an underground storage reservoir and long-term isolation from the atmosphere.

щ

 \mathbf{H}

OIOG

Z

Ш∢

НЪ

0 N O I O N O

I S O A N

Ц

 \triangleleft

Д

Σ

0

U

CHC

щΣ

Results aggregation – Option 2

Normalisation and weighting

Table 1. Global normalisation factors for emissions and resource extraction in 2010, based on EF 2017 method (Sala et al 2017). The attributed score is from I-highest to III-lowest

Impact category	Model	Unit	global NF for EF	global NF for EF per person *	Inventory coverage completeness	Inventory robustness	Recommendation level of EF impact assessment
Climate change	IPCC (2013)	kg CO₂ eq	5.79E+13	8.40E+03	II	I	I
Ozone depletion	WMO (1999)	kg CFC-11 eq	1.61E+08	2.34E-02	III	II	I
Human toxicity, cancer	USEtox (Rosenbaum et al., 2008)	CTUh	2.66E+05	3.85E-05	III	III	II/III
Human toxicity, non- cancer	USEtox (Rosenbaum et al., 2008)	CTUh	3.27E+06	4.75E-04	III	III	II/III
Particulate matter	Fantke et al., 2016	disease incidences	4.95E+06 ^(a)	7.18E-04	I/II	I/II	I
Ionising radiation	Frischknecht et al., 2000	kBq U-235 eq.	2.91E+13	4.22E+03	II	III	II
Photochemical ozone formation	Van Zelm et al., 2008 as applied in ReCiPe (2008)	kg NMVOC eq.	2.80E+11	4.06E+01	III	I/II	П
Acidification	Posch et al., 2008	mol H ⁺ eq	3.83E+11	5.55E+01	II	I/II	II
Eutrophication, terrestrial	Posch et al., 2008	mol N eq	1.22E+12	1.77E+02	II	I/II	II
Eutrophication, freshwater	Struijs et al., 2009	kg P eq	5.06E+09	7.34E-01	п	III	п
Eutrophication, marine	Struijs et al., 2009	kg N eq	1.95E+11	2.83E+01	II	II/III	II
Land use	Bos et al., 2016 (based on)	pt	9.64E+15 ^(b)	1.40E+06	II	II	III
Ecotoxicity freshwater	USEtox (Rosenbaum et al., 2008)	CTUe	8.15E+13	1.18E+04	III	III	II/III
Water use	AWARE 100 (based on; UNEP, 2016)	m ³ water eq of deprived water	7.91E+13 ^(b)	1.15E+04	I	II	III
Resource use, fossils	ADP fossils (van Oers et al., 2002)	CΜ	4.50E+14	6.53E+04	Ι	II	III
Resource use, minerals and metals	ADP ultimate reserve (van Oers et al., 2002)	kg Sb eq	4.39E+08	6.36E-02	Ι	п	III

JRC TECHNICAL REPORTS

Suggestions for the update of the Environmental Footprint Life Cycle Impact Assessment

Impacts due to resource use, water use, land use, and particulate matter

JRC TECHNICAL REPORTS

Global normalisation factors for the Environmental Footprint and Life Cycle Assessment

> Serenella Sala, Eleonora Crenna, Michela Secchi, Rana Pant

2017

* World population used to calculate the NF per person: 6895889018 people. Source: UNDESA (2011)

(a) NF calculation takes into account the emission height, in both the inventory and the impact assessment

(b) The NF is built by means of regionalised CFs

Results aggregation – Option 2

Results normalized, Europe EU region ("how much of an average EU28 citizen's footprint")

Normalization

Photochemical ozone formation

Human toxicity, non-cancer

Human toxicity, cancer

Climate change

Ozone depletion

Ionising radiation

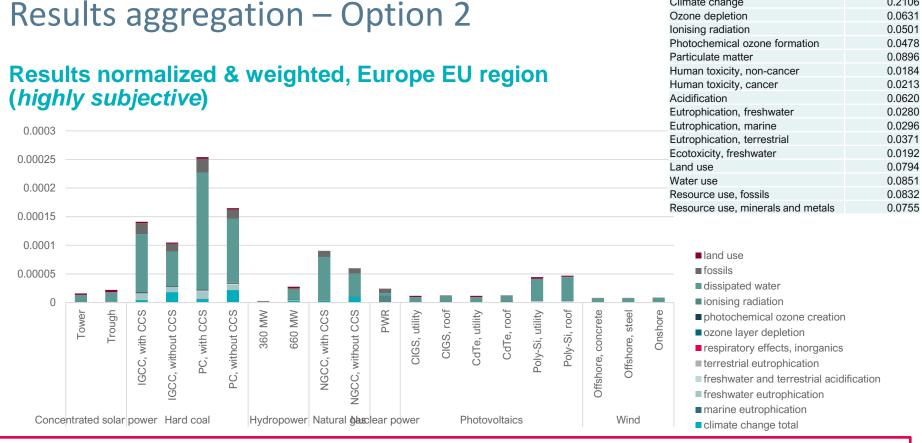
Particulate matter

Acidification

EU28 0.00010846

0.000884956

0.0315457


0.263158

1876.17

27100.3

0.0211416

46.2963

Weiahtina

Climate change

Factor

0.2106

"Weighting is the optional fourth and final step in Life Cycle Impact Assessment (LCIA), after classification, characterization and normalization. This final step is perhaps the most debated. Weighting entails multiplying the normalized results of each of the impact categories with a weighting factor that expresses the relative importance of the impact category." https://pre-sustainability.com/articles/weighting-applying-a-value-judgement-to-lca-results/