LCM

Least Common Multiple (Leap Count Man)

"The Cake Method"

Multiples
-The result of multiplying a whole number

- Example: The multiples of $\underline{5}$ are
$5,10,15,20,25,30$ because these numbers are the result of multiplying 5 and another whole number.

Turn to a partner and brainstorm what the first 9 multiples of 4 are

You have 30 seconds! Be ready to share!

Now Let' s Learn Something

 NEW!- LCM (Least Common Multiple)

-The SMALLEST multiple that two numbers have in

 COMMON.
Check It Out!

*Example of finding the LCM: -Let's look at the numbers 6 and 2

The multiples of 6 are $6,12,18,24$.. The multiples of 2 are $2,4,6,8,10 \ldots$

Let's circle the multiples that 6 and 2 have in common The smallest multiple 6 and 2 have in common is 6 so

$$
6 \text { is the LCM }
$$

The Cake Method

- An easy way to find the GCF AND LCM of two numbers is to think of the layers in a yummy piece of cake!

Remember last week when we found the GCF using the Cake Method?
-Now we are going to use that same method to find the LCM!

- All you have to do is find the GCF and then make an L around ALL of the numbers...

CHECK IT OUT!

- Let's refresh our brains and find the GCF of 14 and 28 using the cake method

Step 1- Draw a "cake layer" and place the two numbers inside

Step 2- Think of any factor that the two numbers have in common. Let's try 2 ! Now place the 2 outside of the cake layer

Step 3- Divide the inside numbers by the outside number, 2. Place the answer underneath each number and draw a new cake layer

Step 4- Repeat Step 2 and 3 for the new set of numbers (7 and 14)

Step $7-7 \times 2$ is 14 .
The GCF is 14

Step 5- Once the numbers in the cake layer are prime, or only have the factor one in common, you can stop! 1 is prime so we can now stop!

Step 6- Draw a G (for GCF) around the outside numbers.
Multiply these numbers
together to find the GCF!

- Now all you have to do is draw a big L around all of the outside numbers AND the prime numbers to find your LCM!

Now that you have drawn the L around these numbers, just multiply them together to find your LCM!
Watch!
$2 \times 7 \times 1 \times 2=28$
28 is the LCM

Let's try some more together!

- Let's use the cake method to find the GCF of 24 and 12. After you have found the GCF try to find the LCM!

Let's look at another one together!

- Last week we found the GCF of 18 and 27. Now let's find the LCM

$3 \times 3 \times 2 \times 3=54$

Let's look at another one together!

- Last week we found the GCF of 3 and 11. Now let's find the LCM

$$
1 \times 3 \times 11=33
$$

Don't let this one trick you! If the numbers in the cake layer are already prime, then your GCF is 1 and you are done! To find the LCM still draw you L around the GCF and bottom layer!!

Last One Together!

- Last week we found the GCF of 20 and 30 . Now let's find the LCM!

$$
5 \times 2 \times 2 \times 3=60
$$

Now try this one with a partner!

- Last week we found the GCF of 20 and 30 . Now let's find the LCM!

$2 \times 3 \times 16=96$

Try this with another partner

- Last week we found the GCF of 20 and 30 . Now let's find the LCM!

Last One...Try it on your OWN!

- Last week we found the GCF of 20 and 30 . Now let's find the LCM!

