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What is this book?

This book teaches basic algebra by having the student write short, simple

computer programs (or “code”), to investigate topics typically found in an

introductory algebra class. Topics include symbolic manipulation, factoring,

problem solving, graphing, equation solving, and quadratic equations, all

presented with the backdrop of writing simple code.

The programming environment used is the site at www.codebymath.com,

which is a website dedicated to the parallel learning of coding and math-

ematics. The website has a straightforward design for coding: a “run” but-

ton executes code typed into a text-window on the left side of the screen.

Any output generated, will appear in second window on the right side of

the screen. Many programming extensions are available, for text, graphics,

professional charts, sound, and maps.

The student will be pleased with the motivation and insights coding brings

to learning algebra.

Inspiration for this book came from an essay called “A Mathematician’s

Lament,” by Paul Lockhart (2002), Dan Meyer’s TED talk called “Dan

Meyer: Math class needs a makeover” (2010), and the book “An Elementary

Introduction to the Wolfram Language,” by Stephen Wolfram (2015).

September 2016 edition. (C)Copyright 2016, Codebymath.com. All rights

reserved.



Contents

1 Introducing coding and math 5

1.1 Views on math teaching . . . . . . . . . . . . . . . . . . . . . 5

1.2 Coding and math . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3 Why a new website and book? . . . . . . . . . . . . . . . . . . 7

1.3.1 Do only on the computer . . . . . . . . . . . . . . . . . 8

1.3.2 Don’t do anymore . . . . . . . . . . . . . . . . . . . . . 9

1.4 For the experts (keep the emails coming...) . . . . . . . . . . . 10

2 Warm-up 11

2.1 Where do I code? . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Basic output and the print statement . . . . . . . . . . . . . . 13

2.3 The computer as a calculator . . . . . . . . . . . . . . . . . . 14

2.4 Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.5 Doing calculations with variables . . . . . . . . . . . . . . . . 18

2.6 Input from the keyboard . . . . . . . . . . . . . . . . . . . . . 19

2.7 Counting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.8 More than just counting . . . . . . . . . . . . . . . . . . . . . 22

2.9 Comparing numbers . . . . . . . . . . . . . . . . . . . . . . . 24

2.10 Making Decisions . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.10.1 The absolute value . . . . . . . . . . . . . . . . . . . . 27

2.10.2 Ordering numbers . . . . . . . . . . . . . . . . . . . . . 28

2.10.3 Divisibility . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.10.4 Prime and Composite Numbers . . . . . . . . . . . . . 29

2.11 Multiplication and Division . . . . . . . . . . . . . . . . . . . 30

2



CONTENTS 3

2.12 Fractions and the greatest common divisor . . . . . . . . . . . 32

2.13 Adding fractions and the least common multiple . . . . . . . . 33

2.14 Fractions and Decimals . . . . . . . . . . . . . . . . . . . . . . 35

2.15 Exponents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3 Fundamentals of Algebra 37

3.1 Coe�cients . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.2 Like terms and combining them . . . . . . . . . . . . . . . . . 39

3.3 Properties of Algebra . . . . . . . . . . . . . . . . . . . . . . . 41

3.3.1 Commutative Property of Addition . . . . . . . . . . . 42

3.3.2 Commutative Property of Multiplication . . . . . . . . 42

3.3.3 Associative Property of Addition . . . . . . . . . . . . 42

3.3.4 Associate Property of Multiplication . . . . . . . . . . 43

3.3.5 Distributive Property . . . . . . . . . . . . . . . . . . . 43

3.3.6 Additive Identity Property . . . . . . . . . . . . . . . . 44

3.3.7 Multiplicative Identity Property . . . . . . . . . . . . . 44

3.3.8 Additive Inverse Property . . . . . . . . . . . . . . . . 44

3.3.9 Multiplicative Inverse Property . . . . . . . . . . . . . 44

3.3.10 Testing algebraic properties with random numbers . . . 45

3.4 Simplifying Algebraic Expressions . . . . . . . . . . . . . . . . 46

3.5 Introduction to Equations . . . . . . . . . . . . . . . . . . . . 48

3.5.1 Remarks on solving equations . . . . . . . . . . . . . . 50

3.5.2 Searching for solutions to equations . . . . . . . . . . . 51

4 Algebra and problem solving 57

4.1 Warm-ups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.2 More “real sounding” situations . . . . . . . . . . . . . . . . . 60

4.3 Investigating numbers . . . . . . . . . . . . . . . . . . . . . . 62

4.4 Changing Words into Equations . . . . . . . . . . . . . . . . . 66

4.5 Where to go from here? . . . . . . . . . . . . . . . . . . . . . 75

5 Polynomials 79

5.1 Putting polynomials into the computer . . . . . . . . . . . . . 79

5.2 Adding and subtracting polynomials . . . . . . . . . . . . . . 80

5.2.1 Testing the results . . . . . . . . . . . . . . . . . . . . 81



CONTENTS 4

5.3 Multiplying Polynomials . . . . . . . . . . . . . . . . . . . . . 82

5.3.1 A project on polynomial multiplication . . . . . . . . . 82

5.3.2 Use your code now . . . . . . . . . . . . . . . . . . . . 86

5.4 Special Products . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.5 Exponents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

6 Factoring 89

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

6.2 With polynomials . . . . . . . . . . . . . . . . . . . . . . . . . 90

6.3 Computers and Factoring . . . . . . . . . . . . . . . . . . . . 91

6.4 Factoring experiments on the computer . . . . . . . . . . . . . 92

6.4.1 A factoring engine . . . . . . . . . . . . . . . . . . . . 93

6.4.2 Factoring, proof of work, and data privacy . . . . . . . 98

7 Solving an Equation 102

7.1 An equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

7.2 Solving an equation on the computer . . . . . . . . . . . . . . 103

7.3 Getting more organized . . . . . . . . . . . . . . . . . . . . . . 105

7.4 Better looking plots . . . . . . . . . . . . . . . . . . . . . . . . 108

7.5 More complicated functions . . . . . . . . . . . . . . . . . . . 109

7.5.1 Equations with powers of x larger than 1 . . . . . . . . 109

7.5.2 The “power” of an equation . . . . . . . . . . . . . . . 110

7.6 Factoring and solving equations . . . . . . . . . . . . . . . . . 111

7.6.1 Factoring by graphing . . . . . . . . . . . . . . . . . . 112

7.7 What solution? . . . . . . . . . . . . . . . . . . . . . . . . . . 113

7.8 Computer search for equation solutions . . . . . . . . . . . . . 114

8 Quadratic Equations 119

8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

8.2 The quadratic formula . . . . . . . . . . . . . . . . . . . . . . 120

8.3 Coding and the quadratic formula . . . . . . . . . . . . . . . . 121

8.3.1 Quadratic solver version 1.0 . . . . . . . . . . . . . . . 121

8.3.2 Quadratic solver version 2.0 . . . . . . . . . . . . . . . 123

8.3.3 Quadratic solver version 3.0 . . . . . . . . . . . . . . . 126



Chapter 1

Introducing coding and math

1.1 Views on math teaching

Perhaps we are not doing the best we can by continuing to teach algebra with

paper and a book, as a handwritten experience. This mode is too antiquated

for the modern world, and too boring for most students. It only appeals

to a remarkable few who can visualize complex relationships and logic in

their minds, for subsequent presentation on paper. This is the way Albert

Einstein worked (and his intellect was rare). So from the first written math

worksheets given our 2nd graders, we are holding them to the mindset of

Einstein. Why do we keep doing this?

Beyond that, working with pencils and paper to solve complex technical

problems is a skill the world simply doesn’t need anymore. Other than a

“back of the envelope” feasibility study in a co↵ee shop, technical problems

are best solved by using technology, that allows one to try, test, collaborate,

and share potential solutions. Problems are solved by continually to trying

“what if” situations, failing then fixing what is wrong, while we push on

toward a solution. All of our work, including schoolwork should use a “share”

button at some point along the way.

We don’t understand why K12 math education insists on minimizing the
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CHAPTER 1. INTRODUCING CODING AND MATH 6

usefulness of technology. And no, we don’t consider the use of graphing

calculators as “technology.” These also fall into the realm of another skill

the world doesn’t need anymore (small ugly screens, awkward keyboard and

software, limited connectivity, way too expensive, and only exist inside the

walls of a school). Teachers using “smartboards” don’t count either.

1.2 Coding and math

So what does coding have to do with it? Well mathematics is really the

original form of computer programming. Both are born by starting with some

simple facts, that build upon themselves, until something new is discovered

or some need is filled. While an app for the iPhone starts by opening a “view

controller,” a mathematical problem might begin by “assuming x is a real

number.” From there, “Flappy Bird” eventually comes, or Fermat’s Last

Theorem is eventually solved. Both proceed with rules, logic, and (re)use of

proven ideas. This is how progress is made. It’s just that for the first 4,000

years of mathematics, there were no computers. But now we have them, even

on our wrists and in our pockets, so we should use for learning mathematics.

There’s a funny trend in the modern math books anyway: they are becoming

very algorithmic, with lessons that simply tell the students the exact steps

to take in order to solve a problem. Here’s a table from an Algebra book by

Larson (5th ed) on adding integers:

and another from a Calculus book by Briggs
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As you can see, some lessons in these books boil down to giving students

a recipe to follow. Almost as if the textbook author is “programming” the

student. This is happening more and more in the latest edition math and

science books.

Should teach kids to code then? Yes, we think so. The match between math-

ematics and programming is very natural. We think learning to code is as

important as learning to read and write, and should be started as early as pos-

sible. Perhaps even “the three Rs” (Reading, wRiting, aRithmetic) should be

four: Reading, wRiting, aRithmetic, and pRogramming.” But really its the

aRithmetic that needs to change. It should be “aRithmetic/pRogramming.”

The idea of fully integrating computers and mathematics enhances both

fields. The computer weans us of pencil and paper mathematics (i.e. the

“Einstein-mode”) and mathematics gives learning to code a badly needed

context.

1.3 Why a new website and book?

The motivation for this book and the site http://www.codebymath.com,

came from a father infinitely frustrated with the topics his son went through,

during his years of math in junior high and high school in the United States.

As we went through lesson after lesson, we just didn’t understand why most

of them weren’t being done on a computer. Also, we “get math,” and like it

too. We use it daily at a rather high level (all have a Ph.D.s in physics), and
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understand, for example, what things like d

2

r

dt

2

= �kr mean.

By way of motivation for writing this book, we have compiled a list here

of the most frustrating topics in algebra. The frustration was not from the

hardworking teachers, or our childrens’ grasp of the material, or for the

spent time helping them each evening. No, our frustration is from the utter

uselessness of these topics, and watching everyone involved (including the

teachers) struggle with these topics (and form their opinions about math

with them in mind). We have two categories. The first is for algebra topics

that should only be taught using the computer. The second are topics that

(sorry) should not be taught anymore.

1.3.1 Do only on the computer

After all of those years of compulsory math lessons “just because,” we believe

the following topics, should not be taught again with the pencil-and-paper

method. These topics should all be taught on the computer, by having the

students write simple computer programs.

• Finding roots of high-degree polynomials by counting sign changes.

• Making a graph by hand.

• Finding factors of integers by hand.

• Reducing fractions to lowest terms.

• Hand factoring quadratic equations, and trinomials.

• Making some any distinction between integers, whole numbers, real

numbers, fractions, natural numbers, etc. (hint: they’re all just num-

bers).

• Divisibility rules.

• Testing if a number is prime, for any number above 20.

• Finding the GCD or LCF of numbers over 10.



CHAPTER 1. INTRODUCING CODING AND MATH 9

• Percent problem that ask anything other than finding a percentage of a

given number. Let’s stop problems like “25.2 is 140% of what number?”

• Any operation (add, subtract, multiply, divide, exponent) with poly-

nomials.

1.3.2 Don’t do anymore

To go on, the topics listed below are so egregious that should be removed

from our math books, and never be taught again, using computer or not:

• Dividing polynomials

• Rationalizing a denominator (all that work for readability?)

• Word problems involving mixtures of things like peanuts and cashews,

or the cost of so much of “Brand A” and “Brand B” co↵ee.

• Word problems that mix solutions, like “How may liters of pure alcohol

are there in 2L of a 30% solution of alcohol?”

• Adding, subtracting, or multiplying more than two polynomials.

• Factoring a polynomial with any power greater than 2.

• Factoring polynomials whose “leading coe�cient is not 1.”

• Factoring by grouping.

• Finding mixed numbers from improper fractions. (What is a “mixed

number” anyway?)

The only outcome of such problems is in making students loath algebra (and

math and science in general), and cause them (and their parents) to have

miserable evenings doing homework. But, we are all for preserving culture

and remembering our accomplishments (including those of pencil-and-paper

mathematics), so by all means let’s archive these lessons into books on the

“history of mathematics,” or put them into a “museum of mathematics.”
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We have written this book, that presents a first course in algebra, as it could

be learned in terms of writing simple computer programs. It follows topics

that are generally ordered the way a typical algebra book would present them.

You’ll be surprised at the insights writing simple code for algebra problems

brings.

1.4 For the experts (keep the emails com-

ing...)

• Yes...we know this book has a lot of brute force searching for solutions

using for-loops and random numbers. We know this isn’t a good use

of computational power and is ine�cient. But computers are very

powerful and typical algebra problems are so contrived, over such a

limited and unimaginative domain, why not just solve it with brute

force? We still get an answer and the student did some coding. This

is far better than an algebraic answer written on paper, with a box

around it.

• Yes...we know our lessons have a lot of print statements, dumping text

to the screen for the student to analyze in assessing a given topic. We

believe these are first steps in coding.

a = np.linspace(0,10,100)

b = np.exp(-a)

plt.plot(a,b)

plt.show()

will come later.

• Yes...we know about the books “Numerical Recipes” and TAOCP. We

know them very well.

• Yes...we know about Mathematica, Maple, Matlab, Sagemath, and

SymPy. We also know we’re not sitting an introductory algebra student

in front of these.



Chapter 2

Warm-up

The intent of this chapter is to teach you some basic programming skills, that

will take you through this whole book. If you can get through this chapter,

understanding variables, conditionals, the for-loop and the if-then statement,

then you can actually start learning some math through coding.

2.1 Where do I code?

To starting coding according the the lessons this book, go to this page:

http://www.codebymath.com/index.php/welcome/sandbox

The page should look like this

11



CHAPTER 2. WARM-UP 12

where you type your code in the left box and click “Run.” Any output will

be seen in the right box. All of this is web-based. You don’t need to buy or

install any software. All you need is a web-browser and a computer connected

to the Internet. Here’s an example, where your code is run when you click

the green “Run” button.

Your code here will be short, so there’s no reason to worry about saving it,

although you can save things to your Dropbox account. You can also copy

and paste code out of the editor window and into some file on your local

computer.

Throughout the book, we’ll represent the left code window, that looks like

this:
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with a simpler box that looks like this:⌥ ⌅
1 print ( ”He l lo the r e ” )⌃ ⇧
We’ll assume you can type the code into the code-editor and click the green

“Run” button to see your results.

2.2 Basic output and the print statement

Computers typically have some output area on their screen, where they can

show you bits of information. For most of the work in this book, we’ll use

the print statement, that prints or displays information you give it to the

output window. Try these.

1. Here is a simple message.⌥ ⌅
1 print ( ”He l lo the r e ” )⌃ ⇧

2. Assuming your name is “Steve” try this, or substitute in your own

name.⌥ ⌅
1 print ( ”Hel lo , Steve ” )

2 print ( ”How are you?” )⌃ ⇧
Try printing any other message you may want.
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2.3 The computer as a calculator

Computers are very good at doing calculations. If you just put your formula

into a print statement, the computer will happily crunch any formula for you.

Try these.⌥ ⌅
1 print (2+2)⌃ ⇧⌥ ⌅
1 print (6⇤9)⌃ ⇧⌥ ⌅
1 print (400/20)⌃ ⇧⌥ ⌅
1 print ((2+3)⇤100�67/2ˆ2�(4+14)/100)⌃ ⇧
Note the key operators:

• + means add, as in print(3+3) would give 6.

• - means subtract, as in print(10-3) would give 7.

• * means multiply, as in print(5*9) would give 45.

• / means divide, as in print(15/5) would give 3.

• % means to find the remainder of the division, as in print(10 % 3)

would give 1.

• ˆ means exponent, as in print(5^2) would give 25.

• ( and ) are grouping symbols, as in print( (3+5)*2) which would give

16, since the ( and ) force the 3+5 do be done before the 5*2.

Do you remember how to evaluate something like 3+4⇥2. Is the answer 14,

or is it 11? What about 5� 3⇥ 10. Is the answer 20 or -25? You can check

these on the computer like this, but first know on a computer that “times”

is done with a * and “divide” is done with a /. So 3 + 4⇥ 2 can be checked

with⌥ ⌅
1 print (3+4⇤2)⌃ ⇧
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The answer is 11, since division (and multiplication) is done before addition

(and subtraction). You can check 5� 3⇥ 10 with⌥ ⌅
1 print (5�3⇤10)⌃ ⇧
which is -25, for the same reason above.

You can also work on those integer addition and subtraction problems that

have di↵erent signs on the numbers, like these:

1. -18+(-62)⌥ ⌅
1 print (�18+(�62))⌃ ⇧

2. 22+(-17)⌥ ⌅
1 print (22+(�17))⌃ ⇧

3. -84+14⌥ ⌅
1 print (�84+14)⌃ ⇧

4. -13-7+11-(-4)⌥ ⌅
1 print(�13�7+11�(�4))⌃ ⇧

As you can see, the computer takes in mathematical expressions in an almost

identical form to your book.

2.4 Variables

As you study algebra, you’ll find that often ideas of math will be presented,

not in terms of numbers, but in terms of letters that stand for number. These

letters are called variables in algebra. Why do we do this?

Well suppose you have 4+3, which of course is equal to 7. But suppose you

wanted to be more general and needed to study what happens to any number
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when 3 is added to it. You could write x+3, where x is the variable. Using x

as a variable is very common. In fact, x is probably the most famous variable

in algebra, even the butt of jokes, like this one.

(Hint: when asked to “Find x” in math, it usually means to use math to find

what x should be, or to ”solve” for x. In this case, we’d use something called

the “Pythagorean Theorem” to compute x, which would be or x=5.)

Now, back to our example of adding 3 to a number. If you think of x as

holding a 4, youd get 4+3 or 7..nothing changes there. But using “x” instead

of 7, allows you to form a mathematical statement about adding 3 to any

number you wish. Why is this done? Mostly to be more general about a fact

of math. In this case, 4 isnt the only number you can add 3 to.

We can even start working with code on this. Go to the code page discussed

above and type in the following:⌥ ⌅
1 x=4

2 print ( x+3)⌃ ⇧
When you click the “Run” button, a 7 appears in the output area. Now go

back and change the x to a 3.What do you get now when you click Run?

Change the x to any number you wish, and click “Run” again. Try this a

few times. Is the result correct? In this example, using the variable x allowed

us to be very general is presenting how we add 3 to a number.

Here’s another experiment concerning the general nature of variables. Sup-

pose you had a bus that seats 50 people, and you needed a real time counter
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that tells you how many seats are still available, given the number of people

may already be on the bus. If there are 27 people on the bus, you could write

some code like this⌥ ⌅
1 print ( ”For your 50 s ea t bus , ” )

2 print ( ” the re are ” ,50�27 , s e a t s l e f t . ” )⌃ ⇧
This would print

For your 50 seat bus,

There are 23 seats left.

But what if 29 people were on the bus? You’d have to go in and change the

27 to a 29. Also, what if you got a bigger bus that could hold 75 people?

Youd now have to change the 50 (in two places!). It would be easier to just

variables, like this.

Lets have the variable n be the number of seats on the bus, and x be the

number of people on the bus. With this, at any time, n-x would be the

number of seats available, so your code would look like this:⌥ ⌅
1 n=50

2 x=27

3 print ( ”For your” ,n , ” s ea t bus , ” )

4 print ( ” the re are ” ,n�x , ” s e a t s l e f t . ” )⌃ ⇧
Now, for any bus size, or any number of people, you just have to change the

assignments to n and x in the first two lines. In the second print statement,

the “rule” n-x is the generalized expression for how many seats are left on

the bus, given that the bus can hold n people, and x people are already on

board.

This is the epitome of algebra. Using variables, and being very general about

math rules to express what we want about math.
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Exercises

1. The area of a square is base time height. Suppose you have a square

whose height is 5.5 and base is a variable x. Write some code to define

x, then print the area of the square.

2. Extending #1 above, by trial and error in your assignment of x, find

what x should be to give an area of 52.47 square units.

2.5 Doing calculations with variables

Understanding a bit about variables, now allows you to do some calculations

with them, and also see how good computers are at crunching numbers. But

first a bit of review.

You can also calculate with variables, like this⌥ ⌅
1 x=3

2 print ( x+3⇤x )⌃ ⇧
which should give 12, but feel free to change the x=3 line and put whatever

formula you wish inside of the parenthesis of the print statement. How about

this?⌥ ⌅
1 a=10

2 b=16

3 x=2

4 print ( a+a�b⇤x+a⇤b�663)⌃ ⇧
So in summary, in algebra and on the computer, variables and numbers are

to be mixed in crunching numbers, as if they all are actually numbers in the

end.
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Exercises

1. Write some code that will assign x=some-number. Print 2x, 3x, and

4x.

2. Define 3 variables whose names you choose. Invent a formula that uses

all of the variables to compute a number, whose result is the day of the

month on which you were born.

3. Suppose you divide two numbers. When you divide one by the other,

can the remainder ever be greater than the divisor? Use the % operator

to find out.

2.6 Input from the keyboard

Just as the print statement allows you to send information (text) to the

screen as output from your program, the input statement allows you to send

information into your program as input. It works like this:⌥ ⌅
1 print ( ”What i s your name?” )

2 x=input ( )

3 print ( ”He l lo there , ” , x )⌃ ⇧
Here the input() function pauses your program and waits for you to type

a line of text, which is subsequently assigns to variable x, for use in your

program. You can probably guess what the program above does.

What’s useful about this is that it can make your programs, that use vari-

ables, interactive. Take the program above, that told you how many seats

are left on a 50 person bus.⌥ ⌅
1 n=50

2 x=27

3 print ( ”For your” ,n , ” s ea t bus , ” )

4 print ( ” the re are ” ,n�x , ” s e a t s l e f t . ” )⌃ ⇧



CHAPTER 2. WARM-UP 20

Suppose you replace the x=27 with x=input() (and a text prompt) like this:⌥ ⌅
1 n=50

2 print ( ”How many people are on the bus?” )

3 x=input ( )

4 print ( ”For your” ,n , ” s ea t bus , ” )

5 print ( ” the re are ” ,n�x , ” s e a t s l e f t . ” )⌃ ⇧
Now the program will ask you how many people are already on the bus and

compute the number of empty seats.

Using the input() function is a handy way of getting di↵erent values into

variable, without having to edit the code itself.

2.7 Counting

Counting can be fun, particularly if you can reach some very large number, by

ones, without stopping or leaving any out. But machines are better counters

than we are.

If you have a calculator, try this. Key in “1” then a “+” then a “1” again (to

add 1 to 1), and lastly hit the “=” key. Now press “=” over and over again.

The calculator should count up by ones. How high can you go? Counting

is more convenient when aided by a machine, like your calculator, because

although keeping track of the numbers can be boring, the actual numbers

themselves can be interesting.

Computers are very natural counters, using something called a “for-loop.”

Let’s count from 1 to 10 like this:⌥ ⌅
1 for x=1,10 do

2 print ( x )

3 end⌃ ⇧
The word “for” here sort of means “which” or “for which” as in “give me the

numbers which are 1 to 10” or “generate numbers for which are in the range



CHAPTER 2. WARM-UP 21

from 1 to 10.” The word “do” tells the computer what you want it to do

with each number it find in the range. The word “end” tells the computer

the end of what you want it to do with each number.

You can see how easy it is to count using a computer, and you don’t always

have to start at 1 and end at 10 either. Try some others ranges, like⌥ ⌅
1 for x=1 ,100 do

2 print ( x )

3 end⌃ ⇧
or⌥ ⌅

1 for x=57 ,113 do

2 print ( x )

3 end⌃ ⇧
or⌥ ⌅

1 for x=350000 ,350500 do

2 print ( x )

3 end⌃ ⇧
When was the last time you counted up near 350,000? For-loops don’t just

have to count by ones either. You can supply the increment by putting

another comma and number after the second number, like this:⌥ ⌅
1 for x=1 ,20 ,2 do

2 print ( x )

3 end⌃ ⇧
to count to 20 by twos (1, 3, 5, 7..). What about⌥ ⌅

1 for x=5 ,50 ,5 do

2 print ( x )

3 end⌃ ⇧
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to count from 5 to 50 by fives. What about counting down? Well when

counting down, the increment has to be negative, so you can try something

like⌥ ⌅
1 for x=10,1 ,�1 do

2 print ( x )

3 end⌃ ⇧
or⌥ ⌅

1 for x=99,1 ,�1 do

2 print (x , ” b o t t l e s o f beer on the wa l l ” )

3 print (x , ” b o t t l e s o f b e e r . . . ” )

4 print ( ”Take one down , pass i t a round . . ” )

5 print (x�1,” b o t t l e s o f beer on the wa l l . ” )

6 print ( )

7 end⌃ ⇧
Exercises

1. Write some code using a for-loop that would produce multiplication tables

for 3s, like this: 1⇥ 3 = 3, 2⇥ 3 = 6...20⇥ 3 = 60.

2. Do you think 1,000,000 is a large number for a computer to count to by

ones (starting at 1)? Try it.

2.8 More than just counting

Remember we were talking about using variables above, as a general way of

talking about math? As you’ve seen, the for-loop allows you to run a given

variable through a whole range of numbers. What’s nice about this is that

for each number the for-loop visits, you can do something (like a calculation)

with the number itself. “Do something” means you can use your for-loop

variable in a larger mathematical expression.
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How about instead of just printing x going from 1 to 10 (as we did above),

we print “two times x,” like this:⌥ ⌅
1 for x=1,20 do

2 print (2⇤x )
3 end⌃ ⇧
Or, let’s make a table of numbers from 1 to 20, that prints the number, its

square, and its cube, like this:⌥ ⌅
1 for x=1,20 do

2 print ( x )

3 print ( xˆ2)

4 print ( xˆ3)

5 end⌃ ⇧
You can also use intermediate variables, as in s for the square, and c for the

cube, like this:⌥ ⌅
1 for x=1,20 do

2 s = xˆ2

3 c = xˆ3

4 print (x , s , c )

5 end⌃ ⇧
Exercises

1. Write some code that will print all integers from 1..100, including their

squares, and square roots. Use math.sqrt() to compute the square root of a

number, so print(math.sqrt(25)) would give 5.

2. Print the area of all squares that have a height of 3.5 and all widths from

5 to 95 in steps of 5.

3. Use a for-loop to show that 45*89 is the same as adding 45 to itself 89

times.
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2.9 Comparing numbers

Computers are really good at comparing numbers. The symbols < (less

than), > (greater than), <= (less than or equal to), and >= (greater than or

equal to) are known by the computer. Two more are == (two equal signs)

to check if two numbers are equal, and ⇠= to check if two numbers are not

equal. These operations check the numbers, just as you would yourself, and

return a “true” or “false,” depending on how it all works out. (True and

false are sort of like you thinking “yes” or “no” to yourself, when comparing

two numbers.) Here are some examples.

To check if 5 is greater than 2, you’d do⌥ ⌅
1 print (5 > 2)⌃ ⇧
which would result in a “true” being displayed, meaning “yes, 5 is greater

than 2.” It of course works for all numbers, including negative numbers. Try

these:⌥ ⌅
1 print(�5 > 2)⌃ ⇧
which results in false, as in “no, -5 is not greater than 2.” What about⌥ ⌅

1 print (�10043 < �773)⌃ ⇧
which results in true. Next we try⌥ ⌅

1 print (5 >= 5)⌃ ⇧
which also results in true. For equality, we have⌥ ⌅

1 print (273 == 273)⌃ ⇧
(that’s two equal signs in there, or ==), which results in true, and⌥ ⌅

1 print (273 ˜= 273)⌃ ⇧
which results in false since 273 does not equal 273. Lastly, we have
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⌥ ⌅
1 print (273 ˜= 5)⌃ ⇧
which results in true, as in “yes, 273 is not equal to 5.”

These comparison operators also work with fractions. If you interpret the

fraction bar to be “divide,” then fractions can be put into the computer

almost as you’d write them down, with 1
2 going in as 1/2 and 2

3 going in as

2/3. Fractions can be hard to visualize when comparing them, so let’s see

how the computer can help. Try this:⌥ ⌅
1 print (1/2 > 2/3)⌃ ⇧
to see if 1

2 is greater than 2
3 . Here is another example involving 1

3 and 1
5 .⌥ ⌅

1 print (1/3 > 1/5)

2 print (1/3 < 1/5)

3 print (1/3 ˜= 1/5)⌃ ⇧
Decimals work here too. Try this to see which comparisons of �3.1 and 2.8

come out to true or false.⌥ ⌅
1 print(�3 . 1 > 2 . 8 )

2 print(�3 . 1 < 2 . 8 )

3 print(�3 . 1 ˜= 2 . 8 )⌃ ⇧
Exercises

1. Test if 2+4*3 is equal to (2+4)*3 or 2+(4*3).

2. Are all negative numbers you can think of always less than zero?

3. Is 55 is larger than 25. Test this. Is -55 larger than -25?

4. Use some simple code and the comparison operators to demonstrate

how these numbers compare.

(a) |� 84| and 84
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(b) |� 10| and |4|.

(c) |52 | and |89 |

(d) �|� 1.8| and |5.7|

(e) |2.3| and �|2.3|.

2.10 Making Decisions

When dealing with numbers, sometimes you want to make a decision for

a course of action, depending on the value of a variable. Decisions on a

computer are made in this regard, at the “true” or “false” level. For example,

if some variable x, that is holding some temperature value is greater than

95, you might want to print “it’s hot in here.” So if “x > 95” is true, you’d

want to print your message.

Decisions on a computer are made with the if-then statement, and it work

like this. You come up with a condition to test, like x > 95, and insert it

into an if-then statement like this⌥ ⌅
1 x=100

2 i f x > 95 then

3 print ( ”x i s g r e a t e r than 95” )

4 end⌃ ⇧
These read in words pretty much the way they read in the code here: “if x is

greater than 95, then....do what’s between the ’then’ and the ’end’ words.”

In this case the text “x is greater than 95” will be printed.

There’s a slight extension to the if-then statement, which is the if-then-else

statement, which works like this⌥ ⌅
1 x=100

2 i f x > 95 then

3 print ( ” i t ’ s hot in here ” )

4 else



CHAPTER 2. WARM-UP 27

5 print ( ” i t ’ s not that ho t . ” )

6 end⌃ ⇧
If the condition between the if and then is false, then the statements

between the then and else will be skipped and instead, the statements

between the else and end will be done. For the code above, “it’s hot

in here” will be printed. But suppose you changed the x=100 to x=85.

Then “it’s not that hot.” will be printed. This is because the x > 95

is now false, so the print("it’s hot in here") will be skipped and the

print("it’s not that hot.") will be done instead.

Now that you know how to mix variables and decisions, let’s do some math

with it all.

2.10.1 The absolute value

The absolute value of a number means to take a number and remove its

minus sign, if it is negative. The symbols for absolute value are | and |, so
| � 5| is 5, | � 200| = 200, and |67| = 67 (nothing changes for a positive

number).

But how is the minus sign dropped? How about by finding the negative of

the negative number. As an example, what is the “negative” of �5? It would

be �(�5) or +5. So |� 5| = �(�5) = 5, just like |� 113| = �(�113) = 113.

Can we write some code to handle this? That is, print the absolute value of

a number? What are the rules for this? How about “if a number is negative,

print the negative of it, otherwise just print the number.” Think carefully

now, how do you know if a number is negative? Try this:⌥ ⌅
1 x=??

2 i f x < 0 then

3 print(�x )

4 else

5 print ( x )

6 end⌃ ⇧
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Try filling in di↵erent test numbers into the x=?? line, both positive and

negative. Does this code always show the absolute value of a number?

2.10.2 Ordering numbers

Suppose you had two numbers in variables a and b, and you always wanted

to display them in numerical order, smallest first. How would you do this

with an if-then-else statement? How about this:⌥ ⌅
1 a=??

2 b=??

3 i f a < b then

4 print ( a , b )

5 else

6 print (b , a )

7 end⌃ ⇧
Fill in numbers for the a= and b= lines. Can you explain how this works?

Can you explain what happens if a=b? Does this code work for negative

numbers too? What about for very large numbers? Decimals?

2.10.3 Divisibility

Divisibility is about finding out if a number divides evenly into another num-

ber. Such a number is called a “divisor,” or ”factor” of the other number.

For example, 12 is divisible by 4 because 12÷ 4 = 3 with no remainder (or a

remainder of 0). You can also say that 3 is a divisor of 12. You can also say

that 3 is a “factor” of 12. But the numbers can get larger. Is 73 is a factor of

1241? Divisibility is easily handled using the remainder operator (sometimes

called the “mod” operator), which is % symbol. So,⌥ ⌅
1 print (12 % 4)⌃ ⇧
would print zero, and
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⌥ ⌅
1 print (1241 % 73)⌃ ⇧
would print zero too. This is because 12 is evenly divisible by 4 and 1241 is

evenly divisible by 73. You can make this more general, with code like this⌥ ⌅
1 a = 1241

2 b = 73

3 i f a % b == 0 then

4 print ( ”Yes , ” ,b , ” , even ly d i v i d e s in to ” , a )

5 else

6 print ( ”No” ,b , ” does not d i v id e even ly in to ” , a )

7 end⌃ ⇧
Here we once again use the general nature of variables to make the code more

useful. All you have to do is change the variables, and you can easily test

any numbers.

2.10.4 Prime and Composite Numbers

Usually after divisibility, some work is done on prime vs. composite numbers.

Prime numbers are only evenly divisible by 1 and themselves. Composite

numbers are evenly divisible by 1, themselves, and other numbers as well. So

for example, 13 is prime, because only 1 and 13 evenly divide into it, while

14 is not prime, since 1, 2, 7, and 14 all divide evenly into it.

Using a for-loop, the remainder operator (%), and an if-then statement, one

can have a prime or composite number checker up and running. We can use

a for-loop to visit all number between 1 and a given number of interest, using

% to check if a given number divides evenly into our number of interest. Code

like this⌥ ⌅
1 n = 1241

2 for i =1,n do

3 i f n % i == 0 then

4 print ( i , ” d i v i d e s even ly in to ” ,n )
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5 end

6 end⌃ ⇧
Where that’s two equal signs, or == (with no space between them) between

the n % i and the 0. Here we note that this code shows us that 1241 has

another factor lurking out there other than 1, 1241 and 73. Do you know

what it is?

2.11 Multiplication and Division

You may have heard that multiplication is repeated addition and division is

repeated subtraction. Take 5⇥3. This is 5 added to itself 3 times (5+5+5)

or 3 added to itself 5 times (3+3+3+3+3). Both are equal to 15. You can

test this here using a for-loop and some variables. Try this to “multiply” 5

and 3 to get 15.⌥ ⌅
1 p = 0

2 for i =1,3 do

3 p = p + 5

4 end

5 print (p)⌃ ⇧
Here notice the for-loop isn’t used for its driving variable (the i) directly.

It’s only used to loop 3 times, to handle the 3 in 5⇥ 3. Notice also how we

used a variable called p (as in product) to keep track of the repeated addition

of 5, as in the line p=p+5. These lines can be tricky to understand, but with

the single = sign, it always does this: 1) compute the right hand side of the

= sign. In this case p+5, then 2) send the result leftward, and save it into

the variable on the left hand side of the equal. So, the first time through the

for-loop, a 5 will be in variable p. Add the line print(p) after the p=p+5 to

see this.

This of course can all generalized with variables. Say we want to multiply a

number in a by a number in b, we could write
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⌥ ⌅
1 a=5

2 b=3

3 p = 0

4 for i =1,a do

5 p = p + b

6 end

7 print (p)⌃ ⇧
where all you have to do is set values to a and b to have them multiplied by

the repeated addition.

Division as repeated subtraction is a bit tricker. Essentially, you keep sub-

tracting the divisor from the dividend, until the dividend reaches zero. The

quotient is how many times you could do this subtraction. Here’s the code⌥ ⌅
1 a=75

2 b=25

3 q = 0

4 while a > 0 do

5 a=a�b
6 q=q+1

7 end

8 print ( q )⌃ ⇧
This uses another type of loop, called the while-loop. A while loop repeats

what’s between its do and end lines while the condition between the while

and do words is true (hence the name “while-loop”–keep doing something

while a condition is true). In this case, 25 can be subtracted from 75 a total

of 3 times before the 75 becomes zero.
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2.12 Fractions and the greatest common di-

visor

In Section 2.10.3, you saw that a divisor is a number that divides evenly into

another number. The greatest common divisor (G.C.D.) is the largest num-

ber that can divide evenly into two numbers. Get it? Greatest...common.....divisor.

So, the GCD of 10 and is 5. The GCD of 100 and 30 is 10. You can find the

GCD of any two numbers using a built in function called gcd. It works like

this, for example, to find the GCD of 100 and 30:⌥ ⌅
1 print ( gcd (100 ,30) )⌃ ⇧
Did you know that the GCD is how you reduce fractions to lowest terms?

That’s right, if you take a fraction and divide both the numerator and denom-

inator by the GCD of the numerator and denominator, you’ll have reduced

the fraction to lowest terms.

Let’s test this on the fraction 18
24 . What’s the GCD of 18 and 24? We can

find out like this⌥ ⌅
1 print ( gcd (18 ,24) )⌃ ⇧
in which case we’ll get 6. If we now divide 18 by 6 (=3) and 24 by 6 (=4),

the fraction will become 3
4 , which is 18

24 in lowest terms. Here’s some code

you can try on any fraction, by setting n to the numerator, and d to the

denominator:⌥ ⌅
1 n=18

2 d=24

3 print (n , ”/” ,d , ” in lowest terms i s : ” )

4 g=gcd (n , d)

5 n = n / g

6 d = d / g

7 print (n , ”/” ,d )⌃ ⇧
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Note we hold the GCD of n and d in a third variable called g, to make it

convenient to use in dividing it into both the numerator and denominator.

2.13 Adding fractions and the least common

multiple

A multiple of a number is what you get when you take a number and multiply

it by some integer. Take 3. Multiplying 3 by 2 gives 6. So 6 is a multiple of

3. Multiplying 3 by 445 gives 1,335, so 1,335 i a multiple of 3. Here are the

first 50 multiples of 7:⌥ ⌅
1 for n=1,50 do

2 print (7⇤n)
3 end⌃ ⇧
The “least common multiple” or LCM is the smallest number that is a mul-

tiple of two other numbers. So, for 4 and 6, the LCM would be 12. We get

12 by multiplying 4 by the integer 3, and 12 by multiplying 6 by the integer

2. Furthermore, 12 is the smallest number that is a multiple of both 4 and 6.

You can see how this happens here, where we’ll print the first 20 multiples

of both 4 and 6:⌥ ⌅
1 for n=1,20 do

2 print ( ”n i s ” ,n , ”4n=” ,4⇤n , ”6n=” ,6⇤n)
3 end⌃ ⇧
where you can see that 12 is the smallest multiple that pops up for both

numbers.

Once again, computers are good at finding LCMs. Here, you can use the

built in function lcm. So to find the LCM of 4 and 6 you would write⌥ ⌅
1 print ( lcm (4 , 6 ) )⌃ ⇧
which would result in 12.
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Did you know that the LCM is used in adding fractions, when their denom-

inators are not the same? In fact the common denominator of a fraction is

the LCM of both denominators. It works like this. Let’s add 4
5 and 11

15 . The

LCM of 5 and 15 is⌥ ⌅
1 print ( lcm (5 ,15 ) )⌃ ⇧
which would result in 15. So we want the denominator of the 4

5 to be a 15.

This means multiplying both the top and bottom by 3, as in 4·3
5·3 = 12

15 . But

see what this did? It gave us a version of 4
5 that has a denominator of 15,

just like the other fraction (the 11
15). If you don’t believe 4

5 is the same as 12
15 ,

do this⌥ ⌅
1 print ( 4/5 == 12/15)⌃ ⇧
So now the problem becomes adding 12

15 +
11
15 which is 23

15 . Here’s some code

that will add any two fractions, a

b

+ c

d

, in this case we’ll add 4
5 and 11

15 .⌥ ⌅
1 a=4

2 b=5

3 c=11

4 d=15

5 L=lcm (b , d)

6 f=L/b

7 print ( a , ”/” ,b , ”becomes” )

8 a=a⇤ f
9 b=b⇤ f

10 print ( a , ”/” ,b )

11

12 f=L/d

13 print ( c , ”/” ,d , ”becomes” )

14 c=c⇤ f
15 d=d⇤ f
16 print ( c , ”/” ,d )

17

18 print ( ”So our answer i s ” )
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19 print ( a+c , ”/” ,b )⌃ ⇧
Exercises

1. Can you extend the fraction adder to also reduce the final answer to

lowest terms?

2.14 Fractions and Decimals

Fractions may be converted into decimals quite easily, since this is how they’re

represented on a computer anyway. Try these⌥ ⌅
1 print ( 1/4 )⌃ ⇧
and⌥ ⌅

1 print ( 1/6 )⌃ ⇧
where you can see that 1/4 terminates, but 1/6 does not. You can see the

repeating pattern in 8/33 by⌥ ⌅
1 print ( 8/33 )⌃ ⇧
There is of course the famous approximation for ⇡ or 22/7⌥ ⌅

1 print ( 22/7)⌃ ⇧
But 335/113 is even better and 57843/18412 is even better still. Notice

anything about 800/81?

2.15 Exponents

A lesson above describes how repeated addition is what multiplication is.

Exponents are what you get when you repeatedly multiply the same number
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by itself. As an example, 7 ⇥ 7 is 49 and this 72, and 5 ⇥ 5 ⇥ 5 = 125 is

53 = 125. You can write some code that uses a for-loop to test this. This code

will raise the number in variable n (for “number”) to the power in variable

e (for “exponent”).⌥ ⌅
1 n=5

2 e=3

3 p = 1

4 for i =1, e do

5 p = p ⇤ n

6 end

7 print (n , ”ˆ” , e , ” i s ” ,p )⌃ ⇧
Note how the for loop is used the moderate the sequence of multiplications.

Here we start variable p (for “product”) o↵ at 1, and with each iteration of e

times through the for-loop, p gets multiplied by n. This e↵ectively multiplies

p by n, e times, which is what an exponent is.

Of course on the computer the ˆ is used for exponent, so⌥ ⌅
1 print (5ˆ3)⌃ ⇧
will print 125, and⌥ ⌅

1 n=5

2 e=3

3 p=nˆe

4 print (n , ”ˆ” , e , ” i s ” ,p )⌃ ⇧
is the same as the first listing here, but without the for-loop.
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Fundamentals of Algebra

3.1 Coe�cients

Hopefully you’re familiar with variables now, and understand what code like

this does.⌥ ⌅
1 x = 5

2 print ( xˆ2)⌃ ⇧
which would result in a 25 being displayed, since this code computes x2. It

turns out that if you put a number in front of the x

2, like this 3x2 or⌥ ⌅
1 x = 5

2 print (3⇤xˆ2)⌃ ⇧
the 3 is called the “coe�cient” of x. A coe�cient is a number that is multi-

plied by a variable. Coe�cients are helpful, because they allow you to scale

the result of something like your x2 calculation. Here’s an example.

Suppose you needed to compute the area of cloth needed to cover a square

table. If the side length of the table was in variable x, then the area would

be base⇥width or A = x · x or A = x

2. For a table whose side is 2 (feet) in

length, the code to compute this would be

37
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⌥ ⌅
1 x = 2

2 print ( xˆ2)⌃ ⇧
But suppose we needed 4 tablecloths. We’d put the coe�cient of 4 in front

of the x

2 as in 4x2, to get our result, like this⌥ ⌅
1 x = 2

2 print (4⇤xˆ2)⌃ ⇧
which would display the area of 4, 2⇥ 2 tablecloths.

But expressions aren’t always so simple, we can have x5+x

4+x

3+x

2+x+1,

which you can see is a pretty “rigid” equation. Once we plug in a value for

x, as in⌥ ⌅
1 x = 2

2 print ( xˆ5+xˆ4+xˆ3+xˆ2+x+1)⌃ ⇧
we see that all of the powers of x count equally the same. We have “one

unit” of x2, “one unit” of x4, erc.

Adding coe�cients allows us to get almost any value out of it, as in⌥ ⌅
1 x = 2

2 print (3⇤xˆ5�2⇤xˆ4+0 . 5 ⇤xˆ3�xˆ2+x/5+1)⌃ ⇧
Here you can see the x

5, x4, x3, x2, and the x, but they’re all “dressed up”

now with the coe�cients of x5 is 3, that of x4 is �2, 0.5 for x

3, �1 for x

2,

1/5 for x, and 1 for the x

0 term. You’ll get quite a di↵erent answer when

evaluated at x = 2.

In the big picture, polynomials with their coe�cients don’t really have much

use, other than one: in basic motion. If you have an object moving with

speed v (v for velocity), with acceleration a, its position at some point t later

in time is given by x = vt+ 1
2at

2. This is a polynomial not in x, but in time,

t. You’ll note that the object’s speed v is the coe�cient of t, and half of its

acceleration, 1
2a, (don’t ask–it’s just the way it is) is the coe�cient of t2.
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So if an object is moving at 10 m/s, with an acceleration of 3 m/s2, its

position (x) can be found from x = 10t + 3
2t

2, where you can see the roles

that the 10 and 3
2 play.

There is a lot of coding possibilities with this. Here’s code that will compute

the object’s position in 5 seconds:⌥ ⌅
1 t=5

2 v=10

3 a=3

4 print ( v⇤ t+0. 5 ⇤a⇤ t ˆ2)⌃ ⇧
Here is its position in 2 second intervals for 50 seconds:⌥ ⌅

1 t=5

2 v=10

3 a=3

4 for t =0 ,50 ,2 do

5 print ( v⇤ t+0. 5 ⇤a⇤ t ˆ2)
6 end⌃ ⇧
where again note the v (speed that you choose) is the coe�cient of t and half

of a (the acceleration you choose) as the coe�cient of t2.

3.2 Like terms and combining them

A coe�cient and a variable, such as the 3 and the “x” in 3x are collectively

called a “term.” There are certain rules of algebra that dictate how these

terms are combined. Consider this code:⌥ ⌅
1 x=5

2 print (3⇤x )⌃ ⇧
that prints the result of 3x when x is 5 (you’ll get 15). Suppose we extended

the code to print 3x+ 3x. What would we get?
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⌥ ⌅
1 x=5

2 print (3⇤x+3⇤x )⌃ ⇧
You’ll see a 30 in your output window. So what really happened? In this

case, 3x gave 15, and if we add a 3x plus another 3x we should get 15 + 15

or 30, which we did. But is there some algebra in here? Try this code:⌥ ⌅
1 x=5

2 print ( ”Does” ,3⇤x+3⇤x , ”=” ,6⇤x , ”?” )⌃ ⇧
where you should see “Does 30 = 30 ?” on the screen, confirming that for at

least x = 5, 3x + 3x is indeed 6x. You could test it for more numbers with

a for-loop like this:⌥ ⌅
1 for x=1,50 do

2 print ( ”Does” ,3⇤x+3⇤x , ”=” ,6⇤x , ”?” )
3 end⌃ ⇧
where it also seems to hold for all numbers from 1 to 50.

As you can see, for terms that are added, given that they have variables to

the exact same powers, 1 in this case, as x = x

1, you can combine them into

a single term by just adding their coe�cients. Try this⌥ ⌅
1 x=5

2 print ( ”Does” ,183⇤x+7⇤x , ”=” ,190⇤x , ”?” )⌃ ⇧
and⌥ ⌅

1 x=5

2 print ( ”Does” ,7⇤x�2⇤x , ”=” ,5⇤x , ”?” )⌃ ⇧
What about 3x + 5x2? Is there some way of combining these? 8x? 8xx2 =

8x3? It turns out there is not. These cannot be combined because they are

not like terms, since the 3 is attached to an x, and the 5 is attached to the

x

2.



CHAPTER 3. FUNDAMENTALS OF ALGEBRA 41

3.3 Properties of Algebra

There are few properties (or rules) of algebra that always hold when combin-

ing terms. They have the names below. We don’t think these names should

be memorized, but you should simply know that the properties they exhibit

are “rules of algebra,” and be able to recognize when they are at work in a

given algebraic expression.

We’ll need a basic code structure to test these rule, by running one form on

one side of an equal sign, and another form on the other side, to see if they’re

true (that is, if the left-side of the equal sign always equals the right). We’ll

run our test range over the first 20 integers, and use the two variable x and

y as our test variables. Feel free to choose your own range. Here’s the code

basic structure, where you’ll note that we have a for-loop inside of another

for-loop, which is a perfectly OK thing to do:⌥ ⌅
1 for x=1,20 do

2 for y=1,20 do

3 print ( ”Does” ,x , ”=” ,y , ”?” )

4 end

5 end⌃ ⇧
Note the so called “nested” for loops work like this: the first value of the

outer loop (the x-for-loop) is set, in this case starting at 1. With x = 1, the

y for-loop is run from 1 to 20, with all values of y being visited while x = 1.

When this inner for-loop is done (the y for-loop), the outer one takes over

again, advancing x to 2, at which time the inner one will run from 1 to 20

again, but now with x = 2. This repeat until the x for-loop runs its course

up to 20.

Note, this code doesn’t actually do anything. It’s just the core structure we’ll

use to test the rules of algebra below. We need a bunch of combinations of

two variables to do this, hence the two for loops above.
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3.3.1 Commutative Property of Addition

This one states that two numbers (x and y) can be added in any order and

still get the same answer, or x+ y = y + x. You can test this in code via⌥ ⌅
1 for x=1,20 do

2 for y=1,20 do

3 print ( ”Does” , x+y , ”=” , y+x , ”?” )

4 end

5 end⌃ ⇧
3.3.2 Commutative Property of Multiplication

This one states that any two numbers (x and y) can be multiplied in any

order and still get the same answer, or x · y = y · x. This can be tested via⌥ ⌅
1 for x=1,20 do

2 for y=1,20 do

3 print ( ”Does” , x⇤y”=” , y⇤x , ”?” )
4 end

5 end⌃ ⇧
3.3.3 Associative Property of Addition

This one states that when adding any three numbers, it doesn’t matter which

two you add first, as in (x+y)+z = x+(y+z). We’ll put in a third for-loop

to run values over z too, as in:⌥ ⌅
1 for x=1,20 do

2 for y=1,20 do

3 for z=1 ,20 do

4 print ( ”Does” , ( x+y)+z , ”=” , x+(y+z ) , ”?” )

5 end

6 end
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7 end⌃ ⇧

3.3.4 Associate Property of Multiplication

This one states that when multiplying three numbers, it doesn’t matter which

three you multiply first, as in (xy)z = x(yz). Here’s some code, again with

the third for-loop over z to test this:⌥ ⌅
1 for x=1,20 do

2 for y=1,20 do

3 for z=1 ,20 do

4 print ( ”Does” , ( x⇤y)⇤ z , ”=” , x⇤(y⇤z ) , ”?” )
5 end

6 end

7 end⌃ ⇧

3.3.5 Distributive Property

This one states that x(y + z) = xy + xz, where you an see on the left hand

side how the x gets “distributed” in along the y and z. Here’s the test code:⌥ ⌅
1 for x=1,20 do

2 for y=1,20 do

3 for z=1 ,20 do

4 print ( ”Does” , x⇤(y+z ) , ”=” , x⇤y+x⇤z , ”?” )
5 end

6 end

7 end⌃ ⇧
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3.3.6 Additive Identity Property

This one simply says that x+0 = 0+x = x, or if you add zero to a number,

the number doesn’t change. The code to test this is rather quick with:⌥ ⌅
1 for x=1,20 do

2 print ( ”Does” , x+0,”=” ,x , ”?” )

3 end⌃ ⇧
3.3.7 Multiplicative Identity Property

This one is similar to the “additive identify property” above, but instead of

adding 0 to a number, it refers to multiplying a number by 1, which always

gives the same number. It basically says that 1 ⇥ x = x. The code to test

this is rather quick with:⌥ ⌅
1 for x=1,20 do

2 print ( ”Does” ,1⇤x , ”=” ,x , ”?” )
3 end⌃ ⇧
3.3.8 Additive Inverse Property

This one says that if you take a number and add its negative to it, you’ll get

zero, as in x+ (�x) = 0. Here’s some test code:⌥ ⌅
1 for x=1,20 do

2 print ( ”Does” , x+(�x ) , ”=0?” )

3 end⌃ ⇧
3.3.9 Multiplicative Inverse Property

This one is similar to the “additive inverse,” but works with multiplication.

It says if you multiply a number x, by its inverse, or 1
x

, you’ll get 1, as in
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x · 1
x

= 1. Here is some test code:⌥ ⌅
1 for x=1,20 do

2 print ( ”Does” , x⇤1/x , ”=1?” )

3 end⌃ ⇧

3.3.10 Testing algebraic properties with random num-

bers

In the last section, a variety of algebraic properties were tested using for-

loops. The loops were useful in iterating over many numbers to test if the

properties held up. In many cases, you might be skeptical (or at least unim-

pressed) with the test range, since a rather small range of numbers was tested

(just from 1 to 20 in many cases). If you want to expand the test ranges,

you could change the ranges of the for-loops, but the programs would start

to take a long time to run, and would generate a lot of output. If, for exam-

ple, you tested the “distributive property” from 1 to 100, it would result in

100⇥ 100⇥ 100 or 1, 000, 000 lines to read! What if we could visit a broader

range of number combinations, but perhaps not so detailed and inclusive to

test the algebraic properties? We can, with random numbers.

As the name implies, instead of testing the cases with sequential groups of

numbers, say 20 numbers from 1 to 20, why not test them with again 20

numbers, but allow the numbers to range from 1 to 1,000,000? In this case,

we’d still have only 20 lines to inspect, but we’d see a wide range of test

numbers.

We can draw a random number using a function called math.random(low,high),

which will return a random number between low and high. Try running this

code a few times:⌥ ⌅
1 x=math.random (1 ,100)

2 print ( x )⌃ ⇧
This code will display a di↵erent (i.e. random) number between 1 and 100
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each time the code is run. Armed with this idea, here’s another test for the

“Multiplicative Identity Property” (above):⌥ ⌅
1 for i =1 ,20 do

2 x=math.random(1 ,1000000)

3 print ( ”Does” ,1⇤x , ”=” ,x , ”?” )
4 end⌃ ⇧
and another for the “multiplicative inverse property:”⌥ ⌅

1 for i =1 ,20 do

2 x = math.random(1 ,1000000)

3 print ( ”Test ing : ” ,x , ”Does” , x⇤1/x , ”=1?” )

4 end⌃ ⇧
In these listings, note the for-loop in i is only meant to run the programs 20

times. The actual x value to use in the tests is chosen using the x=math.random(1,1000000),

which chooses a random number between 1 and 1, 000, 000.

Here’s a random number test for the “distributive property:”⌥ ⌅
1 for i =1 ,20 do

2 x=math.random(1 ,1000000)

3 y=math.random(1 ,1000000)

4 z=math.random(1 ,1000000)

5 print ( ”Does” , x⇤(y+z ) , ”=” , x⇤y+x⇤z , ”?” )
6 end⌃ ⇧
In all of these cases, within 20 easy-to-inspect lines, you’ll see a richly di-

verse and interesting test-set of numbers imposed on the algebraic property.

Perhaps you’ll even be more convinced on the truth of each property now.

3.4 Simplifying Algebraic Expressions

The reason for presenting the rules in Section 3.3, is because sometimes you’ll

encounter an expression like this
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5x+ (x� 7)2 (3.1)

and be asked to “simplify it.” In this case, you’d recognize the (x � 7)2 as

ripe for the distributive property, where it’ll become 2x � 14. Putting this

back into the original expression will give:

5x+ 2x� 14. (3.2)

Now the 5x and 2x are “like terms,” so they’ll combine to give 7x, so all told

the original expression it equal to 7x�14. In the spirit of testing such things

with random numbers as outlined in Section 3.3.10, you can test that this is

true like this:⌥ ⌅
1 for i =1 ,20 do

2 x=math.random(1 ,1000000)

3 print ( ”Does” ,5⇤x+(x�7)⇤2 ,”=” ,7⇤x�14,”?” )

4 end⌃ ⇧
You should always know that a “simplified” expression is mathematically

identical in function to its “unsimplified” form, and code like this should

prove it.

In pencil and paper algebra, you will look at a multitude of randomly con-

structed expressions, like (2x�10)�(2x�10), 2(x�2)+4, or 8m�(3m�7),

and be asked to “simplify” them. It turns out though, that computers are

really good at simplifying such expressions. Here we o↵er the function called

algebra() that can do such work for you. It works like this.

Suppose you want to simplify the expression above 5x + (x � 7)2. Code to

do this would be:⌥ ⌅
1 r e s u l t=a lgebra ( ”5x+(x�7)2” )

2 print ( r e s u l t )⌃ ⇧
Here you’ll see that within the parentheses of the function algebra, is the

expression you want to work on (in double quotes). The function algebra
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will apply the algebraic rules above and return the result, in this case which

will be put into a variable called result (in computer programming, variables

can be whole words, not just single variables, like x or y). Next, we simply

print the result to the screen, which in this case will be �14 + 7x.

Here are a couple more examples. This one will simplify 8m� (3m� 7):⌥ ⌅
1 r e s u l t=a lgebra ( ”8m�(3m�7)” )

2 print ( r e s u l t )⌃ ⇧
This one will simplify z(3z � 7) + 4z2):⌥ ⌅

1 r e s u l t=a lgebra ( ”z (3 z�7)+4z ˆ2) ” )

2 print ( r e s u l t )⌃ ⇧
We encourage you then to use the algebra function to simplify your math-

ematical expressions, and use such a tool to check your work should you be

doing the simplification by hand. If needed use some randomly selected nu-

merical values for the involved variables to test that the simplified version

yields the same result as the original.

3.5 Introduction to Equations

Equations are at the heart of algebra, and indeed most of mathematics. In

form they consist of an equal sign, with something to the left of it (the “left

hand side” or LHS), and to the right of it (the “right hand side” or RHS). An

example might be x = 10, with x on the LHS and 10 on the RHS. Another

is 2x+5 = 14z� 8+x with 2x+5 on the LHS, and 14z� 8+x on the RHS.

Equations can signify one of two things:

1. In a form like x = 10, it means that one should think of “10” wherever

they see an x. Another form of this would be x = 2y+9, which means

2y + 9 can be substituted in for x, wherever x appears.

2. In a form like 2(x + 5) = 14(�2x � 1), it means there’s a delicate

balance, meaning that x can only take on the special value that will
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make 2(x + 5) numerically equal to 14(�2x � 1). (Sometimes, there

can even be more than one value of x that will make this happen.)

In traditional algebra, a lot of time will now be spent solving such equations.

This will involve a lot of use of the properties outlined in Section [?]. Let’s

do this here. Let’s solve 2(x+ 5) = 14(�2x� 1).

1. First, we’ll distribute the 2 on the LHS and the 14 on the RHS, like

this: 2x+ 10 = �28x� 14.

2. Next, we’ll add 28x to both sides like this 2x+10+28x = �28x�14+

28x. We can always add or subtract the exact same amount from both

sides of an equation. Now we can combine the 2x and 28x on the LHS

to get 30x, and the �28x and 28x on the RHS to get 0.

3. We now have 30x+ 10 = �14.

4. Now we’ll subtract 10 from both sides, like this: 30x + 10 � 10 =

�14� 10.

5. This will give us 30x = �24.

6. Now, we’ll divide both sides by 30 to get: x = �24/30.

So this is our answer. A value of x of �24
30 or �0.8 will make 2(x+5) exactly

equal to 14(�2x� 1). Let’s test it by putting �0.8 for x into both the LHS

and RHS of our equation.

• 2(x+ 5) becomes 2(�0.8 + 5), 2(4.2) or 8.4.

• 14(�2x� 1) becomes 14(�2(�0.8)� 1) or 14(1.6� 1) or 14(0.6). Now,

14⇥ 0.6 is 8.4

So, in solving the equation 2(x + 5) = 14(�2x� 1), we got that the special

value of x = �0.8 is what makes the equation true.

This “hand method” of solving equations will dominate much of algebra,

and indeed any math you take all the way into college. The trouble is that

all of this e↵ort will promptly become useless around your junior year in

college. Why? Well, any sort of mathematics you do for your senior project

in college, or any sort of analysis in graduate school (or in a job someday) will
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always result in an equation that you cannot solve by hand. “Real world”

equations are just too complicated to solve using the techniques you learned

from grade 8 to your college degree. In these years, you go through many

years of specially “cooked up equations” that can be solved by hand, for the

sake of letting you practice this skill you’ll never use again.

The solutions to equations are still important, but we think you should just

solve them on a computer, get the answer, then work with the answer, in

what it means, and how it will help you to advance some larger goal of yours.

Once again, computers are very good at solving equations.

Here we have a function called solve that takes an equation, and a variable

to solve for, and will solve the equation for you. Here’s code to solve the one

above⌥ ⌅
1 r e s u l t=so l v e ( ” 2(x+5)=14(�2x�1)” , ”x” )

2 print ( ”The r e s u l t i s : ” ) ;

3 print ( r e s u l t )⌃ ⇧
where you’ll see the answer of �4/5 displayed, which is �0.8. You can test

this with code like this:⌥ ⌅
1 x=�0. 8
2 print ( ” I s ” ,2⇤ ( x+5) ,” equal to ” ,14⇤(�2⇤x�1) ,”?” )⌃ ⇧

3.5.1 Remarks on solving equations

So we are a bit torn. We think equations should be solved on a computer,

not by hand. The emphasis of lessons on equations should be in forming

an equation that represents some problem you are working on. Once the

equation is formed, you should get a quick computer solution. Your e↵ort

should then resume on interpreting and using the solution. We think too

much time is spend on the mechanics of solving equations and more e↵ort

should be put into using the solutions to equations.
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The problem here is that if we don’t spend time solving equations, a typical

year of math would be much shorter, since so many lessons are dedicated to

the mechanics of solving equations. We’d have to think of others things to

cover in our lessons.

3.5.2 Searching for solutions to equations

Let’s take a look then at how an equation is solved by the computer. Let’s

take the equation

5x+ 2 = 3(x+ 10) (3.3)

and try to solve it using the computer. In other words, what value of x would

make 5x+ 2 equal to 3(x+ 10)?

To begin, let’s guess that the solution is somewhere between x = �100 and

x = 100. We are not basing this on anything other than a hunch. The

numbers in the equation are sort of “normal” to us: a 4, a 3 and a couple of

2s, so we can’t think of a reason why a solution would be out there in the

thousands or millions.

So let’s do this then: let’s search for a solution in the range between x = �100

and x = 100. We can use a for-loop to do this, perhaps something like

for x=-100,100 do. For each value of x that the for-loop delivers, we’ll see

if it possibly makes the LHS equal to the RHS. This is how we’ll test if it

solves the equation, because this is what an equation means: the LHS has to

be equal to the RHS. So for each x, let’s just evaluate the LHS and the RHS

and see if they’re equal. How about some code like this?⌥ ⌅
1 for x=�100,100 do

2 l h s = 5⇤x+2
3 rhs = 3⇤(x+10)

4 print ( ”x=” ,x , ” i s ” , lhs , ”=” , rhs , ”?” )

5 end⌃ ⇧
If we run this code, about 200 lines will be displayed that we need to inspect.

If we do so, low and behold we see that at x = 14, the LHS indeed equals
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and RHS! So we have found a solution to the equation. Let’s check it by

putting x = 14 into 5x+ 2 and into 3(x+ 10):

• When x = 14, 5x+ 2 is 5(14 + 2) or 5 · 16 or 72.

• When x = 14, 3(x+ 10) is 3(14 + 10) or 3 · 24 or 72.

So indeed x = 14 is the solution to the equation 5x+ 2 = 3(x+ 10). Do we

really need to inspect so many lines each time? No, because we can use an

if statement to check if the LHS equals the RHS, and only print the line

where the LHS equals the RHS like this:⌥ ⌅
1 for x=�100,100 do

2 l h s = 5⇤x+2
3 rhs = 3⇤(x+10)

4 i f l h s == rhs then

5 print ( ”x=” ,x , ” i s ” , lhs , ”=” , rhs , ”?” )

6 end

7 end⌃ ⇧
Let’s try another equation, like x(x� 7) = �12:⌥ ⌅

1 for x=�100,100 do

2 l h s = x⇤(x�7)

3 rhs = �12

4 i f l h s == rhs then

5 print ( ”x=” ,x , ” i s ” , lhs , ”=” , rhs , ”?” )

6 end

7 end⌃ ⇧
This code reveals TWO solutions, at x = 3 and x = 4. Indeed putting x = 3

into x(x� 7) gives 3(3� 7) or �12, as does x = 4, with 4(�4� 7) which is

also �12. So, there are two special values of x that makes x(x � 7) = �12

hold.

Let’s try another. How about 4(2� x) = 3(2 + x), with this code:⌥ ⌅
1 for x=�100,100 do
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2 l h s = 4⇤(2�x )

3 rhs = 3⇤(2+x)

4 i f l h s == rhs then

5 print ( ”x=” ,x , ” i s ” , lhs , ”=” , rhs , ”?” )

6 end

7 end⌃ ⇧
When this is run, the output screen come up blank. Does this mean there’s

no solution? Or maybe the solution is outside of -100 to 100? If we expand

the range of the for-loop to -1000 to 1000, still no solution appears. What

could the problem be? Let’s remove the if and go back to inspecting rows

of numbers, like this:⌥ ⌅
1 for x=�100,100 do

2 l h s = 4⇤(2�x )

3 rhs = 3⇤(2+x)

4 print ( ”x=” ,x , ” i s ” , lhs , ”=” , rhs , ”?” )

5 end⌃ ⇧
About the closest we get is for x at �1, 0 and 1. At x = �1, the LHS is

12 and the RHS is 3. At x = 0 they are 8 and 6 and at x = 1 they are 4

and 9. Everything else seems larger, which is our clue how to proceed. The

“largeness” of the LHS vs. the RHS. Why don’t we tweak our code to print

the di↵erence between the LHS and RHS. If the equation is to be solved, the

di↵erence should be 0 (meaning the LHS is equal to the RHS). Let’s use this

code:⌥ ⌅
1 for x=�100,100 do

2 l h s = 4⇤(2�x )

3 rhs = 3⇤(2+x)

4 d = lh s � rhs

5 print ( ”x=” ,x , ”d=” ,d)

6 end⌃ ⇧
In out output, remember you are looking for a d of 0. It doesn’t exist, but
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indeed the smallest values of d occur at x = �1, 0, and 1 as we noticed before.

Still no d = 0 though.

If we look carefully we see that d is 2 when x = 0 and �5 when x = 1. So

the di↵erence went from -5 (meaning the RHS was 5 greater than the LHS)

to 1 (meaning the LHS was 1 greater than the RHS) between x = 0 and 1.

So between x = 0 and 1 The RHS goes from being 5 greater than the LHS,

to 1 less than the LHS. Perhaps this means that in transitioning between

being larger the being smaller than the LHS, the RHS was equal to the LHS

somewhere in between?

Indeed this is our issue. The solutions to equation do not have to be inte-

gers. Recall our for-loop is only looking at numbers like �100,�99,�98, ...�
1, 0, 1, 2...98, 99, 100. In this case, a solution looks like it exists between x = 0

and x = 1, for our for-loop is skipping it! How can we fix this? Let’s first

make our search space smaller, perhaps from x = �5 to 5. Then, let’s have

the for-loop count in smaller increments, perhaps in an increment of 0.1.

Take a look at this code:⌥ ⌅
1 for x=�5,5,0 . 1 do

2 l h s = 4⇤(2�x )

3 rhs = 3⇤(2+x)

4 d = lh s � rhs

5 print ( ”x=” ,x , ”d=” ,d)

6 end⌃ ⇧
Inspecting the output, we see that at x = 0.3, d, or the di↵erence between

the LHS and RHS has become small, at �0.09. Let’s further reduce our

search space, to go from �2 to 2 and go in steps of 0.01, like this⌥ ⌅
1 for x=�2,2,0 . 01 do

2 l h s = 4⇤(2�x )

3 rhs = 3⇤(2+x)

4 d = lh s � rhs

5 print ( ”x=” ,x , ”d=” ,d)

6 end⌃ ⇧
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Here we find that at x = 0.29, d drops to �0.03. This means the RHS is

only 0.03 larger than the LHS. Let’s see:

• When x = 0.29, 4(2� x) is 6.84.

• When x = 0.29, 3(2 + x) is 6.87.

Not bad! We can sort of conclude that the solution to this equation is

x = 0.29. The actual answer is x = 2/7 which is 0.285714, so 0.29 is pretty

close. One could hone in on this solution by continually decreasing the search

space (to minimize the number of output lines we have to inspect), and by

decreasing the step size. If we go to 0.001, we get d = �0.002 at x = 0.285.

Can we automate this some more? Yes, by specifying the precision of the

solution we desire. Suppose we wanted a solution to within 0.01, let’s set

p = 0.01 and use this code:⌥ ⌅
1 p=0.001

2 s tep=p/10

3 for x=�2,2, s t ep do

4 l h s = 4⇤(2�x )

5 rhs = 3⇤(2+x)

6 d = math.abs ( l h s � rhs )

7 i f d < p then

8 print ( ”x=” ,x , ”d=” ,d)

9 end

10 end⌃ ⇧
Here we have a few modifications. First, we set p = 0.01 our desired precision.

Second, we figure if we want to achieve a precision of p in our solution, we

should probably search in steps of something smaller than p, here we choose

a 10th of p as our step size, as in step=p/10. The for-loop proceeds as

normal, and we have a change in how we compute d. Here we find not d as

in lhs-rhs as before but we use d=math.abs(lhs-rhs), which computes the

di↵erence between the LHS and RHS, but now gives us the absolute value of

this di↵erence. Why? In looking for our solution, to the precision we want,

we don’t care if the LHS is larger than the RHS, or the RHS is larger than
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the LHS. We just want the two to agree to within the precision we want. If

we run the above code, we’ll see that x = 0.28569999999978, with d being

0.0001000.

So we’ve developed a bit of code that seems to solve equations for us, given

that we can at least guess the range in which the solution exists (-2..2 cur-

rently), and the precision of the answer we want. We’ll note that the code

here is horribly ine�cient. A so called “exhaustive search” (that is, looking

at all numbers from -2 to 2 in steps of 0.001) is really a waste of the comput-

ers power. Why? Because there are more intelligent ways of proceeding with

such a solution search and more clues to exploit that a solution is nearby,

but we won’t worry about this here. (For those interested, we’ll defer to

“Newton’s Bisection Method” as the next step.)

The equations you’ll encounter for many years to come are easy for the

computer to deal with, and your computer is incredibly powerful. We’ll

sacrifice some computational power in our brute force search, as we enlighten

ourselves on the issues of solving equations using a computer, and not by

hand.



Chapter 4

Algebra and problem solving

In Chapter 3, forming an equation and using its solutions were thought to

be more important than the mechanics (or steps and techniques) of actually

solving the equation. Let’s do some of this “equation forming” now, and see

how we can use the computer to get quick solutions. In this chapter, we’ll

work on forming equations, as translated from short descriptions. Then, we’ll

take it all in a di↵erent direction: we’ll also translate them into code, for a

deeper understanding.

In order to get going, you have to be able to read facts about a system (in

plain language), and then translate these facts into a mathematical expres-

sion. Then, the expression should be put into your code for testing and

observations.

4.1 Warm-ups

The goal here to read the relatively plain statements, form an expression,

and get some code running that reflects on the expression.

Let’s start with “The sum of a and b.” Mathematically, this means a+ b. In

code it would be⌥ ⌅
57
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1 a=5

2 b=10

3 sum = a + b

4 print (sum)⌃ ⇧
where you can verify a + b is the sum of a and b. Adapt the code for “The

product of L and W.”

Now to move on, how about “21 decreased by C?” In math this would be

21 � C, where you can see that you start with 21, and it get decreased (or

reduced, or lowered, etc.) by what’s in variable C. Here’s some code:⌥ ⌅
1 C=3

2 r e s u l t = 21 � C

3 print ( r e s u l t )⌃ ⇧
which will print 18, which is “21 decreased by C” or “21 decreased by 3.”

This all means 21� 3 of course.

You can do more testing of this idea with a for-loop, as in:⌥ ⌅
1 for C=1,10 do

2 r e s u l t = 21�C
3 print (C, r e s u l t )

4 end⌃ ⇧
which will print two columns of numbers: a bunch of values for C in the first

column, followed by the result of 21 lowered by the C in the second column.

Do the result makes sense? Do you see a bunch of C’s in the first column,

then 21 reduced by C in the second column?

Here are some more examples:

• “Two less than x?” Here’s some code:⌥ ⌅
1 for x=1000 ,1020 do

2 two l e s s = x�2
3 print (x , two l e s s )
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4 end⌃ ⇧
Is the second column two less than the first column? See the equa-

tion? Here twoless = x -2 where we’ve used a descriptive name like

“twoless” to hold the result.

• “Three times the square of t, plus 10.”⌥ ⌅
1 for t=1 ,10 do

2 x = 3⇤ t ˆ2+10

3 print ( t , x )

4 end⌃ ⇧
When you square a number in the first column, multiply the result by

3, then add 10, do you get the number in the second column? Note our

result is in variable z.

• “32 added to 1.8 times a number.”⌥ ⌅
1 for x=20 ,35 do

2 f = 1 . 8 ⇤x + 32

3 print ( ”x=” ,x , ” f=” , f )

4 end⌃ ⇧
Take a number from the first column, and multiply it by 1.8, then add

32 to the result. Do you get the number in the corresponding second

column?

You might not think much about the purpose of these examples, but you are

using algebra. You took a simple need (the statement), translated it into

an equation, then used code to explore a wide range of results the equation

generated. Note each left-column was just a straight and sequential number,

counted to via a for-loop. These are simple to produce. The transformation

of the simple numbers into something else via an equation is at the heart of

algebra (maybe even all of mathematics).

The algebra generated a new result from these numbers: adding together two

numbers that might be dollar amount in a financial transaction, finding the
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amount of gallons in a 21 gallon tank of water, after so many gallons have

been used, finding how many people might be left in a crowded concert hall

when 2 people leave, finding the position of an object with an acceleration of

6 (3 = 1
2 ⇥ 6) with an initial position of 10, or lastly converting Celsius into

Fahrenheit.

Remember also with the algebra and the code, you can explore the relation-

ships. Try changing the range of the for-loops, or the constants, as in make

the “-2” into a “-50” or the “21-C” into a “1000-5.8*C.” What do you get,

and what does it mean?

4.2 More “real sounding” situations

Salary Calculator

Let’s use algebra and write some code that would read in a value for a person’s

salary, then print twice the salary. Let s=the salary, then 2s would be twice

the salary. Something like this would do it⌥ ⌅
1 print ( ” Sa lary amount : ” )

2 s = input ( )

3 twice = 2 ⇤ s

4 print ( twice )⌃ ⇧
Cost of stamps

If you know the cost of one stamp, how much would 5 stamps cost? 6? 10?

1, 745? Here’s some code, assuming one stamp costs c = 0.50, here’s code to

compute the cost of n stamps, which is n⇥ c.⌥ ⌅
1 c = 0 .50

2 n = 20

3 co s t = n ⇤ c

4 print ( co s t )⌃ ⇧
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The code can be extended to allow one to type in the cost of a stamp, then

how many they’d like to buy.⌥ ⌅
1 print ( ”Cost o f one stamp?” )

2 c = input ( )

3 print ( ”How many stamps?” )

4 n = input ( )

5 co s t = n ⇤ one

6 print ( co s t )⌃ ⇧
Ages of two people

Suppose Mary is 10 years older than Nancy. If you know Nancy’s age, com-

pute how old Mary is. If M is Mary’s age, and N is Nancy’s, the equation

would be M = N + 10. You can run this for many possible ages of Nancy

with a for-loop, as in:⌥ ⌅
1 for N=20 ,50 do

2 M = N + 10

3 print ( ”Mary=” ,M, ”Nancy=” ,N)

4 end⌃ ⇧
Sum of two numbers

The sum of two number is 10. If the numbers are x and y, then x+ y = 10.

There are a few ways of exploring this. Here’s a way with a for-loop, knowing

that is one number is x, the other number must be 10� x. You can test this

in your mind. Let x = 4 so 10� x = 6, and 4 + 6 = 10. Try some others.⌥ ⌅
1 for x=0,10 do

2 y = 10 � x

3 print (x , y )

4 end⌃ ⇧
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Look at the two columns. Do they always add to 10? You can also run it

with random numbers discussed in the previous chapter, examining many

more numbers⌥ ⌅
1 for i =1 ,100 do

2 x = math.random (0 , 10 )

3 y = 10 � x

4 print (x , y )

5 end⌃ ⇧
You can even throw decimals into the mix like this⌥ ⌅

1 for i =1 ,100 do

2 x = 10⇤math.random ( )

3 y = 10 � x

4 print (x , y )

5 end⌃ ⇧
The outputs looks very messy now with all of the decimals, but do you see

how the numbers in each row add to 10?

4.3 Investigating numbers

Sum of consecutive integers

How about the sum of “three consecutive integers?” If an integer is in variable

n, what would the next integer be? How about n+1? What about the next

integer after that? How about n+1 but +1 again, or n+1+1 or n+2? So,

if the three consecutive integers are a, b, and c, we’d set a = n, b = n + 1

and c = n+ 2, the sum would be s = a+ b+ c, here are some sums⌥ ⌅
1 for n=1,20 do

2 a = n

3 b = n +1

4 c = n + 2
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5 s = a+b+c

6 print ( a , ”+” ,b , ”+” , c , ”=” , s )

7 end⌃ ⇧
where you’ll see the sum of many combinations of “three consecutive inte-

gers.” You can really explore a bunch of consecutive integers with random

numbers, like this:⌥ ⌅
1 for i =1 ,20 do

2 n = math.random(1 ,10000)

3 a = n

4 b = n +1

5 c = n + 2

6 s = a+b+c

7 print ( a , ”+” ,b , ”+” , c , ”=” , s )

8 end⌃ ⇧
Sum of consecutive even integers

How about finding the sum of “three consecutive even integers?” If an integer

is in variable n, how can you alway be sure its even? What if you multiply

it by 2? Try this⌥ ⌅
1 for n=1,20 do

2 print (n ,2⇤n)
3 end⌃ ⇧
where the first column is n and the second 2n. Note that no matter if n is

even or odd, the second column (or 2n) is always even. Here’s another test

with random numbers:⌥ ⌅
1 for i =1 ,20 do

2 n = math.random (1 ,100)

3 print (n ,2⇤n)
4 end⌃ ⇧
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where again, you’ll note that the second column always shows an even num-

ber. So we know how to generate even numbers—just multiply any integer

by 2. What would the next even number be? Well after every even number,

is an odd number, right? Try this code,⌥ ⌅
1 for i =1 ,20 do

2 n = math.random (1 ,100)

3 print (n ,2⇤n ,2⇤n+1)

4 end⌃ ⇧
where you’ll note the numbers in the third column are always odd. What

about this?⌥ ⌅
1 for i =1 ,20 do

2 n = math.random (1 ,100)

3 print (n ,2⇤n ,2⇤n+1,2⇤n+2)

4 end⌃ ⇧
Here you’ll see that the second column (2n) and the fourth column (2n+ 2)

are consecutive even numbers. Three consecutive even numbers can be found

via⌥ ⌅
1 for i =1 ,20 do

2 n = math.random (1 ,100)

3 print (2⇤n ,2⇤n+2,2⇤n+4)

4 end⌃ ⇧
So, three consecutive even integers, a, b, and c would be: a = 2n, b = 2n+2

and c = 2n+4, given that we started with n as any number at all. Summing

them would work something like this⌥ ⌅
1 for n=1,20 do

2 a = 2⇤n
3 b = a + 2

4 c = a + 4

5 s = a+b+c

6 print ( a , b , c , s )
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7 end⌃ ⇧
You should try this with n as a random number too.

Sum of consecutive odd integers

How about the sum of “three consecutive odd integers?” In the last section,

we saw that even integers were found by taking any integer, n, and multi-

plying it by 2. Where are the odd integers? Well, suppose we have an even

integer, like 12. From 12, aren’t 11 and 13 odd? So if we’re at an even integer

we can either go one lower or one higher to find an odd integer.

Would you agree then that odd integers can be found via 2n� 1 or 2n+ 1?

These mean to go to an even integer (2n), then look one lower as in 2n � 1

or one higher as in 2n+ 1. These will always be odd, as you can verify here:⌥ ⌅
1 for n=1,20 do

2 a=2⇤n+1
3 print (n , a )

4 end⌃ ⇧
or here⌥ ⌅

1 for n=1,20 do

2 a=2⇤n�1
3 print (n , a )

4 end⌃ ⇧
where you’ll note that the right column is always odd. Here is the one with

random numbers⌥ ⌅
1 for i =1 ,20 do

2 n = math.random(1 ,1000)

3 a = 2⇤n+1
4 print ( a )

5 end⌃ ⇧
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where you’ll note a list of odd numbers. Now, where are the consecutive odd

numbers? Two away again. For example, if you’re at 13, the next two odd

integers are at 15 and 17. Or lower, 11 and 9. So here’s some code that will

print three consecutive odd numbers:⌥ ⌅
1 for i =1 ,20 do

2 n = math.random(1 ,1000)

3 a = 2⇤n+1
4 b = a + 2

5 c = b + 2

6 print ( a , b , c )

7 end⌃ ⇧
We’ll leave it to you know to figure out how compute and print the sum of

a, b, and c, and finish up finding the “sum of 3 consecutive odd integers.”

4.4 Changing Words into Equations

We hope you get the general idea of how statements (like “the sum odd

integers”) can lead to equations and then to code. The code you wrote was

then run and allowed you to study the output (the results) the equation

generated. This is a very powerful process, hard to do with pencil and paper

only. With the output, you could then look for patterns or trends in numbers

generated by the equations, and come to some conclusions. You investigated

the various scenarios using your code, and we hope this gave you a feeling for

the how math generated by the statements, drove your code, which brought

it all to life.

In this section, we’ll do more of the same thing, but we’ll form a specific

equation that we’ll solve to get a unique solution.
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Fifteen plus twice an unknown number is 37

Let’s call the unknown number x. Twice the unknown is 2x and adding 15

to it gives 2x + 15. The statement says this should all equal to 37, as in

2x+15 = 37. If you remember the example from the last section, that given

a number x, 2x is even, this might be saying “what even number plus 15

gives 37?” Coding can help you decipher this if needed. Here’s a bunch of

numbers from 1 to 30 in the left column, then doubled (or twice the number)

in the right column:⌥ ⌅
1 for x=1,30 do

2 print (x ,2⇤ x )
3 end⌃ ⇧
Now you can add 15 to each with a quick edit to your code, as in⌥ ⌅

1 for x=1,30 do

2 print (x ,2⇤ x+15)

3 end⌃ ⇧
You can see in the left column, that when x is 11, the right column (or

2x+15) is 37, which is what the problem is asking for (x = 11 is the answer

to this problem).

But don’t forget the power of an equation, like 2x+15 = 37. You don’t have

to search through numbers with a for-loop. You can solve it by hand (pencil

and paper), or you can let the computer solve it like this:⌥ ⌅
1 r e s u l t = so l v e ( ”2x+15=37” , ”x” )

2 print ( r e s u l t )⌃ ⇧
which confirms that x = 11 solves the equation. Manually, you can see that

2 · 11 + 15 = 22 + 15 = 37, so it all works out.
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Twice the sum of 6 and an unknown number is equal to 20

Here “the sum of 6 and an unknown number” is 6+x. Twice this is 2 ·(6+x).

Similar to the last example, let’s run some numbers in a for-loop through the

equation, as in⌥ ⌅
1 for x=1,30 do

2 print (x ,2⇤(6+x ) )

3 end⌃ ⇧
where you can see when x is 4 (right column of the output), 2(6 + x) is 20.

So indeed x = 4 is the answer to this problem. You can also find this from⌥ ⌅
1 r e s u l t = so l v e ( ”2(6+x)=20” , ”x” )

2 print ( r e s u l t )⌃ ⇧
The sum of four consecutive integers is 106

What are the integers? If n is the first integer, n + 1, n + 2, and n + 3 are

the other three consecutive ones. Here’s some code to find some sums⌥ ⌅
1 for n=0 ,100 do

2 a=n

3 b=n+1

4 c=n+2

5 d=n+3

6 s = a+b+c+d

7 print ( a , b , c , d , s )

8 end⌃ ⇧
where you can see the 106 in the 5th column after the 25, 26, 27, and 28,

which are the four consecutive integers that add to 106. The full equation is

n+ (n+ 1) + (n+ 2) + (n+ 3) = 106, which can be solved for directly with⌥ ⌅
1 r e s u l t = so l v e ( ”n+(n+1)+(n+2)+(n+3)=106” , ”n” )

2 print ( r e s u l t )⌃ ⇧
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You need 730 points in your math class to get an A

The final exam is worth 200 points, and you have 545 points going into the

final. What range of scores will give you an A in the class?

No matter what, you’ll earn between 0 and 200 points on the final, and your

final grade will be 545 + x, where x is your grade on the final exam. Here’s

some code to find your final grade, given the points possible on the final:⌥ ⌅
1 for x=0 ,200 do

2 grade = 545 + x

3 print (x , grade )

4 end⌃ ⇧
You can inspect the output and see that you’ll get at least 730 points in the

class if you score 185 points on the final. You can save yourself some work

inspecting the numbers with an if statement to check if your grade is greater

than or equal to 730 like this⌥ ⌅
1 for x=0 ,200 do

2 grade = 545 + x

3 i f grade >= 730 then

4 print ( ”You ’ l l need ” ,x , ” po in t s on the f i n a l ” )

5 end

6 end⌃ ⇧
You spent $2.36 for 22 pieces of candy

If you bought only $0.10 candy and $0.12 candy, how many of each kind did

you buy? Let’s suppose you bought x number of the $0.10 candy. Since you

bought 22 total pieces, you must also have purchased 22 � x of the $0.12

candy. So let’s try a full-out computational approach to this problem. Let’s

pick the number of $0.10 candy at random, so we’ll do x=math.random(0,22)

assuming we’ll choose between 0 and 22 pieces of candy. The the number of
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$0.12 candy will be y = 22� x. Some code to tell us the number of possible

pieces will be⌥ ⌅
1 for i =1 ,200 do

2 x = math.random (1 , 22 )

3 y = 22 � x

4 print (x , y )

5 end⌃ ⇧
Now what about the cost? Well, for the $0.10 candy, we’ll spend 0.1x and for

the $0.12 candy, we’ll spend 0.12y. This makes the total of t = 0.1x+0.12y.

Here’s some code that will compute and show us the total cost too:⌥ ⌅
1 for i =1 ,200 do

2 x = math.random (1 , 22 )

3 y = 22 � x

4 t = 0 . 1 ⇤x + 0 .12 ⇤y
5 print (x , y , t )

6 end⌃ ⇧
If you scan your columns, you’ll likely see a total cost of $2.36. We say

likely because the computer is choosing at random—maybe it didn’t choose

the right combination. If not, run it again, or make it choose more samples

(increase the 200 in the for-loop).

Can we use an if statement to check for our answer? Sort of. Try this

(where the T stands for “total.”⌥ ⌅
1 for i =1 ,200 do

2 x = math.random (1 , 22 )

3 y = 22 � x

4 T = 0 .1 ⇤x + 0 .12 ⇤y
5 i f T== 2 .36 then

6 print (x , y ,T)

7 end

8 end⌃ ⇧
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The output will be blank. Why? Does the computer continually not find the

right combination? No, in this case, it has to do with how the computer han-

dles decimals. The amount computed in T won’t always match 2.36 exactly.

It might come out to be 2.359 or 2.361, or something really close to 2.36, but

with ==, it has to be exact, and the close numbers like 2.359 or 2.361 aren’t

exactly 2.36, so the if statement never triggers.

So what do we do? We look at how close T comes to 2.36, which means we

look at the di↵erence between T and 2.36, or T-2.36. But since this can be

positive or negative, depending on if T is larger or smaller than 2.36, let’s

look at |T � 2.36| instead. If this “closeness” is less than some small number

(like 0.001), then we’ll assume we found our answer. Try this, and know that

math.abs() is how you take absolute values⌥ ⌅
1 for i =1 ,200 do

2 x = math.random (1 , 22 )

3 y = 22 � x

4 T = 0 .1 ⇤x + 0 .12 ⇤y
5 i f math.abs (T� 2 .36 ) < 0 .001 then

6 print (x , y ,T)

7 end

8 end⌃ ⇧
where you’ll see the computer indeed finds our answer every time.

If you don’t like the random number approach, a simple for-loop visiting all

possible counts for x and y would work too, like this⌥ ⌅
1 for x=0,22 do

2 y = 22 � x

3 T = 0 .1 ⇤x + 0 .12 ⇤y
4 i f math.abs (T� 2 .36 ) < 0 .001 then

5 print (x , y ,T)

6 end

7 end⌃ ⇧
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You have $4.80 in nickels, dimes and quarters

If you have 3 more dimes than quarters, and 3 times as many nickels as quar-

ters, how many of each coin do you have? Let’s call d=times, q=quarters,

and n=nickels. Translating the text:

• “3 more dimes than quarters” would be d = q + 3.

• “3 times as many nickels as quarters” would be n = 3q.

• “$4.80 in nickels, dimes, and quarters” would be how you sum the

amount of money you have. To find this, you multiply the dollar value

of each coin by the number of coins you have. For examples, if q = 3,

you have 3 · $.25 = $0.75 in quarters. So the dollar amount of nickels

would be 0.05n. That of dimes would be 0.10d and that for quarters,

0.25q. The $4.80 comes from adding all of this to get 0.05n + 0.10d +

0.25q = 4.80.

So how do we find how many of each coin we have? Search for it with a

for-loop. Notice that the number of dimes and nickels are all based around

the number of quarters, so if we search based on q, we should be able to find

our answer. We’ll sort of guess with common sense how many coins would

be in our pocket. We’ll say up to 10 quarters at most.⌥ ⌅
1 for q=0,10 do

2 n=3⇤q
3 d = q + 3

4 T = 0 .05 ⇤n + 0 .10 ⇤d + 0 .25 ⇤q
5 print (T)

6 i f math.abs (T�4.80 ) < 0 .001 then

7 print ( ”Answer : q=” ,q , ”n=” ,n , ”d=” ,d)

8 end

9 end⌃ ⇧
Would random numbers work here? Let’s try looking through 30 combina-

tions of quarter numbers from 0 to 20:⌥ ⌅
1 for i =1 ,30 do
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2 q = math.random (0 , 20 )

3 n=3⇤q
4 d = q + 3

5 T = 0 .05 ⇤n + 0 .10 ⇤d + 0 .25 ⇤q
6 print (T)

7 i f math.abs (T�4.80 ) < 0 .01 then

8 print ( ”Answer : q=” ,q , ”n=” ,n , ”d=” ,d)

9 end

10 end⌃ ⇧
where you’ll see your answer will come up here as well.

You can try something too, relaxing the requirement that d = q + 3 and

n = 3q, to e↵ectively look for any combination of nickels, dimes, and quarters,

that will add up to $4.80, like this⌥ ⌅
1 for i =1 ,100 do

2 q = math.random (0 , 20 )

3 n = math.random (0 , 20 )

4 d = math.random (0 , 20 )

5 T = 0 .05 ⇤n + 0 .10 ⇤d + 0 .25 ⇤q
6 print (T)

7 i f math.abs (T�4.80 ) < 0 .01 then

8 print ( ”Answer : q=” ,q , ”n=” ,n , ”d=” ,d)

9 end

10 end⌃ ⇧
Here you can see that indeed there are di↵erent combinations of nickels,

dimes, and quarters, that will yield $4.80. We find it amusing that if you

choose an amount like $4.40, you’ll never get an answer, since this amount

is impossible to reach, with just nickels, dimes, and quarters.
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An item cost $175 and is discounted by 15%

What is the cost of item? Note that a percentage is never a number to be

used in a calculation. Being on a scale from 0 to 100 just makes it easier

for humans to reconcile in a conversation. You always have to divide a

percentage by 100 first. To test this, you probably know that 50% of 1000 is

500, right? You wouldn’t get this by multiplying 50% ⇥ 1000, which equals

50, 000. No, you’d first divide 50 by 100 to get 0.5, and 0.5 · 1000 = 500,

which is what we thought.

So, to start, find 15% of $175, which is 0.15 · 175 = 26.25. So the item will

be sold for $175� $26.25 = $148.75. Code to handle this would look like⌥ ⌅
1 c = 175

2 p = 15

3 o f f = p/100 ⇤ c

4 s e l l = c � o f f

5 print ( ” I t ’ l l s e l l f o r ” , s e l l )⌃ ⇧
You can investigate all kinds of discount percentages with a for-loop like this:⌥ ⌅

1 c = 175

2 for p=0 ,100 ,10 do

3 print ( ”Percent o f f : ” ,p )

4 o f f = p/100 ⇤ c

5 s e l l = c � o f f

6 print ( ” I t ’ l l s e l l f o r ” , s e l l )

7 end⌃ ⇧
where note the p/100 term to make the percent into a number you can

calculate with. The “killer app” here is to make it all automated like this:⌥ ⌅
1 print ( ” Item cos t : ” )

2 c = input ( )

3 for p=0 ,100 ,10 do

4 print ( ”Percent o f f : ” ,p )

5 o f f = p/100 ⇤ c
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6 s e l l = c � o f f

7 print ( ” I t ’ l l s e l l f o r ” , s e l l )

8 end⌃ ⇧
where you’ll see how nice a 100% discount is!

Marking up an item by some percentage can be handled by adding the per-

centage of the original cost, instead of subtracting it, as in⌥ ⌅
1 c = 175

2 p = 15

3 up = p/100 ⇤ c

4 s e l l = c + up

5 print ( ” I t ’ l l s e l l f o r ” , s e l l )⌃ ⇧
Investigating a range of markups is possible too, like this⌥ ⌅

1 print ( ” Item cos t : ” )

2 c = input ( )

3 for p=0 ,100 ,10 do

4 print ( ”Markup : ” ,p )

5 up = p/100 ⇤ c

6 s e l l = c + up

7 print ( ” I t ’ l l s e l l f o r ” , s e l l )

8 end⌃ ⇧

4.5 Where to go from here?

Here, like most algebra books, one can only present so many worked examples

of word problems. Study guides at your local bookstore are filled with prob-

lems like those above. Indeed, translating words into equations is hard, and

is at core of most STEM classes, through college and into graduate school.

You shouldn’t expect to “get how to do them” right away. And of course,
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we are obliged now to say “practice more of these problems, and you’ll get

better at them.”

This issue of translating text based scenarios into equations is likely the most

important skill you will develop as you learn algebra. But is also the most

di�cult, and also a skill that we think is less and less useful in the 21st

century. Translating them into computer solutions might not be as hard,

and is more useful in the long run.

In terms of paper-and-pencil algebra, let’s reconsider the coin problem above.

It would be solved like this:

• Let q=quarters, n=nickels, d=dimes

• Reading the text and translating, we get n = 3q (this is hard step)

• Reading the text and translating, we get d = q + 3 (this is hard step)

• Reading the text and translating, we get 4.80 = 0.05n+ 0.10d+ 0.25q

(this is hard step)

• Substituting in for n and d we get 4.80 = 0.05(3q) + 0.1(q+3)+ 0.25q.

This is one equation that can be solved for q to get q = 9. (This is a

big aspect of traditional algebra we think should be transitioned into

code, not pencil and paper work.)

• Now that we know q (the core variable), we can get n = 3q or 27, and

d = q + 3 or 12.

• You can also get the number of coins without doing the substitution,

by just putting the equations into the computer and telling it to solve

them, like this:⌥ ⌅
1 r e s u l t=so l v e ( ”n=3⇤q , d=q+3,0 .05 ⇤n+0.1 ⇤d+0.25 ⇤q=4.80 ” , ”n , q , d” )

2 print ( ”The r e s u l t i s : ” ) ;

3 print ( r e s u l t )⌃ ⇧
We prefer this approach, if now promise to study the solution a bit

more and be sure you know what it all means.

Suppose you couldn’t figure out the text-to-equation translation (n = 3q

and d = q + 3) steps. Armed with code and a little creativity, you could
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still make some progress on solving this problem. How? Using the random

number approach to this problem:⌥ ⌅
1 for i =1 ,100 do

2 q = math.random (0 , 20 )

3 n = math.random (0 , 20 )

4 d = math.random (0 , 20 )

5 T = 0 .05 ⇤n + 0 .10 ⇤d + 0 .25 ⇤q
6 print (T)

7 i f math.abs (T�4.80 ) < 0 .01 then

8 print ( ”Answer : q=” ,q , ”n=” ,n , ”d=” ,d)

9 end

10 end⌃ ⇧
This code will find combinations of quarters, nickels, and dimes and total

in value of $4.80. You could then sift through these combinations, until you

find one that also has “three times as many nickels as quarters,” and “3 more

dimes than quarters.” Then you’d have your solution. You could also do a

more exhaustive approach by iterating for-loops through many combinations

of coins like this⌥ ⌅
1 for q=0,20 do

2 for n=0,20 do

3 for d=0,20 do

4 T = 0 .05 ⇤n + 0 .10 ⇤d + 0 .25 ⇤q
5 print (T)

6 i f math.abs (T�4.80 ) < 0 .01 then

7 print ( ”Answer : q=” ,q , ”n=” ,n , ”d=” ,d)

8 end

9 end

10 end

11 end⌃ ⇧
Since computers are so powerful and prevalent, such attacks on solving prob-

lems are a “computational way” of thinking. After school, you won’t be able
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to form equations anyway (the problems you’ll work on are too complicated).

Like what? How about these: Write some equations that model the stock

market. Write some equations that you can solve for where a hurricane will

hit. Form and solve an equation that will land a rocket on a barge in the

middle of the ocean. Find x where x is the number of homeless you can get

o↵ of the streets for every y percent rise in a local tax.

So you might look at some more word problems in your algebra book. Think-

ing computationally, you might follow these steps:

1. Define variables needed in the problem.

2. Form some equations based on the information in the problem.

3. Code up a for-loop that iterates over core variable in the problem (for

starting algebra, there will always be only one).

4. Use print to display the core variable, and any other variables that it

might drive.

5. Carefully inspect the output and see if it makes sense, or if you see a

potential solution lurking in the columns of numbers.

6. See how you might insert a if statement into the mix to stop the code,

or highlight a solution.

So, see if you can find solutions to word problems computationally. Try to

minimize your grief with equations and solving and maximize your trial and

error on the computer. Use for-loops, use variables, use if-statements, dump

numbers to the screen and sift through them. If you solve any this way, let

us know. We’ll happily put your work into a future edition of this book.

Welcome to computation with a computer!
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Polynomials

A polynomial is a mixture of constants (coe�cients) multiplied by various

powers of some variable, like x. Examples are 4x2 + 3x, 7y + 7y2, or x

3 +

3x2 + 3x+ 1. Algebra is loaded with lessons on learning how to manipulate

polynomials, which are all ripe for a strong connection with programming,

since computers are very good at working with polynomials.

In the years to come, the only real use of polynomials will be in physics, when

you deal with accelerated motion, in which case x = x0 + v0t +
1
2at

2 will be

a key polynomial. This tells you the position of an object (x), give that it

started at some point x0, has some speed (v), and some acceleration (a), at

some time t in the future. There almost no other real use of polynomials,

other than using them as exercises for other lessons in mathematical topics.

Polynomials occasionally come up in curve fitting of data, but mostly the

higher-order fit parameters have no real-world meaning.

5.1 Putting polynomials into the computer

With polynomials, there are a lot of numbers and exponents. On the com-

puter, the exponent is represented as the caret symbol (ˆ), so x

2 would be

put in as x^2, and x

3 + 3x2 + 3x+ 1 would be put in as x^3+3x^2+3x+1.

79
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Note also it is easy to display polynomials on the computer in a very ugly

manner. Doing x^3+3x^2+3x+1, for example, is ugly. Codebymath.com has a

mathematical typesetter built right in. So if you do print("x^2+5x") you’ll

get the ugly polynomials, where doing print_math("x^2+5x") will result in

a proper looking polynomial. Try this⌥ ⌅
1 print ( ”xˆ2+5x” )

2 print math ( ”xˆ2+5x” )⌃ ⇧
where you’ll note that the lower polynomial in the output screen looks much

better.

5.2 Adding and subtracting polynomials

For doing calculations with polynomials, use a function called algebra(). It

knows how to do many operations with polynomials.

Suppose you needed to subtract (3x2 + 5x � 4) from (2x + 5). You could

write some code like this (where r stands for “result”).⌥ ⌅
1 r = a lgebra ( ” (3xˆ2+5x�4)�(2x+5)” )

2 print math ( r )⌃ ⇧
You could also try (5x3

y

2�3x2
y

2+4xy3)+(4x2
y

2�2xy2)+(�7x3
y

2+6xy2�
3xy3). This could be done with:⌥ ⌅

1 r = a lgebra ( ” (5xˆ3yˆ2�3xˆ2yˆ2+4xyˆ3)+(4xˆ2yˆ2�2xyˆ2)+(�7xˆ3yˆ2+6xyˆ2�3xyˆ3) ” )

2 print math ( r )⌃ ⇧
Here’s another example. Your instructions are to “simplify:” (2m2 � m +

4) + (3m2 +m� 5). As code this would be done with⌥ ⌅
1 r = a lgebra ( ” (2mˆ2�m+4)+(3mˆ2+m�5)” )

2 print math ( r )⌃ ⇧
We are sorry we don’t have any more instructions for you here other than:
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1. Learn how to put polynomials into a computer, with the coe�cients

and exponents, and

2. learn how to typeset them in some “non-ugly” manner.

Try coding up some examples from your algebra book, even if just from

worked examples.. It’s fun to see the computer spit out the answer that

matches the one in your book.

5.2.1 Testing the results

With the computer taking a lot of the work o↵ of you by adding polynomials

for you, we can investigate the results a bit (to verify them). In the case of

doing (3x2 + 5x+ 4)� (2x+ 5), we got �1 + 3x+ 3x2. Using a for-loop, we

can test if these are indeed equal, like this:⌥ ⌅
1 for x = 0 ,20 do

2 p1 = (3⇤xˆ2+5⇤x+4)�(2⇤x+5)

3 p2 = �1 + 3⇤x + 3⇤xˆ2
4 d = p1�p2
5 print ( p1 , p2 , d )

6 end⌃ ⇧
where we evaluate each polynomial at a given x and place the results into

p1 and p2. (Here the “p” stands for “polynomial,” and yes, it’s OK to have

numbers in your variable names, just as long as the variable names don’t

start with a number.) Then we subtract p1 from p2. If they are the same,

we should always get zero for their di↵erence. You can also try dividing p1

by p2. Being careful that p2 is not zero, what should the quotient always be

if the two polynomials are equal?
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5.3 Multiplying Polynomials

Multiplying polynomials on the computer is similar to that with addition

and subtraction—you just put the problem into the computer. Typically

you’ll start with “monomials” or multiplying single groups of constants and

variables, like (3x3
y)(2xy)(�5xy2). These are exercises in multiplying all

constants, then combining similar variables by adding their exponents, as

can be see here:⌥ ⌅
1 r = a lgebra ( ” (3xˆ3y ) (2 xy)(�5xyˆ2) ” )

2 print math ( r )⌃ ⇧
You can also make use of the distributive property in problems like this one:

(3x3
y)(2xy�5xy2) which is 3x3

y ·2xy�3x3
y ·5xy2, which can be found from:⌥ ⌅

1 r = a lgebra ( ” (3xˆ3y ) (2 xy�5xyˆ2) ” )
2 print math ( r )⌃ ⇧

5.3.1 A project on polynomial multiplication

The classic multiplication problem is that which describes the F.O.I.L. method,

in doing a problem like: (x+ 1)(x� 2), where you multiply the First terms

(x · x), then to this add the product of the Outer terms (1 · �2). To these,

add the product of the inner terms or (1 · x). Lastly, add the Last terms or

1 ·�2. Collecting all of this, we’ll get x2 � 2 + x� 2, or x2 � x� 2, which is

what the computer would give you from this:⌥ ⌅
1 r = a lgebra ( ” (x+1)(x�2)” )

2 print math ( r )⌃ ⇧
Your ability to code can lead to a fun project in how to multiply polynomials:

let’s write our own multiplication tool, that even explains the steps to us.

What you might have realized, is that to multiply polynomials, you multiply
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all terms in the first polynomial by all of the terms in the second polyno-

mial, then add all of the resulting products together. You then simplify the

addition, and you’re done. Let’s try to do this here.

First, we’ll represent each polynomial as an array. An array in programming

is just a comma separated list of values. Since a polynomial looks just like a

list (of terms added together), this is a good fit. So if our first polynomial is

x+ 1, we’ll represent it like this: p1 = {"x",1}. We’ll call the first polyno-

mial p1. As for the second polynomial, we’ll call is p2 as in p2 = {"x",-2}.

You need the double quotes around the “x” because you literally mean “x”

and don’t want the computer trying to calculate anything for it at this point.

Now, let’s use a for-loop to inspect our arrays, like this:⌥ ⌅
1 p1 = {”x” ,1}
2 for i =1,#p1 do

3 print ( p1 [ i ] )

4 end⌃ ⇧
Here the # in front of the p1 finds the number of elements in the array (p1

here, which in this case has two elements), so we can instruct the for-loop to

count from 1..2 (or count over each element in the array).

As for the other polynomial, we’d have:⌥ ⌅
1 p2 = {”x” ,�2}
2 for i =1,#p2 do

3 print ( p2 [ i ] )

4 end⌃ ⇧
Each of these programs should show all of the terms of each polynomial. We

can put this together into a single program like this:⌥ ⌅
1 p1 = {”x” ,1}
2 p2 = {”x” ,�2}
3

4 for i =1,#p1 do

5 for j=1,#p2 do
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6 print ( ”mult ip ly ” , p1 [ i ] , ”by” , p2 [ j ] )

7 end

8 end⌃ ⇧
We know multiplying polynomials involves multiplying each term in one, by

each term in the other, then adding all of the products together. To visit

all elements in each polynomial once, we have a for-loop inside of another

for-loop. These are called “nested” for-loops, and they work like this.

Suppose is i = 1 from the outer for-loop. The inner one starts at j = 1,

then j = 2, then it stops (because #p2 is 2). The code then goes back to

the outer for-loop, which causes i to go from 1 to 2. This once again starts

up the j for-loop to visit j = 1 and j = 2 again. So you see, we had i = 1

and j = 1 and 2. Then we had i = 2 and j = 1 and 2. These are the

needed combinations to visit each term in each array (or polynomial) once.

Adding the print statement in the inner part of the inner loops gives us the

directions we need to multiply to two polynomials.

We can take it a step further. If we construct the actual product to be

taken, we can feed this to the algebra function so it can actually carry out

the work. Consider this code:⌥ ⌅
1 p1 = {”x” ,1}
2 p2 = {”x” ,�2}
3

4 for i =1,#p1 do

5 for j=1,#p2 do

6 prod = p1 [ i ] . . ”⇤” . . p2 [ j ]

7 print ( prod )

8 end

9 end⌃ ⇧
Here we construct a string called prod which is the concatenation of the

term from p1 a “*” (for multiply) and the term from p2. Here “..” means

concatenate, which itself means to tack letters on to the end of a string (so

“he” .. “llo” would result in “hello”). You can see the products needed
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printed one by one. To actually carry out the products, we can feed prod to

the algebra() function, like this:⌥ ⌅
1 p1 = {”x” ,1}
2 p2 = {”x” ,�2}
3

4 for i =1,#p1 do

5 for j=1,#p2 do

6 prod = p1 [ i ] . . ”⇤” . . p2 [ j ]

7 r = a lgebra ( prod )

8 print math ( r )

9 print ( )

10 end

11 end⌃ ⇧
This code will print out each term you need to add together, each on a line

by itself.

We can take it to its final form. Let’s collect all terms (with + signs in

between), into a single string called final, like this⌥ ⌅
1 p1 = {”x” ,1}
2 p2 = {”x” ,�2}
3

4 f i n a l = ””

5 for i =1,#p1 do

6 for j=1,#p2 do

7 f i n a l = f i n a l . . ” + ”

8 prod = p1 [ i ] . . ”⇤” . . p2 [ j ]

9 r = a lgebra ( prod )

10 f i n a l = f i n a l . . r

11 end

12 end

13

14 print ( f i n a l )

15 r = a lgebra ( f i n a l )
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16 print math ( r )⌃ ⇧
Here we can see the final collection of terms, which we can even run through

the algebra() function for simplification.

So we’ve done it. We’ve written a polynomial multiplier, that shows us step

by step, how to multiply two polynomials.

5.3.2 Use your code now

The neat part of coding is that you can actually use it now for other jobs. In

this case, you can put in any two polynomials, by just changing the arrays

for p1 and p2 and letting the code crunch through the multiplication process.

Here’s the same code above, that will multiply x

2 + x+ 5 by x

4 + 2x+ 15:⌥ ⌅
1 p1 = {”xˆ2” , ”x” ,5}
2 p2 = {”xˆ4” , ”2⇤x” ,15}
3

4 f i n a l = ””

5 for i =1,#p1 do

6 for j=1,#p2 do

7 f i n a l = f i n a l . . ” + ”

8 prod = p1 [ i ] . . ”⇤” . . p2 [ j ]

9 r = a lgebra ( prod )

10 f i n a l = f i n a l . . r

11 end

12 end

13

14 print ( f i n a l )

15 r = a lgebra ( f i n a l )

16 print math ( r )⌃ ⇧
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5.4 Special Products

We feel obligated to tell you about some “special products,” although they’re

really nothing di↵erent than what you’ve been doing above. It’s just more

multiplication of polynomials.

The first one is what you get when you multiply (a+b)(a�b), in other words

two binomials that have the same term in their first position (the “a” in this

case), and the same term in the second position (the “b” in this case), and

one of the b’s is negative. If you run this⌥ ⌅
1 r=a lgebra ( ” ( a+b ) ( a�b) ” )
2 print math ( r )⌃ ⇧
you’ll see that you get a2�b

2. Run the code with (x+1)(x�1), (z+17)(z�17),

(3y + 14)(3y � 14) to see that you always get the first term squared minus

the second term squared.

The second special product is what you get when you multiply (a+ b)(a+ b),

in other words two binomials that have the same term in their first position

(the “a” in this case), and the same term in the second position (the “b” in

this case), and both are positive. If you run this⌥ ⌅
1 r=a lgebra ( ” ( a+b ) ( a+b) ” )

2 print math ( r )⌃ ⇧
you’ll see that you get the a2 and b

2 like the above, but will also get the “cross

term,” 2ab. Try this with (x+1)(x+1), (z+5)(z+5), and (2y+8)(2y+8).

You’ll always get three terms in your answer: the first term squared, the

second term squared, and that cross term that is twice the first term ⇥ the

second term.

Again, in the computer mode, there is nothing special going on here. These

are all just polynomials being multiplied, that give a product as a result.
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5.5 Exponents

As you likely know, raising a polynomial to an exponent is the same as mul-

tiplying it by itself the number of times in the exponent. So doing something

like (x+ 1)2 is the same as the “special product” (x+ 1)(x+ 1) from above.

As for computation we like seeing how large polynomials grow when raising

them to a large power, which is something you just wouldn’t want to do by

hand. Trying something like (x+ 5)20 could be done with⌥ ⌅
1 r=a lgebra ( ” (x+5)ˆ20” )

2 print ( r )⌃ ⇧
where at this time you have to use print as print_math has some trouble

displaying long results (depending on your browser—we’re working on a fix

for it). For fun, what’s the coe�cient of x34 in (x� 1)50?
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Factoring

6.1 Introduction

Factoring is a pivotal concept for a book (like this one) whose theme is

about getting away from pencil and paper algebra. This is because factoring

consumes a very large amount of time in a typical algebra class, and fuels

many subsequent lessons.

It turns out that the job of factoring doesn’t even have a well prescribed

plan; there are no rules or strict methodology for successful factoring. So

factoring really pushes the “Einstein mode” of work, as we discussed in the

preface to this book. You just have to “see” how to factor somehow.

What is factoring? In concept, factoring involves making a simpler and

equivalent version of a given number or expression. So it’s a lot of work that

results in producing something that is mathematically identical to what one

started with in the first place.

With numbers, factoring is a plan (or lack thereof) to find numbers that when

multiplied, give the original number itself. So if we “factor” 10, we’d write

1 · 2 · 5, or declare that 1, 2 and 5 are the factors of 10 (since 1⇥ 2⇥ 5 = 10).

Factoring 30 would give 1 · 2 · 3 · 5 (since 1⇥ 2⇥ 3⇥ 5 = 30). Unfortunately,

in today’s algebra, you also have to be careful when you declare factors, that

89
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each is prime, meaning each factor cannot itself have factors, or you’ll “get

it wrong.” So you’d be “wrong” to write that 1, 3, and 10 are factors of 30

even though you are right, but wrong according to your teacher, since your

10 can be written as 2 · 5.

Lastly, we’ll say that there’s no real use of factoring in classroom mathemat-

ics, other than to simplify mathematical expressions, and make boxed in,

final answers as simple as possible. Factoring is used to solve equations, but

there are some “we now have computers” issues with this, as you’ll see in the

next chapter.

As you saw in a past chapter, reducing fractions to lowest terms makes use

of factoring. So if you had 10/30, you could write each number in terms of

its factors or 1·2·5
1·2·3·5 . Canceling all of the common factors gives 1

3 . Mostly in

math, you’d be wrong to ever write 10/30 as a final answer anywhere since

it can be reduced to 1/3, even though 10/30 is equal to 1/3. See how silly

this is?

The issue with the computer is that the following two print statements print

the same thing:⌥ ⌅
1 print (10/30)

2 print (1/3)⌃ ⇧
because 10/30 = 1/3, so the computer isn’t bothered by di↵erent forms of

the same thing. So the computer seems to have it right!

6.2 With polynomials

How does this work with polynomials? Well, take 15x3 + 9x. It turns out if

you stare at this for a while (and this is the basic plan for factoring, believe

it or not), you may notice that you can divide an x out of both terms, like

this: x(15x2 + 9). In other words, since both 15x2 and 9x have at least

one x in them, you can divide (or factor) an x out of both. So, 15x3 + 9x

can be written as x · (5x2 + 9). Now, if you keep staring at it, you might
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notice that 15 and 9 both have a 3 “in them” as factors. In other words,

15 and 9 both have 3 as one of their factors, so again, you can divide out

a 3 as in 3x(5x2 + 3), which means 3x · (5x2 + 3). So, just as 2 ⇥ 3 = 6,

3x ⇥ (5x2 + 3) = 15x3 + 9x. Thus you can conclude that 3x and 5x2 + 3

are factors of 15x3 + 9x. You can do the same thing for 12x + 8, which is

4(3x + 2) and 2a2b + 4ab2 which is 2ab(a + 2b). It goes on. You might get

some dog like �14x8
y

9 + 42x5
y

4 � 28xy3, which is �14xy3(x7
y

6 � 3x4
y + 2),

where this final, factored form doesn’t even look much simpler!

You can do some tests on these, which shows that an expression and its

factored version are the same thing. Try this on the 12x + 8 and 4(3x + 2)

example,⌥ ⌅
1 for x=0 ,10 ,0 . 1 do

2 print (12⇤x+8 ,4⇤(3⇤x+2))

3 end⌃ ⇧
where you’ll get two columns of identical numbers, showing that indeed that

12x+ 8 is 4(3x+ 2).

6.3 Computers and Factoring

Once again, computers are very good at factoring polynomials. We have

a function called factor() that can handle just about any polynomial you

might encounter in your algebra class. You can try these codes on the exam-

ples discussed above.

• Factor: 15x3 + 9x⌥ ⌅
1 r = f a c t o r ( ”15xˆ3+9x” )

2 print math ( r )⌃ ⇧
• Factor: 2a2b+ 4ab2⌥ ⌅
1 r = f a c t o r ( ”2aˆ2b+4abˆ2” )

2 print math ( r )⌃ ⇧
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• Factor: �14x8
y

9 + 42x5
y

4 � 28xy3⌥ ⌅
1 r = f a c t o r ( ”14xˆ8yˆ9+42xˆ5yˆ4�28xyˆ3” )

2 print math ( r )⌃ ⇧
We find the speed at which the computer can spit out factors rather

amusing. We can write a bit of code to make a quick “factoring app”

for ourselves like this:⌥ ⌅
1 s = input ( )

2 r = f a c t o r ( s )

3 print ( s , ” f a c t o r ed i s ” )

4 print math ( r )⌃ ⇧
First o↵, sometimes the computer puts out answers that don’t look

right to us. Terms may be ordered or grouped di↵erently than we’d

do it by hand, but this is OK. Be flexible with this incredibly powerful

mathematics tool (the computer).

Next, with this fast factoring, let’s look at a few results. Remember in

the last chapter we discussed some “special forms,” like (a + b)2 and

(a� b)2—the first one has the cross term, and the second one doesn’t.

Run the factoring app above on a

2�b

2, and you’ll see the two binomials

this comes from (one with the +b and the other with the �b). Next,

try it with a

2 + b

2, where you’ll see that the computer just spits out

a

2+b

2, because this cannot be factored. But, if you put in a

2+2ab+b

2,

you’ll see that it can be factored.

6.4 Factoring experiments on the computer

The last section was short as usual. Once you figure out how the computer

can compute math results for you, in this case factoring, you can just use

the computer to obtain such results, and get on with things. There’s really

not much else to say. That said, since we are using the computer, let’s do

two experiments with factoring, that we hope will give you some fresh and
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valuable insight into what factoring actually means. With the computer and

some simple code, let’s first see if we can write our own simple “factoring

engine.” Next, let’s explore about the only real use of factoring that we can

think of: information security.

6.4.1 A factoring engine

Suppose we run the following code,⌥ ⌅
1 r = f a c t o r ( ”xˆ2 + 7⇤x + 12” )

2 print math ( r )⌃ ⇧
where the computer happily spits out (4 + x)(3 + x) as the two factors.

How does it do this? We honestly don’t know (if you’re curious, look up

“heuristic algorithms), but let’s try to write our own code that can factors

such polynomials.

To start, let’s assume that our factoring engine will try to factor a polynomial

with 3 terms in it. These are called a “trinomial.” We’ll further stipulate

that it’ll have a quadratic term, a linear term, and a constant term, and we’ll

assume it can be factored into two binomials. So we talking about taking

in an expression like x

2 + 6x + 8. Note here that this meets our model’s

requirements in that it has a quadratic term, the x

2, a linear term, the 6x

(linear in x, or x to the first power), and a constant term, the 8.

The factors of this are (x + 4) and (x + 2). We know for such polynomials

like x2+6x+8, that the factor are always “x plus-or-minus something” times

“x plus-or-minus something else.” In this case, the “something” is +4 and

the “something else” is +2. So factoring is really just an issue of finding the

“something” and the “something else.” So let’s do this. Let’s set up a big

unknown, which is our model of the factors we seek: (x+A) and (x+B). If we

can just find A and B, we’d be all set.

So the question is really then, how do we know if the A and B that we choose

are correct? Well, remember how factoring works, in that for any x, the two

factors multiplied together must equal to the original polynomial evaluated
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at x. So let’s do this. Let’s find any A and B, and at some x (any number),

compute (x + A)(x + B), keeping in mind that we must allow A and B to

be both positive and negative. We’ll compare the result of (x + A)(x + B)

with the original polynomial evaluated at the same value of x. If they’re the

same, then we know the A and B we chose must form the correct factors.

As we proceed, know that factorable polynomials are rare and hard to find.

The legions of those in your algebra book are all “cooked up” to be factorable

and doable by you, on paper, so their limits are quite tight. All As and Bs

we’d expect will likely be integers (i.e. no decimals), and be between -100

and 100. So if we did an exhaustive search over -10..10 for A and -10..10 for

B, we’d have to search 20 ⇥ 20 or 400 combinations of A and B at worst.

This is very easy for a computer to do.

In this code, we choose a random x between -100 and 100, then start iterating

over possible values for A and B. We’ll compute orig, which comes from

simply evaluating the polynomial at the chosen x. Then, we’ll compute

fact, which is the presumed form of the factors, or (x + A)(x + B). Then

we’ll use an if statement to see if orig and fact are equal. If so, this must

mean the original polynomial is equal to the product of its factors, so we’ll

print out the factors, with the A and B shown.

This code is set to work on x

2 + 7x+ 12:⌥ ⌅
1 x = math.random(�100 ,100)

2 o r i g = xˆ2 + 7⇤x + 12

3 for A=�10,10 do

4 for B=�10,10 do

5 f a c t = (x+A)⇤ ( x+B)
6 i f o r i g == f a c t then

7 print ( ” ( x+” ,A, ” ) ( x+” ,B, ” ) ” )

8 end

9 end

10 end⌃ ⇧
and displays (x + 3)(x + 4) and (x + 4)(x + 3), which is telling us that
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our factors are (x + 3) and (x + 4). Using the “foil method,” we get that

(x+ 3)(x+ 4) = x

2 + 3x+ 4x+ 12, which is x2 + 7x+ 12. So we’ve done it!

We’ve written some cod that can factor a trinomial.

In the most general case, factors of polynomials of the form of our trinomials

here are: (Ax+B)(Cx+D), so a more general factor app would be something

that would iterate over A, B, C and D, as in⌥ ⌅
1 x = math.random(�100 ,100)

2 o r i g = 5⇤xˆ2+13⇤x+6
3 for A=�10,10 do

4 for B=�10,10 do

5 for C=�10,10 do

6 for D=�10,10 do

7 f a c t = (A⇤x+B)⇤ (C⇤x+D)

8 i f o r i g == f a c t then

9 print ( ” ( ” ,A, ”x+” ,B, ” ) ( ” ,C, ”x+” ,D, ” ) ” )

10 end

11 end

12 end

13 end

14 end⌃ ⇧
which will reveal a weakness in our plan. This code will tell us about a lot

of factors that one might interpret as factors of the original polynomial, but

they are not. They are simply other factors of other polynomials that equal

to each other at a given x. As an example if x happened to be zero, then

5x2 + 13x + 6 and x

2 + 5x + 6 would be equal to each other, and the code

would report that (5x+3)(x+2) and (x+2)(x+3) are both pairs of factors

of 5x2 + 13x + 6. All this means is that the logic behind our if statement

isn’t robust enough. Let’s try to strengthen it some.

We know the form of the factors we are looking for is (Ax + B)(Cx + D).

We can multiply this out using the computer code here⌥ ⌅
1 r = a lgebra ( ” (A⇤x+B)⇤ (C⇤x+D)” )

2 print math ( r )
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⌃ ⇧
to get that (Ax+B)(Cx+D) = ACx

2+(AD+BC)x+BD. So we see that

given our choices for A, B, C, and D, we observe three things:

1. the coe�cient of x2 in our original polynomial must be equal to AC

(or A⇥ C).

2. the coe�cient of x in our original polynomial must be equal to (AD+

BC) or (or A⇥D +B ⇥ C).

3. the constant in our polynomial must be equal to BD (or B ⇥D).

Thus we will have to tell our code the coe�cient of the x

2 term (we’ll call

this x2), the coe�cient of the x term (we’ll call it x1) and the constant term,

which we will call const.

Thus, our code will start like this for 5x2 + 13x+ 6:⌥ ⌅
1 x2=5

2 x1=13

3 const=6⌃ ⇧
Next, we’ll choose A, B, C, and D somehow, but to check if they seem to

be giving a factor of our polynomial, given the 3 needed relationships above,

we’ll need an if statement that checks if:

1. x2 == A*C

2. x1 == A*D+B*C

3. const = 6

all at the same time. Although we are used to if statements asking only a

single question, many question can be tied together using the and word, like

this:

if A*C == x2 and D*A+B*C == x1 and B*D == const then

...

end
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where the code between the then and —end— will only be executed if all

three conditions hold, or if AC==x2ANDD*A+B*C==x1AND B*D==const.

As usual, we’ll use 4 four-loops to iterate through possible values of A, B, C,

and D. Limiting them all from -10..10, gives us 204 = 160, 000 combinations

to sift through (no big deal for a computer). Here is our code for this:⌥ ⌅
1 x2=5

2 x1=13

3 const=6

4

5 for A=�10,10 do

6 for B=�10,10 do

7 for C=�10,10 do

8 for D=�10,10 do

9 i f A⇤C == x2 and D⇤A+B⇤C == x1 and B⇤D == const then

10 print ( ” ( ” ,A, ”x+” ,B, ” ) ( ” ,C, ”x+” ,D, ” ) ” )

11 end

12 end

13 end

14 end

15 end⌃ ⇧
where we indeed find our needed factors. To work on 3x2+16x+5 we change

the first three lines to⌥ ⌅
1 x2=3

2 x1=16

3 const=5

4 . . .

5 . . .⌃ ⇧
where once again, we’ll get our needed factors.

Sometimes, you’ll see a polynomial like this 9x2 � 49, which is the same as

9x2+0x�49. Here, the coe�cient of x is zero, so in the code, we’d set x1=0.

These modifications would find its factors:⌥ ⌅
1 x2=9

2 x1=0

3 const=�49
4 . . .

5 . . .⌃ ⇧
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6.4.2 Factoring, proof of work, and data privacy

It turns out that factoring can be used in security applications. This is

because there is no definite plan for finding factors, of either a number of a

polynomial. This lack of a plan means finding factors is di�cult. Security

can exploit this di�culty.

Proof of work

Suppose you were hiring for a job, and only wanted people who really love

math and coding. How could you really ensure this of the people you in-

terview? You could tell them that you will hire them if they can tell you

the factor of some polynomial. You could, for example, think of some really

di�cult polynomial to factor, and tell people that you’ll hire them “if they

can tell you the factors of 3x2 + 20x + 12” for example. Even if you type

factor 3x^2+20x+12 into Google, nothing immediately helpful comes up.

So if someone can tell you a factor of polynomial, then likely 1) they’re really

good at math, or 2) they know how to code and found the factor using some-

thing like the “factor engine” above. So in some sense, a person who can

factor this has “proven their smartness” to you. In actual Internet security,

this would be called “proof of work,” and literally means proof that someone

has done some (hard) work. In this case, factoring is the hard work. It turns

out that Bitcoin transactions, with its “blockchain” rely on this “proof of

work” methodology.

Remember that you can generate a polynomial for someone to factor from

factors themselves (that you can make up)—just remember to keep the

factors a secreat. So if 3x2 + 20x + 12 seems too “easy,” you can mul-

tiply out something like (23432x + 2334)(2128x + 7641) which comes to

17834094 + 184010664x+ 49863296x2. Ask someone to factor that!

A similar thing can be done, but with factoring just a number. You could, for

example, only interview people who could tell you a factor of 913. It’s likely

not really clear to most beginning algebra students (without a computer)

how one would find such factors. The following code would do it though:
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⌥ ⌅
1 for i =1 ,100 do

2 i f 913 % i == 0 then

3 print ( i , ” i s a f a c t o r ” )

4 end

5 end⌃ ⇧
by finding a number that divides into 913 with no remainder (recall % is the

“remainder” operator).

The larger number you choose, the harder it becomes to find factors of it.

You should always choose an odd number (because even numbers are always

divisible by 2), and one that isn’t prime. To do this, use the Internet to find

a list of prime numbers, and choose a large odd number that is not in the

list. (Hint: how about 7917? It looks prime, but has some factors.) So your

proof of work here would be for someone to tell you the factors of 7917.

Data security

Suppose you wish a secret number to a friend of yours. How could you do

it, so if the message is somehow intercepted, it cannot be decoded? Let’s say

the number is 88. How could you “encode” it so that no one except your

friend would be able to read it? It turns out that you can use factoring to

do it.

To start, choose two prime numbers, in this case we’ll choose p = 17 and

q = 11. Multiply them to get N = 187. Note that 17 and 11 are factors of

187. Anyone wanting to read your secret will need the 187. But don’t give

out the 17 or the 11. These are the (hard to find) factors of 187, and are to

be kept secret.

Next choose another prime number less than both p and q. Let’s call it e

and choose e = 7. Now, the N and e are you “public keys.” You can give

them out to anyone, post them on your blog, or whatever.

Next calculate d like this: You want e⇥ d divided by (p� 1)(q � 1) to have



CHAPTER 6. FACTORING 100

a remainder of 1. In this case (p � 1)(q � 1) is 160, and 161 ÷ 160 has a

remainder of 1, so e ⇥ d = 161, or d = 161/e or d = 23. Keep d somewhat

secret—you shouldn’t make it public, but must give it to people who want to

read (decrypt) your encrypted messages. Notice that d (in part), came from

your secret p and q.

To send your message in secret, don’t send the 88, send the remainder you

get when 88e is divided by N (your public key). So your encrypted message is

another number, that is the remainder you get when you divide your original

message raised to the e power by your public key.

On the computer, you can use the algebra() function and inside of it, use

the mod function to find the remainders. As an example, the remainder you

get when 144 is divided by 17 is 8, which you can compute with⌥ ⌅
1 r = a lgebra ( ”mod(144 ,17) ” )

2 print ( r )⌃ ⇧
In this case, you can use this code to encrypt your message:⌥ ⌅

1 r = a lgebra ( ”mod(88ˆ7 ,187) ” )

2 print ( ” send : ” , r )⌃ ⇧
which will result in an 11. So send your friend the 11. This is the encrypted

version of your original message, the 88.

To decrypt your message, you’ll use d, which is a secret only to you and your

trusted friend. To do so, raise the encrypted message to the d power, or 1123.

Now use mod again to find the remainder you get when 1123 is divided by N ,

your public key, or⌥ ⌅
1 r = a lgebra ( ”mod(11ˆ23 ,187) ” )

2 print ( ”Message was : ” , r )⌃ ⇧
where you’ll see your original message of 88 recovered again.

What does factoring have to do with this? Well, remember how this started.

You produced your public key that came from two secret factors. Although
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the public key can be shared, its factors are hard to find. In practice, the

public key would be a 200 digit number. Given that there is “no plan” for

factoring, it would take a computer longer than the age of the universe to

find the factors of a 200 digit number.

The public key is used both in encrypting and decrypting your message.

BUT, the secret factors are used to compute d, which is required to decrypt

your message. If a person doesn’t have d, they won’t be able to decrypt your

message, and since they can’t guess your private factors (p and q), they’re

stuck.
This exercise was adapted from:

• https://math.berkeley.edu/ kpmann/encryption.pdf

• https://blogs.msdn.microsoft.com/plankytronixx/2010/10/22/crypto-primer-understanding-encryption-publicprivate-

key-signatures-and-certificates/.



Chapter 7

Solving an Equation

The title of this chapter, “Solving an Equation,” is undoubtedly something

synonymous in your mind with math or algebra. That’s what you do after

all in math, solve equations right? Let’s see what it’s all about.

7.1 An equation

An equation is formed when two algebraic expressions are joined by an equal

sign. For example, we can have 2x + 5, and we can have 13. If these were

joined by an equal sign, we’d have

2x+ 5 = 13. (7.1)

In this case 2x + 5 = 13 is an equation. The 2x + 5 is sometimes called

the “left hand side” (or LHS), and the 13 is called the “right hand side” (or

RHS). Equations can have a lot of meaning. This one might be for: “You

have x gallons of water. If you pour twice that much into a large bucket

that already has 5 gallons in it, how many gallons did you have in the first

place, if the large bucket ends up with 13 gallons in it?” People often ask

for meanings to such equations, or want to know “what does this have to do

with the real world?” or “When will I ever use this again?” We say don’t

102
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get too hung up on this right now. At this time, you are learning quite a lot

of logic and math; just go with it. Everything you do and learn in your life

doesn’t have to have an immediate money making purpose.

In normal algebra, you’d set out to solve 2x + 5 = 13 by first subtracting

5 from both sides to get 2x = 8. Then you’d divide both sides by 2 to get

x = 4. So what have you done?

You’ve found the singular number, 4 that makes 2x+ 5 = 13 work. So if we

put 4 in for x, we’d get: 2(4)+5 which is 8+5 which is 13. So say x = 4, the

left side of the equation computes to 13, and this is equal to the right side

of 13. So we see that the equation holds. So if you have 4 gallons of water,

double that to 8, then add it to a bucket already containing 5 gallons, you’ll

have 13 total gallons.

Let’s see what more we can learn from the computer now.

7.2 Solving an equation on the computer

Let’s think of the RHS and LHS as separate expressions, like 2x+ 5 and 13.

Let’s write some code to plot them now. If we hover the mouse over the

black output area on the coding screen, we’ll see that it extends horizontally

from x = �225 to x = +225 or so. Let’s use these in a for-loop to generate

some x-axis values, and we’ll plot the 13 with like this:⌥ ⌅
1 pc l s (0 )

2 for x=�225,225 do

3 pset (x , 1 3 )

4 end⌃ ⇧
Here, you see the command pset(x,y) plots a dot at the (x, y) point you

give it. When this code is run, we’ll see a horizontal line (that’s what y = 13

is, right?). Anyway, if we hover the mouse over the line, we’ll see that the

line is at about y = 13, as it should be. Next, we’ll add some code to plot

2x+ 5, like this:
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⌥ ⌅
1 pc l s (0 )

2 for x=�225,225 do

3 pset (x , 1 3 )

4 pset (x ,2⇤ x+5)

5 end⌃ ⇧
As you can see, the two lines intersect at a certain point. What do you think

it means for two lines to intersect?

It means they have at least one (x, y) point that they have in common, or

share. It also means that you should be able to find exactly which x point

at which they intersect, and this will be “the solution” to the equation. Or,

in other words, the x point where they intersect, will be the value of x that

makes 2x+ 5 equal to 13.

Let’s do this: hover the mouse over the intersection point and watch the x

and y values above the drawing area. The best we can do is find x to be

around 5 or 6. Nothing too exact. But if we want to really drill down on the

intersection point, let’s zoom in using the zoom() function. Add one line,

zoom(5) to your code like this:⌥ ⌅
1 pc l s (0 )

2 zoom(5)

3 for x=�225,225 do

4 pset (x , 1 3 )

5 pset (x ,2⇤ x+5)

6 end⌃ ⇧
You’ll see your plot line now to be more broken up, but this is what a line

(which is a collection of pixels), looks like under magnification. Now, we

can definitely see (with more mouse hovering), that the intersection point is

around x = 4.2 or 4 or so. This matches the x = 4 we got above.

Here’s some code that will work up a solution to 2x� 1 = �3x+ 2.⌥ ⌅
1 pc l s (0 )
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2 for x=�225,225 do

3 pset (x ,2⇤x�1)

4 pset (x,�3⇤x+2)

5 end⌃ ⇧
Where at this level, we get an intersection point of around x = 0.2. Let’s

zoom in a bit, like this:⌥ ⌅
1 pc l s (0 )

2 zoom(10)

3 for x=�225,225 do

4 pset (x ,2⇤x�1)

5 pset (x,�3⇤x+2)

6 end⌃ ⇧
where now we can find a better intersection point around x = 0.6 or so. If

we solve 2x � 1 = �3x + 2, we’ll get 5x = 3, or x = 3/5, and 3/5 is about

0.6. So the idea of two curves intersecting worked again for solving some

LHS=RHS equation.

One more time, what does the x = 0.6 mean? If you plug it in for x on

the LHS, you get 2(0.6) � 1 = 0.2. Plug it in for x on the RHS, you’ll get

�3(0.6) + 2 which is �1.8 + 2 or 0.2. So once again, the x = 0.6 makes the

LHS equal to the RHS.

If you want, pull some equations out of your algebra book, and see if you can

solve them by plotting them as shown here.

7.3 Getting more organized

We hope you see the idea of using graphs, and the intersection of the LHS

and RHS on a graph to tell where their solution is. In this section, let’s

organize this idea some more.

It turns out in math, for the sake of organization, the RHS of equations will
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be zero (most of the time). Why zero? Well, it works like this. Suppose we

re-looked at our first equation above, 2x+5 = 13. What if we moved the 13

to the LHS, by subtracting it from both sides? We’d get 2x+5�13 = 13�13,

or 2x�8 = 0. Now let’s do this. Since the RHS is zero, let’s plot a horizontal

line at y = 0 like this:⌥ ⌅
1 pc l s (0 )

2 l i n e (�225 ,0 ,225 ,0)⌃ ⇧
We like the y = 0 line (which is the x-axis) because if we’re going to organize

our equation solving, and always have the RHS=0, then this line will always

be our reference. Or, if our equation intersects this y = 0 line, we’ll use the

mouse cursor to find the x value of the intersection point, and that will solve

our equation.

So, let’s add in the plotting of 2x� 8 (as above), like this:⌥ ⌅
1 pc l s (0 )

2 zoom(1)

3 l i n e (�225 ,0 ,225 ,0)

4 for x=�225,225 do

5 pset (x ,2⇤x�8)

6 end⌃ ⇧
Low and behold, our LHS of 2x � 8 intersects our y = 0 reference line.

Hovering with the mouse finds the intersection point at x = 6. (We find it

easier to locate these intersection points with the horizontal line too.) The

x = 6 is the number that makes 2x � 8, or 2(6) � 8 which is 8 � 8 equal to

zero.

What about organizing 2x � 1 = �3x + 2? For this we’d get 2x + 3x =

�3x+ 3x+ 2 or 5x = �2, or 5x+ 2 = 0. So the code would be⌥ ⌅
1 pc l s (0 )

2 zoom(1)

3 l i n e (�225 ,0 ,225 ,0)

4 for x=�225,225 do
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5 pset (x ,5⇤ x+2)

6 end⌃ ⇧
Here we do need to zoom in a bit to better locate the intersection point, as

per⌥ ⌅
1 pc l s (0 )

2 zoom(5)

3 l i n e (�225 ,0 ,225 ,0)

4 for x=�225,225 do

5 pset (x ,5⇤ x+2)

6 end⌃ ⇧
And remember, if you want to add more points to your zoomed plot, you

can always add a step-size to your for loop, like this (note the 0.5 in

for x=-225,225,0.5 do):⌥ ⌅
1 pc l s (0 )

2 zoom(5)

3 l i n e (�225 ,0 ,225 ,0)

4 for x=�225 ,225 ,0 . 5 do

5 pset (x ,5⇤ x+2)

6 end⌃ ⇧
With this, we find x = �0.4 to be a good read on the intersection point.

Now 5(�0.4)+2 is �2+2, which is zero. So we’ve solved the equation again.

So, here’s the summary of this section

With “organized equations,” that look like LHS=0, the point

where the equation crosses the y-axis is the solution to the equa-

tion.
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7.4 Better looking plots

If we’re going to use plots to solve equations, let’s make some better looking

plots. For this, let’s use the built-in graph() function. It works like this

(just one line—the computer does all of the work for you):⌥ ⌅
1 graph ( ”5⇤x+2” ,�10 ,10 ,0 . 5 )⌃ ⇧
Note! You have to put your equation in double quotes in order for this to

work, so you put in graph("5*x+2",-10,10,0.5) and not graph(5*x+2,-10,10,0.5).

Sorry about that!

In this code, the function 5⇤x+2 will be plotted from x = �10 to 10, in incre-

ments of 0.5. This means x will run from�10,�9.5,�9,�8.5...0...8.5, 9, 9.5, 10.

The plot will appear below your code window (it won’t appear in the black

output window). The plot looks much nicer, with clearly labeled axes, and

grid lines and all. But now with the computer doing most of the work, we

can focus on the math more. Here’s how.

If you run the code above, you’ll see your line. You can hover over it with the

mouse and identify (x, y) pairs, just like before. Remember, when thinking

of 5x + 2 = 0, we still want to know when 5x + 2 will cross the y = 0 line.

When looking at the initial graph, remember that we don’t have to run our

plot between x = �10 and 10, as we can choose any plot range we wish. A

quick check with mouse hovering tells us 5x + 2 will cross y = 0 somewhere

between �2 and 1 so, let’s try plotting between these two values like this⌥ ⌅
1 graph ( ”5⇤x+2” ,�2 ,1 , . 5 )⌃ ⇧
This is like “zooming in” before. We can also fill in more data points by say,

changing the 0.5 to a 0.01 instead, like this:⌥ ⌅
1 graph ( ”5⇤x+2” ,�2 ,1 ,0 . 01 )⌃ ⇧
Wow! So even with zooming in, we can have a nice solid looking line. Using

the crosshairs and mouse hovering, we can clearly see that 5x + 2 crosses
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y = 0 at x = �0.4, the exact solution to this equation! You can zoom in still

further if you want, say between -1 and 0.5, like this⌥ ⌅
1 graph ( ”5⇤x+2” ,�1 ,0 .5 , 0 . 01 )⌃ ⇧
where the x = �0.4 is even easier to identify.

7.5 More complicated functions

7.5.1 Equations with powers of x larger than 1

We hope you see the same theme here: all we’re doing is trying to identify

where curves we plot cross the y = 0 line, or cross the x-axis.

In algebra you’ll have more complicated equations than the ones we’ve been

using, but the idea is still the same: 1) organize it so it’s in the form of

LHS=0, then 2) plot it and 3) try to find (with hovering and zooming) where

it crosses the y = 0 line.

Let’s try solving 4x2 � 6 = 0. That is, what value of x makes 4x2 � 6 equal

to zero? Here’s our code⌥ ⌅
1 graph ( ”4⇤xˆ2�6” ,�5 ,5 ,0 . 1 )⌃ ⇧
Notice anything funny about the graph? It crosses the y = 0 line in TWO

PLACES. What does this mean? It means the equation has more than one

solution! It looks like all y = 0 crossings happen between -2 and 2, so let’s

recast our plot in this region:⌥ ⌅
1 graph ( ”4⇤xˆ2�6” ,�2 ,2 ,0 . 1 )⌃ ⇧
Next, we’ll fill in some more data points⌥ ⌅

1 graph ( ”4⇤xˆ2�6” ,�2 ,2 ,0 . 01 )⌃ ⇧
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The y = 0 crossings appear to happen at x = �1.22 and x = +1.22. What

gives? Well, let’s look. Does 4x2 � 6 equal to zero when x = �1.22? Here’s

our check: 4(�1.22)2 � 6 is 5.95� 6 which is almost zero! The same goes for

x = +1.22 as per 4(1.22)2 � 6 is 5.95 � 6. We can zoom in even more like

this:⌥ ⌅
1 graph ( ”4⇤xˆ2�6” ,�1 ,1 ,0 . 01 )⌃ ⇧
Here we might find �1.23 and 1.23 as solutions, making it even better than

1.22. What would we get by hand? It works like this 4x2�6 = 0, or 4x2 = 6,

or x2 = 6/4 or x =
q
6/4. This gives x = 1.225, pretty close to our graphical

results. The two solutions are found here because of the x

2. Turns out that

1.232 and �1.232 are both 1.51.

Want to try something? How about solving x

3 � 4x � 2 = 0? We started

with⌥ ⌅
1 graph ( ”xˆ3�4⇤x�2” ,�3 ,3 ,0 . 01 )⌃ ⇧
After some zooming in, we found y = 0 crossings at x = �1.67, -0.54 and

2.2 using the techniques shown here.

7.5.2 The “power” of an equation

Did you notice something? You probably learned that the highest power of a

variable in an equation is called the “power” of the equation. For 5x+2, the

highest power of x is 1. For 4x2�6, the highest power is 2 and for x3�4x�2,

the highest power is 3. Notice that 5x+2 had one solution, 4x2 � 6 had two

solutions and x

3 � 4x� 2 had 3 solutions! Yes! The power of an equation is

also the maximum number of solutions it will have!

Want a final challenge? Find the solutions to x

5 � 5x4 + 5x3 + 5x2 � 6x+ 1

between x = �2 and x = 3. (Hint: there’s 5 of them!)
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7.6 Factoring and solving equations

Remember the discussion on factoring from the last chapter? Let’s take a

look at it one more time, with the polynomial 5x2�34x�7. If we factor this,

we’ll get (x�7)(5x+1). Now, suppose we wanted to solve 5x2�34x�7 = 0.

As usual, since it’s in the form of LHS=0, we can graph it and look for places

the plot crosses the y = 0 line, using this code:⌥ ⌅
1 graph ( ”5⇤xˆ2�34⇤x�7” ,�10 ,10 ,0 . 1 )⌃ ⇧
We two crossings. A quick scan with some mouse hovering show the crossings

between about x = �1 and about 8, so we’ll zoom in some and plot more

points with:⌥ ⌅
1 graph ( ”5⇤xˆ2�34⇤x�7” ,�1 ,8 ,0 . 1 )⌃ ⇧
We can identify the solutions to be at x = �0.19 and x = 7. Plugging these

back in to 5x2 � 34x� 7, we get 5(�.19)2 � 34(�.19)� 7, which gives �0.35

(which is close to zero), and 5(72)� 34(7)� 7 which is equal to zero, so we’re

on the right track (our visual inspection of the �0.19 is obviously a bit o↵).

What does this have to do with factoring?

Well, our equation is 5x2 � 34x � 7 = 0. If we write this in factored form,

we’d get

(x� 7)(5x+ 1) = 0. (7.2)

So what? The factors (x � 7) and (5x + 1) are multiplied in the equation.

This means if either is zero, the whole LHS will be zero, and this would make

the equation hold. This is because 0 · (5x+1) is zero, as is (x� 7) · 0. So, we
can also solve the equation by setting its factors, one by one, equal to zero

like this:

x� 7 = 0, (7.3)
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or

5x+ 1 = 0. (7.4)

With the first factor, we’d get x� 7 = 0 or x = 7, which is the same as the

x = 7 we got using our mouse hovering above! With the second factor, we’d

get 5x+1 = 0, or x = �1/5, which is about x = �0.2, which is almost equal

to the �0.19 we also got with our mouse hovering.

So do you see how the y = 0 crossing and factoring are related? If you

put your equation in LHS=0 form, and factor the LHS, the little “mini-

equations” made by setting each factor equal to zero, gives solutions to the

original equation. Thus, you can solve equations by factoring them. Not all

equations are factorable, so this won’t always work.

7.6.1 Factoring by graphing

No matter what equation you have, you can always plot it and look for its

y = 0 crossings. Since these y = 0 crossing are solutions to the equation, you

can use them to construct the factors too. Let’s take a look at 10x2+25x�15.

If we graph this with get y = 0 crossings at x = �3 and 0.5. This means we

can immediately write factors of this equation to be (x + 3) and (x � 0.5).

Does this mean that (x+3)(x� 0.5) is equal to 10x2 +25x� 15? Not quite,

because (x+ 3)(x� 0.5) is x2 + 2.5x� 1.5. Hmmm.

If we set this up as a LHS=0 equation (which is what makes our y = 0

crossing technique work), we’d have

(x+ 3)(x� 0.5) = 0 (7.5)

or

x

2 + 2.5x� 1.5 = 0. (7.6)

If we multiply the 2nd equation through by 10, we’ll get
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10x2 + 25x� 15 = 0, (7.7)

which is the original equation. It tells us that factors can be found using

our y = 0 crossing technique, but they might be o↵ by some multiplicative

factor, in this case 10. Why is this? It’s because of the RHS being zero. We

can multiply the LHS and RHS by any number we want, as still get zero

on the RHS. This means our factors found in this way can be o↵ by some

multiplicative factor. In this case, 10 is missing, so the complete factors

would be

10(x+ 3)(x� 0.5). (7.8)

In this case, the 10 could be combine with the (x� 0.5) to get (10x� 5), so

the factors wold be

(x+ 3)(10x� 5), (7.9)

which when multiplied out do give us 10x2 + 25x� 15.

The point of this section is that factoring can be hard, as discussed in the last

chapter. The y = 0 technique at least guides us in forming a likely pattern

of the factors. When these are multiplied out, the result can be compared

to the original, to see what the remaining ambiguous multiplicative number

might be.

7.7 What solution?

As a final look at this y = 0 crossing technique, let’s work with one more

equation, 5x2 + 10 = 0. As usual, we can make a graph of it using the

following code:⌥ ⌅
1 graph ( ”5xˆ2+10” ,�3 ,3 ,0 . 01 )⌃ ⇧
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Now, if you hover over the graph with the mouse, you might notice something:

it never crosses y = 0! What does this mean? It means the equation doesn’t

have any solutions (or at least solutions that are real numbers). If you look

at it, it’s not hard to see why. The term 5x2 is always going to be a positive

number, for any value of x you can think of. Next, if you add 10 to it, you

get an even larger positive number. Now, if you think carefully, how can you

get zero from 5x2 + 10 = 0 by adding together two positive numbers? You

can’t. Thus 5x2 + 10 = 0 doesn’t have any solutions that are real numbers,1

and the graphical method very quickly reveals this.

The lines we looked at earlier, like 5x+2 always have a solution because the

5x can be positive and negative (depending on your choice of x), so 5x could

conceivably be �2, making the equation work, as per �2 + 2 = 0.

7.8 Computer search for equation solutions

Did you notice something about all of the graphs you made in this chapter?

In particular around a y = 0 crossing? Let’s look again at 4x2 � 6.⌥ ⌅
1 graph ( ”4⇤xˆ2�6” ,�2 .0 , 2 .0 , 0 . 01 )⌃ ⇧
Take a look at the y = 0 crossing on the left by hovering the mouse near

x = �1.21. Look at the curve in this location. If you go further to the left,

the curve is positive, since it has y > 0 (it’s above the x-axis). If you look

to the right of x = �1.21, the curve is negative (it’s below the x-axis). You

can see a similar thing around the right y = 0 crossing at x = 1.22. Left of

it, the curve is negative. Right of it, the curve is positive. This is a pattern

on solving LHS=0 type equations:

The equation switches signs at a y = 0 crossing.

This might make sense. Afterall, what is zero? It’s the number that separates

positive and negative numbers. So here, y = 0 crossings separate positive

1
To be 100% complete, it does have the two imaginary solutions of +i

p
2 and �i

p
2,

but don’t worry about “imaginary numbers” for now.
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and negative sections of the equation. For every y = 0 crossing, you’ll see

the equation switches its position (or sign) relative to the y-axis. If above

it on one side of the y = 0 crossing, it’ll be below it on the other side. If

below it on one side, it’ll be above it on the other. We can use this pattern

to automatically have the computer solve equations for us. We’ll do it like

this.

Let’s give the computer a guess as to what range we think a solution might

be found. We’ll think of these as low and high x values. These value will

set a range that we’re sure contains the solution to an equation. This range

isn’t that hard to figure out, and doesn’t have to be anything exact. Say for

4x2 � 6, we’ll choose -10 and 10. In other words, we’re guessing a solution

exists between -10 and 10. For the sake of this conversation, let’s say a = �10

and b = 10. We can think of a as being the left bound, and b being the right

bound for our solution.

Now, our best guess at a solution will be right in them middle of this range, or

at (a+b)/2. In this case, it’ll be at (-10+10)/2=0. What we’ll do next is this:

we’ll look at the sign of the equation at x = a and the sign of the equation at

x itself. If the equation has the same sign at both of these locations, we can

assume there’s no solution between a and x. Why? Because as we discussed

above, an equation changes sign as it crosses a solution. In the case of the

equation having the same sign at a and at x, we’ll think of a as being too

far to the left, and bring it in to x. In other words, we’ll set a to be x.

What if the equation at a and x has opposite signs? We can then assume a

solution exists between a and x, and that b is too far over to the right. Thus,

let’s bring b in, by setting b = x.

Now, with a or b adjusted, we can compute a new midpoint again via (a+b)/2

and go again.

For ease, we’ll put out LHS=0 equation into its own function like this

function f(x)

return 4*x^2-6

end
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Thus, “the equation” we discussed above all just becomes f(x). The logic

with checking the sign of the equation and all can be implemented with an

if statement like this

if f(a)*f(x) > 0 then

a = x

else

b = x

end

Where you can see that f(a)*f(x) is how we check the sign of the equation

at a and at x. If the product of the two is greater than zero, they must have

the same sign. (Right? 3 ⇥ 3 > 0 and so is �3 ⇥ �3 > 0. The 3s have the

same sign, so their products are always greater than zero.)

Here we go then. This is all called the “bisection method” for finding so-

lutions (or roots) to equations. Wikipedia has a nice description of it at

https://en.wikipedia.org/wiki/Bisection_method. Our complete code

to work this out is here:⌥ ⌅
1 function f ( x )

2 return 4⇤xˆ2�6

3 end

4

5 a=�10
6 b=10

7 x = ( a+b)/2

8

9 for i =1 ,20 do

10 i f f ( a )⇤ f ( x ) > 0 then

11 a = x

12 else

13 b = x

14 end

15 x = ( a+b)/2

16 print (x , f ( x ) )
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17 end⌃ ⇧
Here, we use a for loop to run through the procedure 20 times. With each

try, we print x and the equation evaluated at x. Remember that we want

to find x that will make f(x) as close to zero, as possible. Thus watch the

numbers. The left column will be the computer’s current value of x, and the

right column f(x). If everything is working, you’ll see f(x) become very

small, meaning it is approaching zero, and you can become more and more

confident that the x value is the solution to the equation.

The code above puts out

-5 94

-2.5 19

-1.25 0.25

-0.625 -4.4375

-0.9375 -2.484375

-1.09375 -1.21484375

-1.171875 -0.5068359375

-1.2109375 -0.134521484375

-1.23046875 0.05621337890625

-1.220703125 -0.039535522460938

-1.2255859375 0.0082435607910156

-1.22314453125 -0.015669822692871

-1.224365234375 -0.0037190914154053

-1.2249755859375 0.0022607445716858

where you can see after 10 runs through the bisections, f(x) has become

0.00226..., which is small and close to zero. Thus we can think of -1.22

as a solution to 4x2� 6. Which is it, right? Let’s see 4(�1.22)2� 6 is 0.0022,

which is pretty close to saying LHS=0, or LHS=0.0022 in this case.

We note that this program and technique works very well for just about any

LHS=0 type equation you’ll encounter in an algebra class. Try some other

equations, from your algebra book and see what your get. Here are some

examples:
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• To solve 5x�3 = �13 change f(x) function to (get it in LHS=0 form):

function f(x)

return 5*x+10

end

• To solve 2x2 � 4x+ 7 = 0 change f(x) function to

function f(x)

return 2*x^2-4*x+7

end

• To solve 6x2 = 5� 7x change f(x) function to

function f(x)

return 6*x^2+7x-5

end

Likely, the initial guesses of a = �10 and b = 10 will be fine for these.



Chapter 8

Quadratic Equations

Quadratic equations are perhaps the defining work of an algebra class. We

think there are millions of former algebra students walking around out there

mumbling something like “minus b plus or minus the square root of b squared...”

Let’s see what this all means.

8.1 Introduction

A quadratic equation is an equation that (typically) has both an x

2, x, and

a constant term in it. Examples might be x

2 � 2x� 8� 0 and 5� 2x2 = 3x.

The “defining work” we speak of is in solving these types of equations, which

means of course, finding the values of x (there are typically 2), that make

the LHS (left hand side) of the equation equal to zero. For x2 � 2x� 8� 0,

the value of x are �2 and 4. These two numbers mean two important things

for the equation:

1. x = �2 and x = 4 make the LHS=0. You can check this via (�2)2 �
2(�2) � 8 = 0 which is 4 + 4 � 8 or 8 � 8 which is zero. With the 4,

this is 42 � 2(4)� 8 = 0 or 16� 8� 8 = 0 or 16� 16 = 0. So they both

work in making the LHS=0.

119
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2. �2 and 4 help to form the factors of x2�2x�8�0, in that (x+2)(x�4)

is equal to x

2 � 2x� 8� 0.

In this chapter, we’ll study two aspects of quadratic equations and their use

on the computer. The first is in what the quadratic formula tells us, and the

second is in implementing the quadratic formula in some code, and seeing a

deeper understanding of it.

8.2 The quadratic formula

The so called “quadratic formula” is what we were referring to in the opening

of this chapter. It is

x =
�b±

p
b

2 � 4ac

2a
, (8.1)

and tells us this. Suppose you had a quadratic equation, and were able to

organize it into the form

ax

2 + bx+ c = 0. (8.2)

This means something like x

2 � 2x � 8 = 0, for which a = 1, b = �2 and

c = �8. Or, 5 � 2x2 = 3x. If this is rearranged, we’ll get 5 � 2x2 � 3x = 0

or �2x2 � 3x+ 5 = 0, meaning a = �2, b = �3, and c = 5. In either case, a

is the coe�cient of the x2 term, b that for the x term, and c is the constant.

For any equation with a, b, and c known, you can use the quadratic formula

to find solutions to our equation.

In the case of x2 � 2x� 8 = 0, with a = 1, b = �2 and c = �8, we’d get

x =
�(�2)±

q
(�2)2 � 4(1)(�8)

2(1)
, (8.3)

which is



CHAPTER 8. QUADRATIC EQUATIONS 121

x =
2±

p
4 + 32

2
(8.4)

which is

x =
2± 6

2
. (8.5)

This means that x could be 2+6
2 or 2�6

2 , or x could be 4 or �2. The final result

is that both x = 4 and x = �2 are solutions to the equation x

2� 2x� 8 = 0.

Checking this, we get (4)2�8�8 or 16�8�8 or 0, which checks. The other

check is (�2)2 � 2(�2)� 8 or 4 + 4� 8 or 0, which also checks.

Now, using the graphing techniques we learned in the last chapter, we can

do something like⌥ ⌅
1 graph ( ”xˆ2�2⇤x�8” ,�3 ,5 ,0 . 1 )⌃ ⇧
and easily identify �2 and 4 as the y = 0 crossing points. Thus, the quadratic

formula gives us the value of x where the equation makes its y = 0 crossings.

They are the points that make the equation zero as in LHS=0.

8.3 Coding and the quadratic formula

In this section, we’ll develop some code that produces solutions to quadratic

equations, so long as you can tell the computer what a, b, and c are. The

discussion drills down into the quadratic formula, giving you good insight

into actually what’s going on with the various quadratic presented.

8.3.1 Quadratic solver version 1.0

So let’s write a quadratic equation solver then. As input, let’s have the code

ask us the values of a, b, and c. From there, let’s compute the solutions to

the quadratic equation using the quadratic formula and display the results.
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To read in a, b, and c, we can use the input() function like this⌥ ⌅
1 print ( ”What i s a?” )

2 a = input ( )

3 print ( ”What i s b?” )

4 b = input ( )

5 print ( ”What i s c ?” )

6 c = input ( )

7

8 print ( a , b , c )⌃ ⇧
where the print statement verifies that a, b, and c are coming in properly.

To find the solutions, we’ll program in the quadratic formula as shown by

Eq. 8.1 above. We’ll call the solutions x1 and x2, since one involves the plus

sign and the other the minus sign. So we’ll have code that looks like this:⌥ ⌅
1 print ( ”What i s a?” )

2 a = input ( )

3 print ( ”What i s b?” )

4 b = input ( )

5 print ( ”What i s c ?” )

6 c = input ( )

7

8 x1 = (�b+sq r t (bˆ2�4⇤a⇤c ) )/ (2⇤ a )
9 x2 = (�b�s q r t (bˆ2�4⇤a⇤c ) )/ (2⇤ a )

10

11 print ( x1 , x2 )⌃ ⇧
Note that sqrt() is a built in function that gives us the square root of

its number, so print(sqrt(16)) would print 4. If we run this to solve

x

2 � 2x � 8 = 0 we’d type in �1 for a, �2 for b and �8 for c. With these

the code will print 4 and -2. So we’ve done it! We’ve written a quadratic

formula solver. Try it with some quadratic equations in your book. It’s quite

fun! But there’s more. Let’s take a look.
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8.3.2 Quadratic solver version 2.0

Let’s use the code above to solve x

2 + 2x + 6 = 0. Here a = 1, b = 2 and

c = 6. If we type these in to our program above, the computer will output

nan and nan. What does “nan” mean?1 There is something strange going on

here. The computer will put out nan if we trying something like print(1/0)

too (because you can’t divide by 0).

If we graph the equation using⌥ ⌅
1 graph ( ”xˆ2+2⇤x+6” ,�5 ,5 ,0 . 1 )⌃ ⇧
we’ll see something we alluded to in Section 7.7: the equation is entirely

above the x-axis! It other words, it doesn’t have any y = 0 crossing points.

There’s nothing wrong with the equation. It’s just that it doesn’t cross the

x-axis (or y = 0 anywhere). What gives?

Let’s look closely at the quadratic formula, in particular, the part under the

square root, or
p
b

2 � 4ac. This called the “discriminant.” For the equation

above, a = 1, b = 2 and c = 6. If we put these into the discriminant, we’ll

get

q
22 � 4(1)(6) (8.6)

or

p
4� 24 (8.7)

giving

p
�20. (8.8)

Now wait a minute! The square root of �20? That’s impossible! What real

number can you multiply by itself that will give �20? There isn’t one. So

1
“nan” means “not a number.”
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the computer putting out nan is itself stumbling on this issue. There is no

real number that is the square root of �20.

As an aside, you actually can find
p
�20. It involves imaginary numbers,

using the symbol “i” which is defined to be i =
p
�1, so

p
20 can be written

as
p
20i, which is 2

p
5i. But in your first algebra class, you are only concerned

with real numbers as answers to your equations, so all of this “imaginary

number” nonsense just means “no solution,” or “no real numbered solution.”

This is where the coding helps you to look deeper. You see that the equation’s

graph never crosses the y = 0 axis, and now you see the discriminant wants

the square root of a negative number. With this latter fact, we can make

our code a bit more graceful. How about after having a, b, and c, we’ll first

compute the stu↵ under the radical sign, or just b2 � 4ac, like this:⌥ ⌅
1 print ( ”What i s a?” )

2 a = input ( )

3 print ( ”What i s b?” )

4 b = input ( )

5 print ( ”What i s c ?” )

6 c = input ( )

7

8 d = bˆ2�4⇤a⇤c
9 print (d)⌃ ⇧
In this case, the value of b2�4ac is displayed, which we put into the variable

d (for discriminant). You can see that it is negative for a = 1, b = 2 and

c = 6. So what now? Let’s use an if statement to check if d is negative

(< 0). If so, we can 1) tell the student that there are no real roots, and stop

the display of the confusing “nans,” and 2) demonstrate our insights into the

quadratic formula. How about something like this?⌥ ⌅
1 print ( ”What i s a?” )

2 a = input ( )

3 print ( ”What i s b?” )

4 b = input ( )

5 print ( ”What i s c ?” )
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6 c = input ( )

7

8 d = bˆ2�4⇤a⇤c
9

10 i f d < 0 then

11 print ( ”There are no r e a l r oo t s to your equa t i on . ” )

12 return

13 end⌃ ⇧
Here the return statement causes the code to stop right away. We can

finish the code by computing the two solutions, and printing them. And

unlike last time, let’s use d, since it’s already calculated, and it’ll make our

formulas simpler. Here’s our final result.⌥ ⌅
1 print ( ”What i s a?” )

2 a = input ( )

3 print ( ”What i s b?” )

4 b = input ( )

5 print ( ”What i s c ?” )

6 c = input ( )

7

8 d = bˆ2 � 4⇤a⇤c
9

10 i f d < 0 then

11 print ( ”There are no r e a l r oo t s to your equa t i on . ” )

12 return

13 end

14

15 x1 = (�b+sq r t (d ) ) / (2⇤ a )
16 x2 = (�b�s q r t (d ) ) / (2⇤ a )
17

18 print ( x1 , x2 )⌃ ⇧
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8.3.3 Quadratic solver version 3.0

There’s one more item to address with the discriminant. Let’s use our solver

to find solutions to x

2 � 4x + 4. Here a = 1, b = �4 and c = 4. If we put

these into the solver code above (Version 2.0) it’ll put out 2 2 as solutions.

Two twos? That’s right. If we plot this equation, with⌥ ⌅
1 graph ( ”xˆ2�4⇤x+4” ,�3 ,5 ,0 . 1 )⌃ ⇧
you’ll see that the equation touches the y = 0 line in just one spot. It doesn’t

really cross it, but touching it is close enough—it still means the equation

equals zero. In this case, it touches the axis at x = 2. Given that the power

of a quadratic is 2, due to the x

2 term, the 2 and 2 are the two solutions.

What is going on with the discriminant? With a = 1, b = �4 and c = 4, we

get

p
b

2 � 4ac (8.9)

which becomes q
(�4)2 � 4(1)(4) (8.10)

or

p
16� 16 (8.11)

giving

p
0 (8.12)

or just zero! The discriminant is zero! What does this mean?

Well, in the quadratic formula, we have

x =
�b±

p
b

2 � 4ac

2a
. (8.13)
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But with d = the discriminant, we have

x =
�b±

p
d

2a
. (8.14)

Now, if d = 0 then this becomes

x =
�b± 0

2a
, (8.15)

or just

x =
�b

2a
. (8.16)

Thus when d = 0 there is nothing to add or subtract from �b in the famous

quadratic song “negative b plus or minus...” This means that when the

discriminant is zero, the quadratic equation only has one unique solution (or

two identical solutions), given by x = �b/(2a). That’s right, c is ignored. If

a = 1, b = �4 and c = 4, we get x = �(�4)/(2(1)) or x = 2, the same x

value where the equation touches the x-axis.

So, as a last modification to our code, instead of printing two identical solu-

tions if d is zero, let’s print a friendly message. Something like this should

do.⌥ ⌅
1 print ( ”What i s a?” )

2 a = input ( )

3 print ( ”What i s b?” )

4 b = input ( )

5 print ( ”What i s c ?” )

6 c = input ( )

7

8 d = bˆ2 � 4⇤a⇤c
9

10 i f d < 0 then

11 print ( ”There are no r e a l r oo t s to your equa t i on . ” )
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12 return

13 end

14

15

16 x1 = (�b+sq r t (d ) ) / (2⇤ a )
17 x2 = (�b�s q r t (d ) ) / (2⇤ a )
18

19 i f d == 0 then

20 print ( ”The only unique s o l u t i o n i s ” , x1 )

21 else

22 print ( x1 , x2 )

23 end⌃ ⇧
Now, here in version 3.0, we have a very user-friendly quadratic equation

solver, and shows o↵ our deep insights into quadratic equations, and the

quadratic formula.
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