
http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780321884923
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780321884923
https://plusone.google.com/share?url=http://www.informit.com/title/9780321884923
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780321884923
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780321884923/Free-Sample-Chapter

LEARN C
THE HARD WAY

Zed Shaw’s Hard Way Series emphasizes instruction and making things as

the best way to get started in many computer science topics. Each book in the

series is designed around short, understandable exercises that take you through a

course of instruction that creates working software. All exercises are thoroughly

tested to verify they work with real students, thus increasing your chance of

success. The accompanying video walks you through the code in each exercise.

Zed adds a bit of humor and inside jokes to make you laugh while you’re learning.

Visit informit.com/hardway for a complete list of available publications.

Make sure to connect with us!
informit .com/socialconnect

Zed Shaw’s Hard Way Series

LEARN C
THE HARD WAY

Practical Exercises on the
Computational Subjects You Keep

Avoiding (Like C)

Zed A. Shaw

New York • Boston • Indianapolis • San Francisco
Toronto • Montreal • London • Munich • Paris • Madrid
Capetown • Sydney • Tokyo • Singapore • Mexico City

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and the publisher was aware of a trademark claim,
the designations have been printed with initial capital letters or in all capitals.

The author and publisher have taken care in the preparation of this book, but make no expressed or implied
warranty of any kind and assume no responsibility for errors or omissions. No liability is assumed for incidental
or consequential damages in connection with or arising out of the use of the information or programs
contained herein.

For information about buying this title in bulk quantities, or for special sales opportunities (which may include
electronic versions; custom cover designs; and content particular to your business, training goals, marketing
focus, or branding interests), please contact our corporate sales department at corpsales@pearsoned.com or
(800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the U.S., please contact international@pearsoned.com.

Visit us on the Web: informit.com/aw

Library of Congress Cataloging-in-Publication Data

Shaw, Zed, author.
Learn C the hard way : practical exercises on the computational subjects you keep avoiding (like C) /

Zed A. Shaw.
pages cm

Includes index.
ISBN 978-0-321-88492-3 (pbk. : alk. paper)—ISBN 0-321-88492-2 (pbk. : alk. paper)
1. C (Computer program language)—Problems, exercises, etc. I. Title.
QA76.73.C15S473 2016
005.13’3—dc23

2015020858

Copyright © 2016 Zed A. Shaw

All rights reserved. Printed in the United States of America. This publication is protected by copyright, and
permission must be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval
system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or
likewise. To obtain permission to use material from this work, please submit a written request to Pearson
Education, Inc., Permissions Department, 200 Old Tappan Road, Old Tappan, New Jersey 07657, or you may fax
your request to (201) 236-3290.

ISBN-13: 978-0-321-88492-3
ISBN-10: 0-321-88492-2

Text printed in the United States on recycled paper at RR Donnelley in Crawfordsville, Indiana.
First printing, August 2015

v

Contents

Acknowledgments . xiv

This Book Is Not Really about C . xv

The Undefined Behaviorists . xvi

C Is a Pretty and Ugly Language . xvii

What You Will Learn . xviii

How to Read This Book . xviii

The Videos . xix

The Core Competencies . xix

Reading and Writing . xix

Attention to Detail . xx

Spotting Differences . xx

Planning and Debugging . xx

Exercise 0 The Setup . 2

Linux . 2

Mac OS X . 2

Windows . 3

Text Editor . 3

Do Not Use an IDE . 4

Exercise 1 Dust Off That Compiler . 6

Breaking It Down . 6

What You Should See . 7

How to Break It . 8

Extra Credit . 8

Exercise 2 Using Makefiles to Build 10

Using Make . 10

What You Should See . 11

How to Break It . 12

Extra Credit . 12

Exercise 3 Formatted Printing . 14

What You Should See . 15

External Research . 15

vi CONTENTS

How to Break It . 15

Extra Credit . 16

Exercise 4 Using a Debugger . 18

GDB Tricks . 18

GDB Quick Reference . 18

LLDB Quick Reference . 19

Exercise 5 Memorizing C Operators . 20

How to Memorize . 20

The List of Operators . 21

Exercise 6 Memorizing C Syntax . 26

The Keywords . 26

Syntax Structures . 27

A Word of Encouragement . 30

A Word of Warning . 31

Exercise 7 Variables and Types . 32

What You Should See . 34

How to Break It . 34

Extra Credit . 34

Exercise 8 If, Else-If, Else . 36

What You Should See . 37

How to Break It . 37

Extra Credit . 38

Exercise 9 While-Loop and Boolean Expressions 40

What You Should See . 40

How to Break It . 41

Extra Credit . 41

Exercise 10 Switch Statements . 42

What You Should See . 43

How to Break It . 44

Extra Credit . 44

Exercise 11 Arrays and Strings . 46

What You Should See . 47

How to Break It . 48

Extra Credit . 48

Exercise 12 Sizes and Arrays . 50

What You Should See . 51

CONTENTS vii

How to Break It . 52

Extra Credit . 53

Exercise 13 For-Loops and Arrays of Strings 54

What You Should See . 56

Understanding Arrays of Strings . 56

How to Break It . 57

Extra Credit . 57

Exercise 14 Writing and Using Functions 58

What You Should See . 59

How to Break It . 60

Extra Credit . 60

Exercise 15 Pointers, Dreaded Pointers 62

What You Should See . 64

Explaining Pointers . 65

Practical Pointer Usage . 66

The Pointer Lexicon . 66

Pointers Aren’t Arrays . 67

How to Break It . 67

Extra Credit . 67

Exercise 16 Structs and Pointers to Them 68

What You Should See . 71

Explaining Structures . 71

How to Break It . 72

Extra Credit . 72

Exercise 17 Heap and Stack Memory Allocation 74

What You Should See . 79

Heap versus Stack Allocation . 80

How to Break It . 81

Extra Credit . 82

Exercise 18 Pointers to Functions . 84

What You Should See . 88

How to Break It . 88

Extra Credit . 89

Exercise 19 Zed’s Awesome Debug Macros 90

The C Error-Handling Problem . 90

The Debug Macros . 91

Using dbg.h . 93

viii CONTENTS

What You Should See . 95

How the CPP Expands Macros . 96

Extra Credit . 98

Exercise 20 Advanced Debugging Techniques 100

Debug Printing versus GDB . 100

A Debugging Strategy . 101

Extra Credit . 102

Exercise 21 Advanced Data Types and Flow Control 104

Available Data Types . 104

Type Modifiers . 104

Type Qualifiers . 105

Type Conversion . 105

Type Sizes . 106

Available Operators . 108

Math Operators . 108

Data Operators . 109

Logic Operators . 109

Bit Operators . 109

Boolean Operators . 110

Assignment Operators . 110

Available Control Structures . 110

Extra Credit . 111

Exercise 22 The Stack, Scope, and Globals 112

ex22.h and ex22.c . 112

ex22_main.c . 114

What You Should See . 117

Scope, Stack, and Bugs . 118

How to Break It . 119

Extra Credit . 119

Exercise 23 Meet Duff’s Device . 120

What You Should See . 124

Solving the Puzzle . 124

Why Bother? . 124

Extra Credit . 125

CONTENTS ix

Exercise 24 Input, Output, Files . 126

What You Should See . 128

How to Break It . 129

The I/O Functions . 129

Extra Credit . 130

Exercise 25 Variable Argument Functions 132

What You Should See . 135

How to Break It . 136

Extra Credit . 136

Exercise 26 Project logfind . 138

The logfind Specification . 138

Exercise 27 Creative and Defensive Programming 140

The Creative Programmer Mind-Set 140

The Defensive Programmer Mind-Set 141

The Eight Defensive Programmer Strategies 141

Applying the Eight Strategies . 142

Never Trust Input . 142

Prevent Errors . 145

Fail Early and Openly . 146

Document Assumptions . 147

Prevention over Documentation 147

Automate Everything . 148

Simplify and Clarify . 148

Question Authority . 149

Order Is Not Important . 149

Extra Credit . 150

Exercise 28 Intermediate Makefiles 152

The Basic Project Structure . 152

Makefile . 153

The Header . 154

The Target Build . 155

The Unit Tests . 156

The Cleaner . 157

The Install . 158

The Checker . 158

x CONTENTS

What You Should See . 159

Extra Credit . 159

Exercise 29 Libraries and Linking . 160

Dynamically Loading a Shared Library 161

What You Should See . 163

How to Break It . 164

Extra Credit . 164

Exercise 30 Automated Testing . 166

Wiring Up the Test Framework . 167

Extra Credit . 171

Exercise 31 Common Undefined Behavior 172

UB 20 . 173

Common UBs . 173

Exercise 32 Double Linked Lists . 174

What Are Data Structures . 178

Making the Library . 178

Doubly Linked Lists . 179

Definition . 180

Implementation . 181

Tests . 185

What You Should See . 187

How to Improve It . 188

Extra Credit . 188

Exercise 33 Linked List Algorithms . 190

Bubble and Merge Sort . 190

The Unit Test . 191

The Implementation . 193

What You Should See . 195

How to Improve It . 196

Extra Credit . 197

Exercise 34 Dynamic Array . 198

Advantages and Disadvantages . 205

How to Improve It . 206

Extra Credit . 206

CONTENTS xi

Exercise 35 Sorting and Searching . 208

Radix Sort and Binary Search . 211

C Unions . 212

The Implementation . 213

RadixMap_find and Binary Search 219

RadixMap_sort and radix_sort 220

How to Improve It . 221

Extra Credit . 222

Exercise 36 Safer Strings . 224

Why C Strings Were a Horrible Idea 224

Using bstrlib . 225

Learning the Library . 226

Exercise 37 Hashmaps . 228

The Unit Test . 235

How to Improve It . 238

Extra Credit . 238

Exercise 38 Hashmap Algorithms . 240

What You Should See . 245

How to Break It . 246

Extra Credit . 247

Exercise 39 String Algorithms . 248

What You Should See . 255

Analyzing the Results . 257

Extra Credit . 258

Exercise 40 Binary Search Trees . 260

How to Improve It . 273

Extra Credit . 273

Exercise 41 Project devpkg . 274

What Is devpkg? . 274

What We Want to Make . 274

The Design . 275

The Apache Portable Runtime . 275

Project Layout . 277

Other Dependencies . 277

xii CONTENTS

The Makefile . 277

The Source Files . 278

The DB Functions . 279

The Shell Functions . 283

The Command Functions . 287

The devpkgMain Function . 292

The Final Challenge . 295

Exercise 42 Stacks and Queues . 296

What You Should See . 299

How to Improve It . 299

Extra Credit . 299

Exercise 43 A Simple Statistics Engine 300

Rolling Standard Deviation and Mean 300

Implemention . 301

How to Use It . 306

Extra Credit . 307

Exercise 44 Ring Buffer . 310

The Unit Test . 313

What You Should See . 313

How to Improve It . 314

Extra Credit . 314

Exercise 45 A Simple TCP/IP Client . 316

Augment the Makefile . 316

The netclient Code . 316

What You Should See . 320

How to Break It . 320

Extra Credit . 321

Exercise 46 Ternary Search Tree . 322

Advantages and Disadvantages . 330

How to Improve It . 331

Extra Credit . 331

Exercise 47 A Fast URL Router . 332

What You Should See . 335

How to Improve It . 335

Extra Credit . 336

CONTENTS xiii

Exercise 48 A Simple Network Server 338

The Specification . 338

Exercise 49 A Statistics Server . 340

Specification . 340

Exercise 50 Routing the Statistics . 342

Exercise 51 Storing the Statistics . 344

The Specification . 344

Exercise 52 Hacking and Improving Your Server 346

Next Steps . 348

Index . 349

xiv

Acknowledgments

Iwould like to thank three kinds of people who helped make this book what it is today: the
haters, the helpers, and the painters.

The haters helped make this book stronger and more solid through their inflexibility of mind, ir-
rational hero worship of old C gods, and complete lack of pedagogical expertise. Without their
shining example of what not to be, I would have never worked so hard to make this book a com-
plete introduction to becoming a better programmer.

The helpers are DebraWilliams Cauley, Vicki Rowland, Elizabeth Ryan, the whole team at Addison-
Wesley, and everyone online who sent in fixes and suggestions. Their work producing, fixing, edit-
ing, and improving this book has formed it into a more professional and better piece of writing.

The painters, Brian, Arthur, Vesta, and Sarah, helped me find a new way to express myself and
to distract me from deadlines that Deb and Vicki clearly set for me but that I kept missing. Without
painting and the gift of art these artists gave me, I would have a less meaningful and rich life.

Thank you to all of you for helping me write this book. It may not be perfect, because no book is
perfect, but it’s at least as good as I can possibly make it.

xv

This Book Is Not Really about C

P lease don’t feel cheated, but this book is not about teaching you C programming. You’ll learn
to write programs in C, but the most important lesson you’ll get from this book is rigorous

defensive programming. Today, toomany programmers simply assume that what they write works,
but one day it will fail catastrophically. This is especially true if you’re the kind of person who
has learned mostly modern languages that solve many problems for you. By reading this book
and following my exercises, you’ll learn how to create software that defends itself from malicious
activity and defects.

I’m using C for a very specific reason: C is broken. It is full of design choices that made sense in
the 1970s but make zero sense now. Everything from its unrestricted, wild use of pointers to its
severely broken NUL terminated strings are to blame for nearly all of the security defects that hit C.
It’s my belief that C is so broken that, while it’s in wide use, it’s the most difficult language to write
securely. I would fathom that Assembly is actually easier to write securely than C. To be honest,
and you’ll find out that I’m very honest, I don’t think that anybody should be writing new C code.

If that’s the case, then why am I teaching you C? Because I want you to become a better, stronger
programmer, and there are two reasons why C is an excellent language to learn if you want to get
better. First, C’s lack of nearly every modern safety feature means you have to be more vigilant and
more aware of what’s going on. If you can write secure, solid C code, you can write secure, solid
code in any programming language. The techniques you learn will translate to every language
you use from now on. Second, learning C gives you direct access to a mountain of legacy code, and
teaches you the base syntax of a large number of descendant languages. Once you learn C, you can
more easily learn C++, Java, Objective-C, and JavaScript, and even other languages become easier
to learn.

I don’t want to scare you away by telling you this, because I plan to make this book incredibly fun,
easy, and devious. I’ll make it fun to learn C by giving you projects that you might not have done
in other programming languages. I’ll make this book easy by using my proven pattern of exercises
that has you doing C programming and building your skills slowly. I’ll make it devious by teaching
you how to break and then secure your code so you understand why these issues matter. You’ll
learn how to cause stack overflows, illegal memory access, and other common flaws that plague C
programs so that you know what you’re up against.

Getting through this book will be challenging, like all of my books, but when you’re done you will
be a far better and more confident programmer.

xvi LEARN C THE HARD WAY

The Undefined Behaviorists
By the time you’re donewith this book, you’ll be able to debug, read, and fix almost any C program
you run into, and then write new, solid C code should you need to. However, I’m not really going
to teach you official C. You’ll learn the language, and you’ll learn how to use it well, but official C
isn’t very secure. The vast majority of C programmers out there simply don’t write solid code, and
it’s because of something called Undefined Behavior (UB). UB is a part of the American National
Standards Institute (ANSI) C standard that lists all of the ways that a C compiler can disregard what
you’ve written. There’s actually a part of the standard that says if you write code like this, then all
bets are off and the compiler doesn’t have to do anything consistently. UB occurs when a C program
reads off the end of a string, which is an incredibly common programming error in C. For a bit of
background, C defines strings as blocks of memory that end in a NUL byte, or a 0 byte (to simplify
the definition). Since many strings come from outside the program, it’s common for a C program to
receive a string without this NUL byte. When it does, the C program attempts to read past the end
of this string and into the memory of the computer, causing your program to crash. Every other
language developed after C attempts to prevent this, but not C. C does so little to prevent UB that
every C programmer seems to think it means they don’t have to deal with it. They write code full
of potential NUL byte overruns, and when you point them out to these programmers, they say,
”Well that’s UB, and I don’t have to prevent it.” This reliance on C’s large number of UBs is why
most C code is so horribly insecure.

I write C code to try to avoid UB by either writing code that doesn’t trigger it, or writing code
that attempts to prevent it. This turns out to be an impossible task because there is so much UB
that it becomes a Gordian knot of interconnected pitfalls in your C code. As you go through this
book, I’ll point out ways you can trigger UB, how to avoid it if you can, and how to trigger it in
other people’s code if possible. However, you should keep in mind that avoiding the nearly random
nature of UB is almost impossible, and you’ll just have to do your best.

WARNING! You’ll find that hardcore C fans frequently will try to beat you up about
UB. There’s a class of C programmers who don’t write very much C code but have
memorized all of the UB just so they could beat up a beginner intellectually. If you
run into one of these abusive programmers, please ignore them. Often, they aren’t
practicing C programmers, they are arrogant, abusive, and will only end up asking
you endless questions in an attempt to prove their superiority rather than helping
you with your code. Should you ever need help with your C code, simply email me at
help@learncodethehardway.org, and I will gladly help you.

THIS BOOK IS NOT REALLY ABOUT C xvii

C Is a Pretty and Ugly Language
The presence of UB though is one more reason why learning C is a good move if you want to be
a better programmer. If you can write good, solid C code in the way I teach you, then you can
survive any language. On the positive side, C is a really elegant language in many ways. Its syntax
is actually incredibly small given the power it has. There’s a reason why so many other languages
have copied its syntax over the last 45 or so years. C also gives you quite a lot using very little
technology. When you’re done learning C, you’ll have an appreciation for a something that is very
elegant and beautiful but also a little ugly at the same time. C is old, so like a beautiful monument,
it will look fantastic from about 20 feet away, but when you step up close, you’ll see all the cracks
and flaws it has.

Because of this, I’m going to teach you the most recent version of C that I can make work with
recent compilers. It’s a practical, straightforward, simple, yet complete subset of C that works well,
works everywhere, and avoids many pitfalls. This is the C that I use to get real work done, and not
the encyclopedic version of C that hardcore fans try and fail to use.

I know the C that I use is solid because I spent two decades writing clean, solid C code that pow-
ered large operations without much failure at all. My C code has probably processed trillions of
transactions because it powered the operations of companies like Twitter and airbnb. It rarely
failed or had security attacks against it. In the many years that my code powered the Ruby on Rails
Web world, it’s run beautifully and even prevented security attacks, while other Web servers fell
repeatedly to the simplest of attacks.

My style of writing C code is solid, but more importantly, my mind-set when writing C is one every
programmer should have. I approach C, and any programming, with the idea of preventing errors
as best I can and assuming that nothing will work right. Other programmers, even supposedly
good C programmers, tend to write code and assume everything will work, but rely on UB or the
operating system to save them, neither of which will work as a solution. Just remember that if
people try to tell you that the code I teach in this book isn’t “real C.” If they don’t have the same
track record as me, maybe you can use what I teach you to show them why their code isn’t very
secure.

Does that mean my code is perfect? No, not at all. This is C code. Writing perfect C code is im-
possible, and in fact, writing perfect code in any language is impossible. That’s half the fun and
frustration of programming. I could take someone else’s code and tear it apart, and someone could
take my code and tear it apart. All code is flawed, but the difference is that I try to assume my code
is always flawed and then prevent the flaws. My gift to you, should you complete this book, is to
teach you the defensive programming mind-set that has served me well for two decades, and has
helped me make high-quality, robust software.

xviii LEARN C THE HARD WAY

What You Will Learn
The purpose of this book is to get you strong enough in C that you’ll be able to write your own

software with it or modify someone else’s C code. After this book, you should read Brian Kernighan

and Dennis Ritchie’s The C Programming Language, Second Edition (Prentice Hall, 1988), a book

by the creators of the C language, also called K&R C. What I’ll teach you is

• The basics of C syntax and idioms

• Compilation, make files, linkers

• Finding bugs and preventing them

• Defensive coding practices

• Breaking C code

• Writing basic UNIX systems software

By the final exercise, youwill havemore than enough ammunition to tackle basic systems software,
libraries, and other smaller projects.

How to Read This Book
This book is intended for programmers who have learned at least one other programming lan-
guage. I refer you to my book Learn Python the Hard Way (Addison-Wesley, 2013) if you haven’t
learned a programming language yet. It’s meant for beginners and works very well as a first book
on programming. Once you’ve completed Learn Python the Hard Way, then you can come back
and start this book.

For those who’ve already learned to code, this book may seem strange at first. It’s not like other
books where you read paragraph after paragraph of prose and then type in a bit of code here
and there. Instead, there are videos of lectures for each exercise, you code right away, and then I
explain what you just did. This works better because it’s easier for me to explain something you’ve
already done than to speak in an abstract sense about something you aren’t familiar with at all.

Because of this structure, there are a few rules that you must follow in this book:

• Watch the lecture video first, unless the exercise says otherwise.

• Type in all of the code. Don’t copy-paste!

• Type in the code exactly as it appears, even the comments.

• Get it to run and make sure it prints the same output.

• If there are bugs, fix them.

THIS BOOK IS NOT REALLY ABOUT C xix

• Do the Extra Credit, but it’s all right to skip anything you can’t figure out.

• Always try to figure it out first before trying to get help.

If you follow these rules, do everything in the book, and still can’t code C, then you at least tried.
It’s not for everyone, but just trying will make you a better programmer.

The Videos
Included in this course are videos for every exercise, and in many cases, more than one video for
an exercise. These videos should be considered essential to get the full impact of the book’s educa-
tional method. The reason for this is thatmany of the problems with writing C code are interactive
issues with failure, debugging, and commands. C requires much more interaction to get the code
running and to fix problems, unlike languages like Python and Ruby where code just runs. It’s also
much easier to show you a video lecture on a topic, such as pointers or memory management,
where I can demonstrate how the machine is actually working.

I recommend that as you go through the course, you plan to watch the videos first, and then do
the exercises unless directed to do otherwise. In some of the exercises, I use one video to present
a problem and then another to demonstrate the solution. In most of the other exercises, I use a
video to present a lecture, and then you do the exercise and complete it to learn the topic.

The Core Competencies
I’m going to guess that you have experience using a lesser language. One of those usable languages
that lets you get away with sloppy thinking and half-baked hackery like Python or Ruby. Or, maybe
you use a language like LISP that pretends the computer is some purely functional fantasy landwith
padded walls for little babies. Maybe you’ve learned Prolog, and you think the entire world should
just be a database where you walk around in it looking for clues. Even worse, I’m betting you’ve
been using an integrated development environment (IDE), so your brain is riddled with memory
holes, and you can’t even type an entire function’s name without hitting CTRL-SPACE after every
three characters.

No matter what your background is, you could probably use some improvement in these areas:

Reading and Writing

This is especially true if you use an IDE, but generally I find programmers do too much skimming
and have problems reading for comprehension. They’ll just skim code that they need to under-
stand in detail without taking the time to understand it. Other languages provide tools that let
programmers avoid actually writing any code, so when faced with a language like C, they break
down. The simplest thing to do is just understand that everyone has this problem, and you can fix
it by forcing yourself to slow down and be meticulous about your reading and writing. At first, it’ll
feel painful and annoying, but take frequent breaks, and then eventually it’ll be easier to do.

xx LEARN C THE HARD WAY

Attention to Detail

Everyone is bad at this, and it’s the biggest cause of bad software. Other languages let you get away
with not paying attention, but C demands your full attention because it’s right in the machine, and
the machine is very picky. With C, there is no “kind of similar” or “close enough,” so you need to
pay attention. Double check your work. Assume everything you write is wrong until you prove it’s
right.

Spotting Differences

A key problem that people who are used to other languages have is that their brains have been
trained to spot differences in that language, not in C. When you compare code you’ve written to
my exercise code, your eyes will jump right over characters you think don’t matter or that aren’t
familiar. I’ll be giving you strategies that force you to see your mistakes, but keep in mind that if
your code is not exactly like the code in this book, it’s wrong.

Planning and Debugging

I love other, easier languages because I can just hang out. I can type the ideas I have into their
interpreter and see results immediately. They’re great for just hacking out ideas, but have you
noticed that if you keep doing hack until it works, eventually nothing works? C is harder on you
because it requires you to first plan out what you want to create. Sure, you can hack for a bit, but
you have to get serious much earlier in C than in other languages. I’ll be teaching you ways to
plan out key parts of your program before you start coding, and this will likely make you a better
programmer at the same time. Even just a little planning can smooth things out down the road.

Learning Cmakes you a better programmer because you are forced to deal with these issues earlier
and more frequently. You can’t be sloppy about what you write or nothing will work. The advan-
tage of C is that it’s a simple language that you can figure out on your own, which makes it a great
language for learning about the machine and getting stronger in these core programming skills.

This page intentionally left blank

6

EXERCISE 1

Dust Off That Compiler

A fter you have everything installed, you need to confirm that your compiler works. The easiest
way to do that is to write a C program. Since you should already know at least one program-

ming language, I believe you can start with a small but extensive example.
ex1.c

1 #include <stdio.h>
2
3 /* This is a comment. */
4 int main(int argc, char *argv[])
5 {
6 int distance = 100;
7
8 // this is also a comment
9 printf("You are %d miles away.\n", distance);
10
11 return 0;
12 }

If you have problems getting the code up and running, watch the video for this exercise to see me
do it first.

Breaking It Down
There are a few features of the C language in this code that you might or might not have figured
out while you were typing it. I’ll break this down, line by line, quickly, and then we can do exercises
to understand each part better. Don’t worry if you don’t understand everything in this breakdown.
I am simply giving you a quick dive into C and promise you will learn all of these concepts later in
the book.

Here’s a line-by-line description of the code:

ex1.c:1 An include, and it is the way to import the contents of one file into this source file.

C has a convention of using .h extensions for header files, which contain lists of functions

to use in your program.

ex1.c:3 This is a multiline comment, and you could put as many lines of text between the

opening /* and closing */ characters as you want.

ex1.c:4 A more complex version of the main function you’ve been using so far. How C pro-

gramswork is that the operating system loads your program, and then it runs the function

DUST OFF THAT COMPILER 7

named main. For the function to be totally complete it needs to return an int and take

two parameters: an int for the argument count and an array of char * strings for the

arguments. Did that just fly over your head? Don’t worry, we’ll cover this soon.

ex1.c:5 To start the body of any function, youwrite a { character that indicates the beginning

of a block. In Python, you just did a : and indented. In other languages, you might have

a begin or do word to start.

ex1.c:6 A variable declaration and assignment at the same time. This is how you create a

variable, with the syntax type name = value;. In C, statements (except for logic) end in

a ; (semicolon) character.

ex1.c:8 Another kind of comment. It works like in Python or Ruby, where the comment starts

at the // and goes until the end of the line.

ex1.c:9 A call to your old friend printf. Like in many languages, function calls work with

the syntax name(arg1, arg2); and can have no arguments or any number of them. The

printf function is actually kind of weird in that it can take multiple arguments. You’ll

see that later.

ex1.c:11 A return from the main function that gives the operating system (OS) your exit

value. You may not be familiar with how UNIX software uses return codes, so we’ll cover

that as well.

ex1.c:12 Finally, we end the main function with a closing brace } character, and that’s the

end of the program.

There’s a lot of information in this breakdown, so study it line by line and make sure you at least
have a grasp of what’s going on. You won’t know everything, but you can probably guess before
we continue.

What You Should See
You can put this into an ex1.c and then run the commands shown here in this sample shell output.
If you’re not sure how this works, watch the video that goes with this exercise to see me do it.

Exercise 1 Session

$ make ex1
cc -Wall -g ex1.c -o ex1
$./ex1
You are 100 miles away.
$

The first command make is a tool that knows how to build C programs (and many others). When
you run it and give it ex1 you are telling make to look for the ex1.c file, run the compiler to build

8 LEARN C THE HARD WAY

it, and leave the results in a file named ex1. This ex1 file is an executable that you can run with
./ex1, which outputs your results.

How to Break It
In this book, I’m going to have a small section for each program teaching you how to break the
program if it’s possible. I’ll have you do odd things to the programs, run them in weird ways, or
change code so that you can see crashes and compiler errors.

For this program, simply try removing things at random and still get it to compile. Just make a
guess at what you can remove, recompile it, and then see what you get for an error.

Extra Credit
• Open the ex1 file in your text editor and change or delete random parts. Try running it

and see what happens.

• Print out five more lines of text or something more complex than ”hello world.”

• Run man 3 printf and read about this function and many others.

• For each line, write out the symbols you don’t understand and see if you can guess what

they mean. Write a little chart on paper with your guess so you can check it later to see

if you got it right.

This page intentionally left blank

10

EXERCISE 2

Using Makefiles to Build

W e’re going to use a program called make to simplify building your exercise code. The make
program has been around for a very long time, and because of this it knows how to build

quite a few types of software. In this exercise, I’ll teach you just enough Makefile syntax to con-
tinue with the course, and then an exercise later will teach you more complete Makefile usage.

Using Make
How make works is you declare dependencies, and then describe how to build them or rely on the
program’s internal knowledge of how to build most common software. It has decades of knowl-
edge about building a wide variety of files from other files. In the last exercise, you did this already
using commands:

$ make ex1
or this one too
$ CFLAGS="-Wall" make ex1

In the first command, you’re telling make, ”I want a file named ex1 to be created.” The program
then asks and does the following:

1. Does the file ex1 exist already?

2. No. Okay, is there another file that starts with ex1?

3. Yes, it’s called ex1.c. Do I know how to build .c files?

4. Yes, I run this command cc ex1.c -o ex1 to build them.

5. I shall make you one ex1 by using cc to build it from ex1.c.

The second command in the listing above is a way to pass modifiers to the make command. If
you’re not familiar with how the UNIX shell works, you can create these environment variables
that will get picked up by programs you run. Sometimes you do this with a command like export
CFLAGS="-Wall" depending on the shell you use. You can, however, also just put them before the
command you want to run, and that environment variable will be set only while that command
runs.

In this example, I did CFLAGS="-Wall" make ex1 so that it would add the command line option
-Wall to the cc command that make normally runs. That command line option tells the compiler
cc to report all warnings (which, in a sick twist of fate, isn’t actually all the warnings possible).

USING MAKEFILES TO BUILD 11

You can actually get pretty far with just using make in that way, but let’s get into making a
Makefile so you can understand make a little better. To start off, create a file with just the
following in it.

ex2.1.mak

CFLAGS=-Wall -g

clean:
rm -f ex1

Save this file as Makefile in your current directory. The program automatically assumes there’s a
file called Makefile and will just run it.

WARNING! Make sure you are only entering TAB characters, not mixtures of TAB and
spaces.

This Makefile is showing you some new stuff with make. First, we set CFLAGS in the file so we
never have to set it again, as well as adding the -g flag to get debugging. Then, we have a section
named clean that tells make how to clean up our little project.

Make sure it’s in the same directory as your ex1.c file, and then run these commands:

$ make clean
$ make ex1

What You Should See
If that worked, then you should see this:

Exercise 2 Session

$ make clean
rm -f ex1
$ make ex1
cc -Wall -g ex1.c -o ex1
ex1.c: In function 'main':
ex1.c:3: warning: implicit declaration of function 'puts'
$

Here you can see that I’m running make clean, which tells make to run our clean target. Go look
at the Makefile again and you’ll see that under this command, I indent and then put in the shell
commands I want make to run for me. You could put as many commands as you wanted in there,
so it’s a great automation tool.

12 LEARN C THE HARD WAY

WARNING! If you fixed ex1.c to have #include <stdio.h>, then your output won’t
have the warning (which should really be an error) about puts. I have the error here
because I didn’t fix it.

Notice that even though we don’t mention ex1 in the Makefile, make still knows how to build it
and use our special settings.

How to Break It
That should be enough to get you started, but first let’s break this Makefile in a particular way so
you can see what happens. Take the line rm -f ex1 and remove the indent (move it all the way
left) so you can see what happens. Rerun make clean, and you should get something like this:

$ make clean
Makefile:4: *** missing separator. Stop.

Always remember to indent, and if you get weird errors like this, double check that you’re consis-
tently using tab characters because some make variants are very picky.

Extra Credit
• Create an all: ex1 target that will build ex1 with just the command make.

• Read man make to find out more information on how to run it.

• Read man cc to find out more information on what the flags -Wall and -g do.

• Research Makefiles online and see if you can improve this one.

• Find a Makefile in another C project and try to understand what it’s doing.

This page intentionally left blank

349

INDEX

Index

Operators

– (minus sign)
negative number (unary), 108
subtract (binary), 108
subtraction operator, 21

–– (minus signs)
decrement, then read (prefix), 108
read, then decrement (postfix), 108

() (parentheses)
C operator, 23
function call operator, 108

! (exclamation point)
Boolean NOT operator, 109
logical NOT operator, 22

? : (question mark, colon)
Boolean ternary operator, 109
logical ternary operator, 22

. (period)
structure reference operator, 23
structure value access, 108

[] (square brackets)
array index, 108
array subscript operator, 23

{} (curly braces)
C operator, 23
enclosing functions, 7

* (asterisk)
multiplication operator, 21
multiply operator (binary), 108
value of (unary), 108
value-of operator, 23

& (ampersand)
address of (unary), 108
address-of operator, 23
bitwise AND operator, 22
Boolean AND operator, 109

^ (caret)
assign XOR-equal, 109
bitwise XOR operator, 22

^= (caret, equal)
assign XOR-equal operator, 23
bitwise XOR and assign operator, 110

+ (plus sign)
add operator (binary), 108
add operator (unary), 108
addition operator, 21

++ (plus signs)
increment, then read (prefix), 108
read, then increment (postfix), 108

|= (vertical bar, equal)
assign or-equal, 23
bitwise OR and assign operator, 110

, (comma), C operator, 23
–– (minus signs), decrement operator, 21
/ (slash), divide operator, 21, 108
// (slashes), comment indicator, 7, 24
; (semicolon), statement terminator, 7
: (colon), C operator, 23
!= (exclamation point, equal), not equal

operator, 22, 109
?= (question mark, equal), devpkg syntax, 278
*/ (asterisk slash), multi-line comment end,

6, 24
/* (slash asterisk), multi-line comment start,

6, 24
*= (asterisk, equal), assign multiply-equal,

23, 110
&& (ampersands), logical AND operator, 22
&= (ampersand, equal), assign and-equal,

23, 110
++ (plus signs), increment operator, 21
+= (plus sign, equal), assign plus-equal, 23, 110

350 INDEX

< (left angle bracket), less than operator,
22, 109

<< (left angle brackets), bitwise shift left
operator, 22, 109

<<= (left angle brackets, equal), assign
shift-left-equal, 23, 110

<= (left angle bracket, equal), less than or
equal operator, 22, 109

= (equal sign), assign equal, 23, 110
–= (minus, equal), assign minus-equal,

23, 110
/= (slash, equal), assign divide-equal, 23, 110
== (equal signs), equals operator, 22, 109
| (vertical bar), bitwise OR operator, 22, 109
|| (vertical bars), Boolean OR operator, 109
~ (tilde), complement operator, 109
% (percent sign)

modulus operator, 21
printing as a literal, 33

%= (percent sign, equal), assign
modulus-equal, 23, 110

Symbols

-> (dash, right angle bracket)
structure dereference operator, 23
structure pointer access, 108

> (right angle bracket), greater than operator,
22, 109

>= (right angle bracket, equal), greater than
or equal operator, 22, 109

>> (right angle brackets), bitwise shift right
operator, 22, 109

>>= (right angle brackets, equal), assign
shift-left-equal, 23, 110

'0' (nul) byte, array terminator, 46–49

A

Adler, Mark, 240
Adler-32 function, 240–247
Alphabetical characters, identifying, 60
Ampersand (&)

address of (unary), 108
address-of operator, 23

bitwise AND operator, 22
Boolean AND operator, 109

Ampersand, equal (&=), assign and-equal, 23,
110

Ampersands (&&), logical AND operator, 22
APR (Apache Portable Runtime), 274, 275–276
Arguments, passing to a program

GDB, 18
LLDB, 19

Arguments, printing, 54
Arithmetic operators, 21
Arrays

’0’ (nul) byte, array terminator, 46–49
description, 46–49
dynamic, 198–206
indexing into, 65–66
multiple dimensions, 57
vs. pointers, 67
sizing, 50–53
of strings, 54–57

Assignment operators, 23, 109–110
Asterisk (*)

multiplication operator, 21
multiply operator (binary), 108
value of (unary), 108
value-of operator, 23

Asterisk, equal (*=), assign multiply-equal, 23,
110

Asterisk slash (*/), multi-line comment end, 6,
24

attach pid command
GDB, 19
LLDB, 19

Attaching to/detaching from a process
GDB, 19
LLDB, 19

auto operator, 26
Automate everything, 148
Automated testing

description, 166
sample code, 166
wiring the test framework, 167–171

INDEX 351

B

Backtrace, dumping
GDB, 18–19
LLDB, 19

backtrace command, GDB, 18
bassign function, 227
bassignblk function, 227
bassigncstr function, 227
bchar function, 227
bconcat function, 227
bdata function, 227
bdestroy function, 227
Bernstein, Dan J., 240
Better String Library, 225–227
bfindreplace function, 227
bformat function, 227
bfromcstr function, 227
Binary search, 211–220
Binary search trees, 260–273. See also

Hashmaps; Ternary search trees.
binstr function, 227
biseq function, 227
Bit operators, 109
Bitwise operators, 22, 109
Blanks, detecting, 60
blength function, 227
blk2bstr function, 227
BMH (Boyer-Moore-Horspool) algorithm,

248–257
Boolean expressions

switch statements, 42–44
while-loop statements, 40–41

Boolean operators, 109. See also True/false
branching.

break command
flow control, 110
GDB, 18

break operator, 26
breakpoint set command, LLDB, 19
Breakpoints, GDB

clearing, 19
setting, 18
showing information about, 19

Breakpoints, LLDB
clearing, 19
setting, 19
showing information about, 19

bsplit function, 227
bstrcpy function, 227
BSTree, 260–273. See also TSTree.
bstricmp function, 227
bstrlib library, 225–227
bstrlib.o file, 278
Bubble sort, 190–197
Building code. See also make command;

Makefile.
in GDB, 18
in LLDB, 19

C

C language, compilers
checking version, 2
confirming, 6–8
error handling, 90–91
sample code, 6–8
support under Windows, 3

C language, operators. See also specific
operators.

arithmetic, 21
assignment, 23, 109–110
bitwise, 22, 109
Boolean, 109
data, 23, 108
logical, 22, 109
math, 108
memorizing, 20–21
relational, 22

C language, syntax
keywords, 26–27
lexemes, 26–29
lexical analysis, 26–29
memorizing, 26–29
syntax structures, 27–30

C preprocessor (CPP)
conditionally compiling code, 98
expanding macros, 96–98

352 INDEX

C UB (common undefined behavior)
definition, xv
description, 172–173
top 20 undefined behaviors, 174–177

C unions, 212–213
Caret (^)

assign XOR-equal, 109
bitwise XOR operator, 22

Caret, equal (^=)
assign XOR-equal operator, 23
bitwise XOR and assign operator, 110

case operator, 26
cc -Wall -g -DNDEBUG -ldl ex29.c -o

ex29 command, 164
cd command

GDB, 18
LLDB, 19

Changing directory
GDB, 18
LLDB, 19

char operator, 26, 104
Character data types, 104
Character type data, defining, 26
Characters, detecting, 60
Clang’s Getting Started instructions, 2
clear command, 19
Clearing breakpoints, 19
Code, building. See make command;

Makefile.
Colon (:), C operator, 23
Comma (,), C operator, 23
Command line arguments, printing, 54
commands.c file, 288–291
commands.h file, 287–288
Comparing strings, 227
Compilers, C language. See C language,

compilers.
Concatenating strings, 227
const operator, 26
const qualifier, 105
continue command

flow control, 110

GDB, 18
LLDB, 19

continue operator, 27
Continue running the program

GDB, 18
LLDB, 19

Control structures, 110
Copying strings, 227
Counting statistical samples, 300, 340–341
CPP (C preprocessor)

conditionally compiling code, 98
expanding macros, 96–98

Creating
double linked list libraries, 178–179
strings, 227
variables, 32–34

Creating, data types
from multiple variables, 27, 32–34
for new types, 29
as structs, 30

Creative programmer mind-set, 140–141
Curly braces ({})

C operator, 23
enclosing functions, 7

Cygwin system, 3

D

DArray program, 198–206
Dash, right angle bracket (->)

structure dereference operator, 23
structure pointer access, 108

Data operators, 23, 108
Data size, determining, 27
Data structures

definition, 178
fuzzing, 272
testing, 272

Data types. See also specific data types.
character, 26, 104
combining into a single record. See Structs.
conversion, 105
declare empty, 27
double floating point, 27, 104

INDEX 353

enumerated types, 104
floating point, 27, 104
modifiers, 104–107
qualifiers, 105
sizes, 106–107
void, 104

Data types, and flow control
assignment operators, 109–110
bit operators, 109
Boolean operators, 109
control structures, 110
data operators, 108
logic operators, 109
math operators, 108
operators, 107–110
type conversion, 105
type modifiers, 104–107
type qualifiers, 105
type sizes, 106–107
types, 104–107

Data types, creating
from multiple variables, 27, 32–34
for new types, 29
as structs, 30

Data types, integer
declaring, 27
integer constants, 29, 104
short integer, 27
signed modifier for, 27
unsigned modifier for, 27

DB functions, devpkg program, 279–287
db.c file, 280–282
dbg.h macro, 91–95
db.h file, 280
db.o file, 278
Debug macros, 91–95
Debug printing vs. GDB, 100–102
Debugging. See also GDB (GNU Debugger);

LLDB Debugger.
advanced techniques, 100–102
avoiding stack bugs, 118–119
strategy, 101–102
with vararg functions, 132–136

default operator, 27
Defensive programmer mind-set, 141
Defensive strategies

automate everything, 148
document assumptions, 147
fail early and openly, 146
importance of order, 149
never trust input, 142–145
overview, 141–142
prevent errors, 145–146
prevention over documentation, 147–148
question authority, 149
simplify and clarify, 148–149

Destroying strings, 227
detach command, 19
Detaching from/attaching to a process

GDB, 19
LLDB, 19

devpkg file, 279
devpkg program

?= (question mark, equal), 278
apr_off_t error, 278
apr_thread_proc.h functions, 283
checking for installed URLs, 279–287
command functions, 287–288
commands, 274
commands.c file, 288–291
commands.h file, 287–288
DB functions, 279–287
dependencies, 277
description, 274
devpkg.c file, 292–294
external tools, 283
Main function, 292–294
Makefile, 277–278
off64_t error, 278
README file, 294
recording and listing installed URLs,

279–287
shell functions, 283–287
shell.c file, 284–286
Shell_exec file, 287

354 INDEX

devpkg program (continued)
shell.h file, 283–284
Shell.run function, 286
source files, 278–279

devpkg.c file, 292–294
Dictionaries. See Hashmaps.
DJB Hash function, 240–247
do operator, 27
Document assumptions, 147
Double floating point data types

declaring, 27
description, 104

Double linked lists
creating a library, 178–179
data structures, definition, 178
description, 179–181
implementing, 181–185
testing, 185–187

double operator, 27, 104
do-while loop

example, 29
flow control, 110
starting, 27

Duff, Tom, 120
Duff’s device, 120–125
Dumping a backtrace

GDB, 18–19
LLDB, 19

Dynamic arrays, 198–206
Dynamic libraries, 160

E

else operator, 27
else-if statement, 36–38
else-statement, 36–38
Emacs text editor, 4
enum operator, 27, 29, 104
Enumerated data types, 104
Equal sign (=), assign equal, 23, 110
Equal signs (==), equals operator, 22, 109
Equality testing. See Logic operators.
Error codes, 90–91

Error handling. See C language, error
handling.

ex22.c file, 112–114
ex22.h file, 112–114
ex22_main.c file, 114–118
Exclamation point (!)

Boolean NOT operator, 109
logical NOT operator, 22

Exclamation point, equal (!=), not equal
operator, 22, 109

Exit out of a compound statement, 26
extern operator, 27

F

Fail early and openly, 146
fclose function, 129
fcloseall function, 130
fdopen function, 129
fgetpos function, 130
fgets function, 126–130
Find and replace strings, 227
float operator, 27, 104
Floating point data types

declaring, 27
description, 104

FNV-1a function, 240–247
fopen function, 129
for operator, 27
for-loops

arrays of strings, 54–57
example, 29
starting, 27

Formatted printing, 14–16
Formatting strings, 227
Fowler, Glenn, 240
fprintf function, 130
fread function, 130
freopen function, 129
fscanf function, 126–130
fseek function, 130
ftell function, 130

INDEX 355

Function calls, stepping into
GDB, 18
LLDB, 19

Function calls, stepping over
GDB, 18
LLDB, 19

Functions. See also specific functions.
bad, checking for, 158–159
defining, 29
I/O handling, 126–130
returning from, 27
using, 58–60
vararg, 132–136
with variable arguments, 132–136
writing, 58–60

Functions, pointers to
description, 84–85
format, 84
sample code, 84–85

Fuzzing data structures, 272
fwrite function, 130

G

GDB (GNU Debugger). See also LLDB
Debugger.

attaching to/detaching from a running
process, 19

build code, 18
change directory, 18
continue running the program, 18
vs. debug printing, 100–102
dumping a backtrace, 18–19
help, 18
list ten source lines, 19
passing arguments to the program, 18
quit, 18
start a program, 18
start a shell, 19
step into function calls, 18
step over function calls, 18
watchpoints, showing information

about, 19

GDB (GNU Debugger), breakpoints
clearing, 19
setting, 18
showing information about, 19

GDB (GNU Debugger), commands
attach pid, 19
backtrace, 18
break, 18
cd, 18
clear, 19
continue, 18
detach, 19
help, 18
info break, 19
info watch, 19
list, 19
make, 18
next, 18
print expr, 18
pwd, 18
quick reference, 18–19
quit, 18
run, 18
shell, 19
step, 18

GDB (GNU Debugger), printing
value of an expression, 18
working directory, 18

gedit text editor, 3
Getting started. See Setting up your computer.
GNU Debugger (GDB). See GDB (GNU

Debugger).
goto operator, 27, 29, 110

H

Hashmaps
Adler-32 function, 240–247
algorithms, 240–247
vs. binary or ternary search trees, 323
definition, 228
DJB Hash function, 240–247
example, 228–235
finding prefixes, 327

356 INDEX

Hashmaps (continued)
FNV-1a function, 240–247
scanning, 235
unit testing, 235–237

Hashmap_traverse function, 235
Headers, Makefile example, 154–155
Heap sort, 208–210
Heaps

potential problems, 81
sample code, 74–79
vs. stack memory allocation, 74–79

Help
GDB, 18
LLDB, 19

help command
GDB, 18
LLDB, 19

I

IDE (Integrated Development
Environment), 4

Identifiers, declaring as external, 27
if operator, 27
if-statement

else branch, 27
example, 28
starting, 27
true/false branching, 36–38

Indexing into arrays, 65–66
Inequality testing. See Logic operators.
info break command, 19
info watch command, 19
Input/output. See I/O.
Installing

a Makefile, example, 158
software. See devpkg program.

Int constants, defining a set of, 27
int operator, 27, 104
int8_t type size, 106
int16_t type size, 106
int32_t type size, 106
int64_t type size, 106
Integer constants, data types for, 104

Integer data type
declaring, 27
signed modifier for, 27
unsigned modifier for, 27

Integrated Development Environment (IDE), 4
INT_FAST (N)_MAX type size, 107
int_fast (N)_t type size, 107
INT_FAST(N)_MAX type size, 107
int_fast(N)_t type size, 107
INT_LEAST (N)_MAX type size, 107
INT_LEAST (N)_MIN type size, 107
int_least (N)_t type size, 107
INT_LEAST(N)_MAX type size, 107
INT_LEAST(N)_MIN type size, 107
int_least(N)_t type size, 107
INTMAX_MAX type size, 107
INTMAX_MIN type size, 107
intmax_t type size, 107
INTPTR_MAX type size, 107
INTPTR_MIN type size, 107
intptr_t type size, 107
I/O, reading from files, 126–130
isalpha function, 60
isblank function, 60

J

Jump tables, 42–44
Jumping to a label, 27, 29

K

Keywords, C, 26–27

L

Left angle bracket, equal (<=), less than or
equal operator, 22, 109

Left angle bracket (<), less than operator, 22,
109

Left angle brackets, equal (<<=), assign
shift-left-equal, 23, 110

Left angle brackets (<<), bitwise shift left
operator, 22, 109

Length of strings, getting, 227
Letters, identifying, 60

INDEX 357

Lexemes, C syntax, 26–29
Lexical analysis, C syntax, 26–29
Libraries

Better String Library, 225–227
bstrlib, 225–227
double linked lists, 178–179
dynamic, 160
linking to, 160–164
shared, dynamic loading, 161–164
static, 160

Linked list algorithms, sorting with, 190–197
Linking to libraries, 160–164
Linux

compiler version, checking, 2
running under Windows, 3
setting up your computer, 2

list command, 19
List next ten source lines in GDB and LLDB, 19
list_algos.c file, 193–195
list_algos.h file, 193
list_algos_tests.f file, 191–193
LLDB Debugger. See also GDB (GNU

Debugger).
attaching to/detaching from a process, 19
building code, 19
change directory, 19
continue running the program, 19
dumping a backtrace, 19
help, 19
listing next ten lines, 19
quitting, 19
starting a shell, 19
starting the program, 19
stepping into function calls, 19
stepping over function calls, 19
watchpoints, showing information

about, 19
LLDB Debugger, breakpoints

clearing, 19
setting, 19
showing information about, 19

LLDB Debugger, commands
attach pid, 19

breakpoint set, 19
cd, 19
clear, 19
continue, 19
detach, 19
help, 19
info break, 19
info watch, 19
list, 19
make, 19
next, 19
print expr, 19
pwd, 19
quick reference, 19
quit, 19
run command, 19
shell, 19
step, 19
thread backtrace, 19

LLDB Debugger, printing
expressions, 19
working directory, 19

load command, 344
Local variables, giving a local lifetime, 26
Log files, finding, 138
Logfind project, 138
Logic operators, 22, 109
long modifier, 104
Loops. See also specific loops.

breaking to exit, 28
continuing to the top of, 27
infinite, 144

M

Mac OS X
compiler version, checking, 2
setting up your computer, 2–3

Macros
dbg.h, 91–95
for debugging, 91–95
expanding, 96–98

MacVim text editor, 4
Main function, devpkg program, 292–294

358 INDEX

make clean command, 10–12
make command

building code, 10–12
GDB, 18
LLDB, 19

Makefile
as automation tool, 11
building code, 10–12
devpkg program, 277–278

Makefile, examples
basic structure, 152–154
checking for bad functions, 158–159
cleanup, 157–158
header, 154–155
installing, 158
target build, 155–156
unit tests, 156–157

Math operators, 108
Max/min samples, identifying, 300
Mean, calculating, 300, 340–341
Memorizing

C operators, 20–21
C syntax, 26–29

Memory
format conversion, 212–213
leaks, shown by the debugger, 80
stack allocation, 80–81

Merge sort, 190–197, 208–210
Middle number, calculating, 300, 340–341
Mind-set for programming. See Programmer

mind-set.
MinGw system, 3
Min/max samples, identifying, 300, 340–341
Minus sign (-)

negative number (unary), 108
subtract (binary), 108
subtraction operator, 21

Minus sign, equal (–=), assign minus-equal, 23,
110

Minus signs (––)
decrement, then read (prefix), 108
read, then decrement (postfix), 108

Minus signs (––), decrement operator, 21

N

Nano text editor, 4
netclient.c file, 316–320
Network server program, 338
Never trust input, 142–145
next command

GDB, 18
LLDB, 19

Noll, Leonard Curt, 240
Nul byte, array terminator, 46–49

O

off64_t error, 278
Operators. See C language, operators.
Output. See I/O.

P

Percent sign (%)
modulus operator, 21
printing as a literal, 33

Percent sign, equal (%=), assign modulus-equal,
23, 110

Period (.)
structure reference operator, 23
structure value access, 108

Plus sign (+)
add operator (binary), 108
add operator (unary), 108
addition operator, 21

Plus sign, equal (+=), assign plus-equal,
23, 110

Plus signs (++)
increment, then read (prefix), 108
read, then increment (postfix), 108

Plus signs (++), increment operator, 21
Pointers

vs. arrays, 67
definition, 65
description, 65
indexing into arrays, 65–66
lexicon of, 66–67

INDEX 359

sample code, 62–64
to structures, 68–71
uses for, 66

Pointers, to functions
description, 84–85
format, 84
sample code, 84–85

Prevent errors, 145–146
Prevention over documentation, 147–148
print expr command

GDB, 18
LLDB, 19

printf function, 14–16
Printing

% (percent signs), as literals, 33
command line arguments, 54
expression values, 18, 19
formatting, 14–16
from GDB, 18
from LLDB, 19
in scientific notation, 33
working directory, 18, 19

Programmer mind-set
creative, 140–141
defensive, 141

Programmer mind-set, defensive strategies
automate everything, 148
document assumptions, 147
fail early and openly, 146
importance of order, 149
never trust input, 142–145
overview, 141–142
prevent errors, 145–146
prevention over documentation,

147–148
question authority, 149
simplify and clarify, 148–149

PTRDIFF_MAX type size, 107
PTRDIFF_MIN type size, 107
pwd command

GDB, 18
LLDB, 19

Q

Question authority, 149
Question mark, colon (?:)

Boolean ternary operator, 109
logical ternary operator, 22

Question mark, equal (?=), devpkg
syntax, 278

Queues, 296–299
Quick sort, 208–210
quit command

GDB, 18
LLDB, 19

Quitting
GDB, 18
LLDB, 19

R

Radix sort, 211–221
RadixMap_add function, 219
RadixMap_create function, 219
RadixMap_delete function, 219
RadixMap_destroy function, 219
RadixMap_find function, 219–220
RadixMap_sort function, 219, 220–221
radix_sort function, 219, 220–221
Reading from files, 126–130
README file, devpkg program, 294
register operator, 27
register qualifier, 105
Relational operators, 22
Return from a function, 27
return operator, 27
rewind function, 130
Right angle bracket, equal (>=), greater than

or equal operator, 22, 109
Right angle bracket (>), greater than operator,

22, 109
Right angle brackets, equal (>>=), assign

shift-left-equal, 23, 110
Right angle brackets (>>), bitwise shift right

operator, 22, 109
Ring buffers, 310–314

360 INDEX

run command
GDB, 18
LLDB, 19

S

Scanning hashmaps, 235
Scope

ex22.c file, 112–114
ex22.h file, 112–114
ex22_main.c file, 114–118
and stacks, 118–119

Search algorithms, 248–257
Searching

binary search, 211–220
binary search trees, 260–273
ternary search trees, 322–330

Semicolon (;), statement terminator, 7
Server improvements, 346
Server login times, summary statistics, 307
Setting

breakpoints, GDB, 18
breakpoints, LLDB, 19
strings, 227

Setting up your computer
Clang’s Getting Started instructions, 2
Linux, 2
Mac OS X, 2–3
text editors, 3–4. See also specific text

editors.
Windows, 3

Shared libraries, dynamic loading, 161–164
Shaw, Zed A., contact information, xv
shell command, 19
shell.c file, 284–286
Shell_exec file, 287
shell.h file, 283–284
shell.o file, 278
Shell.run function, 286
Shells, starting, 19
Short integer data type, declaring, 27
short modifier, 104
short operator, 27
Showing information about breakpoints, 19

signed modifier
description, 104
for integer data types, 27

Simplify and clarify, 148–149
SIZE_MAX type size, 107
sizeof operator

data access, 108
description, 23, 27
sizing arrays, 50–53

Slash, equal (/=), assign divide-equal, 23, 110
Slash (/), divide operator, 21, 108
Slash asterisk (/*), multi-line comment start,

6, 24
Slashes (//), comment indicator, 7, 24
Sorting

bubble sort, 190–197
heap sort, 208–210
with linked list algorithms, 190–197
merge sort, 190–197, 208–210
quick sort, 208–210
radix sort, 211–221
statistics, 344

Splitting strings, 227
Square brackets ([])

array index, 108
array subscript operator, 23

Squares of numbers, calculating, 300
Stacks

avoiding bugs, 118–119
definition, 81
description, 296–299
memory allocation, 80–81
potential problems, 81

Standard deviation, calculating, 300–304
Starting a program with arguments

GDB, 18
LLDB, 19

Starting a shell, 19
Static libraries, 160
static operator, 27
Statistics. See Summary statistics.
Statistics server, 340–341
stats.c file, 302–304

INDEX 361

Stats_create function, 304
Stats_dump function, 304
statserve program, 338, 340–341
stats.h API, 340–341
Stats_mean function, 304
Stats_recreate function, 304
Stats_sample function, 304
Stats_stddev function, 304
stats_tests.c file, 304–306
step command

GDB, 18
LLDB, 19

Stepping into function calls
GDB, 18
LLDB, 19

Stepping over function calls
GDB, 18
LLDB, 19

store command, 344
String_base_search function, 252–255
String_find function, 249–255, 257
Strings

arrays of, 54–57
Better String Library, 225–227
BMH (Boyer-Moore-Horspool) algorithm,

248–257
checking for validity, 224–225
comparing, 227
concatenating, 227
copying, 227
creating, 227
destroying, 227
disadvantages of, 224–225
find and replace, 227
formatting, 227
functions for, 227
getting characters from, 227
getting data from, 227
getting length of, 227
search algorithms, 248–257
setting, 227
splitting, 227

storing as arrays, 46–49
testing for equality, 227

StringScanner_scan function,
249–255, 257

String_setup_skip_chars function,
252–255

struct operator, 27, 30
Structs, 68–71
Sum, calculating, 300, 340–341
Sum of squares, calculating, 340–341
Summary statistics

counting samples, 300, 340–341
load command, 344
loading from a hard drive, 344
mean, calculating, 300, 340–341
middle number, calculating, 300, 340–341
min/max samples, 300, 340–341
routing, 342
for server login times, 307
sorting, 344
standard deviation, calculating, 300–304
statistics on statistics, 306–307
statistics server, 340–341
stats.c file, 302–304
Stats_create function, 304
Stats_dump function, 304
stats.h API, 340–341
Stats_mean function, 304
Stats_recreate function, 304
Stats_sample function, 304
Stats_stddev function, 304
stats_tests.c file, 304–306
store command, 344
storing to a hard drive, 344
sum, calculating, 300, 340–341
sum of squares, calculating, 300, 340–341
unit test, 304

switch operator, 27
switch-statements

branching in a, 26
default branch, 27
description, 42–44

362 INDEX

switch-statements (continued)
example, 28
starting, 27

Syntax structures, C syntax, 27–30

T

TCP/IP client, 316–321
Ternary search trees, 322–330. See also Binary

search trees; TSTree.
Testing

automated. See Automated testing.
data structures, 272
double linked lists, 185–187
strings for equality, 227

Text editors, 3–4. See also specific text editors.
TextWrangler text editor, 3
thread backtrace command, LLDB, 19
Tilde (~), complement operator, 109
True/false branching, 36–38
TSTree. See also BSTree.

fast URL routing, 332–336
searching with, 322–330

typedef operator, 27, 30

U

UB (undefined behavior). See C UB (common
undefined behavior).

uint8_t type size, 106
uint16_t type size, 106
uint32_t type size, 106
uint64_t type size, 106
UINT_FAST (N)_MAX type size, 107
uint_fast (N)_t type size, 107
UINT_FAST(N)_MAX type size, 107
uint_fast(N)_t type size, 107
UINT_LEAST (N)_MAX type size, 107
uint_least (N)_t type size, 107
UINT_LEAST(N)_MAX type size, 107
uint_least(N)_t type size, 107
UINTMAX_MAX type size, 107
uintmax_t type size, 107
UINTPTR_MIN type size, 107
uintptr_t type size, 107

union operator, 27, 30
Unions, 212–213
union-statement, starting, 27, 30
unsigned operator, 27, 104
URL routing, 332–336
Urlor tool, 332–336

V

Validity checking strings, 224–225
Variables

combining into a single record, 27. See also
Structs.

creating, 32–34
declaring as modifiable, 27
declaring to be stored in a CPU register, 27
make unmodifiable, 26
preserving value after scope exits, 27

Vertical bar, equal (|=)
assign or-equal, 23
bitwise OR and assign operator, 110

Vertical bar (|), bitwise OR operator, 22, 109
Vertical bars (||), Boolean OR operator, 109
Vim text editor, 4
VirtualBox, 3
Vo, Phong, 240
Void data types, 104
void operator, 27, 104
volatile operator, 27
volatile type qualifier, 105

W

Watchpoints, showing information about GDB
and LLDB, 19

while operator, 27
while-loop

Boolean expressions, 40–41
example, 28
starting, 27

Windows
C support, 3
running Linux under, 3
setting up your computer, 3

LearnIT at InformIT
Looking for a book, eBook, or training video on a new technology? Seeking timely
and relevant information and tutorials. Looking for expert opinions, advice, and tips?
InformIT has a solution.

• Learn about new releases and special promotions by subscribing to a wide
variety of monthly newsletters. Visit informit.com/newsletters.

• FREE Podcasts from experts at informit.com/podcasts.

• Read the latest author ar ticles and sample chapters at
informit.com/articles.

• Access thousands of books and videos in the Safari Books Online
digital library. safari.informit.com.

• Get Advice and tips from expert blogs at informit.com/blogs.

Visit informit.com to find out all the ways you can access the hottest technology content.

Are you part of the IT crowd?

Connect with Pearson authors and editors via RSS feeds, Facebook, Twitter, YouTube
and more! Visit informit.com/socialconnect .

 InformIT is a brand of Pearson and the online presence for the world’s
leading technology publishers. It’s your source for reliable and qualified

content and knowledge, providing access to the leading brands, authors, and contributors
from the tech community.

THE TRUSTED TECHNOLOGY LEARNING SOURCE

	Contents
	Acknowledgments
	This Book Is Not Really about C
	The Undefined Behaviorists
	C Is a Pretty and Ugly Language
	What You Will Learn
	How to Read This Book
	The Videos
	The Core Competencies
	Reading and Writing
	Attention to Detail
	Spotting Differences
	Planning and Debugging

	Exercise 1 Dust Off That Compiler
	Breaking It Down
	What You Should See
	How to Break It
	Extra Credit

	Exercise 2 Using Makefiles to Build
	Using Make
	What You Should See
	How to Break It
	Extra Credit

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W

