

Learn	Python	Programming
Second	Edition

	

	

A	beginner's	guide	to	learning	the	fundamentals	of	Python	language	to	write
efficient,	high-quality	code

	

	

	

	

	

	

	

	

	

	

Fabrizio	Romano

	

	

	

	

	

	

	

	

	

BIRMINGHAM	-	MUMBAI

Learn	Python	Programming	Second
Edition
Copyright	©	2018	Packt	Publishing

All	rights	reserved.	No	part	of	this	book	may	be	reproduced,	stored	in	a	retrieval	system,	or	transmitted	in
any	form	or	by	any	means,	without	the	prior	written	permission	of	the	publisher,	except	in	the	case	of	brief
quotations	embedded	in	critical	articles	or	reviews.

Every	effort	has	been	made	in	the	preparation	of	this	book	to	ensure	the	accuracy	of	the	information
presented.	However,	the	information	contained	in	this	book	is	sold	without	warranty,	either	express	or
implied.	Neither	the	author(s),	nor	Packt	Publishing	or	its	dealers	and	distributors,	will	be	held	liable	for
any	damages	caused	or	alleged	to	have	been	caused	directly	or	indirectly	by	this	book.

Packt	Publishing	has	endeavored	to	provide	trademark	information	about	all	of	the	companies	and	products
mentioned	in	this	book	by	the	appropriate	use	of	capitals.	However,	Packt	Publishing	cannot	guarantee	the
accuracy	of	this	information.

Commissioning	Editor:	Richa	Tripathi
Acquisition	Editor:	Karan	Sadawana
Content	Development	Editor:	Rohit	Singh
Technical	Editor:	Romy	Dias
Copy	Editor:	Safis	Editing
Project	Coordinator:	Vaidehi	Sawant
Proofreader:	Safis	Editing
Indexer:	Mariammal	Chettiyar
Graphics:	Jason	Monteiro
Production	Coordinator:	Shantanu	Zagade

First	published:	December	2015
Second	edition:	June	2018

Production	reference:	1280618

Published	by	Packt	Publishing	Ltd.
Livery	Place
35	Livery	Street
Birmingham
B3	2PB,	UK.

ISBN	978-1-78899-666-2

www.packtpub.com

	

http://www.packtpub.com

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

To	my	dear	dear	friend	and	mentor,	Torsten	Alexander	Lange.
Thank	you	for	all	the	love	and	support.

mapt.io

Mapt	is	an	online	digital	library	that	gives	you	full	access	to	over	5,000	books
and	videos,	as	well	as	industry	leading	tools	to	help	you	plan	your	personal
development	and	advance	your	career.	For	more	information,	please	visit	our
website.

https://mapt.io/

Why	subscribe?
Spend	less	time	learning	and	more	time	coding	with	practical	eBooks	and
Videos	from	over	4,000	industry	professionals

Improve	your	learning	with	Skill	Plans	built	especially	for	you

Get	a	free	eBook	or	video	every	month

Mapt	is	fully	searchable

Copy	and	paste,	print,	and	bookmark	content

PacktPub.com
Did	you	know	that	Packt	offers	eBook	versions	of	every	book	published,	with
PDF	and	ePub	files	available?	You	can	upgrade	to	the	eBook	version	at	www.PacktP
ub.com	and	as	a	print	book	customer,	you	are	entitled	to	a	discount	on	the	eBook
copy.	Get	in	touch	with	us	at	service@packtpub.com	for	more	details.

At	www.PacktPub.com,	you	can	also	read	a	collection	of	free	technical	articles,	sign
up	for	a	range	of	free	newsletters,	and	receive	exclusive	discounts	and	offers	on
Packt	books	and	eBooks.

	

http://www.PacktPub.com
http://www.packtpub.com

Foreword
I	first	got	to	know	Fabrizio	when	he	became	our	lead	developer	a	few	years	ago.
It	was	quickly	apparent	that	he	was	one	of	those	rare	people	who	combine
rigorous	technical	expertise	with	a	genuine	care	for	the	people	around	him	and	a
true	passion	to	mentor	and	teach.	Whether	it	was	designing	a	system,	pairing	to
write	code,	doing	code	reviews,	or	even	organizing	team	card	games	at	lunch,
Fab	was	always	thinking	not	only	about	the	best	way	to	do	the	job,	but	also
about	how	to	make	sure	that	the	entire	team	had	the	skills	and	motivation	to	do
their	best.

You'll	meet	the	same	wise	and	caring	guide	in	this	book.	Every	chapter,	every
example,	every	explanation	has	been	carefully	thought	out,	driven	by	a	desire	to
impart	the	best	and	most	accurate	understanding	of	the	technology,	and	to	do	it
with	kindness.	Fab	takes	you	under	his	wing	to	teach	you	both	Python's	syntax
and	its	best	practices.

I'm	also	impressed	with	the	scope	of	this	book.	Python	has	grown	and	evolved
over	the	years,	and	it	now	spans	an	enormous	ecosystem,	being	used	for	web
development,	routine	data	handling,	and	ETL,	and	increasingly	for	data	science.
If	you	are	new	to	the	Python	ecosystem,	it's	often	hard	to	know	what	to	study	to
achieve	your	goals.	In	this	book,	you	will	find	useful	examples	exposing	you	to
many	different	uses	of	Python,	which	will	help	guide	you	as	you	move	through
the	breadth	that	Python	offers.

I	hope	you	will	enjoy	learning	Python	and	become	a	member	of	our	global
community.	I'm	proud	to	have	been	asked	to	write	this,	but	above	all,	I'm	pleased
that	Fab	will	be	your	guide.

	

	

Naomi	Ceder

Python	Software	Foundation	Fellow

Contributors

About	the	author
Fabrizio	Romano	was	born	in	Italy	in	1975.	He	holds	a	master's	degree	in
computer	science	engineering	from	the	University	of	Padova.	He	is	also	a
certified	scrum	master,	Reiki	master	and	teacher,	and	a	member	of	CNHC.

He	moved	to	London	in	2011	to	work	for	companies	such	as	Glasses	Direct,
TBG/Sprinklr,	and	student.com.	He	now	works	at	Sohonet	as	a	Principal
Engineer/Team	Lead.

He	has	given	talks	on	Teaching	Python	and	TDD	at	two	editions	of	EuroPython,
and	at	Skillsmatter	and	ProgSCon,	in	London.

	

I'm	grateful	to	all	those	who	helped	me	create	this	book.	Special	thanks	to	Dr.	Naomi	Ceder	for	writing	the
foreword	to	this	edition,	and	to	Heinrich	Kruger	and	Julio	Trigo	for	reviewing	this	volume.	To	my	friends
and	family,	who	love	me	and	support	me	every	day,	thank	you.	And	to	Petra	Lange,	for	always	being	so
lovely	to	me,	thank	you.

About	the	reviewers
Heinrich	Kruger	was	born	in	South	Africa	in	1981.	He	obtained	a	bachelor's
degree	with	honors	from	the	University	of	the	Witwatersrand	in	South	Africa	in
2005	and	a	master's	degree	in	computer	science	from	Utrecht	University	in	the
Netherlands	in	2008.

He	worked	as	a	research	assistant	at	Utrecht	University	from	2009	until	2013
and	has	been	working	as	a	professional	software	developer	developer	since
2014.	He	has	been	using	Python	for	personal	and	projects	and	in	his	studies
since	2004,	and	professionally	since	2014.

	

Julio	Vicente	Trigo	Guijarro	is	a	computer	scientist	and	software	engineer	with
over	a	decade	of	experience	in	software	development.	He	completed	his	studies
at	the	University	of	Alicante,	Spain,	in	2007.	He	has	worked	with	several
technologies	and	languages,	including	Microsoft	Dynamics	NAV,	Java,
JavaScript,	and	Python.	He	is	a	certified	Scrum	Master.	He	has	been	using
Python	since	2012,	and	he	is	passionate	about	software	design,	quality,	and
coding	standards.	He	currently	works	as	senior	software	developer	and	team	lead
at	Sohonet,	developing	real-time	collaboration	applications.

I	would	like	to	thank	my	parents	for	their	love,	good	advice,	and	continuous	support.	I	would	also	like	to
thank	all	the	friends	I	have	met	along	the	way,	who	enriched	my	life,	for	keeping	up	my	motivation,	and
make	me	progress.

	

Packt	is	searching	for	authors	like
you
If	you're	interested	in	becoming	an	author	for	Packt,	please	visit	authors.packtpub.c
om	and	apply	today.	We	have	worked	with	thousands	of	developers	and	tech
professionals,	just	like	you,	to	help	them	share	their	insight	with	the	global	tech
community.	You	can	make	a	general	application,	apply	for	a	specific	hot	topic
that	we	are	recruiting	an	author	for,	or	submit	your	own	idea.

	

http://authors.packtpub.com

Table	of	Contents

Title	Page

Copyright	and	Credits

Learn	Python	Programming

Second	Edition

Dedication

Packt	Upsell

Why	subscribe?

PacktPub.com

Foreword

Contributors

About	the	author

About	the	reviewers

Packt	is	searching	for	authors	like	you

Preface

Who	this	book	is	for

What	this	book	covers

To	get	the	most	out	of	this	book

Download	the	example	code	files

Conventions	used

Get	in	touch

Reviews

1.	 A	Gentle	Introduction	to	Python

A	proper	introduction

Enter	the	Python

About	Python

Portability

Coherence

Developer	productivity

An	extensive	library

Software	quality

Software	integration

Satisfaction	and	enjoyment

What	are	the	drawbacks?

Who	is	using	Python	today?

Setting	up	the	environment

Python	2	versus	Python	3

Installing	Python

Setting	up	the	Python	interpreter

About	virtualenv

Your	first	virtual	environment

Your	friend,	the	console

How	you	can	run	a	Python	program

Running	Python	scripts

Running	the	Python	interactive	shell

Running	Python	as	a	service

Running	Python	as	a	GUI	application

How	is	Python	code	organized?

How	do	we	use	modules	and	packages?

Python's	execution	model

Names	and	namespaces

Scopes

Objects	and	classes

Guidelines	on	how	to	write	good	code

The	Python	culture

A	note	on	IDEs

Summary

2.	 Built-in	Data	Types

Everything	is	an	object

Mutable	or	immutable?	That	is	the	question

Numbers

Integers

Booleans

Real	numbers

Complex	numbers

Fractions	and	decimals

Immutable	sequences

Strings	and	bytes

Encoding	and	decoding	strings

Indexing	and	slicing	strings

String	formatting

Tuples

Mutable	sequences

Lists

Byte	arrays

Set	types

Mapping	types – dictionaries

The	collections	module

namedtuple

defaultdict

ChainMap

Enums

Final	considerations

Small	values	caching

How	to	choose	data	structures

About	indexing	and	slicing

About	the	names

Summary

3.	 Iterating	and	Making	Decisions

Conditional	programming

A	specialized	else –	elif

The	ternary	operator

Looping

The	for	loop

Iterating	over	a	range

Iterating	over	a	sequence

Iterators	and	iterables

Iterating	over	multiple	sequences

The	while	loop

The	break	and	continue	statements

A	special	else	clause

Putting	all	this	together

A	prime	generator

Applying	discounts

A	quick	peek	at	the	itertools	module

Infinite	iterators

Iterators	terminating	on	the	shortest	input	sequence

Combinatoric	generators

Summary

4.	 Functions,	the	Building	Blocks	of	Code

Why	use	functions?

Reducing	code	duplication

Splitting	a	complex	task

Hiding	implementation	details

Improving	readability

Improving	traceability

Scopes	and	name	resolution

The	global	and	nonlocal	statements

Input	parameters

Argument-passing

Assignment	to	argument	names	doesn't	affect	the	caller

Changing	a	mutable	affects	the	caller

How	to	specify	input	parameters

Positional	arguments

Keyword	arguments	and	default	values

Variable	positional	arguments

Variable	keyword	arguments

Keyword-only	arguments

Combining	input	parameters

Additional	unpacking	generalizations

Avoid	the	trap!	Mutable	defaults

Return	values

Returning	multiple	values

A	few	useful	tips

Recursive	functions

Anonymous	functions

Function	attributes

Built-in	functions

One	final	example

Documenting	your	code

Importing	objects

Relative	imports

Summary

5.	 Saving	Time	and	Memory

The	map,	zip,	and	filter	functions

map

zip

filter

Comprehensions

Nested	comprehensions

Filtering	a	comprehension

dict	comprehensions

set	comprehensions

Generators

Generator	functions

Going	beyond	next

The	yield	from	expression

Generator	expressions

Some	performance	considerations

Don't	overdo	comprehensions	and	generators

Name	localization

Generation	behavior	in	built-ins

One	last	example

Summary

6.	 OOP,	Decorators,	and	Iterators

Decorators

A	decorator	factory

Object-oriented	programming	(OOP)

The	simplest	Python	class

Class	and	object	namespaces

Attribute	shadowing

Me,	myself,	and	I – using	the	self	variable

Initializing	an	instance

OOP	is	about	code	reuse

Inheritance	and	composition

Accessing	a	base	class

Multiple	inheritance

Method	resolution	order

Class	and	static	methods

Static	methods

Class	methods

Private	methods	and	name	mangling

The	property	decorator

Operator	overloading

Polymorphism –	a	brief	overview

Data	classes

Writing	a	custom	iterator

Summary

7.	 Files	and	Data	Persistence

Working	with	files	and	directories

Opening	files

Using	a	context	manager	to	open	a	file

Reading	and	writing	to	a	file

Reading	and	writing	in	binary	mode

Protecting	against	overriding	an	existing	file

Checking	for	file	and	directory	existence

Manipulating	files	and	directories

Manipulating	pathnames

Temporary	files	and	directories

Directory	content

File	and	directory	compression

Data	interchange	formats

Working	with	JSON

Custom	encoding/decoding	with	JSON

IO,	streams,	and	requests

Using	an	in-memory	stream

Making	HTTP	requests

Persisting	data	on	disk

Serializing	data	with	pickle

Saving	data	with	shelve

Saving	data	to	a	database

Summary

8.	 Testing,	Profiling,	and	Dealing	with	Exceptions

Testing	your	application

The	anatomy	of	a	test

Testing	guidelines

Unit	testing

Writing	a	unit	test

Mock	objects	and	patching

Assertions

Testing	a	CSV	generator

Boundaries	and	granularity

Testing	the	export	function

Final	considerations

Test-driven	development

Exceptions

Profiling	Python

When	to	profile?

Summary

9.	 Cryptography	and	Tokens

The	need	for	cryptography

Useful	guidelines

Hashlib

Secrets

Random	numbers

Token	generation

Digest	comparison

HMAC

JSON	Web	Tokens

Registered	claims

Time-related	claims

Auth-related	claims

Using	asymmetric	(public-key)	algorithms

Useful	references

Summary

10.	 Concurrent	Execution

Concurrency	versus	parallelism

Threads	and	processes	– an	overview

Quick	anatomy	of	a	thread

Killing	threads

Context-switching

The	Global	Interpreter	Lock

Race	conditions	and	deadlocks

Race	conditions

Scenario	A	– race	condition	not	happening

Scenario	B	– race	condition	happening

Locks	to	the	rescue

Scenario	C	– using	a	lock

Deadlocks

Quick	anatomy	of	a	process

Properties	of	a	process

Multithreading	or	multiprocessing?

Concurrent	execution	in	Python

Starting	a	thread

Starting	a	process

Stopping	threads	and	processes

Stopping	a	process

Spawning	multiple	threads

Dealing	with	race	conditions

A	thread's	local	data

Thread	and	process	communication

Thread	communication

Sending	events

Inter-process	communication	with	queues

Thread	and	process	pools

Using	a	process	to	add	a	timeout	to	a	function

Case	examples

Example	one	–	concurrent	mergesort

Single-thread	mergesort

Single-thread	multipart	mergesort

Multithreaded	mergesort

Multiprocess	mergesort

Example	two –	batch	sudoku-solver

What	is	Sudoku?

Implementing	a	sudoku-solver	in	Python

Solving	sudoku	with	multiprocessing

Example	three –	downloading	random	pictures

Downloading	random	pictures	with	asyncio

Summary

11.	 Debugging	and	Troubleshooting

Debugging	techniques

Debugging	with	print

Debugging	with	a	custom	function

Inspecting	the	traceback

Using	the	Python	debugger

Inspecting	log	files

Other	techniques

Profiling

Assertions

Where	to	find	information

Troubleshooting	guidelines

Using	console	editors

Where	to	inspect

Using	tests	to	debug

Monitoring

Summary

12.	 GUIs	and	Scripts

First	approach	–	scripting

The	imports

Parsing	arguments

The	business	logic

Second	approach –	a	GUI	application

The	imports

The	layout	logic

The	business	logic

Fetching	the	web	page

Saving	the	images

Alerting	the	user

How	can	we	improve	the	application?

Where	do	we	go	from	here?

The	turtle	module

wxPython,	PyQt,	and	PyGTK

The	principle	of	least	astonishment

Threading	considerations

Summary

13.	 Data	Science

IPython	and	Jupyter	Notebook

Installing	the	required	libraries

Using	Anaconda

Starting	a	Notebook

Dealing	with	data

Setting	up	the	Notebook

Preparing	the	data

Cleaning	the	data

Creating	the	DataFrame

Unpacking	the	campaign	name

Unpacking	the	user	data

Cleaning	everything	up

Saving	the	DataFrame	to	a	file

Visualizing	the	results

Where	do	we	go	from	here?

Summary

14.	 Web	Development

What	is	the	web?

How	does	the	web	work?

The	Django	web	framework

Django	design	philosophy

The	model	layer

The	view	layer

The	template	layer

The	Django	URL	dispatcher

Regular	expressions

A	regex	website

Setting	up	Django

Starting	the	project

Creating	users

Adding	the	Entry	model

Customizing	the	admin	panel

Creating	the	form

Writing	the	views

The	home	view

The	entry	list	view

The	form	view

Tying	up	URLs	and	views

Writing	the	templates

The	future	of	web	development

Writing	a	Flask	view

Building	a	JSON	quote	server	in	Falcon

Summary

A	farewell

Other	Books	You	May	Enjoy

Leave	a	review	-	let	other	readers	know	what	you	think

Preface
When	I	started	writing	the	first	edition	of	this	book,	I	knew	very	little	about	what
was	expected.	Gradually,	I	learned	how	to	convert	each	topic	into	a	story.	I
wanted	to	talk	about	Python	by	offering	useful,	simple,	easy-to-grasp	examples,
but,	at	the	same	time,	I	wanted	to	pour	my	own	experience	into	the	pages,
anything	I've	learned	over	the	years	that	I	thought	would	be	valuable	for	the
reader—something	to	think	about,	reflect	upon,	and	hopefully	assimilate.
Readers	may	disagree	and	come	up	with	a	different	way	of	doing	things,	but
hopefully	a	better	way.

I	wanted	this	book	to	not	just	be	about	the	language	but	about	programming.	The
art	of	programming,	in	fact,	comprises	many	aspects,	and	language	is	just	one	of
them.

Another	crucial	aspect	of	programming	is	independence.	The	ability	to	unblock
yourself	when	you	hit	a	wall	and	don't	know	what	to	do	to	solve	the	problem
you're	facing.	There	is	no	book	that	can	teach	it,	so	I	thought,	instead	of	trying	to
teach	that	aspect,	I	will	try	and	train	the	reader	in	it.	Therefore,	I	left	comments,
questions,	and	remarks	scattered	throughout	the	whole	book,	hoping	to	inspire
the	reader.	I	hoped	that	they	would	take	the	time	to	browse	the	Web	or	the
official	documentation,	to	dig	deeper,	learn	more,	and	discover	the	pleasure	of
finding	things	out	by	themselves.

Finally,	I	wanted	to	write	a	book	that,	even	in	its	presentation,	would	be	slightly
different.	So,	I	decided,	with	my	editor,	to	write	the	first	part	in	a	theoretical
way,	presenting	topics	that	would	describe	the	characteristics	of	Python,	and	to
have	a	second	part	made	up	of	various	real-life	projects,	to	show	the	reader	how
much	can	be	achieved	with	this	language.

With	all	these	goals	in	mind,	I	then	had	to	face	the	hardest	challenge:	take	all	the
content	I	wanted	to	write	and	make	it	fit	in	the	amount	of	pages	that	were
allowed.	It	has	been	tough,	and	sacrifices	were	made.

My	efforts	have	been	rewarded	though:	to	this	day,	after	almost	3	years,	I	still
receive	lovely	messages	from	readers,	every	now	and	then,	who	thank	me	and

tell	me	things	like	your	book	has	empowered	me.	To	me,	it	is	the	most	beautiful
compliment.	I	know	that	the	language	might	change	and	pass,	but	I	have
managed	to	share	some	of	my	knowledge	with	the	reader,	and	that	piece	of
knowledge	will	stick	with	them.

And	now,	I	have	written	the	second	edition	of	this	book,	and	this	time,	I	had	a
little	more	space.	So	I	decided	to	add	a	chapter	about	IO,	which	was	desperately
needed,	and	I	even	had	the	opportunity	to	add	two	more	chapters,	one	about
secrets	and	one	about	concurrent	execution.	The	latter	is	definitely	the	most
challenging	chapter	in	the	whole	book,	and	its	purpose	is	that	of	stimulating	the
reader	to	reach	a	level	where	they	will	be	able	to	easily	digest	the	code	in	it	and
understand	its	concepts.

I	have	kept	all	the	original	chapters,	except	for	the	last	one	that	was	slightly
redundant.	They	have	all	been	refreshed	and	updated	to	the	latest	version	of
Python,	which	is	3.7	at	the	time	of	writing.

When	I	look	at	this	book,	I	see	a	much	more	mature	product.	There	are	more
chapters,	and	the	content	has	been	reorganized	to	better	fit	the	narrative,	but	the
soul	of	the	book	is	still	there.	The	main	and	most	important	point,	empowering
the	reader,	is	still	very	much	intact.

I	hope	that	this	edition	will	be	even	more	successful	than	the	previous	one,	and
that	it	will	help	the	readers	become	great	programmers.	I	hope	to	help	them
develop	critical	thinking,	great	skills,	and	the	ability	to	adapt	over	time,	thanks	to
the	solid	foundation	they	have	acquired	from	the	book.

Who	this	book	is	for
	

Python	is	the	most	popular	introductory	teaching	language	in	the	top	computer
science	universities	in	the	US,	so	if	you	are	new	to	software	development,	or	if
you	have	little	experience	and	would	like	to	start	off	on	the	right	foot,	then	this
language	and	this	book	are	what	you	need.	Its	amazing	design	and	portability
will	help	you	to	become	productive	regardless	of	the	environment	you	choose	to
work	with.

If	you	have	already	worked	with	Python	or	any	other	language,	this	book	can
still	be	useful	to	you,	both	as	a	reference	to	Python's	fundamentals,	and	for
providing	a	wide	range	of	considerations	and	suggestions	collected	over	two
decades	of	experience.

	

	

	

What	this	book	covers
Chapter	1,	A	Gentle	Introduction	to	Python,	introduces	you	to	fundamental
programming	concepts.	It	guides	you	through	getting	Python	up	and	running	on
your	computer	and	introduces	you	to	some	of	its	constructs.

Chapter	2,	Built-in	Data	Types,	introduces	you	to	Python	built-in	data	types.
Python	has	a	very	rich	set	of	native	data	types,	and	this	chapter	will	give	you	a
description	and	a	short	example	for	each	of	them.

Chapter	3,	Iterating	and	Making	Decisions,	teaches	you	how	to	control	the	flow	of
your	code	by	inspecting	conditions,	applying	logic,	and	performing	loops.

Chapter	4,	Functions,	the	Building	Blocks	of	Code,	teaches	you	how	to	write
functions.	Functions	are	the	keys	to	reusing	code,	to	reducing	debugging	time,
and,	in	general,	to	writing	better	code.

Chapter	5,	Saving	Time	and	Memory,	introduces	you	to	the	functional	aspects	of
Python	programming.	This	chapter	teaches	you	how	to	write	comprehensions
and	generators,	which	are	powerful	tools	that	you	can	use	to	speed	up	your	code
and	save	memory.

Chapter	6,	OOP,	Decorators,	and	Iterators,	teaches	you	the	basics	of	object-
oriented	programming	with	Python.	It	shows	you	the	key	concepts	and	all	the
potentials	of	this	paradigm.	It	also	shows	you	one	of	the	most	beloved
characteristics	of	Python:	decorators.	Finally,	it	also	covers	the	concept	of
iterators.

Chapter	7,	Files	and	Data	Persistence,	teaches	you	how	to	deal	with	files,	streams,
data	interchange	formats,	and	databases,	among	other	things.

Chapter	8,	Testing,	Profiling,	and	Dealing	with	Exceptions,	teaches	you	how	to
make	your	code	more	robust,	fast,	and	stable	using	techniques	such	as	testing
and	profiling.	It	also	formally	defines	the	concept	of	exceptions.

Chapter	9,	Cryptography	and	Tokens,	touches	upon	the	concepts	of	security,

hashes,	encryption,	and	tokens,	which	are	part	of	day-to-day	programming	at
present.

Chapter	10,	Concurrent	Execution,	is	a	challenging	chapter	that	describes	how	to
do	many	things	at	the	same	time.	It	provides	an	introduction	to	the	theoretical
aspects	of	this	subject	and	then	presents	three	nice	exercises	that	are	developed
with	different	techniques,	thereby	enabling	the	reader	to	understand	the
differences	between	the	paradigms	presented.

Chapter	11,	Debugging	and	Troubleshooting,	shows	you	the	main	methods	for
debugging	your	code	and	some	examples	on	how	to	apply	them.

Chapter	12,	GUIs	and	Scripts,	guides	you	through	an	example	from	two	different
points	of	view.	They	are	at	opposite	ends	of	the	spectrum:	one	implementation	is
a	script,	and	another	one	is	a	proper	graphical	user	interface	application.

Chapter	13,	Data	Science,	introduces	a	few	key	concepts	and	a	very	special	tool,
the	Jupyter	Notebook.

Chapter	14,	Web	Development,	introduces	the	fundamentals	of	web	development
and	delivers	a	project	using	the	Django	web	framework.	The	example	will	be
based	on	regular	expressions.

To	get	the	most	out	of	this	book
You	are	encouraged	to	follow	the	examples	in	this	book.	In	order	to	do	so,	you
will	need	a	computer,	an	internet	connection,	and	a	browser.	The	book	is	written
in	Python	3.7,	but	it	should	also	work,	for	the	most	part,	with	any	recent	Python
3.*	version.	I	have	given	guidelines	on	how	to	install	Python	on	your	operating
system.	The	procedures	to	do	that	change	all	the	time,	so	you	will	need	to	refer
to	the	most	up-to-date	guide	on	the	Web	to	find	precise	setup	instructions.	I	have
also	explained	how	to	install	all	the	extra	libraries	used	in	the	various	examples
and	provided	suggestions	if	the	reader	finds	any	issues	during	the	installation	of
any	of	them.	No	particular	editor	is	required	to	type	the	code;	however,	I	suggest
that	those	who	are	interested	in	following	the	examples	should	consider	adopting
a	proper	coding	environment.	I	have	given	suggestions	on	this	matter	in	the	first
chapter.

	

Download	the	example	code	files
You	can	download	the	example	code	files	for	this	book	from	your	account	at	www.
packtpub.com.	If	you	purchased	this	book	elsewhere,	you	can	visit	www.packtpub.com/su
pport	and	register	to	have	the	files	emailed	directly	to	you.

You	can	download	the	code	files	by	following	these	steps:

1.	 Log	in	or	register	at	www.packtpub.com.
2.	 Select	the	SUPPORT	tab.
3.	 Click	on	Code	Downloads	&	Errata.
4.	 Enter	the	name	of	the	book	in	the	Search	box	and	follow	the	onscreen

instructions.

Once	the	file	is	downloaded,	please	make	sure	that	you	unzip	or	extract	the
folder	using	the	latest	version	of:

WinRAR/7-Zip	for	Windows
Zipeg/iZip/UnRarX	for	Mac
7-Zip/PeaZip	for	Linux

The	code	bundle	for	the	book	is	also	hosted	on	GitHub	at	https://github.com/PacktPu
blishing/Learn-Python-Programming-Second-Edition.	In	case	there's	an	update	to	the	code,
it	will	be	updated	on	the	existing	GitHub	repository.

We	also	have	other	code	bundles	from	our	rich	catalog	of	books	and	videos
available	at	https://github.com/PacktPublishing/.	Check	them	out!

http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support
https://github.com/PacktPublishing/Learn-Python-Programming-Second-Edition
https://github.com/PacktPublishing/

Conventions	used
There	are	a	number	of	text	conventions	used	throughout	this	book.

CodeInText:	Indicates	code	words	in	text,	database	table	names,	folder	names,
filenames,	file	extensions,	pathnames,	dummy	URLs,	user	input,	and	Twitter
handles.	Here	is	an	example:	"Within	the	learn.pp	folder,	we	will	create	a	virtual
environment	called	learnpp."

A	block	of	code	is	set	as	follows:

#	we	define	a	function,	called	local

def	local():

				m	=	7

				print(m)

When	we	wish	to	draw	your	attention	to	a	particular	part	of	a	code	block,	the
relevant	lines	or	items	are	set	in	bold:

#	key.points.mutable.assignment.py

x	=	[1,	2,	3]

def	func(x):

				x[1]	=	42		#	this	changes	the	caller!

				x	=	'something	else'		#	this	points	x	to	a	new	string	object

Any	command-line	input	or	output	is	written	as	follows:

>>>	import	sys

>>>	print(sys.version)

Bold:	Indicates	a	new	term,	an	important	word,	or	words	that	you	see	onscreen.
For	example,	words	in	menus	or	dialog	boxes	appear	in	the	text	like	this.	Here	is
an	example:	"To	open	the	console	in	Windows,	go	to	the	Start	menu,	choose
Run,	and	type	cmd."

Warnings	or	important	notes	appear	like	this.

Tips	and	tricks	appear	like	this.

Get	in	touch
Feedback	from	our	readers	is	always	welcome.

General	feedback:	Email	feedback@packtpub.com	and	mention	the	book	title	in	the
subject	of	your	message.	If	you	have	questions	about	any	aspect	of	this	book,
please	email	us	at	questions@packtpub.com.

Errata:	Although	we	have	taken	every	care	to	ensure	the	accuracy	of	our
content,	mistakes	do	happen.	If	you	have	found	a	mistake	in	this	book,	we	would
be	grateful	if	you	would	report	this	to	us.	Please	visit	www.packtpub.com/submit-errata,
selecting	your	book,	clicking	on	the	Errata	Submission	Form	link,	and	entering
the	details.

Piracy:	If	you	come	across	any	illegal	copies	of	our	works	in	any	form	on	the
Internet,	we	would	be	grateful	if	you	would	provide	us	with	the	location	address
or	website	name.	Please	contact	us	at	copyright@packtpub.com	with	a	link	to	the
material.

If	you	are	interested	in	becoming	an	author:	If	there	is	a	topic	that	you	have
expertise	in	and	you	are	interested	in	either	writing	or	contributing	to	a	book,
please	visit	authors.packtpub.com.

http://www.packtpub.com/submit-errata
http://authors.packtpub.com/

Reviews
Please	leave	a	review.	Once	you	have	read	and	used	this	book,	why	not	leave	a
review	on	the	site	that	you	purchased	it	from?	Potential	readers	can	then	see	and
use	your	unbiased	opinion	to	make	purchase	decisions,	we	at	Packt	can
understand	what	you	think	about	our	products,	and	our	authors	can	see	your
feedback	on	their	book.	Thank	you!

For	more	information	about	Packt,	please	visit	packtpub.com.

	

https://www.packtpub.com/

A	Gentle	Introduction	to	Python
"Give	a	man	a	fish	and	you	feed	him	for	a	day.	Teach	a	man	to	fish	and	you	feed	him	for	a	lifetime."

–	Chinese	proverb

According	to	Wikipedia,	computer	programming	is:

"...a	process	that	leads	from	an	original	formulation	of	a	computing	problem	to	executable	computer
programs.	Programming	involves	activities	such	as	analysis,	developing	understanding,	generating
algorithms,	verification	of	requirements	of	algorithms	including	their	correctness	and	resources
consumption,	and	implementation	(commonly	referred	to	as	coding)	of	algorithms	in	a	target	programming
language."

In	a	nutshell,	coding	is	telling	a	computer	to	do	something	using	a	language	it
understands.

Computers	are	very	powerful	tools,	but	unfortunately,	they	can't	think	for
themselves.	They	need	to	be	told	everything:	how	to	perform	a	task,	how	to
evaluate	a	condition	to	decide	which	path	to	follow,	how	to	handle	data	that
comes	from	a	device,	such	as	the	network	or	a	disk,	and	how	to	react	when
something	unforeseen	happens,	say,	something	is	broken	or	missing.

You	can	code	in	many	different	styles	and	languages.	Is	it	hard?	I	would	say	yes
and	no.	It's	a	bit	like	writing.	Everybody	can	learn	how	to	write,	and	you	can	too.
But,	what	if	you	wanted	to	become	a	poet?	Then	writing	alone	is	not	enough.
You	have	to	acquire	a	whole	other	set	of	skills	and	this	will	take	a	longer	and
greater	effort.

In	the	end,	it	all	comes	down	to	how	far	you	want	to	go	down	the	road.	Coding	is
not	just	putting	together	some	instructions	that	work.	It	is	so	much	more!

Good	code	is	short,	fast,	elegant,	easy	to	read	and	understand,	simple,	easy	to
modify	and	extend,	easy	to	scale	and	refactor,	and	easy	to	test.	It	takes	time	to	be
able	to	write	code	that	has	all	these	qualities	at	the	same	time,	but	the	good	news
is	that	you're	taking	the	first	step	towards	it	at	this	very	moment	by	reading	this
book.	And	I	have	no	doubt	you	can	do	it.	Anyone	can;	in	fact,	we	all	program	all
the	time,	only	we	aren't	aware	of	it.

Would	you	like	an	example?

Say	you	want	to	make	instant	coffee.	You	have	to	get	a	mug,	the	instant	coffee
jar,	a	teaspoon,	water,	and	the	kettle.	Even	if	you're	not	aware	of	it,	you're
evaluating	a	lot	of	data.	You're	making	sure	that	there	is	water	in	the	kettle	and
that	the	kettle	is	plugged	in,	that	the	mug	is	clean,	and	that	there	is	enough	coffee
in	the	jar.	Then,	you	boil	the	water	and	maybe,	in	the	meantime,	you	put	some
coffee	in	the	mug.	When	the	water	is	ready,	you	pour	it	into	the	cup,	and	stir.

So,	how	is	this	programming?

Well,	we	gathered	resources	(the	kettle,	coffee,	water,	teaspoon,	and	mug)	and
we	verified	some	conditions	concerning	them	(the	kettle	is	plugged	in,	the	mug
is	clean,	and	there	is	enough	coffee).	Then	we	started	two	actions	(boiling	the
water	and	putting	coffee	in	the	mug),	and	when	both	of	them	were	completed,
we	finally	ended	the	procedure	by	pouring	water	in	to	the	mug	and	stirring.

Can	you	see	it?	I	have	just	described	the	high-level	functionality	of	a	coffee
program.	It	wasn't	that	hard	because	this	is	what	the	brain	does	all	day	long:
evaluate	conditions,	decide	to	take	actions,	carry	out	tasks,	repeat	some	of	them,
and	stop	at	some	point.	Clean	objects,	put	them	back,	and	so	on.

All	you	need	now	is	to	learn	how	to	deconstruct	all	those	actions	you	do
automatically	in	real	life	so	that	a	computer	can	actually	make	some	sense	of
them.	And	you	need	to	learn	a	language	as	well,	to	instruct	it.

So	this	is	what	this	book	is	for.	I'll	tell	you	how	to	do	it	and	I'll	try	to	do	that	by
means	of	many	simple	but	focused	examples	(my	favorite	kind).

In	this	chapter,	we	are	going	to	cover	the	following:

Python's	characteristics	and	ecosystem
Guidelines	on	how	to	get	up	and	running	with	Python	and	virtual
environments
How	to	run	Python	programs
How	to	organize	Python	code	and	Python's	execution	model

A	proper	introduction
I	love	to	make	references	to	the	real	world	when	I	teach	coding;	I	believe	they
help	people	retain	the	concepts	better.	However,	now	is	the	time	to	be	a	bit	more
rigorous	and	see	what	coding	is	from	a	more	technical	perspective.

When	we	write	code,	we're	instructing	a	computer	about	the	things	it	has	to	do.
Where	does	the	action	happen?	In	many	places:	the	computer	memory,	hard
drives,	network	cables,	the	CPU,	and	so	on.	It's	a	whole	world,	which	most	of
the	time	is	the	representation	of	a	subset	of	the	real	world.

If	you	write	a	piece	of	software	that	allows	people	to	buy	clothes	online,	you	will
have	to	represent	real	people,	real	clothes,	real	brands,	sizes,	and	so	on	and	so
forth,	within	the	boundaries	of	a	program.

In	order	to	do	so,	you	will	need	to	create	and	handle	objects	in	the	program
you're	writing.	A	person	can	be	an	object.	A	car	is	an	object.	A	pair	of	socks	is	an
object.	Luckily,	Python	understands	objects	very	well.

The	two	main	features	any	object	has	are	properties	and	methods.	Let's	take	a
person	object	as	an	example.	Typically	in	a	computer	program,	you'll	represent
people	as	customers	or	employees.	The	properties	that	you	store	against	them	are
things	like	the	name,	the	SSN,	the	age,	if	they	have	a	driving	license,	their	email,
gender,	and	so	on.	In	a	computer	program,	you	store	all	the	data	you	need	in
order	to	use	an	object	for	the	purpose	you're	serving.	If	you	are	coding	a	website
to	sell	clothes,	you	probably	want	to	store	the	heights	and	weights	as	well	as
other	measures	of	your	customers	so	that	you	can	suggest	the	appropriate	clothes
for	them.	So,	properties	are	characteristics	of	an	object.	We	use	them	all	the
time:	Could	you	pass	me	that	pen?—Which	one?—The	black	one.	Here,	we	used
the	black	property	of	a	pen	to	identify	it	(most	likely	among	a	blue	and	a	red
one).

Methods	are	things	that	an	object	can	do.	As	a	person,	I	have	methods	such	as
speak,	walk,	sleep,	wake	up,	eat,	dream,	write,	read,	and	so	on.	All	the	things
that	I	can	do	could	be	seen	as	methods	of	the	objects	that	represent	me.

So,	now	that	you	know	what	objects	are	and	that	they	expose	methods	that	you
can	run	and	properties	that	you	can	inspect,	you're	ready	to	start	coding.	Coding
in	fact	is	simply	about	managing	those	objects	that	live	in	the	subset	of	the	world
that	we're	reproducing	in	our	software.	You	can	create,	use,	reuse,	and	delete
objects	as	you	please.

According	to	the	Data	Model	chapter	on	the	official	Python	documentation	(https
://docs.python.org/3/reference/datamodel.html):

"Objects	are	Python's	abstraction	for	data.	All	data	in	a	Python	program	is	represented	by	objects	or	by
relations	between	objects."

We'll	take	a	closer	look	at	Python	objects	in	Chapter	6,	OOP,	Decorators,	and
Iterators.	For	now,	all	we	need	to	know	is	that	every	object	in	Python	has	an	ID
(or	identity),	a	type,	and	a	value.

Once	created,	the	ID	of	an	object	is	never	changed.	It's	a	unique	identifier	for	it,
and	it's	used	behind	the	scenes	by	Python	to	retrieve	the	object	when	we	want	to
use	it.

The	type,	as	well,	never	changes.	The	type	tells	what	operations	are	supported	by
the	object	and	the	possible	values	that	can	be	assigned	to	it.

We'll	see	Python's	most	important	data	types	in	Chapter	2,	Built-in	Data	Types.

The	value	can	either	change	or	not.	If	it	can,	the	object	is	said	to	be	mutable,
while	when	it	cannot,	the	object	is	said	to	be	immutable.

How	do	we	use	an	object?	We	give	it	a	name,	of	course!	When	you	give	an
object	a	name,	then	you	can	use	the	name	to	retrieve	the	object	and	use	it.

In	a	more	generic	sense,	objects	such	as	numbers,	strings	(text),	collections,	and
so	on	are	associated	with	a	name.	Usually,	we	say	that	this	name	is	the	name	of	a
variable.	You	can	see	the	variable	as	being	like	a	box,	which	you	can	use	to	hold
data.

So,	you	have	all	the	objects	you	need;	what	now?	Well,	we	need	to	use	them,
right?	We	may	want	to	send	them	over	a	network	connection	or	store	them	in	a
database.	Maybe	display	them	on	a	web	page	or	write	them	into	a	file.	In	order

https://docs.python.org/3/reference/datamodel.html

to	do	so,	we	need	to	react	to	a	user	filling	in	a	form,	or	pressing	a	button,	or
opening	a	web	page	and	performing	a	search.	We	react	by	running	our	code,
evaluating	conditions	to	choose	which	parts	to	execute,	how	many	times,	and
under	which	circumstances.

And	to	do	all	this,	basically	we	need	a	language.	That's	what	Python	is	for.
Python	is	the	language	we'll	use	together	throughout	this	book	to	instruct	the
computer	to	do	something	for	us.

Now,	enough	of	this	theoretical	stuff;	let's	get	started.

Enter	the	Python
Python	is	the	marvelous	creation	of	Guido	Van	Rossum,	a	Dutch	computer
scientist	and	mathematician	who	decided	to	gift	the	world	with	a	project	he	was
playing	around	with	over	Christmas	1989.	The	language	appeared	to	the	public
somewhere	around	1991,	and	since	then	has	evolved	to	be	one	of	the	leading
programming	languages	used	worldwide	today.

I	started	programming	when	I	was	7	years	old,	on	a	Commodore	VIC-20,	which
was	later	replaced	by	its	bigger	brother,	the	Commodore	64.	Its	language	was
BASIC.	Later	on,	I	landed	on	Pascal,	Assembly,	C,	C++,	Java,	JavaScript,	Visual
Basic,	PHP,	ASP,	ASP	.NET,	C#,	and	other	minor	languages	I	cannot	even
remember,	but	only	when	I	landed	on	Python	did	I	finally	have	that	feeling	that
you	have	when	you	find	the	right	couch	in	the	shop.	When	all	of	your	body	parts
are	yelling,	Buy	this	one!	This	one	is	perfect	for	us!

It	took	me	about	a	day	to	get	used	to	it.	Its	syntax	is	a	bit	different	from	what	I
was	used	to,	but	after	getting	past	that	initial	feeling	of	discomfort	(like	having
new	shoes),	I	just	fell	in	love	with	it.	Deeply.	Let's	see	why.

About	Python
Before	we	get	into	the	gory	details,	let's	get	a	sense	of	why	someone	would	want
to	use	Python	(I	would	recommend	you	to	read	the	Python	page	on	Wikipedia	to
get	a	more	detailed	introduction).

To	my	mind,	Python	epitomizes	the	following	qualities.

Portability
Python	runs	everywhere,	and	porting	a	program	from	Linux	to	Windows	or	Mac
is	usually	just	a	matter	of	fixing	paths	and	settings.	Python	is	designed	for
portability	and	it	takes	care	of	specific	operating	system	(OS)	quirks	behind
interfaces	that	shield	you	from	the	pain	of	having	to	write	code	tailored	to	a
specific	platform.

	

Coherence
	

Python	is	extremely	logical	and	coherent.	You	can	see	it	was	designed	by	a
brilliant	computer	scientist.	Most	of	the	time,	you	can	just	guess	how	a	method	is
called,	if	you	don't	know	it.

You	may	not	realize	how	important	this	is	right	now,	especially	if	you	are	at	the
beginning,	but	this	is	a	major	feature.	It	means	less	cluttering	in	your	head,	as
well	as	less	skimming	through	the	documentation,	and	less	need	for	mappings	in
your	brain	when	you	code.

	

	

	

Developer	productivity
	

According	to	Mark	Lutz	(Learning	Python,	5th	Edition,	O'Reilly	Media),	a
Python	program	is	typically	one-fifth	to	one-third	the	size	of	equivalent	Java	or
C++	code.	This	means	the	job	gets	done	faster.	And	faster	is	good.	Faster	means
a	faster	response	on	the	market.	Less	code	not	only	means	less	code	to	write,	but
also	less	code	to	read	(and	professional	coders	read	much	more	than	they	write),
less	code	to	maintain,	to	debug,	and	to	refactor.

Another	important	aspect	is	that	Python	runs	without	the	need	for	lengthy	and
time-consuming	compilation	and	linkage	steps,	so	you	don't	have	to	wait	to	see
the	results	of	your	work.

	

	

	

An	extensive	library
Python	has	an	incredibly	wide	standard	library	(it's	said	to	come	with	batteries
included).	If	that	wasn't	enough,	the	Python	community	all	over	the	world
maintains	a	body	of	third-party	libraries,	tailored	to	specific	needs,	which	you
can	access	freely	at	the	Python	Package	Index	(PyPI).	When	you	code	Python
and	you	realize	that	you	need	a	certain	feature,	in	most	cases,	there	is	at	least	one
library	where	that	feature	has	already	been	implemented	for	you.

	

Software	quality
Python	is	heavily	focused	on	readability,	coherence,	and	quality.	The	language
uniformity	allows	for	high	readability	and	this	is	crucial	nowadays	where	coding
is	more	of	a	collective	effort	than	a	solo	endeavor.	Another	important	aspect	of
Python	is	its	intrinsic	multiparadigm	nature.	You	can	use	it	as	a	scripting
language,	but	you	also	can	exploit	object-oriented,	imperative,	and	functional
programming	styles.	It	is	versatile.

	

Software	integration
Another	important	aspect	is	that	Python	can	be	extended	and	integrated	with
many	other	languages,	which	means	that	even	when	a	company	is	using	a
different	language	as	their	mainstream	tool,	Python	can	come	in	and	act	as	a	glue
agent	between	complex	applications	that	need	to	talk	to	each	other	in	some	way.
This	is	kind	of	an	advanced	topic,	but	in	the	real	world,	this	feature	is	very
important.

	

Satisfaction	and	enjoyment
	

Last,	but	not	least,	there	is	the	fun	of	it!	Working	with	Python	is	fun.	I	can	code
for	8	hours	and	leave	the	office	happy	and	satisfied,	alien	to	the	struggle	other
coders	have	to	endure	because	they	use	languages	that	don't	provide	them	with
the	same	amount	of	well-designed	data	structures	and	constructs.	Python	makes
coding	fun,	no	doubt	about	it.	And	fun	promotes	motivation	and	productivity.

These	are	the	major	aspects	of	why	I	would	recommend	Python	to	everyone.	Of
course,	there	are	many	other	technical	and	advanced	features	that	I	could	have
talked	about,	but	they	don't	really	pertain	to	an	introductory	section	like	this	one.
They	will	come	up	naturally,	chapter	after	chapter,	in	this	book.

	

	

	

What	are	the	drawbacks?
Probably,	the	only	drawback	that	one	could	find	in	Python,	which	is	not	due	to
personal	preferences,	is	its	execution	speed.	Typically,	Python	is	slower	than	its
compiled	brothers.	The	standard	implementation	of	Python	produces,	when	you
run	an	application,	a	compiled	version	of	the	source	code	called	byte	code	(with
the	extension	.pyc),	which	is	then	run	by	the	Python	interpreter.	The	advantage	of
this	approach	is	portability,	which	we	pay	for	with	a	slowdown	due	to	the	fact
that	Python	is	not	compiled	down	to	machine	level	as	are	other	languages.

However,	Python	speed	is	rarely	a	problem	today,	hence	its	wide	use	regardless
of	this	suboptimal	feature.	What	happens	is	that,	in	real	life,	hardware	cost	is	no
longer	a	problem,	and	usually	it's	easy	enough	to	gain	speed	by	parallelizing
tasks.	Moreover,	many	programs	spend	a	great	proportion	of	the	time	waiting	for
IO	operations	to	complete;	therefore,	the	raw	execution	speed	is	often	a
secondary	factor	to	the	overall	performance.	When	it	comes	to	number
crunching	though,	one	can	switch	to	faster	Python	implementations,	such	as
PyPy,	which	provides	an	average	five-fold	speedup	by	implementing	advanced
compilation	techniques	(check	http://pypy.org/	for	reference).

When	doing	data	science,	you'll	most	likely	find	that	the	libraries	that	you	use
with	Python,	such	as	Pandas	and	NumPy,	achieve	native	speed	due	to	the	way
they	are	implemented.

If	that	wasn't	a	good-enough	argument,	you	can	always	consider	that	Python	has
been	used	to	drive	the	backend	of	services	such	as	Spotify	and	Instagram,	where
performance	is	a	concern.	Nonetheless,	Python	has	done	its	job	perfectly
adequately.

http://pypy.org/

Who	is	using	Python	today?
Not	yet	convinced?	Let's	take	a	very	brief	look	at	the	companies	that	are	using
Python	today:	Google,	YouTube,	Dropbox,	Yahoo!,	Zope	Corporation,	Industrial
Light	&	Magic,	Walt	Disney	Feature	Animation,	Blender	3D,	Pixar,	NASA,	the
NSA,	Red	Hat,	Nokia,	IBM,	Netflix,	Yelp,	Intel,	Cisco,	HP,	Qualcomm,	and
JPMorgan	Chase,	to	name	just	a	few.

Even	games	such	as	Battlefield	2,	Civilization	IV,	and	QuArK	are	implemented
using	Python.

Python	is	used	in	many	different	contexts,	such	as	system	programming,	web
programming,	GUI	applications,	gaming	and	robotics,	rapid	prototyping,	system
integration,	data	science,	database	applications,	and	much	more.	Several
prestigious	universities	have	also	adopted	Python	as	their	main	language	in
computer	science	courses.

Setting	up	the	environment
Before	we	talk	about	installing	Python	on	your	system,	let	me	tell	you	about
which	Python	version	I'll	be	using	in	this	book.

Python	2	versus	Python	3
Python	comes	in	two	main	versions:	Python	2,	which	is	the	past,	and	Python	3,
which	is	the	present.	The	two	versions,	though	very	similar,	are	incompatible	in
some	respects.

In	the	real	world,	Python	2	is	actually	quite	far	from	being	the	past.	In	short,
even	though	Python	3	has	been	out	since	2008,	the	transition	phase	from	Version
2	is	still	far	from	being	over.	This	is	mostly	due	to	the	fact	that	Python	2	is
widely	used	in	the	industry,	and	of	course,	companies	aren't	so	keen	on	updating
their	systems	just	for	the	sake	of	updating	them,	following	the	if	it	ain't	broke,
don't	fix	it	philosophy.	You	can	read	all	about	the	transition	between	the	two
versions	on	the	web.

Another	issue	that	has	hindered	the	transition	is	the	availability	of	third-party
libraries.	Usually,	a	Python	project	relies	on	tens	of	external	libraries,	and	of
course,	when	you	start	a	new	project,	you	need	to	be	sure	that	there	is	already	a
Version-3-compatible	library	for	any	business	requirement	that	may	come	up.	If
that's	not	the	case,	starting	a	brand-new	project	in	Python	3	means	introducing	a
potential	risk,	which	many	companies	are	not	happy	to	take.

At	the	time	of	writing,	though,	the	majority	of	the	most	widely	used	libraries
have	been	ported	to	Python	3,	and	it's	quite	safe	to	start	a	project	in	Python	3	for
most	cases.	Many	of	the	libraries	have	been	rewritten	so	that	they	are	compatible
with	both	versions,	mostly	harnessing	the	power	of	the	six	library	(the	name
comes	from	the	multiplication	2	x	3,	due	to	the	porting	from	Version	2	to	3),
which	helps	introspecting	and	adapting	the	behavior	according	to	the	version
used.	According	to	PEP	373	(https://legacy.python.org/dev/peps/pep-0373/),	the	end
of	life	(EOL)	of	Python	2.7	has	been	set	to	2020,	and	there	won't	be	a	Python
2.8,	so	this	is	the	time	when	companies	that	have	projects	running	in	Python	2
need	to	start	devising	an	upgrade	strategy	to	move	to	Python	3	before	it's	too
late.

On	my	box	(MacBook	Pro),	this	is	the	latest	Python	version	I	have:

>>>	import	sys

https://legacy.python.org/dev/peps/pep-0373/

>>>	print(sys.version)

3.7.0a3	(default,	Jan	27	2018,	00:46:45)

[Clang	9.0.0	(clang-900.0.39.2)]

So	you	can	see	that	the	version	is	an	alpha	release	of	Python	3.7,	which	will	be
released	in	June	2018.	The	preceding	text	is	a	little	bit	of	Python	code	that	I
typed	into	my	console.	We'll	talk	about	it	in	a	moment.

All	the	examples	in	this	book	will	be	run	using	Python	3.7.	Even	though	at	the
moment	the	final	version	might	still	be	slightly	different	than	what	I	have,	I	will
make	sure	that	all	the	code	and	examples	are	up	to	date	with	3.7	by	the	time	the
book	is	published.

Some	of	the	code	can	also	run	in	Python	2.7,	either	as	it	is	or	with	minor	tweaks,
but	at	this	point	in	time,	I	think	it's	better	to	learn	Python	3,	and	then,	if	you	need
to,	learn	the	differences	it	has	with	Python	2,	rather	than	going	the	other	way
around.

Don't	worry	about	this	version	thing	though;	it's	not	that	big	an	issue	in	practice.

Installing	Python
	

I	never	really	got	the	point	of	having	a	setup	section	in	a	book,	regardless	of
what	it	is	that	you	have	to	set	up.	Most	of	the	time,	between	the	time	the	author
writes	the	instructions	and	the	time	you	actually	try	them	out,	months	have
passed.	That	is,	if	you're	lucky.	One	version	change	and	things	may	not	work	in
the	way	that	is	described	in	the	book.	Luckily,	we	have	the	web	now,	so	in	order
to	help	you	get	up	and	running,	I'll	just	give	you	pointers	and	objectives.

I	am	conscious	that	the	majority	of	readers	would	probably	have	preferred	to
have	guidelines	in	the	book.	I	doubt	it	would	have	made	their	life	much	easier,	as
I	strongly	believe	that	if	you	want	to	get	started	with	Python	you	have	to	put	in
that	initial	effort	in	order	to	get	familiar	with	the	ecosystem.	It	is	very	important,
and	it	will	boost	your	confidence	to	face	the	material	in	the	chapters	ahead.	If
you	get	stuck,	remember	that	Google	is	your	friend.

	

	

	

Setting	up	the	Python	interpreter
First	of	all,	let's	talk	about	your	OS.	Python	is	fully	integrated	and	most	likely
already	installed	in	basically	almost	every	Linux	distribution.	If	you	have	a
macOS,	it's	likely	that	Python	is	already	there	as	well	(however,	possibly	only
Python	2.7),	whereas	if	you're	using	Windows,	you	probably	need	to	install	it.

Getting	Python	and	the	libraries	you	need	up	and	running	requires	a	bit	of
handiwork.	Linux	and	macOS	seem	to	be	the	most	user-friendly	OSes	for	Python
programmers;	Windows,	on	the	other	hand,	is	the	one	that	requires	the	biggest
effort.

My	current	system	is	a	MacBook	Pro,	and	this	is	what	I	will	use	throughout	the
book,	along	with	Python	3.7.

The	place	you	want	to	start	is	the	official	Python	website:	https://www.python.org.
This	website	hosts	the	official	Python	documentation	and	many	other	resources
that	you	will	find	very	useful.	Take	the	time	to	explore	it.

Another	excellent,	resourceful	website	on	Python	and	its	ecosystem	is	http://docs.python-guide.org.
You	can	find	instructions	to	set	up	Python	on	different	operating	systems,	using	different
methods.

Find	the	download	section	and	choose	the	installer	for	your	OS.	If	you	are	on
Windows,	make	sure	that	when	you	run	the	installer,	you	check	the	option	install
pip	(actually,	I	would	suggest	to	make	a	complete	installation,	just	to	be	safe,	of
all	the	components	the	installer	holds).	We'll	talk	about	pip	later.

Now	that	Python	is	installed	in	your	system,	the	objective	is	to	be	able	to	open	a
console	and	run	the	Python	interactive	shell	by	typing	python.

Please	note	that	I	usually	refer	to	the	Python	interactive	shell	simply	as	the	Python	console.

To	open	the	console	in	Windows,	go	to	the	Start	menu,	choose	Run,	and	type	cmd.
If	you	encounter	anything	that	looks	like	a	permission	problem	while	working	on
the	examples	in	this	book,	please	make	sure	you	are	running	the	console	with

https://www.python.org
http://docs.python-guide.org

administrator	rights.

On	the	macOS	X,	you	can	start	a	Terminal	by	going	to	Applications	|	Utilities	|
Terminal.

If	you	are	on	Linux,	you	know	all	that	there	is	to	know	about	the	console.

I	will	use	the	term	console	interchangeably	to	indicate	the	Linux	console,	the
Windows	Command	Prompt,	and	the	Macintosh	Terminal.	I	will	also	indicate
the	command-line	prompt	with	the	Linux	default	format,	like	this:

$	sudo	apt-get	update

If	you're	not	familiar	with	that,	please	take	some	time	to	learn	the	basics	on	how
a	console	works.	In	a	nutshell,	after	the	$	sign,	you	normally	find	an	instruction
that	you	have	to	type.	Pay	attention	to	capitalization	and	spaces,	as	they	are	very
important.

Whatever	console	you	open,	type	python	at	the	prompt,	and	make	sure	the	Python
interactive	shell	shows	up.	Type	exit()	to	quit.	Keep	in	mind	that	you	may	have
to	specify	python3	if	your	OS	comes	with	Python	2.*	preinstalled.

This	is	roughly	what	you	should	see	when	you	run	Python	(it	will	change	in
some	details	according	to	the	version	and	OS):

$	python3.7

Python	3.7.0a3	(default,	Jan	27	2018,	00:46:45)

[Clang	9.0.0	(clang-900.0.39.2)]	on	darwin

Type	"help",	"copyright",	"credits"	or	"license"	for	more	information.

>>>

Now	that	Python	is	set	up	and	you	can	run	it,	it's	time	to	make	sure	you	have	the
other	tool	that	will	be	indispensable	to	follow	the	examples	in	the	book:
virtualenv.

About	virtualenv
As	you	probably	have	guessed	by	its	name,	virtualenv	is	all	about	virtual
environments.	Let	me	explain	what	they	are	and	why	we	need	them	and	let	me
do	it	by	means	of	a	simple	example.

You	install	Python	on	your	system	and	you	start	working	on	a	website	for	Client
X.	You	create	a	project	folder	and	start	coding.	Along	the	way,	you	also	install
some	libraries;	for	example,	the	Django	framework,	which	we'll	see	in	depth	in	C
hapter	14,	Web	Development.	Let's	say	the	Django	version	you	install	for	Project
X	is	1.7.1.

Now,	your	website	is	so	good	that	you	get	another	client,	Y.	She	wants	you	to
build	another	website,	so	you	start	Project	Y	and,	along	the	way,	you	need	to
install	Django	again.	The	only	issue	is	that	now	the	Django	version	is	1.8	and
you	cannot	install	it	on	your	system	because	this	would	replace	the	version	you
installed	for	Project	X.	You	don't	want	to	risk	introducing	incompatibility	issues,
so	you	have	two	choices:	either	you	stick	with	the	version	you	have	currently	on
your	machine,	or	you	upgrade	it	and	make	sure	the	first	project	is	still	fully
working	correctly	with	the	new	version.

Let's	be	honest,	neither	of	these	options	is	very	appealing,	right?	Definitely	not.
So,	here's	the	solution:	virtualenv!

virtualenv	is	a	tool	that	allows	you	to	create	a	virtual	environment.	In	other
words,	it	is	a	tool	to	create	isolated	Python	environments,	each	of	which	is	a
folder	that	contains	all	the	necessary	executables	to	use	the	packages	that	a
Python	project	would	need	(think	of	packages	as	libraries	for	the	time	being).

So	you	create	a	virtual	environment	for	Project	X,	install	all	the	dependencies,
and	then	you	create	a	virtual	environment	for	Project	Y,	installing	all	its
dependencies	without	the	slightest	worry	because	every	library	you	install	ends
up	within	the	boundaries	of	the	appropriate	virtual	environment.	In	our	example,
Project	X	will	hold	Django	1.7.1,	while	Project	Y	will	hold	Django	1.8.

It	is	of	vital	importance	that	you	never	install	libraries	directly	at	the	system	level.	Linux,	for

example,	relies	on	Python	for	many	different	tasks	and	operations,	and	if	you	fiddle	with	the
system	installation	of	Python,	you	risk	compromising	the	integrity	of	the	whole	system	(guess
to	whom	this	happened...).	So	take	this	as	a	rule,	such	as	brushing	your	teeth	before	going	to
bed:	always,	always	create	a	virtual	environment	when	you	start	a	new	project.

To	install	virtualenv	on	your	system,	there	are	a	few	different	ways.	On	a
Debian-based	distribution	of	Linux,	for	example,	you	can	install	it	with	the
following	command:

$	sudo	apt-get	install	python-virtualenv

Probably,	the	easiest	way	is	to	follow	the	instructions	you	can	find	on	the
virtualenv	official	website:	https://virtualenv.pypa.io.

You	will	find	that	one	of	the	most	common	ways	to	install	virtualenv	is	by	using
pip,	a	package	management	system	used	to	install	and	manage	software	packages
written	in	Python.

As	of	Python	3.5,	the	suggested	way	to	create	a	virtual	environment	is	to	use	the	venv	module.
Please	see	the	official	documentation	for	further	information.	However,	at	the	time	of	writing,
virtualenv	is	still	by	far	the	tool	most	used	for	creating	virtual	environments.

https://virtualenv.pypa.io
https://docs.python.org/3.7/library/venv.html

Your	first	virtual	environment
It	is	very	easy	to	create	a	virtual	environment,	but	according	to	how	your	system
is	configured	and	which	Python	version	you	want	the	virtual	environment	to	run,
you	need	to	run	the	command	properly.	Another	thing	you	will	need	to	do	with
virtualenv,	when	you	want	to	work	with	it,	is	to	activate	it.	Activating	virtualenv
basically	produces	some	path	juggling	behind	the	scenes	so	that	when	you	call
the	Python	interpreter,	you're	actually	calling	the	active	virtual	environment	one,
instead	of	the	mere	system	one.

I'll	show	you	a	full	example	on	my	Macintosh	console.	We	will:

1.	 Create	a	folder	named	learn.pp	under	your	project	root	(which	in	my	case	is
a	folder	called	srv,	in	my	home	folder).	Please	adapt	the	paths	according	to
the	setup	you	fancy	on	your	box.

2.	 Within	the	learn.pp	folder,	we	will	create	a	virtual	environment	called
learnpp.

Some	developers	prefer	to	call	all	virtual	environments	using	the	same	name	(for	example,
.venv).	This	way	they	can	run	scripts	against	any	virtualenv	by	just	knowing	the	name	of	the
project	they	dwell	in.	The	dot	in	.venv	is	there	because	in	Linux/macOS	prepending	a	name
with	a	dot	makes	that	file	or	folder	invisible.

3.	 After	creating	the	virtual	environment,	we	will	activate	it.	The	methods	are
slightly	different	between	Linux,	macOS,	and	Windows.

4.	 Then,	we'll	make	sure	that	we	are	running	the	desired	Python	version
(3.7.*)	by	running	the	Python	interactive	shell.

5.	 Finally,	we	will	deactivate	the	virtual	environment	using	the	deactivate
command.

These	five	simple	steps	will	show	you	all	you	have	to	do	to	start	and	use	a
project.

Here's	an	example	of	how	those	steps	might	look	(note	that	you	might	get	a
slightly	different	result,	according	to	your	OS,	Python	version,	and	so	on)	on	the
macOS	(commands	that	start	with	a	#	are	comments,	spaces	have	been
introduced	for	readability,	and	⇢	indicates	where	the	line	has	wrapped	around	due

to	lack	of	space):

fabmp:srv	fab$	#	step	1	-	create	folder

fabmp:srv	fab$	mkdir	learn.pp

fabmp:srv	fab$	cd	learn.pp

fabmp:learn.pp	fab$	#	step	2	-	create	virtual	environment

fabmp:learn.pp	fab$	which	python3.7

/Users/fab/.pyenv/shims/python3.7

fabmp:learn.pp	fab$	virtualenv	-p

⇢	/Users/fab/.pyenv/shims/python3.7	learnpp
Running	virtualenv	with	interpreter	/Users/fab/.pyenv/shims/python3.7

Using	base	prefix	'/Users/fab/.pyenv/versions/3.7.0a3'

New	python	executable	in	/Users/fab/srv/learn.pp/learnpp/bin/python3.7

Also	creating	executable	in	/Users/fab/srv/learn.pp/learnpp/bin/python

Installing	setuptools,	pip,	wheel...done.

fabmp:learn.pp	fab$	#	step	3	-	activate	virtual	environment

fabmp:learn.pp	fab$	source	learnpp/bin/activate

(learnpp)	fabmp:learn.pp	fab$	#	step	4	-	verify	which	python

(learnpp)	fabmp:learn.pp	fab$	which	python

/Users/fab/srv/learn.pp/learnpp/bin/python

(learnpp)	fabmp:learn.pp	fab$	python

Python	3.7.0a3	(default,	Jan	27	2018,	00:46:45)

[Clang	9.0.0	(clang-900.0.39.2)]	on	darwin

Type	"help",	"copyright",	"credits"	or	"license"	for	more	information.

>>>	exit()

(learnpp)	fabmp:learn.pp	fab$	#	step	5	-	deactivate

(learnpp)	fabmp:learn.pp	fab$	deactivate

fabmp:learn.pp	fab$

Notice	that	I	had	to	tell	virtualenv	explicitly	to	use	the	Python	3.7	interpreter
because	on	my	box	Python	2.7	is	the	default	one.	Had	I	not	done	that,	I	would
have	had	a	virtual	environment	with	Python	2.7	instead	of	Python	3.7.

You	can	combine	the	two	instructions	for	step	2	in	one	single	command	like	this:

$	virtualenv	-p	$(which	python3.7)	learnpp

I	chose	to	be	explicitly	verbose	in	this	instance,	to	help	you	understand	each	bit
of	the	procedure.

Another	thing	to	notice	is	that	in	order	to	activate	a	virtual	environment,	we	need
to	run	the	/bin/activate	script,	which	needs	to	be	sourced.	When	a	script	is
sourced,	it	means	that	it	is	executed	in	the	current	shell,	and	therefore	its	effects
last	after	the	execution.	This	is	very	important.	Also	notice	how	the	prompt
changes	after	we	activate	the	virtual	environment,	showing	its	name	on	the	left
(and	how	it	disappears	when	we	deactivate	it).	On	Linux,	the	steps	are	the	same

so	I	won't	repeat	them	here.	On	Windows,	things	change	slightly,	but	the
concepts	are	the	same.	Please	refer	to	the	official	virtualenv	website	for
guidance.

At	this	point,	you	should	be	able	to	create	and	activate	a	virtual	environment.
Please	try	and	create	another	one	without	me	guiding	you.	Get	acquainted	with
this	procedure	because	it's	something	that	you	will	always	be	doing:	we	never
work	system-wide	with	Python,	remember?	It's	extremely	important.

So,	with	the	scaffolding	out	of	the	way,	we're	ready	to	talk	a	bit	more	about
Python	and	how	you	can	use	it.	Before	we	do	that	though,	allow	me	to	speak	a
few	words	about	the	console.

Your	friend,	the	console
In	this	era	of	GUIs	and	touchscreen	devices,	it	seems	a	little	ridiculous	to	have	to
resort	to	a	tool	such	as	the	console,	when	everything	is	just	about	one	click	away.

But	the	truth	is	every	time	you	remove	your	right	hand	from	the	keyboard	(or	the
left	one,	if	you're	a	lefty)	to	grab	your	mouse	and	move	the	cursor	over	to	the
spot	you	want	to	click	on,	you're	losing	time.	Getting	things	done	with	the
console,	counter-intuitive	as	it	may	be,	results	in	higher	productivity	and	speed.	I
know,	you	have	to	trust	me	on	this.

Speed	and	productivity	are	important	and,	personally,	I	have	nothing	against	the
mouse,	but	there	is	another	very	good	reason	for	which	you	may	want	to	get
well-acquainted	with	the	console:	when	you	develop	code	that	ends	up	on	some
server,	the	console	might	be	the	only	available	tool.	If	you	make	friends	with	it,	I
promise	you,	you	will	never	get	lost	when	it's	of	utmost	importance	that	you
don't	(typically,	when	the	website	is	down	and	you	have	to	investigate	very
quickly	what's	going	on).

So	it's	really	up	to	you.	If	you're	undecided,	please	grant	me	the	benefit	of	the
doubt	and	give	it	a	try.	It's	easier	than	you	think,	and	you'll	never	regret	it.	There
is	nothing	more	pitiful	than	a	good	developer	who	gets	lost	within	an	SSH
connection	to	a	server	because	they	are	used	to	their	own	custom	set	of	tools,
and	only	to	that.

Now,	let's	get	back	to	Python.

How	you	can	run	a	Python	program
There	are	a	few	different	ways	in	which	you	can	run	a	Python	program.

Running	Python	scripts
Python	can	be	used	as	a	scripting	language.	In	fact,	it	always	proves	itself	very
useful.	Scripts	are	files	(usually	of	small	dimensions)	that	you	normally	execute
to	do	something	like	a	task.	Many	developers	end	up	having	their	own	arsenal	of
tools	that	they	fire	when	they	need	to	perform	a	task.	For	example,	you	can	have
scripts	to	parse	data	in	a	format	and	render	it	into	another	different	format.	Or
you	can	use	a	script	to	work	with	files	and	folders.	You	can	create	or	modify
configuration	files,	and	much	more.	Technically,	there	is	not	much	that	cannot	be
done	in	a	script.

It's	quite	common	to	have	scripts	running	at	a	precise	time	on	a	server.	For
example,	if	your	website	database	needs	cleaning	every	24	hours	(for	example,
the	table	that	stores	the	user	sessions,	which	expire	pretty	quickly	but	aren't
cleaned	automatically),	you	could	set	up	a	Cron	job	that	fires	your	script	at	3:00
A.M.	every	day.

According	to	Wikipedia,	the	software	utility	Cron	is	a	time-based	job	scheduler	in	Unix-like
computer	operating	systems.	People	who	set	up	and	maintain	software	environments	use	Cron
to	schedule	jobs	(commands	or	shell	scripts)	to	run	periodically	at	fixed	times,	dates,	or
intervals.

I	have	Python	scripts	to	do	all	the	menial	tasks	that	would	take	me	minutes	or
more	to	do	manually,	and	at	some	point,	I	decided	to	automate.	We'll	devote	half
of	Chapter	12,	GUIs	and	Scripts,	on	scripting	with	Python.

Running	the	Python	interactive	shell
Another	way	of	running	Python	is	by	calling	the	interactive	shell.	This	is
something	we	already	saw	when	we	typed	python	on	the	command	line	of	our
console.

So,	open	a	console,	activate	your	virtual	environment	(which	by	now	should	be
second	nature	to	you,	right?),	and	type	python.	You	will	be	presented	with	a
couple	of	lines	that	should	look	like	this:

$	python

Python	3.7.0a3	(default,	Jan	27	2018,	00:46:45)

[Clang	9.0.0	(clang-900.0.39.2)]	on	darwin

Type	"help",	"copyright",	"credits"	or	"license"	for	more	information.

>>>

Those	>>>	are	the	prompt	of	the	shell.	They	tell	you	that	Python	is	waiting	for
you	to	type	something.	If	you	type	a	simple	instruction,	something	that	fits	in
one	line,	that's	all	you'll	see.	However,	if	you	type	something	that	requires	more
than	one	line	of	code,	the	shell	will	change	the	prompt	to	...,	giving	you	a	visual
clue	that	you're	typing	a	multiline	statement	(or	anything	that	would	require
more	than	one	line	of	code).

Go	on,	try	it	out;	let's	do	some	basic	math:

>>>	2	+	4

6

>>>	10	/	4

2.5

>>>	2	**	1024

179769313486231590772930519078902473361797697894230657273430081157732675805500963132708477322407536021120113879871393357658789768814416622492847430639474124377767893424865485276302219601246094119453082952085005768838150682342462881473913110540827237163350510684586298239947245938479716304835356329624224137216

The	last	operation	is	showing	you	something	incredible.	We	raise	2	to	the	power
of	1024,	and	Python	is	handling	this	task	with	no	trouble	at	all.	Try	to	do	it	in
Java,	C++,	or	C#.	It	won't	work,	unless	you	use	special	libraries	to	handle	such
big	numbers.

I	use	the	interactive	shell	every	day.	It's	extremely	useful	to	debug	very	quickly,
for	example,	to	check	if	a	data	structure	supports	an	operation.	Or	maybe	to
inspect	or	run	a	piece	of	code.

When	you	use	Django	(a	web	framework),	the	interactive	shell	is	coupled	with	it
and	allows	you	to	work	your	way	through	the	framework	tools,	to	inspect	the
data	in	the	database,	and	many	more	things.	You	will	find	that	the	interactive
shell	will	soon	become	one	of	your	dearest	friends	on	the	journey	you	are
embarking	on.

Another	solution,	which	comes	in	a	much	nicer	graphic	layout,	is	to	use
Integrated	DeveLopment	Environment	(IDLE).	It's	quite	a	simple	IDE,	which
is	intended	mostly	for	beginners.	It	has	a	slightly	larger	set	of	capabilities	than
the	naked	interactive	shell	you	get	in	the	console,	so	you	may	want	to	explore	it.
It	comes	for	free	in	the	Windows	Python	installer	and	you	can	easily	install	it	in
any	other	system.	You	can	find	information	about	it	on	the	Python	website.

Guido	Van	Rossum	named	Python	after	the	British	comedy	group,	Monty
Python,	so	it's	rumored	that	the	name	IDLE	has	been	chosen	in	honor	of	Eric
Idle,	one	of	Monty	Python's	founding	members.

Running	Python	as	a	service
Apart	from	being	run	as	a	script,	and	within	the	boundaries	of	a	shell,	Python
can	be	coded	and	run	as	an	application.	We'll	see	many	examples	throughout	the
book	about	this	mode.	And	we'll	understand	more	about	it	in	a	moment,	when
we'll	talk	about	how	Python	code	is	organized	and	run.

	

Running	Python	as	a	GUI	application
Python	can	also	be	run	as	a	graphical	user	interface	(GUI).	There	are	several
frameworks	available,	some	of	which	are	cross-platform	and	some	others	are
platform-specific.	In	Chapter	12,	GUIs	and	Scripts,	we'll	see	an	example	of	a	GUI
application	created	using	Tkinter,	which	is	an	object-oriented	layer	that	lives	on
top	of	Tk	(Tkinter	means	Tk	interface).

Tk	is	a	GUI	toolkit	that	takes	desktop	application	development	to	a	higher	level	than	the
conventional	approach.	It	is	the	standard	GUI	for	Tool	Command	Language	(Tcl),	but	also
for	many	other	dynamic	languages,	and	it	can	produce	rich	native	applications	that	run
seamlessly	under	Windows,	Linux,	macOS	X,	and	more.

Tkinter	comes	bundled	with	Python;	therefore,	it	gives	the	programmer	easy
access	to	the	GUI	world,	and	for	these	reasons,	I	have	chosen	it	to	be	the
framework	for	the	GUI	examples	that	I'll	present	in	this	book.

Among	the	other	GUI	frameworks,	we	find	that	the	following	are	the	most
widely	used:

PyQt
wxPython
PyGTK

Describing	them	in	detail	is	outside	the	scope	of	this	book,	but	you	can	find	all
the	information	you	need	on	the	Python	website	(https://docs.python.org/3/faq/gui.h
tml)	in	the	What	platform-independent	GUI	toolkits	exist	for	Python?	section.	If
GUIs	are	what	you're	looking	for,	remember	to	choose	the	one	you	want
according	to	some	principles.	Make	sure	they:

Offer	all	the	features	you	may	need	to	develop	your	project
Run	on	all	the	platforms	you	may	need	to	support
Rely	on	a	community	that	is	as	wide	and	active	as	possible
Wrap	graphic	drivers/tools	that	you	can	easily	install/access

https://docs.python.org/3/faq/gui.html

How	is	Python	code	organized?
Let's	talk	a	little	bit	about	how	Python	code	is	organized.	In	this	section,	we'll
start	going	down	the	rabbit	hole	a	little	bit	more	and	introduce	more	technical
names	and	concepts.

Starting	with	the	basics,	how	is	Python	code	organized?	Of	course,	you	write
your	code	into	files.	When	you	save	a	file	with	the	extension	.py,	that	file	is	said
to	be	a	Python	module.

If	you're	on	Windows	or	macOS	that	typically	hide	file	extensions	from	the	user,	please	make
sure	you	change	the	configuration	so	that	you	can	see	the	complete	names	of	the	files.	This	is
not	strictly	a	requirement,	but	a	suggestion.

It	would	be	impractical	to	save	all	the	code	that	it	is	required	for	software	to
work	within	one	single	file.	That	solution	works	for	scripts,	which	are	usually
not	longer	than	a	few	hundred	lines	(and	often	they	are	quite	shorter	than	that).

A	complete	Python	application	can	be	made	of	hundreds	of	thousands	of	lines	of
code,	so	you	will	have	to	scatter	it	through	different	modules,	which	is	better,	but
not	nearly	good	enough.	It	turns	out	that	even	like	this,	it	would	still	be
impractical	to	work	with	the	code.	So	Python	gives	you	another	structure,	called
package,	which	allows	you	to	group	modules	together.	A	package	is	nothing
more	than	a	folder,	which	must	contain	a	special	file,	__init__.py,	that	doesn't
need	to	hold	any	code	but	whose	presence	is	required	to	tell	Python	that	the
folder	is	not	just	some	folder,	but	it's	actually	a	package	(note	that	as	of	Python
3.3,	the	__init__.py	module	is	not	strictly	required	any	more).

As	always,	an	example	will	make	all	of	this	much	clearer.	I	have	created	an
example	structure	in	my	book	project,	and	when	I	type	in	my	console:

$	tree	-v	example

I	get	a	tree	representation	of	the	contents	of	the	ch1/example	folder,	which	holds	the
code	for	the	examples	of	this	chapter.	Here's	what	the	structure	of	a	really	simple
application	could	look	like:

example

├──	core.py

├──	run.py

└──	util

				├──	__init__.py

				├──	db.py

				├──	math.py

				└──	network.py

You	can	see	that	within	the	root	of	this	example,	we	have	two	modules,	core.py
and	run.py,	and	one	package:	util.	Within	core.py,	there	may	be	the	core	logic	of
our	application.	On	the	other	hand,	within	the	run.py	module,	we	can	probably
find	the	logic	to	start	the	application.	Within	the	util	package,	I	expect	to	find
various	utility	tools,	and	in	fact,	we	can	guess	that	the	modules	there	are	named
based	on	the	types	of	tools	they	hold:	db.py	would	hold	tools	to	work	with
databases,	math.py	would,	of	course,	hold	mathematical	tools	(maybe	our
application	deals	with	financial	data),	and	network.py	would	probably	hold	tools	to
send/receive	data	on	networks.

As	explained	before,	the	__init__.py	file	is	there	just	to	tell	Python	that	util	is	a
package	and	not	just	a	mere	folder.

Had	this	software	been	organized	within	modules	only,	it	would	have	been
harder	to	infer	its	structure.	I	put	a	module	only	example	under	the	ch1/files_only
folder;	see	it	for	yourself:

$	tree	-v	files_only

This	shows	us	a	completely	different	picture:

files_only/

├──	core.py

├──	db.py

├──	math.py

├──	network.py

└──	run.py

It	is	a	little	harder	to	guess	what	each	module	does,	right?	Now,	consider	that	this
is	just	a	simple	example,	so	you	can	guess	how	much	harder	it	would	be	to
understand	a	real	application	if	we	couldn't	organize	the	code	in	packages	and
modules.

How	do	we	use	modules	and
packages?
When	a	developer	is	writing	an	application,	it	is	likely	that	they	will	need	to
apply	the	same	piece	of	logic	in	different	parts	of	it.	For	example,	when	writing	a
parser	for	the	data	that	comes	from	a	form	that	a	user	can	fill	in	a	web	page,	the
application	will	have	to	validate	whether	a	certain	field	is	holding	a	number	or
not.	Regardless	of	how	the	logic	for	this	kind	of	validation	is	written,	it's	likely
that	it	will	be	needed	in	more	than	one	place.

For	example,	in	a	poll	application,	where	the	user	is	asked	many	questions,	it's
likely	that	several	of	them	will	require	a	numeric	answer.	For	example:

What	is	your	age?
How	many	pets	do	you	own?
How	many	children	do	you	have?
How	many	times	have	you	been	married?

It	would	be	very	bad	practice	to	copy/paste	(or,	more	properly	said:	duplicate)
the	validation	logic	in	every	place	where	we	expect	a	numeric	answer.	This
would	violate	the	don't	repeat	yourself	(DRY)	principle,	which	states	that	you
should	never	repeat	the	same	piece	of	code	more	than	once	in	your	application.	I
feel	the	need	to	stress	the	importance	of	this	principle:	you	should	never	repeat
the	same	piece	of	code	more	than	once	in	your	application	(pun	intended).

There	are	several	reasons	why	repeating	the	same	piece	of	logic	can	be	very	bad,
the	most	important	ones	being:

There	could	be	a	bug	in	the	logic,	and	therefore,	you	would	have	to	correct
it	in	every	place	that	the	logic	is	applied.
You	may	want	to	amend	the	way	you	carry	out	the	validation,	and	again
you	would	have	to	change	it	in	every	place	it	is	applied.
You	may	forget	to	fix/amend	a	piece	of	logic	because	you	missed	it	when
searching	for	all	its	occurrences.	This	would	leave	wrong/inconsistent
behavior	in	your	application.

Your	code	would	be	longer	than	needed,	for	no	good	reason.

Python	is	a	wonderful	language	and	provides	you	with	all	the	tools	you	need	to
apply	all	the	coding	best	practices.	For	this	particular	example,	we	need	to	be
able	to	reuse	a	piece	of	code.	To	be	able	to	reuse	a	piece	of	code,	we	need	to
have	a	construct	that	will	hold	the	code	for	us	so	that	we	can	call	that	construct
every	time	we	need	to	repeat	the	logic	inside	it.	That	construct	exists,	and	it's
called	a	function.

I'm	not	going	too	deep	into	the	specifics	here,	so	please	just	remember	that	a
function	is	a	block	of	organized,	reusable	code	that	is	used	to	perform	a	task.
Functions	can	assume	many	forms	and	names,	according	to	what	kind	of
environment	they	belong	to,	but	for	now	this	is	not	important.	We'll	see	the
details	when	we	are	able	to	appreciate	them,	later	on,	in	the	book.	Functions	are
the	building	blocks	of	modularity	in	your	application,	and	they	are	almost
indispensable.	Unless	you're	writing	a	super-simple	script,	you'll	use	functions
all	the	time.	We'll	explore	functions	in	Chapter	4,	Functions,	the	Building	Blocks
of	Code.

Python	comes	with	a	very	extensive	library,	as	I	have	already	said	a	few	pages
ago.	Now,	maybe	it's	a	good	time	to	define	what	a	library	is:	a	library	is	a
collection	of	functions	and	objects	that	provide	functionalities	that	enrich	the
abilities	of	a	language.

For	example,	within	Python's	math	library,	we	can	find	a	plethora	of	functions,
one	of	which	is	the	factorial	function,	which	of	course	calculates	the	factorial	of
a	number.

In	mathematics,	the	factorial	of	a	non-negative	integer	number	N,	denoted	as	N!,	is	defined	as
the	product	of	all	positive	integers	less	than	or	equal	to	N.	For	example,	the	factorial	of	5	is
calculated	as:
5!	=	5	*	4	*	3	*	2	*	1	=	120

The	factorial	of	0	is	0!	=	1,	to	respect	the	convention	for	an	empty	product.

So,	if	you	wanted	to	use	this	function	in	your	code,	all	you	would	have	to	do	is
to	import	it	and	call	it	with	the	right	input	values.	Don't	worry	too	much	if	input
values	and	the	concept	of	calling	is	not	very	clear	for	now;	please	just
concentrate	on	the	import	part.	We	use	a	library	by	importing	what	we	need	from
it,	and	then	we	use	it.

In	Python,	to	calculate	the	factorial	of	number	5,	we	just	need	the	following
code:

>>>	from	math	import	factorial

>>>	factorial(5)

120

Whatever	we	type	in	the	shell,	if	it	has	a	printable	representation,	will	be	printed	on	the
console	for	us	(in	this	case,	the	result	of	the	function	call:	120).

So,	let's	go	back	to	our	example,	the	one	with	core.py,	run.py,	util,	and	so	on.

In	our	example,	the	package	util	is	our	utility	library.	Our	custom	utility	belt	that
holds	all	those	reusable	tools	(that	is,	functions),	which	we	need	in	our
application.	Some	of	them	will	deal	with	databases	(db.py),	some	with	the
network	(network.py),	and	some	will	perform	mathematical	calculations	(math.py)
that	are	outside	the	scope	of	Python's	standard	math	library	and,	therefore,	we
have	to	code	them	for	ourselves.

We	will	see	in	detail	how	to	import	functions	and	use	them	in	their	dedicated
chapter.	Let's	now	talk	about	another	very	important	concept:	Python's	execution
model.

Python's	execution	model
In	this	section,	I	would	like	to	introduce	you	to	a	few	very	important	concepts,
such	as	scope,	names,	and	namespaces.	You	can	read	all	about	Python's
execution	model	in	the	official	language	reference,	of	course,	but	I	would	argue
that	it	is	quite	technical	and	abstract,	so	let	me	give	you	a	less	formal	explanation
first.

	

Names	and	namespaces
Say	you	are	looking	for	a	book,	so	you	go	to	the	library	and	ask	someone	for	the
book	you	want	to	fetch.	They	tell	you	something	like	Second	Floor,	Section	X,
Row	Three.	So	you	go	up	the	stairs,	look	for	Section	X,	and	so	on.

It	would	be	very	different	to	enter	a	library	where	all	the	books	are	piled	together
in	random	order	in	one	big	room.	No	floors,	no	sections,	no	rows,	no	order.
Fetching	a	book	would	be	extremely	hard.

When	we	write	code,	we	have	the	same	issue:	we	have	to	try	and	organize	it	so
that	it	will	be	easy	for	someone	who	has	no	prior	knowledge	about	it	to	find
what	they're	looking	for.	When	software	is	structured	correctly,	it	also	promotes
code	reuse.	On	the	other	hand,	disorganized	software	is	more	likely	to	expose
scattered	pieces	of	duplicated	logic.

First	of	all,	let's	start	with	the	book.	We	refer	to	a	book	by	its	title	and	in	Python
lingo,	that	would	be	a	name.	Python	names	are	the	closest	abstraction	to	what
other	languages	call	variables.	Names	basically	refer	to	objects	and	are
introduced	by	name-binding	operations.	Let's	make	a	quick	example	(notice	that
anything	that	follows	a	#	is	a	comment):

>>>	n	=	3		#	integer	number

>>>	address	=	"221b	Baker	Street,	NW1	6XE,	London"		#	Sherlock	Holmes'	address

>>>	employee	=	{

...					'age':	45,

...					'role':	'CTO',

...					'SSN':	'AB1234567',

...	}

>>>	#	let's	print	them

>>>	n

3

>>>	address

'221b	Baker	Street,	NW1	6XE,	London'

>>>	employee

{'age':	45,	'role':	'CTO',	'SSN':	'AB1234567'}

>>>	other_name

Traceback	(most	recent	call	last):

		File	"<stdin>",	line	1,	in	<module>

NameError:	name	'other_name'	is	not	defined

We	defined	three	objects	in	the	preceding	code	(do	you	remember	what	are	the
three	features	every	Python	object	has?):

An	integer	number	n	(type:	int,	value:	3)
A	string	address	(type:	str,	value:	Sherlock	Holmes'	address)
A	dictionary	employee	(type:	dict,	value:	a	dictionary	that	holds	three
key/value	pairs)

Don't	worry,	I	know	you're	not	supposed	to	know	what	a	dictionary	is.	We'll	see
in	Chapter	2,	Built-in	Data	Types,	that	it's	the	king	of	Python	data	structures.

Have	you	noticed	that	the	prompt	changed	from	>>>	to	...	when	I	typed	in	the	definition	of
employee?	That's	because	the	definition	spans	over	multiple	lines.

So,	what	are	n,	address,	and	employee?	They	are	names.	Names	that	we	can	use	to
retrieve	data	within	our	code.	They	need	to	be	kept	somewhere	so	that	whenever
we	need	to	retrieve	those	objects,	we	can	use	their	names	to	fetch	them.	We	need
some	space	to	hold	them,	hence:	namespaces!

A	namespace	is	therefore	a	mapping	from	names	to	objects.	Examples	are	the
set	of	built-in	names	(containing	functions	that	are	always	accessible	in	any
Python	program),	the	global	names	in	a	module,	and	the	local	names	in	a
function.	Even	the	set	of	attributes	of	an	object	can	be	considered	a	namespace.

The	beauty	of	namespaces	is	that	they	allow	you	to	define	and	organize	your
names	with	clarity,	without	overlapping	or	interference.	For	example,	the
namespace	associated	with	that	book	we	were	looking	for	in	the	library	can	be
used	to	import	the	book	itself,	like	this:

from	library.second_floor.section_x.row_three	import	book	

We	start	from	the	library	namespace,	and	by	means	of	the	dot	(.)	operator,	we
walk	into	that	namespace.	Within	this	namespace,	we	look	for	second_floor,	and
again	we	walk	into	it	with	the	.	operator.	We	then	walk	into	section_x,	and	finally
within	the	last	namespace,	row_three,	we	find	the	name	we	were	looking	for:	book.

Walking	through	a	namespace	will	be	clearer	when	we'll	be	dealing	with	real
code	examples.	For	now,	just	keep	in	mind	that	namespaces	are	places	where
names	are	associated	with	objects.

There	is	another	concept,	which	is	closely	related	to	that	of	a	namespace,	which
I'd	like	to	briefly	talk	about:	the	scope.

Scopes
According	to	Python's	documentation:

"	A	scope	is	a	textual	region	of	a	Python	program,	where	a	namespace	is	directly	accessible."

Directly	accessible	means	that	when	you're	looking	for	an	unqualified	reference
to	a	name,	Python	tries	to	find	it	in	the	namespace.

Scopes	are	determined	statically,	but	actually,	during	runtime,	they	are	used
dynamically.	This	means	that	by	inspecting	the	source	code,	you	can	tell	what
the	scope	of	an	object	is,	but	this	doesn't	prevent	the	software	from	altering	that
during	runtime.	There	are	four	different	scopes	that	Python	makes	accessible
(not	necessarily	all	of	them	are	present	at	the	same	time,	of	course):

The	local	scope,	which	is	the	innermost	one	and	contains	the	local	names.
The	enclosing	scope,	that	is,	the	scope	of	any	enclosing	function.	It
contains	non-local	names	and	also	non-global	names.
The	global	scope	contains	the	global	names.
The	built-in	scope	contains	the	built-in	names.	Python	comes	with	a	set	of
functions	that	you	can	use	in	an	off-the-shelf	fashion,	such	as	print,	all,	abs,
and	so	on.	They	live	in	the	built-in	scope.

The	rule	is	the	following:	when	we	refer	to	a	name,	Python	starts	looking	for	it
in	the	current	namespace.	If	the	name	is	not	found,	Python	continues	the	search
to	the	enclosing	scope	and	this	continues	until	the	built-in	scope	is	searched.	If	a
name	hasn't	been	found	after	searching	the	built-in	scope,	then	Python	raises	a
NameError	exception,	which	basically	means	that	the	name	hasn't	been	defined
(you	saw	this	in	the	preceding	example).

The	order	in	which	the	namespaces	are	scanned	when	looking	for	a	name	is
therefore:	local,	enclosing,	global,	built-in	(LEGB).

This	is	all	very	theoretical,	so	let's	see	an	example.	In	order	to	show	you	local
and	enclosing	namespaces,	I	will	have	to	define	a	few	functions.	Don't	worry	if
you	are	not	familiar	with	their	syntax	for	the	moment.	We'll	study	functions	in	Ch
apter	4,	Functions,	the	Building	Blocks	of	Code.	Just	remember	that	in	the

following	code,	when	you	see	def,	it	means	I'm	defining	a	function:

#	scopes1.py

#	Local	versus	Global

#	we	define	a	function,	called	local

def	local():

				m	=	7

				print(m)

m	=	5

print(m)

#	we	call,	or	`execute`	the	function	local

local()

In	the	preceding	example,	we	define	the	same	name	m,	both	in	the	global	scope
and	in	the	local	one	(the	one	defined	by	the	local	function).	When	we	execute
this	program	with	the	following	command	(have	you	activated	your	virtualenv?):

$	python	scopes1.py

We	see	two	numbers	printed	on	the	console:	5	and	7.

What	happens	is	that	the	Python	interpreter	parses	the	file,	top	to	bottom.	First,	it
finds	a	couple	of	comment	lines,	which	are	skipped,	then	it	parses	the	definition
of	the	function	local.	When	called,	this	function	does	two	things:	it	sets	up	a
name	to	an	object	representing	number	7	and	prints	it.	The	Python	interpreter
keeps	going	and	it	finds	another	name	binding.	This	time	the	binding	happens	in
the	global	scope	and	the	value	is	5.	The	next	line	is	a	call	to	the	print	function,
which	is	executed	(and	so	we	get	the	first	value	printed	on	the	console:	5).

After	this,	there	is	a	call	to	the	function	local.	At	this	point,	Python	executes	the
function,	so	at	this	time,	the	binding	m	=	7	happens	and	it's	printed.

One	very	important	thing	to	notice	is	that	the	part	of	the	code	that	belongs	to	the
definition	of	the	local	function	is	indented	by	four	spaces	on	the	right.	Python,	in
fact,	defines	scopes	by	indenting	the	code.	You	walk	into	a	scope	by	indenting,
and	walk	out	of	it	by	unindenting.	Some	coders	use	two	spaces,	others	three,	but
the	suggested	number	of	spaces	to	use	is	four.	It's	a	good	measure	to	maximize
readability.	We'll	talk	more	about	all	the	conventions	you	should	embrace	when
writing	Python	code	later.

What	would	happen	if	we	removed	that	m	=	7	line?	Remember	the	LEGB	rule.

Python	would	start	looking	for	m	in	the	local	scope	(function	local),	and,	not
finding	it,	it	would	go	to	the	next	enclosing	scope.	The	next	one,	in	this	case,	is
the	global	one	because	there	is	no	enclosing	function	wrapped	around	local.
Therefore,	we	would	see	two	numbers	5	printed	on	the	console.	Let's	actually	see
what	the	code	would	look	like:

#	scopes2.py

#	Local	versus	Global

def	local():

				#	m	doesn't	belong	to	the	scope	defined	by	the	local	function

				#	so	Python	will	keep	looking	into	the	next	enclosing	scope.

				#	m	is	finally	found	in	the	global	scope

				print(m,	'printing	from	the	local	scope')

m	=	5

print(m,	'printing	from	the	global	scope')

local()

Running	scopes2.py	will	print	this:

$	python	scopes2.py

5	printing	from	the	global	scope

5	printing	from	the	local	scope

As	expected,	Python	prints	m	the	first	time,	then	when	the	function	local	is	called,
m	isn't	found	in	its	scope,	so	Python	looks	for	it	following	the	LEGB	chain	until	m
is	found	in	the	global	scope.

Let's	see	an	example	with	an	extra	layer,	the	enclosing	scope:

#	scopes3.py

#	Local,	Enclosing	and	Global

def	enclosing_func():

				m	=	13

				def	local():

								#	m	doesn't	belong	to	the	scope	defined	by	the	local

								#	function	so	Python	will	keep	looking	into	the	next

								#	enclosing	scope.	This	time	m	is	found	in	the	enclosing

								#	scope

								print(m,	'printing	from	the	local	scope')

				#	calling	the	function	local

				local()

m	=	5

print(m,	'printing	from	the	global	scope')

enclosing_func()

Running	scopes3.py	will	print	on	the	console:

$	python	scopes3.py

(5,	'printing	from	the	global	scope')

(13,	'printing	from	the	local	scope')

As	you	can	see,	the	print	instruction	from	the	function	local	is	referring	to	m	as
before.	m	is	still	not	defined	within	the	function	itself,	so	Python	starts	walking
scopes	following	the	LEGB	order.	This	time	m	is	found	in	the	enclosing	scope.

Don't	worry	if	this	is	still	not	perfectly	clear	for	now.	It	will	come	to	you	as	we
go	through	the	examples	in	the	book.	The	Classes	section	of	the	Python	tutorial	(
https://docs.python.org/3/tutorial/classes.html)	has	an	interesting	paragraph	about
scopes	and	namespaces.	Make	sure	you	read	it	at	some	point	if	you	want	a
deeper	understanding	of	the	subject.

Before	we	finish	off	this	chapter,	I	would	like	to	talk	a	bit	more	about	objects.
After	all,	basically	everything	in	Python	is	an	object,	so	I	think	they	deserve	a	bit
more	attention.

https://docs.python.org/3/tutorial/classes.html

Objects	and	classes
When	I	introduced	objects	previously	in	the	A	proper	introduction	section	of	the
chapter,	I	said	that	we	use	them	to	represent	real-life	objects.	For	example,	we
sell	goods	of	any	kind	on	the	web	nowadays	and	we	need	to	be	able	to	handle,
store,	and	represent	them	properly.	But	objects	are	actually	so	much	more	than
that.	Most	of	what	you	will	ever	do,	in	Python,	has	to	do	with	manipulating
objects.

So,	without	going	into	too	much	detail	(we'll	do	that	in	Chapter	6,	OOP,
Decorators,	and	Iterators),	I	want	to	give	you	the	in	a	nutshell	kind	of
explanation	about	classes	and	objects.

We've	already	seen	that	objects	are	Python's	abstraction	for	data.	In	fact,
everything	in	Python	is	an	object,	infact	numbers,	strings	(data	structures	that
hold	text),	containers,	collections,	even	functions.	You	can	think	of	them	as	if
they	were	boxes	with	at	least	three	features:	an	ID	(unique),	a	type,	and	a	value.

But	how	do	they	come	to	life?	How	do	we	create	them?	How	do	we	write	our
own	custom	objects?	The	answer	lies	in	one	simple	word:	classes.

Objects	are,	in	fact,	instances	of	classes.	The	beauty	of	Python	is	that	classes	are
objects	themselves,	but	let's	not	go	down	this	road.	It	leads	to	one	of	the	most
advanced	concepts	of	this	language:	metaclasses.	For	now,	the	best	way	for	you
to	get	the	difference	between	classes	and	objects	is	by	means	of	an	example.

Say	a	friend	tells	you,	I	bought	a	new	bike!	You	immediately	understand	what
she's	talking	about.	Have	you	seen	the	bike?	No.	Do	you	know	what	color	it	is?
Nope.	The	brand?	Nope.	Do	you	know	anything	about	it?	Nope.	But	at	the	same
time,	you	know	everything	you	need	in	order	to	understand	what	your	friend
meant	when	she	told	you	she	bought	a	new	bike.	You	know	that	a	bike	has	two
wheels	attached	to	a	frame,	a	saddle,	pedals,	handlebars,	brakes,	and	so	on.	In
other	words,	even	if	you	haven't	seen	the	bike	itself,	you	know	the	concept	of
bike.	An	abstract	set	of	features	and	characteristics	that	together	form	something
called	bike.

In	computer	programming,	that	is	called	a	class.	It's	that	simple.	Classes	are	used
to	create	objects.	In	fact,	objects	are	said	to	be	instances	of	classes.

In	other	words,	we	all	know	what	a	bike	is;	we	know	the	class.	But	then	I	have
my	own	bike,	which	is	an	instance	of	the	bike	class.	And	my	bike	is	an	object
with	its	own	characteristics	and	methods.	You	have	your	own	bike.	Same	class,
but	different	instance.	Every	bike	ever	created	in	the	world	is	an	instance	of	the
bike	class.

Let's	see	an	example.	We	will	write	a	class	that	defines	a	bike	and	then	we'll
create	two	bikes,	one	red	and	one	blue.	I'll	keep	the	code	very	simple,	but	don't
fret	if	you	don't	understand	everything	about	it;	all	you	need	to	care	about	at	this
moment	is	to	understand	the	difference	between	a	class	and	an	object	(or
instance	of	a	class):

#	bike.py

#	let's	define	the	class	Bike

class	Bike:

				def	__init__(self,	colour,	frame_material):

								self.colour	=	colour

								self.frame_material	=	frame_material

				def	brake(self):

								print("Braking!")

#	let's	create	a	couple	of	instances

red_bike	=	Bike('Red',	'Carbon	fiber')

blue_bike	=	Bike('Blue',	'Steel')

#	let's	inspect	the	objects	we	have,	instances	of	the	Bike	class.

print(red_bike.colour)		#	prints:	Red

print(red_bike.frame_material)		#	prints:	Carbon	fiber

print(blue_bike.colour)		#	prints:	Blue

print(blue_bike.frame_material)		#	prints:	Steel

#	let's	brake!

red_bike.brake()		#	prints:	Braking!

I	hope	by	now	I	don't	need	to	tell	you	to	run	the	file	every	time,	right?	The	filename	is
indicated	in	the	first	line	of	the	code	block.	Just	run	$	python	filename,	and	you'll	be	fine.	But
remember	to	have	your	virtualenv	activated!

So	many	interesting	things	to	notice	here.	First	things	first;	the	definition	of	a
class	happens	with	the	class	statement.	Whatever	code	comes	after	the	class
statement,	and	is	indented,	is	called	the	body	of	the	class.	In	our	case,	the	last
line	that	belongs	to	the	class	definition	is	the	print("Braking!")	one.

After	having	defined	the	class,	we're	ready	to	create	instances.	You	can	see	that

the	class	body	hosts	the	definition	of	two	methods.	A	method	is	basically	(and
simplistically)	a	function	that	belongs	to	a	class.

The	first	method,	__init__,	is	an	initializer.	It	uses	some	Python	magic	to	set	up
the	objects	with	the	values	we	pass	when	we	create	it.

Every	method	that	has	leading	and	trailing	double	underscores,	in	Python,	is	called	a	magic
method.	Magic	methods	are	used	by	Python	for	a	multitude	of	different	purposes;	hence	it's
never	a	good	idea	to	name	a	custom	method	using	two	leading	and	trailing	underscores.	This
naming	convention	is	best	left	to	Python.

The	other	method	we	defined,	brake,	is	just	an	example	of	an	additional	method
that	we	could	call	if	we	wanted	to	brake	the	bike.	It	contains	just	a	print
statement,	of	course;	it's	an	example.

We	created	two	bikes	then.	One	has	red	color	and	a	carbon	fiber	frame,	and	the
other	one	has	blue	color	and	a	steel	frame.	We	pass	those	values	upon	creation.
After	creation,	we	print	out	the	color	property	and	frame	type	of	the	red	bike,
and	the	frame	type	of	the	blue	one	just	as	an	example.	We	also	call	the	brake
method	of	the	red_bike.

One	last	thing	to	notice.	You	remember	I	told	you	that	the	set	of	attributes	of	an
object	is	considered	to	be	a	namespace?	I	hope	it's	clearer	what	I	meant	now.
You	see	that	by	getting	to	the	frame_type	property	through	different	namespaces
(red_bike,	blue_bike),	we	obtain	different	values.	No	overlapping,	no	confusion.

The	dot	(.)	operator	is	of	course	the	means	we	use	to	walk	into	a	namespace,	in
the	case	of	objects	as	well.

Guidelines	on	how	to	write	good	code
Writing	good	code	is	not	as	easy	as	it	seems.	As	I	already	said	before,	good	code
exposes	a	long	list	of	qualities	that	is	quite	hard	to	put	together.	Writing	good
code	is,	to	some	extent,	an	art.	Regardless	of	where	on	the	path	you	will	be
happy	to	settle,	there	is	something	that	you	can	embrace	which	will	make	your
code	instantly	better:	PEP	8.

According	to	Wikipedia:

"Python's	development	is	conducted	largely	through	the	Python	Enhancement	Proposal	(PEP)	process.	The
PEP	process	is	the	primary	mechanism	for	proposing	major	new	features,	for	collecting	community	input
on	an	issue,	and	for	documenting	the	design	decisions	that	have	gone	into	Python."

PEP	8	is	perhaps	the	most	famous	of	all	PEPs.	It	lays	out	a	simple	but	effective
set	of	guidelines	to	define	Python	aesthetics	so	that	we	write	beautiful	Python
code.	If	you	take	one	suggestion	out	of	this	chapter,	please	let	it	be	this:	use	it.
Embrace	it.	You	will	thank	me	later.

Coding	today	is	no	longer	a	check-in/check-out	business.	Rather,	it's	more	of	a
social	effort.	Several	developers	collaborate	on	a	piece	of	code	through	tools
such	as	Git	and	Mercurial,	and	the	result	is	code	that	is	fathered	by	many
different	hands.

Git	and	Mercurial	are	probably	the	distributed	revision	control	systems	that	are	most	used
today.	They	are	essential	tools	designed	to	help	teams	of	developers	collaborate	on	the	same
software.

These	days,	more	than	ever,	we	need	to	have	a	consistent	way	of	writing	code,	so
that	readability	is	maximized.	When	all	developers	of	a	company	abide	by	PEP
8,	it's	not	uncommon	for	any	of	them	landing	on	a	piece	of	code	to	think	they
wrote	it	themselves.	It	actually	happens	to	me	all	the	time	(I	always	forget	the
code	I	write).

This	has	a	tremendous	advantage:	when	you	read	code	that	you	could	have
written	yourself,	you	read	it	easily.	Without	a	convention,	every	coder	would
structure	the	code	the	way	they	like	most,	or	simply	the	way	they	were	taught	or
are	used	to,	and	this	would	mean	having	to	interpret	every	line	according	to

someone	else's	style.	It	would	mean	having	to	lose	much	more	time	just	trying	to
understand	it.	Thanks	to	PEP	8,	we	can	avoid	this.	I'm	such	a	fan	of	it	that	I
won't	sign	off	a	code	review	if	the	code	doesn't	respect	it.	So,	please	take	the
time	to	study	it;	it's	very	important.

In	the	examples	in	this	book,	I	will	try	to	respect	it	as	much	as	I	can.
Unfortunately,	I	don't	have	the	luxury	of	79	characters	(which	is	the	maximum
line	length	suggested	by	PEP	8),	and	I	will	have	to	cut	down	on	blank	lines	and
other	things,	but	I	promise	you	I'll	try	to	lay	out	my	code	so	that	it's	as	readable
as	possible.

The	Python	culture
Python	has	been	adopted	widely	in	all	coding	industries.	It's	used	by	many
different	companies	for	many	different	purposes,	and	it's	also	used	in	education
(it's	an	excellent	language	for	that	purpose,	because	of	its	many	qualities	and	the
fact	that	it's	easy	to	learn).

One	of	the	reasons	Python	is	so	popular	today	is	that	the	community	around	it	is
vast,	vibrant,	and	full	of	brilliant	people.	Many	events	are	organized	all	over	the
world,	mostly	either	around	Python	or	its	main	web	framework,	Django.

Python	is	open,	and	very	often	so	are	the	minds	of	those	who	embrace	it.	Check
out	the	community	page	on	the	Python	website	for	more	information	and	get
involved!

There	is	another	aspect	to	Python	which	revolves	around	the	notion	of	being
Pythonic.	It	has	to	do	with	the	fact	that	Python	allows	you	to	use	some	idioms
that	aren't	found	elsewhere,	at	least	not	in	the	same	form	or	as	easy	to	use	(I	feel
quite	claustrophobic	when	I	have	to	code	in	a	language	which	is	not	Python
now).

Anyway,	over	the	years,	this	concept	of	being	Pythonic	has	emerged	and,	the
way	I	understand	it,	is	something	along	the	lines	of	doing	things	the	way	they	are
supposed	to	be	done	in	Python.

To	help	you	understand	a	little	bit	more	about	Python's	culture	and	about	being
Pythonic,	I	will	show	you	the	Zen	of	Python.	A	lovely	Easter	egg	that	is	very
popular.	Open	up	a	Python	console	and	type	import	this.	What	follows	is	the
result	of	this	line:

>>>	import	this

The	Zen	of	Python,	by	Tim	Peters

Beautiful	is	better	than	ugly.

Explicit	is	better	than	implicit.

Simple	is	better	than	complex.

Complex	is	better	than	complicated.

Flat	is	better	than	nested.

Sparse	is	better	than	dense.

Readability	counts.

Special	cases	aren't	special	enough	to	break	the	rules.

Although	practicality	beats	purity.

Errors	should	never	pass	silently.

Unless	explicitly	silenced.

In	the	face	of	ambiguity,	refuse	the	temptation	to	guess.

There	should	be	one--	and	preferably	only	one	--obvious	way	to	do	it.

Although	that	way	may	not	be	obvious	at	first	unless	you're	Dutch.

Now	is	better	than	never.

Although	never	is	often	better	than	*right*	now.

If	the	implementation	is	hard	to	explain,	it's	a	bad	idea.

If	the	implementation	is	easy	to	explain,	it	may	be	a	good	idea.

Namespaces	are	one	honking	great	idea	--	let's	do	more	of	those!

There	are	two	levels	of	reading	here.	One	is	to	consider	it	as	a	set	of	guidelines
that	have	been	put	down	in	a	fun	way.	The	other	one	is	to	keep	it	in	mind,	and
maybe	read	it	once	in	a	while,	trying	to	understand	how	it	refers	to	something
deeper:	some	Python	characteristics	that	you	will	have	to	understand	deeply	in
order	to	write	Python	the	way	it's	supposed	to	be	written.	Start	with	the	fun	level,
and	then	dig	deeper.	Always	dig	deeper.

A	note	on	IDEs
	

Just	a	few	words	about	IDEs.	To	follow	the	examples	in	this	book,	you	don't
need	one;	any	text	editor	will	do	fine.	If	you	want	to	have	more	advanced
features,	such	as	syntax	coloring	and	auto	completion,	you	will	have	to	fetch
yourself	an	IDE.	You	can	find	a	comprehensive	list	of	open	source	IDEs	(just
Google	Python	IDEs)	on	the	Python	website.	I	personally	use	Sublime	Text
editor.	It's	free	to	try	out	and	it	costs	just	a	few	dollars.	I	have	tried	many	IDEs	in
my	life,	but	this	is	the	one	that	makes	me	most	productive.

Two	important	pieces	of	advice:

Whatever	IDE	you	choose	to	use,	try	to	learn	it	well	so	that	you	can	exploit
its	strengths,	but	don't	depend	on	it.	Exercise	yourself	to	work	with	VIM	(or
any	other	text	editor)	once	in	a	while;	learn	to	be	able	to	do	some	work	on
any	platform,	with	any	set	of	tools.
Whatever	text	editor/IDE	you	use,	when	it	comes	to	writing	Python,
indentation	is	four	spaces.	Don't	use	tabs,	don't	mix	them	with	spaces.	Use
four	spaces,	not	two,	not	three,	not	five.	Just	use	four.	The	whole	world
works	like	that,	and	you	don't	want	to	become	an	outcast	because	you	were
fond	of	the	three-space	layout.

	

	

Summary
In	this	chapter,	we	started	to	explore	the	world	of	programming	and	that	of
Python.	We've	barely	scratched	the	surface,	just	a	little,	touching	concepts	that
will	be	discussed	later	on	in	the	book	in	greater	detail.

We	talked	about	Python's	main	features,	who	is	using	it	and	for	what,	and	what
are	the	different	ways	in	which	we	can	write	a	Python	program.

In	the	last	part	of	the	chapter,	we	flew	over	the	fundamental	notions	of
namespaces,	scopes,	classes,	and	objects.	We	also	saw	how	Python	code	can	be
organized	using	modules	and	packages.

On	a	practical	level,	we	learned	how	to	install	Python	on	our	system,	how	to
make	sure	we	have	the	tools	we	need,	pip	and	virtualenv,	and	we	also	created	and
activated	our	first	virtual	environment.	This	will	allow	us	to	work	in	a	self-
contained	environment	without	the	risk	of	compromising	the	Python	system
installation.

Now	you're	ready	to	start	this	journey	with	me.	All	you	need	is	enthusiasm,	an
activated	virtual	environment,	this	book,	your	fingers,	and	some	coffee.

Try	to	follow	the	examples;	I'll	keep	them	simple	and	short.	If	you	put	them
under	your	fingertips,	you	will	retain	them	much	better	than	if	you	just	read
them.

In	the	next	chapter,	we	will	explore	Python's	rich	set	of	built-in	data	types.
There's	much	to	cover	and	much	to	learn!

Built-in	Data	Types
"Data!	Data!	Data!"	he	cried	impatiently.	"I	can't	make	bricks	without	clay."

–	Sherlock	Holmes	–	The	Adventure	of	the	Copper	Beeches

Everything	you	do	with	a	computer	is	managing	data.	Data	comes	in	many
different	shapes	and	flavors.	It's	the	music	you	listen	to,	the	movies	you	stream,
the	PDFs	you	open.	Even	the	source	of	the	chapter	you're	reading	at	this	very
moment	is	just	a	file,	which	is	data.

Data	can	be	simple,	an	integer	number	to	represent	an	age,	or	complex,	like	an
order	placed	on	a	website.	It	can	be	about	a	single	object	or	about	a	collection	of
them.	Data	can	even	be	about	data,	that	is,	metadata.	Data	that	describes	the
design	of	other	data	structures	or	data	that	describes	application	data	or	its
context.	In	Python,	objects	are	abstraction	for	data,	and	Python	has	an	amazing
variety	of	data	structures	that	you	can	use	to	represent	data,	or	combine	them	to
create	your	own	custom	data.

In	this	chapter,	we	are	going	to	cover	the	following:

Python	objects'	structures
Mutability	and	immutability
Built-in	data	types:	numbers,	strings,	sequences,	collections,	and	mapping
types
The	collections	module
Enumerations

Everything	is	an	object
Before	we	delve	into	the	specifics,	I	want	you	to	be	very	clear	about	objects	in
Python,	so	let's	talk	a	little	bit	more	about	them.	As	we	already	said,	everything
in	Python	is	an	object.	But	what	really	happens	when	you	type	an	instruction	like
age	=	42	in	a	Python	module?

If	you	go	to	http://pythontutor.com/,	you	can	type	that	instruction	into	a	text	box	and	get	its	visual
representation.	Keep	this	website	in	mind;	it's	very	useful	to	consolidate	your	understanding
of	what	goes	on	behind	the	scenes.

So,	what	happens	is	that	an	object	is	created.	It	gets	an	id,	the	type	is	set	to	int
(integer	number),	and	the	value	to	42.	A	name	age	is	placed	in	the	global
namespace,	pointing	to	that	object.	Therefore,	whenever	we	are	in	the	global
namespace,	after	the	execution	of	that	line,	we	can	retrieve	that	object	by	simply
accessing	it	through	its	name:	age.

If	you	were	to	move	house,	you	would	put	all	the	knives,	forks,	and	spoons	in	a
box	and	label	it	cutlery.	Can	you	see	it's	exactly	the	same	concept?	Here's	a
screenshot	of	what	it	may	look	like	(you	may	have	to	tweak	the	settings	to	get	to
the	same	view):	

So,	for	the	rest	of	this	chapter,	whenever	you	read	something	such	as	name	=
some_value,	think	of	a	name	placed	in	the	namespace	that	is	tied	to	the	scope	in
which	the	instruction	was	written,	with	a	nice	arrow	pointing	to	an	object	that
has	an	id,	a	type,	and	a	value.	There	is	a	little	bit	more	to	say	about	this
mechanism,	but	it's	much	easier	to	talk	about	it	over	an	example,	so	we'll	get

http://pythontutor.com/

back	to	this	later.

Mutable	or	immutable?	That	is	the
question
A	first	fundamental	distinction	that	Python	makes	on	data	is	about	whether	or
not	the	value	of	an	object	changes.	If	the	value	can	change,	the	object	is	called
mutable,	while	if	the	value	cannot	change,	the	object	is	called	immutable.

It	is	very	important	that	you	understand	the	distinction	between	mutable	and
immutable	because	it	affects	the	code	you	write,	so	here's	a	question:

>>>	age	=	42

>>>	age

42

>>>	age	=	43		#A

>>>	age

43

In	the	preceding	code,	on	the	line	#A,	have	I	changed	the	value	of	age?	Well,	no.
But	now	it's	43	(I	hear	you	say...).	Yes,	it's	43,	but	42	was	an	integer	number,	of	the
type	int,	which	is	immutable.	So,	what	happened	is	really	that	on	the	first	line,
age	is	a	name	that	is	set	to	point	to	an	int	object,	whose	value	is	42.	When	we	type
age	=	43,	what	happens	is	that	another	object	is	created,	of	the	type	int	and	value
43	(also,	the	id	will	be	different),	and	the	name	age	is	set	to	point	to	it.	So,	we
didn't	change	that	42	to	43.	We	actually	just	pointed	age	to	a	different	location:	the
new	int	object	whose	value	is	43.	Let's	see	the	same	code	also	printing	the	IDs:

>>>	age	=	42

>>>	id(age)

4377553168

>>>	age	=	43

>>>	id(age)

4377553200

Notice	that	we	print	the	IDs	by	calling	the	built-in	id	function.	As	you	can	see,
they	are	different,	as	expected.	Bear	in	mind	that	age	points	to	one	object	at	a
time:	42	first,	then	43.	Never	together.

Now,	let's	see	the	same	example	using	a	mutable	object.	For	this	example,	let's
just	use	a	Person	object,	that	has	a	property	age	(don't	worry	about	the	class
declaration	for	now;	it's	there	only	for	completeness):

>>>	class	Person():

...					def	__init__(self,	age):

...									self.age	=	age

...

>>>	fab	=	Person(age=42)

>>>	fab.age

42

>>>	id(fab)

4380878496

>>>	id(fab.age)

4377553168

>>>	fab.age	=	25		#	I	wish!

>>>	id(fab)		#	will	be	the	same

4380878496

>>>	id(fab.age)		#	will	be	different

4377552624

In	this	case,	I	set	up	an	object	fab	whose	type	is	Person	(a	custom	class).	On
creation,	the	object	is	given	the	age	of	42.	I'm	printing	it,	along	with	the	object	id,
and	the	ID	of	age	as	well.	Notice	that,	even	after	I	change	age	to	be	25,	the	ID	of
fab	stays	the	same	(while	the	ID	of	age	has	changed,	of	course).	Custom	objects	in
Python	are	mutable	(unless	you	code	them	not	to	be).	Keep	this	concept	in	mind;
it's	very	important.	I'll	remind	you	about	it	throughout	the	rest	of	the	chapter.

Numbers
Let's	start	by	exploring	Python's	built-in	data	types	for	numbers.	Python	was
designed	by	a	man	with	a	master's	degree	in	mathematics	and	computer	science,
so	it's	only	logical	that	it	has	amazing	support	for	numbers.

Numbers	are	immutable	objects.

Integers
Python	integers	have	an	unlimited	range,	subject	only	to	the	available	virtual
memory.	This	means	that	it	doesn't	really	matter	how	big	a	number	you	want	to
store	is:	as	long	as	it	can	fit	in	your	computer's	memory,	Python	will	take	care	of
it.	Integer	numbers	can	be	positive,	negative,	and	0	(zero).	They	support	all	the
basic	mathematical	operations,	as	shown	in	the	following	example:

>>>	a	=	14

>>>	b	=	3

>>>	a	+	b		#	addition

17

>>>	a	-	b		#	subtraction

11

>>>	a	*	b		#	multiplication

42

>>>	a	/	b		#	true	division

4.666666666666667

>>>	a	//	b		#	integer	division

4

>>>	a	%	b		#	modulo	operation	(reminder	of	division)

2

>>>	a	**	b		#	power	operation

2744

The	preceding	code	should	be	easy	to	understand.	Just	notice	one	important
thing:	Python	has	two	division	operators,	one	performs	the	so-called	true
division	(/),	which	returns	the	quotient	of	the	operands,	and	the	other	one,	the
so-called	integer	division	(//),	which	returns	the	floored	quotient	of	the
operands.	It	might	be	worth	noting	that	in	Python	2	the	division	operator	/
behaves	differently	than	in	Python	3.	See	how	that	is	different	for	positive	and
negative	numbers:

>>>	7	/	4		#	true	division

1.75

>>>	7	//	4		#	integer	division,	truncation	returns	1

1

>>>	-7	/	4		#	true	division	again,	result	is	opposite	of	previous

-1.75

>>>	-7	//	4		#	integer	div.,	result	not	the	opposite	of	previous

-2

This	is	an	interesting	example.	If	you	were	expecting	a	-1	on	the	last	line,	don't
feel	bad,	it's	just	the	way	Python	works.	The	result	of	an	integer	division	in
Python	is	always	rounded	towards	minus	infinity.	If,	instead	of	flooring,	you

want	to	truncate	a	number	to	an	integer,	you	can	use	the	built-in	int	function,	as
shown	in	the	following	example:

>>>	int(1.75)

1

>>>	int(-1.75)

-1

Notice	that	the	truncation	is	done	toward	0.

There	is	also	an	operator	to	calculate	the	remainder	of	a	division.	It's	called	a
modulo	operator,	and	it's	represented	by	a	percentage	(%):

>>>	10	%	3		#	remainder	of	the	division	10	//	3

1

>>>	10	%	4		#	remainder	of	the	division	10	//	4

2

One	nice	feature	introduced	in	Python	3.6	is	the	ability	to	add	underscores	within
number	literals	(between	digits	or	base	specifiers,	but	not	leading	or	trailing).
The	purpose	is	to	help	make	some	numbers	more	readable,	like	for	example
1_000_000_000:

>>>	n	=	1_024

>>>	n

1024

>>>	hex_n	=	0x_4_0_0		#	0x400	==	1024

>>>	hex_n

1024

Booleans
Boolean	algebra	is	that	subset	of	algebra	in	which	the	values	of	the	variables	are
the	truth	values:	true	and	false.	In	Python,	True	and	False	are	two	keywords	that
are	used	to	represent	truth	values.	Booleans	are	a	subclass	of	integers,	and
behave	respectively	like	1	and	0.	The	equivalent	of	the	int	class	for	Booleans	is
the	bool	class,	which	returns	either	True	or	False.	Every	built-in	Python	object	has
a	value	in	the	Boolean	context,	which	means	they	basically	evaluate	to	either	True
or	False	when	fed	to	the	bool	function.	We'll	see	all	about	this	in	Chapter	3,
Iterating	and	Making	Decisions.

Boolean	values	can	be	combined	in	Boolean	expressions	using	the	logical
operators	and,	or,	and	not.	Again,	we'll	see	them	in	full	in	the	next	chapter,	so	for
now	let's	just	see	a	simple	example:

>>>	int(True)		#	True	behaves	like	1

1

>>>	int(False)		#	False	behaves	like	0

0

>>>	bool(1)		#	1	evaluates	to	True	in	a	boolean	context

True

>>>	bool(-42)		#	and	so	does	every	non-zero	number

True

>>>	bool(0)		#	0	evaluates	to	False

False

>>>	#	quick	peak	at	the	operators	(and,	or,	not)

>>>	not	True

False

>>>	not	False

True

>>>	True	and	True

True

>>>	False	or	True

True

You	can	see	that	True	and	False	are	subclasses	of	integers	when	you	try	to	add
them.	Python	upcasts	them	to	integers	and	performs	the	addition:

>>>	1	+	True

2

>>>	False	+	42

42

>>>	7	-	True

6

Upcasting	is	a	type	conversion	operation	that	goes	from	a	subclass	to	its	parent.	In	the
example	presented	here,	True	and	False,	which	belong	to	a	class	derived	from	the	integer	class,
are	converted	back	to	integers	when	needed.	This	topic	is	about	inheritance	and	will	be

explained	in	detail	in	Chapter	6,	OOP,	Decorators,	and	Iterators.

Real	numbers
Real	numbers,	or	floating	point	numbers,	are	represented	in	Python	according	to
the	IEEE	754	double-precision	binary	floating-point	format,	which	is	stored	in
64	bits	of	information	divided	into	three	sections:	sign,	exponent,	and	mantissa.

Quench	your	thirst	for	knowledge	about	this	format	on	Wikipedia:	http://en.wikipedia.org/wiki/Doubl
e-precision_floating-point_format.

Usually,	programming	languages	give	coders	two	different	formats:	single	and
double	precision.	The	former	takes	up	32	bits	of	memory,	and	the	latter	64.
Python	supports	only	the	double	format.	Let's	see	a	simple	example:

>>>	pi	=	3.1415926536		#	how	many	digits	of	PI	can	you	remember?

>>>	radius	=	4.5

>>>	area	=	pi	*	(radius	**	2)

>>>	area

63.617251235400005

In	the	calculation	of	the	area,	I	wrapped	the	radius	**	2	within	braces.	Even	though	that	wasn't
necessary	because	the	power	operator	has	higher	precedence	than	the	multiplication	one,	I
think	the	formula	reads	more	easily	like	that.	Moreover,	should	you	get	a	slightly	different
result	for	the	area,	don't	worry.	It	might	depend	on	your	OS,	how	Python	was	compiled,	and
so	on.	As	long	as	the	first	few	decimal	digits	are	correct,	you	know	it's	a	correct	result.

The	sys.float_info	struct	sequence	holds	information	about	how	floating	point
numbers	will	behave	on	your	system.	This	is	what	I	see	on	my	box:

>>>	import	sys

>>>	sys.float_info

sys.float_info(max=1.7976931348623157e+308,	max_exp=1024,	max_10_exp=308,	

min=2.2250738585072014e-308,	min_exp=-1021,	min_10_exp=-307,	dig=15,	mant_dig=53,	

epsilon=2.220446049250313e-16,	radix=2,	rounds=1)

Let's	make	a	few	considerations	here:	we	have	64	bits	to	represent	float	numbers.
This	means	we	can	represent	at	most	2	**	64	==	18,446,744,073,709,551,616	numbers
with	that	amount	of	bits.	Take	a	look	at	the	max	and	epsilon	values	for	the	float
numbers,	and	you'll	realize	it's	impossible	to	represent	them	all.	There	is	just	not
enough	space,	so	they	are	approximated	to	the	closest	representable	number.	You
probably	think	that	only	extremely	big	or	extremely	small	numbers	suffer	from
this	issue.	Well,	think	again	and	try	the	following	in	your	console:

>>>	0.3	-	0.1	*	3		#	this	should	be	0!!!

-5.551115123125783e-17

http://en.wikipedia.org/wiki/Double-precision_floating-point_format

What	does	this	tell	you?	It	tells	you	that	double	precision	numbers	suffer	from
approximation	issues	even	when	it	comes	to	simple	numbers	like	0.1	or	0.3.	Why
is	this	important?	It	can	be	a	big	problem	if	you're	handling	prices,	or	financial
calculations,	or	any	kind	of	data	that	needs	not	to	be	approximated.	Don't	worry,
Python	gives	you	the	decimal	type,	which	doesn't	suffer	from	these	issues;	we'll
see	them	in	a	moment.

Complex	numbers
	

Python	gives	you	complex	numbers	support	out	of	the	box.	If	you	don't	know
what	complex	numbers	are,	they	are	numbers	that	can	be	expressed	in	the	form	a
+	ib	where	a	and	b	are	real	numbers,	and	i	(or	j	if	you're	an	engineer)	is	the
imaginary	unit,	that	is,	the	square	root	of	-1.	a	and	b	are	called,	respectively,	the
real	and	imaginary	part	of	the	number.

It's	actually	unlikely	you'll	be	using	them,	unless	you're	coding	something
scientific.	Let's	see	a	small	example:

>>>	c	=	3.14	+	2.73j

>>>	c.real		#	real	part

3.14

>>>	c.imag		#	imaginary	part

2.73

>>>	c.conjugate()		#	conjugate	of	A	+	Bj	is	A	-	Bj

(3.14-2.73j)

>>>	c	*	2		#	multiplication	is	allowed

(6.28+5.46j)

>>>	c	**	2		#	power	operation	as	well

(2.4067000000000007+17.1444j)

>>>	d	=	1	+	1j		#	addition	and	subtraction	as	well

>>>	c	-	d

(2.14+1.73j)

	

	

Fractions	and	decimals
Let's	finish	the	tour	of	the	number	department	with	a	look	at	fractions	and
decimals.	Fractions	hold	a	rational	numerator	and	denominator	in	their	lowest
forms.	Let's	see	a	quick	example:

>>>	from	fractions	import	Fraction

>>>	Fraction(10,	6)		#	mad	hatter?

Fraction(5,	3)		#	notice	it's	been	simplified

>>>	Fraction(1,	3)	+	Fraction(2,	3)		#	1/3	+	2/3	==	3/3	==	1/1

Fraction(1,	1)

>>>	f	=	Fraction(10,	6)

>>>	f.numerator

5

>>>	f.denominator

3

Although	they	can	be	very	useful	at	times,	it's	not	that	common	to	spot	them	in
commercial	software.	Much	easier	instead,	is	to	see	decimal	numbers	being	used
in	all	those	contexts	where	precision	is	everything;	for	example,	in	scientific	and
financial	calculations.

It's	important	to	remember	that	arbitrary	precision	decimal	numbers	come	at	a	price	in
performance,	of	course.	The	amount	of	data	to	be	stored	for	each	number	is	far	greater	than	it
is	for	fractions	or	floats	as	well	as	the	way	they	are	handled,	which	causes	the	Python
interpreter	much	more	work	behind	the	scenes.	Another	interesting	thing	to	note	is	that	you
can	get	and	set	the	precision	by	accessing	decimal.getcontext().prec.

Let's	see	a	quick	example	with	decimal	numbers:

>>>	from	decimal	import	Decimal	as	D		#	rename	for	brevity

>>>	D(3.14)		#	pi,	from	float,	so	approximation	issues

Decimal('3.140000000000000124344978758017532527446746826171875')

>>>	D('3.14')		#	pi,	from	a	string,	so	no	approximation	issues

Decimal('3.14')

>>>	D(0.1)	*	D(3)	-	D(0.3)		#	from	float,	we	still	have	the	issue

Decimal('2.775557561565156540423631668E-17')

>>>	D('0.1')	*	D(3)	-	D('0.3')		#	from	string,	all	perfect

Decimal('0.0')

>>>	D('1.4').as_integer_ratio()		#	7/5	=	1.4	(isn't	this	cool?!)

(7,	5)

Notice	that	when	we	construct	a	Decimal	number	from	a	float,	it	takes	on	all	the
approximation	issues	float	may	come	from.	On	the	other	hand,	when	the	Decimal
has	no	approximation	issues	(for	example,	when	we	feed	an	int	or	a	string
representation	to	the	constructor),	then	the	calculation	has	no	quirky	behavior.

When	it	comes	to	money,	use	decimals.

This	concludes	our	introduction	to	built-in	numeric	types.	Let's	now	look	at
sequences.

Immutable	sequences
Let's	start	with	immutable	sequences:	strings,	tuples,	and	bytes.

Strings	and	bytes
Textual	data	in	Python	is	handled	with	str	objects,	more	commonly	known	as
strings.	They	are	immutable	sequences	of	Unicode	code	points.	Unicode	code
points	can	represent	a	character,	but	can	also	have	other	meanings,	such	as
formatting	data,	for	example.	Python,	unlike	other	languages,	doesn't	have	a	char
type,	so	a	single	character	is	rendered	simply	by	a	string	of	length	1.

Unicode	is	an	excellent	way	to	handle	data,	and	should	be	used	for	the	internals
of	any	application.	When	it	comes	to	storing	textual	data	though,	or	sending	it	on
the	network,	you	may	want	to	encode	it,	using	an	appropriate	encoding	for	the
medium	you're	using.	The	result	of	an	encoding	produces	a	bytes	object,	whose
syntax	and	behavior	is	similar	to	that	of	strings.	String	literals	are	written	in
Python	using	single,	double,	or	triple	quotes	(both	single	or	double).	If	built	with
triple	quotes,	a	string	can	span	on	multiple	lines.	An	example	will	clarify	this:

>>>	#	4	ways	to	make	a	string

>>>	str1	=	'This	is	a	string.	We	built	it	with	single	quotes.'

>>>	str2	=	"This	is	also	a	string,	but	built	with	double	quotes."

>>>	str3	=	'''This	is	built	using	triple	quotes,

...	so	it	can	span	multiple	lines.'''

>>>	str4	=	"""This	too

...	is	a	multiline	one

...	built	with	triple	double-quotes."""

>>>	str4		#A

'This	too\nis	a	multiline	one\nbuilt	with	triple	double-quotes.'

>>>	print(str4)		#B

This	too

is	a	multiline	one

built	with	triple	double-quotes.

In	#A	and	#B,	we	print	str4,	first	implicitly,	and	then	explicitly,	using	the	print
function.	A	nice	exercise	would	be	to	find	out	why	they	are	different.	Are	you	up
to	the	challenge?	(hint:	look	up	the	str	function.)

Strings,	like	any	sequence,	have	a	length.	You	can	get	this	by	calling	the	len
function:

>>>	len(str1)

49

Encoding	and	decoding	strings
	

Using	the	encode/decode	methods,	we	can	encode	Unicode	strings	and	decode	bytes
objects.	UTF-8	is	a	variable	length	character	encoding,	capable	of	encoding	all
possible	Unicode	code	points.	It	is	the	dominant	encoding	for	the	web.	Notice
also	that	by	adding	a	literal	b	in	front	of	a	string	declaration,	we're	creating	a
bytes	object:

>>>	s	=	"This	is	üŋíc0de"		#	unicode	string:	code	points

>>>	type(s)

<class	'str'>

>>>	encoded_s	=	s.encode('utf-8')		#	utf-8	encoded	version	of	s

>>>	encoded_s

b'This	is	\xc3\xbc\xc5\x8b\xc3\xadc0de'		#	result:	bytes	object

>>>	type(encoded_s)		#	another	way	to	verify	it

<class	'bytes'>

>>>	encoded_s.decode('utf-8')		#	let's	revert	to	the	original

'This	is	üŋíc0de'

>>>	bytes_obj	=	b"A	bytes	object"		#	a	bytes	object

>>>	type(bytes_obj)

<class	'bytes'>

	

	

Indexing	and	slicing	strings
When	manipulating	sequences,	it's	very	common	to	have	to	access	them	at	one
precise	position	(indexing),	or	to	get	a	subsequence	out	of	them	(slicing).	When
dealing	with	immutable	sequences,	both	operations	are	read-only.

While	indexing	comes	in	one	form,	a	zero-based	access	to	any	position	within
the	sequence,	slicing	comes	in	different	forms.	When	you	get	a	slice	of	a
sequence,	you	can	specify	the	start	and	stop	positions,	and	the	step.	They	are
separated	with	a	colon	(:)	like	this:	my_sequence[start:stop:step].	All	the	arguments
are	optional,	start	is	inclusive,	and	stop	is	exclusive.	It's	much	easier	to	show	an
example,	rather	than	explain	them	further	in	words:

>>>	s	=	"The	trouble	is	you	think	you	have	time."

>>>	s[0]		#	indexing	at	position	0,	which	is	the	first	char

'T'

>>>	s[5]		#	indexing	at	position	5,	which	is	the	sixth	char

'r'

>>>	s[:4]		#	slicing,	we	specify	only	the	stop	position

'The	'

>>>	s[4:]		#	slicing,	we	specify	only	the	start	position

'trouble	is	you	think	you	have	time.'

>>>	s[2:14]		#	slicing,	both	start	and	stop	positions

'e	trouble	is'

>>>	s[2:14:3]		#	slicing,	start,	stop	and	step	(every	3	chars)

'erb	'

>>>	s[:]		#	quick	way	of	making	a	copy

'The	trouble	is	you	think	you	have	time.'

Of	all	the	lines,	the	last	one	is	probably	the	most	interesting.	If	you	don't	specify
a	parameter,	Python	will	fill	in	the	default	for	you.	In	this	case,	start	will	be	the
start	of	the	string,	stop	will	be	the	end	of	the	string,	and	step	will	be	the	default	1.
This	is	an	easy	and	quick	way	of	obtaining	a	copy	of	the	string	s	(same	value,
but	different	object).	Can	you	find	a	way	to	get	the	reversed	copy	of	a	string
using	slicing	(don't	look	it	up;	find	it	for	yourself)?

String	formatting
One	of	the	features	strings	have	is	the	ability	to	be	used	as	a	template.	There	are
several	different	ways	of	formatting	a	string,	and	for	the	full	list	of	possibilities,	I
encourage	you	to	look	up	the	documentation.	Here	are	some	common	examples:

>>>	greet_old	=	'Hello	%s!'

>>>	greet_old	%	'Fabrizio'

'Hello	Fabrizio!'

>>>	greet_positional	=	'Hello	{}	{}!'

>>>	greet_positional.format('Fabrizio',	'Romano')

'Hello	Fabrizio	Romano!'

>>>	greet_positional_idx	=	'This	is	{0}!	{1}	loves	{0}!'

>>>	greet_positional_idx.format('Python',	'Fabrizio')

'This	is	Python!	Fabrizio	loves	Python!'

>>>	greet_positional_idx.format('Coffee',	'Fab')

'This	is	Coffee!	Fab	loves	Coffee!'

>>>	keyword	=	'Hello,	my	name	is	{name}	{last_name}'

>>>	keyword.format(name='Fabrizio',	last_name='Romano')

'Hello,	my	name	is	Fabrizio	Romano'

In	the	previous	example,	you	can	see	four	different	ways	of	formatting	stings.
The	first	one,	which	relies	on	the	%	operator,	is	deprecated	and	shouldn't	be	used
any	more.	The	current,	modern	way	to	format	a	string	is	by	using	the	format	string
method.	You	can	see,	from	the	different	examples,	that	a	pair	of	curly	braces	acts
as	a	placeholder	within	the	string.	When	we	call	format,	we	feed	it	data	that
replaces	the	placeholders.	We	can	specify	indexes	(and	much	more)	within	the
curly	braces,	and	even	names,	which	implies	we'll	have	to	call	format	using
keyword	arguments	instead	of	positional	ones.

Notice	how	greet_positional_idx	is	rendered	differently	by	feeding	different	data	to
the	call	to	format.	Apparently,	I'm	into	Python	and	coffee...	big	surprise!

One	last	feature	I	want	to	show	you	is	a	relatively	new	addition	to	Python
(Version	3.6)	and	it's	called	formatted	string	literals.	This	feature	is	quite	cool:
strings	are	prefixed	with	f,	and	contain	replacement	fields	surrounded	by	curly
braces.	Replacement	fields	are	expressions	evaluated	at	runtime,	and	then
formatted	using	the	format	protocol:

>>>	name	=	'Fab'

>>>	age	=	42

>>>	f"Hello!	My	name	is	{name}	and	I'm	{age}"

"Hello!	My	name	is	Fab	and	I'm	42"

>>>	from	math	import	pi

>>>	f"No	arguing	with	{pi},	it's	irrational..."

"No	arguing	with	3.141592653589793,	it's	irrational..."

Check	out	the	official	documentation	to	learn	everything	about	string	formatting
and	how	powerful	it	can	be.

Tuples
The	last	immutable	sequence	type	we're	going	to	see	is	the	tuple.	A	tuple	is	a
sequence	of	arbitrary	Python	objects.	In	a	tuple,	items	are	separated	by	commas.
They	are	used	everywhere	in	Python,	because	they	allow	for	patterns	that	are
hard	to	reproduce	in	other	languages.	Sometimes	tuples	are	used	implicitly;	for
example,	to	set	up	multiple	variables	on	one	line,	or	to	allow	a	function	to	return
multiple	different	objects	(usually	a	function	returns	one	object	only,	in	many
other	languages),	and	even	in	the	Python	console,	you	can	use	tuples	implicitly
to	print	multiple	elements	with	one	single	instruction.	We'll	see	examples	for	all
these	cases:

>>>	t	=	()		#	empty	tuple

>>>	type(t)

<class	'tuple'>

>>>	one_element_tuple	=	(42,)		#	you	need	the	comma!

>>>	three_elements_tuple	=	(1,	3,	5)		#	braces	are	optional	here

>>>	a,	b,	c	=	1,	2,	3		#	tuple	for	multiple	assignment

>>>	a,	b,	c		#	implicit	tuple	to	print	with	one	instruction

(1,	2,	3)

>>>	3	in	three_elements_tuple		#	membership	test

True

Notice	that	the	membership	operator	in	can	also	be	used	with	lists,	strings,
dictionaries,	and,	in	general,	with	collection	and	sequence	objects.

Notice	that	to	create	a	tuple	with	one	item,	we	need	to	put	that	comma	after	the	item.	The
reason	is	that	without	the	comma	that	item	is	just	itself	wrapped	in	braces,	kind	of	in	a
redundant	mathematical	expression.	Notice	also	that	on	assignment,	braces	are	optional	so
my_tuple	=	1,	2,	3	is	the	same	as	my_tuple	=	(1,	2,	3).

One	thing	that	tuple	assignment	allows	us	to	do,	is	one-line	swaps,	with	no	need
for	a	third	temporary	variable.	Let's	see	first	a	more	traditional	way	of	doing	it:

>>>	a,	b	=	1,	2

>>>	c	=	a		#	we	need	three	lines	and	a	temporary	var	c

>>>	a	=	b

>>>	b	=	c

>>>	a,	b		#	a	and	b	have	been	swapped

(2,	1)

And	now	let's	see	how	we	would	do	it	in	Python:

>>>	a,	b	=	0,	1

>>>	a,	b	=	b,	a		#	this	is	the	Pythonic	way	to	do	it

>>>	a,	b

(1,	0)

Take	a	look	at	the	line	that	shows	you	the	Pythonic	way	of	swapping	two	values.
Do	you	remember	what	I	wrote	in	Chapter	1,	A	Gentle	Introduction	to	Python?	A
Python	program	is	typically	one-fifth	to	one-third	the	size	of	equivalent	Java	or
C++	code,	and	features	like	one-line	swaps	contribute	to	this.	Python	is	elegant,
where	elegance	in	this	context	also	means	economy.

Because	they	are	immutable,	tuples	can	be	used	as	keys	for	dictionaries	(we'll
see	this	shortly).	To	me,	tuples	are	Python's	built-in	data	that	most	closely
represent	a	mathematical	vector.	This	doesn't	mean	that	this	was	the	reason	for
which	they	were	created	though.	Tuples	usually	contain	an	heterogeneous
sequence	of	elements,	while	on	the	other	hand,	lists	are	most	of	the	times
homogeneous.	Moreover,	tuples	are	normally	accessed	via	unpacking	or
indexing,	while	lists	are	usually	iterated	over.

Mutable	sequences
Mutable	sequences	differ	from	their	immutable	sisters	in	that	they	can	be
changed	after	creation.	There	are	two	mutable	sequence	types	in	Python:	lists
and	byte	arrays.	I	said	before	that	the	dictionary	is	the	king	of	data	structures	in
Python.	I	guess	this	makes	the	list	its	rightful	queen.

	

Lists
Python	lists	are	mutable	sequences.	They	are	very	similar	to	tuples,	but	they
don't	have	the	restrictions	of	immutability.	Lists	are	commonly	used	to	storing
collections	of	homogeneous	objects,	but	there	is	nothing	preventing	you	from
store	heterogeneous	collections	as	well.	Lists	can	be	created	in	many	different
ways.	Let's	see	an	example:

>>>	[]		#	empty	list

[]

>>>	list()		#	same	as	[]

[]

>>>	[1,	2,	3]		#	as	with	tuples,	items	are	comma	separated

[1,	2,	3]

>>>	[x	+	5	for	x	in	[2,	3,	4]]		#	Python	is	magic

[7,	8,	9]

>>>	list((1,	3,	5,	7,	9))		#	list	from	a	tuple

[1,	3,	5,	7,	9]

>>>	list('hello')		#	list	from	a	string

['h',	'e',	'l',	'l',	'o']

In	the	previous	example,	I	showed	you	how	to	create	a	list	using	different
techniques.	I	would	like	you	to	take	a	good	look	at	the	line	that	says	Python	is
magic,	which	I	am	not	expecting	you	to	fully	understand	at	this	point	(unless	you
cheated	and	you're	not	a	novice!).	That	is	called	a	list	comprehension,	a	very
powerful	functional	feature	of	Python,	which	we'll	see	in	detail	in	Chapter	5,
Saving	Time	and	Memory.	I	just	wanted	to	make	your	mouth	water	at	this	point.

Creating	lists	is	good,	but	the	real	fun	comes	when	we	use	them,	so	let's	see	the
main	methods	they	gift	us	with:

>>>	a	=	[1,	2,	1,	3]

>>>	a.append(13)		#	we	can	append	anything	at	the	end

>>>	a

[1,	2,	1,	3,	13]

>>>	a.count(1)		#	how	many	`1`	are	there	in	the	list?

2

>>>	a.extend([5,	7])		#	extend	the	list	by	another	(or	sequence)

>>>	a

[1,	2,	1,	3,	13,	5,	7]

>>>	a.index(13)		#	position	of	`13`	in	the	list	(0-based	indexing)

4

>>>	a.insert(0,	17)		#	insert	`17`	at	position	0

>>>	a

[17,	1,	2,	1,	3,	13,	5,	7]

>>>	a.pop()		#	pop	(remove	and	return)	last	element

7

>>>	a.pop(3)		#	pop	element	at	position	3

1

>>>	a

[17,	1,	2,	3,	13,	5]

>>>	a.remove(17)		#	remove	`17`	from	the	list

>>>	a

[1,	2,	3,	13,	5]

>>>	a.reverse()		#	reverse	the	order	of	the	elements	in	the	list

>>>	a

[5,	13,	3,	2,	1]

>>>	a.sort()		#	sort	the	list

>>>	a

[1,	2,	3,	5,	13]

>>>	a.clear()		#	remove	all	elements	from	the	list

>>>	a

[]

The	preceding	code	gives	you	a	roundup	of	a	list's	main	methods.	I	want	to	show
you	how	powerful	they	are,	using	extend	as	an	example.	You	can	extend	lists
using	any	sequence	type:

>>>	a	=	list('hello')		#	makes	a	list	from	a	string

>>>	a

['h',	'e',	'l',	'l',	'o']

>>>	a.append(100)		#	append	100,	heterogeneous	type

>>>	a

['h',	'e',	'l',	'l',	'o',	100]

>>>	a.extend((1,	2,	3))		#	extend	using	tuple

>>>	a

['h',	'e',	'l',	'l',	'o',	100,	1,	2,	3]

>>>	a.extend('...')		#	extend	using	string

>>>	a

['h',	'e',	'l',	'l',	'o',	100,	1,	2,	3,	'.',	'.',	'.']

Now,	let's	see	what	are	the	most	common	operations	you	can	do	with	lists:

>>>	a	=	[1,	3,	5,	7]

>>>	min(a)		#	minimum	value	in	the	list

1

>>>	max(a)		#	maximum	value	in	the	list

7

>>>	sum(a)		#	sum	of	all	values	in	the	list

16

>>>	len(a)		#	number	of	elements	in	the	list

4

>>>	b	=	[6,	7,	8]

>>>	a	+	b		#	`+`	with	list	means	concatenation

[1,	3,	5,	7,	6,	7,	8]

>>>	a	*	2		#	`*`	has	also	a	special	meaning

[1,	3,	5,	7,	1,	3,	5,	7]

The	last	two	lines	in	the	preceding	code	are	quite	interesting	because	they
introduce	us	to	a	concept	called	operator	overloading.	In	short,	it	means	that
operators	such	as	+,	-.	*,	%,	and	so	on,	may	represent	different	operations
according	to	the	context	they	are	used	in.	It	doesn't	make	any	sense	to	sum	two
lists,	right?	Therefore,	the	+	sign	is	used	to	concatenate	them.	Hence,	the	*	sign	is

used	to	concatenate	the	list	to	itself	according	to	the	right	operand.

Now,	let's	take	a	step	further	and	see	something	a	little	more	interesting.	I	want
to	show	you	how	powerful	the	sorted	method	can	be	and	how	easy	it	is	in	Python
to	achieve	results	that	require	a	great	deal	of	effort	in	other	languages:

>>>	from	operator	import	itemgetter

>>>	a	=	[(5,	3),	(1,	3),	(1,	2),	(2,	-1),	(4,	9)]

>>>	sorted(a)

[(1,	2),	(1,	3),	(2,	-1),	(4,	9),	(5,	3)]

>>>	sorted(a,	key=itemgetter(0))

[(1,	3),	(1,	2),	(2,	-1),	(4,	9),	(5,	3)]

>>>	sorted(a,	key=itemgetter(0,	1))

[(1,	2),	(1,	3),	(2,	-1),	(4,	9),	(5,	3)]

>>>	sorted(a,	key=itemgetter(1))

[(2,	-1),	(1,	2),	(5,	3),	(1,	3),	(4,	9)]

>>>	sorted(a,	key=itemgetter(1),	reverse=True)

[(4,	9),	(5,	3),	(1,	3),	(1,	2),	(2,	-1)]

The	preceding	code	deserves	a	little	explanation.	First	of	all,	a	is	a	list	of	tuples.
This	means	each	element	in	a	is	a	tuple	(a	2-tuple,	to	be	precise).	When	we	call
sorted(some_list),	we	get	a	sorted	version	of	some_list.	In	this	case,	the	sorting	on	a
2-tuple	works	by	sorting	them	on	the	first	item	in	the	tuple,	and	on	the	second
when	the	first	one	is	the	same.	You	can	see	this	behavior	in	the	result	of	sorted(a),
which	yields	[(1,	2),	(1,	3),	...].	Python	also	gives	us	the	ability	to	control
which	element(s)	of	the	tuple	the	sorting	must	be	run	against.	Notice	that	when
we	instruct	the	sorted	function	to	work	on	the	first	element	of	each	tuple	(by
key=itemgetter(0)),	the	result	is	different:	[(1,	3),	(1,	2),	...].	The	sorting	is	done
only	on	the	first	element	of	each	tuple	(which	is	the	one	at	position	0).	If	we
want	to	replicate	the	default	behavior	of	a	simple	sorted(a)	call,	we	need	to	use
key=itemgetter(0,	1),	which	tells	Python	to	sort	first	on	the	elements	at	position	0
within	the	tuples,	and	then	on	those	at	position	1.	Compare	the	results	and	you'll
see	they	match.

For	completeness,	I	included	an	example	of	sorting	only	on	the	elements	at
position	1,	and	the	same	but	in	reverse	order.	If	you	have	ever	seen	sorting	in
Java,	I	expect	you	to	be	quite	impressed	at	this	moment.

The	Python	sorting	algorithm	is	very	powerful,	and	it	was	written	by	Tim	Peters
(we've	already	seen	this	name,	can	you	recall	when?).	It	is	aptly	named	Timsort,
and	it	is	a	blend	between	merge	and	insertion	sort	and	has	better	time
performances	than	most	other	algorithms	used	for	mainstream	programming
languages.	Timsort	is	a	stable	sorting	algorithm,	which	means	that	when	multiple

records	have	the	same	key,	their	original	order	is	preserved.	We've	seen	this	in
the	result	of	sorted(a,	key=itemgetter(0)),	which	has	yielded	[(1,	3),	(1,	2),	...],	in
which	the	order	of	those	two	tuples	has	been	preserved	because	they	have	the
same	value	at	position	0.

Byte	arrays
To	conclude	our	overview	of	mutable	sequence	types,	let's	spend	a	couple	of
minutes	on	the	bytearray	type.	Basically,	they	represent	the	mutable	version	of
bytes	objects.	They	expose	most	of	the	usual	methods	of	mutable	sequences	as
well	as	most	of	the	methods	of	the	bytes	type.	Items	are	integers	in	the	range	[0,
256).

When	it	comes	to	intervals,	I'm	going	to	use	the	standard	notation	for	open/closed	ranges.	A
square	bracket	on	one	end	means	that	the	value	is	included,	while	a	round	brace	means	it's
excluded.	The	granularity	is	usually	inferred	by	the	type	of	the	edge	elements	so,	for	example,
the	interval	[3,	7]	means	all	integers	between	3	and	7,	inclusive.	On	the	other	hand,	(3,	7)
means	all	integers	between	3	and	7	exclusive	(hence	4,	5,	and	6).	Items	in	a	bytearray	type	are
integers	between	0	and	256;	0	is	included,	256	is	not.	One	reason	intervals	are	often
expressed	like	this	is	to	ease	coding.	If	we	break	a	range	[a,	b)	into	N	consecutive	ranges,	we
can	easily	represent	the	original	one	as	a	concatenation	like	this:
[a,k1)+[k1,k2)+[k2,k3)+...+[kN-1,b)
The	middle	points	(ki)	being	excluded	on	one	end,	and	included	on	the	other	end,	allow	for
easy	concatenation	and	splitting	when	intervals	are	handled	in	the	code.

Let's	see	a	quick	example	with	the	bytearray	type:

>>>	bytearray()		#	empty	bytearray	object

bytearray(b'')

>>>	bytearray(10)		#	zero-filled	instance	with	given	length

bytearray(b'\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00')

>>>	bytearray(range(5))	#	bytearray	from	iterable	of	integers

bytearray(b'\x00\x01\x02\x03\x04')

>>>	name	=	bytearray(b'Lina')		#A	-	bytearray	from	bytes

>>>	name.replace(b'L',	b'l')

bytearray(b'lina')

>>>	name.endswith(b'na')

True

>>>	name.upper()

bytearray(b'LINA')

>>>	name.count(b'L')

1

As	you	can	see	in	the	preceding	code,	there	are	a	few	ways	to	create	a	bytearray
object.	They	can	be	useful	in	many	situations;	for	example,	when	receiving	data
through	a	socket,	they	eliminate	the	need	to	concatenate	data	while	polling,
hence	they	can	prove	to	be	very	handy.	On	the	line	#A,	I	created	a	bytearray	named
as	name	from	the	bytes	literal	b'Lina'	to	show	you	how	the	bytearray	object	exposes
methods	from	both	sequences	and	strings,	which	is	extremely	handy.	If	you	think
about	it,	they	can	be	considered	as	mutable	strings.

Set	types
Python	also	provides	two	set	types,	set	and	frozenset.	The	set	type	is	mutable,
while	frozenset	is	immutable.	They	are	unordered	collections	of	immutable
objects.	Hashability	is	a	characteristic	that	allows	an	object	to	be	used	as	a	set
member	as	well	as	a	key	for	a	dictionary,	as	we'll	see	very	soon.

From	the	official	documentation:	"An	object	is	hashable	if	it	has	a	hash	value	which	never	changes	during	its	lifetime,	and	can	be	compared	to
other	objects.	Hashability	makes	an	object	usable	as	a	dictionary	key	and	a	set	member,	because	these	data	structures	use	the	hash	value	internally.	All	of	Python’s	immutable
built-in	objects	are	hashable	while	mutable	containers	are	not."

Objects	that	compare	equally	must	have	the	same	hash	value.	Sets	are	very
commonly	used	to	test	for	membership,	so	let's	introduce	the	in	operator	in	the
following	example:

>>>	small_primes	=	set()		#	empty	set

>>>	small_primes.add(2)		#	adding	one	element	at	a	time

>>>	small_primes.add(3)

>>>	small_primes.add(5)

>>>	small_primes

{2,	3,	5}

>>>	small_primes.add(1)		#	Look	what	I've	done,	1	is	not	a	prime!

>>>	small_primes

{1,	2,	3,	5}

>>>	small_primes.remove(1)		#	so	let's	remove	it

>>>	3	in	small_primes	#	membership	test

True

>>>	4	in	small_primes

False

>>>	4	not	in	small_primes		#	negated	membership	test

True

>>>	small_primes.add(3)		#	trying	to	add	3	again

>>>	small_primes

{2,	3,	5}		#	no	change,	duplication	is	not	allowed

>>>	bigger_primes	=	set([5,	7,	11,	13])		#	faster	creation

>>>	small_primes	|	bigger_primes	#	union	operator	`|`

{2,	3,	5,	7,	11,	13}

>>>	small_primes	&	bigger_primes		#	intersection	operator	`&`

{5}

>>>	small_primes	-	bigger_primes		#	difference	operator	`-`

{2,	3}

In	the	preceding	code,	you	can	see	two	different	ways	to	create	a	set.	One	creates
an	empty	set	and	then	adds	elements	one	at	a	time.	The	other	creates	the	set
using	a	list	of	numbers	as	an	argument	to	the	constructor,	which	does	all	the
work	for	us.	Of	course,	you	can	create	a	set	from	a	list	or	tuple	(or	any	iterable)
and	then	you	can	add	and	remove	members	from	the	set	as	you	please.

We'll	look	at	iterable	objects	and	iteration	in	the	next	chapter.	For	now,	just	know	that	iterable
objects	are	objects	you	can	iterate	on	in	a	direction.

Another	way	of	creating	a	set	is	by	simply	using	the	curly	braces	notation,	like
this:

>>>	small_primes	=	{2,	3,	5,	5,	3}

>>>	small_primes

{2,	3,	5}

Notice	I	added	some	duplication	to	emphasize	that	the	resulting	set	won't	have
any.	Let's	see	an	example	about	the	immutable	counterpart	of	the	set	type,
frozenset:

>>>	small_primes	=	frozenset([2,	3,	5,	7])

>>>	bigger_primes	=	frozenset([5,	7,	11])

>>>	small_primes.add(11)		#	we	cannot	add	to	a	frozenset

Traceback	(most	recent	call	last):

		File	"<stdin>",	line	1,	in	<module>

AttributeError:	'frozenset'	object	has	no	attribute	'add'

>>>	small_primes.remove(2)		#	neither	we	can	remove

Traceback	(most	recent	call	last):

		File	"<stdin>",	line	1,	in	<module>

AttributeError:	'frozenset'	object	has	no	attribute	'remove'

>>>	small_primes	&	bigger_primes		#	intersect,	union,	etc.	allowed

frozenset({5,	7})

As	you	can	see,	frozenset	objects	are	quite	limited	in	respect	of	their	mutable
counterpart.	They	still	prove	very	effective	for	membership	test,	union,
intersection,	and	difference	operations,	and	for	performance	reasons.

Mapping	types	–	dictionaries
Of	all	the	built-in	Python	data	types,	the	dictionary	is	easily	the	most	interesting
one.	It's	the	only	standard	mapping	type,	and	it	is	the	backbone	of	every	Python
object.

A	dictionary	maps	keys	to	values.	Keys	need	to	be	hashable	objects,	while
values	can	be	of	any	arbitrary	type.	Dictionaries	are	mutable	objects.	There	are
quite	a	few	different	ways	to	create	a	dictionary,	so	let	me	give	you	a	simple
example	of	how	to	create	a	dictionary	equal	to	{'A':	1,	'Z':	-1}	in	five	different
ways:

>>>	a	=	dict(A=1,	Z=-1)

>>>	b	=	{'A':	1,	'Z':	-1}

>>>	c	=	dict(zip(['A',	'Z'],	[1,	-1]))

>>>	d	=	dict([('A',	1),	('Z',	-1)])

>>>	e	=	dict({'Z':	-1,	'A':	1})

>>>	a	==	b	==	c	==	d	==	e		#	are	they	all	the	same?

True		#	They	are	indeed

Have	you	noticed	those	double	equals?	Assignment	is	done	with	one	equal,
while	to	check	whether	an	object	is	the	same	as	another	one	(or	five	in	one	go,	in
this	case),	we	use	double	equals.	There	is	also	another	way	to	compare	objects,
which	involves	the	is	operator,	and	checks	whether	the	two	objects	are	the	same
(if	they	have	the	same	ID,	not	just	the	value),	but	unless	you	have	a	good	reason
to	use	it,	you	should	use	the	double	equals	instead.	In	the	preceding	code,	I	also
used	one	nice	function:	zip.	It	is	named	after	the	real-life	zip,	which	glues
together	two	things	taking	one	element	from	each	at	a	time.	Let	me	show	you	an
example:

>>>	list(zip(['h',	'e',	'l',	'l',	'o'],	[1,	2,	3,	4,	5]))

[('h',	1),	('e',	2),	('l',	3),	('l',	4),	('o',	5)]

>>>	list(zip('hello',	range(1,	6)))		#	equivalent,	more	Pythonic

[('h',	1),	('e',	2),	('l',	3),	('l',	4),	('o',	5)]

In	the	preceding	example,	I	have	created	the	same	list	in	two	different	ways,	one
more	explicit,	and	the	other	a	little	bit	more	Pythonic.	Forget	for	a	moment	that	I
had	to	wrap	the	list	constructor	around	the	zip	call	(the	reason	is	because	zip
returns	an	iterator,	not	a	list,	so	if	I	want	to	see	the	result	I	need	to	exhaust	that
iterator	into	something—a	list	in	this	case),	and	concentrate	on	the	result.	See

how	zip	has	coupled	the	first	elements	of	its	two	arguments	together,	then	the
second	ones,	then	the	third	ones,	and	so	on	and	so	forth?	Take	a	look	at	your
pants	(or	at	your	purse,	if	you're	a	lady)	and	you'll	see	the	same	behavior	in	your
actual	zip.	But	let's	go	back	to	dictionaries	and	see	how	many	wonderful
methods	they	expose	for	allowing	us	to	manipulate	them	as	we	want.

Let's	start	with	the	basic	operations:

>>>	d	=	{}

>>>	d['a']	=	1		#	let's	set	a	couple	of	(key,	value)	pairs

>>>	d['b']	=	2

>>>	len(d)		#	how	many	pairs?

2

>>>	d['a']		#	what	is	the	value	of	'a'?

1

>>>	d		#	how	does	`d`	look	now?

{'a':	1,	'b':	2}

>>>	del	d['a']		#	let's	remove	`a`

>>>	d

{'b':	2}

>>>	d['c']	=	3		#	let's	add	'c':	3

>>>	'c'	in	d		#	membership	is	checked	against	the	keys

True

>>>	3	in	d		#	not	the	values

False

>>>	'e'	in	d

False

>>>	d.clear()		#	let's	clean	everything	from	this	dictionary

>>>	d

{}

Notice	how	accessing	keys	of	a	dictionary,	regardless	of	the	type	of	operation
we're	performing,	is	done	through	square	brackets.	Do	you	remember	strings,
lists,	and	tuples?	We	were	accessing	elements	at	some	position	through	square
brackets	as	well,	which	is	yet	another	example	of	Python's	consistency.

Let's	see	now	three	special	objects	called	dictionary	views:	keys,	values,	and	items.
These	objects	provide	a	dynamic	view	of	the	dictionary	entries	and	they	change
when	the	dictionary	changes.	keys()	returns	all	the	keys	in	the	dictionary,	values()
returns	all	the	values	in	the	dictionary,	and	items()	returns	all	the	(key,	value)
pairs	in	the	dictionary.

According	to	the	Python	documentation:	"Keys	and	values	are	iterated	over	in	an	arbitrary
order	which	is	non-random,	varies	across	Python	implementations,	and	depends	on	the
dictionary’s	history	of	insertions	and	deletions.	If	keys,	values	and	items	views	are	iterated
over	with	no	intervening	modifications	to	the	dictionary,	the	order	of	items	will	directly
correspond."

Enough	with	this	chatter;	let's	put	all	this	down	into	code:

>>>	d	=	dict(zip('hello',	range(5)))

>>>	d

{'h':	0,	'e':	1,	'l':	3,	'o':	4}

>>>	d.keys()

dict_keys(['h',	'e',	'l',	'o'])

>>>	d.values()

dict_values([0,	1,	3,	4])

>>>	d.items()

dict_items([('h',	0),	('e',	1),	('l',	3),	('o',	4)])

>>>	3	in	d.values()

True

>>>	('o',	4)	in	d.items()

True

There	are	a	few	things	to	notice	in	the	preceding	code.	First,	notice	how	we're
creating	a	dictionary	by	iterating	over	the	zipped	version	of	the	string	'hello'	and
the	list	[0,	1,	2,	3,	4].	The	string	'hello'	has	two	'l'	characters	inside,	and	they
are	paired	up	with	the	values	2	and	3	by	the	zip	function.	Notice	how	in	the
dictionary,	the	second	occurrence	of	the	'l'	key	(the	one	with	value	3),
overwrites	the	first	one	(the	one	with	value	2).	Another	thing	to	notice	is	that
when	asking	for	any	view,	the	original	order	is	now	preserved,	while	before
Version	3.6	there	was	no	guarantee	of	that.

As	of	Python	3.6,	the	dict	type	has	been	reimplemented	to	use	a	more	compact	representation.
This	resulted	in	dictionaries	using	20%	to	25%	less	memory	when	compared	to	Python	3.5.
Moreover,	in	Python	3.6,	as	a	side	effect,	dictionaries	are	natively	ordered.	This	feature	has
received	such	a	welcome	from	the	community	that	in	3.7	it	has	become	a	legit	feature	of	the
language	rather	than	an	implementation	side	effect.	A	dict	is	ordered	if	it	remembers	the	order
in	which	keys	were	first	inserted.

We'll	see	how	these	views	are	fundamental	tools	when	we	talk	about	iterating
over	collections.	Let's	take	a	look	now	at	some	other	methods	exposed	by
Python's	dictionaries;	there's	plenty	of	them	and	they	are	very	useful:

>>>	d

{'e':	1,	'h':	0,	'o':	4,	'l':	3}

>>>	d.popitem()		#	removes	a	random	item	(useful	in	algorithms)

('o',	4)

>>>	d

{'h':	0,	'e':	1,	'l':	3}

>>>	d.pop('l')		#	remove	item	with	key	`l`

3

>>>	d.pop('not-a-key')		#	remove	a	key	not	in	dictionary:	KeyError

Traceback	(most	recent	call	last):

		File	"<stdin>",	line	1,	in	<module>

KeyError:	'not-a-key'

>>>	d.pop('not-a-key',	'default-value')		#	with	a	default	value?

'default-value'		#	we	get	the	default	value

>>>	d.update({'another':	'value'})		#	we	can	update	dict	this	way

>>>	d.update(a=13)		#	or	this	way	(like	a	function	call)

>>>	d

{'h':	0,	'e':	1,	'another':	'value',	'a':	13}

>>>	d.get('a')		#	same	as	d['a']	but	if	key	is	missing	no	KeyError

13

>>>	d.get('a',	177)		#	default	value	used	if	key	is	missing

13

>>>	d.get('b',	177)		#	like	in	this	case

177

>>>	d.get('b')		#	key	is	not	there,	so	None	is	returned

All	these	methods	are	quite	simple	to	understand,	but	it's	worth	talking	about	that
None,	for	a	moment.	Every	function	in	Python	returns	None,	unless	the	return
statement	is	explicitly	used	to	return	something	else,	but	we'll	see	this	when	we
explore	functions.	None	is	frequently	used	to	represent	the	absence	of	a	value,	and
it	is	quite	commonly	used	as	a	default	value	for	arguments	in	function
declaration.	Some	inexperienced	coders	sometimes	write	code	that	returns	either
False	or	None.	Both	False	and	None	evaluate	to	False	in	a	Boolean	context	so	it	may
seem	there	is	not	much	difference	between	them.	But	actually,	I	would	argue
there	is	quite	an	important	difference:	False	means	that	we	have	information,	and
the	information	we	have	is	False.	None	means	no	information.	And	no	information
is	very	different	from	information	that	is	False.	In	layman's	terms,	if	you	ask	your
mechanic,	Is	my	car	ready?,	there	is	a	big	difference	between	the	answer,	No,	it's
not	(False)	and,	I	have	no	idea	(None).

One	last	method	I	really	like	about	dictionaries	is	setdefault.	It	behaves	like	get,
but	also	sets	the	key	with	the	given	value	if	it	is	not	there.	Let's	see	an	example:

>>>	d	=	{}

>>>	d.setdefault('a',	1)		#	'a'	is	missing,	we	get	default	value

1

>>>	d

{'a':	1}		#	also,	the	key/value	pair	('a',	1)	has	now	been	added

>>>	d.setdefault('a',	5)		#	let's	try	to	override	the	value

1

>>>	d

{'a':	1}		#	no	override,	as	expected

So,	we're	now	at	the	end	of	this	tour.	Test	your	knowledge	about	dictionaries	by
trying	to	foresee	what	d	looks	like	after	this	line:

>>>	d	=	{}

>>>	d.setdefault('a',	{}).setdefault('b',	[]).append(1)

Don't	worry	if	you	don't	get	it	immediately.	I	just	wanted	to	encourage	you	to
experiment	with	dictionaries.

This	concludes	our	tour	of	built-in	data	types.	Before	I	discuss	some
considerations	about	what	we've	seen	in	this	chapter,	I	want	to	take	a	peek

briefly	at	the	collections	module.

The	collections	module
When	Python	general	purpose	built-in	containers	(tuple,	list,	set,	and	dict)	aren't
enough,	we	can	find	specialized	container	datatypes	in	the	collections	module.
They	are:

Data	type Description

namedtuple() Factory	function	for	creating	tuple	subclasses	with	named	fields

deque List-like	container	with	fast	appends	and	pops	on	either	end

ChainMap
Dictionary-like	class	for	creating	a	single	view	of	multiple
mappings

Counter Dictionary	subclass	for	counting	hashable	objects

OrderedDict
Dictionary	subclass	that	remembers	the	order	entries	were
added

defaultdict
Dictionary	subclass	that	calls	a	factory	function	to	supply
missing	values

UserDict
Wrapper	around	dictionary	objects	for	easier	dictionary
subclassing

UserList Wrapper	around	list	objects	for	easier	list	subclassing

UserString Wrapper	around	string	objects	for	easier	string	subclassing

	

We	don't	have	the	room	to	cover	all	of	them,	but	you	can	find	plenty	of	examples
in	the	official	documentation,	so	here	I'll	just	give	a	small	example	to	show	you
namedtuple,	defaultdict,	and	ChainMap.

namedtuple
A	namedtuple	is	a	tuple-like	object	that	has	fields	accessible	by	attribute	lookup	as
well	as	being	indexable	and	iterable	(it's	actually	a	subclass	of	tuple).	This	is	sort
of	a	compromise	between	a	full-fledged	object	and	a	tuple,	and	it	can	be	useful
in	those	cases	where	you	don't	need	the	full	power	of	a	custom	object,	but	you
want	your	code	to	be	more	readable	by	avoiding	weird	indexing.	Another	use
case	is	when	there	is	a	chance	that	items	in	the	tuple	need	to	change	their
position	after	refactoring,	forcing	the	coder	to	refactor	also	all	the	logic	involved,
which	can	be	very	tricky.	As	usual,	an	example	is	better	than	a	thousand	words
(or	was	it	a	picture?).	Say	we	are	handling	data	about	the	left	and	right	eyes	of	a
patient.	We	save	one	value	for	the	left	eye	(position	0)	and	one	for	the	right	eye
(position	1)	in	a	regular	tuple.	Here's	how	that	might	be:	>>>	vision	=	(9.5,	8.8)
>>>	vision
(9.5,	8.8)
>>>	vision[0]	#	left	eye	(implicit	positional	reference)
9.5
>>>	vision[1]	#	right	eye	(implicit	positional	reference)
8.8

Now	let's	pretend	we	handle	vision	objects	all	the	time,	and	at	some	point	the
designer	decides	to	enhance	them	by	adding	information	for	the	combined
vision,	so	that	a	vision	object	stores	data	in	this	format:	(left	eye,	combined,	right
eye).

Do	you	see	the	trouble	we're	in	now?	We	may	have	a	lot	of	code	that	depends	on
vision[0]	being	the	left	eye	information	(which	it	still	is)	and	vision[1]	being	the
right	eye	information	(which	is	no	longer	the	case).	We	have	to	refactor	our	code
wherever	we	handle	these	objects,	changing	vision[1]	to	vision[2],	and	it	can	be
painful.	We	could	have	probably	approached	this	a	bit	better	from	the	beginning,
by	using	a	namedtuple.	Let	me	show	you	what	I	mean:

>>>	from	collections	import	namedtuple

>>>	Vision	=	namedtuple('Vision',	['left',	'right'])

>>>	vision	=	Vision(9.5,	8.8)

>>>	vision[0]

9.5

>>>	vision.left		#	same	as	vision[0],	but	explicit

9.5

>>>	vision.right		#	same	as	vision[1],	but	explicit

8.8

If	within	our	code,	we	refer	to	the	left	and	right	eyes	using	vision.left	and
vision.right,	all	we	need	to	do	to	fix	the	new	design	issue	is	to	change	our	factory
and	the	way	we	create	instances.	The	rest	of	the	code	won't	need	to	change:

>>>	Vision	=	namedtuple('Vision',	['left',	'combined',	'right'])

>>>	vision	=	Vision(9.5,	9.2,	8.8)

>>>	vision.left		#	still	correct

9.5

>>>	vision.right		#	still	correct	(though	now	is	vision[2])

8.8

>>>	vision.combined		#	the	new	vision[1]

9.2

You	can	see	how	convenient	it	is	to	refer	to	those	values	by	name	rather	than	by
position.	After	all,	a	wise	man	once	wrote,	Explicit	is	better	than	implicit	(can
you	recall	where?	Think	Zen	if	you	can't...).	This	example	may	be	a	little
extreme;	of	course,	it's	not	likely	that	our	code	designer	will	go	for	a	change	like
this,	but	you'd	be	amazed	to	see	how	frequently	issues	similar	to	this	one	happen
in	a	professional	environment,	and	how	painful	it	is	to	refactor	them.

defaultdict
The	defaultdict	data	type	is	one	of	my	favorites.	It	allows	you	to	avoid	checking
if	a	key	is	in	a	dictionary	by	simply	inserting	it	for	you	on	your	first	access
attempt,	with	a	default	value	whose	type	you	pass	on	creation.	In	some	cases,
this	tool	can	be	very	handy	and	shorten	your	code	a	little.	Let's	see	a	quick
example.	Say	we	are	updating	the	value	of	age,	by	adding	one	year.	If	age	is	not
there,	we	assume	it	was	0	and	we	update	it	to	1:	>>>	d	=	{}
>>>	d['age']	=	d.get('age',	0)	+	1	#	age	not	there,	we	get	0	+	1
>>>	d
{'age':	1}
>>>	d	=	{'age':	39}
>>>	d['age']	=	d.get('age',	0)	+	1	#	age	is	there,	we	get	40
>>>	d
{'age':	40}

Now	let's	see	how	it	would	work	with	a	defaultdict	data	type.	The	second	line	is
actually	the	short	version	of	a	four-lines-long	if	clause	that	we	would	have	to
write	if	dictionaries	didn't	have	the	get	method	(we'll	see	all	about	if	clauses	in	Ch
apter	3,	Iterating	and	Making	Decisions):

>>>	from	collections	import	defaultdict

>>>	dd	=	defaultdict(int)		#	int	is	the	default	type	(0	the	value)

>>>	dd['age']	+=	1		#	short	for	dd['age']	=	dd['age']	+	1

>>>	dd

defaultdict(<class	'int'>,	{'age':	1})		#	1,	as	expected

Notice	how	we	just	need	to	instruct	the	defaultdict	factory	that	we	want	an	int
number	to	be	used	in	case	the	key	is	missing	(we'll	get	0,	which	is	the	default	for
the	int	type).	Also,	notice	that	even	though	in	this	example	there	is	no	gain	on
the	number	of	lines,	there	is	definitely	a	gain	in	readability,	which	is	very
important.	You	can	also	use	a	different	technique	to	instantiate	a	defaultdict	data
type,	which	involves	creating	a	factory	object.	To	dig	deeper,	please	refer	to	the
official	documentation.

ChainMap
ChainMap	is	an	extremely	nice	data	type	which	was	introduced	in	Python	3.3.	It
behaves	like	a	normal	dictionary	but	according	to	the	Python	documentation:	"is
provided	for	quickly	linking	a	number	of	mappings	so	they	can	be	treated	as	a
single	unit""".	This	is	usually	much	faster	than	creating	one	dictionary	and
running	multiple	update	calls	on	it.	ChainMap	can	be	used	to	simulate	nested	scopes
and	is	useful	in	templating.	The	underlying	mappings	are	stored	in	a	list.	That
list	is	public	and	can	be	accessed	or	updated	using	the	maps	attribute.	Lookups
search	the	underlying	mappings	successively	until	a	key	is	found.	By	contrast,
writes,	updates,	and	deletions	only	operate	on	the	first	mapping.

A	very	common	use	case	is	providing	defaults,	so	let's	see	an	example:

>>>	from	collections	import	ChainMap

>>>	default_connection	=	{'host':	'localhost',	'port':	4567}

>>>	connection	=	{'port':	5678}

>>>	conn	=	ChainMap(connection,	default_connection)		#	map	creation

>>>	conn['port']		#	port	is	found	in	the	first	dictionary

5678

>>>	conn['host']		#	host	is	fetched	from	the	second	dictionary

'localhost'

>>>	conn.maps		#	we	can	see	the	mapping	objects

[{'port':	5678},	{'host':	'localhost',	'port':	4567}]

>>>	conn['host']	=	'packtpub.com'		#	let's	add	host

>>>	conn.maps

[{'port':	5678,	'host':	'packtpub.com'},

	{'host':	'localhost',	'port':	4567}]

>>>	del	conn['port']		#	let's	remove	the	port	information

>>>	conn.maps

[{'host':	'packtpub.com'},	{'host':	'localhost',	'port':	4567}]

>>>	conn['port']		#	now	port	is	fetched	from	the	second	dictionary

4567

>>>	dict(conn)		#	easy	to	merge	and	convert	to	regular	dictionary

{'host':	'packtpub.com',	'port':	4567}

I	just	love	how	Python	makes	your	life	easy.	You	work	on	a	ChainMap	object,
configure	the	first	mapping	as	you	want,	and	when	you	need	a	complete
dictionary	with	all	the	defaults	as	well	as	the	customized	items,	you	just	feed	the
ChainMap	object	to	a	dict	constructor.	If	you	have	never	coded	in	other	languages,
such	as	Java	or	C++,	you	probably	won't	be	able	to	appreciate	fully	how
precious	this	is,	and	how	Python	makes	your	life	so	much	easier.	I	do,	I	feel
claustrophobic	every	time	I	have	to	code	in	some	other	language.

Enums
Technically	not	a	built-in	data	type,	as	you	have	to	import	them	from	the	enum
module,	but	definitely	worth	mentioning,	are	enumerations.	They	were
introduced	in	Python	3.4,	and	though	it	is	not	that	common	to	see	them	in
professional	code	(yet),	I	thought	I'd	give	you	an	example	anyway.

The	official	definition	goes	like	this:	"An	enumeration	is	a	set	of	symbolic	names
(members)	bound	to	unique,	constant	values.	Within	an	enumeration,	the
members	can	be	compared	by	identity,	and	the	enumeration	itself	can	be	iterated
over."

Say	you	need	to	represent	traffic	lights.	In	your	code,	you	might	resort	to	doing
this:

>>>	GREEN	=	1

>>>	YELLOW	=	2

>>>	RED	=	4

>>>	TRAFFIC_LIGHTS	=	(GREEN,	YELLOW,	RED)

>>>	#	or	with	a	dict

>>>	traffic_lights	=	{'GREEN':	1,	'YELLOW':	2,	'RED':	4}

There's	nothing	special	about	the	preceding	code.	It's	something,	in	fact,	that	is
very	common	to	find.	But,	consider	doing	this	instead:

>>>	from	enum	import	Enum

>>>	class	TrafficLight(Enum):

...					GREEN	=	1

...					YELLOW	=	2

...					RED	=	4

...

>>>	TrafficLight.GREEN

<TrafficLight.GREEN:	1>

>>>	TrafficLight.GREEN.name

'GREEN'

>>>	TrafficLight.GREEN.value

1

>>>	TrafficLight(1)

<TrafficLight.GREEN:	1>

>>>	TrafficLight(4)

<TrafficLight.RED:	4>

Ignoring	for	a	moment	the	(relative)	complexity	of	a	class	definition,	you	can
appreciate	how	this	might	be	more	advantageous.	The	data	structure	is	much
cleaner,	and	the	API	it	provides	is	much	more	powerful.	I	encourage	you	to

check	out	the	official	documentation	to	explore	all	the	great	features	you	can
find	in	the	enum	module.	I	think	it's	worth	exploring,	at	least	once.

Final	considerations
	

That's	it.	Now	you	have	seen	a	very	good	proportion	of	the	data	structures	that
you	will	use	in	Python.	I	encourage	you	to	take	a	dive	into	the	Python
documentation	and	experiment	further	with	each	and	every	data	type	we've	seen
in	this	chapter.	It's	worth	it,	believe	me.	Everything	you'll	write	will	be	about
handling	data,	so	make	sure	your	knowledge	about	it	is	rock	solid.

Before	we	leap	into	Chapter	3,	Iterating	and	Making	Decisions,	I'd	like	to	share
some	final	considerations	about	different	aspects	that	to	my	mind	are	important
and	not	to	be	neglected.

	

	

	

Small	values	caching
	

When	we	discussed	objects	at	the	beginning	of	this	chapter,	we	saw	that	when
we	assigned	a	name	to	an	object,	Python	creates	the	object,	sets	its	value,	and
then	points	the	name	to	it.	We	can	assign	different	names	to	the	same	value	and
we	expect	different	objects	to	be	created,	like	this:

>>>	a	=	1000000

>>>	b	=	1000000

>>>	id(a)	==	id(b)

False

In	the	preceding	example,	a	and	b	are	assigned	to	two	int	objects,	which	have	the
same	value	but	they	are	not	the	same	object,	as	you	can	see,	their	id	is	not	the
same.	So	let's	do	it	again:

>>>	a	=	5

>>>	b	=	5

>>>	id(a)	==	id(b)

True

Oh,	oh!	Is	Python	broken?	Why	are	the	two	objects	the	same	now?	We	didn't	do
a	=	b	=	5,	we	set	them	up	separately.	Well,	the	answer	is	performances.	Python
caches	short	strings	and	small	numbers,	to	avoid	having	many	copies	of	them
clogging	up	the	system	memory.	Everything	is	handled	properly	under	the	hood
so	you	don't	need	to	worry	a	bit,	but	make	sure	that	you	remember	this	behavior
should	your	code	ever	need	to	fiddle	with	IDs.

	

	

	

How	to	choose	data	structures
As	we've	seen,	Python	provides	you	with	several	built-in	data	types	and
sometimes,	if	you're	not	that	experienced,	choosing	the	one	that	serves	you	best
can	be	tricky,	especially	when	it	comes	to	collections.	For	example,	say	you	have
many	dictionaries	to	store,	each	of	which	represents	a	customer.	Within	each
customer	dictionary,	there's	an	'id':	'code'	unique	identification	code.	In	what
kind	of	collection	would	you	place	them?	Well,	unless	I	know	more	about	these
customers,	it's	very	hard	to	answer.	What	kind	of	access	will	I	need?	What	sort
of	operations	will	I	have	to	perform	on	each	of	them,	and	how	many	times?	Will
the	collection	change	over	time?	Will	I	need	to	modify	the	customer	dictionaries
in	any	way?	What	is	going	to	be	the	most	frequent	operation	I	will	have	to
perform	on	the	collection?

If	you	can	answer	the	preceding	questions,	then	you	will	know	what	to	choose.	If
the	collection	never	shrinks	or	grows	(in	other	words,	it	won't	need	to	add/delete
any	customer	object	after	creation)	or	shuffles,	then	tuples	are	a	possible	choice.
Otherwise,	lists	are	a	good	candidate.	Every	customer	dictionary	has	a	unique
identifier	though,	so	even	a	dictionary	could	work.	Let	me	draft	these	options	for
you:

#	example	customer	objects	

customer1	=	{'id':	'abc123',	'full_name':	'Master	Yoda'}	

customer2	=	{'id':	'def456',	'full_name':	'Obi-Wan	Kenobi'}	

customer3	=	{'id':	'ghi789',	'full_name':	'Anakin	Skywalker'}	

#	collect	them	in	a	tuple	

customers	=	(customer1,	customer2,	customer3)	

#	or	collect	them	in	a	list	

customers	=	[customer1,	customer2,	customer3]	

#	or	maybe	within	a	dictionary,	they	have	a	unique	id	after	all	

customers	=	{	

				'abc123':	customer1,	

				'def456':	customer2,	

				'ghi789':	customer3,	

}	

Some	customers	we	have	there,	right?	I	probably	wouldn't	go	with	the	tuple
option,	unless	I	wanted	to	highlight	that	the	collection	is	not	going	to	change.	I'd
say	usually	a	list	is	better,	as	it	allows	for	more	flexibility.

Another	factor	to	keep	in	mind	is	that	tuples	and	lists	are	ordered	collections.	If

you	use	a	dictionary	(prior	to	Python	3.6)	or	a	set,	you	lose	the	ordering,	so	you
need	to	know	if	ordering	is	important	in	your	application.

What	about	performances?	For	example,	in	a	list,	operations	such	as	insertion
and	membership	can	take	O(n),	while	they	are	O(1)	for	a	dictionary.	It's	not
always	possible	to	use	dictionaries	though,	if	we	don't	have	the	guarantee	that	we
can	uniquely	identify	each	item	of	the	collection	by	means	of	one	of	its
properties,	and	that	the	property	in	question	is	hashable	(so	it	can	be	a	key	in
dict).

If	you're	wondering	what	O(n)	and	O(1)	mean,	please	Google	big	O	notation.	In	this	context,
let's	just	say	that	if	performing	an	operation	Op	on	a	data	structure	takes	O(f(n)),	it	would
mean	that	Op	takes	at	most	a	time	t	≤	c	*	f(n)	to	complete,	where	c	is	some	positive	constant,	n
is	the	size	of	the	input,	and	f	is	some	function.	So,	think	of	O(...)	as	an	upper	bound	for	the
running	time	of	an	operation	(it	can	be	used	also	to	size	other	measurable	quantities,	of
course).

Another	way	of	understanding	if	you	have	chosen	the	right	data	structure	is	by	looking	at	the
code	you	have	to	write	in	order	to	manipulate	it.	If	everything	comes	easily	and	flows
naturally,	then	you	probably	have	chosen	correctly,	but	if	you	find	yourself	thinking	your	code
is	getting	unnecessarily	complicated,	then	you	probably	should	try	and	decide	whether	you
need	to	reconsider	your	choices.	It's	quite	hard	to	give	advice	without	a	practical	case	though,
so	when	you	choose	a	data	structure	for	your	data,	try	to	keep	ease	of	use	and	performance	in
mind	and	give	precedence	to	what	matters	most	in	the	context	you	are	in.

About	indexing	and	slicing
At	the	beginning	of	this	chapter,	we	saw	slicing	applied	on	strings.	Slicing,	in
general,	applies	to	a	sequence:	tuples,	lists,	strings,	and	so	on.	With	lists,	slicing
can	also	be	used	for	assignment.	I've	almost	never	seen	this	used	in	professional
code,	but	still,	you	know	you	can.	Could	you	slice	dictionaries	or	sets?	I	hear
you	scream,	Of	course	not!.	Excellent;	I	see	we're	on	the	same	page	here,	so	let's
talk	about	indexing.

There	is	one	characteristic	about	Python	indexing	I	haven't	mentioned	before.	I'll
show	you	by	way	of	an	example.	How	do	you	address	the	last	element	of	a
collection?	Let's	see:

>>>	a	=	list(range(10))		#	`a`	has	10	elements.	Last	one	is	9.

>>>	a

[0,	1,	2,	3,	4,	5,	6,	7,	8,	9]

>>>	len(a)		#	its	length	is	10	elements

10

>>>	a[len(a)	-	1]		#	position	of	last	one	is	len(a)	-	1

9

>>>	a[-1]		#	but	we	don't	need	len(a)!	Python	rocks!

9

>>>	a[-2]		#	equivalent	to	len(a)	-	2

8

>>>	a[-3]		#	equivalent	to	len(a)	-	3

7

If	the	list	a	has	10	elements,	because	of	the	0-index	positioning	system	of
Python,	the	first	one	is	at	position	0	and	the	last	one	is	at	position	9.	In	the
preceding	example,	the	elements	are	conveniently	placed	in	a	position	equal	to
their	value:	0	is	at	position	0,	1	at	position	1,	and	so	on.

So,	in	order	to	fetch	the	last	element,	we	need	to	know	the	length	of	the	whole
list	(or	tuple,	or	string,	and	so	on)	and	then	subtract	1.	Hence:	len(a)	-	1.	This	is
so	common	an	operation	that	Python	provides	you	with	a	way	to	retrieve
elements	using	negative	indexing.	This	proves	very	useful	when	you	do	data
manipulation.	Here's	a	nice	diagram	about	how	indexing	works	on	the	string
"HelloThere"	(which	is	Obi-Wan	Kenobi	sarcastically	greeting	General	Grievous):

Trying	to	address	indexes	greater	than	9	or	smaller	than	-10	will	raise	an
IndexError,	as	expected.

About	the	names
You	may	have	noticed	that,	in	order	to	keep	the	examples	as	short	as	possible,	I
have	called	many	objects	using	simple	letters,	like	a,	b,	c,	d,	and	so	on.	This	is
perfectly	OK	when	you	debug	on	the	console	or	when	you	show	that	a	+	b	==	7,
but	it's	bad	practice	when	it	comes	to	professional	coding	(or	any	type	of	coding,
for	that	matter).	I	hope	you	will	indulge	me	if	I	sometimes	do	it;	the	reason	is	to
present	the	code	in	a	more	compact	way.

In	a	real	environment	though,	when	you	choose	names	for	your	data,	you	should
choose	them	carefully	and	they	should	reflect	what	the	data	is	about.	So,	if	you
have	a	collection	of	Customer	objects,	customers	is	a	perfectly	good	name	for	it.
Would	customers_list,	customers_tuple,	or	customers_collection	work	as	well?	Think
about	it	for	a	second.	Is	it	good	to	tie	the	name	of	the	collection	to	the	datatype?
I	don't	think	so,	at	least	in	most	cases.	So	I'd	say	if	you	have	an	excellent	reason
to	do	so,	go	ahead;	otherwise,	don't.	The	reason	is,	once	that	customers_tuple	starts
being	used	in	different	places	of	your	code,	and	you	realize	you	actually	want	to
use	a	list	instead	of	a	tuple,	you're	up	for	some	fun	refactoring	(also	known	as
wasted	time).	Names	for	data	should	be	nouns,	and	names	for	functions	should
be	verbs.	Names	should	be	as	expressive	as	possible.	Python	is	actually	a	very
good	example	when	it	comes	to	names.	Most	of	the	time	you	can	just	guess	what
a	function	is	called	if	you	know	what	it	does.	Crazy,	huh?

Chapter	2	of	Meaningful	Names	of	Clean	Code,	Robert	C.	Martin,	Prentice	Hall
is	entirely	dedicated	to	names.	It's	an	amazing	book	that	helped	me	improve	my
coding	style	in	many	different	ways,	and	is	a	must-read	if	you	want	to	take	your
coding	to	the	next	level.

Summary
In	this	chapter,	we've	explored	the	built-in	data	types	of	Python.	We've	seen	how
many	there	are	and	how	much	can	be	achieved	by	just	using	them	in	different
combinations.

We've	seen	number	types,	sequences,	sets,	mappings,	collections	(and	a	special
guest	appearance	by	Enum),	we've	seen	that	everything	is	an	object,	we've	learned
the	difference	between	mutable	and	immutable,	and	we've	also	learned	about
slicing	and	indexing	(and,	proudly,	negative	indexing	as	well).

We've	presented	simple	examples,	but	there's	much	more	that	you	can	learn
about	this	subject,	so	stick	your	nose	into	the	official	documentation	and	explore.

Most	of	all,	I	encourage	you	to	try	out	all	the	exercises	by	yourself,	get	your
fingers	using	that	code,	build	some	muscle	memory,	and	experiment,
experiment,	experiment.	Learn	what	happens	when	you	divide	by	zero,	when
you	combine	different	number	types	into	a	single	expression,	when	you	manage
strings.	Play	with	all	data	types.	Exercise	them,	break	them,	discover	all	their
methods,	enjoy	them,	and	learn	them	very,	very	well.

If	your	foundation	is	not	rock	solid,	how	good	can	your	code	be?	And	data	is	the
foundation	for	everything.	Data	shapes	what	dances	around	it.

The	more	you	progress	with	the	book,	the	more	it's	likely	that	you	will	find	some
discrepancies	or	maybe	a	small	typo	here	and	there	in	my	code	(or	yours).	You
will	get	an	error	message,	something	will	break.	That's	wonderful!	When	you
code,	things	break	all	the	time,	you	debug	and	fix	all	the	time,	so	consider	errors
as	useful	exercises	to	learn	something	new	about	the	language	you're	using,	and
not	as	failures	or	problems.	Errors	will	keep	coming	up	until	your	very	last	line
of	code,	that's	for	sure,	so	you	may	as	well	start	making	your	peace	with	them
now.

The	next	chapter	is	about	iterating	and	making	decisions.	We'll	see	how	actually
to	put	those	collections	to	use,	and	take	decisions	based	on	the	data	we're
presented	with.	We'll	start	to	go	a	little	faster	now	that	your	knowledge	is

building	up,	so	make	sure	you're	comfortable	with	the	contents	of	this	chapter
before	you	move	to	the	next	one.	Once	more,	have	fun,	explore,	break	things.	It's
a	very	good	way	to	learn.

Iterating	and	Making	Decisions
"Insanity:	doing	the	same	thing	over	and	over	again	and	expecting	different	results."
–	Albert	Einstein	In	the	previous	chapter,	we	looked	at	Python's	built-in	data	types.	Now	that	you're	familiar

with	data	in	its	many	forms	and	shapes,	it's	time	to	start	looking	at	how	a	program	can	use	it.

According	to	Wikipedia:	In	computer	science,	control	flow	(or	alternatively,	flow	of	control)	refers	to	the
specification	of	the	order	in	which	the	individual	statements,	instructions	or	function	calls	of	an	imperative
program	are	executed	or	evaluated.

In	order	to	control	the	flow	of	a	program,	we	have	two	main	weapons:
conditional	programming	(also	known	as	branching)	and	looping.	We	can	use
them	in	many	different	combinations	and	variations,	but	in	this	chapter,	instead
of	going	through	all	the	possible	forms	of	those	two	constructs	in	a
documentation	fashion,	I'd	rather	give	you	the	basics	and	then	I'll	write	a	couple
of	small	scripts	with	you.	In	the	first	one,	we'll	see	how	to	create	a	rudimentary
prime-number	generator,	while	in	the	second	one,	we'll	see	how	to	apply
discounts	to	customers	based	on	coupons.	This	way,	you	should	get	a	better
feeling	for	how	conditional	programming	and	looping	can	be	used.

In	this	chapter,	we	are	going	to	cover	the	following:

Conditional	programming
Looping	in	Python
A	quick	peek	at	the	itertools	module

Conditional	programming
Conditional	programming,	or	branching,	is	something	you	do	every	day,	every
moment.	It's	about	evaluating	conditions:	if	the	light	is	green,	then	I	can	cross;	if
it's	raining,	then	I'm	taking	the	umbrella;	and	if	I'm	late	for	work,	then	I'll	call
my	manager.

The	main	tool	is	the	if	statement,	which	comes	in	different	forms	and	colors,	but
basically	it	evaluates	an	expression	and,	based	on	the	result,	chooses	which	part
of	the	code	to	execute.	As	usual,	let's	look	at	an	example:

#	conditional.1.py

late	=	True	

if	late:	

				print('I	need	to	call	my	manager!')	

This	is	possibly	the	simplest	example:	when	fed	to	the	if	statement,	late	acts	as	a
conditional	expression,	which	is	evaluated	in	a	Boolean	context	(exactly	like	if
we	were	calling	bool(late)).	If	the	result	of	the	evaluation	is	True,	then	we	enter
the	body	of	the	code	immediately	after	the	if	statement.	Notice	that	the	print
instruction	is	indented:	this	means	it	belongs	to	a	scope	defined	by	the	if	clause.
Execution	of	this	code	yields:

$	python	conditional.1.py

I	need	to	call	my	manager!

Since	late	is	True,	the	print	statement	was	executed.	Let's	expand	on	this	example:

#	conditional.2.py

late	=	False	

if	late:	

				print('I	need	to	call	my	manager!')		#1	

else:	

				print('no	need	to	call	my	manager...')		#2	

This	time	I	set	late	=	False,	so	when	I	execute	the	code,	the	result	is	different:

$	python	conditional.2.py

no	need	to	call	my	manager...

Depending	on	the	result	of	evaluating	the	late	expression,	we	can	either	enter
block	#1	or	block	#2,	but	not	both.	Block	#1	is	executed	when	late	evaluates	to

True,	while	block	#2	is	executed	when	late	evaluates	to	False.	Try	assigning
False/True	values	to	the	late	name,	and	see	how	the	output	for	this	code	changes
accordingly.

The	preceding	example	also	introduces	the	else	clause,	which	becomes	very
handy	when	we	want	to	provide	an	alternative	set	of	instructions	to	be	executed
when	an	expression	evaluates	to	False	within	an	if	clause.	The	else	clause	is
optional,	as	is	evident	by	comparing	the	preceding	two	examples.

A	specialized	else	–	elif
Sometimes	all	you	need	is	to	do	something	if	a	condition	is	met	(a	simple	if
clause).	At	other	times,	you	need	to	provide	an	alternative,	in	case	the	condition
is	False	(if/else	clause),	but	there	are	situations	where	you	may	have	more	than
two	paths	to	choose	from,	so,	since	calling	the	manager	(or	not	calling	them)	is
kind	of	a	binary	type	of	example	(either	you	call	or	you	don't),	let's	change	the
type	of	example	and	keep	expanding.	This	time,	we	decide	on	tax	percentages.	If
my	income	is	less	than	$10,000,	I	won't	pay	any	taxes.	If	it	is	between	$10,000
and	$30,000,	I'll	pay	20%	in	taxes.	If	it	is	between	$30,000	and	$100,000,	I'll
pay	35%	in	taxes,	and	if	it's	over	$100,000,	I'll	(gladly)	pay	45%	in	taxes.	Let's
put	this	all	down	into	beautiful	Python	code:

#	taxes.py

income	=	15000	

if	income	<	10000:	

				tax_coefficient	=	0.0		#1	

elif	income	<	30000:	

				tax_coefficient	=	0.2		#2	

elif	income	<	100000:	

				tax_coefficient	=	0.35		#3	

else:	

				tax_coefficient	=	0.45		#4	

	

print('I	will	pay:',	income	*	tax_coefficient,	'in	taxes')	

Executing	the	preceding	code	yields:

$	python	taxes.py

I	will	pay:	3000.0	in	taxes

Let's	go	through	the	example	line	by	line:	we	start	by	setting	up	the	income
value.	In	the	example,	my	income	is	$15,000.	We	enter	the	if	clause.	Notice	that
this	time	we	also	introduced	the	elif	clause,	which	is	a	contraction	of	else-if,	and
it's	different	from	a	bare	else	clause	in	that	it	also	has	its	own	condition.	So,	the
if	expression	of	income	<	10000	evaluates	to	False,	therefore	block	#1	is	not
executed.

The	control	passes	to	the	next	condition	evaluator:	elif	income	<	30000.	This	one
evaluates	to	True,	therefore	block	#2	is	executed,	and	because	of	this,	Python	then
resumes	execution	after	the	whole	if/elif/elif/else	clause	(which	we	can	just	call

the	if	clause	from	now	on).	There	is	only	one	instruction	after	the	if	clause,	the
print	call,	which	tells	us	I	will	pay	3000.0	in	taxes	this	year	(15,000	*	20%).
Notice	that	the	order	is	mandatory:	if	comes	first,	then	(optionally)	as	many	elif
clauses	as	you	need,	and	then	(optionally)	an	else	clause.

Interesting,	right?	No	matter	how	many	lines	of	code	you	may	have	within	each
block,	when	one	of	the	conditions	evaluates	to	True,	the	associated	block	is
executed	and	then	execution	resumes	after	the	whole	clause.	If	none	of	the
conditions	evaluates	to	True	(for	example,	income	=	200000),	then	the	body	of	the
else	clause	would	be	executed	(block	#4).	This	example	expands	our
understanding	of	the	behavior	of	the	else	clause.	Its	block	of	code	is	executed
when	none	of	the	preceding	if/elif/.../elif	expressions	has	evaluated	to	True.

Try	to	modify	the	value	of	income	until	you	can	comfortably	execute	all	blocks	at
will	(one	per	execution,	of	course).	And	then	try	the	boundaries.	This	is	crucial,
whenever	you	have	conditions	expressed	as	equalities	or	inequalities	(==,	!=,	<,	>,
<=,	>=),	those	numbers	represent	boundaries.	It	is	essential	to	test	boundaries
thoroughly.	Should	I	allow	you	to	drive	at	18	or	17?	Am	I	checking	your	age
with	age	<	18,	or	age	<=	18?	You	can't	imagine	how	many	times	I've	had	to	fix
subtle	bugs	that	stemmed	from	using	the	wrong	operator,	so	go	ahead	and
experiment	with	the	preceding	code.	Change	some	<	to	<=	and	set	income	to	be
one	of	the	boundary	values	(10,000,	30,000,	100,000)	as	well	as	any	value	in
between.	See	how	the	result	changes,	and	get	a	good	understanding	of	it	before
proceeding.

Let's	now	see	another	example	that	shows	us	how	to	nest	if	clauses.	Say	your
program	encounters	an	error.	If	the	alert	system	is	the	console,	we	print	the	error.
If	the	alert	system	is	an	email,	we	send	it	according	to	the	severity	of	the	error.	If
the	alert	system	is	anything	other	than	console	or	email,	we	don't	know	what	to
do,	therefore	we	do	nothing.	Let's	put	this	into	code:

#	errorsalert.py

alert_system	=	'console'		#	other	value	can	be	'email'	

error_severity	=	'critical'		#	other	values:	'medium'	or	'low'	

error_message	=	'OMG!	Something	terrible	happened!'	

	

if	alert_system	==	'console':	

				print(error_message)		#1	

elif	alert_system	==	'email':	

				if	error_severity	==	'critical':	

								send_email('admin@example.com',	error_message)		#2	

				elif	error_severity	==	'medium':	

								send_email('support.1@example.com',	error_message)		#3	

				else:	

								send_email('support.2@example.com',	error_message)		#4	

The	preceding	example	is	quite	interesting,	because	of	its	silliness.	It	shows	us
two	nested	if	clauses	(outer	and	inner).	It	also	shows	us	that	the	outer	if	clause
doesn't	have	any	else,	while	the	inner	one	does.	Notice	how	indentation	is	what
allows	us	to	nest	one	clause	within	another	one.

If	alert_system	==	'console',	body	#1	is	executed,	and	nothing	else	happens.	On	the
other	hand,	if	alert_system	==	'email',	then	we	enter	into	another	if	clause,	which
we	called	inner.	In	the	inner	if	clause,	according	to	error_severity,	we	send	an
email	to	either	an	admin,	first-level	support,	or	second-level	support	(blocks	#2,
#3,	and	#4).	The	send_email	function	is	not	defined	in	this	example,	therefore	trying
to	run	it	would	give	you	an	error.	In	the	source	code	of	the	book,	which	you	can
download	from	the	website,	I	included	a	trick	to	redirect	that	call	to	a	regular
print	function,	just	so	you	can	experiment	on	the	console	without	actually
sending	an	email.	Try	changing	the	values	and	see	how	it	all	works.

The	ternary	operator
One	last	thing	I	would	like	to	show	you,	before	moving	on	to	the	next	subject,	is
the	ternary	operator	or,	in	layman's	terms,	the	short	version	of	an	if/else	clause.
When	the	value	of	a	name	is	to	be	assigned	according	to	some	condition,
sometimes	it's	easier	and	more	readable	to	use	the	ternary	operator	instead	of	a
proper	if	clause.	In	the	following	example,	the	two	code	blocks	do	exactly	the
same	thing:	#	ternary.py
order_total	=	247	#	GBP	#	classic	if/else	form	if	order_total	>	100:	discount	=	25
#	GBP	else:	discount	=	0	#	GBP	print(order_total,	discount)	#	ternary	operator
discount	=	25	if	order_total	>	100	else	0	print(order_total,	discount)

For	simple	cases	like	this,	I	find	it	very	nice	to	be	able	to	express	that	logic	in
one	line	instead	of	four.	Remember,	as	a	coder,	you	spend	much	more	time
reading	code	than	writing	it,	so	Python's	conciseness	is	invaluable.

Are	you	clear	on	how	the	ternary	operator	works?	Basically,	name	=	something	if
condition	else	something-else.	So	name	is	assigned	something	if	condition	evaluates	to
True,	and	something-else	if	condition	evaluates	to	False.

Now	that	you	know	everything	about	controlling	the	path	of	the	code,	let's	move
on	to	the	next	subject:	looping.

Looping
	

If	you	have	any	experience	with	looping	in	other	programming	languages,	you
will	find	Python's	way	of	looping	a	bit	different.	First	of	all,	what	is	looping?
Looping	means	being	able	to	repeat	the	execution	of	a	code	block	more	than
once,	according	to	the	loop	parameters	we're	given.	There	are	different	looping
constructs,	which	serve	different	purposes,	and	Python	has	distilled	all	of	them
down	to	just	two,	which	you	can	use	to	achieve	everything	you	need.	These	are
the	for	and	while	statements.

While	it's	definitely	possible	to	do	everything	you	need	using	either	of	them,
they	serve	different	purposes	and	therefore	they're	usually	used	in	different
contexts.	We'll	explore	this	difference	thoroughly	in	this	chapter.

	

	

	

The	for	loop
	

The	for	loop	is	used	when	looping	over	a	sequence,	such	as	a	list,	tuple,	or	a
collection	of	objects.	Let's	start	with	a	simple	example	and	expand	on	the
concept	to	see	what	the	Python	syntax	allows	us	to	do:

#	simple.for.py

for	number	in	[0,	1,	2,	3,	4]:	

				print(number)	

This	simple	snippet	of	code,	when	executed,	prints	all	numbers	from	0	to	4.	The
for	loop	is	fed	the	list	[0,	1,	2,	3,	4]	and	at	each	iteration,	number	is	given	a	value
from	the	sequence	(which	is	iterated	sequentially,	in	order),	then	the	body	of	the
loop	is	executed	(the	print	line).	The	number	value	changes	at	every	iteration,
according	to	which	value	is	coming	next	from	the	sequence.	When	the	sequence
is	exhausted,	the	for	loop	terminates,	and	the	execution	of	the	code	resumes
normally	with	the	code	after	the	loop.

	

	

	

Iterating	over	a	range
Sometimes	we	need	to	iterate	over	a	range	of	numbers,	and	it	would	be	quite
unpleasant	to	have	to	do	so	by	hardcoding	the	list	somewhere.	In	such	cases,	the
range	function	comes	to	the	rescue.	Let's	see	the	equivalent	of	the	previous
snippet	of	code:

#	simple.for.py

for	number	in	range(5):	

				print(number)	

The	range	function	is	used	extensively	in	Python	programs	when	it	comes	to
creating	sequences:	you	can	call	it	by	passing	one	value,	which	acts	as	stop
(counting	from	0),	or	you	can	pass	two	values	(start	and	stop),	or	even	three
(start,	stop,	and	step).	Check	out	the	following	example:

>>>	list(range(10))		#	one	value:	from	0	to	value	(excluded)

[0,	1,	2,	3,	4,	5,	6,	7,	8,	9]

>>>	list(range(3,	8))		#	two	values:	from	start	to	stop	(excluded)

[3,	4,	5,	6,	7]

>>>	list(range(-10,	10,	4))		#	three	values:	step	is	added

[-10,	-6,	-2,	2,	6]

For	the	moment,	ignore	that	we	need	to	wrap	range(...)	within	a	list.	The	range
object	is	a	little	bit	special,	but	in	this	case,	we're	just	interested	in	understanding
what	values	it	will	return	to	us.	You	can	see	that	the	deal	is	the	same	with	slicing:
start	is	included,	stop	excluded,	and	optionally	you	can	add	a	step	parameter,
which	by	default	is	1.

Try	modifying	the	parameters	of	the	range()	call	in	our	simple.for.py	code	and	see
what	it	prints.	Get	comfortable	with	it.

Iterating	over	a	sequence
Now	we	have	all	the	tools	to	iterate	over	a	sequence,	so	let's	build	on	that
example:

#	simple.for.2.py

surnames	=	['Rivest',	'Shamir',	'Adleman']	

for	position	in	range(len(surnames)):	

				print(position,	surnames[position])	

The	preceding	code	adds	a	little	bit	of	complexity	to	the	game.	Execution	will
show	this	result:

$	python	simple.for.2.py

0	Rivest

1	Shamir

2	Adleman

Let's	use	the	inside-out	technique	to	break	it	down,	OK?	We	start	from	the
innermost	part	of	what	we're	trying	to	understand,	and	we	expand	outward.	So,
len(surnames)	is	the	length	of	the	surnames	list:	3.	Therefore,	range(len(surnames))	is
actually	transformed	into	range(3).	This	gives	us	the	range	[0,	3),	which	is
basically	a	sequence	(0,	1,	2).	This	means	that	the	for	loop	will	run	three
iterations.	In	the	first	one,	position	will	take	value	0,	while	in	the	second	one,	it
will	take	value	1,	and	finally	value	2	in	the	third	and	last	iteration.	What	is	(0,	1,
2),	if	not	the	possible	indexing	positions	for	the	surnames	list?	At	position	0,	we
find	'Rivest',	at	position	1,	'Shamir',	and	at	position	2,	'Adleman'.	If	you	are	curious
about	what	these	three	men	created	together,	change	print(position,
surnames[position])	to	print(surnames[position][0],	end=''),	add	a	final	print()	outside
of	the	loop,	and	run	the	code	again.

Now,	this	style	of	looping	is	actually	much	closer	to	languages	such	as	Java	or
C++.	In	Python,	it's	quite	rare	to	see	code	like	this.	You	can	just	iterate	over	any
sequence	or	collection,	so	there	is	no	need	to	get	the	list	of	positions	and	retrieve
elements	out	of	a	sequence	at	each	iteration.	It's	expensive,	needlessly	expensive.
Let's	change	the	example	into	a	more	Pythonic	form:

#	simple.for.3.py

surnames	=	['Rivest',	'Shamir',	'Adleman']	

for	surname	in	surnames:	

				print(surname)	

Now	that's	something!	It's	practically	English.	The	for	loop	can	iterate	over	the
surnames	list,	and	it	gives	back	each	element	in	order	at	each	interaction.	Running
this	code	will	print	the	three	surnames,	one	at	a	time.	It's	much	easier	to	read,
right?

What	if	you	wanted	to	print	the	position	as	well	though?	Or	what	if	you	actually
needed	it?	Should	you	go	back	to	the	range(len(...))	form?	No.	You	can	use	the
enumerate	built-in	function,	like	this:

#	simple.for.4.py

surnames	=	['Rivest',	'Shamir',	'Adleman']	

for	position,	surname	in	enumerate(surnames):	

				print(position,	surname)	

This	code	is	very	interesting	as	well.	Notice	that	enumerate	gives	back	a	two-
tuple	(position,	surname)	at	each	iteration,	but	still,	it's	much	more	readable	(and
more	efficient)	than	the	range(len(...))	example.	You	can	call	enumerate	with	a	start
parameter,	such	as	enumerate(iterable,	start),	and	it	will	start	from	start,	rather
than	0.	Just	another	little	thing	that	shows	you	how	much	thought	has	been	given
in	designing	Python	so	that	it	makes	your	life	easier.

You	can	use	a	for	loop	to	iterate	over	lists,	tuples,	and	in	general	anything	that
Python	calls	iterable.	This	is	a	very	important	concept,	so	let's	talk	about	it	a	bit
more.

Iterators	and	iterables
According	to	the	Python	documentation	(https://docs.python.org/3/glossary.html),	an
iterable	is:	An	object	capable	of	returning	its	members	one	at	a	time.	Examples
of	iterables	include	all	sequence	types	(such	as	list,	str,	and	tuple)	and	some	non-
sequence	types	like	dict,	file	objects,	and	objects	of	any	classes	you	define	with
an	__iter__()	or	__getitem__()	method.	Iterables	can	be	used	in	a	for	loop	and	in
many	other	places	where	a	sequence	is	needed	(zip(),	map(),	...).	When	an
iterable	object	is	passed	as	an	argument	to	the	built-in	function	iter(),	it	returns
an	iterator	for	the	object.	This	iterator	is	good	for	one	pass	over	the	set	of	values.
When	using	iterables,	it	is	usually	not	necessary	to	call	iter()	or	deal	with	iterator
objects	yourself.	The	for	statement	does	that	automatically	for	you,	creating	a
temporary	unnamed	variable	to	hold	the	iterator	for	the	duration	of	the	loop.

Simply	put,	what	happens	when	you	write	for	k	in	sequence:	...	body	...,	is	that
the	for	loop	asks	sequence	for	the	next	element,	it	gets	something	back,	it	calls	that
something	k,	and	then	executes	its	body.	Then,	once	again,	the	for	loop	asks
sequence	for	the	next	element,	it	calls	it	k	again,	and	executes	the	body	again,	and
so	on	and	so	forth,	until	the	sequence	is	exhausted.	Empty	sequences	will	result
in	zero	executions	of	the	body.

Some	data	structures,	when	iterated	over,	produce	their	elements	in	order,	such
as	lists,	tuples,	and	strings,	while	some	others	don't,	such	as	sets	and	dictionaries
(prior	to	Python	3.6).	Python	gives	us	the	ability	to	iterate	over	iterables,	using	a
type	of	object	called	an	iterator.

According	to	the	official	documentation	(https://docs.python.org/3/glossary.html),	an
iterator	is:	An	object	representing	a	stream	of	data.	Repeated	calls	to	the
iterator's	__next__()	method	(or	passing	it	to	the	built-in	function	next())	return
successive	items	in	the	stream.	When	no	more	data	are	available	a	StopIteration
exception	is	raised	instead.	At	this	point,	the	iterator	object	is	exhausted	and	any
further	calls	to	its	__next__()	method	just	raise	StopIteration	again.	Iterators	are
required	to	have	an	__iter__()	method	that	returns	the	iterator	object	itself	so
every	iterator	is	also	iterable	and	may	be	used	in	most	places	where	other
iterables	are	accepted.	One	notable	exception	is	code	which	attempts	multiple

https://docs.python.org/3/glossary.html
https://docs.python.org/3/glossary.html

iteration	passes.	A	container	object	(such	as	a	list)	produces	a	fresh	new	iterator
each	time	you	pass	it	to	the	iter()	function	or	use	it	in	a	for	loop.	Attempting	this
with	an	iterator	will	just	return	the	same	exhausted	iterator	object	used	in	the
previous	iteration	pass,	making	it	appear	like	an	empty	container.

Don't	worry	if	you	don't	fully	understand	all	the	preceding	legalese,	you	will	in
due	time.	I	put	it	here	as	a	handy	reference	for	the	future.

In	practice,	the	whole	iterable/iterator	mechanism	is	somewhat	hidden	behind
the	code.	Unless	you	need	to	code	your	own	iterable	or	iterator	for	some	reason,
you	won't	have	to	worry	about	this	too	much.	But	it's	very	important	to
understand	how	Python	handles	this	key	aspect	of	control	flow	because	it	will
shape	the	way	you	will	write	your	code.

Iterating	over	multiple	sequences
Let's	see	another	example	of	how	to	iterate	over	two	sequences	of	the	same
length,	in	order	to	work	on	their	respective	elements	in	pairs.	Say	we	have	a	list
of	people	and	a	list	of	numbers	representing	the	age	of	the	people	in	the	first	list.
We	want	to	print	a	pair	person/age	on	one	line	for	all	of	them.	Let's	start	with	an
example	and	let's	refine	it	gradually:

#	multiple.sequences.py

people	=	['Conrad',	'Deepak',	'Heinrich',	'Tom']

ages	=	[29,	30,	34,	36]

for	position	in	range(len(people)):

				person	=	people[position]

				age	=	ages[position]

				print(person,	age)

By	now,	this	code	should	be	pretty	straightforward	for	you	to	understand.	We
need	to	iterate	over	the	list	of	positions	(0,	1,	2,	3)	because	we	want	to	retrieve
elements	from	two	different	lists.	Executing	it	we	get	the	following:

$	python	multiple.sequences.py

Conrad	29

Deepak	30

Heinrich	34

Tom	36

This	code	is	both	inefficient	and	not	Pythonic.	It's	inefficient	because	retrieving
an	element	given	the	position	can	be	an	expensive	operation,	and	we're	doing	it
from	scratch	at	each	iteration.	The	postal	worker	doesn't	go	back	to	the
beginning	of	the	road	each	time	they	deliver	a	letter,	right?	They	move	from
house	to	house.	From	one	to	the	next	one.	Let's	try	to	make	it	better	using
enumerate:

#	multiple.sequences.enumerate.py

people	=	['Conrad',	'Deepak',	'Heinrich',	'Tom']

ages	=	[29,	30,	34,	36]

for	position,	person	in	enumerate(people):

				age	=	ages[position]

				print(person,	age)

That's	better,	but	still	not	perfect.	And	it's	still	a	bit	ugly.	We're	iterating	properly
on	people,	but	we're	still	fetching	age	using	positional	indexing,	which	we	want	to
lose	as	well.	Well,	no	worries,	Python	gives	you	the	zip	function,	remember?

Let's	use	it:

#	multiple.sequences.zip.py

people	=	['Conrad',	'Deepak',	'Heinrich',	'Tom']

ages	=	[29,	30,	34,	36]

for	person,	age	in	zip(people,	ages):

				print(person,	age)

Ah!	So	much	better!	Once	again,	compare	the	preceding	code	with	the	first
example	and	admire	Python's	elegance.	The	reason	I	wanted	to	show	this
example	is	twofold.	On	the	one	hand,	I	wanted	to	give	you	an	idea	of	how
shorter	code	in	Python	can	be	compared	to	other	languages	where	the	syntax
doesn't	allow	you	to	iterate	over	sequences	or	collections	as	easily.	And	on	the
other	hand,	and	much	more	importantly,	notice	that	when	the	for	loop	asks
zip(sequenceA,	sequenceB)	for	the	next	element,	it	gets	back	a	tuple,	not	just	a	single
object.	It	gets	back	a	tuple	with	as	many	elements	as	the	number	of	sequences
we	feed	to	the	zip	function.	Let's	expand	a	little	on	the	previous	example	in	two
ways,	using	explicit	and	implicit	assignment:

#	multiple.sequences.explicit.py

people	=	['Conrad',	'Deepak',	'Heinrich',	'Tom']

ages	=	[29,	30,	34,	36]

nationalities	=	['Poland',	'India',	'South	Africa',	'England']

for	person,	age,	nationality	in	zip(people,	ages,	nationalities):

				print(person,	age,	nationality)

In	the	preceding	code,	we	added	the	nationalities	list.	Now	that	we	feed	three
sequences	to	the	zip	function,	the	for	loop	gets	back	a	three-tuple	at	each
iteration.	Notice	that	the	position	of	the	elements	in	the	tuple	respects	the
position	of	the	sequences	in	the	zip	call.	Executing	the	code	will	yield	the
following	result:

$	python	multiple.sequences.explicit.py

Conrad	29	Poland

Deepak	30	India

Heinrich	34	South	Africa

Tom	36	England

Sometimes,	for	reasons	that	may	not	be	clear	in	a	simple	example	such	as	the
preceding	one,	you	may	want	to	explode	the	tuple	within	the	body	of	the	for
loop.	If	that	is	your	desire,	it's	perfectly	possible	to	do	so:

#	multiple.sequences.implicit.py

people	=	['Conrad',	'Deepak',	'Heinrich',	'Tom']

ages	=	[29,	30,	34,	36]

nationalities	=	['Poland',	'India',	'South	Africa',	'England']

for	data	in	zip(people,	ages,	nationalities):

				person,	age,	nationality	=	data

				print(person,	age,	nationality)

It's	basically	doing	what	the	for	loop	does	automatically	for	you,	but	in	some
cases	you	may	want	to	do	it	yourself.	Here,	the	three-tuple	data	that	comes	from
zip(...)	is	exploded	within	the	body	of	the	for	loop	into	three	variables:	person,
age,	and	nationality.

The	while	loop
In	the	preceding	pages,	we	saw	the	for	loop	in	action.	It's	incredibly	useful	when
you	need	to	loop	over	a	sequence	or	a	collection.	The	key	point	to	keep	in	mind,
when	you	need	to	be	able	to	discriminate	which	looping	construct	to	use,	is	that
the	for	loop	rocks	when	you	have	to	iterate	over	a	finite	amount	of	elements.	It
can	be	a	huge	amount,	but	still,	something	that	ends	at	some	point.

There	are	other	cases	though,	when	you	just	need	to	loop	until	some	condition	is
satisfied,	or	even	loop	indefinitely	until	the	application	is	stopped,	such	as	cases
where	we	don't	really	have	something	to	iterate	on,	and	therefore	the	for	loop
would	be	a	poor	choice.	But	fear	not,	for	these	cases,	Python	provides	us	with
the	while	loop.

The	while	loop	is	similar	to	the	for	loop,	in	that	they	both	loop,	and	at	each
iteration	they	execute	a	body	of	instructions.	What	is	different	between	them	is
that	the	while	loop	doesn't	loop	over	a	sequence	(it	can,	but	you	have	to	write	the
logic	manually	and	it	wouldn't	make	any	sense,	you	would	just	want	to	use	a	for
loop),	rather,	it	loops	as	long	as	a	certain	condition	is	satisfied.	When	the
condition	is	no	longer	satisfied,	the	loop	ends.

As	usual,	let's	see	an	example	that	will	clarify	everything	for	us.	We	want	to
print	the	binary	representation	of	a	positive	number.	In	order	to	do	so,	we	can
use	a	simple	algorithm	that	collects	the	remainders	of	division	by	2	(in	reverse
order),	and	that	turns	out	to	be	the	binary	representation	of	the	number	itself:

6	/	2	=	3	(remainder:	0)	

3	/	2	=	1	(remainder:	1)	

1	/	2	=	0	(remainder:	1)	

List	of	remainders:	0,	1,	1.	

Inverse	is	1,	1,	0,	which	is	also	the	binary	representation	of	6:	110

Let's	write	some	code	to	calculate	the	binary	representation	for	the	number	39:
1001112:

#	binary.py

n	=	39

remainders	=	[]

while	n	>	0:

				remainder	=	n	%	2		#	remainder	of	division	by	2

				remainders.insert(0,	remainder)		#	we	keep	track	of	remainders

				n	//=	2		#	we	divide	n	by	2

print(remainders)

In	the	preceding	code,	I	highlighted	n	>	0,	which	is	the	condition	to	keep	looping.
We	can	make	the	code	a	little	shorter	(and	more	Pythonic),	by	using	the	divmod
function,	which	is	called	with	a	number	and	a	divisor,	and	returns	a	tuple	with
the	result	of	the	integer	division	and	its	remainder.	For	example,	divmod(13,	5)
would	return	(2,	3),	and	indeed	5	*	2	+	3	=	13:

#	binary.2.py

n	=	39

remainders	=	[]

while	n	>	0:

				n,	remainder	=	divmod(n,	2)

				remainders.insert(0,	remainder)

print(remainders)

In	the	preceding	code,	we	have	reassigned	n	to	the	result	of	the	division	by	2,	and
the	remainder,	in	one	single	line.

Notice	that	the	condition	in	a	while	loop	is	a	condition	to	continue	looping.	If	it
evaluates	to	True,	then	the	body	is	executed	and	then	another	evaluation	follows,
and	so	on,	until	the	condition	evaluates	to	False.	When	that	happens,	the	loop	is
exited	immediately	without	executing	its	body.

If	the	condition	never	evaluates	to	False,	the	loop	becomes	a	so-called	infinite	loop.	Infinite
loops	are	used,	for	example,	when	polling	from	network	devices:	you	ask	the	socket	whether
there	is	any	data,	you	do	something	with	it	if	there	is	any,	then	you	sleep	for	a	small	amount	of
time,	and	then	you	ask	the	socket	again,	over	and	over	again,	without	ever	stopping.

Having	the	ability	to	loop	over	a	condition,	or	to	loop	indefinitely,	is	the	reason
why	the	for	loop	alone	is	not	enough,	and	therefore	Python	provides	the	while
loop.

By	the	way,	if	you	need	the	binary	representation	of	a	number,	check	out	the	bin	function.

Just	for	fun,	let's	adapt	one	of	the	examples	(multiple.sequences.py)	using	the	while
logic:

#	multiple.sequences.while.py

people	=	['Conrad',	'Deepak',	'Heinrich',	'Tom']

ages	=	[29,	30,	34,	36]

position	=	0

while	position	<	len(people):

				person	=	people[position]

				age	=	ages[position]

				print(person,	age)

				position	+=	1

In	the	preceding	code,	I	have	highlighted	the	initialization,	condition,	and	update
of	the	position	variable,	which	makes	it	possible	to	simulate	the	equivalent	for
loop	code	by	handling	the	iteration	variable	manually.	Everything	that	can	be
done	with	a	for	loop	can	also	be	done	with	a	while	loop,	even	though	you	can	see
there's	a	bit	of	boilerplate	you	have	to	go	through	in	order	to	achieve	the	same
result.	The	opposite	is	also	true,	but	unless	you	have	a	reason	to	do	so,	you	ought
to	use	the	right	tool	for	the	job,	and	99.9%	of	the	time	you'll	be	fine.

So,	to	recap,	use	a	for	loop	when	you	need	to	iterate	over	an	iterable,	and	a	while
loop	when	you	need	to	loop	according	to	a	condition	being	satisfied	or	not.	If
you	keep	in	mind	the	difference	between	the	two	purposes,	you	will	never
choose	the	wrong	looping	construct.

Let's	now	see	how	to	alter	the	normal	flow	of	a	loop.

The	break	and	continue	statements
According	to	the	task	at	hand,	sometimes	you	will	need	to	alter	the	regular	flow
of	a	loop.	You	can	either	skip	a	single	iteration	(as	many	times	as	you	want),	or
you	can	break	out	of	the	loop	entirely.	A	common	use	case	for	skipping	iterations
is,	for	example,	when	you're	iterating	over	a	list	of	items	and	you	need	to	work
on	each	of	them	only	if	some	condition	is	verified.	On	the	other	hand,	if	you're
iterating	over	a	collection	of	items,	and	you	have	found	one	of	them	that	satisfies
some	need	you	have,	you	may	decide	not	to	continue	the	loop	entirely	and
therefore	break	out	of	it.	There	are	countless	possible	scenarios,	so	it's	better	to
see	a	couple	of	examples.

Let's	say	you	want	to	apply	a	20%	discount	to	all	products	in	a	basket	list	for
those	that	have	an	expiration	date	of	today.	The	way	you	achieve	this	is	to	use
the	continue	statement,	which	tells	the	looping	construct	(for	or	while)	to	stop
execution	of	the	body	immediately	and	go	to	the	next	iteration,	if	any.	This
example	will	take	us	a	little	deeper	down	the	rabbit	hole,	so	be	ready	to	jump:

#	discount.py

from	datetime	import	date,	timedelta

today	=	date.today()

tomorrow	=	today	+	timedelta(days=1)		#	today	+	1	day	is	tomorrow

products	=	[

				{'sku':	'1',	'expiration_date':	today,	'price':	100.0},

				{'sku':	'2',	'expiration_date':	tomorrow,	'price':	50},

				{'sku':	'3',	'expiration_date':	today,	'price':	20},

]

for	product	in	products:

				if	product['expiration_date']	!=	today:

								continue

				product['price']	*=	0.8		#	equivalent	to	applying	20%	discount

				print(

								'Price	for	sku',	product['sku'],

								'is	now',	product['price'])

We	start	by	importing	the	date	and	timedelta	objects,	then	we	set	up	our	products.
Those	with	sku	as	1	and	3	have	an	expiration	date	of	today,	which	means	we	want
to	apply	a	20%	discount	on	them.	We	loop	over	each	product	and	we	inspect	the
expiration	date.	If	it	is	not	(inequality	operator,	!=)	today,	we	don't	want	to	execute
the	rest	of	the	body	suite,	so	we	continue.

Notice	that	it	is	not	important	where	in	the	body	suite	you	place	the	continue
statement	(you	can	even	use	it	more	than	once).	When	you	reach	it,	execution
stops	and	goes	back	to	the	next	iteration.	If	we	run	the	discount.py	module,	this	is
the	output:

$	python	discount.py

Price	for	sku	1	is	now	80.0

Price	for	sku	3	is	now	16.0

This	shows	you	that	the	last	two	lines	of	the	body	haven't	been	executed	for	sku
number	2.

Let's	now	see	an	example	of	breaking	out	of	a	loop.	Say	we	want	to	tell	whether
at	least	one	of	the	elements	in	a	list	evaluates	to	True	when	fed	to	the	bool
function.	Given	that	we	need	to	know	whether	there	is	at	least	one,	when	we	find
it,	we	don't	need	to	keep	scanning	the	list	any	further.	In	Python	code,	this
translates	to	using	the	break	statement.	Let's	write	this	down	into	code:

#	any.py

items	=	[0,	None,	0.0,	True,	0,	7]		#	True	and	7	evaluate	to	True

found	=	False		#	this	is	called	"flag"

for	item	in	items:

				print('scanning	item',	item)

				if	item:

								found	=	True		#	we	update	the	flag

								break

if	found:		#	we	inspect	the	flag

				print('At	least	one	item	evaluates	to	True')

else:

				print('All	items	evaluate	to	False')

The	preceding	code	is	such	a	common	pattern	in	programming,	you	will	see	it	a
lot.	When	you	inspect	items	this	way,	basically	what	you	do	is	to	set	up	a	flag
variable,	then	start	the	inspection.	If	you	find	one	element	that	matches	your
criteria	(in	this	example,	that	evaluates	to	True),	then	you	update	the	flag	and	stop
iterating.	After	iteration,	you	inspect	the	flag	and	take	action	accordingly.
Execution	yields:

$	python	any.py

scanning	item	0

scanning	item	None

scanning	item	0.0

scanning	item	True

At	least	one	item	evaluates	to	True

See	how	execution	stopped	after	True	was	found?	The	break	statement	acts	exactly

like	the	continue	one,	in	that	it	stops	executing	the	body	of	the	loop	immediately,
but	also,	prevents	any	other	iteration	from	running,	effectively	breaking	out	of
the	loop.	The	continue	and	break	statements	can	be	used	together	with	no	limitation
in	their	numbers,	both	in	the	for	and	while	looping	constructs.

By	the	way,	there	is	no	need	to	write	code	to	detect	whether	there	is	at	least	one	element	in	a
sequence	that	evaluates	to	True.	Just	check	out	the	built-in	any	function.

A	special	else	clause
One	of	the	features	I've	seen	only	in	the	Python	language	is	the	ability	to	have
else	clauses	after	while	and	for	loops.	It's	very	rarely	used,	but	it's	definitely	nice
to	have.	In	short,	you	can	have	an	else	suite	after	a	for	or	while	loop.	If	the	loop
ends	normally,	because	of	exhaustion	of	the	iterator	(for	loop)	or	because	the
condition	is	finally	not	met	(while	loop),	then	the	else	suite	(if	present)	is
executed.	In	case	execution	is	interrupted	by	a	break	statement,	the	else	clause	is
not	executed.	Let's	take	an	example	of	a	for	loop	that	iterates	over	a	group	of
items,	looking	for	one	that	would	match	some	condition.	In	case	we	don't	find	at
least	one	that	satisfies	the	condition,	we	want	to	raise	an	exception.	This	means
we	want	to	arrest	the	regular	execution	of	the	program	and	signal	that	there	was
an	error,	or	exception,	that	we	cannot	deal	with.	Exceptions	will	be	the	subject	of
Chapter	8,	Testing,	Profiling,	and	Dealing	with	Exceptions,	so	don't	worry	if	you
don't	fully	understand	them	now.	Just	bear	in	mind	that	they	will	alter	the	regular
flow	of	the	code.

Let	me	now	show	you	two	examples	that	do	exactly	the	same	thing,	but	one	of
them	is	using	the	special	for...else	syntax.	Say	that	we	want	to	find,	among	a
collection	of	people,	one	that	could	drive	a	car:

#	for.no.else.py

class	DriverException(Exception):

				pass

people	=	[('James',	17),	('Kirk',	9),	('Lars',	13),	('Robert',	8)]

driver	=	None

for	person,	age	in	people:

				if	age	>=	18:

								driver	=	(person,	age)

								break

if	driver	is	None:

				raise	DriverException('Driver	not	found.')

Notice	the	flag	pattern	again.	We	set	the	driver	to	be	None,	then	if	we	find	one,	we
update	the	driver	flag,	and	then,	at	the	end	of	the	loop,	we	inspect	it	to	see
whether	one	was	found.	I	kind	of	have	the	feeling	that	those	kids	would	drive	a
very	metallic	car,	but	anyway,	notice	that	if	a	driver	is	not	found,	DriverException	is
raised,	signaling	to	the	program	that	execution	cannot	continue	(we're	lacking
the	driver).

The	same	functionality	can	be	rewritten	a	bit	more	elegantly	using	the	following
code:

#	for.else.py

class	DriverException(Exception):

				pass

people	=	[('James',	17),	('Kirk',	9),	('Lars',	13),	('Robert',	8)]

for	person,	age	in	people:

				if	age	>=	18:

								driver	=	(person,	age)

								break

else:

				raise	DriverException('Driver	not	found.')

Notice	that	we	aren't	forced	to	use	the	flag	pattern	any	more.	The	exception	is
raised	as	part	of	the	for	loop	logic,	which	makes	good	sense	because	the	for	loop
is	checking	on	some	condition.	All	we	need	is	to	set	up	a	driver	object	in	case	we
find	one,	because	the	rest	of	the	code	is	going	to	use	that	information
somewhere.	Notice	the	code	is	shorter	and	more	elegant,	because	the	logic	is
now	correctly	grouped	together	where	it	belongs.

In	the	Transforming	Code	into	Beautiful,	Idiomatic	Python	video,	Raymond	Hettinger
suggests	a	much	better	name	for	the	else	statement	associated	with	a	for	loop:	nobreak.	If	you
struggle	remembering	how	the	else	works	for	a	for	loop,	simply	remembering	this	fact	should
help	you.

Putting	all	this	together
Now	that	you	have	seen	all	there	is	to	see	about	conditionals	and	loops,	it's	time
to	spice	things	up	a	little,	and	look	at	those	two	examples	I	anticipated	at	the
beginning	of	this	chapter.	We'll	mix	and	match	here,	so	you	can	see	how	you	can
use	all	these	concepts	together.	Let's	start	by	writing	some	code	to	generate	a	list
of	prime	numbers	up	to	some	limit.	Please	bear	in	mind	that	I'm	going	to	write	a
very	inefficient	and	rudimentary	algorithm	to	detect	primes.	The	important	thing
for	you	is	to	concentrate	on	those	bits	in	the	code	that	belong	to	this	chapter's
subject.

	

A	prime	generator
According	to	Wikipedia:

A	prime	number	(or	a	prime)	is	a	natural	number	greater	than	1	that	has	no	positive	divisors	other	than	1
and	itself.	A	natural	number	greater	than	1	that	is	not	a	prime	number	is	called	a	composite	number.

Based	on	this	definition,	if	we	consider	the	first	10	natural	numbers,	we	can	see
that	2,	3,	5,	and	7	are	primes,	while	1,	4,	6,	8,	9,	and	10	are	not.	In	order	to	have
a	computer	tell	you	whether	a	number,	N,	is	prime,	you	can	divide	that	number
by	all	natural	numbers	in	the	range	[2,	N).	If	any	of	those	divisions	yields	zero	as
a	remainder,	then	the	number	is	not	a	prime.	Enough	chatter,	let's	get	down	to
business.	I'll	write	two	versions	of	this,	the	second	of	which	will	exploit	the
for...else	syntax:

#	primes.py

primes	=	[]		#	this	will	contain	the	primes	in	the	end

upto	=	100		#	the	limit,	inclusive

for	n	in	range(2,	upto	+	1):

				is_prime	=	True		#	flag,	new	at	each	iteration	of	outer	for

				for	divisor	in	range(2,	n):

								if	n	%	divisor	==	0:

												is_prime	=	False

												break

if	is_prime:		#	check	on	flag

								primes.append(n)

print(primes)

There	are	a	lot	of	things	to	notice	in	the	preceding	code.	First	of	all,	we	set	up	an
empty	primes	list,	which	will	contain	the	primes	at	the	end.	The	limit	is	100,	and
you	can	see	it's	inclusive	in	the	way	we	call	range()	in	the	outer	loop.	If	we	wrote
range(2,	upto)	that	would	be	[2,	upto),	right?	Therefore	range(2,	upto	+	1)	gives	us
[2,	upto	+	1)	==	[2,	upto].

So,	there	are	two	for	loops.	In	the	outer	one,	we	loop	over	the	candidate	primes,
that	is,	all	natural	numbers	from	2	to	upto.	Inside	each	iteration	of	this	outer	loop,
we	set	up	a	flag	(which	is	set	to	True	at	each	iteration),	and	then	start	dividing	the
current	n	by	all	numbers	from	2	to	n	-	1.	If	we	find	a	proper	divisor	for	n,	it	means
n	is	composite,	and	therefore	we	set	the	flag	to	False	and	break	the	loop.	Notice
that	when	we	break	the	inner	one,	the	outer	one	keeps	on	going	normally.	The
reason	why	we	break	after	having	found	a	proper	divisor	for	n	is	that	we	don't

need	any	further	information	to	be	able	to	tell	that	n	is	not	a	prime.

When	we	check	on	the	is_prime	flag,	if	it	is	still	True,	it	means	we	couldn't	find
any	number	in	[2,	n)	that	is	a	proper	divisor	for	n,	therefore	n	is	a	prime.	We
append	n	to	the	primes	list,	and	hop!	Another	iteration	proceeds,	until	n	equals	100.

Running	this	code	yields:

$	python	primes.py

[2,	3,	5,	7,	11,	13,	17,	19,	23,	29,	31,	37,	41,	43,	47,	53,	59,	61,	67,	71,	73,	79,	

83,	89,	97]

Before	we	proceed,	one	question:	of	all	the	iterations	of	the	outer	loop,	one	of
them	is	different	from	all	the	others.	Could	you	tell	which	one,	and	why?	Think
about	it	for	a	second,	go	back	to	the	code,	try	to	figure	it	out	for	yourself,	and
then	keep	reading	on.

Did	you	figure	it	out?	If	not,	don't	feel	bad,	it's	perfectly	normal.	I	asked	you	to
do	it	as	a	small	exercise	because	it's	what	coders	do	all	the	time.	The	skill	to
understand	what	the	code	does	by	simply	looking	at	it	is	something	you	build
over	time.	It's	very	important,	so	try	to	exercise	it	whenever	you	can.	I'll	tell	you
the	answer	now:	the	iteration	that	behaves	differently	from	all	others	is	the	first
one.	The	reason	is	because	in	the	first	iteration,	n	is	2.	Therefore	the	innermost	for
loop	won't	even	run,	because	it's	a	for	loop	that	iterates	over	range(2,	2),	and	what
is	that	if	not	[2,	2)?	Try	it	out	for	yourself,	write	a	simple	for	loop	with	that
iterable,	put	a	print	in	the	body	suite,	and	see	whether	anything	happens	(it
won't...).

Now,	from	an	algorithmic	point	of	view,	this	code	is	inefficient,	so	let's	at	least
make	it	more	beautiful:

#	primes.else.py

primes	=	[]

upto	=	100

for	n	in	range(2,	upto	+	1):

				for	divisor	in	range(2,	n):

								if	n	%	divisor	==	0:

												break

				else:

								primes.append(n)

print(primes)

Much	nicer,	right?	The	is_prime	flag	is	gone,	and	we	append	n	to	the	primes	list
when	we	know	the	inner	for	loop	hasn't	encountered	any	break	statements.	See

how	the	code	looks	cleaner	and	reads	better?

Applying	discounts
In	this	example,	I	want	to	show	you	a	technique	I	like	a	lot.	In	many
programming	languages,	other	than	the	if/elif/else	constructs,	in	whatever	form
or	syntax	they	may	come,	you	can	find	another	statement,	usually	called
switch/case,	that	in	Python	is	missing.	It	is	the	equivalent	of	a	cascade	of
if/elif/.../elif/else	clauses,	with	a	syntax	similar	to	this	(warning!	JavaScript
code!):

/*	switch.js	*/

switch	(day_number)	{

				case	1:

				case	2:

				case	3:

				case	4:

				case	5:

								day	=	"Weekday";

								break;

				case	6:

								day	=	"Saturday";

								break;

				case	0:

								day	=	"Sunday";

								break;

				default:

								day	=	"";

alert(day_number	+	'	is	not	a	valid	day	number.')

}

In	the	preceding	code,	we	switch	on	a	variable	called	day_number.	This	means	we
get	its	value	and	then	we	decide	what	case	it	fits	in	(if	any).	From	1	to	5	there	is	a
cascade,	which	means	no	matter	the	number,	[1,	5]	all	go	down	to	the	bit	of	logic
that	sets	day	as	"Weekday".	Then	we	have	single	cases	for	0	and	6,	and	a	default	case
to	prevent	errors,	which	alerts	the	system	that	day_number	is	not	a	valid	day
number,	that	is,	not	in	[0,	6].	Python	is	perfectly	capable	of	realizing	such	logic
using	if/elif/else	statements:

#	switch.py

if	1	<=	day_number	<=	5:

				day	=	'Weekday'

elif	day_number	==	6:

				day	=	'Saturday'

elif	day_number	==	0:

				day	=	'Sunday'

else:

				day	=	''

				raise	ValueError(

								str(day_number)	+	'	is	not	a	valid	day	number.')

In	the	preceding	code,	we	reproduce	the	same	logic	of	the	JavaScript	snippet	in
Python,	using	if/elif/else	statements.	I	raised	the	ValueError	exception	just	as	an
example	at	the	end,	if	day_number	is	not	in	[0,	6].	This	is	one	possible	way	of
translating	the	switch/case	logic,	but	there	is	also	another	one,	sometimes	called
dispatching,	which	I	will	show	you	in	the	last	version	of	the	next	example.

By	the	way,	did	you	notice	the	first	line	of	the	previous	snippet?	Have	you	noticed	that	Python
can	make	double	(actually,	even	multiple)	comparisons?	It's	just	wonderful!

Let's	start	the	new	example	by	simply	writing	some	code	that	assigns	a	discount
to	customers	based	on	their	coupon	value.	I'll	keep	the	logic	down	to	a	minimum
here,	remember	that	all	we	really	care	about	is	understanding	conditionals	and
loops:

#	coupons.py

customers	=	[

				dict(id=1,	total=200,	coupon_code='F20'),		#	F20:	fixed,	£20

				dict(id=2,	total=150,	coupon_code='P30'),		#	P30:	percent,	30%

				dict(id=3,	total=100,	coupon_code='P50'),		#	P50:	percent,	50%

				dict(id=4,	total=110,	coupon_code='F15'),		#	F15:	fixed,	£15

]

for	customer	in	customers:

				code	=	customer['coupon_code']

				if	code	==	'F20':

								customer['discount']	=	20.0

				elif	code	==	'F15':

								customer['discount']	=	15.0

				elif	code	==	'P30':

								customer['discount']	=	customer['total']	*	0.3

				elif	code	==	'P50':

								customer['discount']	=	customer['total']	*	0.5

				else:

								customer['discount']	=	0.0

for	customer	in	customers:

				print(customer['id'],	customer['total'],	customer['discount'])

We	start	by	setting	up	some	customers.	They	have	an	order	total,	a	coupon	code,
and	an	ID.	I	made	up	four	different	types	of	coupons,	two	are	fixed	and	two	are
percentage-based.	You	can	see	that	in	the	if/elif/else	cascade	I	apply	the	discount
accordingly,	and	I	set	it	as	a	'discount'	key	in	the	customer	dictionary.

At	the	end,	I	just	print	out	part	of	the	data	to	see	whether	my	code	is	working
properly:

$	python	coupons.py

1	200	20.0

2	150	45.0

3	100	50.0

4	110	15.0

This	code	is	simple	to	understand,	but	all	those	clauses	are	kind	of	cluttering	the
logic.	It's	not	easy	to	see	what's	going	on	at	a	first	glance,	and	I	don't	like	it.	In
cases	like	this,	you	can	exploit	a	dictionary	to	your	advantage,	like	this:

#	coupons.dict.py

customers	=	[

				dict(id=1,	total=200,	coupon_code='F20'),		#	F20:	fixed,	£20

				dict(id=2,	total=150,	coupon_code='P30'),		#	P30:	percent,	30%

				dict(id=3,	total=100,	coupon_code='P50'),		#	P50:	percent,	50%

				dict(id=4,	total=110,	coupon_code='F15'),		#	F15:	fixed,	£15

]

discounts	=	{

				'F20':	(0.0,	20.0),		#	each	value	is	(percent,	fixed)

				'P30':	(0.3,	0.0),

				'P50':	(0.5,	0.0),

				'F15':	(0.0,	15.0),

}

for	customer	in	customers:

				code	=	customer['coupon_code']

				percent,	fixed	=	discounts.get(code,	(0.0,	0.0))

				customer['discount']	=	percent	*	customer['total']	+	fixed

for	customer	in	customers:

				print(customer['id'],	customer['total'],	customer['discount'])

Running	the	preceding	code	yields	exactly	the	same	result	we	had	from	the
snippet	before	it.	We	spared	two	lines,	but	more	importantly,	we	gained	a	lot	in
readability,	as	the	body	of	the	for	loop	now	is	just	three	lines	long,	and	very	easy
to	understand.	The	concept	here	is	to	use	a	dictionary	as	a	dispatcher.	In	other
words,	we	try	to	fetch	something	from	the	dictionary	based	on	a	code	(our
coupon_code),	and	by	using	dict.get(key,	default),	we	make	sure	we	also	cater	for
when	the	code	is	not	in	the	dictionary	and	we	need	a	default	value.

Notice	that	I	had	to	apply	some	very	simple	linear	algebra	in	order	to	calculate
the	discount	properly.	Each	discount	has	a	percentage	and	fixed	part	in	the
dictionary,	represented	by	a	two-tuple.	By	applying	percent	*	total	+	fixed,	we	get
the	correct	discount.	When	percent	is	0,	the	formula	just	gives	the	fixed	amount,
and	it	gives	percent	*	total	when	fixed	is	0.

This	technique	is	important	because	it	is	also	used	in	other	contexts,	with
functions,	where	it	actually	becomes	much	more	powerful	than	what	we've	seen
in	the	preceding	snippet.	Another	advantage	of	using	it	is	that	you	can	code	it	in
such	a	way	that	the	keys	and	values	of	the	discounts	dictionary	are	fetched

dynamically	(for	example,	from	a	database).	This	will	allow	the	code	to	adapt	to
whatever	discounts	and	conditions	you	have,	without	having	to	modify	anything.

If	it's	not	completely	clear	to	you	how	it	works,	I	suggest	you	take	your	time	and
experiment	with	it.	Change	values	and	add	print	statements	to	see	what's	going
on	while	the	program	is	running.

A	quick	peek	at	the	itertools	module
A	chapter	about	iterables,	iterators,	conditional	logic,	and	looping	wouldn't	be
complete	without	a	few	words	about	the	itertools	module.	If	you	are	into
iterating,	this	is	a	kind	of	heaven.

According	to	the	Python	official	documentation	(https://docs.python.org/2/library/i
tertools.html),	the	itertools	module	is:	This	module	which	implements	a	number
of	iterator	building	blocks	inspired	by	constructs	from	APL,	Haskell,	and	SML.
Each	has	been	recast	in	a	form	suitable	for	Python.	The	module	standardizes	a
core	set	of	fast,	memory	efficient	tools	that	are	useful	by	themselves	or	in
combination.	Together,	they	form	an	“iterator	algebra”	making	it	possible	to
construct	specialized	tools	succinctly	and	efficiently	in	pure	Python.

By	no	means	do	I	have	the	room	here	to	show	you	all	the	goodies	you	can	find	in
this	module,	so	I	encourage	you	to	go	check	it	out	for	yourself,	I	promise	you'll
enjoy	it.	In	a	nutshell,	it	provides	you	with	three	broad	categories	of	iterators.	I
will	give	you	a	very	small	example	of	one	iterator	taken	from	each	one	of	them,
just	to	make	your	mouth	water	a	little.

https://docs.python.org/2/library/itertools.html

Infinite	iterators
Infinite	iterators	allow	you	to	work	with	a	for	loop	in	a	different	fashion,	such	as
if	it	were	a	while	loop:	#	infinite.py
from	itertools	import	count

for	n	in	count(5,	3):
if	n	>	20:
break
print(n,	end=',	')	#	instead	of	newline,	comma	and	space

Running	the	code	gives	this:

$	python	infinite.py

5,	8,	11,	14,	17,	20,

The	count	factory	class	makes	an	iterator	that	just	goes	on	and	on	counting.	It
starts	from	5	and	keeps	adding	3	to	it.	We	need	to	break	it	manually	if	we	don't
want	to	get	stuck	in	an	infinite	loop.

Iterators	terminating	on	the	shortest
input	sequence
This	category	is	very	interesting.	It	allows	you	to	create	an	iterator	based	on
multiple	iterators,	combining	their	values	according	to	some	logic.	The	key	point
here	is	that	among	those	iterators,	in	case	any	of	them	are	shorter	than	the	rest,
the	resulting	iterator	won't	break,	it	will	simply	stop	as	soon	as	the	shortest
iterator	is	exhausted.	This	is	very	theoretical,	I	know,	so	let	me	give	you	an
example	using	compress.	This	iterator	gives	you	back	the	data	according	to	a
corresponding	item	in	a	selector	being	True	or	False:

compress('ABC',	(1,	0,	1))	would	give	back	'A'	and	'C',	because	they	correspond	to
1.	Let's	see	a	simple	example:

#	compress.py

from	itertools	import	compress

data	=	range(10)

even_selector	=	[1,	0]	*	10

odd_selector	=	[0,	1]	*	10

even_numbers	=	list(compress(data,	even_selector))

odd_numbers	=	list(compress(data,	odd_selector))

print(odd_selector)

print(list(data))

print(even_numbers)

print(odd_numbers)

Notice	that	odd_selector	and	even_selector	are	20	elements	long,	while	data	is	just	10
elements	long.	compress	will	stop	as	soon	as	data	has	yielded	its	last	element.
Running	this	code	produces	the	following:

$	python	compress.py

[0,	1,	0,	1,	0,	1,	0,	1,	0,	1,	0,	1,	0,	1,	0,	1,	0,	1,	0,	1]

[0,	1,	2,	3,	4,	5,	6,	7,	8,	9]

[0,	2,	4,	6,	8]

[1,	3,	5,	7,	9]

It's	a	very	fast	and	nice	way	of	selecting	elements	out	of	an	iterable.	The	code	is
very	simple,	just	notice	that	instead	of	using	a	for	loop	to	iterate	over	each	value
that	is	given	back	by	the	compress	calls,	we	used	list(),	which	does	the	same,
but	instead	of	executing	a	body	of	instructions,	puts	all	the	values	into	a	list	and

returns	it.

Combinatoric	generators
Last	but	not	least,	combinatoric	generators.	These	are	really	fun,	if	you	are	into
this	kind	of	thing.	Let's	just	see	a	simple	example	on	permutations.

According	to	Wolfram	Mathworld:

A	permutation,	also	called	an	"arrangement	number"	or	"order",	is	a	rearrangement	of	the	elements	of	an
ordered	list	S	into	a	one-to-one	correspondence	with	S	itself.

For	example,	there	are	six	permutations	of	ABC:	ABC,	ACB,	BAC,	BCA,	CAB,
and	CBA.

If	a	set	has	N	elements,	then	the	number	of	permutations	of	them	is	N!	(N
factorial).	For	the	ABC	string,	the	permutations	are	3!	=	3	*	2	*	1	=	6.	Let's	do	it
in	Python:

#	permutations.py

from	itertools	import	permutations	

print(list(permutations('ABC')))	

This	very	short	snippet	of	code	produces	the	following	result:

$	python	permutations.py

[('A',	'B',	'C'),	('A',	'C',	'B'),	('B',	'A',	'C'),	('B',	'C',	'A'),	('C',	'A',	'B'),	

('C',	'B',	'A')]

Be	very	careful	when	you	play	with	permutations.	Their	number	grows	at	a	rate
that	is	proportional	to	the	factorial	of	the	number	of	the	elements	you're
permuting,	and	that	number	can	get	really	big,	really	fast.

Summary
In	this	chapter,	we've	taken	another	step	toward	expanding	our	coding
vocabulary.	We've	seen	how	to	drive	the	execution	of	the	code	by	evaluating
conditions,	and	we've	seen	how	to	loop	and	iterate	over	sequences	and
collections	of	objects.	This	gives	us	the	power	to	control	what	happens	when	our
code	is	run,	which	means	we	are	getting	an	idea	of	how	to	shape	it	so	that	it	does
what	we	want	and	it	reacts	to	data	that	changes	dynamically.

We've	also	seen	how	to	combine	everything	together	in	a	couple	of	simple
examples,	and	in	the	end,	we	took	a	brief	look	at	the	itertools	module,	which	is
full	of	interesting	iterators	that	can	enrich	our	abilities	with	Python	even	more.

Now	it's	time	to	switch	gears,	take	another	step	forward,	and	talk	about
functions.	The	next	chapter	is	all	about	them	because	they	are	extremely
important.	Make	sure	you're	comfortable	with	what	has	been	covered	up	to	now.
I	want	to	provide	you	with	interesting	examples,	so	I'll	have	to	go	a	little	faster.
Ready?	Turn	the	page.

Functions,	the	Building	Blocks	of
Code
"To	create	architecture	is	to	put	in	order.	Put	what	in	order?	Functions	and	objects."

–	Le	Corbusier

In	the	previous	chapters,	we	have	seen	that	everything	is	an	object	in	Python,
and	functions	are	no	exception.	But,	what	exactly	is	a	function?	A	function	is	a
sequence	of	instructions	that	perform	a	task,	bundled	as	a	unit.	This	unit	can	then
be	imported	and	used	wherever	it's	needed.	There	are	many	advantages	to	using
functions	in	your	code,	as	we'll	see	shortly.

In	this	chapter,	we	are	going	to	cover	the	following:

Functions—what	they	are	and	why	we	should	use	them
Scopes	and	name	resolution
Function	signatures—input	parameters	and	return	values
Recursive	and	anonymous	functions
Importing	objects	for	code	reuse

I	believe	the	saying,	a	picture	is	worth	one	thousand	words,	is	particularly	true
when	explaining	functions	to	someone	who	is	new	to	this	concept,	so	please	take
a	look	at	the	following	diagram:

As	you	can	see,	a	function	is	a	block	of	instructions,	packaged	as	a	whole,	like	a
box.	Functions	can	accept	input	arguments	and	produce	output	values.	Both	of
these	are	optional,	as	we'll	see	in	the	examples	in	this	chapter.

A	function	in	Python	is	defined	by	using	the	def	keyword,	after	which	the	name
of	the	function	follows,	terminated	by	a	pair	of	parentheses	(which	may	or	may

not	contain	input	parameters),	and	a	colon	(:)	signals	the	end	of	the	function
definition	line.	Immediately	afterwards,	indented	by	four	spaces,	we	find	the
body	of	the	function,	which	is	the	set	of	instructions	that	the	function	will
execute	when	called.

Note	that	the	indentation	by	four	spaces	is	not	mandatory,	but	it	is	the	amount	of	spaces
suggested	by	PEP	8,	and,	in	practice,	it	is	the	most	widely	used	spacing	measure.

A	function	may	or	may	not	return	an	output.	If	a	function	wants	to	return	an
output,	it	does	so	by	using	the	return	keyword,	followed	by	the	desired	output.	If
you	have	an	eagle	eye,	you	may	have	noticed	the	little	*	after	Optional	in	the
output	section	of	the	preceding	diagram.	This	is	because	a	function	always
returns	something	in	Python,	even	if	you	don't	explicitly	use	the	return	clause.	If
the	function	has	no	return	statement	in	its	body,	or	no	value	is	given	to	the	return
statement	itself,	the	function	returns	None.	The	reasons	behind	this	design	choice
are	outside	the	scope	of	an	introductory	chapter,	so	all	you	need	to	know	is	that
this	behavior	will	make	your	life	easier.	As	always,	thank	you,	Python.

Why	use	functions?
	

Functions	are	among	the	most	important	concepts	and	constructs	of	any
language,	so	let	me	give	you	a	few	reasons	why	we	need	them:

They	reduce	code	duplication	in	a	program.	By	having	a	specific	task	taken
care	of	by	a	nice	block	of	packaged	code	that	we	can	import	and	call
whenever	we	want,	we	don't	need	to	duplicate	its	implementation.
They	help	in	splitting	a	complex	task	or	procedure	into	smaller	blocks,	each
of	which	becomes	a	function.
They	hide	the	implementation	details	from	their	users.
They	improve	traceability.
They	improve	readability.

Let's	look	at	a	few	examples	to	get	a	better	understanding	of	each	point.

	

	

	

Reducing	code	duplication
Imagine	that	you	are	writing	a	piece	of	scientific	software,	and	you	need	to
calculate	primes	up	to	a	limit,	as	we	did	in	the	previous	chapter.	You	have	a	nice
algorithm	to	calculate	them,	so	you	copy	and	paste	it	to	wherever	you	need.	One
day,	though,	your	friend,	B.	Riemann,	gives	you	a	better	algorithm	to	calculate
primes,	which	will	save	you	a	lot	of	time.	At	this	point,	you	need	to	go	over	your
whole	code	base	and	replace	the	old	code	with	the	new	one.

This	is	actually	a	bad	way	to	go	about	it.	It's	error-prone,	you	never	know	what
lines	you	are	chopping	out	or	leaving	in	by	mistake,	when	you	cut	and	paste
code	into	other	code,	and	you	may	also	risk	missing	one	of	the	places	where
prime	calculation	is	done,	leaving	your	software	in	an	inconsistent	state	where
the	same	action	is	performed	in	different	places	in	different	ways.	What	if,
instead	of	replacing	code	with	a	better	version	of	it,	you	need	to	fix	a	bug,	and
you	miss	one	of	the	places?	That	would	be	even	worse.

So,	what	should	you	do?	Simple!	You	write	a	function,	get_prime_numbers(upto),	and
use	it	anywhere	you	need	a	list	of	primes.	When	B.	Riemann	comes	to	you	and
gives	you	the	new	code,	all	you	have	to	do	is	replace	the	body	of	that	function
with	the	new	implementation,	and	you're	done!	The	rest	of	the	software	will
automatically	adapt,	since	it's	just	calling	the	function.

Your	code	will	be	shorter,	it	will	not	suffer	from	inconsistencies	between	old	and
new	ways	of	performing	a	task,	or	undetected	bugs	due	to	copy-and-paste
failures	or	oversights.	Use	functions,	and	you'll	only	gain	from	it,	I	promise.

Splitting	a	complex	task
Functions	are	also	very	useful	for	splitting	long	or	complex	tasks	into	smaller
ones.	The	end	result	is	that	the	code	benefits	from	it	in	several	ways,	for
example,	readability,	testability,	and	reuse.	To	give	you	a	simple	example,
imagine	that	you're	preparing	a	report.	Your	code	needs	to	fetch	data	from	a	data
source,	parse	it,	filter	it,	polish	it,	and	then	a	whole	series	of	algorithms	needs	to
be	run	against	it,	in	order	to	produce	the	results	that	will	feed	the	Report	class.	It's
not	uncommon	to	read	procedures	like	this	that	are	just	one	big
do_report(data_source)	function.	There	are	tens	or	hundreds	of	lines	of	code	that
end	with	return	report.

These	situations	are	slightly	more	common	in	scientific	code,	which	tend	to	be
brilliant	from	an	algorithmic	point	of	view,	but	sometimes	lack	the	touch	of
experienced	programmers	when	it	comes	to	the	style	in	which	they	are	written.
Now,	picture	a	few	hundred	lines	of	code.	It's	very	hard	to	follow	through,	to
find	the	places	where	things	are	changing	context	(such	as	finishing	one	task	and
starting	the	next	one).	Do	you	have	the	picture	in	your	mind?	Good.	Don't	do	it!
Instead,	look	at	this	code:

#	data.science.example.py

def	do_report(data_source):

				#	fetch	and	prepare	data

				data	=	fetch_data(data_source)

				parsed_data	=	parse_data(data)

				filtered_data	=	filter_data(parsed_data)

				polished_data	=	polish_data(filtered_data)

				#	run	algorithms	on	data

				final_data	=	analyse(polished_data)

				#	create	and	return	report

				report	=	Report(final_data)

				return	report

The	previous	example	is	fictitious,	of	course,	but	can	you	see	how	easy	it	would
be	to	go	through	the	code?	If	the	end	result	looks	wrong,	it	would	be	very	easy	to
debug	each	of	the	single	data	outputs	in	the	do_report	function.	Moreover,	it's
even	easier	to	exclude	part	of	the	process	temporarily	from	the	whole	procedure
(you	just	need	to	comment	out	the	parts	you	need	to	suspend).	Code	like	this	is
easier	to	deal	with.

Hiding	implementation	details
Let's	stay	with	the	preceding	example	to	talk	about	this	point	as	well.	You	can
see	that,	by	going	through	the	code	of	the	do_report	function,	you	can	get	a	pretty
good	understanding	without	reading	one	single	line	of	implementation.	This	is
because	functions	hide	the	implementation	details.	This	feature	means	that,	if
you	don't	need	to	delve	into	the	details,	you	are	not	forced	to,	in	the	way	you
would	if	do_report	was	just	one	big,	fat	function.	In	order	to	understand	what	was
going	on,	you	would	have	to	read	every	single	line	of	code.	With	functions,	you
don't	need	to.	This	reduces	the	time	you	spend	reading	the	code	and	since,	in	a
professional	environment,	reading	code	takes	much	more	time	than	actually
writing	it,	it's	very	important	to	reduce	it	by	as	much	as	we	can.

	

Improving	readability
Coders	sometimes	don't	see	the	point	in	writing	a	function	with	a	body	of	one	or
two	lines	of	code,	so	let's	look	at	an	example	that	shows	you	why	you	should	do
it.

Imagine	that	you	need	to	multiply	two	matrices:

Would	you	prefer	to	have	to	read	this	code:

#	matrix.multiplication.nofunc.py

a	=	[[1,	2],	[3,	4]]

b	=	[[5,	1],	[2,	1]]

c	=	[[sum(i	*	j	for	i,	j	in	zip(r,	c))	for	c	in	zip(*b)]

					for	r	in	a]

Or	would	you	prefer	this	one:

#	matrix.multiplication.func.py

#	this	function	could	also	be	defined	in	another	module

def	matrix_mul(a,	b):

				return	[[sum(i	*	j	for	i,	j	in	zip(r,	c))	for	c	in	zip(*b)]

												for	r	in	a]

a	=	[[1,	2],	[3,	4]]

b	=	[[5,	1],	[2,	1]]

c	=	matrix_mul(a,	b)

It's	much	easier	to	understand	that	c	is	the	result	of	the	multiplication	between	a
and	b	in	the	second	example.	It's	much	easier	to	read	through	the	code	and,	if	you
don't	need	to	modify	that	multiplication	logic,	you	don't	even	need	to	go	into	the
implementation	details.	Therefore,	readability	is	improved	here	while,	in	the	first
snippet,	you	would	have	to	spend	time	trying	to	understand	what	that
complicated	list	comprehension	is	doing.

Don't	worry	if	you	don't	understand	list	comprehensions,	we'll	study	them	in	Chapter	5,	Saving
Time	and	Memory.

Improving	traceability
Imagine	that	you	have	written	an	e-commerce	website.	You	have	displayed	the
product	prices	all	over	the	pages.	Imagine	that	the	prices	in	your	database	are
stored	with	no	VAT	(sales	tax),	but	you	want	to	display	them	on	the	website	with
VAT	at	20%.	Here's	a	few	ways	of	calculating	the	VAT-inclusive	price	from	the
VAT-exclusive	price:

#	vat.py

price	=	100		#	GBP,	no	VAT

final_price1	=	price	*	1.2

final_price2	=	price	+	price	/	5.0

final_price3	=	price	*	(100	+	20)	/	100.0

final_price4	=	price	+	price	*	0.2

All	these	four	different	ways	of	calculating	a	VAT-inclusive	price	are	perfectly
acceptable,	and	I	promise	you	I	have	found	them	all	in	my	colleagues'	code,	over
the	years.	Now,	imagine	that	you	have	started	selling	your	products	in	different
countries	and	some	of	them	have	different	VAT	rates,	so	you	need	to	refactor
your	code	(throughout	the	website)	in	order	to	make	that	VAT	calculation
dynamic.

How	do	you	trace	all	the	places	in	which	you	are	performing	a	VAT	calculation?
Coding	today	is	a	collaborative	task	and	you	cannot	be	sure	that	the	VAT	has
been	calculated	using	only	one	of	those	forms.	It's	going	to	be	hell,	believe	me.

So,	let's	write	a	function	that	takes	the	input	values,	vat	and	price	(VAT-
exclusive),	and	returns	a	VAT-inclusive	price:

#	vat.function.py

def	calculate_price_with_vat(price,	vat):

				return	price	*	(100	+	vat)	/	100

Now	you	can	import	that	function	and	use	it	in	any	place	in	your	website	where
you	need	to	calculate	a	VAT-inclusive	price,	and	when	you	need	to	trace	those
calls,	you	can	search	for	calculate_price_with_vat.

Note	that,	in	the	preceding	example,	price	is	assumed	to	be	VAT-exclusive,	and	vat	is	a
percentage	value	(for	example,	19,	20,	or	23).

Scopes	and	name	resolution
Do	you	remember	when	we	talked	about	scopes	and	namespaces	in	Chapter	1,	A
Gentle	Introduction	to	Python?	We're	going	to	expand	on	that	concept	now.
Finally,	we	can	talk	about	functions	and	this	will	make	everything	easier	to
understand.	Let's	start	with	a	very	simple	example:

#	scoping.level.1.py

def	my_function():

				test	=	1		#	this	is	defined	in	the	local	scope	of	the	function

				print('my_function:',	test)

test	=	0		#	this	is	defined	in	the	global	scope

my_function()

print('global:',	test)

I	have	defined	the	test	name	in	two	different	places	in	the	previous	example.	It	is
actually	in	two	different	scopes.	One	is	the	global	scope	(test	=	0),	and	the	other
is	the	local	scope	of	the	my_function	function	(test	=	1).	If	you	execute	the	code,
you'll	see	this:

$	python	scoping.level.1.py

my_function:	1

global:	0

It's	clear	that	test	=	1	shadows	the	test	=	0	assignment	in	my_function.	In	the	global
context,	test	is	still	0,	as	you	can	see	from	the	output	of	the	program,	but	we
define	the	test	name	again	in	the	function	body,	and	we	set	it	to	point	to	an
integer	of	value	1.	Both	the	two	test	names	therefore	exist,	one	in	the	global
scope,	pointing	to	an	int	object	with	a	value	of	0,	the	other	in	the	my_function
scope,	pointing	to	an	int	object	with	a	value	of	1.	Let's	comment	out	the	line	with
test	=	1.	Python	searches	for	the	test	name	in	the	next	enclosing	namespace
(recall	the	LEGB	rule:	local,	enclosing,	global,	built-in	described	in	Chapter	1,	A
Gentle	Introduction	to	Python)	and,	in	this	case,	we	will	see	the	value	0	printed
twice.	Try	it	in	your	code.

Now,	let's	raise	the	stakes	here	and	level	up:

#	scoping.level.2.py

def	outer():

				test	=	1		#	outer	scope

				def	inner():

								test	=	2		#	inner	scope

								print('inner:',	test)

				inner()

				print('outer:',	test)

test	=	0		#	global	scope

outer()

print('global:',	test)

In	the	preceding	code,	we	have	two	levels	of	shadowing.	One	level	is	in	the
function	outer,	and	the	other	one	is	in	the	function	inner.	It	is	far	from	rocket
science,	but	it	can	be	tricky.	If	we	run	the	code,	we	get:

$	python	scoping.level.2.py

inner:	2

outer:	1

global:	0

Try	commenting	out	the	test	=	1	line.	Can	you	figure	out	what	the	result	will	be?
Well,	when	reaching	the	print('outer:',	test)	line,	Python	will	have	to	look	for
test	in	the	next	enclosing	scope,	therefore	it	will	find	and	print	0,	instead	of	1.
Make	sure	you	comment	out	test	=	2	as	well,	to	see	whether	you	understand	what
happens,	and	whether	the	LEGB	rule	is	clear,	before	proceeding.

Another	thing	to	note	is	that	Python	gives	you	the	ability	to	define	a	function	in
another	function.	The	inner	function's	name	is	defined	within	the	namespace	of
the	outer	function,	exactly	as	would	happen	with	any	other	name.

The	global	and	nonlocal	statements
Going	back	to	the	preceding	example,	we	can	alter	what	happens	to	the
shadowing	of	the	test	name	by	using	one	of	these	two	special	statements:	global
and	nonlocal.	As	you	can	see	from	the	previous	example,	when	we	define	test	=	2
in	the	inner	function,	we	overwrite	test	neither	in	the	outer	function	nor	in	the
global	scope.	We	can	get	read	access	to	those	names	if	we	use	them	in	a	nested
scope	that	doesn't	define	them,	but	we	cannot	modify	them	because,	when	we
write	an	assignment	instruction,	we're	actually	defining	a	new	name	in	the
current	scope.

How	do	we	change	this	behavior?	Well,	we	can	use	the	nonlocal	statement.
According	to	the	official	documentation:

"The	nonlocal	statement	causes	the	listed	identifiers	to	refer	to	previously	bound	variables	in	the	nearest
enclosing	scope	excluding	globals."

Let's	introduce	it	in	the	inner	function,	and	see	what	happens:

#	scoping.level.2.nonlocal.py

def	outer():

				test	=	1		#	outer	scope

				def	inner():

								nonlocal	test

								test	=	2		#	nearest	enclosing	scope	(which	is	'outer')

								print('inner:',	test)

				inner()

				print('outer:',	test)

test	=	0		#	global	scope

outer()

print('global:',	test)

Notice	how	in	the	body	of	the	inner	function,	I	have	declared	the	test	name	to	be
nonlocal.	Running	this	code	produces	the	following	result:

$	python	scoping.level.2.nonlocal.py

inner:	2

outer:	2

global:	0

Wow,	look	at	that	result!	It	means	that,	by	declaring	test	to	be	nonlocal	in	the	inner
function,	we	actually	get	to	bind	the	test	name	to	the	one	declared	in	the	outer

function.	If	we	removed	the	nonlocal	test	line	from	the	inner	function	and	tried	the
same	trick	in	the	outer	function,	we	would	get	a	SyntaxError,	because	the	nonlocal
statement	works	on	enclosing	scopes	excluding	the	global	one.

Is	there	a	way	to	get	to	that	test	=	0	in	the	global	namespace	then?	Of	course,	we
just	need	to	use	the	global	statement:

#	scoping.level.2.global.py

def	outer():

				test	=	1		#	outer	scope

				def	inner():

								global	test

								test	=	2		#	global	scope

								print('inner:',	test)

				inner()

				print('outer:',	test)

test	=	0		#	global	scope

outer()

print('global:',	test)

Note	that	we	have	now	declared	the	test	name	to	be	global,	which	will	basically
bind	it	to	the	one	we	defined	in	the	global	namespace	(test	=	0).	Run	the	code
and	you	should	get	the	following:

$	python	scoping.level.2.global.py

inner:	2

outer:	1

global:	2

This	shows	that	the	name	affected	by	the	test	=	2	assignment	is	now	the	global
one.	This	trick	would	also	work	in	the	outer	function	because,	in	this	case,	we're
referring	to	the	global	scope.	Try	it	for	yourself	and	see	what	changes,	get
comfortable	with	scopes	and	name	resolution,	it's	very	important.	Also,	could
you	tell	what	happens	if	you	defined	inner	outside	outer	in	the	preceding
examples?

Input	parameters
	

At	the	beginning	of	this	chapter,	we	saw	that	a	function	can	take	input
parameters.	Before	we	delve	into	all	possible	type	of	parameters,	let's	make	sure
you	have	a	clear	understanding	of	what	passing	a	parameter	to	a	function	means.
There	are	three	key	points	to	keep	in	mind:

Argument-passing	is	nothing	more	than	assigning	an	object	to	a	local
variable	name
Assigning	an	object	to	an	argument	name	inside	a	function	doesn't	affect
the	caller
Changing	a	mutable	object	argument	in	a	function	affects	the	caller

Let's	look	at	an	example	for	each	of	these	points.

	

	

	

Argument-passing
Take	a	look	at	the	following	code.	We	declare	a	name,	x,	in	the	global	scope,
then	we	declare	a	function,	func(y),	and	finally	we	call	it,	passing	x:	#
key.points.argument.passing.py
x	=	3
def	func(y):
print(y)
func(x)	#	prints:	3

When	func	is	called	with	x,	within	its	local	scope,	a	name,	y,	is	created,	and	it's
pointed	to	the	same	object	x	is	pointing	to.	This	is	better	clarified	by	the
following	figure	(don't	worry	about	Python	3.3,	this	is	a	feature	that	hasn't

changed):	

The	right	part	of	the	preceding	figure	depicts	the	state	of	the	program	when
execution	has	reached	the	end,	after	func	has	returned	(None).	Take	a	look	at	the
Frames	column,	and	note	that	we	have	two	names,	x	and	func,	in	the	global
namespace	(Global	frame),	pointing	to	an	int	(with	a	value	of	3)	and	to	a	function
object,	respectively.	Right	beneath	it,	in	the	rectangle	titled	func,	we	can	see	the
function's	local	namespace,	in	which	only	one	name	has	been	defined:	y.
Because	we	have	called	func	with	x	(line	5	in	the	left	part	of	the	figure),	y	is
pointing	to	the	same	object	that	x	is	pointing	to.	This	is	what	happens	under	the
hood	when	an	argument	is	passed	to	a	function.	If	we	had	used	the	name	x
instead	of	y	in	the	function	definition,	things	would	have	been	exactly	the	same
(only	maybe	a	bit	confusing	at	first),	there	would	be	a	local	x	in	the	function,	and
a	global	x	outside,	as	we	saw	in	the	Scopes	and	name	resolution	section
previously	in	this	chapter.

So,	in	a	nutshell,	what	really	happens	is	that	the	function	creates,	in	its	local
scope,	the	names	defined	as	arguments	and,	when	we	call	it,	we	basically	tell
Python	which	objects	those	names	must	be	pointed	toward.

Assignment	to	argument	names
doesn't	affect	the	caller
	

This	is	something	that	can	be	tricky	to	understand	at	first,	so	let's	look	at	an
example:

#	key.points.assignment.py

x	=	3

def	func(x):

				x	=	7		#	defining	a	local	x,	not	changing	the	global	one

func(x)

print(x)		#	prints:	3

In	the	preceding	code,	when	the	x	=	7	line	is	executed,	within	the	local	scope	of
the	func	function,	the	name,	x,	is	pointed	to	an	integer	with	a	value	of	7,	leaving
the	global	x	unaltered.

	

	

	

Changing	a	mutable	affects	the	caller
This	is	the	final	point,	and	it's	very	important	because	Python	apparently	behaves
differently	with	mutables	(just	apparently,	though).	Let's	look	at	an	example:

#	key.points.mutable.py

x	=	[1,	2,	3]

def	func(x):

				x[1]	=	42		#	this	affects	the	caller!

func(x)

print(x)		#	prints:	[1,	42,	3]

Wow,	we	actually	changed	the	original	object!	If	you	think	about	it,	there	is
nothing	weird	in	this	behavior.	The	x	name	in	the	function	is	set	to	point	to	the
caller	object	by	the	function	call	and	within	the	body	of	the	function,	we're	not
changing	x,	in	that	we're	not	changing	its	reference,	or,	in	other	words,	we	are
not	changing	the	object	x	is	pointing	to.	We're	accessing	that	object's	element	at
position	1,	and	changing	its	value.

Remember	point	#2	under	the	Input	parameters	section:	Assigning	an	object	to
an	argument	name	within	a	function	doesn't	affect	the	caller.	If	that	is	clear	to
you,	the	following	code	should	not	be	surprising:

#	key.points.mutable.assignment.py

x	=	[1,	2,	3]

def	func(x):

				x[1]	=	42		#	this	changes	the	caller!

				x	=	'something	else'		#	this	points	x	to	a	new	string	object

func(x)

print(x)		#	still	prints:	[1,	42,	3]

Take	a	look	at	the	two	lines	I	have	highlighted.	At	first,	like	before,	we	just
access	the	caller	object	again,	at	position	1,	and	change	its	value	to	number	42.
Then,	we	reassign	x	to	point	to	the	'something	else'	string.	This	leaves	the	caller
unaltered	and,	in	fact,	the	output	is	the	same	as	that	of	the	previous	snippet.

Take	your	time	to	play	around	with	this	concept,	and	experiment	with	prints	and
calls	to	the	id	function	until	everything	is	clear	in	your	mind.	This	is	one	of	the
key	aspects	of	Python	and	it	must	be	very	clear,	otherwise	you	risk	introducing
subtle	bugs	into	your	code.	Once	again,	the	Python	Tutor	website	(http://www.pytho

http://www.pythontutor.com/

ntutor.com/)	will	help	you	a	lot	by	giving	you	a	visual	representation	of	these
concepts.

Now	that	we	have	a	good	understanding	of	input	parameters	and	how	they
behave,	let's	see	how	we	can	specify	them.

How	to	specify	input	parameters
There	are	five	different	ways	of	specifying	input	parameters:

Positional	arguments
Keyword	arguments
Variable	positional	arguments
Variable	keyword	arguments
Keyword-only	arguments

Let's	look	at	them	one	by	one.

Positional	arguments
	

Positional	arguments	are	read	from	left	to	right	and	they	are	the	most	common
type	of	arguments:

#	arguments.positional.py

def	func(a,	b,	c):

				print(a,	b,	c)

func(1,	2,	3)		#	prints:	1	2	3

There	is	not	much	else	to	say.	They	can	be	as	numerous	as	you	want	and	they	are
assigned	by	position.	In	the	function	call,	1	comes	first,	2	comes	second,	and	3
comes	third,	therefore	they	are	assigned	to	a,	b,	and	c,	respectively.

	

	

	

Keyword	arguments	and	default
values
Keyword	arguments	are	assigned	by	keyword	using	the	name=value	syntax:

#	arguments.keyword.py

def	func(a,	b,	c):

				print(a,	b,	c)

func(a=1,	c=2,	b=3)		#	prints:	1	3	2

Keyword	arguments	are	matched	by	name,	even	when	they	don't	respect	the
definition's	original	position	(we'll	see	that	there	is	a	limitation	to	this	behavior
later,	when	we	mix	and	match	different	types	of	arguments).

The	counterpart	of	keyword	arguments,	on	the	definition	side,	is	default	values.
The	syntax	is	the	same,	name=value,	and	allows	us	to	not	have	to	provide	an
argument	if	we	are	happy	with	the	given	default:

#	arguments.default.py

def	func(a,	b=4,	c=88):

				print(a,	b,	c)

func(1)		#	prints:	1	4	88

func(b=5,	a=7,	c=9)		#	prints:	7	5	9

func(42,	c=9)		#	prints:	42	4	9

func(42,	43,	44)		#	prints:	42,	43,	44

The	are	two	things	to	notice,	which	are	very	important.	First	of	all,	you	cannot
specify	a	default	argument	on	the	left	of	a	positional	one.	Second,	note	how	in
the	examples,	when	an	argument	is	passed	without	using	the	argument_name=value
syntax,	it	must	be	the	first	one	in	the	list,	and	it	is	always	assigned	to	a.	Notice
also	that	passing	values	in	a	positional	fashion	still	works,	and	follows	the
function	signature	order	(last	line	of	the	example).

Try	and	scramble	those	arguments	and	see	what	happens.	Python	error	messages
are	very	good	at	telling	you	what's	wrong.	So,	for	example,	if	you	tried
something	such	as	this:

#	arguments.default.error.py

def	func(a,	b=4,	c=88):

				print(a,	b,	c)

func(b=1,	c=2,	42)		#	positional	argument	after	keyword	one

You	would	get	the	following	error:

$	python	arguments.default.error.py

		File	"arguments.default.error.py",	line	4

				func(b=1,	c=2,	42)	#	positional	argument	after	keyword	one

																		^

SyntaxError:	positional	argument	follows	keyword	argument

This	informs	you	that	you've	called	the	function	incorrectly.

Variable	positional	arguments
Sometimes	you	may	want	to	pass	a	variable	number	of	positional	arguments	to	a
function,	and	Python	provides	you	with	the	ability	to	do	it.	Let's	look	at	a	very
common	use	case,	the	minimum	function.	This	is	a	function	that	calculates	the
minimum	of	its	input	values:

#	arguments.variable.positional.py

def	minimum(*n):

				#	print(type(n))		#	n	is	a	tuple

				if	n:		#	explained	after	the	code

								mn	=	n[0]

								for	value	in	n[1:]:

												if	value	<	mn:

																mn	=	value

								print(mn)

minimum(1,	3,	-7,	9)		#	n	=	(1,	3,	-7,	9)	-	prints:	-7

minimum()													#	n	=	()	-	prints:	nothing

As	you	can	see,	when	we	specify	a	parameter	prepending	a	*	to	its	name,	we	are
telling	Python	that	that	parameter	will	be	collecting	a	variable	number	of
positional	arguments,	according	to	how	the	function	is	called.	Within	the
function,	n	is	a	tuple.	Uncomment	print(type(n))	to	see	for	yourself	and	play
around	with	it	for	a	bit.

Have	you	noticed	how	we	checked	whether	n	wasn't	empty	with	a	simple	if	n:?	This	is	because
collection	objects	evaluate	to	True	when	non-empty,	and	otherwise	False	in	Python.	This	is	true
for	tuples,	sets,	lists,	dictionaries,	and	so	on.
One	other	thing	to	note	is	that	we	may	want	to	throw	an	error	when	we	call	the	function	with
no	arguments,	instead	of	silently	doing	nothing.	In	this	context,	we're	not	concerned	about
making	this	function	robust,	but	in	understanding	variable	positional	arguments.

Let's	make	another	example	to	show	you	two	things	that,	in	my	experience,	are
confusing	to	those	who	are	new	to	this:

#	arguments.variable.positional.unpacking.py

def	func(*args):

				print(args)

values	=	(1,	3,	-7,	9)

func(values)			#	equivalent	to:	func((1,	3,	-7,	9))

func(*values)		#	equivalent	to:	func(1,	3,	-7,	9)

Take	a	good	look	at	the	last	two	lines	of	the	preceding	example.	In	the	first	one,

we	call	func	with	one	argument,	a	four-elements	tuple.	In	the	second	example,	by
using	the	*	syntax,	we're	doing	something	called	unpacking,	which	means	that
the	four-elements	tuple	is	unpacked,	and	the	function	is	called	with	four
arguments:	1,	3,	-7,	9.

This	behavior	is	part	of	the	magic	Python	does	to	allow	you	to	do	amazing
things	when	calling	functions	dynamically.

Variable	keyword	arguments
Variable	keyword	arguments	are	very	similar	to	variable	positional	arguments.
The	only	difference	is	the	syntax	(**	instead	of	*)	and	that	they	are	collected	in	a
dictionary.	Collection	and	unpacking	work	in	the	same	way,	so	let's	look	at	an
example:

#	arguments.variable.keyword.py

def	func(**kwargs):

				print(kwargs)

#	All	calls	equivalent.	They	print:	{'a':	1,	'b':	42}

func(a=1,	b=42)

func(**{'a':	1,	'b':	42})

func(**dict(a=1,	b=42))

All	the	calls	are	equivalent	in	the	preceding	example.	You	can	see	that	adding	a
**	in	front	of	the	parameter	name	in	the	function	definition	tells	Python	to	use
that	name	to	collect	a	variable	number	of	keyword	parameters.	On	the	other
hand,	when	we	call	the	function,	we	can	either	pass	name=value	arguments
explicitly,	or	unpack	a	dictionary	using	the	same	**	syntax.

The	reason	why	being	able	to	pass	a	variable	number	of	keyword	parameters	is
so	important	may	not	be	evident	at	the	moment,	so,	how	about	a	more	realistic
example?	Let's	define	a	function	that	connects	to	a	database.	We	want	to	connect
to	a	default	database	by	simply	calling	this	function	with	no	parameters.	We	also
want	to	connect	to	any	other	database	by	passing	the	function	the	appropriate
arguments.	Before	you	read	on,	try	to	spend	a	couple	of	minutes	figuring	out	a
solution	by	yourself:

#	arguments.variable.db.py

def	connect(**options):

				conn_params	=	{

								'host':	options.get('host',	'127.0.0.1'),

								'port':	options.get('port',	5432),

								'user':	options.get('user',	''),

								'pwd':	options.get('pwd',	''),

				}

				print(conn_params)

				#	we	then	connect	to	the	db	(commented	out)

				#	db.connect(**conn_params)

connect()

connect(host='127.0.0.42',	port=5433)

connect(port=5431,	user='fab',	pwd='gandalf')

Note	that	in	the	function,	we	can	prepare	a	dictionary	of	connection	parameters
(conn_params)	using	default	values	as	fallbacks,	allowing	them	to	be	overwritten	if
they	are	provided	in	the	function	call.	There	are	better	ways	to	do	this	with	fewer
lines	of	code,	but	we're	not	concerned	with	that	right	now.	Running	the
preceding	code	yields	the	following	result:

$	python	arguments.variable.db.py

{'host':	'127.0.0.1',	'port':	5432,	'user':	'',	'pwd':	''}

{'host':	'127.0.0.42',	'port':	5433,	'user':	'',	'pwd':	''}

{'host':	'127.0.0.1',	'port':	5431,	'user':	'fab',	'pwd':	'gandalf'}

Note	the	correspondence	between	the	function	calls	and	the	output.	Notice	how
default	values	are	overridden	according	to	what	was	passed	to	the	function.

Keyword-only	arguments
Python	3	allows	for	a	new	type	of	parameter:	the	keyword-only	parameter.	We
are	going	to	study	them	only	briefly	as	their	use	cases	are	not	that	frequent.
There	are	two	ways	of	specifying	them,	either	after	the	variable	positional
arguments,	or	after	a	bare	*.	Let's	see	an	example	of	both:	#
arguments.keyword.only.py
def	kwo(*a,	c):
print(a,	c)

kwo(1,	2,	3,	c=7)	#	prints:	(1,	2,	3)	7
kwo(c=4)	#	prints:	()	4
#	kwo(1,	2)	#	breaks,	invalid	syntax,	with	the	following	error
#	TypeError:	kwo()	missing	1	required	keyword-only	argument:	'c'

def	kwo2(a,	b=42,	*,	c):
print(a,	b,	c)

kwo2(3,	b=7,	c=99)	#	prints:	3	7	99
kwo2(3,	c=13)	#	prints:	3	42	13
#	kwo2(3,	23)	#	breaks,	invalid	syntax,	with	the	following	error
#	TypeError:	kwo2()	missing	1	required	keyword-only	argument:	'c'

As	anticipated,	the	function,	kwo,	takes	a	variable	number	of	positional	arguments
(a)	and	a	keyword-only	one,	c.	The	results	of	the	calls	are	straightforward	and
you	can	uncomment	the	third	call	to	see	what	error	Python	returns.

The	same	applies	to	the	function,	kwo2,	which	differs	from	kwo	in	that	it	takes	a
positional	argument,	a,	a	keyword	argument,	b,	and	then	a	keyword-only	one,	c.
You	can	uncomment	the	third	call	to	see	the	error.

Now	that	you	know	how	to	specify	different	types	of	input	parameters,	let's	see
how	you	can	combine	them	in	function	definitions.

Combining	input	parameters
You	can	combine	input	parameters,	as	long	as	you	follow	these	ordering	rules:

When	defining	a	function,	normal	positional	arguments	come	first	(name),
then	any	default	arguments	(name=value),	then	the	variable	positional
arguments	(*name	or	simply	*),	then	any	keyword-only	arguments	(either	name
or	name=value	form	is	good),	and	then	any	variable	keyword	arguments
(**name).

On	the	other	hand,	when	calling	a	function,	arguments	must	be	given	in	the
following	order:	positional	arguments	first	(value),	then	any	combination	of
keyword	arguments	(name=value),	variable	positional	arguments	(*name),	and
then	variable	keyword	arguments	(**name).

Since	this	can	be	a	bit	tricky	when	left	hanging	in	the	theoretical	world,	let's	look
at	a	couple	of	quick	examples:

#	arguments.all.py

def	func(a,	b,	c=7,	*args,	**kwargs):

				print('a,	b,	c:',	a,	b,	c)

				print('args:',	args)

				print('kwargs:',	kwargs)

func(1,	2,	3,	*(5,	7,	9),	**{'A':	'a',	'B':	'b'})

func(1,	2,	3,	5,	7,	9,	A='a',	B='b')		#	same	as	previous	one

Note	the	order	of	the	parameters	in	the	function	definition,	and	that	the	two	calls
are	equivalent.	In	the	first	one,	we're	using	the	unpacking	operators	for	iterables
and	dictionaries,	while	in	the	second	one	we're	using	a	more	explicit	syntax.	The
execution	of	this	yields	the	following	(I	printed	only	the	result	of	one	call,	the
other	one	being	the	same):

$	python	arguments.all.py

a,	b,	c:	1	2	3

args:	(5,	7,	9)

kwargs:	{'A':	'a',	'B':	'b'}

Let's	now	look	at	an	example	with	keyword-only	arguments:

#	arguments.all.kwonly.py

def	func_with_kwonly(a,	b=42,	*args,	c,	d=256,	**kwargs):

				print('a,	b:',	a,	b)

				print('c,	d:',	c,	d)

				print('args:',	args)

				print('kwargs:',	kwargs)

#	both	calls	equivalent

func_with_kwonly(3,	42,	c=0,	d=1,	*(7,	9,	11),	e='E',	f='F')

func_with_kwonly(3,	42,	*(7,	9,	11),	c=0,	d=1,	e='E',	f='F')

Note	that	I	have	highlighted	the	keyword-only	arguments	in	the	function
declaration.	They	come	after	the	*args	variable	positional	argument,	and	it	would
be	the	same	if	they	came	right	after	a	single	*	(in	which	case	there	wouldn't	be	a
variable	positional	argument).	The	execution	of	this	yields	the	following	(I
printed	only	the	result	of	one	call):

$	python	arguments.all.kwonly.py

a,	b:	3	42

c,	d:	0	1

args:	(7,	9,	11)

kwargs:	{'e':	'E',	'f':	'F'}

One	other	thing	to	note	is	the	names	I	gave	to	the	variable	positional	and
keyword	arguments.	You're	free	to	choose	differently,	but	be	aware	that	args	and
kwargs	are	the	conventional	names	given	to	these	parameters,	at	least	generically.

Additional	unpacking	generalizations
One	of	the	recent	new	features,	introduced	in	Python	3.5,	is	the	ability	to	extend
the	iterable	(*)	and	dictionary	(**)	unpacking	operators	to	allow	unpacking	in
more	positions,	an	arbitrary	number	of	times,	and	in	additional	circumstances.
I'll	present	you	with	an	example	concerning	function	calls:

#	additional.unpacking.py

def	additional(*args,	**kwargs):

				print(args)

				print(kwargs)

args1	=	(1,	2,	3)

args2	=	[4,	5]

kwargs1	=	dict(option1=10,	option2=20)

kwargs2	=	{'option3':	30}

additional(*args1,	*args2,	**kwargs1,	**kwargs2)

In	the	previous	example,	we	defined	a	simple	function	that	prints	its	input
arguments,	args	and	kwargs.	The	new	feature	lies	in	the	way	we	call	this	function.
Notice	how	we	can	unpack	multiple	iterables	and	dictionaries,	and	they	are
correctly	coalesced	under	args	and	kwargs.	The	reason	why	this	feature	is
important	is	that	it	allows	us	not	to	have	to	merge	args1	with	args2,	and	kwargs1
with	kwargs2	in	the	code.	Running	the	code	produces:

$	python	additional.unpacking.py

(1,	2,	3,	4,	5)

{'option1':	10,	'option2':	20,	'option3':	30}

Please	refer	to	PEP	448	(https://www.python.org/dev/peps/pep-0448/)	to	learn	the	full
extent	of	this	new	feature	and	see	further	examples.

https://www.python.org/dev/peps/pep-0448/

Avoid	the	trap!	Mutable	defaults
One	thing	to	be	very	aware	of	with	Python	is	that	default	values	are	created	at	def
time,	therefore,	subsequent	calls	to	the	same	function	will	possibly	behave
differently	according	to	the	mutability	of	their	default	values.	Let's	look	at	an
example:

#	arguments.defaults.mutable.py

def	func(a=[],	b={}):

				print(a)

				print(b)

				print('#'	*	12)

				a.append(len(a))		#	this	will	affect	a's	default	value

				b[len(a)]	=	len(a)		#	and	this	will	affect	b's	one

func()

func()

func()

Both	parameters	have	mutable	default	values.	This	means	that,	if	you	affect
those	objects,	any	modification	will	stick	around	in	subsequent	function	calls.
See	if	you	can	understand	the	output	of	those	calls:

$	python	arguments.defaults.mutable.py

[]

{}

############

[0]

{1:	1}

############

[0,	1]

{1:	1,	2:	2}

############

It's	interesting,	isn't	it?	While	this	behavior	may	seem	very	weird	at	first,	it
actually	makes	sense,	and	it's	very	handy,	for	example,	when	using	memoization
techniques	(Google	an	example	of	that,	if	you're	interested).	Even	more
interesting	is	what	happens	when,	between	the	calls,	we	introduce	one	that
doesn't	use	defaults,	such	as	this:

#	arguments.defaults.mutable.intermediate.call.py

func()

func(a=[1,	2,	3],	b={'B':	1})

func()

When	we	run	this	code,	this	is	the	output:

$	python	arguments.defaults.mutable.intermediate.call.py

[]

{}

############

[1,	2,	3]

{'B':	1}

############

[0]

{1:	1}

############

This	output	shows	us	that	the	defaults	are	retained	even	if	we	call	the	function
with	other	values.	One	question	that	comes	to	mind	is,	how	do	I	get	a	fresh
empty	value	every	time?	Well,	the	convention	is	the	following:

#	arguments.defaults.mutable.no.trap.py

def	func(a=None):

				if	a	is	None:

								a	=	[]

				#	do	whatever	you	want	with	`a`	...

Note	that,	by	using	the	preceding	technique,	if	a	isn't	passed	when	calling	the
function,	you	always	get	a	brand	new,	empty	list.

Okay,	enough	with	the	input,	let's	look	at	the	other	side	of	the	coin,	the	output.

Return	values
The	return	values	of	functions	are	one	of	those	things	where	Python	is	ahead	of
most	other	languages.	Functions	are	usually	allowed	to	return	one	object	(one
value)	but,	in	Python,	you	can	return	a	tuple,	and	this	implies	that	you	can	return
whatever	you	want.	This	feature	allows	a	coder	to	write	software	that	would	be
much	harder	to	write	in	any	other	language,	or	certainly	more	tedious.	We've
already	said	that	to	return	something	from	a	function	we	need	to	use	the	return
statement,	followed	by	what	we	want	to	return.	There	can	be	as	many	return
statements	as	needed	in	the	body	of	a	function.

On	the	other	hand,	if	within	the	body	of	a	function	we	don't	return	anything,	or
we	invoke	a	bare	return	statement,	the	function	will	return	None.	This	behavior	is
harmless	and,	even	though	I	don't	have	the	room	here	to	go	into	detail	explaining
why	Python	was	designed	like	this,	let	me	just	tell	you	that	this	feature	allows
for	several	interesting	patterns,	and	confirms	Python	as	a	very	consistent
language.

I	say	it's	harmless	because	you	are	never	forced	to	collect	the	result	of	a	function
call.	I'll	show	you	what	I	mean	with	an	example:

#	return.none.py

def	func():

				pass

func()		#	the	return	of	this	call	won't	be	collected.	It's	lost.

a	=	func()		#	the	return	of	this	one	instead	is	collected	into	`a`

print(a)		#	prints:	None

Note	that	the	whole	body	of	the	function	is	composed	only	of	the	pass	statement.
As	the	official	documentation	tells	us,	pass	is	a	null	operation.	When	it	is
executed,	nothing	happens.	It	is	useful	as	a	placeholder	when	a	statement	is
required	syntactically,	but	no	code	needs	to	be	executed.	In	other	languages,	we
would	probably	just	indicate	that	with	a	pair	of	curly	brackets	({}),	which	define
an	empty	scope,	but	in	Python,	a	scope	is	defined	by	indenting	code,	therefore	a
statement	such	as	pass	is	necessary.

Notice	also	that	the	first	call	of	the	func	function	returns	a	value	(None)	which	we
don't	collect.	As	I	said	before,	collecting	the	return	value	of	a	function	call	is	not

mandatory.

Now,	that's	good	but	not	very	interesting	so,	how	about	we	write	an	interesting
function?	Remember	that	in	Chapter	1,	A	Gentle	Introduction	to	Python,	we	talked
about	the	factorial	of	a	function.	Let's	write	our	own	here	(for	simplicity,	I	will
assume	the	function	is	always	called	correctly	with	appropriate	values	so	I	won't
sanity-check	the	input	argument):

#	return.single.value.py

def	factorial(n):

				if	n	in	(0,	1):

								return	1

				result	=	n

				for	k	in	range(2,	n):

								result	*=	k

				return	result

f5	=	factorial(5)		#	f5	=	120

Note	that	we	have	two	points	of	return.	If	n	is	either	0	or	1	(in	Python	it's	common
to	use	the	in	type	of	check,	as	I	did	instead	of	the	more	verbose	if	n	==	0	or	n	==
1:),	we	return	1.	Otherwise,	we	perform	the	required	calculation	and	we	return
result.	Let's	try	to	write	this	function	a	little	bit	more	succinctly:

#	return.single.value.2.py

from	functools	import	reduce

from	operator	import	mul

def	factorial(n):

				return	reduce(mul,	range(1,	n	+	1),	1)

f5	=	factorial(5)		#	f5	=	120

I	know	what	you're	thinking:	one	line?	Python	is	elegant,	and	concise!	I	think
this	function	is	readable	even	if	you	have	never	seen	reduce	or	mul,	but	if	you	can't
read	it	or	understand	it,	set	aside	a	few	minutes	and	do	some	research	on	the
Python	documentation	until	its	behavior	is	clear	to	you.	Being	able	to	look	up
functions	in	the	documentation	and	understand	code	written	by	someone	else	is	a
task	every	developer	needs	to	be	able	to	perform,	so	take	this	as	a	challenge.

To	this	end,	make	sure	you	look	up	the	help	function,	which	proves	quite	helpful	when
exploring	with	the	console.

Returning	multiple	values
Unlike	in	most	other	languages,	in	Python	it's	very	easy	to	return	multiple
objects	from	a	function.	This	feature	opens	up	a	whole	world	of	possibilities	and
allows	you	to	code	in	a	style	that	is	hard	to	reproduce	with	other	languages.	Our
thinking	is	limited	by	the	tools	we	use,	therefore	when	Python	gives	you	more
freedom	than	other	languages,	it	is	actually	boosting	your	own	creativity	as	well.
To	return	multiple	values	is	very	easy,	you	just	use	tuples	(either	explicitly	or
implicitly).	Let's	look	at	a	simple	example	that	mimics	the	divmod	built-in
function:	#	return.multiple.py
def	moddiv(a,	b):
return	a	//	b,	a	%	b

print(moddiv(20,	7))	#	prints	(2,	6)

I	could	have	wrapped	the	highlighted	part	in	the	preceding	code	in	brackets,
making	it	an	explicit	tuple,	but	there's	no	need	for	that.	The	preceding	function
returns	both	the	result	and	the	remainder	of	the	division,	at	the	same	time.

In	the	source	code	for	this	example,	I	have	left	a	simple	example	of	a	test	function	to	make
sure	my	code	is	doing	the	correct	calculation.

A	few	useful	tips
	

When	writing	functions,	it's	very	useful	to	follow	guidelines	so	that	you	write
them	well.	I'll	quickly	point	some	of	them	out:

Functions	should	do	one	thing:	Functions	that	do	one	thing	are	easy	to
describe	in	one	short	sentence.	Functions	that	do	multiple	things	can	be
split	into	smaller	functions	that	do	one	thing.	These	smaller	functions	are
usually	easier	to	read	and	understand.	Remember	the	data	science	example
we	saw	a	few	pages	ago.
Functions	should	be	small:	The	smaller	they	are,	the	easier	it	is	to	test
them	and	to	write	them	so	that	they	do	one	thing.
The	fewer	input	parameters,	the	better:	Functions	that	take	a	lot	of
arguments	quickly	become	harder	to	manage	(among	other	issues).
Functions	should	be	consistent	in	their	return	values:	Returning	False	or
None	is	not	the	same	thing,	even	if	within	a	Boolean	context	they	both
evaluate	to	False.	False	means	that	we	have	information	(False),	while	None
means	that	there	is	no	information.	Try	writing	functions	that	return	in	a
consistent	way,	no	matter	what	happens	in	their	body.
Functions	shouldn't	have	side	effects:	In	other	words,	functions	should
not	affect	the	values	you	call	them	with.	This	is	probably	the	hardest
statement	to	understand	at	this	point,	so	I'll	give	you	an	example	using	lists.
In	the	following	code,	note	how	numbers	is	not	sorted	by	the	sorted	function,
which	actually	returns	a	sorted	copy	of	numbers.	Conversely,	the	list.sort()
method	is	acting	on	the	numbers	object	itself,	and	that	is	fine	because	it	is	a
method	(a	function	that	belongs	to	an	object	and	therefore	has	the	rights	to
modify	it):

>>>	numbers	=	[4,	1,	7,	5]

>>>	sorted(numbers)		#	won't	sort	the	original	`numbers`	list

[1,	4,	5,	7]

>>>	numbers		#	let's	verify

[4,	1,	7,	5]		#	good,	untouched

>>>	numbers.sort()		#	this	will	act	on	the	list

>>>	numbers

[1,	4,	5,	7]

Follow	these	guidelines	and	you'll	write	better	functions,	which	will	serve	you

well.

Chapter	3,	Functions	in	Clean	Code	by	Robert	C.	Martin,	Prentice	Hall	is	dedicated	to
functions	and	it's	probably	the	best	set	of	guidelines	I've	ever	read	on	the	subject.

	

	

	

Recursive	functions
When	a	function	calls	itself	to	produce	a	result,	it	is	said	to	be	recursive.
Sometimes	recursive	functions	are	very	useful	in	that	they	make	it	easier	to	write
code.	Some	algorithms	are	very	easy	to	write	using	the	recursive	paradigm,
while	others	are	not.	There	is	no	recursive	function	that	cannot	be	rewritten	in	an
iterative	fashion,	so	it's	usually	up	to	the	programmer	to	choose	the	best
approach	for	the	case	at	hand.

The	body	of	a	recursive	function	usually	has	two	sections:	one	where	the	return
value	depends	on	a	subsequent	call	to	itself,	and	one	where	it	doesn't	(called	a
base	case).

As	an	example,	we	can	consider	the	(hopefully	familiar	by	now)	factorial
function,	N!.	The	base	case	is	when	N	is	either	0	or	1.	The	function	returns	1	with
no	need	for	further	calculation.	On	the	other	hand,	in	the	general	case,	N!	returns
the	product	1	*	2	*	...	*	(N-1)	*	N.	If	you	think	about	it,	N!	can	be	rewritten	like
this:	N!	=	(N-1)!	*	N.	As	a	practical	example,	consider	5!	=	1	*	2	*	3	*	4	*	5	=
(1	*	2	*	3	*	4)	*	5	=	4!	*	5.

Let's	write	this	down	in	code:

#	recursive.factorial.py

def	factorial(n):

				if	n	in	(0,	1):		#	base	case

								return	1

				return	factorial(n	-	1)	*	n		#	recursive	case

When	writing	recursive	functions,	always	consider	how	many	nested	calls	you	make,	since
there	is	a	limit.	For	further	information	on	this,	check	out	sys.getrecursionlimit()	and
sys.setrecursionlimit().

Recursive	functions	are	used	a	lot	when	writing	algorithms	and	they	can	be
really	fun	to	write.	As	an	exercise,	try	to	solve	a	couple	of	simple	problems
using	both	a	recursive	and	an	iterative	approach.

Anonymous	functions
One	last	type	of	functions	that	I	want	to	talk	about	are	anonymous	functions.
These	functions,	which	are	called	lambdas	in	Python,	are	usually	used	when	a
fully-fledged	function	with	its	own	name	would	be	overkill,	and	all	we	want	is	a
quick,	simple	one-liner	that	does	the	job.

Imagine	that	you	want	a	list	of	all	the	numbers	up	to	N	that	are	multiples	of	five.
Imagine	that	you	want	to	filter	those	out	using	the	filter	function,	which	takes	a
function	and	an	iterable	and	constructs	a	filter	object	that	you	can	iterate	on,
from	those	elements	of	iterables	for	which	the	function	returns	True.	Without
using	an	anonymous	function,	you	would	do	something	like	this:

#	filter.regular.py

def	is_multiple_of_five(n):

				return	not	n	%	5

def	get_multiples_of_five(n):

				return	list(filter(is_multiple_of_five,	range(n)))

Note	how	we	use	is_multiple_of_five	to	filter	the	first	n	natural	numbers.	This
seems	a	bit	excessive,	the	task	is	simple	and	we	don't	need	to	keep	the
is_multiple_of_five	function	around	for	anything	else.	Let's	rewrite	it	using	a
lambda	function:

#	filter.lambda.py

def	get_multiples_of_five(n):

				return	list(filter(lambda	k:	not	k	%	5,	range(n)))

The	logic	is	exactly	the	same	but	the	filtering	function	is	now	a	lambda.
Defining	a	lambda	is	very	easy	and	follows	this	form:	func_name	=	lambda
[parameter_list]:	expression.	A	function	object	is	returned,	which	is	equivalent	to
this:	def	func_name([parameter_list]):	return	expression.

Note	that	optional	parameters	are	indicated	following	the	common	syntax	of	wrapping	them
in	square	brackets.

Let's	look	at	another	couple	of	examples	of	equivalent	functions	defined	in	the
two	forms:

#	lambda.explained.py

#	example	1:	adder

def	adder(a,	b):

				return	a	+	b

#	is	equivalent	to:

adder_lambda	=	lambda	a,	b:	a	+	b

#	example	2:	to	uppercase

def	to_upper(s):

				return	s.upper()

#	is	equivalent	to:

to_upper_lambda	=	lambda	s:	s.upper()

The	preceding	examples	are	very	simple.	The	first	one	adds	two	numbers,	and
the	second	one	produces	the	uppercase	version	of	a	string.	Note	that	I	assigned
what	is	returned	by	the	lambda	expressions	to	a	name	(adder_lambda,	to_upper_lambda),
but	there	is	no	need	for	that	when	you	use	lambdas	in	the	way	we	did	in	the
filter	example.

Function	attributes
Every	function	is	a	fully-fledged	object	and,	as	such,	they	have	many	attributes.
Some	of	them	are	special	and	can	be	used	in	an	introspective	way	to	inspect	the
function	object	at	runtime.	The	following	script	is	an	example	that	shows	a	part
of	them	and	how	to	display	their	value	for	an	example	function:

#	func.attributes.py

def	multiplication(a,	b=1):

				"""Return	a	multiplied	by	b.	"""

				return	a	*	b

special_attributes	=	[

				"__doc__",	"__name__",	"__qualname__",	"__module__",

				"__defaults__",	"__code__",	"__globals__",	"__dict__",

				"__closure__",	"__annotations__",	"__kwdefaults__",

]

for	attribute	in	special_attributes:

				print(attribute,	'->',	getattr(multiplication,	attribute))

I	used	the	built-in	getattr	function	to	get	the	value	of	those	attributes.	getattr(obj,
attribute)	is	equivalent	to	obj.attribute	and	comes	in	handy	when	we	need	to	get
an	attribute	at	runtime	using	its	string	name.	Running	this	script	yields:

$	python	func.attributes.py

__doc__	->	Return	a	multiplied	by	b.

__name__	->	multiplication

__qualname__	->	multiplication

__module__	->	__main__

__defaults__	->	(1,)

__code__	->	<code	object	multiplication	at	0x10caf7660,	file	"func.attributes.py",	line	

1>

__globals__	->	{...omitted...}

__dict__	->	{}

__closure__	->	None

__annotations__	->	{}

__kwdefaults__	->	None

I	have	omitted	the	value	of	the	__globals__	attribute,	as	it	was	too	big.	An
explanation	of	the	meaning	of	this	attribute	can	be	found	in	the	Callable	types
section	of	the	Python	Data	Model	documentation	page	(https://docs.python.org/3/re
ference/datamodel.html#the-standard-type-hierarchy).	Should	you	want	to	see	all	the
attributes	of	an	object,	just	call	dir(object_name)	and	you'll	be	given	the	list	of	all
of	its	attributes.

https://docs.python.org/3/reference/datamodel.html#the-standard-type-hierarchy

Built-in	functions
Python	comes	with	a	lot	of	built-in	functions.	They	are	available	anywhere	and
you	can	get	a	list	of	them	by	inspecting	the	builtins	module	with	dir(__builtins__),
or	by	going	to	the	official	Python	documentation.	Unfortunately,	I	don't	have	the
room	to	go	through	all	of	them	here.	We've	already	seen	some	of	them,	such	as
any,	bin,	bool,	divmod,	filter,	float,	getattr,	id,	int,	len,	list,	min,	print,	set,	tuple,	type,
and	zip,	but	there	are	many	more,	which	you	should	read	at	least	once.	Get
familiar	with	them,	experiment,	write	a	small	piece	of	code	for	each	of	them,	and
make	sure	you	have	them	at	your	finger	tips	so	that	you	can	use	them	when	you
need	them.

	

One	final	example
Before	we	finish	off	this	chapter,	how	about	one	last	example?	I	was	thinking	we
could	write	a	function	to	generate	a	list	of	prime	numbers	up	to	a	limit.	We've
already	seen	the	code	for	this	so	let's	make	it	a	function	and,	to	keep	it
interesting,	let's	optimize	it	a	bit.

It	turns	out	that	you	don't	need	to	divide	it	by	all	numbers	from	2	to	N-1	to
decide	whether	a	number,	N,	is	prime.	You	can	stop	at	√N.	Moreover,	you	don't
need	to	test	the	division	for	all	numbers	from	2	to	√N,	you	can	just	use	the
primes	in	that	range.	I'll	leave	it	to	you	to	figure	out	why	this	works,	if	you're
interested.	Let's	see	how	the	code	changes:

#	primes.py

from	math	import	sqrt,	ceil

def	get_primes(n):

				"""Calculate	a	list	of	primes	up	to	n	(included).	"""

				primelist	=	[]

				for	candidate	in	range(2,	n	+	1):

								is_prime	=	True

								root	=	ceil(sqrt(candidate))		#	division	limit

								for	prime	in	primelist:		#	we	try	only	the	primes

												if	prime	>	root:		#	no	need	to	check	any	further

																break

												if	candidate	%	prime	==	0:

																is_prime	=	False

																break

								if	is_prime:

												primelist.append(candidate)

				return	primelist

The	code	is	the	same	as	in	the	previous	chapter.	We	have	changed	the	division
algorithm	so	that	we	only	test	divisibility	using	the	previously	calculated	primes
and	we	stopped	once	the	testing	divisor	was	greater	than	the	root	of	the
candidate.	We	used	the	primelist	result	list	to	get	the	primes	for	the	division.	We
calculated	the	root	value	using	a	fancy	formula,	the	integer	value	of	the	ceiling
of	the	root	of	the	candidate.	While	a	simple	int(k	**	0.5)	+	1	would	have	served
our	purpose	as	well,	the	formula	I	chose	is	cleaner	and	requires	me	to	use	a
couple	of	imports,	which	I	wanted	to	show	you.	Check	out	the	functions	in	the
math	module,	they	are	very	interesting!

Documenting	your	code
I'm	a	big	fan	of	code	that	doesn't	need	documentation.	When	you	program
correctly,	choose	the	right	names	and	take	care	of	the	details,	your	code	should
come	out	as	self-explanatory	and	documentation	should	not	be	needed.
Sometimes	a	comment	is	very	useful	though,	and	so	is	some	documentation.	You
can	find	the	guidelines	for	documenting	Python	in	PEP	257	-	Docstring
conventions	(https://www.python.org/dev/peps/pep-0257/),	but	I'll	show	you	the	basics
here.

Python	is	documented	with	strings,	which	are	aptly	called	docstrings.	Any
object	can	be	documented,	and	you	can	use	either	one-line	or	multiline
docstrings.	One-liners	are	very	simple.	They	should	not	provide	another
signature	for	the	function,	but	clearly	state	its	purpose:	#	docstrings.py
def	square(n):
"""Return	the	square	of	a	number	n.	"""
return	n	**	2

def	get_username(userid):
"""Return	the	username	of	a	user	given	their	id.	"""
return	db.get(user_id=userid).username

Using	triple	double-quoted	strings	allows	you	to	expand	easily	later	on.	Use
sentences	that	end	in	a	period,	and	don't	leave	blank	lines	before	or	after.

Multiline	comments	are	structured	in	a	similar	way.	There	should	be	a	one-liner
that	briefly	gives	you	the	gist	of	what	the	object	is	about,	and	then	a	more
verbose	description.	As	an	example,	I	have	documented	a	fictitious	connect
function,	using	the	Sphinx	notation,	in	the	following	example:	def	connect(host,
port,	user,	password):
"""Connect	to	a	database.

Connect	to	a	PostgreSQL	database	directly,	using	the	given
parameters.

https://www.python.org/dev/peps/pep-0257/

:param	host:	The	host	IP.
:param	port:	The	desired	port.
:param	user:	The	connection	username.
:param	password:	The	connection	password.
:return:	The	connection	object.
"""
#	body	of	the	function	here...
return	connection

Sphinx	is	probably	the	most	widely	used	tool	for	creating	Python	documentation.	In	fact,	the
official	Python	documentation	was	written	with	it.	It's	definitely	worth	spending	some	time
checking	it	out.

Importing	objects
Now	that	you	know	a	lot	about	functions,	let's	look	at	how	to	use	them.	The
whole	point	of	writing	functions	is	to	be	able	to	reuse	them	later,	and	in	Python,
this	translates	to	importing	them	into	the	namespace	where	you	need	them.
There	are	many	different	ways	to	import	objects	into	a	namespace,	but	the	most
common	ones	are	import	module_name	and	from	module_name	import	function_name.	Of
course,	these	are	quite	simplistic	examples,	but	bear	with	me	for	the	time	being.

The	import	module_name	form	finds	the	module_name	module	and	defines	a	name	for	it
in	the	local	namespace	where	the	import	statement	is	executed.	The	from	module_name
import	identifier	form	is	a	little	bit	more	complicated	than	that,	but	basically	does
the	same	thing.	It	finds	module_name	and	searches	for	an	attribute	(or	a	submodule)
and	stores	a	reference	to	identifier	in	the	local	namespace.

Both	forms	have	the	option	to	change	the	name	of	the	imported	object	using	the
as	clause:

from	mymodule	import	myfunc	as	better_named_func	

Just	to	give	you	a	flavor	of	what	importing	looks	like,	here's	an	example	from	a
test	module	of	one	of	my	projects	(notice	that	the	blank	lines	between	blocks	of
imports	follow	the	guidelines	from	PEP	8	at	https://www.python.org/dev/peps/pep-0008
/#imports:	standard	library,	third	party,	and	local	code):

from	datetime	import	datetime,	timezone		#	two	imports	on	the	same	line

from	unittest.mock	import	patch		#	single	import

import	pytest		#	third	party	library

from	core.models	import	(#	multiline	import

				Exam,

				Exercise,

				Solution,

)

When	you	have	a	structure	of	files	starting	in	the	root	of	your	project,	you	can
use	the	dot	notation	to	get	to	the	object	you	want	to	import	into	your	current
namespace,	be	it	a	package,	a	module,	a	class,	a	function,	or	anything	else.	The
from	module	import	syntax	also	allows	a	catch-all	clause,	from	module	import	*,	which

https://www.python.org/dev/peps/pep-0008/#imports

is	sometimes	used	to	get	all	the	names	from	a	module	into	the	current	namespace
at	once,	but	it's	frowned	upon	for	several	reasons,	such	as	performance	and	the
risk	of	silently	shadowing	other	names.	You	can	read	all	that	there	is	to	know
about	imports	in	the	official	Python	documentation	but,	before	we	leave	the
subject,	let	me	give	you	a	better	example.

Imagine	that	you	have	defined	a	couple	of	functions:	square(n)	and	cube(n)	in	a
module,	funcdef.py,	which	is	in	the	lib	folder.	You	want	to	use	them	in	a	couple	of
modules	that	are	at	the	same	level	of	the	lib	folder,	called	func_import.py	and
func_from.py.	Showing	the	tree	structure	of	that	project	produces	something	like
this:

├──	func_from.py

├──	func_import.py

├──	lib

				├──	funcdef.py

				└──	__init__.py

		

Before	I	show	you	the	code	of	each	module,	please	remember	that	in	order	to	tell
Python	that	it	is	actually	a	package,	we	need	to	put	a	__init__.py	module	in	it.

There	are	two	things	to	note	about	the	__init__.py	file.	First	of	all,	it	is	a	fully-fledged	Python
module	so	you	can	put	code	into	it	as	you	would	with	any	other	module.	Second,	as	of	Python
3.3,	its	presence	is	no	longer	required	to	make	a	folder	be	interpreted	as	a	Python	package.

The	code	is	as	follows:

#	funcdef.py

def	square(n):	

				return	n	**	2	

def	cube(n):	

				return	n	**	3	

#	func_import.py

import	lib.funcdef	

print(lib.funcdef.square(10))	

print(lib.funcdef.cube(10))	

#	func_from.py

from	lib.funcdef	import	square,	cube	

print(square(10))	

print(cube(10))	

Both	these	files,	when	executed,	print	100	and	1000.	You	can	see	how	differently
we	then	access	the	square	and	cube	functions,	according	to	how	and	what	we
imported	in	the	current	scope.

Relative	imports
	

The	imports	we've	seen	so	far	are	called	absolute,	that	is,	they	define	the	whole
path	of	the	module	that	we	want	to	import,	or	from	which	we	want	to	import	an
object.	There	is	another	way	of	importing	objects	into	Python,	which	is	called	a
relative	import.	It's	helpful	in	situations	where	we	want	to	rearrange	the
structure	of	large	packages	without	having	to	edit	sub-packages,	or	when	we
want	to	make	a	module	inside	a	package	able	to	import	itself.	Relative	imports
are	done	by	adding	as	many	leading	dots	in	front	of	the	module	as	the	number	of
folders	we	need	to	backtrack,	in	order	to	find	what	we're	searching	for.	Simply
put,	it	is	something	such	as	this:

from	.mymodule	import	myfunc	

For	a	complete	explanation	of	relative	imports,	refer	to	PEP	328	(https://www.pytho
n.org/dev/peps/pep-0328/).	In	later	chapters,	we'll	create	projects	using	different
libraries	and	we'll	use	several	different	types	of	imports,	including	relative	ones,
so	make	sure	you	take	a	bit	of	time	to	read	up	about	it	in	the	official	Python
documentation.

	

	

	

https://www.python.org/dev/peps/pep-0328/

Summary
In	this	chapter,	we	explored	the	world	of	functions.	They	are	extremely
important	and,	from	now	on,	we'll	use	them	basically	everywhere.	We	talked
about	the	main	reasons	for	using	them,	the	most	important	of	which	are	code
reuse	and	implementation	hiding.

We	saw	that	a	function	object	is	like	a	box	that	takes	optional	inputs	and
produces	outputs.	We	can	feed	input	values	to	a	function	in	many	different	ways,
using	positional	and	keyword	arguments,	and	using	variable	syntax	for	both
types.

Now	you	should	know	how	to	write	a	function,	document	it,	import	it	into	your
code,	and	call	it.

The	next	chapter	will	force	me	to	push	my	foot	down	on	the	throttle	even	more,
so	I	suggest	you	take	any	opportunity	you	get	to	consolidate	and	enrich	the
knowledge	you've	gathered	so	far	by	putting	your	nose	into	the	Python	official
documentation.

Saving	Time	and	Memory
"It's	not	the	daily	increase	but	daily	decrease.	Hack	away	at	the	unessential."

–	Bruce	Lee

I	love	this	quote	from	Bruce	Lee.	He	was	such	a	wise	man!	Especially,	the
second	part,	""hack	away	at	the	unessential"",	is	to	me	what	makes	a	computer	program
elegant.	After	all,	if	there	is	a	better	way	of	doing	things	so	that	we	don't	waste
time	or	memory,	why	not?

Sometimes,	there	are	valid	reasons	for	not	pushing	our	code	up	to	the	maximum
limit:	for	example,	sometimes	to	achieve	a	negligible	improvement,	we	have	to
sacrifice	on	readability	or	maintainability.	Does	it	make	any	sense	to	have	a	web
page	served	in	1	second	with	unreadable,	complicated	code,	when	we	can	serve
it	in	1.05	seconds	with	readable,	clean	code?	No,	it	makes	no	sense.

On	the	other	hand,	sometimes	it's	perfectly	reasonable	to	try	to	shave	off	a
millisecond	from	a	function,	especially	when	the	function	is	meant	to	be	called
thousands	of	times.	Every	millisecond	you	save	there	means	one	second	saved
per	thousands	of	calls,	and	this	could	be	meaningful	for	your	application.

In	light	of	these	considerations,	the	focus	of	this	chapter	will	not	be	to	give	you
the	tools	to	push	your	code	to	the	absolute	limits	of	performance	and
optimization	"no	matter	what,"	but	rather,	to	enable	you	to	write	efficient,
elegant	code	that	reads	well,	runs	fast,	and	doesn't	waste	resources	in	an	obvious
way.

In	this	chapter,	we	are	going	to	cover	the	following:

The	map,	zip,	and	filter	functions
Comprehensions
Generators

I	will	perform	several	measurements	and	comparisons,	and	cautiously	draw
some	conclusions.	Please	do	keep	in	mind	that	on	a	different	box	with	a	different
setup	or	a	different	operating	system,	results	may	vary.	Take	a	look	at	this	code:

#	squares.py

def	square1(n):

				return	n	**	2		#	squaring	through	the	power	operator

def	square2(n):

				return	n	*	n		#	squaring	through	multiplication

Both	functions	return	the	square	of	n,	but	which	is	faster?	From	a	simple
benchmark	I	ran	on	them,	it	looks	like	the	second	is	slightly	faster.	If	you	think
about	it,	it	makes	sense:	calculating	the	power	of	a	number	involves
multiplication	and	therefore,	whatever	algorithm	you	may	use	to	perform	the
power	operation,	it's	not	likely	to	beat	a	simple	multiplication	such	as	the	one	in
square2.

Do	we	care	about	this	result?	In	most	cases,	no.	If	you're	coding	an	e-commerce
website,	chances	are	you	won't	ever	even	need	to	raise	a	number	to	the	second
power,	and	if	you	do,	it's	likely	to	be	a	sporadic	operation.	You	don't	need	to
concern	yourself	with	saving	a	fraction	of	a	microsecond	on	a	function	you	call	a
few	times.

So,	when	does	optimization	become	important?	One	very	common	case	is	when
you	have	to	deal	with	huge	collections	of	data.	If	you're	applying	the	same
function	on	a	million	customer	objects,	then	you	want	your	function	to	be	tuned	up
to	its	best.	Gaining	1/10	of	a	second	on	a	function	called	one	million	times	saves
you	100,000	seconds,	which	is	about	27.7	hours.	That's	not	the	same,	right?	So,
let's	focus	on	collections,	and	let's	see	which	tools	Python	gives	you	to	handle
them	with	efficiency	and	grace.

Many	of	the	concepts	we	will	see	in	this	chapter	are	based	on	those	of	the	iterator	and
iterable.	Simply	put,	the	ability	for	an	object	to	return	its	next	element	when	asked,	and	to
raise	a	StopIteration	exception	when	exhausted.	We'll	see	how	to	code	a	custom	iterator	and
iterable	objects	in	Chapter	6,	OOP,	Decorators,	and	Iterators.

Due	to	the	nature	of	the	objects	we're	going	to	explore	in	this	chapter,	I	was
often	forced	to	wrap	the	code	in	a	list	constructor.	This	is	because	passing	an
iterator/generator	to	list(...)	exhausts	it	and	puts	all	the	generated	items	in	a
newly	created	list,	which	I	can	easily	print	to	show	you	its	content.	This
technique	hinders	readability,	so	let	me	introduce	an	alias	for	list:

#	alias.py

>>>	range(7)

range(0,	7)

>>>	list(range(7))		#	put	all	elements	in	a	list	to	view	them

[0,	1,	2,	3,	4,	5,	6]

>>>	_	=	list		#	create	an	"alias"	to	list

>>>	_(range(7))		#	same	as	list(range(7))

[0,	1,	2,	3,	4,	5,	6]

Of	the	three	sections	I	have	highlighted,	the	first	one	is	the	call	we	need	to	do	in
order	to	show	what	would	be	generated	by	range(7),	the	second	one	is	the	moment
when	I	create	the	alias	to	list	(I	chose	the	hopefully	unobtrusive	underscore),	and
the	third	one	is	the	equivalent	call,	when	I	use	the	alias	instead	of	list.

Hopefully	readability	will	benefit	from	this,	and	please	keep	in	mind	that	I	will	assume	this
alias	to	have	been	defined	for	all	the	code	in	this	chapter.

The	map,	zip,	and	filter	functions
We'll	start	by	reviewing	map,	filter,	and	zip,	which	are	the	main	built-in	functions
one	can	employ	when	handling	collections,	and	then	we'll	learn	how	to	achieve
the	same	results	using	two	very	important	constructs:	comprehensions	and
generators.	Fasten	your	seatbelt!

map
According	to	the	official	Python	documentation:

map(function,	iterable,	...)	returns	an	iterator	that	applies	function	to	every	item	of	iterable,	yielding	the
results.	If	additional	iterable	arguments	are	passed,	function	must	take	that	many	arguments	and	is	applied
to	the	items	from	all	iterables	in	parallel.	With	multiple	iterables,	the	iterator	stops	when	the	shortest
iterable	is	exhausted.

We	will	explain	the	concept	of	yielding	later	on	in	the	chapter.	For	now,	let's
translate	this	into	code—we'll	use	a	lambda	function	that	takes	a	variable	number
of	positional	arguments,	and	just	returns	them	as	a	tuple:

#	map.example.py

>>>	map(lambda	*a:	a,	range(3))		#	1	iterable

<map	object	at	0x10acf8f98>		#	Not	useful!	Let's	use	alias

>>>	_(map(lambda	*a:	a,	range(3)))		#	1	iterable

[(0,),	(1,),	(2,)]

>>>	_(map(lambda	*a:	a,	range(3),	'abc'))		#	2	iterables

[(0,	'a'),	(1,	'b'),	(2,	'c')]

>>>	_(map(lambda	*a:	a,	range(3),	'abc',	range(4,	7)))		#	3

[(0,	'a',	4),	(1,	'b',	5),	(2,	'c',	6)]

>>>	#	map	stops	at	the	shortest	iterator

>>>	_(map(lambda	*a:	a,	(),	'abc'))		#	empty	tuple	is	shortest

[]

>>>	_(map(lambda	*a:	a,	(1,	2),	'abc'))		#	(1,	2)	shortest

[(1,	'a'),	(2,	'b')]

>>>	_(map(lambda	*a:	a,	(1,	2,	3,	4),	'abc'))		#	'abc'	shortest

[(1,	'a'),	(2,	'b'),	(3,	'c')]

In	the	preceding	code,	you	can	see	why	we	have	to	wrap	calls	in	list(...)	(or	its
alias,	_,	in	this	case).	Without	it,	I	get	the	string	representation	of	a	map	object,
which	is	not	really	useful	in	this	context,	is	it?

You	can	also	notice	how	the	elements	of	each	iterable	are	applied	to	the	function;
at	first,	the	first	element	of	each	iterable,	then	the	second	one	of	each	iterable,
and	so	on.	Notice	also	that	map	stops	when	the	shortest	of	the	iterables	we	called
it	with	is	exhausted.	This	is	actually	a	very	nice	behavior;	it	doesn't	force	us	to
level	off	all	the	iterables	to	a	common	length,	and	it	doesn't	break	if	they	aren't
all	the	same	length.

map	is	very	useful	when	you	have	to	apply	the	same	function	to	one	or	more
collections	of	objects.	As	a	more	interesting	example,	let's	see	the	decorate-
sort-undecorate	idiom	(also	known	as	Schwartzian	transform).	It's	a

technique	that	was	extremely	popular	when	Python	sorting	wasn't	providing	key-
functions,	and	therefore	is	less	used	today,	but	it's	a	cool	trick	that	still	comes	in
handy	once	in	a	while.

Let's	see	a	variation	of	it	in	the	next	example:	we	want	to	sort	in	descending
order	by	the	sum	of	credits	accumulated	by	students,	so	to	have	the	best	student
at	position	0.	We	write	a	function	to	produce	a	decorated	object,	we	sort,	and
then	we	undecorate.	Each	student	has	credits	in	three	(possibly	different)
subjects.	In	this	context,	to	decorate	an	object	means	to	transform	it,	either
adding	extra	data	to	it,	or	putting	it	into	another	object,	in	a	way	that	allows	us	to
be	able	to	sort	the	original	objects	the	way	we	want.	This	technique	has	nothing
to	do	with	Python	decorators,	which	we	will	explore	later	on	in	the	book.

After	the	sorting,	we	revert	the	decorated	objects	to	get	the	original	ones	from
them.	This	is	called	to	undecorate:

#	decorate.sort.undecorate.py

students	=	[

				dict(id=0,	credits=dict(math=9,	physics=6,	history=7)),

				dict(id=1,	credits=dict(math=6,	physics=7,	latin=10)),

				dict(id=2,	credits=dict(history=8,	physics=9,	chemistry=10)),

				dict(id=3,	credits=dict(math=5,	physics=5,	geography=7)),

]

def	decorate(student):

				#	create	a	2-tuple	(sum	of	credits,	student)	from	student	dict

				return	(sum(student['credits'].values()),	student)

def	undecorate(decorated_student):

				#	discard	sum	of	credits,	return	original	student	dict

				return	decorated_student[1]

students	=	sorted(map(decorate,	students),	reverse=True)

students	=	_(map(undecorate,	students))

Let's	start	by	understanding	what	each	student	object	is.	In	fact,	let's	print	the
first	one:

{'credits':	{'history':	7,	'math':	9,	'physics':	6},	'id':	0}

You	can	see	that	it's	a	dictionary	with	two	keys:	id	and	credits.	The	value	of
credits	is	also	a	dictionary	in	which	there	are	three	subject/grade	key/value	pairs.
As	I'm	sure	you	recall	from	our	visit	in	the	data	structures	world,	calling
dict.values()	returns	an	object	similar	to	iterable,	with	only	the	values.	Therefore,
sum(student['credits'].values())	for	the	first	student	is	equivalent	to	sum((9,	6,	7)).

Let's	print	the	result	of	calling	decorate	with	the	first	student:

>>>	decorate(students[0])

(22,	{'credits':	{'history':	7,	'math':	9,	'physics':	6},	'id':	0})

If	we	decorate	all	the	students	like	this,	we	can	sort	them	on	their	total	amount	of
credits	by	just	sorting	the	list	of	tuples.	In	order	to	apply	the	decoration	to	each
item	in	students,	we	call	map(decorate,	students).	Then	we	sort	the	result,	and	then
we	undecorate	in	a	similar	fashion.	If	you	have	gone	through	the	previous
chapters	correctly,	understanding	this	code	shouldn't	be	too	hard.

Printing	students	after	running	the	whole	code	yields:

$	python	decorate.sort.undecorate.py

[{'credits':	{'chemistry':	10,	'history':	8,	'physics':	9},	'id':	2},

	{'credits':	{'latin':	10,	'math':	6,	'physics':	7},	'id':	1},

	{'credits':	{'history':	7,	'math':	9,	'physics':	6},	'id':	0},

	{'credits':	{'geography':	7,	'math':	5,	'physics':	5},	'id':	3}]

And	you	can	see,	by	the	order	of	the	student	objects,	that	they	have	indeed	been
sorted	by	the	sum	of	their	credits.

For	more	on	the	decorate-sort-undecorate	idiom,	there's	a	very	nice	introduction	in	the
sorting	how-to	section	of	the	official	Python	documentation	(https://docs.python.org/3.7/howto/sorting.
html#the-old-way-using-decorate-sort-undecorate).

One	thing	to	notice	about	the	sorting	part:	what	if	two	or	more	students	share	the
same	total	sum?	The	sorting	algorithm	would	then	proceed	to	sort	the	tuples	by
comparing	the	student	objects	with	each	other.	This	doesn't	make	any	sense,	and
in	more	complex	cases,	could	lead	to	unpredictable	results,	or	even	errors.	If	you
want	to	be	sure	to	avoid	this	issue,	one	simple	solution	is	to	create	a	three-tuple
instead	of	a	two-tuple,	having	the	sum	of	credits	in	the	first	position,	the	position
of	the	student	object	in	the	students	list	in	the	second	one,	and	the	student	object
itself	in	the	third	one.	This	way,	if	the	sum	of	credits	is	the	same,	the	tuples	will
be	sorted	against	the	position,	which	will	always	be	different	and	therefore
enough	to	resolve	the	sorting	between	any	pair	of	tuples.

https://docs.python.org/3.7/howto/sorting.html#the-old-way-using-decorate-sort-undecorate

zip
We've	already	covered	zip	in	the	previous	chapters,	so	let's	just	define	it	properly
and	then	I	want	to	show	you	how	you	could	combine	it	with	map.

According	to	the	Python	documentation:

zip(*iterables)	returns	an	iterator	of	tuples,	where	the	i-th	tuple	contains	the	i-th	element	from	each	of	the
argument	sequences	or	iterables.	The	iterator	stops	when	the	shortest	input	iterable	is	exhausted.	With	a
single	iterable	argument,	it	returns	an	iterator	of	1-tuples.	With	no	arguments,	it	returns	an	empty	iterator.

Let's	see	an	example:

#	zip.grades.py

>>>	grades	=	[18,	23,	30,	27]

>>>	avgs	=	[22,	21,	29,	24]

>>>	_(zip(avgs,	grades))

[(22,	18),	(21,	23),	(29,	30),	(24,	27)]

>>>	_(map(lambda	*a:	a,	avgs,	grades))		#	equivalent	to	zip

[(22,	18),	(21,	23),	(29,	30),	(24,	27)]

In	the	preceding	code,	we're	zipping	together	the	average	and	the	grade	for	the
last	exam,	for	each	student.	Notice	how	easy	it	is	to	reproduce	zip	using	map	(last
two	instructions	of	the	example).	Here	as	well,	to	visualize	results	we	have	to
use	our	_	alias.

A	simple	example	on	the	combined	use	of	map	and	zip	could	be	a	way	of
calculating	the	element-wise	maximum	amongst	sequences,	that	is,	the
maximum	of	the	first	element	of	each	sequence,	then	the	maximum	of	the
second	one,	and	so	on:

#	maxims.py

>>>	a	=	[5,	9,	2,	4,	7]

>>>	b	=	[3,	7,	1,	9,	2]

>>>	c	=	[6,	8,	0,	5,	3]

>>>	maxs	=	map(lambda	n:	max(*n),	zip(a,	b,	c))

>>>	_(maxs)

[6,	9,	2,	9,	7]

Notice	how	easy	it	is	to	calculate	the	max	values	of	three	sequences.	zip	is	not
strictly	needed	of	course,	we	could	just	use	map.	Sometimes	it's	hard,	when
showing	a	simple	example,	to	grasp	why	using	a	technique	might	be	good	or
bad.	We	forget	that	we	aren't	always	in	control	of	the	source	code,	we	might

have	to	use	a	third-party	library,	which	we	can't	change	the	way	we	want.
Having	different	ways	to	work	with	data	is	therefore	really	helpful.

filter
According	to	the	Python	documentation:	filter(function,	iterable)	construct	an
iterator	from	those	elements	of	iterable	for	which	function	returns	True.	iterable
may	be	either	a	sequence,	a	container	which	supports	iteration,	or	an	iterator.	If
function	is	None,	the	identity	function	is	assumed,	that	is,	all	elements	of	iterable
that	are	false	are	removed.

Let's	see	a	very	quick	example:	#	filter.py
>>>	test	=	[2,	5,	8,	0,	0,	1,	0]
>>>	_(filter(None,	test))
[2,	5,	8,	1]
>>>	_(filter(lambda	x:	x,	test))	#	equivalent	to	previous	one
[2,	5,	8,	1]
>>>	_(filter(lambda	x:	x	>	4,	test))	#	keep	only	items	>	4
[5,	8]

In	the	preceding	code,	notice	how	the	second	call	to	filter	is	equivalent	to	the
first	one.	If	we	pass	a	function	that	takes	one	argument	and	returns	the	argument
itself,	only	those	arguments	that	are	True	will	make	the	function	return	True,
therefore	this	behavior	is	exactly	the	same	as	passing	None.	It's	often	a	very	good
exercise	to	mimic	some	of	the	built-in	Python	behaviors.	When	you	succeed,	you
can	say	you	fully	understand	how	Python	behaves	in	a	specific	situation.

Armed	with	map,	zip,	and	filter	(and	several	other	functions	from	the	Python
standard	library)	we	can	massage	sequences	very	effectively.	But	those	functions
are	not	the	only	way	to	do	it.	So	let's	see	one	of	the	nicest	features	of	Python:
comprehensions.

Comprehensions
Comprehensions	are	a	concise	notation,	both	perform	some	operation	for	a
collection	of	elements,	and/or	select	a	subset	of	them	that	meet	some	condition.
They	are	borrowed	from	the	functional	programming	language	Haskell	(https://w
ww.haskell.org/),	and	contribute	to	giving	Python	a	functional	flavor,	together	with
iterators	and	generators.

Python	offers	you	different	types	of	comprehensions:	list,	dict,	and	set.	We'll
concentrate	on	the	first	one	for	now,	and	then	it	will	be	easy	to	explain	the	other
two.

Let's	start	with	a	very	simple	example.	I	want	to	calculate	a	list	with	the	squares
of	the	first	10	natural	numbers.	How	would	you	do	it?	There	are	a	couple	of
equivalent	ways:

#	squares.map.py

#	If	you	code	like	this	you	are	not	a	Python	dev!	;)

>>>	squares	=	[]

>>>	for	n	in	range(10):

...					squares.append(n	**	2)

...

>>>	squares

[0,	1,	4,	9,	16,	25,	36,	49,	64,	81]

#	This	is	better,	one	line,	nice	and	readable

>>>	squares	=	map(lambda	n:	n**2,	range(10))

>>>	_(squares)

[0,	1,	4,	9,	16,	25,	36,	49,	64,	81]

The	preceding	example	should	be	nothing	new	for	you.	Let's	see	how	to	achieve
the	same	result	using	a	list	comprehension:

#	squares.comprehension.py

>>>	[n	**	2	for	n	in	range(10)]

[0,	1,	4,	9,	16,	25,	36,	49,	64,	81]

As	simple	as	that.	Isn't	it	elegant?	Basically	we	have	put	a	for	loop	within	square
brackets.	Let's	now	filter	out	the	odd	squares.	I'll	show	you	how	to	do	it	with	map
and	filter	first,	and	then	using	a	list	comprehension	again:

#	even.squares.py

#	using	map	and	filter

sq1	=	list(

https://www.haskell.org/

				map(lambda	n:	n	**	2,	filter(lambda	n:	not	n	%	2,	range(10)))

)

#	equivalent,	but	using	list	comprehensions

sq2	=	[n	**	2	for	n	in	range(10)	if	not	n	%	2]

print(sq1,	sq1	==	sq2)		#	prints:	[0,	4,	16,	36,	64]	True

I	think	that	now	the	difference	in	readability	is	evident.	The	list	comprehension
reads	much	better.	It's	almost	English:	give	me	all	squares	(n	**	2)	for	n	between	0
and	9	if	n	is	even.

According	to	the	Python	documentation:

A	list	comprehension	consists	of	brackets	containing	an	expression	followed	by	a	for	clause,	then	zero	or
more	for	or	if	clauses.	The	result	will	be	a	new	list	resulting	from	evaluating	the	expression	in	the	context	of
the	for	and	if	clauses	which	follow	it.

Nested	comprehensions
Let's	see	an	example	of	nested	loops.	It's	very	common	when	dealing	with
algorithms	to	have	to	iterate	on	a	sequence	using	two	placeholders.	The	first	one
runs	through	the	whole	sequence,	left	to	right.	The	second	one	as	well,	but	it
starts	from	the	first	one,	instead	of	0.	The	concept	is	that	of	testing	all	pairs
without	duplication.	Let's	see	the	classical	for	loop	equivalent:	#	pairs.for.loop.py
items	=	'ABCD'
pairs	=	[]

for	a	in	range(len(items)):
for	b	in	range(a,	len(items)):
pairs.append((items[a],	items[b]))

If	you	print	pairs	at	the	end,	you	get:

$	python	pairs.for.loop.py

[('A',	'A'),	('A',	'B'),	('A',	'C'),	('A',	'D'),	('B',	'B'),	('B',	'C'),	('B',	'D'),	

('C',	'C'),	('C',	'D'),	('D',	'D')]

All	the	tuples	with	the	same	letter	are	those	where	b	is	at	the	same	position	as	a.
Now,	let's	see	how	we	can	translate	this	in	a	list	comprehension:

#	pairs.list.comprehension.py

items	=	'ABCD'

pairs	=	[(items[a],	items[b])

				for	a	in	range(len(items))	for	b	in	range(a,	len(items))]

This	version	is	just	two	lines	long	and	achieves	the	same	result.	Notice	that	in
this	particular	case,	because	the	for	loop	over	b	has	a	dependency	on	a,	it	must
follow	the	for	loop	over	a	in	the	comprehension.	If	you	swap	them	around,	you'll
get	a	name	error.

Filtering	a	comprehension
We	can	apply	filtering	to	a	comprehension.	Let's	do	it	first	with	filter.	Let's	find
all	Pythagorean	triples	whose	short	sides	are	numbers	smaller	than	10.	We
obviously	don't	want	to	test	a	combination	twice,	and	therefore	we'll	use	a	trick
similar	to	the	one	we	saw	in	the	previous	example:

#	pythagorean.triple.py

from	math	import	sqrt

#	this	will	generate	all	possible	pairs

mx	=	10

triples	=	[(a,	b,	sqrt(a**2	+	b**2))

				for	a	in	range(1,	mx)	for	b	in	range(a,	mx)]

#	this	will	filter	out	all	non	pythagorean	triples

triples	=	list(

				filter(lambda	triple:	triple[2].is_integer(),	triples))

print(triples)		#	prints:	[(3,	4,	5.0),	(6,	8,	10.0)]

A	Pythagorean	triple	is	a	triple	(a,	b,	c)	of	integer	numbers	satisfying	the	equation	a2	+	b2	=
c2.

In	the	preceding	code,	we	generated	a	list	of	three-tuples,	triples.	Each	tuple
contains	two	integer	numbers	(the	legs),	and	the	hypotenuse	of	the	Pythagorean
triangle	whose	legs	are	the	first	two	numbers	in	the	tuple.	For	example,	when	a	is
3	and	b	is	4,	the	tuple	will	be	(3,	4,	5.0),	and	when	a	is	5	and	b	is	7,	the	tuple	will
be	(5,	7,	8.602325267042627).

After	having	all	the	triples	done,	we	need	to	filter	out	all	those	that	don't	have	a
hypotenuse	that	is	an	integer	number.	In	order	to	do	this,	we	filter	based	on
float_number.is_integer()	being	True.	This	means	that	of	the	two	example	tuples	I
showed	you	before,	the	one	with	5.0	hypotenuse	will	be	retained,	while	the	one
with	the	8.602325267042627	hypotenuse	will	be	discarded.

This	is	good,	but	I	don't	like	that	the	triple	has	two	integer	numbers	and	a	float.
They	are	supposed	to	be	all	integers,	so	let's	use	map	to	fix	this:

#	pythagorean.triple.int.py

from	math	import	sqrt

mx	=	10

triples	=	[(a,	b,	sqrt(a**2	+	b**2))

				for	a	in	range(1,	mx)	for	b	in	range(a,	mx)]

triples	=	filter(lambda	triple:	triple[2].is_integer(),	triples)

#	this	will	make	the	third	number	in	the	tuples	integer

triples	=	list(

				map(lambda	triple:	triple[:2]	+	(int(triple[2]),),	triples))

print(triples)		#	prints:	[(3,	4,	5),	(6,	8,	10)]

Notice	the	step	we	added.	We	take	each	element	in	triples	and	we	slice	it,	taking
only	the	first	two	elements	in	it.	Then,	we	concatenate	the	slice	with	a	one-tuple,
in	which	we	put	the	integer	version	of	that	float	number	that	we	didn't	like.
Seems	like	a	lot	of	work,	right?	Indeed	it	is.	Let's	see	how	to	do	all	this	with	a
list	comprehension:

#	pythagorean.triple.comprehension.py

from	math	import	sqrt

#	this	step	is	the	same	as	before

mx	=	10

triples	=	[(a,	b,	sqrt(a**2	+	b**2))

				for	a	in	range(1,	mx)	for	b	in	range(a,	mx)]

#	here	we	combine	filter	and	map	in	one	CLEAN	list	comprehension

triples	=	[(a,	b,	int(c))	for	a,	b,	c	in	triples	if	c.is_integer()]

print(triples)		#	prints:	[(3,	4,	5),	(6,	8,	10)]

I	know.	It's	much	better,	isn't	it?	It's	clean,	readable,	shorter.	In	other	words,	it's
elegant.

I'm	going	quite	fast	here,	as	anticipated	in	the	Summary	of	Chapter	4,	Functions,	the	Building
Blocks	of	Code.	Are	you	playing	with	this	code?	If	not,	I	suggest	you	do.	It's	very	important
that	you	play	around,	break	things,	change	things,	see	what	happens.	Make	sure	you	have	a
clear	understanding	of	what	is	going	on.	You	want	to	become	a	ninja,	right?

dict	comprehensions
Dictionary	and	set	comprehensions	work	exactly	like	the	list	ones,	only	there	is	a
little	difference	in	the	syntax.	The	following	example	will	suffice	to	explain
everything	you	need	to	know:

#	dictionary.comprehensions.py

from	string	import	ascii_lowercase

lettermap	=	dict((c,	k)	for	k,	c	in	enumerate(ascii_lowercase,	1))

If	you	print	lettermap,	you	will	see	the	following	(I	omitted	the	middle	results,
you	get	the	gist):

$	python	dictionary.comprehensions.py

{'a':	1,

	'b':	2,

	...

	'y':	25,

	'z':	26}

What	happens	in	the	preceding	code	is	that	we're	feeding	the	dict	constructor
with	a	comprehension	(technically,	a	generator	expression,	we'll	see	it	in	a	bit).
We	tell	the	dict	constructor	to	make	key/value	pairs	from	each	tuple	in	the
comprehension.	We	enumerate	the	sequence	of	all	lowercase	ASCII	letters,
starting	from	1,	using	enumerate.	Piece	of	cake.	There	is	also	another	way	to	do	the
same	thing,	which	is	closer	to	the	other	dictionary	syntax:

lettermap	=	{c:	k	for	k,	c	in	enumerate(ascii_lowercase,	1)}	

It	does	exactly	the	same	thing,	with	a	slightly	different	syntax	that	highlights	a
bit	more	of	the	key:	value	part.

Dictionaries	do	not	allow	duplication	in	the	keys,	as	shown	in	the	following
example:

#	dictionary.comprehensions.duplicates.py

word	=	'Hello'

swaps	=	{c:	c.swapcase()	for	c	in	word}

print(swaps)		#	prints:	{'H':	'h',	'e':	'E',	'l':	'L',	'o':	'O'}

We	create	a	dictionary	with	keys,	the	letters	in	the	'Hello'	string,	and	values	of
the	same	letters,	but	with	the	case	swapped.	Notice	there	is	only	one	'l':	'L'	pair.

The	constructor	doesn't	complain,	it	simply	reassigns	duplicates	to	the	latest
value.	Let's	make	this	clearer	with	another	example;	let's	assign	to	each	key	its
position	in	the	string:

#	dictionary.comprehensions.positions.py

word	=	'Hello'

positions	=	{c:	k	for	k,	c	in	enumerate(word)}

print(positions)		#	prints:	{'H':	0,	'e':	1,	'l':	3,	'o':	4}

Notice	the	value	associated	with	the	letter	'l':	3.	The	'l':	2	pair	isn't	there;	it	has
been	overridden	by	'l':	3.

set	comprehensions
The	set	comprehensions	are	very	similar	to	list	and	dictionary	ones.	Python
allows	both	the	set()	constructor	to	be	used,	or	the	explicit	{}	syntax.	Let's	see
one	quick	example:	#	set.comprehensions.py
word	=	'Hello'
letters1	=	set(c	for	c	in	word)
letters2	=	{c	for	c	in	word}
print(letters1)	#	prints:	{'H',	'o',	'e',	'l'}
print(letters1	==	letters2)	#	prints:	True

Notice	how	for	set	comprehensions,	as	for	dictionaries,	duplication	is	not
allowed	and	therefore	the	resulting	set	has	only	four	letters.	Also,	notice	that	the
expressions	assigned	to	letters1	and	letters2	produce	equivalent	sets.

The	syntax	used	to	create	letters2	is	very	similar	to	the	one	we	can	use	to	create	a
dictionary	comprehension.	You	can	spot	the	difference	only	by	the	fact	that
dictionaries	require	keys	and	values,	separated	by	columns,	while	sets	don't.

Generators
	

Generators	are	very	powerful	tool	that	Python	gifts	us	with.	They	are	based	on
the	concepts	of	iteration,	as	we	said	before,	and	they	allow	for	coding	patterns
that	combine	elegance	with	efficiency.

Generators	are	of	two	types:

Generator	functions:	These	are	very	similar	to	regular	functions,	but
instead	of	returning	results	through	return	statements,	they	use	yield,	which
allows	them	to	suspend	and	resume	their	state	between	each	call
Generator	expressions:	These	are	very	similar	to	the	list	comprehensions
we've	seen	in	this	chapter,	but	instead	of	returning	a	list	they	return	an
object	that	produces	results	one	by	one

	

	

Generator	functions
Generator	functions	behave	like	regular	functions	in	all	respects,	except	for	one
difference.	Instead	of	collecting	results	and	returning	them	at	once,	they	are
automatically	turned	into	iterators	that	yield	results	one	at	a	time	when	you	call
next	on	them.	Generator	functions	are	automatically	turned	into	their	own
iterators	by	Python.

This	is	all	very	theoretical	so,	let's	make	it	clear	why	such	a	mechanism	is	so
powerful,	and	then	let's	see	an	example.

Say	I	asked	you	to	count	out	loud	from	1	to	1,000,000.	You	start,	and	at	some
point	I	ask	you	to	stop.	After	some	time,	I	ask	you	to	resume.	At	this	point,	what
is	the	minimum	information	you	need	to	be	able	to	resume	correctly?	Well,	you
need	to	remember	the	last	number	you	called.	If	I	stopped	you	after	31,415,	you
will	just	go	on	with	31,416,	and	so	on.

The	point	is,	you	don't	need	to	remember	all	the	numbers	you	said	before
31,415,	nor	do	you	need	them	to	be	written	down	somewhere.	Well,	you	may	not
know	it,	but	you're	behaving	like	a	generator	already!

Take	a	good	look	at	the	following	code:

#	first.n.squares.py

def	get_squares(n):	#	classic	function	approach

				return	[x	**	2	for	x	in	range(n)]

print(get_squares(10))

def	get_squares_gen(n):		#	generator	approach

				for	x	in	range(n):

								yield	x	**	2		#	we	yield,	we	don't	return

print(list(get_squares_gen(10)))

The	result	of	the	two	print	statements	will	be	the	same:	[0,	1,	4,	9,	16,	25,	36,	49,
64,	81].	But	there	is	a	huge	difference	between	the	two	functions.	get_squares	is	a
classic	function	that	collects	all	the	squares	of	numbers	in	[0,	n)	in	a	list,	and
returns	it.	On	the	other	hand,	get_squares_gen	is	a	generator,	and	behaves	very
differently.	Each	time	the	interpreter	reaches	the	yield	line,	its	execution	is
suspended.	The	only	reason	those	print	statements	return	the	same	result	is
because	we	fed	get_squares_gen	to	the	list	constructor,	which	exhausts	the

generator	completely	by	asking	the	next	element	until	a	StopIteration	is	raised.
Let's	see	this	in	detail:

#	first.n.squares.manual.py

def	get_squares_gen(n):

				for	x	in	range(n):

								yield	x	**	2

squares	=	get_squares_gen(4)		#	this	creates	a	generator	object

print(squares)		#	<generator	object	get_squares_gen	at	0x10dd...>

print(next(squares))		#	prints:	0

print(next(squares))		#	prints:	1

print(next(squares))		#	prints:	4

print(next(squares))		#	prints:	9

#	the	following	raises	StopIteration,	the	generator	is	exhausted,

#	any	further	call	to	next	will	keep	raising	StopIteration

print(next(squares))

In	the	preceding	code,	each	time	we	call	next	on	the	generator	object,	we	either
start	it	(first	next)	or	make	it	resume	from	the	last	suspension	point	(any	other
next).

The	first	time	we	call	next	on	it,	we	get	0,	which	is	the	square	of	0,	then	1,	then	4,
then	9,	and	since	the	for	loop	stops	after	that	(n	is	4),	then	the	generator	naturally
ends.	A	classic	function	would	at	that	point	just	return	None,	but	in	order	to
comply	with	the	iteration	protocol,	a	generator	will	instead	raise	a	StopIteration
exception.

This	explains	how	a	for	loop	works.	When	you	call	for	k	in	range(n),	what
happens	under	the	hood	is	that	the	for	loop	gets	an	iterator	out	of	range(n)	and
starts	calling	next	on	it,	until	StopIteration	is	raised,	which	tells	the	for	loop	that
the	iteration	has	reached	its	end.

Having	this	behavior	built	into	every	iteration	aspect	of	Python	makes	generators
even	more	powerful	because	once	we	write	them,	we'll	be	able	to	plug	them	into
whatever	iteration	mechanism	we	want.

At	this	point,	you're	probably	asking	yourself	why	you	would	want	to	use	a
generator	instead	of	a	regular	function.	Well,	the	title	of	this	chapter	should
suggest	the	answer.	I'll	talk	about	performances	later,	so	for	now	let's	concentrate
on	another	aspect:	sometimes	generators	allow	you	to	do	something	that
wouldn't	be	possible	with	a	simple	list.	For	example,	say	you	want	to	analyze	all
permutations	of	a	sequence.	If	the	sequence	has	a	length	of	N,	then	the	number
of	its	permutations	is	N!.	This	means	that	if	the	sequence	is	10	elements	long,	the

number	of	permutations	is	3,628,800.	But	a	sequence	of	20	elements	would	have
2,432,902,008,176,640,000	permutations.	They	grow	factorially.

Now	imagine	you	have	a	classic	function	that	is	attempting	to	calculate	all
permutations,	put	them	in	a	list,	and	return	it	to	you.	With	10	elements,	it	would
require	probably	a	few	dozen	seconds,	but	for	20	elements	there	is	simply	no
way	that	it	can	be	done.

On	the	other	hand,	a	generator	function	will	be	able	to	start	the	computation	and
give	you	back	the	first	permutation,	then	the	second,	and	so	on.	Of	course	you
won't	have	the	time	to	parse	them	all,	there	are	too	many,	but	at	least	you'll	be
able	to	work	with	some	of	them.

Remember	when	we	were	talking	about	the	break	statement	in	for	loops?	When
we	found	a	number	dividing	a	candidate	prime	we	were	breaking	the	loop,	and
there	was	no	need	to	go	on.

Sometimes	it's	exactly	the	same,	only	the	amount	of	data	you	have	to	iterate	over
is	so	huge	that	you	cannot	keep	it	all	in	memory	in	a	list.	In	this	case,	generators
are	invaluable:	they	make	possible	what	wouldn't	be	possible	otherwise.

So,	in	order	to	save	memory	(and	time),	use	generator	functions	whenever
possible.

It's	also	worth	noting	that	you	can	use	the	return	statement	in	a	generator
function.	It	will	produce	a	StopIteration	exception	to	be	raised,	effectively	ending
the	iteration.	This	is	extremely	important.	If	a	return	statement	were	actually	to
make	the	function	return	something,	it	would	break	the	iteration	protocol.
Python's	consistency	prevents	this,	and	allows	us	great	ease	when	coding.	Let's
see	a	quick	example:

#	gen.yield.return.py

def	geometric_progression(a,	q):

				k	=	0

				while	True:

								result	=	a	*	q**k

								if	result	<=	100000:

												yield	result

								else:

												return

								k	+=	1

for	n	in	geometric_progression(2,	5):

				print(n)

The	preceding	code	yields	all	terms	of	the	geometric	progression,	a,	aq,	aq2,	aq3,
....	When	the	progression	produces	a	term	that	is	greater	than	100000,	the	generator
stops	(with	a	return	statement).	Running	the	code	produces	the	following	result:

$	python	gen.yield.return.py

2

10

50

250

1250

6250

31250

The	next	term	would	have	been	156250,	which	is	too	big.

Speaking	about	StopIteration,	as	of	Python	3.5,	the	way	that	exceptions	are	handled	in
generators	has	changed.	To	understand	the	implications	of	the	change	is	probably	asking	too
much	of	you	at	this	point,	so	just	know	that	you	can	read	all	about	it	in	PEP	479	(https://legacy.p
ython.org/dev/peps/pep-0479/).

https://legacy.python.org/dev/peps/pep-0479/

Going	beyond	next
At	the	beginning	of	this	chapter,	I	told	you	that	generator	objects	are	based	on
the	iteration	protocol.	We'll	see	in	Chapter	6,	OOP,	Decorators,	and	Iterators	a
complete	example	of	how	to	write	a	custom	iterator/iterable	object.	For	now,	I
just	want	you	to	understand	how	next()	works.

What	happens	when	you	call	next(generator)	is	that	you're	calling	the
generator.__next__()	method.	Remember,	a	method	is	just	a	function	that	belongs
to	an	object,	and	objects	in	Python	can	have	special	methods.	__next__()	is	just
one	of	these	and	its	purpose	is	to	return	the	next	element	of	the	iteration,	or	to
raise	StopIteration	when	the	iteration	is	over	and	there	are	no	more	elements	to
return.

If	you	recall,	in	Python,	an	object's	special	methods	are	also	called	magic	methods,	or	dunder
(from	"double	underscore")	methods.

When	we	write	a	generator	function,	Python	automatically	transforms	it	into	an
object	that	is	very	similar	to	an	iterator,	and	when	we	call	next(generator),	that	call
is	transformed	in	generator.__next__().	Let's	revisit	the	previous	example	about
generating	squares:

#	first.n.squares.manual.method.py

def	get_squares_gen(n):

				for	x	in	range(n):

								yield	x	**	2

squares	=	get_squares_gen(3)

print(squares.__next__())		#	prints:	0

print(squares.__next__())		#	prints:	1

print(squares.__next__())		#	prints:	4

#	the	following	raises	StopIteration,	the	generator	is	exhausted,

#	any	further	call	to	next	will	keep	raising	StopIteration

The	result	is	exactly	as	the	previous	example,	only	this	time	instead	of	using	the
next(squares)	proxy	call,	we're	directly	calling	squares.__next__().

Generator	objects	have	also	three	other	methods	that	allow	us	to	control	their
behavior:	send,	throw,	and	close.	send	allows	us	to	communicate	a	value	back	to	the
generator	object,	while	throw	and	close,	respectively,	allow	us	to	raise	an
exception	within	the	generator	and	close	it.	Their	use	is	quite	advanced	and	I

won't	be	covering	them	here	in	detail,	but	I	want	to	spend	a	few	words	on	send,
with	a	simple	example:

#	gen.send.preparation.py

def	counter(start=0):

				n	=	start

				while	True:

								yield	n

								n	+=	1

c	=	counter()

print(next(c))		#	prints:	0

print(next(c))		#	prints:	1

print(next(c))		#	prints:	2

The	preceding	iterator	creates	a	generator	object	that	will	run	forever.	You	can
keep	calling	it,	and	it	will	never	stop.	Alternatively,	you	can	put	it	in	a	for	loop,
for	example,	for	n	in	counter():	...,	and	it	will	go	on	forever	as	well.	But	what	if
you	wanted	to	stop	it	at	some	point?	One	solution	is	to	use	a	variable	to	control
the	while	loop.	Something	such	as	this:

#	gen.send.preparation.stop.py

stop	=	False

def	counter(start=0):

				n	=	start

				while	not	stop:

								yield	n

								n	+=	1

c	=	counter()

print(next(c))		#	prints:	0

print(next(c))		#	prints:	1

stop	=	True

print(next(c))		#	raises	StopIteration

This	will	do	it.	We	start	with	stop	=	False,	and	until	we	change	it	to	True,	the
generator	will	just	keep	going,	like	before.	The	moment	we	change	stop	to	True
though,	the	while	loop	will	exit,	and	the	next	call	will	raise	a	StopIteration
exception.	This	trick	works,	but	I	don't	like	it.	We	depend	on	an	external
variable,	and	this	can	lead	to	issues:	what	if	another	function	changes	that	stop?
Moreover,	the	code	is	scattered.	In	a	nutshell,	this	isn't	good	enough.

We	can	make	it	better	by	using	generator.send().	When	we	call	generator.send(),	the
value	that	we	feed	to	send	will	be	passed	in	to	the	generator,	execution	is
resumed,	and	we	can	fetch	it	via	the	yield	expression.	This	is	all	very
complicated	when	explained	with	words,	so	let's	see	an	example:

#	gen.send.py

def	counter(start=0):

				n	=	start

				while	True:

								result	=	yield	n													#	A

								print(type(result),	result)		#	B

								if	result	==	'Q':

												break

								n	+=	1

c	=	counter()

print(next(c))									#	C

print(c.send('Wow!'))		#	D

print(next(c))									#	E

print(c.send('Q'))					#	F

Execution	of	the	preceding	code	produces	the	following:

$	python	gen.send.py

0

<class	'str'>	Wow!

1

<class	'NoneType'>	None

2

<class	'str'>	Q

Traceback	(most	recent	call	last):

		File	"gen.send.py",	line	14,	in	<module>

				print(c.send('Q'))	#	F

StopIteration

I	think	it's	worth	going	through	this	code	line	by	line,	like	if	we	were	executing
it,	to	see	whether	we	can	understand	what's	going	on.

We	start	the	generator	execution	with	a	call	to	next	(#C).	Within	the	generator,	n	is
set	to	the	same	value	as	start.	The	while	loop	is	entered,	execution	stops	(#A)	and	n
(0)	is	yielded	back	to	the	caller.	0	is	printed	on	the	console.

We	then	call	send	(#D),	execution	resumes,	and	result	is	set	to	'Wow!'	(still	#A),	then
its	type	and	value	are	printed	on	the	console	(#B).	result	is	not	'Q',	therefore	n	is
incremented	by	1	and	execution	goes	back	to	the	while	condition,	which,	being
True,	evaluates	to	True	(that	wasn't	hard	to	guess,	right?).	Another	loop	cycle
begins,	execution	stops	again	(#A),	and	n	(1)	is	yielded	back	to	the	caller.	1	is
printed	on	the	console.

At	this	point,	we	call	next	(#E),	execution	is	resumed	again	(#A),	and	because	we
are	not	sending	anything	to	the	generator	explicitly,	Python	behaves	exactly	like
functions	that	are	not	using	the	return	statement;	the	yield	n	expression	(#A)
returns	None.	result	therefore	is	set	to	None,	and	its	type	and	value	are	yet	again
printed	on	the	console	(#B).	Execution	continues,	result	is	not	'Q'	so	n	is
incremented	by	1,	and	we	start	another	loop	again.	Execution	stops	again	(#A)	and

n	(2)	is	yielded	back	to	the	caller.	2	is	printed	on	the	console.

And	now	for	the	grand	finale:	we	call	send	again	(#F),	but	this	time	we	pass	in	'Q',
therefore	when	execution	is	resumed,	result	is	set	to	'Q'	(#A).	Its	type	and	value
are	printed	on	the	console	(#B),	and	then	finally	the	if	clause	evaluates	to	True	and
the	while	loop	is	stopped	by	the	break	statement.	The	generator	naturally
terminates,	which	means	a	StopIteration	exception	is	raised.	You	can	see	the	print
of	its	traceback	on	the	last	few	lines	printed	on	the	console.

This	is	not	at	all	simple	to	understand	at	first,	so	if	it's	not	clear	to	you,	don't	be
discouraged.	You	can	keep	reading	on	and	then	you	can	come	back	to	this
example	after	some	time.

Using	send	allows	for	interesting	patterns,	and	it's	worth	noting	that	send	can	also
be	used	to	start	the	execution	of	a	generator	(provided	you	call	it	with	None).

The	yield	from	expression
Another	interesting	construct	is	the	yield	from	expression.	This	expression	allows
you	to	yield	values	from	a	sub	iterator.	Its	use	allows	for	quite	advanced	patterns,
so	let's	just	see	a	very	quick	example	of	it:

#	gen.yield.for.py

def	print_squares(start,	end):

				for	n	in	range(start,	end):

								yield	n	**	2

for	n	in	print_squares(2,	5):

				print(n)

The	previous	code	prints	the	numbers	4,	9,	16	on	the	console	(on	separate	lines).
By	now,	I	expect	you	to	be	able	to	understand	it	by	yourself,	but	let's	quickly
recap	what	happens.	The	for	loop	outside	the	function	gets	an	iterator	from
print_squares(2,	5)	and	calls	next	on	it	until	iteration	is	over.	Every	time	the
generator	is	called,	execution	is	suspended	(and	later	resumed)	on	yield	n	**	2,
which	returns	the	square	of	the	current	n.	Let's	see	how	we	can	transform	this
code	benefiting	from	the	yield	from	expression:

#	gen.yield.from.py

def	print_squares(start,	end):

				yield	from	(n	**	2	for	n	in	range(start,	end))

for	n	in	print_squares(2,	5):

				print(n)

This	code	produces	the	same	result,	but	as	you	can	see	yield	from	is	actually
running	a	sub	iterator,	(n	**	2	...).	The	yield	from	expression	returns	to	the	caller
each	value	the	sub	iterator	is	producing.	It's	shorter	and	it	reads	better.

Generator	expressions
Let's	now	talk	about	the	other	techniques	to	generate	values	one	at	a	time.

The	syntax	is	exactly	the	same	as	list	comprehensions,	only,	instead	of	wrapping
the	comprehension	with	square	brackets,	you	wrap	it	with	round	brackets.	That
is	called	a	generator	expression.

In	general,	generator	expressions	behave	like	equivalent	list	comprehensions,
but	there	is	one	very	important	thing	to	remember:	generators	allow	for	one
iteration	only,	then	they	will	be	exhausted.	Let's	see	an	example:

#	generator.expressions.py

>>>	cubes	=	[k**3	for	k	in	range(10)]		#	regular	list

>>>	cubes

[0,	1,	8,	27,	64,	125,	216,	343,	512,	729]

>>>	type(cubes)

<class	'list'>

>>>	cubes_gen	=	(k**3	for	k	in	range(10))		#	create	as	generator

>>>	cubes_gen

<generator	object	<genexpr>	at	0x103fb5a98>

>>>	type(cubes_gen)

<class	'generator'>

>>>	_(cubes_gen)		#	this	will	exhaust	the	generator

[0,	1,	8,	27,	64,	125,	216,	343,	512,	729]

>>>	_(cubes_gen)		#	nothing	more	to	give

[]

Look	at	the	line	in	which	the	generator	expression	is	created	and	assigned	the
name	cubes_gen.	You	can	see	it's	a	generator	object.	In	order	to	see	its	elements,
we	can	use	a	for	loop,	a	manual	set	of	calls	to	next,	or	simply,	feed	it	to	a	list
constructor,	which	is	what	I	did	(remember	I'm	using	_	as	an	alias).

Notice	how,	once	the	generator	has	been	exhausted,	there	is	no	way	to	recover
the	same	elements	from	it	again.	We	need	to	recreate	it	if	we	want	to	use	it	from
scratch	again.

In	the	next	few	examples,	let's	see	how	to	reproduce	map	and	filter	using
generator	expressions:

#	gen.map.py

def	adder(*n):

				return	sum(n)

s1	=	sum(map(lambda	*n:	adder(*n),	range(100),	range(1,	101)))

s2	=	sum(adder(*n)	for	n	in	zip(range(100),	range(1,	101)))

In	the	previous	example,	s1	and	s2	are	exactly	the	same:	they	are	the	sum	of
adder(0,	1),	adder(1,	2),	adder(2,	3),	and	so	on,	which	translates	to	sum(1,	3,	5,	...).
The	syntax	is	different,	though	I	find	the	generator	expression	to	be	much	more
readable:

#	gen.filter.py

cubes	=	[x**3	for	x	in	range(10)]

odd_cubes1	=	filter(lambda	cube:	cube	%	2,	cubes)

odd_cubes2	=	(cube	for	cube	in	cubes	if	cube	%	2)

In	the	previous	example,	odd_cubes1	and	odd_cubes2	are	the	same:	they	generate	a
sequence	of	odd	cubes.	Yet	again,	I	prefer	the	generator	syntax.	This	should	be
evident	when	things	get	a	little	more	complicated:

#	gen.map.filter.py

N	=	20

cubes1	=	map(

				lambda	n:	(n,	n**3),

				filter(lambda	n:	n	%	3	==	0	or	n	%	5	==	0,	range(N))

)

cubes2	=	(

				(n,	n**3)	for	n	in	range(N)	if	n	%	3	==	0	or	n	%	5	==	0)

The	preceding	code	creates	two	generators,	cubes1	and	cubes2.	They	are	exactly	the
same,	and	return	two-tuples	(n,	n3)	when	n	is	a	multiple	of	3	or	5.

If	you	print	the	list	(cubes1),	you	get:	[(0,	0),	(3,	27),	(5,	125),	(6,	216),	(9,	729),
(10,	1000),	(12,	1728),	(15,	3375),	(18,	5832)].

See	how	much	better	the	generator	expression	reads?	It	may	be	debatable	when
things	are	very	simple,	but	as	soon	as	you	start	nesting	functions	a	bit,	like	we
did	in	this	example,	the	superiority	of	the	generator	syntax	is	evident.	It's	shorter,
simpler,	and	more	elegant.

Now,	let	me	ask	you	a	question—what	is	the	difference	between	the	following
lines	of	code:

#	sum.example.py

s1	=	sum([n**2	for	n	in	range(10**6)])

s2	=	sum((n**2	for	n	in	range(10**6)))

s3	=	sum(n**2	for	n	in	range(10**6))

Strictly	speaking,	they	all	produce	the	same	sum.	The	expressions	to	get	s2	and	s3

are	exactly	the	same	because	the	brackets	in	s2	are	redundant.	They	are	both
generator	expressions	inside	the	sum	function.	The	expression	to	get	s1	is	different
though.	Inside	sum,	we	find	a	list	comprehension.	This	means	that	in	order	to
calculate	s1,	the	sum	function	has	to	call	next	on	a	list	a	million	times.

Do	you	see	where	we're	losing	time	and	memory?	Before	sum	can	start	calling
next	on	that	list,	the	list	needs	to	have	been	created,	which	is	a	waste	of	time	and
space.	It's	much	better	for	sum	to	call	next	on	a	simple	generator	expression.	There
is	no	need	to	have	all	the	numbers	from	range(10**6)	stored	in	a	list.

So,	watch	out	for	extra	parentheses	when	you	write	your	expressions:	sometimes
it's	easy	to	skip	over	these	details,	which	makes	our	code	very	different.	If	you
don't	believe	me,	check	out	the	following	code:

#	sum.example.2.py

s	=	sum([n**2	for	n	in	range(10**8)])		#	this	is	killed

#	s	=	sum(n**2	for	n	in	range(10**8))				#	this	succeeds

print(s)		#	prints:	333333328333333350000000

Try	running	the	preceding	example.	If	I	run	the	first	line	on	my	old	Linux	box
with	8	GB	RAM,	this	is	what	I	get:

$	python	sum.example.2.py

Killed		

On	the	other	hand,	if	I	comment	out	the	first	line,	and	uncomment	the	second
one,	this	is	the	result:

$	python	sum.example.2.py

333333328333333350000000		

Sweet	generator	expressions.	The	difference	between	the	two	lines	is	that	in	the
first	one,	a	list	with	the	squares	of	the	first	hundred	million	numbers	must	be
made	before	being	able	to	sum	them	up.	That	list	is	huge,	and	we	ran	out	of
memory	(at	least,	my	box	did,	if	yours	doesn't	try	a	bigger	number),	therefore
Python	kills	the	process	for	us.	Sad	face.

But	when	we	remove	the	square	brackets,	we	don't	have	a	list	any	more.	The	sum
function	receives	0,	1,	4,	9,	and	so	on	until	the	last	one,	and	sums	them	up.	No
problems,	happy	face.

Some	performance	considerations
So,	we've	seen	that	we	have	many	different	ways	to	achieve	the	same	result.	We
can	use	any	combination	of	map,	zip,	and	filter,	or	choose	to	go	with	a
comprehension,	or	maybe	choose	to	use	a	generator,	either	function	or
expression.	We	may	even	decide	to	go	with	for	loops;	when	the	logic	to	apply	to
each	running	parameter	isn't	simple,	they	may	be	the	best	option.

Other	than	readability	concerns	though,	let's	talk	about	performance.	When	it
comes	to	performance,	usually	there	are	two	factors	that	play	a	major	role:	space
and	time.

Space	means	the	size	of	the	memory	that	a	data	structure	is	going	to	take	up.	The
best	way	to	choose	is	to	ask	yourself	if	you	really	need	a	list	(or	tuple)	or	if	a
simple	generator	function	would	work	as	well.	If	the	answer	is	yes,	go	with	the
generator,	it'll	save	a	lot	of	space.	The	same	goes	for	functions;	if	you	don't
actually	need	them	to	return	a	list	or	tuple,	then	you	can	transform	them	into
generator	functions	as	well.

Sometimes,	you	will	have	to	use	lists	(or	tuples),	for	example	there	are
algorithms	that	scan	sequences	using	multiple	pointers	or	maybe	they	run	over
the	sequence	more	than	once.	A	generator	function	(or	expression)	can	be
iterated	over	only	once	and	then	it's	exhausted,	so	in	these	situations,	it	wouldn't
be	the	right	choice.

Time	is	a	bit	harder	than	space	because	it	depends	on	more	variables	and
therefore	it	isn't	possible	to	state	that	X	is	faster	than	Y	with	absolute	certainty
for	all	cases.	However,	based	on	tests	run	on	Python	today,	we	can	say	that	on
average,	map	exhibits	performances	similar	to	list	comprehensions	and	generator
expressions,	while	for	loops	are	consistently	slower.

In	order	to	appreciate	the	reasoning	behind	these	statements	fully,	we	need	to
understand	how	Python	works,	and	this	is	a	bit	outside	the	scope	of	this	book,	as
it's	too	technical	in	detail.	Let's	just	say	that	map	and	list	comprehensions	run	at
C-language	speed	within	the	interpreter,	while	a	Python	for	loop	is	run	as	Python
bytecode	within	the	Python	Virtual	Machine,	which	is	often	much	slower.

There	are	several	different	implementations	of	Python.	The	original	one,	and	still	the	most
common	one,	is	CPython	(https://github.com/python/cpython),	which	is	written	in	C.	C	is	one	of	the
most	powerful	and	popular	programming	languages	still	used	today.

How	about	we	do	a	small	exercise	and	try	to	find	out	whether	the	claims	I	made
are	accurate?	I	will	write	a	small	piece	of	code	that	collects	the	results	of
divmod(a,	b)	for	a	certain	set	of	integer	pairs,	(a,	b).	I	will	use	the	time	function
from	the	time	module	to	calculate	the	elapsed	time	of	the	operations	that	I	will
perform:

#	performances.py

from	time	import	time

mx	=	5000

t	=	time()		#	start	time	for	the	for	loop

floop	=	[]

for	a	in	range(1,	mx):

				for	b	in	range(a,	mx):

								floop.append(divmod(a,	b))

print('for	loop:	{:.4f}	s'.format(time()	-	t))		#	elapsed	time

t	=	time()		#	start	time	for	the	list	comprehension

compr	=	[

				divmod(a,	b)	for	a	in	range(1,	mx)	for	b	in	range(a,	mx)]

print('list	comprehension:	{:.4f}	s'.format(time()	-	t))

t	=	time()		#	start	time	for	the	generator	expression

gener	=	list(

				divmod(a,	b)	for	a	in	range(1,	mx)	for	b	in	range(a,	mx))

print('generator	expression:	{:.4f}	s'.format(time()	-	t))

As	you	can	see,	we're	creating	three	lists:	floop,	compr,	and	gener.	Running	the	code
produces	the	following:

$	python	performances.py

for	loop:	4.4814	s

list	comprehension:	3.0210	s

generator	expression:	3.4334	s

The	list	comprehension	runs	in	~67%	of	the	time	taken	by	the	for	loop.	That's
impressive.	The	generator	expression	came	quite	close	to	that,	with	a	good
~77%.	The	reason	the	generator	expression	is	slower	is	that	we	need	to	feed	it	to
the	list()	constructor,	and	this	has	a	little	bit	more	overhead	compared	to	a	sheer
list	comprehension.	If	I	didn't	have	to	retain	the	results	of	those	calculations,	a
generator	would	probably	have	been	a	more	suitable	option.

An	interesting	result	is	to	notice	that,	within	the	body	of	the	for	loop,	we're
appending	data	to	a	list.	This	implies	that	Python	does	the	work,	behind	the
scenes,	of	resizing	it	every	now	and	then,	allocating	space	for	items	to	be

https://github.com/python/cpython

appended.	I	guessed	that	creating	a	list	of	zeros,	and	simply	filling	it	with	the
results,	might	have	sped	up	the	for	loop,	but	I	was	wrong.	Check	it	for	yourself,
you	just	need	mx	*	(mx	-	1)	//	2	elements	to	be	preallocated.

Let's	see	a	similar	example	that	compares	a	for	loop	and	a	map	call:

#	performances.map.py

from	time	import	time

mx	=	2	*	10	**	7

t	=	time()

absloop	=	[]

for	n	in	range(mx):

				absloop.append(abs(n))

print('for	loop:	{:.4f}	s'.format(time()	-	t))

t	=	time()

abslist	=	[abs(n)	for	n	in	range(mx)]

print('list	comprehension:	{:.4f}	s'.format(time()	-	t))

t	=	time()

absmap	=	list(map(abs,	range(mx)))

print('map:	{:.4f}	s'.format(time()	-	t))

This	code	is	conceptually	very	similar	to	the	previous	example.	The	only	thing
that	has	changed	is	that	we're	applying	the	abs	function	instead	of	the	divmod	one,
and	we	have	only	one	loop	instead	of	two	nested	ones.	Execution	gives	the
following	result:

$	python	performances.map.py

for	loop:	3.8948	s

list	comprehension:	1.8594	s

map:	1.1548	s

And	map	wins	the	race:	~62%	of	the	list	comprehension	and	~30%	of	the	for
loop.	Take	these	results	with	a	pinch	of	salt,	as	things	might	be	different
according	to	various	factors,	such	as	OS	and	Python	version.	But	in	general,	I
think	it's	safe	to	say	that	these	results	are	good	enough	for	having	an	idea	when	it
comes	to	coding	for	performance.

Apart	from	the	case-by-case	little	differences	though,	it's	quite	clear	that	the	for
loop	option	is	the	slowest	one,	so	let's	see	why	we	still	want	to	use	it.

Don't	overdo	comprehensions	and
generators
We've	seen	how	powerful	list	comprehensions	and	generator	expressions	can	be.
And	they	are,	don't	get	me	wrong,	but	the	feeling	that	I	have	when	I	deal	with
them	is	that	their	complexity	grows	exponentially.	The	more	you	try	to	do	within
a	single	comprehension	or	a	generator	expression,	the	harder	it	becomes	to	read,
understand,	and	therefore	maintain	or	change.

If	you	check	the	Zen	of	Python	again,	there	are	a	few	lines	that	I	think	are	worth
keeping	in	mind	when	dealing	with	optimized	code:

>>>	import	this

...

Explicit	is	better	than	implicit.

Simple	is	better	than	complex.

...

Readability	counts.

...

If	the	implementation	is	hard	to	explain,	it's	a	bad	idea.

...

Comprehensions	and	generator	expressions	are	more	implicit	than	explicit,	can
be	quite	difficult	to	read	and	understand,	and	they	can	be	hard	to	explain.
Sometimes	you	have	to	break	them	apart	using	the	inside-out	technique,	to
understand	what's	going	on.

To	give	you	an	example,	let's	talk	a	bit	more	about	Pythagorean	triples.	Just	to
remind	you,	a	Pythagorean	triple	is	a	tuple	of	positive	integers	(a,	b,	c)	such	that
a2	+	b2	=	c2.

We	saw	how	to	calculate	them	in	the	Filtering	a	comprehension	section,	but	we
did	it	in	a	very	inefficient	way	because	we	were	scanning	all	pairs	of	numbers
below	a	certain	threshold,	calculating	the	hypotenuse,	and	filtering	out	those	that
were	not	producing	a	triple.

A	better	way	to	get	a	list	of	Pythagorean	triples	is	to	generate	them	directly.
There	are	many	different	formulas	you	can	use	to	do	this,	we'll	use	the

Euclidean	formula.

This	formula	says	that	any	triple	(a,	b,	c),	where	a	=	m2	-	n2,	b	=	2mn,	c	=	m2	+
n2,	with	m	and	n	positive	integers	such	that	m	>	n,	is	a	Pythagorean	triple.	For
example,	when	m	=	2	and	n	=	1,	we	find	the	smallest	triple:	(3,	4,	5).

There	is	one	catch	though:	consider	the	triple	(6,	8,	10)	that	is	just	like	(3,	4,	5)
with	all	the	numbers	multiplied	by	2.	This	triple	is	definitely	Pythagorean,	since
62	+	82	=	102	,	but	we	can	derive	it	from	(3,	4,	5)	simply	by	multiplying	each	of
its	elements	by	2.	Same	goes	for	(9,	12,	15),	(12,	16,	20),	and	in	general	for	all
the	triples	that	we	can	write	as	(3k,	4k,	5k),	with	k	being	a	positive	integer
greater	than	1.

A	triple	that	cannot	be	obtained	by	multiplying	the	elements	of	another	one	by
some	factor,	k,	is	called	primitive.	Another	way	of	stating	this	is:	if	the	three
elements	of	a	triple	are	coprime,	then	the	triple	is	primitive.	Two	numbers	are
coprime	when	they	don't	share	any	prime	factor	amongst	their	divisors,	that	is,
their	greatest	common	divisor	(GCD)	is	1.	For	example,	3	and	5	are	coprime,
while	3	and	6	are	not,	because	they	are	both	divisible	by	3.

So,	the	Euclidean	formula	tells	us	that	if	m	and	n	are	coprime,	and	m	-	n	is	odd,
the	triple	they	generate	is	primitive.	In	the	following	example,	we	will	write	a
generator	expression	to	calculate	all	the	primitive	Pythagorean	triples	whose
hypotenuse	(c)	is	less	than	or	equal	to	some	integer,	N.	This	means	we	want	all
triples	for	which	m2	+	n2	≤	N.	When	n	is	1,	the	formula	looks	like	this:	m2	≤	N	-
1,	which	means	we	can	approximate	the	calculation	with	an	upper	bound	of	m	≤
N1/2.

So,	to	recap:	m	must	be	greater	than	n,	they	must	also	be	coprime,	and	their
difference	m	-	n	must	be	odd.	Moreover,	in	order	to	avoid	useless	calculations,
we'll	put	the	upper	bound	for	m	at	floor(sqrt(N))	+	1.

The	floor	function	for	a	real	number,	x,	gives	the	maximum	integer,	n,	such	that	n	<	x,	for
example,	floor(3.8)	=	3,	floor(13.1)	=	13.	Taking	floor(sqrt(N))	+	1	means	taking	the	integer
part	of	the	square	root	of	N	and	adding	a	minimal	margin	just	to	make	sure	we	don't	miss	any
numbers.

Let's	put	all	of	this	into	code,	step	by	step.	Let's	start	by	writing	a	simple	gcd
function	that	uses	Euclid's	algorithm:

#	functions.py

def	gcd(a,	b):

				"""Calculate	the	Greatest	Common	Divisor	of	(a,	b).	"""

				while	b	!=	0:

								a,	b	=	b,	a	%	b

				return	a

The	explanation	of	Euclid's	algorithm	is	available	on	the	web,	so	I	won't	spend
any	time	here	talking	about	it;	we	need	to	focus	on	the	generator	expression.	The
next	step	is	to	use	the	knowledge	we	gathered	before	to	generate	a	list	of
primitive	Pythagorean	triples:

#	pythagorean.triple.generation.py

from	functions	import	gcd

N	=	50

triples	=	sorted(#	1

				((a,	b,	c)	for	a,	b,	c	in	(#	2

								((m**2	-	n**2),	(2	*	m	*	n),	(m**2	+	n**2))		#	3

								for	m	in	range(1,	int(N**.5)	+	1)												#	4

								for	n	in	range(1,	m)																									#	5

								if	(m	-	n)	%	2	and	gcd(m,	n)	==	1												#	6

)	if	c	<=	N),	key=lambda	*triple:	sum(*triple)			#	7

)

There	you	go.	It's	not	easy	to	read,	so	let's	go	through	it	line	by	line.	At	#3,	we
start	a	generator	expression	that	is	creating	triples.	You	can	see	from	#4	and	#5
that	we're	looping	on	m	in	[1,	M]	with	M	being	the	integer	part	of	sqrt(N),	plus	1.
On	the	other	hand,	n	loops	within	[1,	m),	to	respect	the	m	>	n	rule.	It's	worth
noting	how	I	calculated	sqrt(N),	that	is,	N**.5,	which	is	just	another	way	to	do	it
that	I	wanted	to	show	you.

At	#6,	you	can	see	the	filtering	conditions	to	make	the	triples	primitive:	(m	-	n)	%
2	evaluates	to	True	when	(m	-	n)	is	odd,	and	gcd(m,	n)	==	1	means	m	and	n	are
coprime.	With	these	in	place,	we	know	the	triples	will	be	primitive.	This	takes
care	of	the	innermost	generator	expression.	The	outermost	one	starts	at	#2,	and
finishes	at	#7.	We	take	the	triples	(a,	b,	c)	in	(...innermost	generator...)	such	that	c
<=	N.

Finally,	at	#1	we	apply	sorting,	to	present	the	list	in	order.	At	#7,	after	the
outermost	generator	expression	is	closed,	you	can	see	that	we	specify	the	sorting
key	to	be	the	sum	a	+	b	+	c.	This	is	just	my	personal	preference,	there	is	no
mathematical	reason	behind	it.

So,	what	do	you	think?	Was	it	straightforward	to	read?	I	don't	think	so.	And
believe	me,	this	is	still	a	simple	example;	I	have	seen	much	worse	in	my	career.

This	kind	of	code	is	difficult	to	understand,	debug,	and	modify.	It	shouldn't	find
a	place	in	a	professional	environment.

So,	let's	see	if	we	can	rewrite	this	code	into	something	more	readable:

#	pythagorean.triple.generation.for.py

from	functions	import	gcd

def	gen_triples(N):

				for	m	in	range(1,	int(N**.5)	+	1):																		#	1

								for	n	in	range(1,	m):																											#	2

												if	(m	-	n)	%	2	and	gcd(m,	n)	==	1:										#	3

																c	=	m**2	+	n**2																									#	4

																if	c	<=	N:																														#	5

																				a	=	m**2	-	n**2																					#	6

																				b	=	2	*	m	*	n																							#	7

																				yield	(a,	b,	c)																					#	8

triples	=	sorted(

				gen_triples(50),	key=lambda	*triple:	sum(*triple))		#	9

This	is	so	much	better.	Let's	go	through	it,	line	by	line.	You'll	see	how	much
easier	it	is	to	understand.

We	start	looping	at	#1	and	#2,	in	exactly	the	same	way	we	were	looping	in	the
previous	example.	On	line	#3,	we	have	the	filtering	for	primitive	triples.	On	line
#4,	we	deviate	a	bit	from	what	we	were	doing	before:	we	calculate	c,	and	on	line
#5,	we	filter	on	c	being	less	than	or	equal	to	N.	Only	when	c	satisfies	that
condition,	we	do	calculate	a	and	b,	and	yield	the	resulting	tuple.	It's	always	good
to	delay	all	calculations	for	as	much	as	possible	so	that	we	don't	waste	time	and
CPU.	On	the	last	line,	we	apply	sorting	with	the	same	key	we	were	using	in	the
generator	expression	example.

I	hope	you	agree,	this	example	is	easier	to	understand.	And	I	promise	you,	if	you
have	to	modify	the	code	one	day,	you'll	find	that	modifying	this	one	is	easy,
while	to	modify	the	other	version	will	take	much	longer	(and	it	will	be	more
error-prone).

If	you	print	the	results	of	both	examples	(they	are	the	same),	you	will	get	this:

[(3,	4,	5),	(5,	12,	13),	(15,	8,	17),	(7,	24,	25),	(21,	20,	29),	(35,	12,	37),	(9,	40,	

41)]		

The	moral	of	the	story	is,	try	and	use	comprehensions	and	generator	expressions
as	much	as	you	can,	but	if	the	code	starts	to	be	complicated	to	modify	or	to	read,

you	may	want	to	refactor	it	into	something	more	readable.	Your	colleagues	will
thank	you.

Name	localization
Now	that	we	are	familiar	with	all	types	of	comprehensions	and	generator
expression,	let's	talk	about	name	localization	within	them.	Python	3.*	localizes
loop	variables	in	all	four	forms	of	comprehensions:	list,	dict,	set,	and	generator
expressions.	This	behavior	is	therefore	different	from	that	of	the	for	loop.	Let's
see	a	simple	example	to	show	all	the	cases:	#	scopes.py
A	=	100
ex1	=	[A	for	A	in	range(5)]
print(A)	#	prints:	100

ex2	=	list(A	for	A	in	range(5))
print(A)	#	prints:	100

ex3	=	dict((A,	2	*	A)	for	A	in	range(5))
print(A)	#	prints:	100

ex4	=	set(A	for	A	in	range(5))
print(A)	#	prints:	100

s	=	0
for	A	in	range(5):
s	+=	A
print(A)	#	prints:	4

In	the	preceding	code,	we	declare	a	global	name,	A	=	100,	and	then	we	exercise
the	four	comprehensions:	list,	generator	expression,	dictionary,	and	set.	None	of
them	alter	the	global	name,	A.	Conversely,	you	can	see	at	the	end	that	the	for	loop
modifies	it.	The	last	print	statement	prints	4.

Let's	see	what	happens	if	A	wasn't	there:

#	scopes.noglobal.py

ex1	=	[A	for	A	in	range(5)]

print(A)		#	breaks:	NameError:	name	'A'	is	not	defined

The	preceding	code	would	work	the	same	with	any	of	the	four	types	of

comprehensions.	After	we	run	the	first	line,	A	is	not	defined	in	the	global
namespace.	Once	again,	the	for	loop	behaves	differently:

#	scopes.for.py

s	=	0

for	A	in	range(5):

				s	+=	A

print(A)	#	prints:	4

print(globals())

The	preceding	code	shows	that	after	a	for	loop,	if	the	loop	variable	wasn't
defined	before	it,	we	can	find	it	in	the	global	frame.	To	make	sure	of	it,	let's	take
a	peek	at	it	by	calling	the	globals()	built-in	function:

$	python	scopes.for.py

4

{'__name__':	'__main__',	'__doc__':	None,	...,	's':	10,	'A':	4}

Together	with	a	lot	of	other	boilerplate	stuff	that	I	have	omitted,	we	can	spot	'A':
4.

Generation	behavior	in	built-ins
Among	the	built-in	types,	the	generation	behavior	is	now	quite	common.	This	is
a	major	difference	between	Python	2	and	Python	3.	A	lot	of	functions,	such	as
map,	zip,	and	filter,	have	been	transformed	so	that	they	return	objects	that	behave
like	iterables.	The	idea	behind	this	change	is	that	if	you	need	to	make	a	list	of
those	results,	you	can	always	wrap	the	call	in	a	list()	class,	and	you're	done.	On
the	other	hand,	if	you	just	need	to	iterate	and	want	to	keep	the	impact	on
memory	as	light	as	possible,	you	can	use	those	functions	safely.

Another	notable	example	is	the	range	function.	In	Python	2	it	returns	a	list,	and
there	is	another	function	called	xrange	that	returns	an	object	that	you	can	iterate
on,	which	generates	the	numbers	on	the	fly.	In	Python	3	this	function	has	gone,
and	range	now	behaves	like	it.

But	this	concept,	in	general,	is	now	quite	widespread.	You	can	find	it	in	the	open()
function,	which	is	used	to	operate	on	file	objects	(we'll	see	it	in	Chapter	7,	Files
and	Data	Persistence),	but	also	in	enumerate,	in	the	dictionary	keys,	values,	and	items
methods,	and	several	other	places.

It	all	makes	sense:	Python's	aim	is	to	try	to	reduce	the	memory	footprint	by
avoiding	wasting	space	wherever	possible,	especially	in	those	functions	and
methods	that	are	used	extensively	in	most	situations.

Do	you	remember	at	the	beginning	of	this	chapter?	I	said	that	it	makes	more
sense	to	optimize	the	performances	of	code	that	has	to	deal	with	a	lot	of	objects,
rather	than	shaving	off	a	few	milliseconds	from	a	function	that	we	call	twice	a
day.

One	last	example
Before	we	finish	this	chapter,	I'll	show	you	a	simple	problem	that	I	used	to
submit	to	candidates	for	a	Python	developer	role	in	a	company	I	used	to	work
for.

The	problem	is	the	following:	given	the	sequence	0	1	1	2	3	5	8	13	21	...,	write	a
function	that	would	return	the	terms	of	this	sequence	up	to	some	limit,	N.

If	you	haven't	recognized	it,	that	is	the	Fibonacci	sequence,	which	is	defined	as
F(0)	=	0,	F(1)	=	1	and,	for	any	n	>	1,	F(n)	=	F(n-1)	+	F(n-2).	This	sequence	is
excellent	to	test	knowledge	about	recursion,	memoization	techniques,	and	other
technical	details,	but	in	this	case,	it	was	a	good	opportunity	to	check	whether	the
candidate	knew	about	generators.

Let's	start	from	a	rudimentary	version	of	a	function,	and	then	improve	on	it:

#	fibonacci.first.py

def	fibonacci(N):

				"""Return	all	fibonacci	numbers	up	to	N.	"""

				result	=	[0]

				next_n	=	1

				while	next_n	<=	N:

								result.append(next_n)

								next_n	=	sum(result[-2:])

				return	result

print(fibonacci(0))			#	[0]

print(fibonacci(1))			#	[0,	1,	1]

print(fibonacci(50))		#	[0,	1,	1,	2,	3,	5,	8,	13,	21,	34]

From	the	top:	we	set	up	the	result	list	to	a	starting	value	of	[0].	Then	we	start	the
iteration	from	the	next	element	(next_n),	which	is	1.	While	the	next	element	is	not
greater	than	N,	we	keep	appending	it	to	the	list	and	calculating	the	next.	We
calculate	the	next	element	by	taking	a	slice	of	the	last	two	elements	in	the	result
list	and	passing	it	to	the	sum	function.	Add	some	print	statements	here	and	there	if
this	is	not	clear	to	you,	but	by	now	I	would	expect	it	not	to	be	an	issue.

When	the	condition	of	the	while	loop	evaluates	to	False,	we	exit	the	loop	and
return	result.	You	can	see	the	result	of	those	print	statements	in	the	comments
next	to	each	of	them.

At	this	point,	I	would	ask	the	candidate	the	following	question:	What	if	I	just
wanted	to	iterate	over	those	numbers?	A	good	candidate	would	then	change	the
code	to	what	you'll	find	here	(an	excellent	candidate	would	have	started	with	it!):

#	fibonacci.second.py

def	fibonacci(N):

				"""Return	all	fibonacci	numbers	up	to	N.	"""

				yield	0

				if	N	==	0:

								return

				a	=	0

				b	=	1

				while	b	<=	N:

								yield	b

								a,	b	=	b,	a	+	b

print(list(fibonacci(0)))			#	[0]

print(list(fibonacci(1)))			#	[0,	1,	1]

print(list(fibonacci(50)))		#	[0,	1,	1,	2,	3,	5,	8,	13,	21,	34]

This	is	actually	one	of	the	solutions	I	was	given.	I	don't	know	why	I	kept	it,	but
I'm	glad	I	did	so	I	can	show	it	to	you.	Now,	the	fibonacci	function	is	a	generator
function.	First	we	yield	0,	then	if	N	is	0,	we	return	(this	will	cause	a	StopIteration
exception	to	be	raised).	If	that's	not	the	case,	we	start	iterating,	yielding	b	at
every	loop	cycle,	and	then	updating	a	and	b.	All	we	need	in	order	to	be	able	to
produce	the	next	element	of	the	sequence	is	the	past	two:	a	and	b,	respectively.

This	code	is	much	better,	has	a	lighter	memory	footprint	and	all	we	have	to	do	to
get	a	list	of	Fibonacci	numbers	is	to	wrap	the	call	with	list(),	as	usual.	But	what
about	elegance?	I	can't	leave	it	like	that,	can	I?	Let's	try	the	following:

#	fibonacci.elegant.py

def	fibonacci(N):

				"""Return	all	fibonacci	numbers	up	to	N.	"""

				a,	b	=	0,	1

				while	a	<=	N:

								yield	a

								a,	b	=	b,	a	+	b

Much	better.	The	whole	body	of	the	function	is	four	lines,	five	if	you	count	the
docstring.	Notice	how,	in	this	case,	using	tuple	assignment	(a,	b	=	0,	1	and	a,	b	=
b,	a	+	b)	helps	in	making	the	code	shorter,	and	more	readable.

Summary
In	this	chapter,	we	explored	the	concept	of	iteration	and	generation	a	bit	more
deeply.	We	looked	at	the	map,	zip,	and	filter	functions	in	detail,	and	learned	how
to	use	them	as	an	alternative	to	a	regular	for	loop	approach.

Then	we	covered	the	concept	of	comprehensions,	for	lists,	dictionaries,	and	sets.
We	explored	their	syntax	and	how	to	use	them	as	an	alternative	to	both	the
classic	for	loop	approach	and	also	to	the	use	of	the	map,	zip,	and	filter	functions.

Finally,	we	talked	about	the	concept	of	generation,	in	two	forms:	generator
functions	and	expressions.	We	learned	how	to	save	time	and	space	by	using
generation	techniques	and	saw	how	they	can	make	possible	what	wouldn't
normally	be	if	we	used	a	conventional	approach	based	on	lists.

We	talked	about	performance,	and	saw	that	for	loops	are	last	in	terms	of	speed,
but	they	provide	the	best	readability	and	flexibility	to	change.	On	the	other	hand,
functions	such	as	map	and	filter,	and	list	comprehensions,	can	be	much	faster.

The	complexity	of	the	code	written	using	these	techniques	grows	exponentially
so,	in	order	to	favor	readability	and	ease	of	maintainability,	we	still	need	to	use
the	classic	for	loop	approach	at	times.	Another	difference	is	in	the	name
localization,	where	the	for	loop	behaves	differently	from	all	other	types	of
comprehensions.

The	next	chapter	will	be	all	about	objects	and	classes.	It	is	structurally	similar	to
this	one,	in	that	we	won't	explore	many	different	subjects,	just	a	few	of	them,	but
we'll	try	to	dive	into	them	a	little	bit	more	deeply.

Make	sure	you	understand	the	concepts	of	this	chapter	before	moving	on	to	the
next	one.	We're	building	a	wall	brick	by	brick,	and	if	the	foundation	is	not	solid,
we	won't	get	very	far.

OOP,	Decorators,	and	Iterators
La	classe	non	è	acqua.	(Class	will	out)

–	Italian	saying

I	could	probably	write	a	whole	book	about	object-oriented	programming
(OOP)	and	classes.	In	this	chapter,	I'm	facing	the	hard	challenge	of	finding	the
balance	between	breadth	and	depth.	There	are	simply	too	many	things	to	tell,
and	plenty	of	them	would	take	more	than	this	whole	chapter	if	I	described	them
in	depth.	Therefore,	I	will	try	to	give	you	what	I	think	is	a	good	panoramic	view
of	the	fundamentals,	plus	a	few	things	that	may	come	in	handy	in	the	next
chapters.	Python's	official	documentation	will	help	in	filling	the	gaps.

In	this	chapter,	we	are	going	to	cover	the	following	topics:

Decorators
OOP	with	Python
Iterators

Decorators
In	Chapter	5,	Saving	Time	and	Memory,	I	measured	the	execution	time	of
various	expressions.	If	you	recall,	I	had	to	initialize	a	variable	to	the	start	time,
and	subtract	it	from	the	current	time	after	execution	in	order	to	calculate	the
elapsed	time.	I	also	printed	it	on	the	console	after	each	measurement.	That	was
very	tedious.

Every	time	you	find	yourself	repeating	things,	an	alarm	bell	should	go	off.	Can
you	put	that	code	in	a	function	and	avoid	repetition?	The	answer	most	of	the
time	is	yes,	so	let's	look	at	an	example:

#	decorators/time.measure.start.py

from	time	import	sleep,	time

def	f():

				sleep(.3)

def	g():

				sleep(.5)

t	=	time()

f()

print('f	took:',	time()	-	t)		#	f	took:	0.3001396656036377

t	=	time()

g()

print('g	took:',	time()	-	t)		#	g	took:	0.5039339065551758

In	the	preceding	code,	I	defined	two	functions,	f	and	g,	which	do	nothing	but
sleep	(by	0.3	and	0.5	seconds,	respectively).	I	used	the	sleep	function	to	suspend
the	execution	for	the	desired	amount	of	time.	Notice	how	the	time	measure	is
pretty	accurate.	Now,	how	do	we	avoid	repeating	that	code	and	those
calculations?	One	first	potential	approach	could	be	the	following:

#	decorators/time.measure.dry.py

from	time	import	sleep,	time

def	f():

				sleep(.3)

def	g():

				sleep(.5)

def	measure(func):

				t	=	time()

				func()

				print(func.__name__,	'took:',	time()	-	t)

measure(f)		#	f	took:	0.30434322357177734

measure(g)		#	g	took:	0.5048270225524902

Ah,	much	better	now.	The	whole	timing	mechanism	has	been	encapsulated	into	a
function	so	we	don't	repeat	code.	We	print	the	function	name	dynamically	and
it's	easy	enough	to	code.	What	if	we	need	to	pass	arguments	to	the	function	we
measure?	This	code	would	get	just	a	bit	more	complicated,	so	let's	see	an
example:

#	decorators/time.measure.arguments.py

from	time	import	sleep,	time

def	f(sleep_time=0.1):

				sleep(sleep_time)

def	measure(func,	*args,	**kwargs):

				t	=	time()

				func(*args,	**kwargs)

				print(func.__name__,	'took:',	time()	-	t)

measure(f,	sleep_time=0.3)		#	f	took:	0.30056095123291016

measure(f,	0.2)		#	f	took:	0.2033553123474121

Now,	f	is	expecting	to	be	fed	sleep_time	(with	a	default	value	of	0.1),	so	we	don't
need	g	any	more.	I	also	had	to	change	the	measure	function	so	that	it	is	now
accepts	a	function,	any	variable	positional	arguments,	and	any	variable	keyword
arguments.	In	this	way,	whatever	we	call	measure	with,	we	redirect	those
arguments	to	the	call	to	func	we	do	inside.

This	is	very	good,	but	we	can	push	it	a	little	bit	further.	Let's	say	we	want	to
somehow	have	that	timing	behavior	built-in	into	the	f	function,	so	that	we	could
just	call	it	and	have	that	measure	taken.	Here's	how	we	could	do	it:

#	decorators/time.measure.deco1.py

from	time	import	sleep,	time

def	f(sleep_time=0.1):

				sleep(sleep_time)

def	measure(func):

				def	wrapper(*args,	**kwargs):

								t	=	time()

								func(*args,	**kwargs)

								print(func.__name__,	'took:',	time()	-	t)

				return	wrapper

f	=	measure(f)		#	decoration	point

f(0.2)		#	f	took:	0.20372915267944336

f(sleep_time=0.3)		#	f	took:	0.30455899238586426

print(f.__name__)		#	wrapper	<-	ouch!

The	preceding	code	is	probably	not	so	straightforward.	Let's	see	what	happens
here.	The	magic	is	in	the	decoration	point.	We	basically	reassign	f	with
whatever	is	returned	by	measure	when	we	call	it	with	f	as	an	argument.	Within
measure,	we	define	another	function,	wrapper,	and	then	we	return	it.	So,	the	net
effect	is	that	after	the	decoration	point,	when	we	call	f,	we're	actually	calling
wrapper.	Since	the	wrapper	inside	is	calling	func,	which	is	f,	we	are	actually	closing
the	loop	like	that.	If	you	don't	believe	me,	take	a	look	at	the	last	line.

wrapper	is	actually...	a	wrapper.	It	takes	variable	and	positional	arguments,	and
calls	f	with	them.	It	also	does	the	time	measurement	calculation	around	the	call.

This	technique	is	called	decoration,	and	measure	is,	effectively,	a	decorator.	This
paradigm	became	so	popular	and	widely	used	that	at	some	point,	Python	added	a
special	syntax	for	it	(check	out	https://www.python.org/dev/peps/pep-0318/).	Let's
explore	three	cases:	one	decorator,	two	decorators,	and	one	decorator	that	takes
arguments:

#	decorators/syntax.py

def	func(arg1,	arg2,	...):

				pass

func	=	decorator(func)

#	is	equivalent	to	the	following:

@decorator

def	func(arg1,	arg2,	...):

				pass

Basically,	instead	of	manually	reassigning	the	function	to	what	was	returned	by
the	decorator,	we	prepend	the	definition	of	the	function	with	the	special	syntax,
@decorator_name.

We	can	apply	multiple	decorators	to	the	same	function	in	the	following	way:

#	decorators/syntax.py

def	func(arg1,	arg2,	...):

				pass

func	=	deco1(deco2(func))

#	is	equivalent	to	the	following:

@deco1

@deco2

def	func(arg1,	arg2,	...):

				pass

https://www.python.org/dev/peps/pep-0318/

When	applying	multiple	decorators,	pay	attention	to	the	order.	In	the	preceding
example,	func	is	decorated	with	deco2	first,	and	the	result	is	decorated	with	deco1.	A
good	rule	of	thumb	is:	the	closer	the	decorator	is	to	the	function,	the	sooner	it	is
applied.

Some	decorators	can	take	arguments.	This	technique	is	generally	used	to
produce	other	decorators.	Let's	look	at	the	syntax,	and	then	we'll	see	an	example
of	it:

#	decorators/syntax.py

def	func(arg1,	arg2,	...):

				pass

func	=	decoarg(arg_a,	arg_b)(func)

#	is	equivalent	to	the	following:

@decoarg(arg_a,	arg_b)

def	func(arg1,	arg2,	...):

				pass

As	you	can	see,	this	case	is	a	bit	different.	First,	decoarg	is	called	with	the	given
arguments,	and	then	its	return	value	(the	actual	decorator)	is	called	with	func.
Before	I	give	you	another	example,	let's	fix	one	thing	that	is	bothering	me.	I
don't	want	to	lose	the	original	function	name	and	docstring	(and	other	attributes
as	well,	check	the	documentation	for	the	details)	when	I	decorate	it.	But	because
inside	our	decorator	we	return	wrapper,	the	original	attributes	from	func	are	lost
and	f	ends	up	being	assigned	the	attributes	of	wrapper.	There	is	an	easy	fix	for	that
from	the	beautiful	functools	module.	I	will	fix	the	last	example,	and	I	will	also
rewrite	its	syntax	to	use	the	@	operator:

#	decorators/time.measure.deco2.py

from	time	import	sleep,	time

from	functools	import	wraps

def	measure(func):

				@wraps(func)

				def	wrapper(*args,	**kwargs):

								t	=	time()

								func(*args,	**kwargs)

								print(func.__name__,	'took:',	time()	-	t)

				return	wrapper

@measure

def	f(sleep_time=0.1):

				"""I'm	a	cat.	I	love	to	sleep!	"""

				sleep(sleep_time)

f(sleep_time=0.3)		#	f	took:	0.3010902404785156

print(f.__name__,	':',	f.__doc__)		#	f	:	I'm	a	cat.	I	love	to	sleep!

Now	we're	talking!	As	you	can	see,	all	we	need	to	do	is	to	tell	Python	that	wrapper
actually	wraps	func	(by	means	of	the	wraps	function),	and	you	can	see	that	the
original	name	and	docstring	are	now	maintained.

Let's	see	another	example.	I	want	a	decorator	that	prints	an	error	message	when
the	result	of	a	function	is	greater	than	a	certain	threshold.	I	will	also	take	this
opportunity	to	show	you	how	to	apply	two	decorators	at	once:

#	decorators/two.decorators.py

from	time	import	sleep,	time

from	functools	import	wraps

def	measure(func):

				@wraps(func)

				def	wrapper(*args,	**kwargs):

								t	=	time()

								result	=	func(*args,	**kwargs)

								print(func.__name__,	'took:',	time()	-	t)

								return	result

				return	wrapper

def	max_result(func):

				@wraps(func)

				def	wrapper(*args,	**kwargs):

								result	=	func(*args,	**kwargs)

								if	result	>	100:

												print('Result	is	too	big	({0}).	Max	allowed	is	100.'

																		.format(result))

								return	result

				return	wrapper

@measure

@max_result

def	cube(n):

				return	n	**	3

print(cube(2))

print(cube(5))

Take	your	time	in	studying	the	preceding	example	until	you	are	sure	you	understand	it	well.	If
you	do,	I	don't	think	there	is	any	decorator	you	now	won't	be	able	to	write.

I	had	to	enhance	the	measure	decorator,	so	that	its	wrapper	now	returns	the	result	of
the	call	to	func.	The	max_result	decorator	does	that	as	well,	but	before	returning,	it
checks	that	result	is	not	greater	than	100,	which	is	the	maximum	allowed.	I
decorated	cube	with	both	of	them.	First,	max_result	is	applied,	then	measure.	Running
this	code	yields	this	result:

$	python	two.decorators.py

cube	took:	3.0994415283203125e-06

8

Result	is	too	big	(125).	Max	allowed	is	100.

cube	took:	1.0013580322265625e-05

125

For	your	convenience,	I	have	separated	the	results	of	the	two	calls	with	a	blank
line.	In	the	first	call,	the	result	is	8,	which	passes	the	threshold	check.	The
running	time	is	measured	and	printed.	Finally,	we	print	the	result	(8).

On	the	second	call,	the	result	is	125,	so	the	error	message	is	printed,	the	result
returned,	and	then	it's	the	turn	of	measure,	which	prints	the	running	time	again,	and
finally,	we	print	the	result	(125).

Had	I	decorated	the	cube	function	with	the	same	two	decorators	but	in	a	different
order,	the	error	message	would	have	followed	the	line	that	prints	the	running
time,	instead	of	have	preceded	it.

A	decorator	factory
Let's	simplify	this	example	now,	going	back	to	a	single	decorator:	max_result.	I
want	to	make	it	so	that	I	can	decorate	different	functions	with	different
thresholds,	I	don't	want	to	write	one	decorator	for	each	threshold.	Let's	amend
max_result	so	that	it	allows	us	to	decorate	functions	specifying	the	threshold
dynamically:

#	decorators/decorators.factory.py

from	functools	import	wraps

def	max_result(threshold):

				def	decorator(func):

								@wraps(func)

								def	wrapper(*args,	**kwargs):

												result	=	func(*args,	**kwargs)

												if	result	>	threshold:

																print(

																				'Result	is	too	big	({0}).	Max	allowed	is	{1}.'

																				.format(result,	threshold))

												return	result

								return	wrapper

				return	decorator

@max_result(75)

def	cube(n):

				return	n	**	3

print(cube(5))

The	preceding	code	shows	you	how	to	write	a	decorator	factory.	If	you	recall,
decorating	a	function	with	a	decorator	that	takes	arguments	is	the	same	as
writing	func	=	decorator(argA,	argB)(func),	so	when	we	decorate	cube	with
max_result(75),	we're	doing	cube	=	max_result(75)(cube).

Let's	go	through	what	happens,	step	by	step.	When	we	call	max_result(75),	we
enter	its	body.	A	decorator	function	is	defined	inside,	which	takes	a	function	as	its
only	argument.	Inside	that	function,	the	usual	decorator	trick	is	performed.	We
define	wrapper,	inside	of	which	we	check	the	result	of	the	original	function's	call.
The	beauty	of	this	approach	is	that	from	the	innermost	level,	we	can	still	refer	to
as	both	func	and	threshold,	which	allows	us	to	set	the	threshold	dynamically.

wrapper	returns	result,	decorator	returns	wrapper,	and	max_result	returns	decorator.	This
means	that	our	cube	=	max_result(75)(cube)	call	actually	becomes	cube	=

decorator(cube).	Not	just	any	decorator	though,	but	one	for	which	threshold	has	a
value	of	75.	This	is	achieved	by	a	mechanism	called	closure,	which	is	outside	of
the	scope	of	this	chapter	but	still	very	interesting,	so	I	mentioned	it	for	you	to	do
some	research	on	it.

Running	the	last	example	produces	the	following	result:

$	python	decorators.factory.py

Result	is	too	big	(125).	Max	allowed	is	75.

125

The	preceding	code	allows	me	to	use	the	max_result	decorator	with	different
thresholds	at	my	own	will,	like	this:

#	decorators/decorators.factory.py

@max_result(75)

def	cube(n):

				return	n	**	3

@max_result(100)

def	square(n):

				return	n	**	2

@max_result(1000)

def	multiply(a,	b):

				return	a	*	b

Note	that	every	decoration	uses	a	different	threshold	value.

Decorators	are	very	popular	in	Python.	They	are	used	quite	often	and	they
simplify	(and	beautify,	I	dare	say)	the	code	a	lot.

Object-oriented	programming	(OOP)
It's	been	quite	a	long	and	hopefully	nice	journey	and,	by	now,	we	should	be
ready	to	explore	OOP.	I'll	use	the	definition	from	Kindler,	E.;	Krivy,	I.	(2011).
Object-oriented	simulation	of	systems	with	sophisticated	control	by
International	Journal	of	General	Systems,	and	adapt	it	to	Python:

Object-oriented	programming	(OOP)	is	a	programming	paradigm	based	on	the	concept	of	"objects",	which
are	data	structures	that	contain	data,	in	the	form	of	attributes,	and	code,	in	the	form	of	functions	known	as
methods.	A	distinguishing	feature	of	objects	is	that	an	object's	method	can	access	and	often	modify	the	data
attributes	of	the	object	with	which	they	are	associated	(objects	have	a	notion	of	"self").	In	OO
programming,	computer	programs	are	designed	by	making	them	out	of	objects	that	interact	with	one
another.

Python	has	full	support	for	this	paradigm.	Actually,	as	we	have	already	said,
everything	in	Python	is	an	object,	so	this	shows	that	OOP	is	not	just	supported
by	Python,	but	it's	a	part	of	its	very	core.

The	two	main	players	in	OOP	are	objects	and	classes.	Classes	are	used	to	create
objects	(objects	are	instances	of	the	classes	from	which	they	were	created),	so
we	could	see	them	as	instance	factories.	When	objects	are	created	by	a	class,
they	inherit	the	class	attributes	and	methods.	They	represent	concrete	items	in
the	program's	domain.

The	simplest	Python	class
I	will	start	with	the	simplest	class	you	could	ever	write	in	Python:

#	oop/simplest.class.py

class	Simplest():		#	when	empty,	the	braces	are	optional

				pass

print(type(Simplest))		#	what	type	is	this	object?

simp	=	Simplest()		#	we	create	an	instance	of	Simplest:	simp

print(type(simp))		#	what	type	is	simp?

#	is	simp	an	instance	of	Simplest?

print(type(simp)	==	Simplest)		#	There's	a	better	way	for	this

Let's	run	the	preceding	code	and	explain	it	line	by	line:

$	python	simplest.class.py

<class	'type'>

<class	'__main__.Simplest'>

True

The	Simplest	class	I	defined	has	only	the	pass	instruction	in	its	body,	which	means
it	doesn't	have	any	custom	attributes	or	methods.	Brackets	after	the	name	are
optional	if	empty.	I	will	print	its	type	(__main__	is	the	name	of	the	scope	in	which
top-level	code	executes),	and	I	am	aware	that,	in	the	comment,	I	wrote	object
instead	of	class.	It	turns	out	that,	as	you	can	see	by	the	result	of	that	print,	classes
are	actually	objects.	To	be	precise,	they	are	instances	of	type.	Explaining	this
concept	would	lead	us	to	a	talk	about	metaclasses	and	metaprogramming,
advanced	concepts	that	require	a	solid	grasp	of	the	fundamentals	to	be
understood	and	are	beyond	the	scope	of	this	chapter.	As	usual,	I	mentioned	it	to
leave	a	pointer	for	you,	for	when	you'll	be	ready	to	dig	deeper.

Let's	go	back	to	the	example:	I	used	Simplest	to	create	an	instance,	simp.	You	can
see	that	the	syntax	to	create	an	instance	is	the	same	as	we	use	to	call	a	function.
Then	we	print	what	type	simp	belongs	to	and	we	verify	that	simp	is	in	fact	an
instance	of	Simplest.	I'll	show	you	a	better	way	of	doing	this	later	on	in	the
chapter.

Up	to	now,	it's	all	very	simple.	What	happens	when	we	write	class	ClassName():
pass,	though?	Well,	what	Python	does	is	create	a	class	object	and	assign	it	a
name.	This	is	very	similar	to	what	happens	when	we	declare	a	function	using	def.

Class	and	object	namespaces
After	the	class	object	has	been	created	(which	usually	happens	when	the	module
is	first	imported),	it	basically	represents	a	namespace.	We	can	call	that	class	to
create	its	instances.	Each	instance	inherits	the	class	attributes	and	methods	and	is
given	its	own	namespace.	We	already	know	that,	to	walk	a	namespace,	all	we
need	to	do	is	to	use	the	dot	(.)	operator.

Let's	look	at	another	example:

#	oop/class.namespaces.py

class	Person:

				species	=	'Human'

print(Person.species)		#	Human

Person.alive	=	True		#	Added	dynamically!

print(Person.alive)		#	True

man	=	Person()

print(man.species)		#	Human	(inherited)

print(man.alive)		#	True	(inherited)

Person.alive	=	False

print(man.alive)		#	False	(inherited)

man.name	=	'Darth'

man.surname	=	'Vader'

print(man.name,	man.surname)		#	Darth	Vader

In	the	preceding	example,	I	have	defined	a	class	attribute	called	species.	Any
variable	defined	in	the	body	of	a	class	is	an	attribute	that	belongs	to	that	class.	In
the	code,	I	have	also	defined	Person.alive,	which	is	another	class	attribute.	You
can	see	that	there	is	no	restriction	on	accessing	that	attribute	from	the	class.	You
can	see	that	man,	which	is	an	instance	of	Person,	inherits	both	of	them,	and	reflects
them	instantly	when	they	change.

man	has	also	two	attributes	that	belong	to	its	own	namespace	and	therefore	are
called	instance	attributes:	name	and	surname.

Class	attributes	are	shared	among	all	instances,	while	instance	attributes	are	not;	therefore,
you	should	use	class	attributes	to	provide	the	states	and	behaviors	to	be	shared	by	all
instances,	and	use	instance	attributes	for	data	that	belongs	just	to	one	specific	object.

Attribute	shadowing
When	you	search	for	an	attribute	in	an	object,	if	it	is	not	found,	Python	keeps
searching	in	the	class	that	was	used	to	create	that	object	(and	keeps	searching
until	it's	either	found	or	the	end	of	the	inheritance	chain	is	reached).	This	leads	to
an	interesting	shadowing	behavior.	Let's	look	at	another	example:

#	oop/class.attribute.shadowing.py

class	Point:

				x	=	10

				y	=	7

p	=	Point()

print(p.x)		#	10	(from	class	attribute)

print(p.y)		#	7	(from	class	attribute)

p.x	=	12		#	p	gets	its	own	`x`	attribute

print(p.x)		#	12	(now	found	on	the	instance)

print(Point.x)		#	10	(class	attribute	still	the	same)

del	p.x		#	we	delete	instance	attribute

print(p.x)		#	10	(now	search	has	to	go	again	to	find	class	attr)

p.z	=	3		#	let's	make	it	a	3D	point

print(p.z)		#	3

print(Point.z)

#	AttributeError:	type	object	'Point'	has	no	attribute	'z'

The	preceding	code	is	very	interesting.	We	have	defined	a	class	called	Point	with
two	class	attributes,	x	and	y.	When	we	create	an	instance,	p,	you	can	see	that	we
can	print	both	x	and	y	from	the	p	namespace	(p.x	and	p.y).	What	happens	when	we
do	that	is	Python	doesn't	find	any	x	or	y	attributes	on	the	instance,	and	therefore
searches	the	class,	and	finds	them	there.

Then	we	give	p	its	own	x	attribute	by	assigning	p.x	=	12.	This	behavior	may
appear	a	bit	weird	at	first,	but	if	you	think	about	it,	it's	exactly	the	same	as	what
happens	in	a	function	that	declares	x	=	12	when	there	is	a	global	x	=	10	outside.
We	know	that	x	=	12	won't	affect	the	global	one,	and	for	classes	and	instances,	it
is	exactly	the	same.

After	assigning	p.x	=	12,	when	we	print	it,	the	search	doesn't	need	to	read	the
class	attributes,	because	x	is	found	on	the	instance,	therefore	we	get	12	printed
out.	We	also	print	Point.x,	which	refers	to	x	in	the	class	namespace.

And	then,	we	delete	x	from	the	namespace	of	p,	which	means	that,	on	the	next
line,	when	we	print	it	again,	Python	will	go	again	and	search	for	it	in	the	class,
because	it	won't	be	found	in	the	instance	any	more.

The	last	three	lines	show	you	that	assigning	attributes	to	an	instance	doesn't
mean	that	they	will	be	found	in	the	class.	Instances	get	whatever	is	in	the	class,
but	the	opposite	is	not	true.

What	do	you	think	about	putting	the	x	and	y	coordinates	as	class	attributes?	Do
you	think	it	was	a	good	idea?	What	if	you	added	another	instance	of	Point?
Would	that	help	to	show	why	class	attributes	can	be	very	useful?

Me,	myself,	and	I	–	using	the	self
variable
From	within	a	class	method,	we	can	refer	to	an	instance	by	means	of	a	special
argument,	called	self	by	convention.	self	is	always	the	first	attribute	of	an
instance	method.	Let's	examine	this	behavior	together	with	how	we	can	share,
not	just	attributes,	but	methods	with	all	instances:

#	oop/class.self.py

class	Square:

				side	=	8

				def	area(self):		#	self	is	a	reference	to	an	instance

								return	self.side	**	2

sq	=	Square()

print(sq.area())		#	64	(side	is	found	on	the	class)

print(Square.area(sq))		#	64	(equivalent	to	sq.area())

sq.side	=	10

print(sq.area())		#	100	(side	is	found	on	the	instance)

Note	how	the	area	method	is	used	by	sq.	The	two	calls,	Square.area(sq)	and
sq.area(),	are	equivalent,	and	teach	us	how	the	mechanism	works.	Either	you	pass
the	instance	to	the	method	call	(Square.area(sq)),	which	within	the	method	will
take	the	name	self,	or	you	can	use	a	more	comfortable	syntax,	sq.area(),	and
Python	will	translate	that	for	you	behind	the	scenes.

Let's	look	at	a	better	example:

#	oop/class.price.py

class	Price:

				def	final_price(self,	vat,	discount=0):

								"""Returns	price	after	applying	vat	and	fixed	discount."""

								return	(self.net_price	*	(100	+	vat)	/	100)	-	discount

p1	=	Price()

p1.net_price	=	100

print(Price.final_price(p1,	20,	10))		#	110	(100	*	1.2	-	10)

print(p1.final_price(20,	10))		#	equivalent

The	preceding	code	shows	you	that	nothing	prevents	us	from	using	arguments
when	declaring	methods.	We	can	use	the	exact	same	syntax	as	we	used	with	the
function,	but	we	need	to	remember	that	the	first	argument	will	always	be	the
instance.	We	don't	need	to	necessarily	call	it	self,	but	it's	the	convention,	and	this

is	one	of	the	few	cases	where	it's	very	important	to	abide	by	it.

Initializing	an	instance
	

Have	you	noticed	how,	before	calling	p1.final_price(...),	we	had	to	assign
net_price	to	p1?	There	is	a	better	way	to	do	it.	In	other	languages,	this	would	be
called	a	constructor,	but	in	Python,	it's	not.	It	is	actually	an	initializer,	since	it
works	on	an	already-created	instance,	and	therefore	it's	called	__init__.	It's	a
magic	method,	which	is	run	right	after	the	object	is	created.	Python	objects	also
have	a	__new__	method,	which	is	the	actual	constructor.	In	practice,	it's	not	so
common	to	have	to	override	it	though,	it's	a	practice	that	is	mostly	used	when
coding	metaclasses,	which	as	we	mentioned,	is	a	fairly	advanced	topic	that	we
won't	explore	in	the	book:

#	oop/class.init.py

class	Rectangle:

				def	__init__(self,	side_a,	side_b):

								self.side_a	=	side_a

								self.side_b	=	side_b

				def	area(self):

								return	self.side_a	*	self.side_b

r1	=	Rectangle(10,	4)

print(r1.side_a,	r1.side_b)		#	10	4

print(r1.area())		#	40

r2	=	Rectangle(7,	3)

print(r2.area())		#	21

Things	are	finally	starting	to	take	shape.	When	an	object	is	created,	the	__init__
method	is	automatically	run	for	us.	In	this	case,	I	coded	it	so	that	when	we	create
an	object	(by	calling	the	class	name	like	a	function),	we	pass	arguments	to	the
creation	call,	like	we	would	on	any	regular	function	call.	The	way	we	pass
parameters	follows	the	signature	of	the	__init__	method,	and	therefore,	in	the	two
creation	statements,	10	and	7	will	be	side_a	for	r1	and	r2,	respectively,	while	4	and
3	will	be	side_b.	You	can	see	that	the	call	to	area()	from	r1	and	r2	reflects	that	they
have	different	instance	arguments.	Setting	up	objects	in	this	way	is	much	nicer
and	more	convenient.

	

	

	

OOP	is	about	code	reuse
By	now	it	should	be	pretty	clear:	OOP	is	all	about	code	reuse.	We	define	a	class,
we	create	instances,	and	those	instances	use	methods	that	are	defined	only	in	the
class.	They	will	behave	differently	according	to	how	the	instances	have	been	set
up	by	the	initializer.

	

Inheritance	and	composition
But	this	is	just	half	of	the	story,	OOP	is	much	more	powerful.	We	have	two	main
design	constructs	to	exploit:	inheritance	and	composition.

Inheritance	means	that	two	objects	are	related	by	means	of	an	Is-A	type	of
relationship.	On	the	other	hand,	composition	means	that	two	objects	are	related
by	means	of	a	Has-A	type	of	relationship.	It's	all	very	easy	to	explain	with	an
example:

#	oop/class_inheritance.py

class	Engine:

				def	start(self):

								pass

				def	stop(self):

								pass

class	ElectricEngine(Engine):		#	Is-A	Engine

				pass

class	V8Engine(Engine):		#	Is-A	Engine

				pass

class	Car:

				engine_cls	=	Engine

				def	__init__(self):

								self.engine	=	self.engine_cls()		#	Has-A	Engine

				def	start(self):

								print(

												'Starting	engine	{0}	for	car	{1}...	Wroom,	wroom!'

												.format(

																self.engine.__class__.__name__,

																self.__class__.__name__)

)

								self.engine.start()

				def	stop(self):

								self.engine.stop()

class	RaceCar(Car):		#	Is-A	Car

				engine_cls	=	V8Engine

class	CityCar(Car):		#	Is-A	Car

				engine_cls	=	ElectricEngine

class	F1Car(RaceCar):		#	Is-A	RaceCar	and	also	Is-A	Car

				pass		#	engine_cls	same	as	parent

car	=	Car()

racecar	=	RaceCar()

citycar	=	CityCar()

f1car	=	F1Car()

cars	=	[car,	racecar,	citycar,	f1car]

for	car	in	cars:

				car.start()

"""	Prints:

Starting	engine	Engine	for	car	Car...	Wroom,	wroom!

Starting	engine	V8Engine	for	car	RaceCar...	Wroom,	wroom!

Starting	engine	ElectricEngine	for	car	CityCar...	Wroom,	wroom!

Starting	engine	V8Engine	for	car	F1Car...	Wroom,	wroom!

"""

The	preceding	example	shows	you	both	the	Is-A	and	Has-A	types	of
relationships	between	objects.	First	of	all,	let's	consider	Engine.	It's	a	simple	class
that	has	two	methods,	start	and	stop.	We	then	define	ElectricEngine	and	V8Engine,
which	both	inherit	from	Engine.	You	can	see	that	by	the	fact	that	when	we	define
them,	we	put	Engine	within	the	brackets	after	the	class	name.

This	means	that	both	ElectricEngine	and	V8Engine	inherit	attributes	and	methods
from	the	Engine	class,	which	is	said	to	be	their	base	class.

The	same	happens	with	cars.	Car	is	a	base	class	for	both	RaceCar	and	CityCar.	RaceCar
is	also	the	base	class	for	F1Car.	Another	way	of	saying	this	is	that	F1Car	inherits
from	RaceCar,	which	inherits	from	Car.	Therefore,	F1Car	Is-A	RaceCar	and	RaceCar	Is-A
Car.	Because	of	the	transitive	property,	we	can	say	that	F1Car	Is-A	Car	as	well.
CityCar	too,	Is-A	Car.

When	we	define	class	A(B):	pass,	we	say	A	is	the	child	of	B,	and	B	is	the	parent	of	A.
The	parent	and	base	classes	are	synonyms,	are	child	and	derived.	Also,	we	say
that	a	class	inherits	from	another	class,	or	that	it	extends	it.

This	is	the	inheritance	mechanism.

On	the	other	hand,	let's	go	back	to	the	code.	Each	class	has	a	class	attribute,
engine_cls,	which	is	a	reference	to	the	engine	class	we	want	to	assign	to	each	type
of	car.	Car	has	a	generic	Engine,	while	the	two	race	cars	have	a	powerful	V8
engine,	and	the	city	car	has	an	electric	one.

When	a	car	is	created	in	the	initializer	method,	__init__,	we	create	an	instance	of
whatever	engine	class	is	assigned	to	the	car,	and	set	it	as	the	engine	instance
attribute.

It	makes	sense	to	have	engine_cls	shared	among	all	class	instances	because	it's
quite	likely	that	the	same	instances	of	a	car	will	have	the	same	kind	of	engine.
On	the	other	hand,	it	wouldn't	be	good	to	have	one	single	engine	(an	instance	of
any	Engine	class)	as	a	class	attribute,	because	we	would	be	sharing	one	engine
among	all	instances,	which	is	incorrect.

The	type	of	relationship	between	a	car	and	its	engine	is	a	Has-A	type.	A	car	Has-
A	engine.	This	is	called	composition,	and	reflects	the	fact	that	objects	can	be
made	of	many	other	objects.	A	car	Has-A	engine,	gears,	wheels,	a	frame,	doors,
seats,	and	so	on.

When	designing	OOP	code,	it	is	of	vital	importance	to	describe	objects	in	this
way	so	that	we	can	use	inheritance	and	composition	correctly	to	structure	our
code	in	the	best	way.

Notice	how	I	had	to	avoid	having	dots	in	the	class_inheritance.py	script	name,	as	dots	in	module
names	make	it	imports	difficult.	Most	modules	in	the	source	code	of	the	book	are	meant	to	be
run	as	standalone	scripts,	therefore	I	chose	to	add	dots	to	enhance	readability	when	possible,
but	in	general,	you	want	to	avoid	dots	in	your	module	names.

Before	we	leave	this	paragraph,	let's	check	whether	I	told	you	the	truth	with
another	example:

#	oop/class.issubclass.isinstance.py

from	class_inheritance	import	Car,	RaceCar,	F1Car

car	=	Car()

racecar	=	RaceCar()

f1car	=	F1Car()

cars	=	[(car,	'car'),	(racecar,	'racecar'),	(f1car,	'f1car')]

car_classes	=	[Car,	RaceCar,	F1Car]

for	car,	car_name	in	cars:

				for	class_	in	car_classes:

								belongs	=	isinstance(car,	class_)

								msg	=	'is	a'	if	belongs	else	'is	not	a'

								print(car_name,	msg,	class_.__name__)

"""	Prints:

car	is	a	Car

car	is	not	a	RaceCar

car	is	not	a	F1Car

racecar	is	a	Car

racecar	is	a	RaceCar

racecar	is	not	a	F1Car

f1car	is	a	Car

f1car	is	a	RaceCar

f1car	is	a	F1Car

"""

As	you	can	see,	car	is	just	an	instance	of	Car,	while	racecar	is	an	instance	of	RaceCar
(and	of	Car,	by	extension)	and	f1car	is	an	instance	of	F1Car	(and	of	both	RaceCar	and
Car,	by	extension).	A	banana	is	an	instance	of	banana.	But,	also,	it	is	a	Fruit.
Also,	it	is	Food,	right?	This	is	the	same	concept.	To	check	whether	an	object	is
an	instance	of	a	class,	use	the	isinstance	method.	It	is	recommended	over	sheer
type	comparison:	(type(object)	==	Class).

Notice	I	have	left	out	the	prints	you	get	when	instantiating	the	cars.	We	saw	them	in	the
previous	example.

Let's	also	check	inheritance–same	setup,	different	logic	in	the	for	loops:

#	oop/class.issubclass.isinstance.py

for	class1	in	car_classes:

				for	class2	in	car_classes:

								is_subclass	=	issubclass(class1,	class2)

								msg	=	'{0}	a	subclass	of'.format(

												'is'	if	is_subclass	else	'is	not')

								print(class1.__name__,	msg,	class2.__name__)

"""	Prints:

Car	is	a	subclass	of	Car

Car	is	not	a	subclass	of	RaceCar

Car	is	not	a	subclass	of	F1Car

RaceCar	is	a	subclass	of	Car

RaceCar	is	a	subclass	of	RaceCar

RaceCar	is	not	a	subclass	of	F1Car

F1Car	is	a	subclass	of	Car

F1Car	is	a	subclass	of	RaceCar

F1Car	is	a	subclass	of	F1Car

"""

Interestingly,	we	learn	that	a	class	is	a	subclass	of	itself.	Check	the	output	of	the
preceding	example	to	see	that	it	matches	the	explanation	I	provided.

One	thing	to	notice	about	conventions	is	that	class	names	are	always	written	using	CapWords,
which	means	ThisWayIsCorrect,	as	opposed	to	functions	and	methods,	which	are	written
this_way_is_correct.	Also,	when	in	the	code,	you	want	to	use	a	name	that	is	a	Python-reserved
keyword	or	a	built-in	function	or	class,	the	convention	is	to	add	a	trailing	underscore	to	the
name.	In	the	first	for	loop	example,	I'm	looping	through	the	class	names	using	for	class_	in	...,
because	class	is	a	reserved	word.	But	you	already	knew	all	this	because	you	have	thoroughly
studied	PEP8,	right?

To	help	you	picture	the	difference	between	Is-A	and	Has-A,	take	a	look	at	the
following	diagram:

Accessing	a	base	class
We've	already	seen	class	declarations,	such	as	class	ClassA:	pass	and	class
ClassB(BaseClassName):	pass.	When	we	don't	specify	a	base	class	explicitly,	Python
will	set	the	special	object	class	as	the	base	class	for	the	one	we're	defining.
Ultimately,	all	classes	derive	from	an	object.	Note	that,	if	you	don't	specify	a
base	class,	brackets	are	optional.

Therefore,	writing	class	A:	pass	or	class	A():	pass	or	class	A(object):	pass	is	exactly
the	same	thing.	The	object	class	is	a	special	class	in	that	it	has	the	methods	that
are	common	to	all	Python	classes,	and	it	doesn't	allow	you	to	set	any	attributes
on	it.

Let's	see	how	we	can	access	a	base	class	from	within	a	class:

#	oop/super.duplication.py

class	Book:

				def	__init__(self,	title,	publisher,	pages):

								self.title	=	title

								self.publisher	=	publisher

								self.pages	=	pages

class	Ebook(Book):

				def	__init__(self,	title,	publisher,	pages,	format_):

								self.title	=	title

								self.publisher	=	publisher

								self.pages	=	pages

								self.format_	=	format_

Take	a	look	at	the	preceding	code.	Three	of	the	input	parameters	are	duplicated
in	Ebook.	This	is	quite	bad	practice	because	we	now	have	two	sets	of	instructions
that	are	doing	the	same	thing.	Moreover,	any	change	in	the	signature	of
Book.__init__	will	not	be	reflected	in	Ebook.	We	know	that	Ebook	Is-A	Book,	and
therefore	we	would	probably	want	changes	to	be	reflected	in	the	children
classes.

Let's	see	one	way	to	fix	this	issue:

#	oop/super.explicit.py

class	Book:

				def	__init__(self,	title,	publisher,	pages):

								self.title	=	title

								self.publisher	=	publisher

								self.pages	=	pages

class	Ebook(Book):

				def	__init__(self,	title,	publisher,	pages,	format_):

								Book.__init__(self,	title,	publisher,	pages)

								self.format_	=	format_

ebook	=	Ebook(

				'Learn	Python	Programming',	'Packt	Publishing',	500,	'PDF')

print(ebook.title)		#	Learn	Python	Programming

print(ebook.publisher)		#	Packt	Publishing

print(ebook.pages)		#	500

print(ebook.format_)		#	PDF

Now,	that's	better.	We	have	removed	that	nasty	duplication.	Basically,	we	tell
Python	to	call	the	__init__	method	of	the	Book	class,	and	we	feed	self	to	the	call,
making	sure	that	we	bind	that	call	to	the	present	instance.

If	we	modify	the	logic	within	the	__init__	method	of	Book,	we	don't	need	to	touch
Ebook,	it	will	auto-adapt	to	the	change.

This	approach	is	good,	but	we	can	still	do	a	bit	better.	Say	that	we	change	the
name	of	Book	to	Liber,	because	we've	fallen	in	love	with	Latin.	We	have	to	change
the	__init__	method	of	Ebook	to	reflect	the	change.	This	can	be	avoided	by	using
super:

#	oop/super.implicit.py

class	Book:

				def	__init__(self,	title,	publisher,	pages):

								self.title	=	title

								self.publisher	=	publisher

								self.pages	=	pages

class	Ebook(Book):

				def	__init__(self,	title,	publisher,	pages,	format_):

								super().__init__(title,	publisher,	pages)

								#	Another	way	to	do	the	same	thing	is:

								#	super(Ebook,	self).__init__(title,	publisher,	pages)

								self.format_	=	format_

ebook	=	Ebook(

				'Learn	Python	Programming',	'Packt	Publishing',	500,	'PDF')

print(ebook.title)	#	Learn	Python	Programming

print(ebook.publisher)	#	Packt	Publishing

print(ebook.pages)	#	500

print(ebook.format_)	#	PDF

super	is	a	function	that	returns	a	proxy	object	that	delegates	method	calls	to	a
parent	or	sibling	class.	In	this	case,	it	will	delegate	that	call	to	__init__	to	the	Book
class,	and	the	beauty	of	this	method	is	that	now	we're	even	free	to	change	Book	to
Liber	without	having	to	touch	the	logic	in	the	__init__	method	of	Ebook.

Now	that	we	know	how	to	access	a	base	class	from	a	child,	let's	explore	Python's
multiple	inheritance.

Multiple	inheritance
Apart	from	composing	a	class	using	more	than	one	base	class,	what	is	of	interest
here	is	how	an	attribute	search	is	performed.	Take	a	look	at	the	following
diagram:

As	you	can	see,	Shape	and	Plotter	act	as	base	classes	for	all	the	others.	Polygon
inherits	directly	from	them,	RegularPolygon	inherits	from	Polygon,	and	both
RegularHexagon	and	Square	inherit	from	RegulaPolygon.	Note	also	that	Shape	and	Plotter
implicitly	inherit	from	object,	therefore	we	have	what	is	called	a	diamond	or,	in
simpler	terms,	more	than	one	path	to	reach	a	base	class.	We'll	see	why	this
matters	in	a	few	moments.	Let's	translate	it	into	some	simple	code:

#	oop/multiple.inheritance.py

class	Shape:

				geometric_type	=	'Generic	Shape'

				def	area(self):		#	This	acts	as	placeholder	for	the	interface

								raise	NotImplementedError

				def	get_geometric_type(self):

								return	self.geometric_type

class	Plotter:

				def	plot(self,	ratio,	topleft):

								#	Imagine	some	nice	plotting	logic	here...

								print('Plotting	at	{},	ratio	{}.'.format(

												topleft,	ratio))

class	Polygon(Shape,	Plotter):		#	base	class	for	polygons

				geometric_type	=	'Polygon'

class	RegularPolygon(Polygon):		#	Is-A	Polygon

				geometric_type	=	'Regular	Polygon'

				def	__init__(self,	side):

								self.side	=	side

class	RegularHexagon(RegularPolygon):		#	Is-A	RegularPolygon

				geometric_type	=	'RegularHexagon'

				def	area(self):

								return	1.5	*	(3	**	.5	*	self.side	**	2)

class	Square(RegularPolygon):		#	Is-A	RegularPolygon

				geometric_type	=	'Square'

				def	area(self):

								return	self.side	*	self.side

hexagon	=	RegularHexagon(10)

print(hexagon.area())		#	259.8076211353316

print(hexagon.get_geometric_type())		#	RegularHexagon

hexagon.plot(0.8,	(75,	77))		#	Plotting	at	(75,	77),	ratio	0.8.

square	=	Square(12)

print(square.area())		#	144

print(square.get_geometric_type())		#	Square

square.plot(0.93,	(74,	75))		#	Plotting	at	(74,	75),	ratio	0.93.

Take	a	look	at	the	preceding	code:	the	Shape	class	has	one	attribute,	geometric_type,
and	two	methods:	area	and	get_geometric_type.	It's	quite	common	to	use	base
classes	(such	as	Shape,	in	our	example)	to	define	an	interface–methods	for	which
children	must	provide	an	implementation.	There	are	different	and	better	ways	to
do	this,	but	I	want	to	keep	this	example	as	simple	as	possible.

We	also	have	the	Plotter	class,	which	adds	the	plot	method,	thereby	providing
plotting	capabilities	for	any	class	that	inherits	from	it.	Of	course,	the	plot
implementation	is	just	a	dummy	print	in	this	example.	The	first	interesting	class
is	Polygon,	which	inherits	from	both	Shape	and	Plotter.

There	are	many	types	of	polygons,	one	of	which	is	the	regular	one,	which	is	both
equiangular	(all	angles	are	equal)	and	equilateral	(all	sides	are	equal),	so	we
create	the	RegularPolygon	class	that	inherits	from	Polygon.	For	a	regular	polygon,
where	all	sides	are	equal,	we	can	implement	a	simple	__init__	method	on
RegularPolygon,	which	takes	the	length	of	the	side.	Finally,	we	create	the
RegularHexagon	and	Square	classes,	which	both	inherit	from	RegularPolygon.

This	structure	is	quite	long,	but	hopefully	gives	you	an	idea	of	how	to	specialize
the	classification	of	your	objects	when	you	design	the	code.

Now,	please	take	a	look	at	the	last	eight	lines.	Note	that	when	I	call	the	area
method	on	hexagon	and	square,	I	get	the	correct	area	for	both.	This	is	because	they
both	provide	the	correct	implementation	logic	for	it.	Also,	I	can	call

get_geometric_type	on	both	of	them,	even	though	it	is	not	defined	on	their	classes,
and	Python	has	to	go	all	the	way	up	to	Shape	to	find	an	implementation	for	it.
Note	that,	even	though	the	implementation	is	provided	in	the	Shape	class,	the
self.geometric_type	used	for	the	return	value	is	correctly	taken	from	the	caller
instance.

The	plot	method	calls	are	also	interesting,	and	show	you	how	you	can	enrich
your	objects	with	capabilities	they	wouldn't	otherwise	have.	This	technique	is
very	popular	in	web	frameworks	such	as	Django	(which	we'll	explore	Chapter	14,
Web	Development),	which	provides	special	classes	called	mixins,	whose
capabilities	you	can	just	use	out	of	the	box.	All	you	have	to	do	is	to	define	the
desired	mixin	as	one	the	base	classes	for	your	own,	and	that's	it.

Multiple	inheritance	is	powerful,	but	can	also	get	really	messy,	so	we	need	to
make	sure	we	understand	what	happens	when	we	use	it.

Method	resolution	order
By	now,	we	know	that	when	you	ask	for	someobject.attribute	and	attribute	is	not
found	on	that	object,	Python	starts	searching	in	the	class	that	someobject	was
created	from.	If	it's	not	there	either,	Python	searches	up	the	inheritance	chain
until	either	attribute	is	found	or	the	object	class	is	reached.	This	is	quite	simple	to
understand	if	the	inheritance	chain	is	only	composed	of	single-inheritance	steps,
which	means	that	classes	have	only	one	parent.	However,	when	multiple
inheritance	is	involved,	there	are	cases	when	it's	not	straightforward	to	predict
what	will	be	the	next	class	that	will	be	searched	for	if	an	attribute	is	not	found.

Python	provides	a	way	to	always	know	the	order	in	which	classes	are	searched
on	attribute	lookup:	the	Method	Resolution	Order	(MRO).

The	MRO	is	the	order	in	which	base	classes	are	searched	for	a	member	during	lookup.	From
version	2.3,	Python	uses	an	algorithm	called	C3,	which	guarantees	monotonicity.
In	Python	2.2,	new-style	classes	were	introduced.	The	way	you	write	a	new-style	class	in
Python	2.*	is	to	define	it	with	an	explicit	object	base	class.	Classic	classes	were	not	explicitly
inheriting	from	object	and	have	been	removed	in	Python	3.	One	of	the	differences	between
classic	and	new-style	classes	in	Python	2.*	is	that	new-style	classes	are	searched	with	the	new
MRO.

With	regards	to	the	previous	example,	let's	see	the	MRO	for	the	Square	class:

#	oop/multiple.inheritance.py

print(square.__class__.__mro__)

#	prints:

#	(<class	'__main__.Square'>,	<class	'__main__.RegularPolygon'>,

#	<class	'__main__.Polygon'>,	<class	'__main__.Shape'>,

#	<class	'__main__.Plotter'>,	<class	'object'>)

To	get	to	the	MRO	of	a	class,	we	can	go	from	the	instance	to	its	__class__
attribute,	and	from	that	to	its	__mro__	attribute.	Alternatively,	we	could	have	called
Square.__mro__,	or	Square.mro()	directly,	but	if	you	have	to	do	it	dynamically,	it's
more	likely	you	will	have	an	object	than	a	class.

Note	that	the	only	point	of	doubt	is	the	bisection	after	Polygon,	where	the
inheritance	chain	breaks	into	two	ways:	one	leads	to	Shape	and	the	other	to	Plotter.
We	know	by	scanning	the	MRO	for	the	Square	class	that	Shape	is	searched	before
Plotter.

Why	is	this	important?	Well,	consider	the	following	code:

#	oop/mro.simple.py

class	A:

				label	=	'a'

class	B(A):

				label	=	'b'

class	C(A):

				label	=	'c'

class	D(B,	C):

				pass

d	=	D()

print(d.label)		#	Hypothetically	this	could	be	either	'b'	or	'c'

Both	B	and	C	inherit	from	A,	and	D	inherits	from	both	B	and	C.	This	means	that	the
lookup	for	the	label	attribute	can	reach	the	top	(A)	through	either	B	or	C.
According	to	which	is	reached	first,	we	get	a	different	result.

So,	in	the	preceding	example,	we	get	'b',	which	is	what	we	were	expecting,	since
B	is	the	leftmost	one	among	the	base	classes	of	D.	But	what	happens	if	I	remove
the	label	attribute	from	B?	This	would	be	a	confusing	situation:	will	the	algorithm
go	all	the	way	up	to	A	or	will	it	get	to	C	first?	Let's	find	out:

#	oop/mro.py

class	A:

				label	=	'a'

class	B(A):

				pass		#	was:	label	=	'b'

class	C(A):

				label	=	'c'

class	D(B,	C):

				pass

d	=	D()

print(d.label)		#	'c'

print(d.__class__.mro())		#	notice	another	way	to	get	the	MRO

#	prints:

#	[<class	'__main__.D'>,	<class	'__main__.B'>,

#	<class	'__main__.C'>,	<class	'__main__.A'>,	<class	'object'>]

So,	we	learn	that	the	MRO	is	D-B-C-A-object,	which	means	when	we	ask	for	d.label,
we	get	'c',	which	is	correct.

In	day-to-day	programming,	it	is	not	common	to	have	to	deal	with	the	MRO,	but
the	first	time	you	fight	against	some	mixin	from	a	framework,	I	promise	you'll

be	glad	I	spent	a	paragraph	explaining	it.

Class	and	static	methods
So	far,	we	have	coded	classes	with	attributes	in	the	form	of	data	and	instance
methods,	but	there	are	two	other	types	of	methods	that	we	can	place	inside	a
class:	static	methods	and	class	methods.

Static	methods
As	you	may	recall,	when	you	create	a	class	object,	Python	assigns	a	name	to	it.
That	name	acts	as	a	namespace,	and	sometimes	it	makes	sense	to	group
functionalities	under	it.	Static	methods	are	perfect	for	this	use	case	since,	unlike
instance	methods,	they	are	not	passed	any	special	argument.	Let's	look	at	an
example	of	an	imaginary	StringUtil	class:

#	oop/static.methods.py

class	StringUtil:

				@staticmethod

				def	is_palindrome(s,	case_insensitive=True):

								#	we	allow	only	letters	and	numbers

								s	=	''.join(c	for	c	in	s	if	c.isalnum())		#	Study	this!

								#	For	case	insensitive	comparison,	we	lower-case	s

								if	case_insensitive:

												s	=	s.lower()

								for	c	in	range(len(s)	//	2):

												if	s[c]	!=	s[-c	-1]:

																return	False

								return	True

				@staticmethod

				def	get_unique_words(sentence):

								return	set(sentence.split())

print(StringUtil.is_palindrome(

				'Radar',	case_insensitive=False))		#	False:	Case	Sensitive

print(StringUtil.is_palindrome('A	nut	for	a	jar	of	tuna'))		#	True

print(StringUtil.is_palindrome('Never	Odd,	Or	Even!'))		#	True

print(StringUtil.is_palindrome(

				'In	Girum	Imus	Nocte	Et	Consumimur	Igni')		#	Latin!	Show-off!

)		#	True

print(StringUtil.get_unique_words(

				'I	love	palindromes.	I	really	really	love	them!'))

#	{'them!',	'really',	'palindromes.',	'I',	'love'}

The	preceding	code	is	quite	interesting.	First	of	all,	we	learn	that	static	methods
are	created	by	simply	applying	the	staticmethod	decorator	to	them.	You	can	see
that	they	aren't	passed	any	special	argument	so,	apart	from	the	decoration,	they
really	just	look	like	functions.

We	have	a	class,	StringUtil,	that	acts	as	a	container	for	functions.	Another
approach	would	be	to	have	a	separate	module	with	functions	inside.	It's	really	a
matter	of	preference	most	of	the	time.

The	logic	inside	is_palindrome	should	be	straightforward	for	you	to	understand	by
now,	but,	just	in	case,	let's	go	through	it.	First,	we	remove	all	characters	from	s
that	are	neither	letters	nor	numbers.	In	order	to	do	this,	we	use	the	join	method	of
a	string	object	(an	empty	string	object,	in	this	case).	By	calling	join	on	an	empty
string,	the	result	is	that	all	elements	in	the	iterable	you	pass	to	join	will	be
concatenated	together.	We	feed	join	a	generator	expression	that	says	to	take	any
character	from	s	if	the	character	is	either	alphanumeric	or	a	number.	This	is
because,	in	palindrome	sentences,	we	want	to	discard	anything	that	is	not	a
character	or	a	number.

We	then	lowercase	s	if	case_insensitive	is	True,	and	then	we	proceed	to	check
whether	it	is	a	palindrome.	In	order	to	do	this,	we	compare	the	first	and	last
characters,	then	the	second	and	the	second	to	last,	and	so	on.	If	at	any	point	we
find	a	difference,	it	means	the	string	isn't	a	palindrome	and	therefore	we	can
return	False.	On	the	other	hand,	if	we	exit	the	for	loop	normally,	it	means	no
differences	were	found,	and	we	can	therefore	say	the	string	is	a	palindrome.

Notice	that	this	code	works	correctly	regardless	of	the	length	of	the	string;	that
is,	if	the	length	is	odd	or	even.	len(s)	//	2	reaches	half	of	s,	and	if	s	is	an	odd
amount	of	characters	long,	the	middle	one	won't	be	checked	(such	as	in	RaDaR,
D	is	not	checked),	but	we	don't	care;	it	would	be	compared	with	itself	so	it's
always	passing	that	check.

get_unique_words	is	much	simpler:	it	just	returns	a	set	to	which	we	feed	a	list	with
the	words	from	a	sentence.	The	set	class	removes	any	duplication	for	us,	so	we
don't	need	to	do	anything	else.

The	StringUtil	class	provides	us	a	nice	container	namespace	for	methods	that	are
meant	to	work	on	strings.	I	could	have	coded	a	similar	example	with	a	MathUtil
class,	and	some	static	methods	to	work	on	numbers,	but	I	wanted	to	show	you
something	different.

Class	methods
Class	methods	are	slightly	different	from	static	methods	in	that,	like	instance
methods,	they	also	take	a	special	first	argument,	but	in	this	case,	it	is	the	class
object	itself.	A	very	common	use	case	for	coding	class	methods	is	to	provide
factory	capability	to	a	class.	Let's	see	an	example:

#	oop/class.methods.factory.py

class	Point:

				def	__init__(self,	x,	y):

								self.x	=	x

								self.y	=	y

				@classmethod

				def	from_tuple(cls,	coords):		#	cls	is	Point

								return	cls(*coords)

				@classmethod

				def	from_point(cls,	point):		#	cls	is	Point

								return	cls(point.x,	point.y)

p	=	Point.from_tuple((3,	7))

print(p.x,	p.y)		#	3	7

q	=	Point.from_point(p)

print(q.x,	q.y)		#	3	7

In	the	preceding	code,	I	showed	you	how	to	use	a	class	method	to	create	a
factory	for	the	class.	In	this	case,	we	want	to	create	a	Point	instance	by	passing
both	coordinates	(regular	creation	p	=	Point(3,	7)),	but	we	also	want	to	be	able	to
create	an	instance	by	passing	a	tuple	(Point.from_tuple)	or	another	instance
(Point.from_point).

Within	the	two	class	methods,	the	cls	argument	refers	to	the	Point	class.	As	with
the	instance	method,	which	takes	self	as	the	first	argument,	the	class	method
takes	a	cls	argument.	Both	self	and	cls	are	named	after	a	convention	that	you	are
not	forced	to	follow	but	are	strongly	encouraged	to	respect.	This	is	something
that	no	Python	coder	would	change	because	it	is	so	strong	a	convention	that
parsers,	linters,	and	any	tool	that	automatically	does	something	with	your	code
would	expect,	so	it's	much	better	to	stick	to	it.

Class	and	static	methods	play	well	together.	Static	methods	are	actually	quite
helpful	in	breaking	up	the	logic	of	a	class	method	to	improve	its	layout.	Let's	see

an	example	by	refactoring	the	StringUtil	class:

#	oop/class.methods.split.py

class	StringUtil:

				@classmethod

				def	is_palindrome(cls,	s,	case_insensitive=True):

								s	=	cls._strip_string(s)

								#	For	case	insensitive	comparison,	we	lower-case	s

								if	case_insensitive:

												s	=	s.lower()

								return	cls._is_palindrome(s)

				@staticmethod

				def	_strip_string(s):

								return	''.join(c	for	c	in	s	if	c.isalnum())

				@staticmethod

				def	_is_palindrome(s):

								for	c	in	range(len(s)	//	2):

												if	s[c]	!=	s[-c	-1]:

																return	False

								return	True

				@staticmethod

				def	get_unique_words(sentence):

								return	set(sentence.split())

print(StringUtil.is_palindrome('A	nut	for	a	jar	of	tuna'))		#	True

print(StringUtil.is_palindrome('A	nut	for	a	jar	of	beans'))		#	False

Compare	this	code	with	the	previous	version.	First	of	all,	note	that	even	though
is_palindrome	is	now	a	class	method,	we	call	it	in	the	same	way	we	were	calling	it
when	it	was	a	static	one.	The	reason	why	we	changed	it	to	a	class	method	is	that
after	factoring	out	a	couple	of	pieces	of	logic	(_strip_string	and	_is_palindrome),	we
need	to	get	a	reference	to	them,	and	if	we	have	no	cls	in	our	method,	the	only
option	would	be	to	call	them	like	this:	StringUtil._strip_string(...)	and
StringUtil._is_palindrome(...),	which	is	not	good	practice,	because	we	would
hardcode	the	class	name	in	the	is_palindrome	method,	thereby	putting	ourselves	in
the	position	of	having	to	modify	it	whenever	we	want	to	change	the	class	name.
Using	cls	will	act	as	the	class	name,	which	means	our	code	won't	need	any
amendments.

Notice	how	the	new	logic	reads	much	better	than	the	previous	version.
Moreover,	notice	that,	by	naming	the	factored-out	methods	with	a	leading
underscore,	I	am	hinting	that	those	methods	are	not	supposed	to	be	called	from
outside	the	class,	but	this	will	be	the	subject	of	the	next	paragraph.

Private	methods	and	name	mangling
If	you	have	any	background	with	languages	like	Java,	C#,	or	C++,	then	you
know	they	allow	the	programmer	to	assign	a	privacy	status	to	attributes	(both
data	and	methods).	Each	language	has	its	own	slightly	different	flavor	for	this,
but	the	gist	is	that	public	attributes	are	accessible	from	any	point	in	the	code,
while	private	ones	are	accessible	only	within	the	scope	they	are	defined	in.

In	Python,	there	is	no	such	thing.	Everything	is	public;	therefore,	we	rely	on
conventions	and	on	a	mechanism	called	name	mangling.

The	convention	is	as	follows:	if	an	attribute's	name	has	no	leading	underscores,	it
is	considered	public.	This	means	you	can	access	it	and	modify	it	freely.	When
the	name	has	one	leading	underscore,	the	attribute	is	considered	private,	which
means	it's	probably	meant	to	be	used	internally	and	you	should	not	use	it	or
modify	it	from	the	outside.	A	very	common	use	case	for	private	attributes	are
helper	methods	that	are	supposed	to	be	used	by	public	ones	(possibly	in	call
chains	in	conjunction	with	other	methods),	and	internal	data,	such	as	scaling
factors,	or	any	other	data	that	ideally	we	would	put	in	a	constant	(a	variable	that
cannot	change,	but,	surprise,	surprise,	Python	doesn't	have	those	either).

This	characteristic	usually	scares	people	from	other	backgrounds	off;	they	feel
threatened	by	the	lack	of	privacy.	To	be	honest,	in	my	whole	professional
experience	with	Python,	I've	never	heard	anyone	screaming	"oh	my	God,	we
have	a	terrible	bug	because	Python	lacks	private	attributes!"	Not	once,	I	swear.

That	said,	the	call	for	privacy	actually	makes	sense	because	without	it,	you	risk
introducing	bugs	into	your	code	for	real.	Let	me	show	you	what	I	mean:

#	oop/private.attrs.py

class	A:

				def	__init__(self,	factor):

								self._factor	=	factor

				def	op1(self):

								print('Op1	with	factor	{}...'.format(self._factor))

class	B(A):

				def	op2(self,	factor):

								self._factor	=	factor

								print('Op2	with	factor	{}...'.format(self._factor))

obj	=	B(100)

obj.op1()				#	Op1	with	factor	100...

obj.op2(42)		#	Op2	with	factor	42...

obj.op1()				#	Op1	with	factor	42...	<-	This	is	BAD

In	the	preceding	code,	we	have	an	attribute	called	_factor,	and	let's	pretend	it's	so
important	that	it	isn't	modified	at	runtime	after	the	instance	is	created,	because
op1	depends	on	it	to	function	correctly.	We've	named	it	with	a	leading	underscore,
but	the	issue	here	is	that	when	we	call	obj.op2(42),	we	modify	it,	and	this	is
reflected	in	subsequent	calls	to	op1.

Let's	fix	this	undesired	behavior	by	adding	another	leading	underscore:

#	oop/private.attrs.fixed.py

class	A:

				def	__init__(self,	factor):

								self.__factor	=	factor

				def	op1(self):

								print('Op1	with	factor	{}...'.format(self.__factor))

class	B(A):

				def	op2(self,	factor):

								self.__factor	=	factor

								print('Op2	with	factor	{}...'.format(self.__factor))

obj	=	B(100)

obj.op1()				#	Op1	with	factor	100...

obj.op2(42)		#	Op2	with	factor	42...

obj.op1()				#	Op1	with	factor	100...	<-	Wohoo!	Now	it's	GOOD!

Wow,	look	at	that!	Now	it's	working	as	desired.	Python	is	kind	of	magic	and	in
this	case,	what	is	happening	is	that	the	name-mangling	mechanism	has	kicked	in.

Name	mangling	means	that	any	attribute	name	that	has	at	least	two	leading
underscores	and	at	most	one	trailing	underscore,	such	as	__my_attr,	is	replaced
with	a	name	that	includes	an	underscore	and	the	class	name	before	the	actual
name,	such	as	_ClassName__my_attr.

This	means	that	when	you	inherit	from	a	class,	the	mangling	mechanism	gives
your	private	attribute	two	different	names	in	the	base	and	child	classes	so	that
name	collision	is	avoided.	Every	class	and	instance	object	stores	references	to
their	attributes	in	a	special	attribute	called	__dict__,	so	let's	inspect	obj.__dict__	to
see	name	mangling	in	action:

#	oop/private.attrs.py

print(obj.__dict__.keys())

#	dict_keys(['_factor'])

This	is	the	_factor	attribute	that	we	find	in	the	problematic	version	of	this
example.	But	look	at	the	one	that	is	using	__factor:

#	oop/private.attrs.fixed.py

print(obj.__dict__.keys())

#	dict_keys(['_A__factor',	'_B__factor'])

See?	obj	has	two	attributes	now,	_A__factor	(mangled	within	the	A	class),	and
_B__factor	(mangled	within	the	B	class).	This	is	the	mechanism	that	ensures	that
when	you	do	obj.__factor	=	42,	__factor	in	A	isn't	changed,	because	you're	actually
touching	_B__factor,	which	leaves	_A__factor	safe	and	sound.

If	you're	designing	a	library	with	classes	that	are	meant	to	be	used	and	extended
by	other	developers,	you	will	need	to	keep	this	in	mind	in	order	to	avoid	the
unintentional	overriding	of	your	attributes.	Bugs	like	these	can	be	pretty	subtle
and	hard	to	spot.

The	property	decorator
Another	thing	that	would	be	a	crime	not	to	mention	is	the	property	decorator.
Imagine	that	you	have	an	age	attribute	in	a	Person	class	and	at	some	point	you
want	to	make	sure	that	when	you	change	its	value,	you're	also	checking	that	age
is	within	a	proper	range,	such	as	[18,	99].	You	can	write	accessor	methods,	such
as	get_age()	and	set_age(...)	(also	called	getters	and	setters),	and	put	the	logic
there.	get_age()	will	most	likely	just	return	age,	while	set_age(...)	will	also	do	the
range	check.	The	problem	is	that	you	may	already	have	a	lot	of	code	accessing
the	age	attribute	directly,	which	means	you're	now	up	to	some	tedious	refactoring.
Languages	like	Java	overcome	this	problem	by	using	the	accessor	pattern
basically	by	default.	Many	Java	Integrated	Development	Environments
(IDEs)	autocomplete	an	attribute	declaration	by	writing	getter	and	setter
accessor	method	stubs	for	you	on	the	fly.

Python	is	smarter,	and	does	this	with	the	property	decorator.	When	you	decorate	a
method	with	property,	you	can	use	the	name	of	the	method	as	if	it	were	a	data
attribute.	Because	of	this,	it's	always	best	to	refrain	from	putting	logic	that	would
take	a	while	to	complete	in	such	methods	because,	by	accessing	them	as
attributes,	we	are	not	expecting	to	wait.

Let's	look	at	an	example:

#	oop/property.py

class	Person:

				def	__init__(self,	age):

								self.age	=	age		#	anyone	can	modify	this	freely

class	PersonWithAccessors:

				def	__init__(self,	age):

								self._age	=	age

				def	get_age(self):

								return	self._age

				def	set_age(self,	age):

								if	18	<=	age	<=	99:

												self._age	=	age

								else:

												raise	ValueError('Age	must	be	within	[18,	99]')

class	PersonPythonic:

				def	__init__(self,	age):

								self._age	=	age

				@property

				def	age(self):

								return	self._age

				@age.setter

				def	age(self,	age):

								if	18	<=	age	<=	99:

												self._age	=	age

								else:

												raise	ValueError('Age	must	be	within	[18,	99]')

person	=	PersonPythonic(39)

print(person.age)		#	39	-	Notice	we	access	as	data	attribute

person.age	=	42				#	Notice	we	access	as	data	attribute

print(person.age)		#	42

person.age	=	100			#	ValueError:	Age	must	be	within	[18,	99]

The	Person	class	may	be	the	first	version	we	write.	Then	we	realize	we	need	to
put	the	range	logic	in	place	so,	with	another	language,	we	would	have	to	rewrite
Person	as	the	PersonWithAccessors	class,	and	refactor	all	the	code	that	was	using
Person.age.	In	Python,	we	rewrite	Person	as	PersonPythonic	(you	normally	wouldn't
change	the	name,	of	course)	so	that	the	age	is	stored	in	a	private	_age	variable,
and	we	define	property	getters	and	setters	using	that	decoration,	which	allows	us
to	keep	using	the	person	instances	as	we	were	before.	A	getter	is	a	method	that	is
called	when	we	access	an	attribute	for	reading.	On	the	other	hand,	a	setter	is	a
method	that	is	called	when	we	access	an	attribute	to	write	it.	In	other	languages,
such	as	Java,	it's	customary	to	define	them	as	get_age()	and	set_age(int	value),	but	I
find	the	Python	syntax	much	neater.	It	allows	you	to	start	writing	simple	code
and	refactor	later	on,	only	when	you	need	it,	there	is	no	need	to	pollute	your
code	with	accessors	only	because	they	may	be	helpful	in	the	future.

The	property	decorator	also	allows	for	read-only	data	(no	setter)	and	for	special
actions	when	the	attribute	is	deleted.	Please	refer	to	the	official	documentation	to
dig	deeper.

Operator	overloading
I	find	Python's	approach	to	operator	overloading	to	be	brilliant.	To	overload	an
operator	means	to	give	it	a	meaning	according	to	the	context	in	which	it	is	used.
For	example,	the	+	operator	means	addition	when	we	deal	with	numbers,	but
concatenation	when	we	deal	with	sequences.

In	Python,	when	you	use	operators,	you're	most	likely	calling	the	special
methods	of	some	objects	behind	the	scenes.	For	example,	the	a[k]	call	roughly
translates	to	type(a).__getitem__(a,	k).

As	an	example,	let's	create	a	class	that	stores	a	string	and	evaluates	to	True	if	'42'
is	part	of	that	string,	and	False	otherwise.	Also,	let's	give	the	class	a	length
property	that	corresponds	to	that	of	the	stored	string:	#
oop/operator.overloading.py
class	Weird:
def	__init__(self,	s):
self._s	=	s

def	__len__(self):
return	len(self._s)

def	__bool__(self):
return	'42'	in	self._s

weird	=	Weird('Hello!	I	am	9	years	old!')
print(len(weird))	#	24
print(bool(weird))	#	False

weird2	=	Weird('Hello!	I	am	42	years	old!')
print(len(weird2))	#	25
print(bool(weird2))	#	True

That	was	fun,	wasn't	it?	For	the	complete	list	of	magic	methods	that	you	can
override	in	order	to	provide	your	custom	implementation	of	operators	for	your

classes,	please	refer	to	the	Python	data	model	in	the	official	documentation.

Polymorphism	–	a	brief	overview
The	word	polymorphism	comes	from	the	Greek	polys	(many,	much)	and
morphē	(form,	shape),	and	its	meaning	is	the	provision	of	a	single	interface	for
entities	of	different	types.

In	our	car	example,	we	call	engine.start(),	regardless	of	what	kind	of	engine	it	is.
As	long	as	it	exposes	the	start	method,	we	can	call	it.	That's	polymorphism	in
action.

In	other	languages,	such	as	Java,	in	order	to	give	a	function	the	ability	to	accept
different	types	and	call	a	method	on	them,	those	types	need	to	be	coded	in	such	a
way	that	they	share	an	interface.	In	this	way,	the	compiler	knows	that	the	method
will	be	available	regardless	of	the	type	of	the	object	the	function	is	fed	(as	long
as	it	extends	the	proper	interface,	of	course).

In	Python,	things	are	different.	Polymorphism	is	implicit,	nothing	prevents	you
from	calling	a	method	on	an	object;	therefore,	technically,	there	is	no	need	to
implement	interfaces	or	other	patterns.

There	is	a	special	kind	of	polymorphism	called	ad	hoc	polymorphism,	which	is
what	we	saw	in	the	last	paragraph:	operator	overloading.	This	is	the	ability	of	an
operator	to	change	shape,	according	to	the	type	of	data	it	is	fed.

Polymorphism	also	allows	Python	programmers	to	simply	use	the	interface
(methods	and	properties)	exposed	from	an	object	rather	than	having	to	check
which	class	it	was	instantiated	from.	This	allows	the	code	to	be	more	compact
and	feel	more	natural.

I	cannot	spend	too	much	time	on	polymorphism,	but	I	encourage	you	to	check	it
out	by	yourself,	it	will	expand	your	understanding	of	OOP.	Good	luck!

Data	classes
Before	we	leave	the	OOP	realm,	there	is	one	last	thing	I	want	to	mention:	data
classes.	Introduced	in	Python	3.7	by	PEP557	(https://www.python.org/dev/peps/pep-05
57/),	they	can	be	described	as	"mutable	named	tuples	with	defaults".	Let's	dive	into	an
example:

#	oop/dataclass.py

from	dataclasses	import	dataclass

@dataclass

class	Body:

				'''Class	to	represent	a	physical	body.'''

				name:	str

				mass:	float	=	0.		#	Kg

				speed:	float	=	1.		#	m/s

				def	kinetic_energy(self)	->	float:

								return	(self.mass	*	self.speed	**	2)	/	2

body	=	Body('Ball',	19,	3.1415)

print(body.kinetic_energy())		#	93.755711375	Joule

print(body)		#	Body(name='Ball',	mass=19,	speed=3.1415)

In	the	previous	code,	I	have	created	a	class	to	represent	a	physical	body,	with	one
method	that	allows	me	to	calculate	its	kinetic	energy	(using	the	renowned
formula	Ek=½mv2).	Notice	that	name	is	supposed	to	be	a	string,	while	mass	and
speed	are	both	floats,	and	both	are	given	a	default	value.	It's	also	interesting	that	I
didn't	have	to	write	any	__init__	method,	it's	done	for	me	by	the	dataclass
decorator,	along	with	methods	for	comparison	and	for	producing	the	string
representation	of	the	object	(implicitly	called	on	the	last	line	by	print).

You	can	read	all	the	specifications	in	PEP557	if	you	are	curious,	but	for	now	just
remember	that	data	classes	might	offer	a	nicer,	slightly	more	powerful
alternative	to	named	tuples,	in	case	you	need	it.

https://www.python.org/dev/peps/pep-0557/

Writing	a	custom	iterator
Now	we	have	all	the	tools	to	appreciate	how	we	can	write	our	own	custom
iterator.	Let's	first	define	an	iterable	and	an	iterator:

Iterable:	An	object	is	said	to	be	iterable	if	it's	capable	of	returning	its
members	one	at	a	time.	Lists,	tuples,	strings,	and	dictionaries	are	all
iterables.	Custom	objects	that	define	either	of	the	__iter__	or	__getitem__
methods	are	also	iterables.
Iterator:	An	object	is	said	to	be	an	iterator	if	it	represents	a	stream	of	data.
A	custom	iterator	is	required	to	provide	an	implementation	for	__iter__	that
returns	the	object	itself,	and	an	implementation	for	__next__	that	returns	the
next	item	of	the	data	stream	until	the	stream	is	exhausted,	at	which	point	all
successive	calls	to	__next__	simply	raise	the	StopIteration	exception.	Built-in
functions,	such	as	iter	and	next,	are	mapped	to	call	__iter__	and	__next__	on	an
object,	behind	the	scenes.

Let's	write	an	iterator	that	returns	all	the	odd	characters	from	a	string	first,	and
then	the	even	ones:	#	iterators/iterator.py
class	OddEven:

def	__init__(self,	data):
self._data	=	data
self.indexes	=	(list(range(0,	len(data),	2))	+
list(range(1,	len(data),	2)))

def	__iter__(self):
return	self

def	__next__(self):
if	self.indexes:
return	self._data[self.indexes.pop(0)]
raise	StopIteration

oddeven	=	OddEven('ThIsIsCoOl!')
print(''.join(c	for	c	in	oddeven))	#	TIICO!hssol

oddeven	=	OddEven('HoLa')	#	or	manually...
it	=	iter(oddeven)	#	this	calls	oddeven.__iter__	internally
print(next(it))	#	H

print(next(it))		#	L

print(next(it))		#	o

print(next(it))		#	a

So,	we	needed	to	provide	an	implementation	for	__iter__	that	returned	the	object
itself,	and	then	one	for	__next__.	Let's	go	through	it.	What	needed	to	happen	was
the	return	of	_data[0],	_data[2],	_data[4],	...,	_data[1],	_data[3],	_data[5],	...	until	we
had	returned	every	item	in	the	data.	In	order	to	do	that,	we	prepared	a	list	and
indexes,	such	as	[0,	2,	4,	6,	...,	1,	3,	5,	...],	and	while	there	was	at	least	an	element
in	it,	we	popped	the	first	one	and	returned	the	element	from	the	data	that	was	at
that	position,	thereby	achieving	our	goal.	When	indexes	was	empty,	we	raised
StopIteration,	as	required	by	the	iterator	protocol.

There	are	other	ways	to	achieve	the	same	result,	so	go	ahead	and	try	to	code	a
different	one	yourself.	Make	sure	the	end	result	works	for	all	edge	cases,	empty
sequences,	sequences	of	lengths	of	1,	2,	and	so	on.

Summary
In	this	chapter,	we	looked	at	decorators,	discovered	the	reasons	for	having	them,
and	covered	a	few	examples	using	one	or	more	at	the	same	time.	We	also	saw
decorators	that	take	arguments,	which	are	usually	used	as	decorator	factories.

We	scratched	the	surface	of	object-oriented	programming	in	Python.	We	covered
all	the	basics,	so	you	should	now	be	able	to	understand	the	code	that	will	come
in	future	chapters.	We	talked	about	all	kinds	of	methods	and	attributes	that	one
can	write	in	a	class,	we	explored	inheritance	versus	composition,	method
overriding,	properties,	operator	overloading,	and	polymorphism.

At	the	end,	we	very	briefly	touched	base	on	iterators,	so	now	you	understand
generators	more	deeply.

In	the	next	chapter,	we're	going	to	see	how	to	deal	with	files	and	how	to	persist
data	in	several	different	ways	and	formats.

Files	and	Data	Persistence
"Persistence	is	the	key	to	the	adventure	we	call	life."

–	Torsten	Alexander	Lange

In	the	previous	chapters,	we	have	explored	several	different	aspects	of	Python.
As	the	examples	have	a	didactic	purpose,	we've	run	them	in	a	simple	Python
shell,	or	in	the	form	of	a	Python	module.	They	ran,	maybe	printed	something	on
the	console,	and	then	they	terminated,	leaving	no	trace	of	their	brief	existence.

Real-world	applications	though	are	generally	much	different.	Naturally,	they	still
run	in	memory,	but	they	interact	with	networks,	disks,	and	databases.	They	also
exchange	information	with	other	applications	and	devices,	using	formats	that	are
suitable	for	the	situation.

In	this	chapter,	we	are	going	to	start	closing	in	to	the	real	world	by	exploring	the
following:

Files	and	directories
Compression
Networks	and	streams
The	JSON	data-interchange	format
Data	persistence	with	pickle	and	shelve,	from	the	standard	library
Data	persistence	with	SQLAlchemy

As	usual,	I	will	try	to	balance	breadth	and	depth,	so	that	by	the	end	of	the
chapter,	you	will	have	a	solid	grasp	of	the	fundamentals	and	will	know	how	to
fetch	further	information	on	the	web.

Working	with	files	and	directories
When	it	comes	to	files	and	directories,	Python	offers	plenty	of	useful	tools.	In
particular,	in	the	following	examples,	we	will	leverage	the	os	and	shutil	modules.
As	we'll	be	reading	and	writing	on	the	disk,	I	will	be	using	a	file,	fear.txt,	which
contains	an	excerpt	from	Fear,	by	Thich	Nhat	Hanh,	as	a	guinea	pig	for	some	of
our	examples.

	

Opening	files
Opening	a	file	in	Python	is	very	simple	and	intuitive.	In	fact,	we	just	need	to	use
the	open	function.	Let's	see	a	quick	example:

#	files/open_try.py

fh	=	open('fear.txt',	'rt')		#	r:	read,	t:	text

for	line	in	fh.readlines():

				print(line.strip())		#	remove	whitespace	and	print

fh.close()

The	previous	code	is	very	simple.	We	call	open,	passing	the	filename,	and	telling
open	that	we	want	to	read	it	in	text	mode.	There	is	no	path	information	before	the
filename;	therefore,	open	will	assume	the	file	is	in	the	same	folder	the	script	is	run
from.	This	means	that	if	we	run	this	script	from	outside	the	files	folder,	then
fear.txt	won't	be	found.

Once	the	file	has	been	opened,	we	obtain	a	file	object	back,	fh,	which	we	can	use
to	work	on	the	content	of	the	file.	In	this	case,	we	use	the	readlines()	method	to
iterate	over	all	the	lines	in	the	file,	and	print	them.	We	call	strip()	on	each	line	to
get	rid	of	any	extra	spaces	around	the	content,	including	the	line	termination
character	at	the	end,	since	print	will	already	add	one	for	us.	This	is	a	quick	and
dirty	solution	that	works	in	this	example,	but	should	the	content	of	the	file
contain	meaningful	spaces	that	need	to	be	preserved,	you	will	have	to	be	slightly
more	careful	in	how	you	sanitize	the	data.	At	the	end	of	the	script,	we	flush	and
close	the	stream.

Closing	a	file	is	very	important,	as	we	don't	want	to	risk	failing	to	release	the
handle	we	have	on	it.	Therefore,	we	need	to	apply	some	precaution,	and	wrap
the	previous	logic	in	a	try/finally	block.	This	has	the	effect	that,	whatever	error
might	occur	while	we	try	to	open	and	read	the	file,	we	can	rest	assured	that
close()	will	be	called:

#	files/open_try.py

try:

				fh	=	open('fear.txt',	'rt')

				for	line	in	fh.readlines():

								print(line.strip())

finally:

				fh.close()

The	logic	is	exactly	the	same,	but	now	it	is	also	safe.

Don't	worry	if	you	don't	understand	try/finally	for	now.	We	will	explore	how	to	deal	with
exceptions	in	the	next	chapter.	For	now,	suffice	to	say	that	putting	code	within	the	body	of	a
try	block	adds	a	mechanism	around	that	code	that	allows	us	to	detect	errors	(which	are	called
exceptions)	and	decide	what	to	do	if	they	happen.	In	this	case,	we	don't	really	do	anything	in
case	of	errors,	but	by	closing	the	file	within	the	finally	block,	we	make	sure	that	line	is
executed	whether	or	not	any	error	has	happened.

We	can	simplify	the	previous	example	this	way:

#	files/open_try.py

try:

				fh	=	open('fear.txt')		#	rt	is	default

				for	line	in	fh:		#	we	can	iterate	directly	on	fh

								print(line.strip())

finally:

				fh.close()

As	you	can	see,	rt	is	the	default	mode	for	opening	files,	so	we	don't	need	to
specify	it.	Moreover,	we	can	simply	iterate	on	fh,	without	explicitly	calling
readlines()	on	it.	Python	is	very	nice	and	gives	us	shorthands	to	make	our	code
shorter	and	simpler	to	read.

All	the	previous	examples	produce	a	print	of	the	file	on	the	console	(check	out
the	source	code	to	read	the	whole	content):

An	excerpt	from	Fear	-	By	Thich	Nhat	Hanh

The	Present	Is	Free	from	Fear

When	we	are	not	fully	present,	we	are	not	really	living.	We’re	not	really	there,	either	

for	our	loved	ones	or	for	ourselves.	If	we’re	not	there,	then	where	are	we?	We	are	

running,	running,	running,	even	during	our	sleep.	We	run	because	we’re	trying	to	escape	

from	our	fear.

...

Using	a	context	manager	to	open	a
file
Let's	admit	it:	the	prospect	of	having	to	disseminate	our	code	with	try/finally
blocks	is	not	one	of	the	best.	As	usual,	Python	gives	us	a	much	nicer	way	to
open	a	file	in	a	secure	fashion:	by	using	a	context	manager.	Let's	see	the	code
first:

#	files/open_with.py

with	open('fear.txt')	as	fh:

				for	line	in	fh:

								print(line.strip())

The	previous	example	is	equivalent	to	the	one	before	it,	but	reads	so	much	better.
The	with	statement	supports	the	concept	of	a	runtime	context	defined	by	a	context
manager.	This	is	implemented	using	a	pair	of	methods,	__enter__	and	__exit__,	that
allow	user-defined	classes	to	define	a	runtime	context	that	is	entered	before	the
statement	body	is	executed	and	exited	when	the	statement	ends.	The	open
function	is	capable	of	producing	a	file	object	when	invoked	by	a	context
manager,	but	the	true	beauty	of	it	lies	in	the	fact	that	fh.close()	will	be	called
automatically	for	us,	even	in	case	of	errors.

Context	managers	are	used	in	several	different	scenarios,	such	as	thread
synchronization,	closure	of	files	or	other	objects,	and	management	of	network
and	database	connections.	You	can	find	information	about	them	in	the	contextlib
documentation	page	(https://docs.python.org/3.7/library/contextlib.html).

https://docs.python.org/3.7/library/contextlib.html

Reading	and	writing	to	a	file
Now	that	we	know	how	to	open	a	file,	let's	see	a	couple	of	different	ways	that	we
have	to	read	and	write	to	it:

#	files/print_file.py

with	open('print_example.txt',	'w')	as	fw:

				print('Hey	I	am	printing	into	a	file!!!',	file=fw)

A	first	approach	uses	the	print	function,	which	you've	seen	plenty	of	times	in	the
previous	chapters.	After	obtaining	a	file	object,	this	time	specifying	that	we
intend	to	write	to	it	("w"),	we	can	tell	the	call	to	print	to	direct	its	effects	on	the
file,	instead	of	the	default	sys.stdout,	which,	when	executed	on	a	console,	is
mapped	to	it.

The	previous	code	has	the	effect	of	creating	the	print_example.txt	file	if	it	doesn't
exist,	or	truncate	it	in	case	it	does,	and	writes	the	line	Hey	I	am	printing	into	a
file!!!	to	it.

This	is	all	nice	and	easy,	but	not	what	we	typically	do	when	we	want	to	write	to	a
file.	Let's	see	a	much	more	common	approach:	#	files/read_write.py
with	open('fear.txt')	as	f:
lines	=	[line.rstrip()	for	line	in	f]

with	open('fear_copy.txt',	'w')	as	fw:
fw.write('\n'.join(lines))

In	the	previous	example,	we	first	open	fear.txt	and	collect	its	content	into	a	list,
line	by	line.	Notice	that	this	time,	I'm	calling	a	more	precise	method,	rstrip(),	as
an	example,	to	make	sure	I	only	strip	the	whitespace	on	the	right-hand	side	of
every	line.

In	the	second	part	of	the	snippet,	we	create	a	new	file,	fear_copy.txt,	and	we	write
to	it	all	the	lines	from	the	original	file,	joined	by	a	newline,	\n.	Python	is
gracious	and	works	by	default	with	universal	newlines,	which	means	that	even
though	the	original	file	might	have	a	newline	that	is	different	than	\n,	it	will	be
translated	automatically	for	us	before	the	line	is	returned.	This	behavior	is,	of

course,	customizable,	but	normally	it	is	exactly	what	you	want.	Speaking	of
newlines,	can	you	think	of	one	of	them	that	might	be	missing	in	the	copy?

Reading	and	writing	in	binary	mode
Notice	that	by	opening	a	file	passing	t	in	the	options	(or	omitting	it,	as	it	is	the
default),	we're	opening	the	file	in	text	mode.	This	means	that	the	content	of	the
file	is	treated	and	interpreted	as	text.	If	you	wish	to	write	bytes	to	a	file,	you	can
open	it	in	binary	mode.	This	is	a	common	requirement	when	you	deal	with	files
that	don't	just	contain	raw	text,	such	as	images,	audio/video,	and,	in	general,	any
other	proprietary	format.

In	order	to	handle	files	in	binary	mode,	simply	specify	the	b	flag	when	opening
them,	as	in	the	following	example:

#	files/read_write_bin.py

with	open('example.bin',	'wb')	as	fw:

				fw.write(b'This	is	binary	data...')

with	open('example.bin',	'rb')	as	f:

				print(f.read())		#	prints:	b'This	is	binary	data...'

In	this	example,	I'm	still	using	text	as	binary	data,	but	it	could	be	anything	you
want.	You	can	see	it's	treated	as	a	binary	by	the	fact	that	you	get	the	b'This	...'
prefix	in	the	output.

Protecting	against	overriding	an
existing	file
	

Python	gives	us	the	ability	to	open	files	for	writing.	By	using	the	w	flag,	we	open
a	file	and	truncate	its	content.	This	means	the	file	is	overwritten	with	an	empty
file,	and	the	original	content	is	lost.	If	you	wish	to	only	open	a	file	for	writing	in
case	it	doesn't	exist,	you	can	use	the	x	flag	instead,	in	the	following	example:

#	files/write_not_exists.py

with	open('write_x.txt',	'x')	as	fw:

				fw.write('Writing	line	1')		#	this	succeeds

with	open('write_x.txt',	'x')	as	fw:

				fw.write('Writing	line	2')		#	this	fails

If	you	run	the	previous	snippet,	you	will	find	a	file	called	write_x.txt	in	your
directory,	containing	only	one	line	of	text.	The	second	part	of	the	snippet,	in	fact,
fails	to	execute.	This	is	the	output	I	get	on	my	console:

$	python	write_not_exists.py

Traceback	(most	recent	call	last):

		File	"write_not_exists.py",	line	6,	in	<module>

				with	open('write_x.txt',	'x')	as	fw:

FileExistsError:	[Errno	17]	File	exists:	'write_x.txt'

	

	

Checking	for	file	and	directory
existence
If	you	want	to	make	sure	a	file	or	directory	exists	(or	it	doesn't),	the	os.path
module	is	what	you	need.	Let's	see	a	small	example:

#	files/existence.py

import	os

filename	=	'fear.txt'

path	=	os.path.dirname(os.path.abspath(filename))

print(os.path.isfile(filename))		#	True

print(os.path.isdir(path))		#	True

print(path)		#	/Users/fab/srv/lpp/ch7/files

The	preceding	snippet	is	quite	interesting.	After	declaring	the	filename	with	a
relative	reference	(in	that	it	is	missing	the	path	information),	we	use	abspath	to
calculate	the	full,	absolute	path	of	the	file.	Then,	we	get	the	path	information	(by
removing	the	filename	at	the	end)	by	calling	dirname	on	it.	The	result,	as	you	can
see,	is	printed	on	the	last	line.	Notice	also	how	we	check	for	existence,	both	for	a
file	and	a	directory,	by	calling	isfile	and	isdir.	In	the	os.path	module,	you	find	all
the	functions	you	need	to	work	with	pathnames.

Should	you	ever	need	to	work	with	paths	in	a	different	way,	you	can	check	out	pathlib.	While
os.path	works	with	strings,	pathlib	offers	classes	representing	filesystem	paths	with	semantics
appropriate	for	different	operating	systems.	It	is	beyond	the	scope	of	this	chapter,	but	if	you're
interested,	check	out	PEP428	(https://www.python.org/dev/peps/pep-0428/),	and	its	page	in	the	standard
library.

https://www.python.org/dev/peps/pep-0428/

Manipulating	files	and	directories
Let's	see	a	couple	of	quick	examples	on	how	to	manipulate	files	and	directories.
The	first	example	manipulates	the	content:

#	files/manipulation.py

from	collections	import	Counter

from	string	import	ascii_letters

chars	=	ascii_letters	+	'	'

def	sanitize(s,	chars):

				return	''.join(c	for	c	in	s	if	c	in	chars)

def	reverse(s):

				return	s[::-1]

with	open('fear.txt')	as	stream:

				lines	=	[line.rstrip()	for	line	in	stream]

with	open('raef.txt',	'w')	as	stream:

				stream.write('\n'.join(reverse(line)	for	line	in	lines))

#	now	we	can	calculate	some	statistics

lines	=	[sanitize(line,	chars)	for	line	in	lines]

whole	=	'	'.join(lines)

cnt	=	Counter(whole.lower().split())

print(cnt.most_common(3))

The	previous	example	defines	two	functions:	sanitize	and	reverse.	They	are
simple	functions	whose	purpose	is	to	remove	anything	that	is	not	a	letter	or
space	from	a	string,	and	produce	the	reversed	copy	of	a	string,	respectively.

We	open	fear.txt	and	we	read	its	content	into	a	list.	Then	we	create	a	new	file,
raef.txt,	which	will	contain	the	horizontally-mirrored	version	of	the	original	one.
We	write	all	the	content	of	lines	with	a	single	operation,	using	join	on	a	new	line
character.	Maybe	more	interesting,	is	the	bit	in	the	end.	First,	we	reassign	lines	to
a	sanitized	version	of	itself,	by	means	of	list	comprehension.	Then	we	put	them
together	in	the	whole	string,	and	finally,	we	pass	the	result	to	Counter.	Notice	that
we	split	the	string	and	put	it	in	lowercase.	This	way,	each	word	will	be	counted
correctly,	regardless	of	its	case,	and,	thanks	to	split,	we	don't	need	to	worry
about	extra	spaces	anywhere.	When	we	print	the	three	most	common	words,	we
realize	that	truly	Thich	Nhat	Hanh's	focus	is	on	others,	as	we	is	the	most	common
word	in	the	text:

$	python	manipulation.py

[('we',	17),	('the',	13),	('were',	7)]

Let's	now	see	an	example	of	manipulation	more	oriented	to	disk	operations,	in
which	we	put	the	shutil	module	to	use:

#	files/ops_create.py

import	shutil

import	os

BASE_PATH	=	'ops_example'		#	this	will	be	our	base	path

os.mkdir(BASE_PATH)

path_b	=	os.path.join(BASE_PATH,	'A',	'B')

path_c	=	os.path.join(BASE_PATH,	'A',	'C')

path_d	=	os.path.join(BASE_PATH,	'A',	'D')

os.makedirs(path_b)

os.makedirs(path_c)

for	filename	in	('ex1.txt',	'ex2.txt',	'ex3.txt'):

				with	open(os.path.join(path_b,	filename),	'w')	as	stream:

								stream.write(f'Some	content	here	in	{filename}\n')

shutil.move(path_b,	path_d)

shutil.move(

				os.path.join(path_d,	'ex1.txt'),

				os.path.join(path_d,	'ex1d.txt')

)

In	the	previous	code,	we	start	by	declaring	a	base	path,	which	will	safely	contain
all	the	files	and	folders	we're	going	to	create.	We	then	use	makedirs	to	create	two
directories:	ops_example/A/B	and	ops_example/A/C.	(Can	you	think	of	a	way	of	creating
the	two	directories	by	using	map?).

We	use	os.path.join	to	concatenate	directory	names,	as	using	/	would	specialize
the	code	to	run	on	a	platform	where	the	directory	separator	is	/,	but	then	the	code
would	fail	on	platforms	with	a	different	separator.	Let's	delegate	to	join	the	task
to	figure	out	which	is	the	appropriate	separator.

After	creating	the	directories,	within	a	simple	for	loop,	we	put	some	code	that
creates	three	files	in	directory	B.	Then,	we	move	the	folder	B	and	its	content	to	a
different	name:	D.	And	finally,	we	rename	ex1.txt	to	ex1d.txt.	If	you	open	that	file,
you'll	see	it	still	contains	the	original	text	from	the	for	loop.	Calling	tree	on	the
result	produces	the	following:

$	tree	ops_example/

ops_example/

└──	A

				├──	C

				└──	D

								├──	ex1d.txt

								├──	ex2.txt

								└──	ex3.txt

Manipulating	pathnames
	

Let's	explore	a	little	more	the	abilities	of	os.path	by	means	of	a	simple	example:

#	files/paths.py

import	os

filename	=	'fear.txt'

path	=	os.path.abspath(filename)

print(path)

print(os.path.basename(path))

print(os.path.dirname(path))

print(os.path.splitext(path))

print(os.path.split(path))

readme_path	=	os.path.join(

				os.path.dirname(path),	'..',	'..',	'README.rst')

print(readme_path)

print(os.path.normpath(readme_path))

Reading	the	result	is	probably	a	good	enough	explanation	for	this	simple
example:

/Users/fab/srv/lpp/ch7/files/fear.txt											#	path

fear.txt																																								#	basename

/Users/fab/srv/lpp/ch7/files																				#	dirname

('/Users/fab/srv/lpp/ch7/files/fear',	'.txt')			#	splitext

('/Users/fab/srv/lpp/ch7/files',	'fear.txt')				#	split

/Users/fab/srv/lpp/ch7/files/../../README.rst			#	readme_path

/Users/fab/srv/lpp/README.rst																			#	normalized

	

	

Temporary	files	and	directories
Sometimes,	it's	very	useful	to	be	able	to	create	a	temporary	directory	or	file
when	running	some	code.	For	example,	when	writing	tests	that	affect	the	disk,
you	can	use	temporary	files	and	directories	to	run	your	logic	and	assert	that	it's
correct,	and	to	be	sure	that	at	the	end	of	the	test	run,	the	test	folder	has	no
leftovers.	Let's	see	how	you	do	it	in	Python:

#	files/tmp.py

import	os

from	tempfile	import	NamedTemporaryFile,	TemporaryDirectory

with	TemporaryDirectory(dir='.')	as	td:

				print('Temp	directory:',	td)

				with	NamedTemporaryFile(dir=td)	as	t:

								name	=	t.name

								print(os.path.abspath(name))

The	preceding	example	is	quite	straightforward:	we	create	a	temporary	directory
in	the	current	one	("."),	and	we	create	a	named	temporary	file	in	it.	We	print	the
filename,	as	well	as	its	full	path:

$	python	tmp.py

Temp	directory:	./tmpwa9bdwgo

/Users/fab/srv/lpp/ch7/files/tmpwa9bdwgo/tmp3d45hm46

Running	this	script	will	produce	a	different	result	every	time.	After	all,	it's	a
temporary	random	name	we're	creating	here,	right?

Directory	content
With	Python,	you	can	also	inspect	the	content	of	a	directory.	I'll	show	you	two
ways	of	doing	this:	#	files/listing.py
import	os

with	os.scandir('.')	as	it:
for	entry	in	it:
print(
entry.name,	entry.path,
'File'	if	entry.is_file()	else	'Folder'
)

This	snippet	uses	os.scandir,	called	on	the	current	directory.	We	iterate	on	the
results,	each	of	which	is	an	instance	of	os.DirEntry,	a	nice	class	that	exposes
useful	properties	and	methods.	In	the	code,	we	access	a	subset	of	those:	name,	path,
and	is_file().	Running	the	code	yields	the	following	(I	omitted	a	few	results	for
brevity):	$	python	listing.py
fixed_amount.py	./fixed_amount.py	File
existence.py	./existence.py	File
...
ops_example	./ops_example	Folder
...

A	more	powerful	way	to	scan	a	directory	tree	is	given	to	us	by	os.walk.	Let's	see
an	example:	#	files/walking.py
import	os

for	root,	dirs,	files	in	os.walk('.'):
print(os.path.abspath(root))
if	dirs:
print('Directories:')
for	dir_	in	dirs:
print(dir_)
print()

if	files:
print('Files:')
for	filename	in	files:
print(filename)
print()

Running	the	preceding	snippet	will	produce	a	list	of	all	files	and	directories	in
the	current	one,	and	it	will	do	the	same	for	each	sub-directory.

File	and	directory	compression
	

Before	we	leave	this	section,	let	me	give	you	an	example	of	how	to	create	a
compressed	file.	In	the	source	code	of	the	book,	I	have	two	examples:	one
creates	a	ZIP	file,	while	the	other	one	creates	a	tar.gz	file.	Python	allows	you	to
create	compressed	files	in	several	different	ways	and	formats.	Here,	I	am	going
to	show	you	how	to	create	the	most	common	one,	ZIP:

#	files/compression/zip.py

from	zipfile	import	ZipFile

with	ZipFile('example.zip',	'w')	as	zp:

				zp.write('content1.txt')

				zp.write('content2.txt')

				zp.write('subfolder/content3.txt')

				zp.write('subfolder/content4.txt')

with	ZipFile('example.zip')	as	zp:

				zp.extract('content1.txt',	'extract_zip')

				zp.extract('subfolder/content3.txt',	'extract_zip')

In	the	preceding	code,	we	import	ZipFile,	and	then,	within	a	context	manager,	we
write	into	it	four	dummy	context	files	(two	of	which	are	in	a	sub-folder,	to	show
ZIP	preserves	the	full	path).	Afterwards,	as	an	example,	we	open	the	compressed
file	and	extract	a	couple	of	files	from	it,	into	the	extract_zip	directory.	If	you	are
interested	in	learning	more	about	data	compression,	make	sure	you	check	out	the
Data	Compression	and	Archiving	section	on	the	standard	library	(https://docs.pyth
on.org/3.7/library/archiving.html),	where	you'll	be	able	to	learn	all	about	this	topic.

	

	

	

https://docs.python.org/3.7/library/archiving.html

Data	interchange	formats
Modern	software	architecture	tends	to	split	an	application	into	several
components.	Whether	you	embrace	the	service-oriented	architecture	paradigm,
or	you	push	it	even	further	into	the	microservices	realm,	these	components	will
have	to	exchange	data.	But	even	if	you	are	coding	a	monolithic	application,
whose	code	base	is	contained	in	one	project,	chances	are	that	you	have	to	still
exchange	data	with	APIs,	other	programs,	or	simply	handle	the	data	flow
between	the	frontend	and	the	backend	part	of	your	website,	which	very	likely
won't	speak	the	same	language.

Choosing	the	right	format	in	which	to	exchange	information	is	crucial.	A
language-specific	format	has	the	advantage	that	the	language	itself	is	very	likely
to	provide	you	with	all	the	tools	to	make	serialization	and	deserialization	a
breeze.	However,	you	will	lose	the	ability	to	talk	to	other	components	that	have
been	written	in	different	versions	of	the	same	language,	or	in	different	languages
altogether.	Regardless	of	what	the	future	looks	like,	going	with	a	language-
specific	format	should	only	be	done	if	it	is	the	only	possible	choice	for	the	given
situation.

A	much	better	approach	is	to	choose	a	format	that	is	language	agnostic,	and	can
be	spoken	by	all	(or	at	least	most)	languages.	In	the	team	I	lead,	we	have	people
from	England,	Poland,	South	Africa,	Spain,	Greece,	India,	Italy,	to	mention	just
a	few.	We	all	speak	English,	so	regardless	of	our	native	tongue,	we	can	all
understand	each	other	(well...	mostly!).

In	the	software	world,	some	popular	formats	have	become	the	de	facto	standard
over	recent	years.	The	most	famous	ones	probably	are	XML,	YAML,	and	JSON.
The	Python	standard	library	features	the	xml	and	json	modules,	and,	on	PyPI	(https
://docs.python.org/3.7/library/archiving.html),	you	can	find	a	few	different	packages
to	work	with	YAML.

In	the	Python	environment,	JSON	is	probably	the	most	commonly	used	one.	It
wins	over	the	other	two	because	of	being	part	of	the	standard	library,	and	for	its
simplicity.	If	you	have	ever	worked	with	XML,	you	know	what	a	nightmare	it

https://docs.python.org/3.7/library/archiving.html

can	be.

Working	with	JSON
JSON	is	the	acronym	of	JavaScript	Object	Notation,	and	it	is	a	subset	of	the
JavaScript	language.	It	has	been	there	for	almost	two	decades	now,	so	it	is	well
known	and	widely	adopted	by	basically	all	languages,	even	though	it	is	actually
language	independent.	You	can	read	all	about	it	on	its	website	(https://www.json.or
g/),	but	I'm	going	to	give	you	a	quick	introduction	to	it	now.

JSON	is	based	on	two	structures:	a	collection	of	name/value	pairs,	and	an
ordered	list	of	values.	You	will	immediately	realize	that	these	two	objects	map	to
the	dictionary	and	list	data	types	in	Python,	respectively.	As	data	types,	it	offers
strings,	numbers,	objects,	and	values,	such	as	true,	false,	and	null.	Let's	see	a
quick	example	to	get	us	started:

#	json_examples/json_basic.py

import	sys

import	json

data	=	{

				'big_number':	2	**	3141,

				'max_float':	sys.float_info.max,

				'a_list':	[2,	3,	5,	7],

}

json_data	=	json.dumps(data)

data_out	=	json.loads(json_data)

assert	data	==	data_out		#	json	and	back,	data	matches

We	begin	by	importing	the	sys	and	json	modules.	Then	we	create	a	simple
dictionary	with	some	numbers	inside	and	a	list.	I	wanted	to	test	serializing	and
deserializing	using	very	big	numbers,	both	int	and	float,	so	I	put	23141	and
whatever	is	the	biggest	floating	point	number	my	system	can	handle.

We	serialize	with	json.dumps,	which	takes	data	and	converts	it	into	a	JSON
formatted	string.	That	data	is	then	fed	into	json.loads,	which	does	the	opposite:
from	a	JSON	formatted	string,	it	reconstructs	the	data	into	Python.	On	the	last
line,	we	make	sure	that	the	original	data	and	the	result	of	the
serialization/deserialization	through	JSON	match.

Let's	see,	in	the	next	example,	what	JSON	data	would	look	like	if	we	printed	it:

#	json_examples/json_basic.py

https://www.json.org/

import	json

info	=	{

				'full_name':	'Sherlock	Holmes',

				'address':	{

								'street':	'221B	Baker	St',

								'zip':	'NW1	6XE',

								'city':	'London',

								'country':	'UK',

				}

}

print(json.dumps(info,	indent=2,	sort_keys=True))

In	this	example,	we	create	a	dictionary	with	Sherlock	Holmes'	data	in	it.	If,	like
me,	you're	a	fan	of	Sherlock	Holmes,	and	are	in	London,	you'll	find	his	museum
at	that	address	(which	I	recommend	visiting,	it's	small	but	very	nice).

Notice	how	we	call	json.dumps,	though.	We	have	told	it	to	indent	with	two	spaces,
and	sort	keys	alphabetically.	The	result	is	this:

$	python	json_basic.py

{

		"address":	{

				"city":	"London",

				"country":	"UK",

				"street":	"221B	Baker	St",

				"zip":	"NW1	6XE"

		},

		"full_name":	"Sherlock	Holmes"

}

The	similarity	with	Python	is	huge.	The	one	difference	is	that	if	you	place	a
comma	on	the	last	element	in	a	dictionary,	like	I've	done	in	Python	(as	it	is
customary),	JSON	will	complain.

Let	me	show	you	something	interesting:

#	json_examples/json_tuple.py

import	json

data_in	=	{

				'a_tuple':	(1,	2,	3,	4,	5),

}

json_data	=	json.dumps(data_in)

print(json_data)		#	{"a_tuple":	[1,	2,	3,	4,	5]}

data_out	=	json.loads(json_data)

print(data_out)		#	{'a_tuple':	[1,	2,	3,	4,	5]}

In	this	example,	we	have	put	a	tuple,	instead	of	a	list.	The	interesting	bit	is	that,
conceptually,	a	tuple	is	also	an	ordered	list	of	items.	It	doesn't	have	the	flexibility

of	a	list,	but	still,	it	is	considered	the	same	from	the	perspective	of	JSON.
Therefore,	as	you	can	see	by	the	first	print,	in	JSON	a	tuple	is	transformed	into	a
list.	Naturally	then,	the	information	that	it	was	a	tuple	is	lost,	and	when
deserialization	happens,	what	we	have	in	data_out,	a_tuple	is	actually	a	list.	It	is
important	that	you	keep	this	in	mind	when	dealing	with	data,	as	going	through	a
transformation	process	that	involves	a	format	that	only	comprises	a	subset	of	the
data	structures	you	can	use	implies	there	will	be	information	loss.	In	this	case,
we	lost	the	information	about	the	type	(tuple	versus	list).

This	is	actually	a	common	problem.	For	example,	you	can't	serialize	all	Python
objects	to	JSON,	as	it	is	not	clear	if	JSON	should	revert	that	(or	how).	Think
about	datetime,	for	example.	An	instance	of	that	class	is	a	Python	object	that
JSON	won't	allow	serializing.	If	we	transform	it	into	a	string	such	as	2018-03-
04T12:00:30Z,	which	is	the	ISO	8601	representation	of	a	date	with	time	and	time
zone	information,	what	should	JSON	do	when	deserializing?	Should	it	say	this	is
actually	deserializable	into	a	datetime	object,	so	I'd	better	do	it,	or	should	it
simply	consider	it	as	a	string	and	leave	it	as	it	is?	What	about	data	types	that	can
be	interpreted	in	more	than	one	way?

The	answer	is	that	when	dealing	with	data	interchange,	we	often	need	to
transform	our	objects	into	a	simpler	format	prior	to	serializing	them	with	JSON.
This	way,	we	will	know	how	to	reconstruct	them	correctly	when	we	deserialize
them.

In	some	cases,	though,	and	mostly	for	internal	use,	it	is	useful	to	be	able	to
serialize	custom	objects,	so,	just	for	fun,	I'm	going	to	show	you	how	with	two
examples:	complex	numbers	(because	I	love	math)	and	datetime	objects.

Custom	encoding/decoding	with
JSON
In	the	JSON	world,	we	can	consider	terms	like	encoding/decoding	as	synonyms
to	serializing/deserializing.	They	basically	all	mean	transforming	to	and	back
from	JSON.	In	the	following	example,	I'm	going	to	show	you	how	to	encode
complex	numbers:

#	json_examples/json_cplx.py

import	json

class	ComplexEncoder(json.JSONEncoder):

				def	default(self,	obj):

								if	isinstance(obj,	complex):

												return	{

																'_meta':	'_complex',

																'num':	[obj.real,	obj.imag],

												}

								return	json.JSONEncoder.default(self,	obj)

data	=	{

				'an_int':	42,

				'a_float':	3.14159265,

				'a_complex':	3	+	4j,

}

json_data	=	json.dumps(data,	cls=ComplexEncoder)

print(json_data)

def	object_hook(obj):

				try:

								if	obj['_meta']	==	'_complex':

												return	complex(*obj['num'])

				except	(KeyError,	TypeError):

								return	obj

data_out	=	json.loads(json_data,	object_hook=object_hook)

print(data_out)

We	start	by	defining	a	ComplexEncoder	class,	which	needs	to	implement	the	default
method.	This	method	is	passed	to	all	the	objects	that	have	to	be	serialized,	one	at
a	time,	in	the	obj	variable.	At	some	point,	obj	will	be	our	complex	number,	3+4j.
When	that	is	true,	we	return	a	dictionary	with	some	custom	meta	information,
and	a	list	that	contains	both	the	real	and	the	imaginary	part	of	the	number.	That
is	all	we	need	to	do	to	avoid	losing	information	for	a	complex	number.

We	then	call	json.dumps,	but	this	time	we	use	the	cls	argument	to	specify	our

custom	encoder.	The	result	is	printed:

{"an_int":	42,	"a_float":	3.14159265,	"a_complex":	{"_meta":	"_complex",	"num":	[3.0,	

4.0]}}

Half	the	job	is	done.	For	the	deserialization	part,	we	could	have	written	another
class	that	would	inherit	from	JSONDecoder,	but,	just	for	fun,	I've	used	a	different
technique	that	is	simpler	and	uses	a	small	function:	object_hook.

Within	the	body	of	object_hook,	we	find	another	try	block,	but	don't	worry	about	it
for	now.	I'll	explain	it	in	detail	in	the	next	chapter.	The	important	part	is	the	two
lines	within	the	body	of	the	try	block	itself.	The	function	receives	an	object
(notice,	the	function	is	only	called	when	obj	is	a	dictionary),	and	if	the	metadata
matches	our	convention	for	complex	numbers,	we	pass	the	real	and	imaginary
parts	to	the	complex	function.	The	try/except	block	is	there	only	to	prevent
malformed	JSON	from	ruining	the	party	(and	if	that	happens,	we	simply	return
the	object	as	it	is).

The	last	print	returns:

{'an_int':	42,	'a_float':	3.14159265,	'a_complex':	(3+4j)}

You	can	see	that	a_complex	has	been	correctly	deserialized.

Let's	see	a	slightly	more	complex	(no	pun	intended)	example	now:	dealing	with
datetime	objects.	I'm	going	to	split	the	code	into	two	blocks,	the	serializing	part,
and	the	deserializing	afterwards:

#	json_examples/json_datetime.py

import	json

from	datetime	import	datetime,	timedelta,	timezone

now	=	datetime.now()

now_tz	=	datetime.now(tz=timezone(timedelta(hours=1)))

class	DatetimeEncoder(json.JSONEncoder):

				def	default(self,	obj):

								if	isinstance(obj,	datetime):

												try:

																off	=	obj.utcoffset().seconds

												except	AttributeError:

																off	=	None

												return	{

																'_meta':	'_datetime',

																'data':	obj.timetuple()[:6]	+	(obj.microsecond,),

																'utcoffset':	off,

												}

								return	json.JSONEncoder.default(self,	obj)

data	=	{

				'an_int':	42,

				'a_float':	3.14159265,

				'a_datetime':	now,

				'a_datetime_tz':	now_tz,

}

json_data	=	json.dumps(data,	cls=DatetimeEncoder)

print(json_data)

The	reason	why	this	example	is	slightly	more	complex	lies	in	the	fact	that
datetime	objects	in	Python	can	be	time	zone	aware	or	not;	therefore,	we	need	to	be
more	careful.	The	flow	is	basically	the	same	as	before,	only	it	is	dealing	with	a
different	data	type.	We	start	by	getting	the	current	date	and	time	information,	and
we	do	it	both	without	(now)	and	with	(now_tz)	time	zone	awareness,	just	to	make
sure	our	script	works.	We	then	proceed	to	define	a	custom	encoder	as	before,	and
we	implement	once	again	the	default	method.	The	important	bits	in	that	method
are	how	we	get	the	time	zone	offset	(off)	information,	in	seconds,	and	how	we
structure	the	dictionary	that	returns	the	data.	This	time,	the	metadata	says	it's	a
datetime	information,	and	then	we	save	the	first	six	items	in	the	time	tuple	(year,
month,	day,	hour,	minute,	and	second),	plus	the	microseconds	in	the	data	key,	and
the	offset	after	that.	Could	you	tell	that	the	value	of	data	is	a	concatenation	of
tuples?	Good	job	if	you	could!

When	we	have	our	custom	encoder,	we	proceed	to	create	some	data,	and	then	we
serialize.	The	print	statement	returns	(after	I've	done	some	prettifying):

{

		"a_datetime":	{

				"_meta":	"_datetime",

				"data":	[2018,	3,	18,	17,	57,	27,	438792],

				"utcoffset":	null

		},

		"a_datetime_tz":	{

				"_meta":	"_datetime",

				"data":	[2018,	3,	18,	18,	57,	27,	438810],

				"utcoffset":	3600

		},

		"a_float":	3.14159265,

		"an_int":	42

}

Interestingly,	we	find	out	that	None	is	translated	to	null,	its	JavaScript	equivalent.
Moreover,	we	can	see	our	data	seems	to	have	been	encoded	properly.	Let's
proceed	to	the	second	part	of	the	script:

#	json_examples/json_datetime.py

def	object_hook(obj):

				try:

								if	obj['_meta']	==	'_datetime':

												if	obj['utcoffset']	is	None:

																tz	=	None

												else:

																tz	=	timezone(timedelta(seconds=obj['utcoffset']))

												return	datetime(*obj['data'],	tzinfo=tz)

				except	(KeyError,	TypeError):

								return	obj

data_out	=	json.loads(json_data,	object_hook=object_hook)

Once	again,	we	first	verify	that	the	metadata	is	telling	us	it's	a	datetime,	and	then
we	proceed	to	fetch	the	time	zone	information.	Once	we	have	that,	we	pass	the
7-tuple	(using	*	to	unpack	its	values	in	the	call)	and	the	time	zone	information	to
the	datetime	call,	getting	back	our	original	object.	Let's	verify	it	by	printing
data_out:

{

		'a_datetime':	datetime.datetime(2018,	3,	18,	18,	1,	46,	54693),

		'a_datetime_tz':	datetime.datetime(

				2018,	3,	18,	19,	1,	46,	54711,

				tzinfo=datetime.timezone(datetime.timedelta(seconds=3600))),

		'a_float':	3.14159265,

		'an_int':	42

}

As	you	can	see,	we	got	everything	back	correctly.	As	an	exercise,	I'd	like	to
challenge	you	to	write	the	same	logic,	but	for	a	date	object,	which	should	be
simpler.

Before	we	move	on	to	the	next	topic,	a	word	of	caution.	Perhaps	it	is	counter-
intuitive,	but	working	with	datetime	objects	can	be	one	of	the	trickiest	things	to
do,	so,	although	I'm	pretty	sure	this	code	is	doing	what	it	is	supposed	to	do,	I
want	to	stress	that	I	only	tested	it	very	lightly.	So	if	you	intend	to	grab	it	and	use
it,	please	do	test	it	thoroughly.	Test	for	different	time	zones,	test	for	daylight
saving	time	being	on	and	off,	test	for	dates	before	the	epoch,	and	so	on.	You
might	find	that	the	code	in	this	section	then	would	need	some	modifications	to
suit	your	cases.

Let's	now	move	to	the	next	topic,	IO.

IO,	streams,	and	requests
IO	stands	for	input/output,	and	it	broadly	refers	to	the	communication	between
a	computer	and	the	outside	world.	There	are	several	different	types	of	IO,	and	it
is	outside	the	scope	of	this	chapter	to	explain	all	of	them,	but	I	still	want	to	offer
you	a	couple	of	examples.

	

Using	an	in-memory	stream
The	first	will	show	you	the	io.StringIO	class,	which	is	an	in-memory	stream	for
text	IO.	The	second	one	instead	will	escape	the	locality	of	our	computer,	and
show	you	how	to	perform	an	HTTP	request.	Let's	see	the	first	example:

#	io_examples/string_io.py

import	io

stream	=	io.StringIO()

stream.write('Learning	Python	Programming.\n')

print('Become	a	Python	ninja!',	file=stream)

contents	=	stream.getvalue()

print(contents)

stream.close()

In	the	preceding	code	snippet,	we	import	the	io	module	from	the	standard	library.
This	is	a	very	interesting	module	that	features	many	tools	related	to	streams	and
IO.	One	of	them	is	StringIO,	which	is	an	in-memory	buffer	in	which	we're	going
to	write	two	sentences,	using	two	different	methods,	as	we	did	with	files	in	the
first	examples	of	this	chapter.	We	can	both	call	StringIO.write	or	we	can	use	print,
and	tell	it	to	direct	the	data	to	our	stream.

By	calling	getvalue,	we	can	get	the	content	of	the	stream	(and	print	it),	and	finally
we	close	it.	The	call	to	close	causes	the	text	buffer	to	be	immediately	discarded.

There	is	a	more	elegant	way	to	write	the	previous	code	(can	you	guess	it,	before
you	look?):

#	io_examples/string_io.py

with	io.StringIO()	as	stream:

				stream.write('Learning	Python	Programming.\n')

				print('Become	a	Python	ninja!',	file=stream)

				contents	=	stream.getvalue()

				print(contents)

Yes,	it	is	again	a	context	manager.	Like	open,	io.StringIO	works	well	within	a
context	manager	block.	Notice	the	similarity	with	open:	in	this	case	too,	we	don't
need	to	manually	close	the	stream.

In-memory	objects	can	be	useful	in	a	multitude	of	situations.	Memory	is	much

faster	than	a	disk	and,	for	small	amounts	of	data,	can	be	the	perfect	choice.

When	running	the	script,	the	output	is:

$	python	string_io.py

Learning	Python	Programming.

Become	a	Python	ninja!

Making	HTTP	requests
Let's	now	explore	a	couple	of	examples	on	HTTP	requests.	I	will	use	the	requests
library	for	these	examples,	which	you	can	install	with	pip.	We're	going	to
perform	HTTP	requests	against	the	httpbin.org	API,	which,	interestingly,	was
developed	by	Kenneth	Reitz,	the	creator	of	the	requests	library	itself.	This	library
is	amongst	the	most	widely	adopted	all	over	the	world:

import	requests

urls	=	{

				'get':	'https://httpbin.org/get?title=learn+python+programming',

				'headers':	'https://httpbin.org/headers',

				'ip':	'https://httpbin.org/ip',

				'now':	'https://now.httpbin.org/',

				'user-agent':	'https://httpbin.org/user-agent',

				'UUID':	'https://httpbin.org/uuid',

}

def	get_content(title,	url):

				resp	=	requests.get(url)

				print(f'Response	for	{title}')

				print(resp.json())

for	title,	url	in	urls.items():

				get_content(title,	url)

				print('-'	*	40)

The	preceding	snippet	should	be	simple	to	understand.	I	declare	a	dictionary	of
URLs	against	which	I	want	to	perform	requests.	I	have	encapsulated	the	code	that
performs	the	request	into	a	tiny	function:	get_content.	As	you	can	see,	very
simply,	we	perform	a	GET	request	(by	using	requests.get),	and	we	print	the	title
and	the	JSON	decoded	version	of	the	body	of	the	response.	Let	me	spend	a	word
about	this	last	bit.

When	we	perform	a	request	to	a	website,	or	API,	we	get	back	a	response	object,
which	is,	very	simply,	what	was	returned	by	the	server	we	performed	the	request
against.	The	body	of	all	responses	from	httpbin.org	happens	to	be	JSON	encoded,
so	instead	of	getting	the	body	as	it	is	(by	getting	resp.text)	and	manually
decoding	it,	calling	json.loads	on	it,	we	simply	combine	the	two	by	leveraging	the
json	method	on	the	response	object.	There	are	plenty	of	reasons	why	the	requests
package	has	become	so	widely	adopted,	and	one	of	them	is	definitely	its	ease	of
use.

http://httpbin.org/
https://httpbin.org/

Now,	when	you	perform	a	request	in	your	application,	you	will	want	to	have	a
much	more	robust	approach	in	dealing	with	errors	and	so	on,	but	for	this	chapter,
a	simple	example	will	do.	Don't	worry,	I	will	give	you	a	more	comprehensive
introduction	to	HTTP	requests	in	Chapter	14,	Web	Development.

Going	back	to	our	code,	in	the	end,	we	run	a	for	loop	and	get	all	the	URLs.
When	you	run	it,	you	will	see	the	result	of	each	call	printed	on	your	console,	like
this	(prettified	and	trimmed	for	brevity):

$	python	reqs.py

Response	for	get

{

		"args":	{

				"title":	"learn	python	programming"

		},

		"headers":	{

				"Accept":	"*/*",

				"Accept-Encoding":	"gzip,	deflate",

				"Connection":	"close",

				"Host":	"httpbin.org",

				"User-Agent":	"python-requests/2.19.0"

		},

		"origin":	"82.47.175.158",

		"url":	"https://httpbin.org/get?title=learn+python+programming"

}

...	rest	of	the	output	omitted	...

Notice	that	you	might	get	a	slightly	different	output	in	terms	of	version	numbers
and	IPs,	which	is	fine.	Now,	GET	is	only	one	of	the	HTTP	verbs,	and	it	is
definitely	the	most	commonly	used.	The	second	one	is	the	ubiquitous	POST,
which	is	the	type	of	request	you	make	when	you	need	to	send	data	to	the	server.
Every	time	you	submit	a	form	on	the	web,	you're	basically	making	a	POST
request.	So,	let's	try	to	make	one	programmatically:

#	io_examples/reqs_post.py

import	requests

url	=	'https://httpbin.org/post'

data	=	dict(title='Learn	Python	Programming')

resp	=	requests.post(url,	data=data)

print('Response	for	POST')

print(resp.json())

The	previous	code	is	very	similar	to	the	one	we	saw	before,	only	this	time	we
don't	call	get,	but	post,	and	because	we	want	to	send	some	data,	we	specify	that	in
the	call.	The	requests	library	offers	much,	much	more	than	this,	and	it	has	been
praised	by	the	community	for	the	beautiful	API	it	exposes.	It	is	a	project	that	I
encourage	you	to	check	out	and	explore,	as	you	will	end	up	using	it	all	the	time,

anyway.

Running	the	previous	script	(and	applying	some	prettifying	magic	to	the	output)
yields	the	following:

$	python	reqs_post.py

Response	for	POST

{	'args':	{},

		'data':	'',

		'files':	{},

		'form':	{'title':	'Learn	Python	Programming'},

		'headers':	{	'Accept':	'*/*',

															'Accept-Encoding':	'gzip,	deflate',

															'Connection':	'close',

															'Content-Length':	'30',

															'Content-Type':	'application/x-www-form-urlencoded',

															'Host':	'httpbin.org',

															'User-Agent':	'python-requests/2.7.0	CPython/3.7.0b2	'

																													'Darwin/17.4.0'},

		'json':	None,

		'origin':	'82.45.123.178',

		'url':	'https://httpbin.org/post'}

Notice	how	the	headers	are	now	different,	and	we	find	the	data	we	sent	in	the
form	key/value	pair	of	the	response	body.

I	hope	these	short	examples	are	enough	to	get	you	started,	especially	with
requests.	The	web	changes	every	day,	so	it's	worth	learning	the	basics	and	then
brush	up	every	now	and	then.

Let's	now	move	on	to	the	last	topic	of	this	chapter:	persisting	data	on	disk	in
different	formats.

Persisting	data	on	disk
In	the	last	section	of	this	chapter,	we're	exploring	how	to	persist	data	on	disk	in
three	different	formats.	We	will	explore	pickle,	shelve,	and	a	short	example	that
will	involve	accessing	a	database	using	SQLAlchemy,	the	most	widely	adopted
ORM	library	in	the	Python	ecosystem.

	

Serializing	data	with	pickle
The	pickle	module,	from	the	Python	standard	library,	offers	tools	to	convert
Python	objects	into	byte	streams,	and	vice	versa.	Even	though	there	is	a	partial
overlap	in	the	API	that	pickle	and	json	expose,	the	two	are	quite	different.	As	we
have	seen	previously	in	this	chapter,	JSON	is	a	text	format,	human	readable,
language	independent,	and	supports	only	a	restricted	subset	of	Python	data	types.
The	pickle	module,	on	the	other	hand,	is	not	human	readable,	translates	to	bytes,
is	Python	specific,	and,	thanks	to	the	wonderful	Python	introspection
capabilities,	it	supports	an	extremely	large	amount	of	data	types.

Regardless	of	these	differences,	though,	which	you	should	know	when	you
consider	whether	to	use	one	or	the	other,	I	think	that	the	most	important	concern
regarding	pickle	lies	in	the	security	threats	you	are	exposed	to	when	you	use	it.
Unpickling	erroneous	or	malicious	data	from	an	untrusted	source	can	be	very
dangerous,	so	if	you	decide	to	adopt	it	in	your	application,	you	need	to	be	extra
careful.

That	said,	let's	see	it	in	action,	by	means	of	a	simple	example:

#	persistence/pickler.py

import	pickle

from	dataclasses	import	dataclass

@dataclass

class	Person:

				first_name:	str

				last_name:	str

				id:	int

				def	greet(self):

								print(f'Hi,	I	am	{self.first_name}	{self.last_name}'

														f'	and	my	ID	is	{self.id}'

)

people	=	[

				Person('Obi-Wan',	'Kenobi',	123),

				Person('Anakin',	'Skywalker',	456),

]

#	save	data	in	binary	format	to	a	file

with	open('data.pickle',	'wb')	as	stream:

				pickle.dump(people,	stream)

#	load	data	from	a	file

with	open('data.pickle',	'rb')	as	stream:

				peeps	=	pickle.load(stream)

for	person	in	peeps:

				person.greet()

In	the	previous	example,	we	create	a	Person	class	using	the	dataclass	decorator,
which	we	have	seen	in	Chapter	6,	OOP,	Decorators,	and	Iterators.	The	only
reason	I	wrote	this	example	with	a	data	class	is	to	show	you	how	effortlessly
pickle	deals	with	it,	with	no	need	for	us	to	do	anything	we	wouldn't	do	for	a
simpler	data	type.

The	class	has	three	attributes:	first_name,	last_name,	and	id.	It	also	exposes	a	greet
method,	which	simply	prints	a	hello	message	with	the	data.

We	create	a	list	of	instances,	and	then	we	save	it	to	a	file.	In	order	to	do	so,	we
use	pickle.dump,	to	which	we	feed	the	content	to	be	pickled,	and	the	stream	to
which	we	want	to	write.	Immediately	after	that,	we	read	from	that	same	file,	and
by	using	pickle.load,	we	convert	back	into	Python	the	whole	content	of	that
stream.	Just	to	make	sure	that	the	objects	have	been	converted	correctly,	we	call
the	greet	method	on	both	of	them.	The	result	is	the	following:

$	python	pickler.py

Hi,	I	am	Obi-Wan	Kenobi	and	my	ID	is	123

Hi,	I	am	Anakin	Skywalker	and	my	ID	is	456		

The	pickle	module	also	allows	you	to	convert	to	(and	from)	byte	objects,	by
means	of	the	dumps	and	loads	functions	(note	the	s	at	the	end	of	both	names).	In
day-to-day	applications,	pickle	is	usually	used	when	we	need	to	persist	Python
data	that	is	not	supposed	to	be	exchanged	with	another	application.	One	example
I	stumbled	upon	recently	was	the	session	management	in	a	flask	plugin,	which
pickles	the	session	object	before	sending	it	to	Redis.	In	practice,	though,	you	are
unlikely	to	have	to	deal	with	this	library	very	often.

Another	tool	that	is	possibly	used	even	less,	but	that	proves	to	be	very	useful
when	you	are	short	of	resources,	is	shelve.

Saving	data	with	shelve
A	shelf,	is	a	persistent	dictionary-like	object.	The	beauty	of	it	is	that	the	values
you	save	into	a	shelf	can	be	any	object	you	can	pickle,	so	you're	not	restricted	like
you	would	be	if	you	were	using	a	database.	Albeit	interesting	and	useful,	the
shelve	module	is	used	quite	rarely	in	practice.	Just	for	completeness,	let's	see	a
quick	example	of	how	it	works:

#	persistence/shelf.py

import	shelve

class	Person:

				def	__init__(self,	name,	id):

								self.name	=	name

								self.id	=	id

with	shelve.open('shelf1.shelve')	as	db:

				db['obi1']	=	Person('Obi-Wan',	123)

				db['ani']	=	Person('Anakin',	456)

				db['a_list']	=	[2,	3,	5]

				db['delete_me']	=	'we	will	have	to	delete	this	one...'

				print(list(db.keys()))		#	['ani',	'a_list',	'delete_me',	'obi1']

				del	db['delete_me']		#	gone!

				print(list(db.keys()))		#	['ani',	'a_list',	'obi1']

				print('delete_me'	in	db)		#	False

				print('ani'	in	db)		#	True

				a_list	=	db['a_list']

				a_list.append(7)

db['a_list']	=	a_list

				print(db['a_list'])		#	[2,	3,	5,	7]

Apart	from	the	wiring	and	the	boilerplate	around	it,	the	previous	example
resembles	an	exercise	with	dictionaries.	We	create	a	simple	Person	class	and	then
we	open	a	shelve	file	within	a	context	manager.	As	you	can	see,	we	use	the
dictionary	syntax	to	store	four	objects:	two	Person	instances,	a	list,	and	a	string.	If
we	print	the	keys,	we	get	a	list	containing	the	four	keys	we	used.	Immediately
after	printing	it,	we	delete	the	(aptly	named)	delete_me	key/value	pair	from	shelf.
Printing	the	keys	again	shows	the	deletion	has	succeeded.	We	then	test	a	couple
of	keys	for	membership,	and	finally,	we	append	number	7	to	a_list.	Notice	how
we	have	to	extract	the	list	from	the	shelf,	modify	it,	and	save	it	again.

In	case	this	behavior	is	undesired,	there	is	something	we	can	do:

#	persistence/shelf.py

with	shelve.open('shelf2.shelve',	writeback=True)	as	db:

				db['a_list']	=	[11,	13,	17]

				db['a_list'].append(19)		#	in-place	append!

				print(db['a_list'])		#	[11,	13,	17,	19]

By	opening	the	shelf	with	writeback=True,	we	enable	the	writeback	feature,	which
allows	us	to	simply	append	to	a_list	as	if	it	actually	was	a	value	within	a	regular
dictionary.	The	reason	why	this	feature	is	not	active	by	default	is	that	it	comes
with	a	price	that	you	pay	in	terms	of	memory	consumption	and	slower	closing	of
the	shelf.

Now	that	we	have	paid	homage	to	the	standard	library	modules	related	to	data
persistence,	let's	take	a	look	at	the	most	widely	adopted	ORM	in	the	Python
ecosystem:	SQLAlchemy.

Saving	data	to	a	database
For	this	example,	we	are	going	to	work	with	an	in-memory	database,	which	will
make	things	simpler	for	us.	In	the	source	code	of	the	book,	I	have	left	a	couple
of	comments	to	show	you	how	to	generate	a	SQLite	file,	so	I	hope	you'll	explore
that	option	as	well.

You	can	find	a	free	database	browser	for	SQLite	at	sqlitebrowser.org.	If	you	are	not	satisfied	with
it,	you	will	be	able	to	find	a	wide	range	of	tools,	some	free,	some	not	free,	that	you	can	use	to
access	and	manipulate	a	database	file.

Before	we	dive	into	the	code,	allow	me	to	briefly	introduce	the	concept	of	a
relational	database.

A	relational	database	is	a	database	that	allows	you	to	save	data	following	the
relational	model,	invented	in	1969	by	Edgar	F.	Codd.	In	this	model,	data	is
stored	in	one	or	more	tables.	Each	table	has	rows	(also	known	as	records,	or
tuples),	each	of	which	represents	an	entry	in	the	table.	Tables	also	have	columns
(also	known	as	attributes),	each	of	which	represents	an	attribute	of	the	records.
Each	record	is	identified	through	a	unique	key,	more	commonly	known	as	the
primary	key,	which	is	the	union	of	one	or	more	columns	in	the	table.	To	give
you	an	example:	imagine	a	table	called	Users,	with	columns	id,	username,	password,
name,	and	surname.	Such	a	table	would	be	perfect	to	contain	users	of	our	system.
Each	row	would	represent	a	different	user.	For	example,	a	row	with	the	values	3,
gianchub,	my_wonderful_pwd,	Fabrizio,	and	Romano,	would	represent	my	user	in	the
system.

The	reason	why	the	model	is	called	relational	is	because	you	can	establish
relations	between	tables.	For	example,	if	you	added	a	table	called	PhoneNumbers	to
our	fictitious	database,	you	could	insert	phone	numbers	into	it,	and	then,	through
a	relation,	establish	which	phone	number	belongs	to	which	user.

In	order	to	query	a	relational	database,	we	need	a	special	language.	The	main
standard	is	called	SQL,	which	stands	for	Structured	Query	Language.	It	is
born	out	of	something	called	relational	algebra,	which	is	a	very	nice	family	of
algebras	used	to	model	data	stored	according	to	the	relational	model,	and

http://sqlitebrowser.org/

performing	queries	on	it.	The	most	common	operations	you	can	perform	usually
involve	filtering	on	the	rows	or	columns,	joining	tables,	aggregating	the	results
according	to	some	criteria,	and	so	on.	To	give	you	an	example	in	English,	a
query	on	our	imaginary	database	could	be:	Fetch	all	users	(username,	name,
surname)	whose	username	starts	with	"m",	who	have	at	most	one	phone	number.
In	this	query,	we	are	asking	for	a	subset	of	the	columns	in	the	User	table.	We	are
filtering	on	users	by	taking	only	those	whose	username	starts	with	the	letter	m,
and	even	further,	only	those	who	have	at	most	one	phone	number.

Back	in	the	days	when	I	was	a	student	in	Padova,	I	spent	a	whole	semester	learning	both	the
relational	algebra	semantics,	and	the	standard	SQL	(amongst	other	things).	If	it	wasn't	for	a
major	bicycle	accident	I	had	the	day	of	the	exam,	I	would	say	that	this	was	one	of	the	most	fun
exams	I	ever	had	to	prepare.

Now,	each	database	comes	with	its	own	flavor	of	SQL.	They	all	respect	the
standard	to	some	extent,	but	none	fully	does,	and	they	are	all	different	from	one
another	in	some	respects.	This	poses	an	issue	in	modern	software	development.
If	our	application	contains	SQL	code,	it	is	quite	likely	that	if	we	decided	to	use	a
different	database	engine,	or	maybe	a	different	version	of	the	same	engine,	we
would	find	our	SQL	code	needs	amending.

This	can	be	quite	painful,	especially	since	SQL	queries	can	become	very,	very
complicated	quite	quickly.	In	order	to	alleviate	this	pain	a	little,	computer
scientists	(bless	them)	have	created	code	that	maps	objects	of	a	particular
language	to	tables	of	a	relational	database.	Unsurprisingly,	the	name	of	such
tools	is	Object-Relational	Mapping	(ORMs).

In	modern	application	development,	you	would	normally	start	interacting	with	a
database	by	using	an	ORM,	and	should	you	find	yourself	in	a	situation	where
you	can't	perform	a	query	you	need	to	perform,	through	the	ORM,	you	would
then	resort	to	using	SQL	directly.	This	is	a	good	compromise	between	having	no
SQL	at	all,	and	using	no	ORM,	which	ultimately	means	specializing	the	code
that	interacts	with	the	database,	with	the	aforementioned	disadvantages.

In	this	section,	I'd	like	to	show	an	example	that	leverages	SQLAlchemy,	the
most	popular	Python	ORM.	We	are	going	to	define	two	models	(Person	and
Address)	which	map	to	a	table	each,	and	then	we're	going	to	populate	the	database
and	perform	a	few	queries	on	it.

Let's	start	with	the	model	declarations:

#	persistence/alchemy_models.py

from	sqlalchemy.ext.declarative	import	declarative_base

from	sqlalchemy	import	(

				Column,	Integer,	String,	ForeignKey,	create_engine)

from	sqlalchemy.orm	import	relationship

At	the	beginning,	we	import	some	functions	and	types.	The	first	thing	we	need	to
do	then	is	to	create	an	engine.	This	engine	tells	SQLAlchemy	about	the	type	of
database	we	have	chosen	for	our	example:

#	persistence/alchemy_models.py

engine	=	create_engine('sqlite:///:memory:')

Base	=	declarative_base()

class	Person(Base):

				__tablename__	=	'person'

				id	=	Column(Integer,	primary_key=True)

				name	=	Column(String)

				age	=	Column(Integer)

				addresses	=	relationship(

								'Address',

								back_populates='person',

								order_by='Address.email',

								cascade='all,	delete-orphan'

)

				def	__repr__(self):

								return	f'{self.name}(id={self.id})'

class	Address(Base):

				__tablename__	=	'address'

				id	=	Column(Integer,	primary_key=True)

				email	=	Column(String)

				person_id	=	Column(ForeignKey('person.id'))

				person	=	relationship('Person',	back_populates='addresses')

				def	__str__(self):

								return	self.email

				__repr__	=	__str__

Base.metadata.create_all(engine)

Each	model	then	inherits	from	the	Base	table,	which	in	this	example	consists	of
the	mere	default,	returned	by	declarative_base().	We	define	Person,	which	maps	to	a
table	called	person,	and	exposes	the	attributes	id,	name,	and	age.	We	also	declare	a
relationship	with	the	Address	model,	by	stating	that	accessing	the	addresses
attribute	will	fetch	all	the	entries	in	the	address	table	that	are	related	to	the
particular	Person	instance	we're	dealing	with.	The	cascade	option	affects	how
creation	and	deletion	work,	but	it	is	a	more	advanced	concept,	so	I'd	suggest	you

glide	on	it	for	now	and	maybe	investigate	more	later	on.

The	last	thing	we	declare	is	the	__repr__	method,	which	provides	us	with	the
official	string	representation	of	an	object.	This	is	supposed	to	be	a	representation
that	can	be	used	to	completely	reconstruct	the	object,	but	in	this	example,	I
simply	use	it	to	provide	something	in	output.	Python	redirects	repr(obj)	to	a	call
to	obj.__repr__().

We	also	declare	the	Address	model,	which	will	contain	email	addresses,	and	a
reference	to	the	person	they	belong	to.	You	can	see	the	person_id	and	person
attributes	are	both	about	setting	a	relation	between	the	Address	and	Person
instances.	Note	how	I	declared	the	__str__	method	on	Address,	and	then	assigned
an	alias	to	it,	called	__repr__.	This	means	that	calling	both	repr	and	str	on	Address
objects	will	ultimately	result	in	calling	the	__str__	method.	This	is	quite	a
common	technique	in	Python,	so	I	took	the	opportunity	to	show	it	to	you	here.

On	the	last	line,	we	tell	the	engine	to	create	tables	in	the	database	according	to
our	models.

A	deeper	understanding	of	this	code	would	require	much	more	space	than	I	can
afford,	so	I	encourage	you	to	read	up	on	database	management	systems
(DBMS),	SQL,	Relational	Algebra,	and	SQLAlchemy.

Now	that	we	have	our	models,	let's	use	them	to	persist	some	data!

Let's	take	a	look	at	the	following	example:

#	persistence/alchemy.py

from	alchemy_models	import	Person,	Address,	engine

from	sqlalchemy.orm	import	sessionmaker

Session	=	sessionmaker(bind=engine)

session	=	Session()

First	we	create	session,	which	is	the	object	we	use	to	manage	the	database.	Next,
we	proceed	by	creating	two	people:

anakin	=	Person(name='Anakin	Skywalker',	age=32)

obi1	=	Person(name='Obi-Wan	Kenobi',	age=40)

We	then	add	email	addresses	to	both	of	them,	using	two	different	techniques.
One	assigns	them	to	a	list,	and	the	other	one	simply	appends	them:

obi1.addresses	=	[

				Address(email='obi1@example.com'),

				Address(email='wanwan@example.com'),

]

anakin.addresses.append(Address(email='ani@example.com'))

anakin.addresses.append(Address(email='evil.dart@example.com'))

anakin.addresses.append(Address(email='vader@example.com'))

We	haven't	touched	the	database	yet.	It's	only	when	we	use	the	session	object
that	something	actually	happens	in	it:

session.add(anakin)

session.add(obi1)

session.commit()

Adding	the	two	Person	instances	is	enough	to	also	add	their	addresses	(this	is
thanks	to	the	cascading	effect).	Calling	commit	is	what	actually	tells	SQLAlchemy
to	commit	the	transaction	and	save	the	data	in	the	database.	A	transaction	is	an
operation	that	provides	something	like	a	sandbox,	but	in	a	database	context.	As
long	as	the	transaction	hasn't	been	committed,	we	can	roll	back	any	modification
we	have	done	to	the	database,	and	by	so	doing,	revert	to	the	state	we	were	before
starting	the	transaction	itself.	SQLAlchemy	offers	more	complex	and	granular
ways	to	deal	with	transactions,	which	you	can	study	in	its	official
documentation,	as	it	is	quite	an	advanced	topic.	We	now	query	for	all	the	people
whose	name	starts	with	Obi	by	using	like,	which	hooks	to	the	LIKE	operator	in
SQL:

obi1	=	session.query(Person).filter(

				Person.name.like('Obi%')

).first()

print(obi1,	obi1.addresses)

We	take	the	first	result	of	that	query	(we	know	we	only	have	Obi-Wan	anyway),
and	print	it.	We	then	fetch	anakin,	by	using	an	exact	match	on	his	name	(just	to
show	you	a	different	way	of	filtering):

anakin	=	session.query(Person).filter(

				Person.name=='Anakin	Skywalker'

).first()

print(anakin,	anakin.addresses)

We	then	capture	Anakin's	ID,	and	delete	the	anakin	object	from	the	global	frame:

anakin_id	=	anakin.id

del	anakin

The	reason	we	do	this	is	because	I	want	to	show	you	how	to	fetch	an	object	by
its	ID.	Before	we	do	that,	we	write	the	display_info	function,	which	we	will	use	to
display	the	full	content	of	the	database	(fetched	starting	from	the	addresses,	in
order	to	demonstrate	how	to	fetch	objects	by	using	a	relation	attribute	in
SQLAlchemy):

def	display_info():

				#	get	all	addresses	first

				addresses	=	session.query(Address).all()

				#	display	results

				for	address	in	addresses:

								print(f'{address.person.name}	<{address.email}>')

				#	display	how	many	objects	we	have	in	total

				print('people:	{},	addresses:	{}'.format(

								session.query(Person).count(),

								session.query(Address).count())

)

The	display_info	function	prints	all	the	addresses,	along	with	the	respective
person's	name,	and,	at	the	end,	produces	a	final	piece	of	information	regarding
the	number	of	objects	in	the	database.	We	call	the	function,	then	we	fetch	and
delete	anakin	(think	about	Darth	Vader	and	you	won't	be	sad	about	deleting	him),
and	then	we	display	the	info	again,	to	verify	he's	actually	disappeared	from	the
database:

display_info()

anakin	=	session.query(Person).get(anakin_id)

session.delete(anakin)

session.commit()

display_info()

The	output	of	all	these	snippets	run	together	is	the	following	(for	your
convenience,	I	have	separated	the	output	into	four	blocks,	to	reflect	the	four
blocks	of	code	that	actually	produce	that	output):

$	python	alchemy.py

Obi-Wan	Kenobi(id=2)	[obi1@example.com,	wanwan@example.com]

Anakin	Skywalker(id=1)	[ani@example.com,	evil.dart@example.com,	vader@example.com]

Anakin	Skywalker	<ani@example.com>

Anakin	Skywalker	<evil.dart@example.com>

Anakin	Skywalker	<vader@example.com>

Obi-Wan	Kenobi	<obi1@example.com>

Obi-Wan	Kenobi	<wanwan@example.com>

people:	2,	addresses:	5

Obi-Wan	Kenobi	<obi1@example.com>

Obi-Wan	Kenobi	<wanwan@example.com>

people:	1,	addresses:	2

As	you	can	see	from	the	last	two	blocks,	deleting	anakin	has	deleted	one	Person
object,	and	the	three	addresses	associated	with	it.	Again,	this	is	due	to	the	fact
that	cascading	took	place	when	we	deleted	anakin.

This	concludes	our	brief	introduction	to	data	persistence.	It	is	a	vast	and,	at
times,	complex	domain,	which	I	encourage	you	to	explore	learning	as	much
theory	as	possible.	Lack	of	knowledge	or	proper	understanding,	when	it	comes
to	database	systems,	can	really	bite.

Summary
In	this	chapter,	we	have	explored	working	with	files	and	directories.	We	have
learned	how	to	open	files	for	reading	and	writing	and	how	to	do	that	more
elegantly	by	using	context	managers.	We	also	explored	directories:	how	to	list
their	content,	both	recursively	and	not.	We	also	learned	about	pathnames,	which
are	the	gateway	to	accessing	both	files	and	directories.

We	then	briefly	saw	how	to	create	a	ZIP	archive,	and	extract	its	content.	The
source	code	of	the	book	also	contains	an	example	with	a	different	compression
format:	tar.gz.

We	talked	about	data	interchange	formats,	and	have	explored	JSON	in	some
depth.	We	had	some	fun	writing	custom	encoders	and	decoders	for	specific
Python	data	types.

Then	we	explored	IO,	both	with	in-memory	streams	and	HTTP	requests.

And	finally,	we	saw	how	to	persist	data	using	pickle,	shelve,	and	the	SQLAlchemy
ORM	library.

You	should	now	have	a	pretty	good	idea	of	how	to	deal	with	files	and	data
persistence,	and	I	hope	you	will	take	the	time	to	explore	these	topics	in	much
more	depth	by	yourself.

The	next	chapter	will	look	at	testing,	profiling,	and	dealing	with	exceptions.

Testing,	Profiling,	and	Dealing	with
Exceptions
"Just	as	the	wise	accepts	gold	after	testing	it	by	heating,	cutting	and	rubbing	it,	so	are	my	words	to	be
accepted	after	examining	them,	but	not	out	of	respect	for	me."

–	Buddha

I	love	this	quote	by	the	Buddha.	Within	the	software	world,	it	translates	perfectly
into	the	healthy	habit	of	never	trusting	code	just	because	someone	smart	wrote	it
or	because	it's	been	working	fine	for	a	long	a	time.	If	it	has	not	been	tested,	code
is	not	to	be	trusted.

Why	are	tests	so	important?	Well,	for	one,	they	give	you	predictability.	Or,	at
least,	they	help	you	achieve	high	predictability.	Unfortunately,	there	is	always
some	bug	that	sneaks	into	the	code.	But	we	definitely	want	our	code	to	be	as
predictable	as	possible.	What	we	don't	want	is	to	have	a	surprise,	in	other	words,
our	code	behaving	in	an	unpredictable	way.	Would	you	be	happy	to	know	that
the	software	that	checks	on	the	sensors	of	the	plane	that	is	taking	you	on	your
holidays	sometimes	goes	crazy?	No,	probably	not.

Therefore,	we	need	to	test	our	code;	we	need	to	check	that	its	behavior	is	correct,
that	it	works	as	expected	when	it	deals	with	edge	cases,	that	it	doesn't	hang	when
the	components	it's	talking	to	are	broken	or	unreachable,	that	the	performances
are	well	within	the	acceptable	range,	and	so	on.

This	chapter	is	all	about	that—making	sure	that	your	code	is	prepared	to	face	the
scary	outside	world,	that	it's	fast	enough,	and	that	it	can	deal	with	unexpected	or
exceptional	conditions.

In	this	chapter,	we're	going	to	explore	the	following	topics:

Testing	(several	aspects	of	it,	including	a	brief	introduction	to	test-driven
development)
Exception	handling
Profiling	and	performances

Let's	start	by	understanding	what	testing	is.

Testing	your	application
There	are	many	different	kinds	of	tests,	so	many,	in	fact,	that	companies	often
have	a	dedicated	department,	called	quality	assurance	(QA),	made	up	of
individuals	who	spend	their	day	testing	the	software	the	company	developers
produce.

To	start	making	an	initial	classification,	we	can	divide	tests	into	two	broad
categories:	white-box	and	black-box	tests.

White-box	tests	are	those	that	exercise	the	internals	of	the	code;	they	inspect	it
down	to	a	very	fine	level	of	detail.	On	the	other	hand,	black-box	tests	are	those
that	consider	the	software	under	test	as	if	within	a	box,	the	internals	of	which	are
ignored.	Even	the	technology,	or	the	language	used	inside	the	box,	is	not
important	for	black-box	tests.	What	they	do	is	plug	input	into	one	end	of	the	box
and	verify	the	output	at	the	other	end—that's	it.

There	is	also	an	in-between	category,	called	gray-box	testing,	which	involves	testing	a	system
in	the	same	way	we	do	with	the	black-box	approach,	but	having	some	knowledge	about	the
algorithms	and	data	structures	used	to	write	the	software	and	only	partial	access	to	its	source
code.

There	are	many	different	kinds	of	tests	in	these	categories,	each	of	which	serves
a	different	purpose.	To	give	you	an	idea,	here	are	a	few:

Frontend	tests:	Make	sure	that	the	client	side	of	your	application	is
exposing	the	information	that	it	should,	all	the	links,	the	buttons,	the
advertising,	everything	that	needs	to	be	shown	to	the	client.	It	may	also
verify	that	it	is	possible	to	walk	a	certain	path	through	the	user	interface.
Scenario	tests:	Make	use	of	stories	(or	scenarios)	that	help	the	tester	work
through	a	complex	problem	or	test	a	part	of	the	system.
Integration	tests:	Verify	the	behavior	of	the	various	components	of	your
application	when	they	are	working	together	sending	messages	through
interfaces.
Smoke	tests:	Particularly	useful	when	you	deploy	a	new	update	on	your
application.	They	check	whether	the	most	essential,	vital	parts	of	your
application	are	still	working	as	they	should	and	that	they	are	not	on	fire.

This	term	comes	from	when	engineers	tested	circuits	by	making	sure
nothing	was	smoking.
Acceptance	tests,	or	user	acceptance	testing	(UAT):	What	a	developer
does	with	a	product	owner	(for	example,	in	a	SCRUM	environment)	to
determine	whether	the	work	that	was	commissioned	was	carried	out
correctly.
Functional	tests:	Verify	the	features	or	functionalities	of	your	software.
Destructive	tests:	Take	down	parts	of	your	system,	simulating	a	failure,	to
establish	how	well	the	remaining	parts	of	the	system	perform.	These	kinds
of	tests	are	performed	extensively	by	companies	that	need	to	provide	an
extremely	reliable	service,	such	as	Amazon	and	Netflix,	for	example.
Performance	tests:	Aim	to	verify	how	well	the	system	performs	under	a
specific	load	of	data	or	traffic	so	that,	for	example,	engineers	can	get	a
better	understanding	of	the	bottlenecks	in	the	system	that	could	bring	it	to
its	knees	in	a	heavy-load	situation,	or	those	that	prevent	scalability.
Usability	tests,	and	the	closely	related	user	experience	(UX)	tests:	Aim	to
check	whether	the	user	interface	is	simple	and	easy	to	understand	and	use.
They	aim	to	provide	input	to	the	designers	so	that	the	user	experience	is
improved.
Security	and	penetration	tests:	Aim	to	verify	how	well	the	system	is
protected	against	attacks	and	intrusions.
Unit	tests:	Help	the	developer	to	write	the	code	in	a	robust	and	consistent
way,	providing	the	first	line	of	feedback	and	defense	against	coding
mistakes,	refactoring	mistakes,	and	so	on.
Regression	tests:	Provide	the	developer	with	useful	information	about	a
feature	being	compromised	in	the	system	after	an	update.	Some	of	the
causes	for	a	system	being	said	to	have	a	regression	are	an	old	bug	coming
back	to	life,	an	existing	feature	being	compromised,	or	a	new	issue	being
introduced.

Many	books	and	articles	have	been	written	about	testing,	and	I	have	to	point	you
to	those	resources	if	you're	interested	in	finding	out	more	about	all	the	different
kinds	of	tests.	In	this	chapter,	we	will	concentrate	on	unit	tests,	since	they	are	the
backbone	of	software-crafting	and	form	the	vast	majority	of	tests	that	are	written
by	a	developer.

Testing	is	an	art,	an	art	that	you	don't	learn	from	books,	I'm	afraid.	You	can	learn
all	the	definitions	(and	you	should),	and	try	to	collect	as	much	knowledge	about
testing	as	you	can,	but	you	will	likely	be	able	to	test	your	software	properly	only

when	you	have	done	it	for	long	enough	in	the	field.

When	you	are	having	trouble	refactoring	a	bit	of	code,	because	every	little	thing
you	touch	makes	a	test	blow	up,	you	learn	how	to	write	less	rigid	and	limiting
tests,	which	still	verify	the	correctness	of	your	code	but,	at	the	same	time,	allow
you	the	freedom	and	joy	to	play	with	it,	to	shape	it	as	you	want.

When	you	are	being	called	too	often	to	fix	unexpected	bugs	in	your	code,	you
learn	how	to	write	tests	more	thoroughly,	how	to	come	up	with	a	more
comprehensive	list	of	edge	cases,	and	strategies	to	cope	with	them	before	they
turn	into	bugs.

When	you	are	spending	too	much	time	reading	tests	and	trying	to	refactor	them
to	change	a	small	feature	in	the	code,	you	learn	to	write	simpler,	shorter,	and
better-focused	tests.

I	could	go	on	with	this	when	you...	you	learn...,	but	I	guess	you	get	the	picture.
You	need	to	get	your	hands	dirty	and	build	experience.	My	suggestion?	Study
the	theory	as	much	as	you	can,	and	then	experiment	using	different	approaches.
Also,	try	to	learn	from	experienced	coders;	it's	very	effective.

The	anatomy	of	a	test
Before	we	concentrate	on	unit	tests,	let's	see	what	a	test	is,	and	what	its	purpose
is.

A	test	is	a	piece	of	code	whose	purpose	is	to	verify	something	in	our	system.	It
may	be	that	we're	calling	a	function	passing	two	integers,	that	an	object	has	a
property	called	donald_duck,	or	that	when	you	place	an	order	on	some	API,	after	a
minute	you	can	see	it	dissected	into	its	basic	elements,	in	the	database.

A	test	is	typically	composed	of	three	sections:

Preparation:	This	is	where	you	set	up	the	scene.	You	prepare	all	the	data,
the	objects,	and	the	services	you	need	in	the	places	you	need	them	so	that
they	are	ready	to	be	used.
Execution:	This	is	where	you	execute	the	bit	of	logic	that	you're	checking
against.	You	perform	an	action	using	the	data	and	the	interfaces	you	have
set	up	in	the	preparation	phase.
Verification:	This	is	where	you	verify	the	results	and	make	sure	they	are
according	to	your	expectations.	You	check	the	returned	value	of	a	function,
or	that	some	data	is	in	the	database,	some	is	not,	some	has	changed,	a
request	has	been	made,	something	has	happened,	a	method	has	been	called,
and	so	on.

While	tests	usually	follow	this	structure,	in	a	test	suite,	you	will	typically	find
some	other	constructs	that	take	part	in	the	testing	game:

Setup:	This	is	something	quite	commonly	found	in	several	different	tests.
It's	logic	that	can	be	customized	to	run	for	every	test,	class,	module,	or	even
for	a	whole	session.	In	this	phase	usually	developers	set	up	connections	to
databases,	maybe	populate	them	with	data	that	will	be	needed	there	for	the
test	to	make	sense,	and	so	on.
Teardown:	This	is	the	opposite	of	the	setup;	the	teardown	phase	takes	place
when	the	tests	have	been	run.	Like	the	setup,	it	can	be	customized	to	run	for
every	test,	class	or	module,	or	session.	Typically	in	this	phase,	we	destroy
any	artefacts	that	were	created	for	the	test	suite,	and	clean	up	after

ourselves.
Fixtures:	They	are	pieces	of	data	used	in	the	tests.	By	using	a	specific	set
of	fixture,	outcomes	are	predictable	and	therefore	tests	can	perform
verifications	against	them.

In	this	chapter,	we	will	use	the	pytest	Python	library.	It	is	an	incredibly	powerful
tool	that	makes	testing	much	easier	and	provides	plenty	of	helpers	so	that	the	test
logic	can	focus	more	on	the	actual	testing	than	the	wiring	around	it.	You	will	see,
when	we	get	to	the	code,	that	one	of	the	characteristics	of	pytest	is	that	fixtures,
setup,	and	teardown	often	blend	into	one.

Testing	guidelines
	

Like	software,	tests	can	be	good	or	bad,	with	a	whole	range	of	shades	in	the
middle.	To	write	good	tests,	here	are	some	guidelines:

Keep	them	as	simple	as	possible.	It's	okay	to	violate	some	good	coding
rules,	such	as	hardcoding	values	or	duplicating	code.	Tests	need,	first	and
foremost,	to	be	as	readable	as	possible	and	easy	to	understand.	When	tests
are	hard	to	read	or	understand,	you	can	never	be	confident	they	are	actually
making	sure	your	code	is	performing	correctly.
Tests	should	verify	one	thing	and	one	thing	only.	It's	very	important	that
you	keep	them	short	and	contained.	It's	perfectly	fine	to	write	multiple	tests
to	exercise	a	single	object	or	function.	Just	make	sure	that	each	test	has	one
and	only	one	purpose.
Tests	should	not	make	any	unnecessary	assumption	when	verifying
data.	This	is	tricky	to	understand	at	first,	but	it	is	important.	Verifying	that
the	result	of	a	function	call	is	[1,	2,	3]	is	not	the	same	as	saying	the	output	is
a	list	that	contains	the	numbers	1,	2,	and	3.	In	the	former,	we're	also
assuming	the	ordering;	in	the	latter,	we're	only	assuming	which	items	are	in
the	list.	The	differences	sometimes	are	quite	subtle,	but	they	are	still	very
important.
Tests	should	exercise	the	what,	rather	than	the	how.	Tests	should	focus
on	checking	what	a	function	is	supposed	to	do,	rather	than	how	it	is	doing
it.	For	example,	focus	on	the	fact	that	it's	calculating	the	square	root	of	a
number	(the	what),	instead	of	on	the	fact	that	it	is	calling	math.sqrt	to	do	it
(the	how).	Unless	you're	writing	performance	tests	or	you	have	a	particular
need	to	verify	how	a	certain	action	is	performed,	try	to	avoid	this	type	of
testing	and	focus	on	the	what.	Testing	the	how	leads	to	restrictive	tests	and
makes	refactoring	hard.	Moreover,	the	type	of	test	you	have	to	write	when
you	concentrate	on	the	how	is	more	likely	to	degrade	the	quality	of	your
testing	code	base	when	you	amend	your	software	frequently.
Tests	should	use	the	minimal	set	of	fixtures	needed	to	do	the	job.	This	is
another	crucial	point.	Fixtures	have	a	tendency	to	grow	over	time.	They
also	tend	to	change	every	now	and	then.	If	you	use	big	amounts	of	fixtures

and	ignore	redundancies	in	your	tests,	refactoring	will	take	longer.	Spotting
bugs	will	be	harder.	Try	to	use	a	set	of	fixtures	that	is	big	enough	for	the
test	to	perform	correctly,	but	not	any	bigger.
Tests	should	run	as	fast	as	possible.	A	good	test	codebase	could	end	up
being	much	longer	than	the	code	being	tested	itself.	It	varies	according	to
the	situation	and	the	developer,	but,	whatever	the	length,	you'll	end	up
having	hundreds,	if	not	thousands,	of	tests	to	run,	which	means	the	faster
they	run,	the	faster	you	can	get	back	to	writing	code.	When	using	TDD,	for
example,	you	run	tests	very	often,	so	speed	is	essential.
Tests	should	use	up	the	least	possible	amount	of	resources.	The	reason
for	this	is	that	every	developer	who	checks	out	your	code	should	be	able	to
run	your	tests,	no	matter	how	powerful	their	box	is.	It	could	be	a	skinny
virtual	machine	or	a	neglected	Jenkins	box,	your	tests	should	run	without
chewing	up	too	many	resources.

A	Jenkins	box	is	a	machine	that	runs	Jenkins,	software	that	is	capable	of,	among	many	other
things,	running	your	tests	automatically.	Jenkins	is	frequently	used	in	companies	where
developers	use	practices	such	as	continuous	integration	and	extreme	programming.

	

	

	

Unit	testing
Now	that	you	have	an	idea	about	what	testing	is	and	why	we	need	it,	let's
introduce	the	developer's	best	friend:	the	unit	test.

Before	we	proceed	with	the	examples,	allow	me	to	share	some	words	of	caution:
I'll	try	to	give	you	the	fundamentals	about	unit	testing,	but	I	don't	follow	any
particular	school	of	thought	or	methodology	to	the	letter.	Over	the	years,	I	have
tried	many	different	testing	approaches,	eventually	coming	up	with	my	own	way
of	doing	things,	which	is	constantly	evolving.	To	put	it	as	Bruce	Lee	would
have:	"Absorb	what	is	useful,	discard	what	is	useless	and	add	what	is	specifically
your	own."

Writing	a	unit	test
Unit	tests	take	their	name	after	the	fact	that	they	are	used	to	test	small	units	of
code.	To	explain	how	to	write	a	unit	test,	let's	take	a	look	at	a	simple	snippet:

#	data.py

def	get_clean_data(source):	

				data	=	load_data(source)	

				cleaned_data	=	clean_data(data)	

				return	cleaned_data	

The	get_clean_data	function	is	responsible	for	getting	data	from	source,	cleaning	it,
and	returning	it	to	the	caller.	How	do	we	test	this	function?

One	way	of	doing	this	is	to	call	it	and	then	make	sure	that	load_data	was	called
once	with	source	as	its	only	argument.	Then	we	have	to	verify	that	clean_data	was
called	once,	with	the	return	value	of	load_data.	And,	finally,	we	would	need	to
make	sure	that	the	return	value	of	clean_data	is	what	is	returned	by	the
get_clean_data	function	as	well.

To	do	this,	we	need	to	set	up	the	source	and	run	this	code,	and	this	may	be	a
problem.	One	of	the	golden	rules	of	unit	testing	is	that	anything	that	crosses	the
boundaries	of	your	application	needs	to	be	simulated.	We	don't	want	to	talk	to	a
real	data	source,	and	we	don't	want	to	actually	run	real	functions	if	they	are
communicating	with	anything	that	is	not	contained	in	our	application.	A	few
examples	would	be	a	database,	a	search	service,	an	external	API,	and	a	file	in	the
filesystem.

We	need	these	restrictions	to	act	as	a	shield,	so	that	we	can	always	run	our	tests
safely	without	the	fear	of	destroying	something	in	a	real	data	source.

Another	reason	is	that	it	may	be	quite	difficult	for	a	single	developer	to
reproduce	the	whole	architecture	on	their	box.	It	may	require	the	setting	up	of
databases,	APIs,	services,	files	and	folders,	and	so	on	and	so	forth,	and	this	can
be	difficult,	time-consuming,	or	sometimes	not	even	possible.

Very	simply	put,	an	application	programming	interface	(API)	is	a	set	of	tools	for	building
software	applications.	An	API	expresses	a	software	component	in	terms	of	its	operations,
input	and	output,	and	underlying	types.	For	example,	if	you	create	a	software	that	needs	to

interface	with	a	data	provider	service,	it's	very	likely	that	you	will	have	to	go	through	their
API	in	order	to	gain	access	to	the	data.

Therefore,	in	our	unit	tests,	we	need	to	simulate	all	those	things	in	some	way.
Unit	tests	need	to	be	run	by	any	developer	without	the	need	for	the	whole	system
to	be	set	up	on	their	box.

A	different	approach,	which	I	always	favor	when	it's	possible	to	do	so,	is	to
simulate	entities	without	using	fake	objects,	but	using	special-purpose	test
objects	instead.	For	example,	if	your	code	talks	to	a	database,	instead	of	faking
all	the	functions	and	methods	that	talk	to	the	database	and	programming	the	fake
objects	so	that	they	return	what	the	real	ones	would,	I'd	much	rather	spawn	a	test
database,	set	up	the	tables	and	data	I	need,	and	then	patch	the	connection	settings
so	that	my	tests	are	running	real	code,	against	the	test	database,	thereby	doing	no
harm	at	all.	In-memory	databases	are	excellent	options	for	these	cases.

One	of	the	applications	that	allow	you	to	spawn	a	database	for	testing	is	Django.	Within	the
django.test	package,	you	can	find	several	tools	that	help	you	write	your	tests	so	that	you	won't
have	to	simulate	the	dialog	with	a	database.	By	writing	tests	this	way,	you	will	also	be	able	to
check	on	transactions,	encodings,	and	all	other	database-related	aspects	of	programming.
Another	advantage	of	this	approach	consists	in	the	ability	of	checking	against	things	that	can
change	from	one	database	to	another.

Sometimes,	though,	it's	still	not	possible,	and	we	need	to	use	fakes,	so	let's	talk
about	them.

Mock	objects	and	patching
	

First	of	all,	in	Python,	these	fake	objects	are	called	mocks.	Up	to	Version	3.3,	the
mock	library	was	a	third-party	library	that	basically	every	project	would	install	via
pip	but,	from	Version	3.3,	it	has	been	included	in	the	standard	library	under	the
unittest	module,	and	rightfully	so,	given	its	importance	and	how	widespread	it	is.

The	act	of	replacing	a	real	object	or	function	(or	in	general,	any	piece	of	data
structure)	with	a	mock,	is	called	patching.	The	mock	library	provides	the	patch
tool,	which	can	act	as	a	function	or	class	decorator,	and	even	as	a	context
manager	that	you	can	use	to	mock	things	out.	Once	you	have	replaced
everything	you	don't	need	to	run	with	suitable	mocks,	you	can	pass	to	the	second
phase	of	the	test	and	run	the	code	you	are	exercising.	After	the	execution,	you
will	be	able	to	check	those	mocks	to	verify	that	your	code	has	worked	correctly.

	

	

	

Assertions
The	verification	phase	is	done	through	the	use	of	assertions.	An	assertion	is	a
function	(or	method)	that	you	can	use	to	verify	equality	between	objects,	as	well
as	other	conditions.	When	a	condition	is	not	met,	the	assertion	will	raise	an
exception	that	will	make	your	test	fail.	You	can	find	a	list	of	assertions	in	the
unittest	module	documentation;	however,	when	using	pytest,	you	will	typically
use	the	generic	assert	statement,	which	makes	things	even	simpler.

	

Testing	a	CSV	generator
Let's	now	adopt	a	practical	approach.	I	will	show	you	how	to	test	a	piece	of
code,	and	we	will	touch	on	the	rest	of	the	important	concepts	around	unit	testing,
within	the	context	of	this	example.

We	want	to	write	an	export	function	that	does	the	following:	it	takes	a	list	of
dictionaries,	each	of	which	represents	a	user.	It	creates	a	CSV	file,	puts	a	header
in	it,	and	then	proceeds	to	add	all	the	users	who	are	deemed	valid	according	to
some	rules.	The	export	function	takes	also	a	filename,	which	will	be	the	name	for
the	CSV	in	output.	And,	finally,	it	takes	an	indication	on	whether	to	allow	an
existing	file	with	the	same	name	to	be	overwritten.

As	for	the	users,	they	must	abide	by	the	following:	each	user	has	at	least	an
email,	a	name,	and	an	age.	There	can	be	a	fourth	field	representing	the	role,	but
it's	optional.	The	user's	email	address	needs	to	be	valid,	the	name	needs	to	be
non-empty,	and	the	age	must	be	an	integer	between	18	and	65.

This	is	our	task,	so	now	I'm	going	to	show	you	the	code,	and	then	we're	going	to
analyze	the	tests	I	wrote	for	it.	But,	first	things	first,	in	the	following	code
snippets,	I'll	be	using	two	third-party	libraries:	marshmallow	and	pytest.	They	both
are	in	the	requirements	of	the	book's	source	code,	so	make	sure	you	have
installed	them	with	pip.

marshmallow	is	a	wonderful	library	that	provides	us	with	the	ability	to	serialize	and
deserialize	objects	and,	most	importantly,	gives	us	the	ability	to	define	a	schema
that	we	can	use	to	validate	a	user	dictionary.	pytest	is	one	of	the	best	pieces	of
software	I	have	ever	seen.	It	is	used	everywhere	now,	and	has	replaced	other
tools	such	as	nose,	for	example.	It	provides	us	with	great	tools	to	write	beautiful
short	tests.

But	let's	get	to	the	code.	I	called	it	api.py	just	because	it	exposes	a	function	that
we	can	use	to	do	things.	I'll	show	it	to	you	in	chunks:

#	api.py

import	os

import	csv

from	copy	import	deepcopy

from	marshmallow	import	Schema,	fields,	pre_load

from	marshmallow.validate	import	Length,	Range

class	UserSchema(Schema):

				"""Represent	a	*valid*	user.	"""

				email	=	fields.Email(required=True)

				name	=	fields.String(required=True,	validate=Length(min=1))

				age	=	fields.Integer(

								required=True,	validate=Range(min=18,	max=65)

)

				role	=	fields.String()

				@pre_load(pass_many=False)

				def	strip_name(self,	data):

								data_copy	=	deepcopy(data)

								try:

												data_copy['name']	=	data_copy['name'].strip()

								except	(AttributeError,	KeyError,	TypeError):

												pass

								return	data_copy

schema	=	UserSchema()

This	first	part	is	where	we	import	all	the	modules	we	need	(os	and	csv),	and	some
tools	from	marshmallow,	and	then	we	define	the	schema	for	the	users.	As	you	can
see,	we	inherit	from	marshmallow.Schema,	and	then	we	set	four	fields.	Notice	we	are
using	two	String	fields,	Email	and	Integer.	These	will	already	provide	us	with	some
validation	from	marshmallow.	Notice	there	is	no	required=True	in	the	role	field.

We	need	to	add	a	couple	of	custom	bits	of	code,	though.	We	need	to	add
validate_age	to	make	sure	the	value	is	within	the	range	we	want.	We	raise
ValidationError	in	case	it's	not.	And	marshmallow	will	kindly	take	care	of	raising	an
error	should	we	pass	anything	but	an	integer.

Next,	we	add	validate_name,	because	the	fact	that	a	name	key	in	the	dictionary	is
there	doesn't	guarantee	that	the	name	is	actually	non-empty.	So	we	take	its	value,
we	strip	all	leading	and	trailing	whitespace	characters,	and	if	the	result	is	empty,
we	raise	ValidationError	again.	Notice	we	don't	need	to	add	a	custom	validator	for
the	email	field.	This	is	because	marshmallow	will	validate	it,	and	a	valid	email	cannot
be	empty.

We	then	instantiate	schema,	so	that	we	can	use	it	to	validate	data.	So	let's	write	the
export	function:

#	api.py

def	export(filename,	users,	overwrite=True):

				"""Export	a	CSV	file.

				Create	a	CSV	file	and	fill	with	valid	users.	If	`overwrite`

				is	False	and	file	already	exists,	raise	IOError.

				"""

				if	not	overwrite	and	os.path.isfile(filename):

								raise	IOError(f"'{filename}'	already	exists.")

				valid_users	=	get_valid_users(users)

				write_csv(filename,	valid_users)

As	you	see,	its	internals	are	quite	straightforward.	If	overwrite	is	False	and	the	file
already	exists,	we	raise	IOError	with	a	message	saying	the	file	already	exists.
Otherwise,	if	we	can	proceed,	we	simply	get	the	list	of	valid	users	and	feed	it	to
write_csv,	which	is	responsible	for	actually	doing	the	job.	Let's	see	how	all	these
functions	are	defined:

#	api.py

def	get_valid_users(users):

				"""Yield	one	valid	user	at	a	time	from	users.	"""

				yield	from	filter(is_valid,	users)

def	is_valid(user):

				"""Return	whether	or	not	the	user	is	valid.	"""

				return	not	schema.validate(user)

Turns	out	I	coded	get_valid_users	as	a	generator,	as	there	is	no	need	to	make	a
potentially	big	list	in	order	to	put	it	in	a	file.	We	can	validate	and	save	them	one
by	one.	The	heart	of	validation	is	simply	a	delegation	to	schema.validate,	which
uses	validation	engine	by	marshmallow.	The	way	this	works	is	by	returning	a
dictionary,	which	is	empty	if	validation	succeeded,	or	else	it	will	contain	error
information.	We	don't	really	care	about	collecting	the	error	information	for	this
task,	so	we	simply	ignore	it,	and	within	is_valid	we	basically	return	True	if	the
return	value	from	schema.validate	is	empty,	and	False	otherwise.

One	last	piece	is	missing;	here	it	is:

#	api.py

def	write_csv(filename,	users):

				"""Write	a	CSV	given	a	filename	and	a	list	of	users.

				The	users	are	assumed	to	be	valid	for	the	given	CSV	structure.

				"""

				fieldnames	=	['email',	'name',	'age',	'role']

				with	open(filename,	'x',	newline='')	as	csvfile:

								writer	=	csv.DictWriter(csvfile,	fieldnames=fieldnames)

								writer.writeheader()

								for	user	in	users:

												writer.writerow(user)

Again,	the	logic	is	straightforward.	We	define	the	header	in	fieldnames,	then	we
open	filename	for	writing,	and	we	specify	newline='',	which	is	recommended	in	the
documentation	when	dealing	with	CSV	files.	When	the	file	has	been	created,	we
get	a	writer	object	by	using	the	csv.DictWriter	class.	The	beauty	of	this	tool	is	that
it	is	capable	of	mapping	the	user	dictionaries	to	the	field	names,	so	we	don't	need
to	take	care	of	the	ordering.

We	write	the	header	first,	and	then	we	loop	over	the	users	and	add	them	one	by
one.	Notice,	this	function	assumes	it	is	fed	a	list	of	valid	users,	and	it	may	break
if	that	assumption	is	false	(with	the	default	values,	it	would	break	if	any	user
dictionary	had	extra	fields).

That's	the	whole	code	you	have	to	keep	in	mind.	I	suggest	you	spend	a	moment
to	go	through	it	again.	There	is	no	need	to	memorize	it,	and	the	fact	that	I	have
used	small	helper	functions	with	meaningful	names	will	enable	you	to	follow	the
testing	along	more	easily.

Let's	now	get	to	the	interesting	part:	testing	our	export	function.	Once	again,	I'll
show	you	the	code	in	chunks:

#	tests/test_api.py

import	os

from	unittest.mock	import	patch,	mock_open,	call

import	pytest

from	..api	import	is_valid,	export,	write_csv

Let's	start	from	the	imports:	we	need	os,	temporary	directories	(which	we	already
saw	in	Chapter	7,	Files	and	Data	Persistence),	then	pytest,	and,	finally,	we	use	a
relative	import	to	fetch	the	three	functions	that	we	want	to	actually	test:	is_valid,
export,	and	write_csv.

Before	we	can	write	tests,	though,	we	need	to	make	a	few	fixtures.	As	you	will
see,	a	fixture	is	a	function	that	is	decorated	with	the	pytest.fixture	decorator.	In
most	cases,	we	expect	fixture	to	return	something,	so	that	we	can	use	it	in	a	test.
We	have	some	requirements	for	a	user	dictionary,	so	let's	write	a	couple	of	users:
one	with	minimal	requirements,	and	one	with	full	requirements.	Both	need	to	be
valid.	Here	is	the	code:

#	tests/test_api.py

@pytest.fixture

def	min_user():

				"""Represent	a	valid	user	with	minimal	data.	"""

				return	{

								'email':	'minimal@example.com',

								'name':	'Primus	Minimus',

								'age':	18,

				}

@pytest.fixture

def	full_user():

				"""Represent	valid	user	with	full	data.	"""

				return	{

								'email':	'full@example.com',

								'name':	'Maximus	Plenus',

								'age':	65,

								'role':	'emperor',

				}

In	this	example,	the	only	difference	is	the	presence	of	the	role	key,	but	it's
enough	to	show	you	the	point	I	hope.	Notice	that	instead	of	simply	declaring
dictionaries	at	a	module	level,	we	actually	have	written	two	functions	that	return
a	dictionary,	and	we	have	decorated	them	with	the	pytest.fixture	decorator.	This
is	because	when	you	declare	a	dictionary	at	module-level,	which	is	supposed	to
be	used	in	your	tests,	you	need	to	make	sure	you	copy	it	at	the	beginning	of
every	test.	If	you	don't,	you	may	have	a	test	that	modifies	it,	and	this	will	affect
all	tests	that	follow	it,	compromising	their	integrity.

By	using	these	fixtures,	pytest	will	give	us	a	new	dictionary	every	test	run,	so	we
don't	need	to	go	through	that	pain	ourselves.	Notice	that	if	a	fixture	returns
another	type,	instead	of	dict,	then	that	is	what	you	will	get	in	the	test.	Fixtures
also	are	composable,	which	means	they	can	be	used	in	one	another,	which	is	a
very	powerful	feature	of	pytest.	To	show	you	this,	let's	write	a	fixture	for	a	list	of
users,	in	which	we	put	the	two	we	already	have,	plus	one	that	would	fail
validation	because	it	has	no	age.	Let's	take	a	look	at	the	following	code:

#	tests/test_api.py

@pytest.fixture

def	users(min_user,	full_user):

				"""List	of	users,	two	valid	and	one	invalid.	"""

				bad_user	=	{

								'email':	'invalid@example.com',

								'name':	'Horribilis',

				}

				return	[min_user,	bad_user,	full_user]

Nice.	So,	now	we	have	two	users	that	we	can	use	individually,	but	also	we	have
a	list	of	three	users.	The	first	round	of	tests	will	be	testing	how	we	are	validating
a	user.	We	will	group	all	the	tests	for	this	task	within	a	class.	This	not	only	helps
giving	related	tests	a	namespace,	a	place	to	be,	but,	as	we'll	see	later	on,	it	allows
us	to	declare	class-level	fixtures,	which	are	defined	just	for	the	tests	belonging	to

the	class.	Take	a	look	at	this	code:

#	tests/test_api.py

class	TestIsValid:

				"""Test	how	code	verifies	whether	a	user	is	valid	or	not.	"""

				def	test_minimal(self,	min_user):

								assert	is_valid(min_user)

				def	test_full(self,	full_user):

								assert	is_valid(full_user)

We	start	very	simply	by	making	sure	our	fixtures	are	actually	passing	validation.
This	is	very	important,	as	those	fixtures	will	be	used	everywhere,	so	we	want
them	to	be	perfect.	Next,	we	test	the	age.	Two	things	to	notice	here:	I	will	not
repeat	the	class	signature,	so	the	code	that	follows	is	indented	by	four	spaces	and
it's	because	these	are	all	methods	within	the	same	class,	okay?	And,	second,
we're	going	to	use	parametrization	quite	heavily.

Parametrization	is	a	technique	that	enables	us	to	run	the	same	test	multiple	times,
but	feeding	different	data	to	it.	It	is	very	useful,	as	it	allows	us	to	write	the	test
only	once	with	no	repetition,	and	the	result	will	be	very	intelligently	handled	by
pytest,	which	will	run	all	those	tests	as	if	they	were	actually	separate,	thus
providing	us	with	clear	error	messages	when	they	fail.	If	you	parametrize
manually,	you	lose	this	feature,	and	believe	me	you	won't	be	happy.	Let's	see
how	we	test	the	age:

#	tests/test_api.py

				@pytest.mark.parametrize('age',	range(18))

				def	test_invalid_age_too_young(self,	age,	min_user):

								min_user['age']	=	age

								assert	not	is_valid(min_user)

Right,	so	we	start	by	writing	a	test	to	check	that	validation	fails	when	the	user	is
too	young.	According	to	our	rule,	a	user	is	too	young	when	they	are	younger
than	18.	We	check	for	every	age	between	0	and	17,	by	using	range.

If	you	take	a	look	at	how	the	parametrization	works,	you'll	see	we	declare	the
name	of	an	object,	which	we	then	pass	to	the	signature	of	the	method,	and	then
we	specify	which	values	this	object	will	take.	For	each	value,	the	test	will	be	run
once.	In	the	case	of	this	first	test,	the	object's	name	is	age,	and	the	values	are	all
those	returned	by	range(18),	which	means	all	integer	numbers	from	0	to	17	are
included.	Notice	how	we	feed	age	to	the	test	method,	right	after	self,	and	then	we
do	something	else,	which	is	also	very	interesting.	We	pass	this	method	a	fixture:

min_user.	This	has	the	effect	of	activating	that	fixture	for	the	test	run,	so	that	we
can	use	it,	and	can	refer	to	it	from	within	the	test.	In	this	case,	we	simply	change
the	age	within	the	min_user	dictionary,	and	then	we	verify	that	the	result	of
is_valid(min_user)	is	False.

We	do	this	last	bit	by	asserting	on	the	fact	that	not	False	is	True.	In	pytest,	this	is
how	you	check	for	something.	You	simply	assert	that	something	is	truthy.	If	that
is	the	case,	the	test	has	succeeded.	Should	it	instead	be	the	opposite,	the	test
would	fail.

Let's	proceed	and	add	all	the	tests	needed	to	make	validation	fail	on	the	age:

#	tests/test_api.py

				@pytest.mark.parametrize('age',	range(66,	100))

				def	test_invalid_age_too_old(self,	age,	min_user):

								min_user['age']	=	age

								assert	not	is_valid(min_user)

				@pytest.mark.parametrize('age',	['NaN',	3.1415,	None])

				def	test_invalid_age_wrong_type(self,	age,	min_user):

								min_user['age']	=	age

								assert	not	is_valid(min_user)

So,	another	two	tests.	One	takes	care	of	the	other	end	of	the	spectrum,	from	66
years	of	age	to	99.	And	the	second	one	instead	makes	sure	that	age	is	invalid
when	it's	not	an	integer	number,	so	we	pass	some	values,	such	as	a	string,	a	float,
and	None,	just	to	make	sure.	Notice	how	the	structure	of	the	test	is	basically
always	the	same,	but,	thanks	to	the	parametrization,	we	feed	very	different	input
arguments	to	it.

Now	that	we	have	the	age-failing	all	sorted	out,	let's	add	a	test	that	actually
checks	the	age	is	within	the	valid	range:

#	tests/test_api.py

				@pytest.mark.parametrize('age',	range(18,	66))

				def	test_valid_age(self,	age,	min_user):

								min_user['age']	=	age

								assert	is_valid(min_user)

It's	as	easy	as	that.	We	pass	the	correct	range,	from	18	to	65,	and	remove	the	not	in
the	assertion.	Notice	how	all	tests	start	with	the	test_	prefix,	and	have	a	different
name.

We	can	consider	the	age	as	being	taken	care	of.	Let's	move	on	to	write	tests	on
mandatory	fields:

#	tests/test_api.py

				@pytest.mark.parametrize('field',	['email',	'name',	'age'])

				def	test_mandatory_fields(self,	field,	min_user):

								min_user.pop(field)

								assert	not	is_valid(min_user)

				@pytest.mark.parametrize('field',	['email',	'name',	'age'])

				def	test_mandatory_fields_empty(self,	field,	min_user):

								min_user[field]	=	''

								assert	not	is_valid(min_user)

def	test_name_whitespace_only(self,	min_user):

								min_user['name']	=	'	\n\t'

								assert	not	is_valid(min_user)

The	previous	three	tests	still	belong	to	the	same	class.	The	first	one	tests	whether
a	user	is	invalid	when	one	of	the	mandatory	fields	is	missing.	Notice	that	at
every	test	run,	the	min_user	fixture	is	restored,	so	we	only	have	one	missing	field
per	test	run,	which	is	the	appropriate	way	to	check	for	mandatory	fields.	We
simply	pop	the	key	out	of	the	dictionary.	This	time	the	parametrization	object
takes	the	name	field,	and,	by	looking	at	the	first	test,	you	see	all	the	mandatory
fields	in	the	parametrization	decorator:	email,	name,	and	age.

In	the	second	one,	things	are	a	little	different.	Instead	of	popping	keys	out,	we
simply	set	them	(one	at	a	time)	to	the	empty	string.	Finally,	in	the	third	one,	we
check	for	the	name	to	be	made	of	whitespace	only.

The	previous	tests	take	care	of	mandatory	fields	being	there	and	being	non-
empty,	and	of	the	formatting	around	the	name	key	of	a	user.	Good.	Let's	now	write
the	last	two	tests	for	this	class.	We	want	to	check	email	validity,	and	type	for
email,	name,	and	the	role:

#	tests/test_api.py

				@pytest.mark.parametrize(

								'email,	outcome',

								[

												('missing_at.com',	False),

												('@missing_start.com',	False),

												('missing_end@',	False),

												('missing_dot@example',	False),

												('good.one@example.com',	True),

												('δοκιμή@παράδειγμα.δοκιμή',	True),

												('аджай@экзампл.рус',	True),

]

)

				def	test_email(self,	email,	outcome,	min_user):

								min_user['email']	=	email

								assert	is_valid(min_user)	==	outcome

This	time,	the	parametrization	is	slightly	more	complex.	We	define	two	objects
(email	and	outcome),	and	then	we	pass	a	list	of	tuples,	instead	of	a	simple	list,	to	the
decorator.	What	happens	is	that	each	time	the	test	is	run,	one	of	those	tuples	will
be	unpacked	so	to	fill	the	values	of	email	and	outcome,	respectively.	This	allows	us
to	write	one	test	for	both	valid	and	invalid	email	addresses,	instead	of	two
separate	ones.	We	define	an	email	address,	and	we	specify	the	outcome	we
expect	from	validation.	The	first	four	are	invalid	email	addresses,	but	the	last
three	are	actually	valid.	I	have	used	a	couple	of	examples	with	Unicode,	just	to
make	sure	we're	not	forgetting	to	include	our	friends	from	all	over	the	world	in
the	validation.

Notice	how	the	validation	is	done,	asserting	the	result	of	the	call	needs	to	match
the	outcome	we	have	set.

Let's	now	write	a	simple	test	to	make	sure	validation	fails	when	we	feed	the
wrong	type	to	the	fields	(again,	the	age	has	been	taken	care	of	separately	before):

#	tests/test_api.py

				@pytest.mark.parametrize(

								'field,	value',

								[

												('email',	None),

												('email',	3.1415),

												('email',	{}),

												('name',	None),

												('name',	3.1415),

												('name',	{}),

												('role',	None),

												('role',	3.1415),

												('role',	{}),

]

)

				def	test_invalid_types(self,	field,	value,	min_user):

								min_user[field]	=	value

								assert	not	is_valid(min_user)

As	we	did	before,	just	for	fun,	we	pass	three	different	values,	none	of	which	is
actually	a	string.	This	test	could	be	expanded	to	include	more	values,	but,
honestly,	we	shouldn't	need	to	write	tests	such	as	this	one.	I	have	included	it	here
just	to	show	you	what's	possible.

Before	we	move	to	the	next	test	class,	let	me	talk	about	something	we	have	seen
when	we	were	checking	the	age.

Boundaries	and	granularity
While	checking	for	the	age,	we	have	written	three	tests	to	cover	the	three	ranges:
0-17	(fail),	18-65	(success),	66-99	(fail).	Why	did	we	do	this?	The	answer	lies	in
the	fact	that	we	are	dealing	with	two	boundaries:	18	and	65.	So	our	testing	needs
to	focus	on	the	three	regions	those	two	boundaries	define:	before	18,	within	18
and	65,	and	after	65.	How	you	do	it	is	not	crucial,	as	long	as	you	make	sure	you
test	the	boundaries	correctly.	This	means	if	someone	changes	the	validation	in
the	schema	from	18	<=	value	<=	65	to	18	<=	value	<	65	(notice	the	missing	=),	there
must	be	a	test	that	fails	on	the	65.

This	concept	is	known	as	boundary,	and	it's	very	important	that	you	recognize
them	in	your	code	so	that	you	can	test	against	them.

Another	important	thing	is	to	understand	is	which	zoom	level	we	want	to	get
close	to	the	boundaries.	In	other	words,	which	unit	should	I	use	to	move	around
it?	In	the	case	of	age,	we're	dealing	with	integers,	so	a	unit	of	1	will	be	the
perfect	choice	(which	is	why	we	used	16,	17,	18,	19,	20,	...).	But	what	if	you	were
testing	for	a	timestamp?	Well,	in	that	case,	the	correct	granularity	will	likely	be
different.	If	the	code	has	to	act	differently	according	to	your	timestamp	and	that
timestamp	represent	seconds,	then	the	granularity	of	your	tests	should	zoom
down	to	seconds.	If	the	timestamp	represents	years,	then	years	should	be	the	unit
you	use.	I	hope	you	get	the	picture.	This	concept	is	known	as	granularity,	and
needs	to	be	combined	with	that	of	boundaries,	so	that	by	going	around	the
boundaries	with	the	correct	granularity,	you	can	make	sure	your	tests	are	not
leaving	anything	to	chance.

Let's	now	continue	with	our	example,	and	test	the	export	function.

Testing	the	export	function
In	the	same	test	module,	I	have	defined	another	class	that	represents	a	test	suite
for	the	export	function.	Here	it	is:

#	tests/test_api.py

class	TestExport:

				@pytest.fixture

				def	csv_file(self,	tmpdir):

								yield	tmpdir.join("out.csv")

				@pytest.fixture

				def	existing_file(self,	tmpdir):

								existing	=	tmpdir.join('existing.csv')

								existing.write('Please	leave	me	alone...')

								yield	existing

Let's	start	understanding	the	fixtures.	We	have	defined	them	at	class-level	this
time,	which	means	they	will	be	alive	only	for	as	long	as	the	tests	in	the	class	are
running.	We	don't	need	these	fixtures	outside	of	this	class,	so	it	doesn't	make
sense	to	declare	them	at	a	module	level	like	we've	done	with	the	user	ones.

So,	we	need	two	files.	If	you	recall	what	I	wrote	at	the	beginning	of	this	chapter,
when	it	comes	to	interaction	with	databases,	disks,	networks,	and	so	on,	we
should	mock	everything	out.	However,	when	possible,	I	prefer	to	use	a	different
technique.	In	this	case,	I	will	employ	temporary	folders,	which	will	be	born
within	the	fixture,	and	die	within	it,	leaving	no	trace	of	their	existence.	I	am
much	happier	if	I	can	avoid	mocking.	Mocking	is	amazing,	but	it	can	be	tricky,
and	a	source	of	bugs,	unless	it's	done	correctly.

Now,	the	first	fixture,	csv_file,	defines	a	managed	context	in	which	we	obtain	a
reference	to	a	temporary	folder.	We	can	consider	the	logic	up	to	and	including
the	yield,	as	the	setup	phase.	The	fixture	itself,	in	terms	of	data,	is	represented	by
the	temporary	filename.	The	file	itself	is	not	present	yet.	When	a	test	runs,	the
fixture	is	created,	and	at	the	end	of	the	test,	the	rest	of	the	fixture	code	(the	one
after	yield,	if	any)	is	executed.	That	part	can	be	considered	the	teardown	phase.
In	this	case,	it	consists	of	exiting	the	context	manager,	which	means	the
temporary	folder	is	deleted	(along	with	all	its	content).	You	can	put	much	more
in	each	phase	of	any	fixture,	and	with	experience,	I'm	sure	you'll	master	the	art

of	doing	setup	and	teardown	this	way.	It	actually	comes	very	naturally	quite
quickly.

The	second	fixture	is	very	similar	to	the	first	one,	but	we'll	use	it	to	test	that	we
can	prevent	overwriting	when	we	call	export	with	overwrite=False.	So	we	create	a
file	in	the	temporary	folder,	and	we	put	some	content	into	it,	just	to	have	the
means	to	verify	it	hasn't	been	touched.

Notice	how	both	fixtures	are	returning	the	filename	with	the	full	path
information,	to	make	sure	we	actually	use	the	temporary	folder	in	our	code.	Let's
now	see	the	tests:

#	tests/test_api.py

				def	test_export(self,	users,	csv_file):

								export(csv_file,	users)

								lines	=	csv_file.readlines()

								assert	[

												'email,name,age,role\n',

												'minimal@example.com,Primus	Minimus,18,\n',

												'full@example.com,Maximus	Plenus,65,emperor\n',

]	==	lines

This	test	employs	the	users	and	csv_file	fixtures,	and	immediately	calls	export	with
them.	We	expect	that	a	file	has	been	created,	and	populated	with	the	two	valid
users	we	have	(remember	the	list	contains	three	users,	but	one	is	invalid).

To	verify	that,	we	open	the	temporary	file,	and	collect	all	its	lines	into	a	list.	We
then	compare	the	content	of	the	file	with	a	list	of	the	lines	that	we	expect	to	be	in
it.	Notice	we	only	put	the	header,	and	the	two	valid	users,	in	the	correct	order.

Now	we	need	another	test,	to	make	sure	that	if	there	is	a	comma	in	one	of	the
values,	our	CSV	is	still	generated	correctly.	Being	a	comma-separated	values
(CSV)	file,	we	need	to	make	sure	that	a	comma	in	the	data	doesn't	break	things
up:

#	tests/test_api.py

				def	test_export_quoting(self,	min_user,	csv_file):

								min_user['name']	=	'A	name,	with	a	comma'

								export(csv_file,	[min_user])

								lines	=	csv_file.readlines()

								assert	[

												'email,name,age,role\n',

												'minimal@example.com,"A	name,	with	a	comma",18,\n',

]	==	lines

This	time,	we	don't	need	the	whole	users	list,	we	just	need	one	as	we're	testing	a
specific	thing,	and	we	have	the	previous	test	to	make	sure	we're	generating	the
file	correctly	with	all	the	users.	Remember,	always	try	to	minimize	the	work	you
do	within	a	test.

So,	we	use	min_user,	and	put	a	nice	comma	in	its	name.	We	then	repeat	the
procedure,	which	is	very	similar	to	that	of	the	previous	test,	and	finally	we	make
sure	that	the	name	is	put	in	the	CSV	file	surrounded	by	double	quotes.	This	is
enough	for	any	good	CSV	parser	to	understand	that	they	don't	have	to	break	on
the	comma	inside	the	double	quotes.

Now	I	want	one	more	test,	which	needs	to	check	that	whether	the	file	exists	and
we	don't	want	to	override	it,	our	code	won't	touch	it:

#	tests/test_api.py

				def	test_does_not_overwrite(self,	users,	existing_file):

								with	pytest.raises(IOError)	as	err:

												export(existing_file,	users,	overwrite=False)

								assert	err.match(

												r"'{}'	already	exists\.".format(existing_file)

)

								#	let's	also	verify	the	file	is	still	intact

								assert	existing_file.read()	==	'Please	leave	me	alone...'

This	is	a	beautiful	test,	because	it	allows	me	to	show	you	how	you	can	tell	pytest
that	you	expect	a	function	call	to	raise	an	exception.	We	do	it	in	the	context
manager	given	to	us	by	pytest.raises,	to	which	we	feed	the	exception	we	expect
from	the	call	we	make	inside	the	body	of	that	context	manager.	If	the	exception
is	not	raised,	the	test	will	fail.

I	like	to	be	thorough	in	my	test,	so	I	don't	want	to	stop	there.	I	also	assert	on	the
message,	by	using	the	convenient	err.match	helper	(watch	out,	it	takes	a	regular
expression,	not	a	simple	string–we'll	see	regular	expressions	in	Chapter	14,	Web
Development).

Finally,	let's	make	sure	that	the	file	still	contains	its	original	content	(which	is
why	I	created	the	existing_file	fixture)	by	opening	it,	and	comparing	all	of	its
content	to	the	string	it	should	be.

Final	considerations
Before	we	move	on	to	the	next	topic,	let	me	just	wrap	up	with	some
considerations.

First,	I	hope	you	have	noticed	that	I	haven't	tested	all	the	functions	I	wrote.
Specifically,	I	didn't	test	get_valid_users,	validate,	and	write_csv.	The	reason	is
because	these	functions	are	implicitly	tested	by	our	test	suite.	We	have	tested
is_valid	and	export,	which	is	more	than	enough	to	make	sure	our	schema	is
validating	users	correctly,	and	the	export	function	is	dealing	with	filtering	out
invalid	users	correctly,	respecting	existing	files	when	needed,	and	writing	a
proper	CSV.	The	functions	we	haven't	tested	are	the	internals,	they	provide	logic
that	participates	to	doing	something	that	we	have	thoroughly	tested	anyway.
Would	adding	extra	tests	for	those	functions	be	good	or	bad?	Think	about	it	for	a
moment.

The	answer	is	actually	difficult.	The	more	you	test,	the	less	you	can	refactor	that
code.	As	it	is	now,	I	could	easily	decide	to	call	is_valid	with	another	name,	and	I
wouldn't	have	to	change	any	of	my	tests.	If	you	think	about	it,	it	makes	sense,
because	as	long	as	is_valid	provides	correct	validation	to	the	get_valid_users
function,	I	don't	really	need	to	know	about	it.	Does	this	make	sense	to	you?

If	instead	I	had	tests	for	the	validate	function,	then	I	would	have	to	change	them,
if	I	decided	to	call	it	differently	(or	to	somehow	change	its	signature).

So,	what	is	the	right	thing	to	do?	Tests	or	no	tests?	It	will	be	up	to	you.	You	have
to	find	the	right	balance.	My	personal	take	on	this	matter	is	that	everything	needs
to	be	thoroughly	tested,	either	directly	or	indirectly.	And	I	want	the	smallest
possible	test	suite	that	guarantees	me	that.	This	way,	I	will	have	a	great	test	suite
in	terms	of	coverage,	but	not	any	bigger	than	necessary.	You	need	to	maintain
those	tests!

I	hope	this	example	made	sense	to	you,	I	think	it	has	allowed	me	to	touch	on	the
important	topics.

If	you	check	out	the	source	code	for	the	book,	in	the	test_api.py	module,	I	have

added	a	couple	of	extra	test	classes,	which	will	show	you	how	different	testing
would	have	been	had	I	decided	to	go	all	the	way	with	the	mocks.	Make	sure	you
read	that	code	and	understand	it	well.	It	is	quite	straightforward	and	will	offer
you	a	good	comparison	with	my	personal	approach,	which	I	have	shown	you
here.

Now,	how	about	we	run	those	tests?	(The	output	is	re-arranged	to	fit	this	book's
format):

$	pytest	tests

======================	test	session	starts	======================

platform	darwin	--	Python	3.7.0b2,	pytest-3.5.0,	py-1.5.3,	...

rootdir:	/Users/fab/srv/lpp/ch8,	inifile:

collected	132	items

tests/test_api.py	...

...

....................	[100%]

==================	132	passed	in	0.41	seconds	===================

Make	sure	you	run	$	pytest	test	from	within	the	ch8	folder	(add	the	-vv	flag	for	a
verbose	output	that	will	show	you	how	parametrization	modifies	the	names	of
your	tests).	As	you	can	see,	132	tests	were	run	in	less	than	half	a	second,	and	they
all	succeeded.	I	strongly	suggest	you	check	out	this	code	and	play	with	it.
Change	something	in	the	code	and	see	whether	any	test	is	breaking.	Understand
why	it	is	breaking.	Is	it	something	important	that	means	the	test	isn't	good
enough?	Or	is	it	something	silly	that	shouldn't	cause	the	test	to	break?	All	these
apparently	innocuous	questions	will	help	you	gain	deep	insight	into	the	art	of
testing.

I	also	suggest	you	study	the	unittest	module,	and	pytest	too.	These	are	tools	you
will	use	all	the	time,	so	you	need	to	be	very	familiar	with	them.

Let's	now	check	out	test-driven	development!

Test-driven	development
Let's	talk	briefly	about	test-driven	development	(TDD).	It	is	a	methodology
that	was	rediscovered	by	Kent	Beck,	who	wrote	Test-Driven	Development	by
Example,	Addison	Wesley,	2002,	which	I	encourage	you	to	check	out	if	you	want
to	learn	about	the	fundamentals	of	this	subject.

TDD	is	a	software	development	methodology	that	is	based	on	the	continuous	repetition	of	a	very	short
development	cycle.

First,	the	developer	writes	a	test,	and	makes	it	run.	The	test	is	supposed	to	check
a	feature	that	is	not	yet	part	of	the	code.	Maybe	it	is	a	new	feature	to	be	added,	or
something	to	be	removed	or	amended.	Running	the	test	will	make	it	fail	and,
because	of	this,	this	phase	is	called	Red.

When	the	test	has	failed,	the	developer	writes	the	minimal	amount	of	code	to
make	it	pass.	When	running	the	test	succeeds,	we	have	the	so-called	Green
phase.	In	this	phase,	it	is	okay	to	write	code	that	cheats,	just	to	make	the	test
pass.	This	technique	is	called	fake	it	'till	you	make	it.	In	a	second	moment,	tests
are	enriched	with	different	edge	cases,	and	the	cheating	code	then	has	to	be
rewritten	with	proper	logic.	Adding	other	test	cases	is	called	triangulation.

The	last	piece	of	the	cycle	is	where	the	developer	takes	care	of	both	the	code	and
the	tests	(in	separate	times)	and	refactors	them	until	they	are	in	the	desired	state.
This	last	phase	is	called	Refactor.

The	TDD	mantra	therefore	is	Red-Green-Refactor.

At	first,	it	feels	really	weird	to	write	tests	before	the	code,	and	I	must	confess	it
took	me	a	while	to	get	used	to	it.	If	you	stick	to	it,	though,	and	force	yourself	to
learn	this	slightly	counter-intuitive	way	of	working,	at	some	point	something
almost	magical	happens,	and	you	will	see	the	quality	of	your	code	increase	in	a
way	that	wouldn't	be	possible	otherwise.

When	you	write	your	code	before	the	tests,	you	have	to	take	care	of	what	the
code	has	to	do	and	how	it	has	to	do	it,	both	at	the	same	time.	On	the	other	hand,
when	you	write	tests	before	the	code,	you	can	concentrate	on	the	what	part

alone,	while	you	write	them.	When	you	write	the	code	afterward,	you	will
mostly	have	to	take	care	of	how	the	code	has	to	implement	what	is	required	by
the	tests.	This	shift	in	focus	allows	your	mind	to	concentrate	on	the	what	and
how	parts	in	separate	moments,	yielding	a	brain	power	boost	that	will	surprise
you.

There	are	several	other	benefits	that	come	from	the	adoption	of	this	technique:

You	will	refactor	with	much	more	confidence:	Tests	will	break	if	you
introduce	bugs.	Moreover,	the	architectural	refactor	will	also	benefit	from
having	tests	that	act	as	guardians.
The	code	will	be	more	readable:	This	is	crucial	in	our	time,	when	coding
is	a	social	activity	and	every	professional	developer	spends	much	more	time
reading	code	than	writing	it.
The	code	will	be	more	loosely	coupled	and	easier	to	test	and	maintain:
Writing	the	tests	first	forces	you	to	think	more	deeply	about	code	structure.
Writing	tests	first	requires	you	to	have	a	better	understanding	of	the
business	requirements:	If	your	understanding	of	the	requirements	is
lacking	information,	you'll	find	writing	a	test	extremely	challenging	and
this	situation	acts	as	a	sentinel	for	you.
Having	everything	unit	tested	means	the	code	will	be	easier	to	debug:
Moreover,	small	tests	are	perfect	for	providing	alternative	documentation.
English	can	be	misleading,	but	five	lines	of	Python	in	a	simple	test	are	very
hard	to	misunderstand.
Higher	speed:	It's	faster	to	write	tests	and	code	than	it	is	to	write	the	code
first	and	then	lose	time	debugging	it.	If	you	don't	write	tests,	you	will
probably	deliver	the	code	sooner,	but	then	you	will	have	to	track	the	bugs
down	and	solve	them	(and,	rest	assured,	there	will	be	bugs).	The	combined
time	taken	to	write	the	code	and	then	debug	it	is	usually	longer	than	the
time	taken	to	develop	the	code	with	TDD,	where	having	tests	running
before	the	code	is	written,	ensuring	that	the	amount	of	bugs	in	it	will	be
much	lower	than	in	the	other	case.

On	the	other	hand,	the	main	shortcomings	of	this	technique	are	the	following
ones:

The	whole	company	needs	to	believe	in	it:	Otherwise,	you	will	have	to
constantly	argue	with	your	boss,	who	will	not	understand	why	it	takes	you
so	long	to	deliver.	The	truth	is,	it	may	take	you	a	bit	longer	to	deliver	in	the

short-term,	but	in	the	long-term,	you	gain	a	lot	with	TDD.	However,	it	is
quite	hard	to	see	the	long-term	because	it's	not	under	our	noses	like	the
short-term	is.	I	have	fought	battles	with	stubborn	bosses	in	my	career,	to	be
able	to	code	using	TDD.	Sometimes	it	has	been	painful,	but	always	well
worth	it,	and	I	have	never	regretted	it	because,	in	the	end,	the	quality	of	the
result	has	always	been	appreciated.
If	you	fail	to	understand	the	business	requirements,	this	will	reflect	in
the	tests	you	write,	and	therefore	it	will	reflect	in	the	code	too:	This	kind
of	problem	is	quite	hard	to	spot	until	you	do	UAT,	but	one	thing	that	you
can	do	to	reduce	the	likelihood	of	it	happening	is	to	pair	with	another
developer.	Pairing	will	inevitably	require	discussions	about	the	business
requirements,	and	discussion	will	bring	clarification,	which	will	help
writing	correct	tests.
Badly	written	tests	are	hard	to	maintain:	This	is	a	fact.	Tests	with	too
many	mocks	or	with	extra	assumptions	or	badly-structured	data	will	soon
become	a	burden.	Don't	let	this	discourage	you;	just	keep	experimenting
and	change	the	way	you	write	them	until	you	find	a	way	that	doesn't	require
you	a	huge	amount	of	work	every	time	you	touch	your	code.

I'm	quite	passionate	about	TDD.	When	I	interview	for	a	job,	I	always	ask
whether	the	company	adopts	it.	I	encourage	you	to	check	it	out	and	use	it.	Use	it
until	you	feel	something	clicking	in	your	mind.	You	won't	regret	it,	I	promise.

Exceptions
Even	though	I	haven't	formally	introduced	them	to	you,	by	now	I	expect	you	to
at	least	have	a	vague	idea	of	what	an	exception	is.	In	the	previous	chapters,
we've	seen	that	when	an	iterator	is	exhausted,	calling	next	on	it	raises	a
StopIteration	exception.	We	met	IndexError	when	we	tried	accessing	a	list	at	a
position	that	was	outside	the	valid	range.	We	also	met	AttributeError	when	we
tried	accessing	an	attribute	on	an	object	that	didn't	have	it,	and	KeyError	when	we
did	the	same	with	a	key	and	a	dictionary.

Now	the	time	has	come	for	us	to	talk	about	exceptions.

Sometimes,	even	though	an	operation	or	a	piece	of	code	is	correct,	there	are
conditions	in	which	something	may	go	wrong.	For	example,	if	we're	converting
user	input	from	string	to	int,	the	user	could	accidentally	type	a	letter	in	place	of	a
digit,	making	it	impossible	for	us	to	convert	that	value	into	a	number.	When
dividing	numbers,	we	may	not	know	in	advance	whether	we're	attempting	a
division	by	zero.	When	opening	a	file,	it	could	be	missing	or	corrupted.

When	an	error	is	detected	during	execution,	it	is	called	an	exception.	Exceptions
are	not	necessarily	lethal;	in	fact,	we've	seen	that	StopIteration	is	deeply
integrated	in	the	Python	generator	and	iterator	mechanisms.	Normally,	though,	if
you	don't	take	the	necessary	precautions,	an	exception	will	cause	your
application	to	break.	Sometimes,	this	is	the	desired	behavior,	but	in	other	cases,
we	want	to	prevent	and	control	problems	such	as	these.	For	example,	we	may
alert	the	user	that	the	file	they're	trying	to	open	is	corrupted	or	that	it	is	missing
so	that	they	can	either	fix	it	or	provide	another	file,	without	the	need	for	the
application	to	die	because	of	this	issue.	Let's	see	an	example	of	a	few	exceptions:

#	exceptions/first.example.py

>>>	gen	=	(n	for	n	in	range(2))

>>>	next(gen)

0

>>>	next(gen)

1

>>>	next(gen)

Traceback	(most	recent	call	last):

		File	"<stdin>",	line	1,	in	<module>

StopIteration

>>>	print(undefined_name)

Traceback	(most	recent	call	last):

		File	"<stdin>",	line	1,	in	<module>

NameError:	name	'undefined_name'	is	not	defined

>>>	mylist	=	[1,	2,	3]

>>>	mylist[5]

Traceback	(most	recent	call	last):

		File	"<stdin>",	line	1,	in	<module>

IndexError:	list	index	out	of	range

>>>	mydict	=	{'a':	'A',	'b':	'B'}

>>>	mydict['c']

Traceback	(most	recent	call	last):

		File	"<stdin>",	line	1,	in	<module>

KeyError:	'c'

>>>	1	/	0

Traceback	(most	recent	call	last):

		File	"<stdin>",	line	1,	in	<module>

ZeroDivisionError:	division	by	zero

As	you	can	see,	the	Python	shell	is	quite	forgiving.	We	can	see	Traceback,	so	that
we	have	information	about	the	error,	but	the	program	doesn't	die.	This	is	a
special	behavior,	a	regular	program	or	a	script	would	normally	die	if	nothing
were	done	to	handle	exceptions.

To	handle	an	exception,	Python	gives	you	the	try	statement.	When	you	enter	the
try	clause,	Python	will	watch	out	for	one	or	more	different	types	of	exceptions
(according	to	how	you	instruct	it),	and	if	they	are	raised,	it	will	allow	you	to
react.	The	try	statement	is	composed	of	the	try	clause,	which	opens	the
statement,	one	or	more	except	clauses	(all	optional)	that	define	what	to	do	when
an	exception	is	caught,	an	else	clause	(optional),	which	is	executed	when	the	try
clause	is	exited	without	any	exception	raised,	and	a	finally	clause	(optional),
whose	code	is	executed	regardless	of	whatever	happened	in	the	other	clauses.
The	finally	clause	is	typically	used	to	clean	up	resources	(we	saw	this	in	Chapter	7,
Files	and	Data	Persistence,	when	we	were	opening	files	without	using	a	context
manager).

Mind	the	order—it's	important.	Also,	try	must	be	followed	by	at	least	one	except
clause	or	a	finally	clause.	Let's	see	an	example:

#	exceptions/try.syntax.py

def	try_syntax(numerator,	denominator):

				try:

								print(f'In	the	try	block:	{numerator}/{denominator}')

								result	=	numerator	/	denominator

				except	ZeroDivisionError	as	zde:

								print(zde)

				else:

								print('The	result	is:',	result)

								return	result

				finally:

								print('Exiting')

print(try_syntax(12,	4))

print(try_syntax(11,	0))

The	preceding	example	defines	a	simple	try_syntax	function.	We	perform	the
division	of	two	numbers.	We	are	prepared	to	catch	a	ZeroDivisionError	exception	if
we	call	the	function	with	denominator	=	0.	Initially,	the	code	enters	the	try	block.	If
denominator	is	not	0,	result	is	calculated	and	the	execution,	after	leaving	the	try
block,	resumes	in	the	else	block.	We	print	result	and	return	it.	Take	a	look	at	the
output	and	you'll	notice	that	just	before	returning	result,	which	is	the	exit	point	of
the	function,	Python	executes	the	finally	clause.

When	denominator	is	0,	things	change.	We	enter	the	except	block	and	print	zde.	The
else	block	isn't	executed	because	an	exception	was	raised	in	the	try	block.	Before
(implicitly)	returning	None,	we	still	execute	the	finally	block.	Take	a	look	at	the
output	and	see	whether	it	makes	sense	to	you:

$	python	try.syntax.py

In	the	try	block:	12/4					#	try

The	result	is:	3.0									#	else

Exiting																				#	finally

3.0																								#	return	within	else

In	the	try	block:	11/0					#	try

division	by	zero											#	except

Exiting																				#	finally

None																							#	implicit	return	end	of	function

When	you	execute	a	try	block,	you	may	want	to	catch	more	than	one	exception.
For	example,	when	trying	to	decode	a	JSON	object,	you	may	incur	into	ValueError
for	malformed	JSON,	or	TypeError	if	the	type	of	the	data	you're	feeding	to
json.loads()	is	not	a	string.	In	this	case,	you	may	structure	your	code	like	this:

#	exceptions/json.example.py

import	json

json_data	=	'{}'

try:

				data	=	json.loads(json_data)

except	(ValueError,	TypeError)	as	e:

				print(type(e),	e)

This	code	will	catch	both	ValueError	and	TypeError.	Try	changing	json_data	=	'{}'	to
json_data	=	2	or	json_data	=	'{{',	and	you'll	see	the	different	output.

If	you	want	to	handle	multiple	exceptions	differently,	you	can	just	add	more
except	clauses,	like	this:

#	exceptions/multiple.except.py

try:

				#	some	code

except	Exception1:

				#	react	to	Exception1

except	(Exception2,	Exception3):

				#	react	to	Exception2	or	Exception3

except	Exception4:

				#	react	to	Exception4

...

Keep	in	mind	that	an	exception	is	handled	in	the	first	block	that	defines	that
exception	class	or	any	of	its	bases.	Therefore,	when	you	stack	multiple	except
clauses	like	we've	just	done,	make	sure	that	you	put	specific	exceptions	at	the
top	and	generic	ones	at	the	bottom.	In	OOP	terms,	children	on	top,	grandparents
at	the	bottom.	Moreover,	remember	that	only	one	except	handler	is	executed	when
an	exception	is	raised.

You	can	also	write	custom	exceptions.	To	do	that,	you	just	have	to	inherit	from
any	other	exception	class.	Python's	built-in	exceptions	are	too	many	to	be	listed
here,	so	I	have	to	point	you	to	the	official	documentation.	One	important	thing	to
know	is	that	every	Python	exception	derives	from	BaseException,	but	your	custom
exceptions	should	never	inherit	directly	from	it.	The	reason	is	because	handling
such	an	exception	will	also	trap	system-exiting	exceptions,	such	as	SystemExit
and	KeyboardInterrupt,	which	derive	from	BaseException,	and	this	could	lead	to	severe
issues.	In	the	case	of	disaster,	you	want	to	be	able	to	Ctrl	+	C	your	way	out	of	an
application.

You	can	easily	solve	the	problem	by	inheriting	from	Exception,	which	inherits
from	BaseException	but	doesn't	include	any	system-exiting	exception	in	its	children
because	they	are	siblings	in	the	built-in	exceptions	hierarchy	(see	https://docs.pyth
on.org/3/library/exceptions.html#exception-hierarchy).

Programming	with	exceptions	can	be	very	tricky.	You	could	inadvertently
silence	out	errors,	or	trap	exceptions	that	aren't	meant	to	be	handled.	Play	it	safe
by	keeping	in	mind	a	few	guidelines:	always	put	in	the	try	clause	only	the	code
that	may	cause	the	exception(s)	that	you	want	to	handle.	When	you	write	except
clauses,	be	as	specific	as	you	can,	don't	just	resort	to	except	Exception	because	it's
easy.	Use	tests	to	make	sure	your	code	handles	edge	cases	in	a	way	that	requires
the	least	possible	amount	of	exception	handling.	Writing	an	except	statement
without	specifying	any	exception	would	catch	any	exception,	therefore	exposing
your	code	to	the	same	risks	you	incur	when	you	derive	your	custom	exceptions

https://docs.python.org/3/library/exceptions.html#exception-hierarchy

from	BaseException.

You	will	find	information	about	exceptions	almost	everywhere	on	the	web.	Some
coders	use	them	abundantly,	others	sparingly.	Find	your	own	way	of	dealing
with	them	by	taking	examples	from	other	people's	source	code.	There	are	plenty
of	interesting	open	source	projects	on	websites	such	as	GitHub
(https://github.com)	and	Bitbucket	(https://bitbucket.org/).

Before	we	talk	about	profiling,	let	me	show	you	an	unconventional	use	of
exceptions,	just	to	give	you	something	to	help	you	expand	your	views	on	them.
They	are	not	just	simply	errors:

#	exceptions/for.loop.py

n	=	100

found	=	False

for	a	in	range(n):

				if	found:	break

				for	b	in	range(n):

								if	found:	break

								for	c	in	range(n):

												if	42	*	a	+	17	*	b	+	c	==	5096:

																found	=	True

																print(a,	b,	c)		#	79	99	95

The	preceding	code	is	quite	a	common	idiom	if	you	deal	with	numbers.	You
have	to	iterate	over	a	few	nested	ranges	and	look	for	a	particular	combination	of
a,	b,	and	c	that	satisfies	a	condition.	In	the	example,	condition	is	a	trivial	linear
equation,	but	imagine	something	much	cooler	than	that.	What	bugs	me	is	having
to	check	whether	the	solution	has	been	found	at	the	beginning	of	each	loop,	in
order	to	break	out	of	them	as	fast	as	we	can	when	it	is.	The	breakout	logic
interferes	with	the	rest	of	the	code	and	I	don't	like	it,	so	I	came	up	with	a
different	solution	for	this.	Take	a	look	at	it,	and	see	whether	you	can	adapt	it	to
other	cases	too:

#	exceptions/for.loop.py

class	ExitLoopException(Exception):

				pass

try:

				n	=	100

				for	a	in	range(n):

								for	b	in	range(n):

												for	c	in	range(n):

																if	42	*	a	+	17	*	b	+	c	==	5096:

																				raise	ExitLoopException(a,	b,	c)

except	ExitLoopException	as	ele:

				print(ele)		#	(79,	99,	95)

https://github.com
https://bitbucket.org/

Can	you	see	how	much	more	elegant	it	is?	Now	the	breakout	logic	is	entirely
handled	with	a	simple	exception	whose	name	even	hints	at	its	purpose.	As	soon
as	the	result	is	found,	we	raise	it,	and	immediately	the	control	is	given	to	the
except	clause	that	handles	it.	This	is	food	for	thought.	This	example	indirectly
shows	you	how	to	raise	your	own	exceptions.	Read	up	on	the	official
documentation	to	dive	into	the	beautiful	details	of	this	subject.

Moreover,	if	you	are	up	for	a	challenge,	you	might	want	to	try	to	make	this	last
example	into	a	context	manager	for	nested	for	loops.	Good	luck!

Profiling	Python
There	are	a	few	different	ways	to	profile	a	Python	application.	Profiling	means
having	the	application	run	while	keeping	track	of	several	different	parameters,
such	as	the	number	of	times	a	function	is	called	and	the	amount	of	time	spent
inside	it.	Profiling	can	help	us	find	the	bottlenecks	in	our	application,	so	that	we
can	improve	only	what	is	really	slowing	us	down.

If	you	take	a	look	at	the	profiling	section	in	the	standard	library	official
documentation,	you	will	see	that	there	are	a	couple	of	different	implementations
of	the	same	profiling	interface—profile	and	cProfile:

cProfile	is	recommended	for	most	users,	it's	a	C	extension	with	reasonable
overhead	that	makes	it	suitable	for	profiling	long-running	programs
profile	is	a	pure	Python	module	whose	interface	is	imitated	by	cProfile,	but
which	adds	significant	overhead	to	profiled	programs

This	interface	does	determinist	profiling,	which	means	that	all	function	calls,
function	returns,	and	exception	events	are	monitored,	and	precise	timings	are
made	for	the	intervals	between	these	events.	Another	approach,	called	statistical
profiling,	randomly	samples	the	effective	instruction	pointer,	and	deduces	where
time	is	being	spent.

The	latter	usually	involves	less	overhead,	but	provides	only	approximate	results.
Moreover,	because	of	the	way	the	Python	interpreter	runs	the	code,	deterministic
profiling	doesn't	add	as	much	overhead	as	one	would	think,	so	I'll	show	you	a
simple	example	using	cProfile	from	the	command	line.

We're	going	to	calculate	Pythagorean	triples	(I	know,	you've	missed	them...)
using	the	following	code:

#	profiling/triples.py

def	calc_triples(mx):

				triples	=	[]

				for	a	in	range(1,	mx	+	1):

								for	b	in	range(a,	mx	+	1):

												hypotenuse	=	calc_hypotenuse(a,	b)

												if	is_int(hypotenuse):

																triples.append((a,	b,	int(hypotenuse)))

				return	triples

def	calc_hypotenuse(a,	b):

				return	(a**2	+	b**2)	**	.5

def	is_int(n):		#	n	is	expected	to	be	a	float

				return	n.is_integer()

triples	=	calc_triples(1000)

The	script	is	extremely	simple;	we	iterate	over	the	interval	[1,	mx]	with	a	and	b
(avoiding	repetition	of	pairs	by	setting	b	>=	a)	and	we	check	whether	they	belong
to	a	right	triangle.	We	use	calc_hypotenuse	to	get	hypotenuse	for	a	and	b,	and	then,
with	is_int,	we	check	whether	it	is	an	integer,	which	means	(a,	b,	c)	is	a
Pythagorean	triple.	When	we	profile	this	script,	we	get	information	in	a	tabular
form.	The	columns	are	ncalls,	tottime,	percall,	cumtime,	percall,	and
filename:lineno(function).	They	represent	the	amount	of	calls	we	made	to	a
function,	how	much	time	we	spent	in	it,	and	so	on.	I'll	trim	a	couple	of	columns
to	save	space,	so	if	you	run	the	profiling	yourself—don't	worry	if	you	get	a
different	result.	Here	is	the	code:

$	python	-m	cProfile	triples.py

1502538	function	calls	in	0.704	seconds

Ordered	by:	standard	name

ncalls	tottime	percall	filename:lineno(function)

500500			0.393			0.000	triples.py:17(calc_hypotenuse)

500500			0.096			0.000	triples.py:21(is_int)

					1			0.000			0.000	triples.py:4(<module>)

					1			0.176			0.176	triples.py:4(calc_triples)

					1			0.000			0.000	{built-in	method	builtins.exec}

		1034			0.000			0.000	{method	'append'	of	'list'	objects}

					1			0.000			0.000	{method	'disable'	of	'_lsprof.Profil...

500500			0.038			0.000	{method	'is_integer'	of	'float'	objects}

Even	with	this	limited	amount	of	data,	we	can	still	infer	some	useful	information
about	this	code.	First,	we	can	see	that	the	time	complexity	of	the	algorithm	we
have	chosen	grows	with	the	square	of	the	input	size.	The	amount	of	times	we	get
inside	the	inner	loop	body	is	exactly	mx	(mx	+	1)	/	2.	We	run	the	script	with	mx	=
1000,	which	means	we	get	500500	times	inside	the	inner	for	loop.	Three	main	things
happen	inside	that	loop:	we	call	calc_hypotenuse,	we	call	is_int,	and,	if	the
condition	is	met,	we	append	it	to	the	triples	list.

Taking	a	look	at	the	profiling	report,	we	notice	that	the	algorithm	has	spent	0.393
seconds	inside	calc_hypotenuse,	which	is	way	more	than	the	0.096	seconds	spent
inside	is_int,	given	that	they	were	called	the	same	number	of	times,	so	let's	see
whether	we	can	boost	calc_hypotenuse	a	little.

As	it	turns	out,	we	can.	As	I	mentioned	earlier	in	this	book,	the	**	power	operator
is	quite	expensive,	and	in	calc_hypotenuse,	we're	using	it	three	times.	Fortunately,
we	can	easily	transform	two	of	those	into	simple	multiplications,	like	this:

def	calc_hypotenuse(a,	b):	

				return	(a*a	+	b*b)	**	.5	

This	simple	change	should	improve	things.	If	we	run	the	profiling	again,	we	see
that	0.393	is	now	down	to	0.137.	Not	bad!	This	means	now	we're	spending	only
about	37%	of	the	time	inside	calc_hypotenuse	that	we	were	before.

Let's	see	whether	we	can	improve	is_int	as	well,	by	changing	it,	like	this:

def	is_int(n):	

				return	n	==	int(n)	

This	implementation	is	different,	and	the	advantage	is	that	it	also	works	when	n
is	an	integer.	Alas,	when	we	run	the	profiling	against	it,	we	see	that	the	time
taken	inside	the	is_int	function	has	gone	up	to	0.135	seconds,	so,	in	this	case,	we
need	to	revert	to	the	previous	implementation.	You	will	find	the	three	versions	in
the	source	code	for	the	book.

This	example	was	trivial,	of	course,	but	enough	to	show	you	how	one	could
profile	an	application.	Having	the	amount	of	calls	that	are	performed	against	a
function	helps	us	better	understand	the	time	complexity	of	our	algorithms.	For
example,	you	wouldn't	believe	how	many	coders	fail	to	see	that	those	two	for
loops	run	proportionally	to	the	square	of	the	input	size.

One	thing	to	mention:	depending	on	what	system	you're	using,	results	may	be
different.	Therefore,	it's	quite	important	to	be	able	to	profile	software	on	a
system	that	is	as	close	as	possible	to	the	one	the	software	is	deployed	on,	if	not
actually	on	that	one.

When	to	profile?
Profiling	is	super	cool,	but	we	need	to	know	when	it	is	appropriate	to	do	it,	and
in	what	measure	we	need	to	address	the	results	we	get	from	it.

Donald	Knuth	once	said,	""premature	optimization	is	the	root	of	all	evil","	and,	although	I
wouldn't	have	put	it	down	so	drastically,	I	do	agree	with	him.	After	all,	who	am	I
to	disagree	with	the	man	who	gave	us	The	Art	of	Computer	Programming,	TeX,
and	some	of	the	coolest	algorithms	I	have	ever	studied	when	I	was	a	university
student?

So,	first	and	foremost:	correctness.	You	want	your	code	to	deliver	the	correct
results,	therefore	write	tests,	find	edge	cases,	and	stress	your	code	in	every	way
you	think	makes	sense.	Don't	be	protective,	don't	put	things	in	the	back	of	your
brain	for	later	because	you	think	they're	not	likely	to	happen.	Be	thorough.

Second,	take	care	of	coding	best	practices.	Remember	the	following—
readability,	extensibility,	loose	coupling,	modularity,	and	design.	Apply	OOP
principles:	encapsulation,	abstraction,	single	responsibility,	open/closed,	and	so
on.	Read	up	on	these	concepts.	They	will	open	horizons	for	you,	and	they	will
expand	the	way	you	think	about	code.

Third,	refactor	like	a	beast!	The	Boy	Scouts	rule	says:

"Always	leave	the	campground	cleaner	than	you	found	it."

Apply	this	rule	to	your	code.

And,	finally,	when	all	of	this	has	been	taken	care	of,	then	and	only	then,	take
care	of	optimizing	and	profiling.

Run	your	profiler	and	identify	bottlenecks.	When	you	have	an	idea	of	the
bottlenecks	you	need	to	address,	start	with	the	worst	one	first.	Sometimes,	fixing
a	bottleneck	causes	a	ripple	effect	that	will	expand	and	change	the	way	the	rest
of	the	code	works.	Sometimes	this	is	only	a	little,	sometimes	a	bit	more,
according	to	how	your	code	was	designed	and	implemented.	Therefore,	start

with	the	biggest	issue	first.

One	of	the	reasons	Python	is	so	popular	is	that	it	is	possible	to	implement	it	in
many	different	ways.	So,	if	you	find	yourself	having	trouble	boosting	up	some
part	of	your	code	using	sheer	Python,	nothing	prevents	you	from	rolling	up	your
sleeves,	buying	200	liters	of	coffee,	and	rewriting	the	slow	piece	of	code	in	C—
guaranteed	to	be	fun!

Summary
In	this	chapter,	we	explored	the	world	of	testing,	exceptions,	and	profiling.

I	tried	to	give	you	a	fairly	comprehensive	overview	of	testing,	especially	unit
testing,	which	is	the	kind	of	testing	that	a	developer	mostly	does.	I	hope	I	have
succeeded	in	channeling	the	message	that	testing	is	not	something	that	is
perfectly	defined	that	you	can	learn	from	a	book.	You	need	to	experiment	with	it
a	lot	before	you	get	comfortable.	Of	all	the	efforts	a	coder	must	make	in	terms	of
study	and	experimentation,	I'd	say	testing	is	the	one	that	is	the	most	important.

We	briefly	saw	how	we	can	prevent	our	program	from	dying	because	of	errors,
called	exceptions,	that	happen	at	runtime.	And,	to	steer	away	from	the	usual
ground,	I	have	given	you	an	example	of	a	somewhat	unconventional	use	of
exceptions	to	break	out	of	nested	for	loops.	That's	not	the	only	case,	and	I'm	sure
you'll	discover	others	as	you	grow	as	a	coder.

At	the	end,	we	very	briefly	touched	on	profiling,	with	a	simple	example	and	a
few	guidelines.	I	wanted	to	talk	about	profiling	for	the	sake	of	completeness,	so
at	least	you	can	play	around	with	it.

In	the	next	chapter,	we're	going	to	explore	the	wonderful	world	of	secrets,
hashing,	and	creating	tokens.

I	am	aware	that	I	gave	you	a	lot	of	pointers	in	this	chapter,	with	no	links	or	directions.	I'm
afraid	this	was	by	choice.	As	a	coder,	there	won't	be	a	single	day	at	work	when	you	won't	have
to	look	something	up	in	a	documentation	page,	in	a	manual,	on	a	website,	and	so	on.	I	think
it's	vital	for	a	coder	to	be	able	to	search	effectively	for	the	information	they	need,	so	I	hope
you'll	forgive	me	for	this	extra	training.	After	all,	it's	all	for	your	benefit.

Cryptography	and	Tokens
"Three	may	keep	a	Secret,	if	two	of	them	are	dead."

–	Benjamin	Franklin,	Poor	Richard's	Almanack

In	this	short	chapter,	I	am	going	to	give	you	a	brief	overview	of	the
cryptographic	services	offered	by	the	Python	standard	library.	I	am	also	going	to
touch	upon	something	called	JSON	Web	Token,	which	is	a	very	interesting
standard	to	represent	claims	securely	between	two	parties.

In	particular,	we	are	going	to	explore	the	following:

Hashlib
Secrets
HMAC
JSON	Web	Tokens	with	PyJWT,	which	seems	to	be	the	most	popular
Python	library	for	dealing	with	JWTs

Let's	start	by	spending	a	moment	talking	about	cryptography	and	why	it	is	so
important.

The	need	for	cryptography
According	to	the	statistics	you	can	find	all	over	the	web,	the	estimated	amount	of
smartphone	users	in	2019	will	be	around	2.5	billion.	Each	of	those	people	know
the	PIN	to	unlock	their	phone,	the	credentials	to	log	in	to	applications	we	all	use
to	do,	well,	basically	everything,	from	buying	food	to	finding	a	street,	from
sending	a	message	to	a	friend,	to	seeing	if	our	bitcoin	wallet	has	increased	in
value	since	we	last	checked	10	seconds	ago.

If	you	are	an	application	developer,	you	have	to	take	security	very,	very
seriously.	It	doesn't	matter	how	small	or	apparently	insignificant	your	application
is:	security	should	always	be	a	concern	for	you.

Security	in	information	technology	is	achieved	by	employing	several	different
means,	but	by	far,	the	most	important	one	is	cryptography.	Everything	you	do
with	your	computer	or	phone	should	include	a	layer	where	cryptography	takes
place	(and	if	not,	that's	really	bad).	It	is	used	to	pay	online	with	a	credit	card,	to
transfer	messages	over	the	network	in	a	way	that	even	if	someone	intercepts
them,	they	won't	be	able	to	read	them,	and	it	is	used	to	encrypt	your	files	when
you	back	them	up	in	the	cloud	(because	you	do,	right?).	Lists	of	examples	are
endless.

Now,	the	purpose	of	this	chapter	is	not	that	of	teaching	you	the	difference
between	hashing	and	encryption,	as	I	could	write	a	whole	other	book	on	the
subject.	Rather,	it	is	that	of	showing	you	how	you	can	use	the	tools	that	Python
offers	you	to	create	digests,	tokens,	and	in	general,	to	be	on	the	safe(r)	side	when
you	need	to	implement	something	cryptography-related.

Useful	guidelines
	

Always	remember	the	following	rules:

Rule	number	one:	Do	not	attempt	to	create	your	own	hash	or	encryption
functions.	Simply	don't.	Use	tools	and	functions	that	are	there	already.	It	is
incredibly	tough	to	come	up	with	a	good,	solid,	robust	algorithm	to	do
hashing	or	encryption,	so	it's	best	to	leave	it	to	professional	cryptographers.
Rule	number	two:	Follow	rule	number	one.

Those	are	the	only	two	rules	you	need.	Apart	from	them,	it	is	very	useful	to
understand	cryptography,	so	you	need	to	try	and	learn	as	much	as	you	can	about
this	subject.	There	is	plenty	of	information	on	the	web,	but	for	your	convenience,
I'll	put	some	useful	references	at	the	end	of	this	chapter.

Now,	let's	dig	into	the	first	of	the	standard	library	modules	I	want	to	show	you:
hashlib.

	

	

	

Hashlib
This	module	exposes	a	common	interface	to	many	different	secure	hash	and
message	digest	algorithms.	The	difference	in	those	two	terms	is	simply
historical:	older	algorithms	were	called	digests,	while	the	modern	algorithms	are
called	hashes.

In	general,	a	hash	function	is	any	function	that	can	be	used	to	map	data	of	an
arbitrary	size	to	data	of	a	fixed	size.	It	is	a	one-way	type	of	encryption,	in	that	it
is	not	expected	to	be	able	to	recover	the	message	given	its	hash.

There	are	several	algorithms	that	can	be	used	to	calculate	a	hash,	so	let's	see	how
to	find	out	which	ones	are	supported	by	your	system	(note,	your	results	might	be
different	than	mine):

>>>	import	hashlib

>>>	hashlib.algorithms_available

{'SHA512',	'SHA256',	'shake_256',	'sha3_256',	'ecdsa-with-SHA1',

	'DSA-SHA',	'sha1',	'sha384',	'sha3_224',	'whirlpool',	'mdc2',

	'RIPEMD160',	'shake_128',	'MD4',	'dsaEncryption',	'dsaWithSHA',

	'SHA1',	'blake2s',	'md5',	'sha',	'sha224',	'SHA',	'MD5',

	'sha256',	'SHA384',	'sha3_384',	'md4',	'SHA224',	'MDC2',

	'sha3_512',	'sha512',	'blake2b',	'DSA',	'ripemd160'}

>>>	hashlib.algorithms_guaranteed

{'blake2s',	'md5',	'sha224',	'sha3_512',	'shake_256',	'sha3_256',

	'shake_128',	'sha256',	'sha1',	'sha512',	'blake2b',	'sha3_384',

	'sha384',	'sha3_224'}

By	opening	a	Python	shell,	we	can	get	the	list	of	available	algorithms	for	our
system.	If	our	application	has	to	talk	to	third-party	applications,	it's	always	best
to	pick	an	algorithm	out	of	those	guaranteed,	though,	as	that	means	every
platform	actually	supports	them.	Notice	that	a	lot	of	them	start	with	sha,	which
means	secure	hash	algorithm.	Let's	keep	going	in	the	same	shell:	we	are	going
to	create	a	hash	for	the	binary	string	b'Hash	me	now!',	and	we're	going	to	do	it	in
two	ways:

>>>	h	=	hashlib.blake2b()

>>>	h.update(b'Hash	me')

>>>	h.update(b'	now!')

>>>	h.hexdigest()

'56441b566db9aafcf8cdad3a4729fa4b2bfaab0ada36155ece29f52ff70e1e9d'

'7f54cacfe44bc97c7e904cf79944357d023877929430bc58eb2dae168e73cedf'

>>>	h.digest()

b'VD\x1bVm\xb9\xaa\xfc\xf8\xcd\xad:G)\xfaK+\xfa\xab\n\xda6\x15^'

b'\xce)\xf5/\xf7\x0e\x1e\x9d\x7fT\xca\xcf\xe4K\xc9|~\x90L\xf7'

b'\x99D5}\x028w\x92\x940\xbcX\xeb-\xae\x16\x8es\xce\xdf'

>>>	h.block_size

128

>>>	h.digest_size

64

>>>	h.name

'blake2b'

We	have	used	the	blake2b	cryptographic	function,	which	is	quite	sophisticated	and
was	added	in	Python	3.6.	After	creating	the	hash	object	h,	we	update	its	message
in	two	steps.	Not	that	we	need	to,	but	sometimes	we	need	to	hash	data	that	is	not
available	all	at	once,	so	it's	good	to	know	we	can	do	it	in	steps.

When	the	message	is	like	we	want	it	to	be,	we	get	the	hex	representation	of	the
digest.	This	will	use	two	characters	per	byte	(as	each	character	represents	4	bits,
which	is	half	a	byte).	We	also	get	the	byte	representation	of	the	digest,	and	then
we	inspect	its	details:	it	has	a	block	size	(the	internal	block	size	of	the	hash
algorithm	in	bytes)	of	128	bytes,	a	digest	size	(the	size	of	the	resulting	hash	in
bytes)	of	64	bytes,	and	a	name.	Could	all	this	be	done	in	one	simpler	line?	Yes,
of	course:

>>>	hashlib.blake2b(b'Hash	me	now!').hexdigest()

'56441b566db9aafcf8cdad3a4729fa4b2bfaab0ada36155ece29f52ff70e1e9d'

'7f54cacfe44bc97c7e904cf79944357d023877929430bc58eb2dae168e73cedf'

Notice	how	the	same	message	produces	the	same	hash,	which	of	course	is
expected.

Let's	see	what	we	get	if,	instead	of	the	blake2b	function,	we	use	sha256:

>>>	hashlib.sha256(b'Hash	me	now!').hexdigest()

'10d561fa94a89a25ea0c7aa47708bdb353bbb062a17820292cd905a3a60d6783'

The	resulting	hash	is	shorter	(and	therefore	less	secure).

Hashing	is	a	very	interesting	topic,	and	of	course	the	simple	examples	we've
seen	so	far	are	just	the	start.	The	blake2b	function	allows	us	a	great	deal	of
flexibility	in	terms	of	customization.	This	is	extremely	useful	to	prevent	some
kinds	of	attacks	(for	the	full	explanation	of	those	threats,	please	do	refer	to	the
standard	documentation	at:	https://docs.python.org/3.7/library/hashlib.html	for	the
hashlib	module).	Let's	see	another	example	where	we	customize	a	hash	by	adding
a	key,	a	salt,	and	a	person.	All	of	this	extra	information	will	cause	the	hash	to	be
different	than	the	one	we	would	get	if	we	didn't	provide	them,	and	are	crucial	in

https://docs.python.org/3.7/library/hashlib.html

adding	extra	security	to	the	data	handled	in	our	system:

>>>	h	=	hashlib.blake2b(

...			b'Important	payload',	digest_size=16,	key=b'secret-key',

...			salt=b'random-salt',	person=b'fabrizio'

...)

>>>	h.hexdigest()

'c2d63ead796d0d6d734a5c3c578b6e41'

The	resulting	hash	is	only	16	bytes	long.	Among	the	customization	parameters,
salt	is	probably	the	most	famous	one.	It	is	random	data	that	is	used	as	an
additional	input	to	a	one-way	function	that	hashes	data.	It	is	commonly	stored
alongside	the	resulting	hash,	in	order	to	provide	the	means	to	recover	the	same
hash	given	the	same	message.

If	you	want	to	make	sure	you	hash	a	password	properly,	you	can	use	pbkdf2_hmac,	a
key	derivation	algorithm	that	allows	you	to	specify	a	salt	and	also	the	number	of
iterations	used	by	the	algorithm	itself.	As	computers	get	more	and	more
powerful,	it	is	important	to	increase	the	amount	of	iterations	we	do	over	time,
otherwise	the	likelihood	of	a	successful	brute-force	attack	on	our	data	increases
as	time	passes.	Here's	how	you	would	use	such	an	algorithm:

>>>	import	os

>>>	dk	=	hashlib.pbkdf2_hmac(

...			'sha256',	b'Password123',	os.urandom(16),	100000

...)

>>>	dk.hex()

'f8715c37906df067466ce84973e6e52a955be025a59c9100d9183c4cbec27a9e'

Notice	I	have	used	os.urandom	to	provide	a	16	byte	random	salt,	as	recommended
by	the	documentation.

I	encourage	you	to	explore	and	experiment	with	this	module,	as	sooner	or	later
you	will	have	to	use	it.	Now,	let's	move	on	to	the	secrets	one.

Secrets
This	nice,	small	module	is	used	for	generating	cryptographically	strong,	random
numbers	suitable	for	managing	data	such	as	passwords,	account	authentication,
security	tokens,	and	related	secrets.	It	was	added	in	Python	3.6,	and	basically
deals	with	three	things:	random	numbers,	tokens,	and	digest	comparison.	Let's
explore	them	very	quickly.

	

Random	numbers
We	can	use	three	functions	in	order	to	deal	with	random	numbers:

#	secrs/secr_rand.py

import	secrets

print(secrets.choice('Choose	one	of	these	words'.split()))

print(secrets.randbelow(10	**	6))

print(secrets.randbits(32))

The	first	one,	choice,	picks	an	element	at	random	from	a	non-empty	sequence.
The	second	one,	randbelow,	generates	a	random	integer	between	0	and	the
argument	you	call	it	with,	and	the	third	one,	randbits,	generates	an	integer	with	n
random	bits	in	it.	Running	that	code	produces	the	following	output	(which	is
always	different):

$	python	secr_rand.py

one

504156

3172492450

You	should	use	these	functions	instead	of	those	from	the	random	module	whenever
you	need	randomness	in	the	context	of	cryptography,	as	these	are	specially
designed	for	this	task.	Let's	see	what	the	module	gives	us	for	tokens.

Token	generation
Again,	we	have	three	functions	that	all	produce	a	token,	albeit	in	different
formats.	Let's	see	the	example:

#	secrs/secr_rand.py

print(secrets.token_bytes(16))

print(secrets.token_hex(32))

print(secrets.token_urlsafe(32))

The	first	one,	token_bytes,	simply	returns	a	random	byte	string	containing	n	bytes
(16,	in	this	example).	The	other	two	do	the	same,	but	token_hex	returns	a	token	in
hexadecimal	format,	and	token_urlsafe	returns	a	token	that	only	contains
characters	suitable	for	being	included	in	a	URL.	Let's	see	the	output	(which	is	a
continuation	from	the	previous	run):

b'\xda\x863\xeb\xbb|\x8fk\x9b\xbd\x14Q\xd4\x8d\x15}'

9f90fd042229570bf633e91e92505523811b45e1c3a72074e19bbeb2e5111bf7

bl4qz_Av7QNvPEqZtKsLuTOUsNLFmXW3O03pn50leiY

This	is	all	nice,	so	why	don't	we	have	some	fun	and	write	a	random	password
generator	using	these	tools?

#	secrs/secr_gen.py

import	secrets

from	string	import	digits,	ascii_letters

def	generate_pwd(length=8):

				chars	=	digits	+	ascii_letters

				return	''.join(secrets.choice(chars)	for	c	in	range(length))

def	generate_secure_pwd(length=16,	upper=3,	digits=3):

				if	length	<	upper	+	digits	+	1:

								raise	ValueError('Nice	try!')

				while	True:

								pwd	=	generate_pwd(length)

								if	(any(c.islower()	for	c	in	pwd)

												and	sum(c.isupper()	for	c	in	pwd)	>=	upper

												and	sum(c.isdigit()	for	c	in	pwd)	>=	digits):

												return	pwd

print(generate_secure_pwd())

print(generate_secure_pwd(length=3,	upper=1,	digits=1))

In	the	previous	code,	we	defined	two	functions.	generate_pwd	simply	generates	a
random	string	of	given	length	by	joining	together	length	characters	picked	at
random	from	a	string	that	contains	all	the	letters	of	the	alphabet	(lowercase	and

uppercase),	and	the	10	decimal	digits.

Then,	we	define	another	function,	generate_secure_pwd,	that	simply	keeps	calling
generate_pwd	until	the	random	string	we	get	matches	the	requirements,	which	are
quite	simple.	The	password	must	have	at	least	one	lowercase	character,	upper
uppercase	characters,	digits	digits,	and	length	length.

Before	we	dive	into	the	while	loop,	it's	worth	noting	that	if	we	sum	together	the
requirements	(uppercase,	lowercase,	and	digits)	and	that	sum	is	greater	than	the
overall	length	of	the	password,	there	is	no	way	we	can	ever	satisfy	the	condition
within	the	loop.	So,	in	order	to	avoid	getting	stuck	in	an	infinite	loop,	I	have	put
a	check	clause	in	the	first	line	of	the	body,	and	I	raise	a	ValueError	in	case	I	need
it.	Could	you	think	of	how	to	write	a	test	for	this	edge	case?

The	body	of	the	while	loop	is	straightforward:	first	we	generate	the	random
password,	and	then	we	verify	the	conditions	by	using	any	and	sum.	any	returns	True
if	any	of	the	items	in	the	iterable	it's	called	with	evaluate	to	True.	The	use	of	sum
is	actually	slightly	more	tricky	here,	in	that	it	exploits	polymorphism.	Can	you
see	what	I'm	talking	about	before	you	read	on?

Well,	it's	very	simple:	True	and	False	in	Python	are	subclasses	of	integer	numbers,
therefore	when	summing	on	an	iterable	of	True/False	values,	they	will
automatically	be	interpreted	like	integers	by	the	sum	function.	That	is	called
polymorphism,	and	we've	briefly	talked	about	it	in	Chapter	6,	OOP,	Decorators,
and	Iterators.

Running	the	example	produces	the	following	result:

$	python	secr_gen.py

nsL5voJnCi7Ote3F

J5e

The	second	password	is	probably	not	too	secure...

One	last	example,	before	we	move	on	to	the	next	module.	Let's	generate	a	reset
password	URL:

#	secrs/secr_reset.py

import	secrets

def	get_reset_pwd_url(token_length=16):

				token	=	secrets.token_urlsafe(token_length)

				return	f'https://fabdomain.com/reset-pwd/{token}'

print(get_reset_pwd_url())

This	function	is	so	easy	I	will	only	show	you	the	output:

$	python	secr_reset.py

https://fabdomain.com/reset-pwd/m4jb7aKgzTGuyjs9lTIspw

Digest	comparison
	

This	is	probably	quite	surprising,	but	within	secrets,	you	can	find	the
compare_digest(a,	b)	function,	which	is	the	equivalent	of	comparing	two	digests	by
simply	doing	a	==	b.	So,	why	do	we	need	that	function?	It's	because	it	has	been
designed	to	prevent	timing	attacks.	These	kind	of	attacks	can	infer	information
about	where	the	two	digests	start	being	different,	according	to	the	time	it	takes
for	the	comparison	to	fail.	So,	compare_digest	prevents	this	attack	by	removing	the
correlation	between	time	and	failures.	I	think	this	is	a	brilliant	example	of	how
sophisticated	attacking	methods	can	be.	If	you	raised	your	eyebrows	in
astonishment,	maybe	now	it's	clearer	why	I	said	to	never	implement
cryptography	functions	by	yourself.

And	that's	it!	Now,	let's	check	out	hmac.

	

	

	

HMAC
This	module	implements	the	HMAC	algorithm,	as	described	by	RFC	2104	(https
://tools.ietf.org/html/rfc2104.html).	Since	it	is	very	small,	but	nonetheless
important,	I	will	provide	you	with	a	simple	example:

#	hmc.py

import	hmac

import	hashlib

def	calc_digest(key,	message):

				key	=	bytes(key,	'utf-8')

				message	=	bytes(message,	'utf-8')

				dig	=	hmac.new(key,	message,	hashlib.sha256)

				return	dig.hexdigest()

digest	=	calc_digest('secret-key',	'Important	Message')

As	you	can	see,	the	interface	is	always	the	same	or	similar.	We	first	convert	the
key	and	the	message	into	bytes,	and	then	create	a	digest	instance	that	we	will	use
to	get	a	hexadecimal	representation	of	the	hash.	Not	much	else	to	say,	but	I
thought	to	add	this	module	anyway,	for	completeness.

Now,	let's	move	on	to	a	different	type	of	token:	JWTs.

https://tools.ietf.org/html/rfc2104.html

JSON	Web	Tokens
A	JSON	Web	Token,	or	JWT,	is	a	JSON-based	open	standard	for	creating
tokens	that	assert	some	number	of	claims.	You	can	learn	all	about	this
technology	on	the	website	(https://jwt.io/).	In	a	nutshell,	this	type	of	token	is
comprised	of	three	sections,	separated	by	a	dot,	in	the	format	A.B.C.	B	is	the
payload,	which	is	where	we	put	the	data	and	the	claims.	C	is	the	signature,	which
is	used	to	verify	the	validity	of	the	token,	and	A	is	the	algorithm	used	to	compute
the	signature.	A,	B,	and	C	are	all	encoded	with	a	URL	safe	Base64	encoding
(which	I'll	refer	to	as	Base64URL).

Base64	is	a	very	popular	binary-to-text	encoding	scheme	that	represents	binary
data	in	an	ASCII	string	format	by	translating	it	into	a	radix-64	representation.
The	radix-64	representation	uses	the	letters	A-Z,	a-z,	and	the	digits	0-9,	plus	the
two	symbols	+	and	/	for	a	grand	total	of	64	symbols	altogether.	Therefore,	not
surprisingly,	the	Base64	alphabet	is	made	up	of	these	64	symbols.	Base64	is
used,	for	example,	to	encode	images	attached	in	an	email.	It	happens	seamlessly,
so	the	vast	majority	of	people	are	completely	oblivious	of	this	fact.

The	reason	why	a	JWT	is	encoded	using	Base64URL	is	because	of	the	characters	+	and	/,
which	in	a	URL	context	mean	space,	and	path	separator,	respectively.	Therefore	in	the	URL
safe	version,	they	are	replaced	with	-	and	_.	Moreover,	any	padding	character	(=),	which	is
normally	used	in	Base64,	is	stripped	out,	as	this	too	has	a	specific	meaning	within	a	URL.

The	way	this	type	of	token	works	is	therefore	slightly	different	than	what	we	are
used	to	when	we	work	with	hashes.	In	fact,	the	information	that	the	token	carries
is	always	visible.	You	just	need	to	decode	A	and	B	to	get	the	algorithm	and	the
payload.	However,	the	security	lies	in	part	C,	which	is	a	HMAC	hash	of	the
token.	If	you	try	to	modify	the	B	part	by	editing	the	payload,	encoding	it	back	to
Base64,	and	replacing	it	in	the	token,	the	signature	won't	match	any	more,	and
therefore	the	token	will	be	invalid.

This	means	that	we	can	build	a	payload	with	claims	such	as	logged	in	as	admin,
or	something	along	those	lines,	and	as	long	as	the	token	is	valid,	we	know	we
can	trust	that	that	user	is	actually	logged	in	as	an	admin.

When	dealing	with	JWTs,	you	want	to	make	sure	you	have	researched	how	to	handle	them

https://jwt.io/

safely.	Things	like	not	accepting	unsigned	tokens,	or	restricting	the	list	of	algorithms	you	use
to	encode	and	decode,	as	well	as	other	security	measures,	are	very	important	and	you	should
take	the	time	to	investigate	and	learn	them.

For	this	part	of	the	code,	you	will	have	to	have	the	PyJWT	and	cryptography	Python	packages
installed.	As	always,	you	will	find	them	in	the	requirements	of	the	source	code	of	this	book.

Let's	start	with	a	simple	example:

#	tok.py

import	jwt

data	=	{'payload':	'data',	'id':	123456789}

token	=	jwt.encode(data,	'secret-key')

data_out	=	jwt.decode(token,	'secret-key')

print(token)

print(data_out)

We	define	the	data	payload,	which	contains	an	ID	and	some	payload	data.	Then,
we	create	a	token	using	the	jwt.encode	function,	which	takes	at	least	the	payload
and	a	secret	key,	which	is	used	to	compute	the	signature.	The	default	algorithm
used	to	calculate	the	token	is	HS256.	Let's	see	the	output:

$	python	tok.py

b'eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.eyJwYXlsb2FkIjoiZGF0YSIsImlkIjoxMjM0NTY3ODl9.WFRY-

uoACMoNYX97PXXjEfXFQO1rCyFCyiwxzOVMn40'

{'payload':	'data',	'id':	123456789}

So,	as	you	can	see,	the	token	is	a	binary	string	of	Base64URL-encoded	pieces	of
data.	We	have	called	jwt.decode,	providing	the	correct	secret	key.	Had	we	done
otherwise,	the	decoding	would	have	broken.

Sometimes,	you	might	want	to	be	able	to	inspect	the	content	of	the	token	without
verifying	it.	You	can	do	so	by	simply	calling	decode	this	way:

#	tok.py

jwt.decode(token,	verify=False)

This	is	useful,	for	example,	when	values	in	the	token	payload	are	needed	to
recover	the	secret	key,	but	that	technique	is	quite	advanced	so	I	won't	be
spending	time	on	it	in	this	context.	Instead,	let's	see	how	we	can	specify	a
different	algorithm	for	computing	the	signature:

#	tok.py

token512	=	jwt.encode(data,	'secret-key',	algorithm='HS512')

data_out	=	jwt.decode(token512,	'secret-key',	algorithm='HS512')

print(data_out)

The	output	is	our	original	payload	dictionary.	In	case	you	want	to	allow	more
than	one	algorithm	in	the	decoding	phase,	you	can	even	specify	a	list	of	them,
instead	of	only	one.

Now,	while	you	are	free	to	put	whatever	you	want	in	the	token	payload,	there	are
some	claims	that	have	been	standardized,	and	they	enable	you	to	have	a	great
deal	of	control	over	the	token.

Registered	claims
	

At	the	time	of	writing	this	book,	these	are	the	registered	claims:

iss:	The	issuer	of	the	token
sub:	The	subject	information	about	the	party	this	token	is	carrying
information	about
aud:	The	audience	for	the	token
exp:	The	expiration	time,	after	which	the	token	is	considered	to	be	invalid
nbf:	The	not	before	(time),	or	the	time	before	which	the	token	is	considered
to	be	not	valid	yet
iat:	The	time	at	which	the	token	was	issued
jti:	The	token	ID

Claims	can	also	be	categorized	as	public	or	private:

Private:	Are	those	that	are	defined	by	users	(consumers	and	producers)	of
the	JWTs.	In	other	words,	these	are	ad	hoc	claims	used	for	a	particular	case.
As	such,	care	must	be	taken	to	prevent	collisions.
Public:	Are	claims	that	are	either	registered	with	the	IANA	JSON	Web
Token	Claims	Registry	(a	registry	where	users	can	register	their	claims	and
thus	prevent	collisions),	or	named	using	a	collision	resistant	name	(for
instance,	by	prepending	a	namespace	to	its	name).

To	learn	all	about	claims,	please	refer	to	the	official	website.	Now,	let's	see	a
couple	of	code	examples	involving	a	subset	of	these	claims.

	

	

	

Time-related	claims
Let's	see	how	we	might	use	the	claims	related	to	time:

#	claims_time.py

from	datetime	import	datetime,	timedelta

from	time	import	sleep

import	jwt

iat	=	datetime.utcnow()

nfb	=	iat	+	timedelta(seconds=1)

exp	=	iat	+	timedelta(seconds=3)

data	=	{'payload':	'data',	'nbf':	nfb,	'exp':	exp,	'iat':	iat}

def	decode(token,	secret):

				print(datetime.utcnow().time().isoformat())

				try:

								print(jwt.decode(token,	secret))

				except	(

								jwt.ImmatureSignatureError,	jwt.ExpiredSignatureError

)	as	err:

								print(err)

								print(type(err))

secret	=	'secret-key'

token	=	jwt.encode(data,	secret)

decode(token,	secret)

sleep(2)

decode(token,	secret)

sleep(2)

decode(token,	secret)

In	this	example,	we	set	the	issued	at	(iat)	claim	to	the	current	UTC	time	(UTC
stands	for	Universal	Time	Coordinated).	We	then	set	the	not	before	(nbf)	and
expire	time	(exp)	at	1	and	3	seconds	from	now,	respectively.	We	then	defined	a
decode	helper	function	that	reacts	to	a	token	not	being	valid	yet,	or	being
expired,	by	trapping	the	appropriate	exceptions,	and	then	we	call	it	three	times,
interspersed	by	two	calls	to	sleep.	This	way,	we	will	try	to	decode	the	token
when	it's	not	valid	yet,	then	when	it's	valid,	and	finally	when	it's	already	expired.
This	function	also	prints	a	useful	timestamp	before	attempting	decryption.	Let's
see	how	it	goes	(blank	lines	have	been	added	for	readability):

$	python	claims_time.py

14:04:13.469778

The	token	is	not	yet	valid	(nbf)

<class	'jwt.exceptions.ImmatureSignatureError'>

14:04:15.475362

{'payload':	'data',	'nbf':	1522591454,	'exp':	1522591456,	'iat':	1522591453}

14:04:17.476948

Signature	has	expired

<class	'jwt.exceptions.ExpiredSignatureError'>

As	you	can	see,	it	all	executed	as	expected.	We	get	nice,	descriptive	messages
from	the	exceptions,	and	get	the	original	payload	back	when	the	token	is	actually
valid.

Auth-related	claims
Let's	see	another	quick	example	involving	the	issuer	(iss)	and	audience	(aud)
claims.	The	code	is	conceptually	very	similar	to	the	previous	example,	and	we're
going	to	exercise	it	in	the	same	way:	#	claims_auth.py
import	jwt

data	=	{'payload':	'data',	'iss':	'fab',	'aud':	'learn-python'}
secret	=	'secret-key'
token	=	jwt.encode(data,	secret)

def	decode(token,	secret,	issuer=None,	audience=None):
try:
print(jwt.decode(
token,	secret,	issuer=issuer,	audience=audience))
except	(
jwt.InvalidIssuerError,	jwt.InvalidAudienceError
)	as	err:
print(err)
print(type(err))

decode(token,	secret)
#	not	providing	the	issuer	won't	break
decode(token,	secret,	audience='learn-python')
#	not	providing	the	audience	will	break
decode(token,	secret,	issuer='fab')
#	both	will	break
decode(token,	secret,	issuer='wrong',	audience='learn-python')
decode(token,	secret,	issuer='fab',	audience='wrong')

decode(token,	secret,	issuer='fab',	audience='learn-python')

As	you	can	see,	this	time,	we	have	specified	issuer	and	audience.	It	turns	out	that	if
we	don't	provide	the	issuer	when	decoding	the	token,	it	won't	cause	the	decoding
to	break.	However,	providing	the	wrong	issuer	will	actually	break	decoding.	On

the	other	hand,	both	failing	to	provide	the	audience,	or	providing	the	wrong
audience,	will	break	decoding.

As	in	the	previous	example,	I	have	written	a	custom	decode	function	that	reacts
to	the	appropriate	exceptions.	See	if	you	can	follow	along	with	the	calls	and	the
relative	output	that	follows	(I'll	help	with	some	blank	lines):	$	python
claims_auth.py
Invalid	audience
<class	'jwt.exceptions.InvalidAudienceError'>

{'payload':	'data',	'iss':	'fab',	'aud':	'learn-python'}

Invalid	audience
<class	'jwt.exceptions.InvalidAudienceError'>

Invalid	issuer
<class	'jwt.exceptions.InvalidIssuerError'>

Invalid	audience
<class	'jwt.exceptions.InvalidAudienceError'>

{'payload':	'data',	'iss':	'fab',	'aud':	'learn-python'}

Now,	let's	see	one	final	example	for	a	more	complex	use	case.

Using	asymmetric	(public-key)
algorithms
Sometimes,	using	a	shared	secret	is	not	the	best	option.	In	those	cases,	it	might
be	useful	to	adopt	a	different	technique.	In	this	example,	we	are	going	to	create	a
token	(and	decode	it)	using	a	pair	of	RSA	keys.

Public	key	cryptography,	or	asymmetrical	cryptography,	is	any	cryptographic
system	that	uses	pairs	of	keys:	public	keys	which	may	be	disseminated	widely,
and	private	keys	which	are	known	only	to	the	owner.	If	you	are	interested	in
learning	more	about	this	topic,	please	see	the	end	of	this	chapter	for
recommendations.

Now,	let's	create	two	pairs	of	keys.	One	pair	will	have	no	password,	and	one
will.	To	create	them,	I'm	going	to	use	the	ssh-keygen	utils	from	OpenSSH	(https://w
ww.ssh.com/ssh/keygen/).	In	the	folder	where	my	scripts	for	this	chapter	are,	I	created
an	rsa	subfolder.	Within	it,	run	the	following:

$	ssh-keygen	-t	rsa

Give	the	name	key	to	the	path	(it	will	be	saved	in	the	current	folder),	and	simply
hit	the	Enter	key	when	asked	for	the	password.	When	done,	do	the	same	again,
but	this	time	use	the	name	keypwd	for	the	key,	and	give	it	a	password.	The	one	I
chose	is	the	classic	Password123.	When	you	are	done,	change	back	to	the	ch9	folder,
and	run	this	code:

#	token_rsa.py

import	jwt

from	cryptography.hazmat.backends	import	default_backend

from	cryptography.hazmat.primitives	import	serialization

data	=	{'payload':	'data'}

def	encode(data,	priv_filename,	priv_pwd=None,	algorithm='RS256'):

				with	open(priv_filename,	'rb')	as	key:

								private_key	=	serialization.load_pem_private_key(

												key.read(),

												password=priv_pwd,

												backend=default_backend()

)

				return	jwt.encode(data,	private_key,	algorithm=algorithm)

https://www.ssh.com/ssh/keygen/

def	decode(data,	pub_filename,	algorithm='RS256'):

				with	open(pub_filename,	'rb')	as	key:

								public_key	=	key.read()

				return	jwt.decode(data,	public_key,	algorithm=algorithm)

#	no	pwd

token	=	encode(data,	'rsa/key')

data_out	=	decode(token,	'rsa/key.pub')

print(data_out)

#	with	pwd

token	=	encode(data,	'rsa/keypwd',	priv_pwd=b'Password123')

data_out	=	decode(token,	'rsa/keypwd.pub')

print(data_out)

In	the	previous	example,	we	defined	a	couple	of	custom	functions	to	encode	and
decode	tokens	using	private/public	keys.	As	you	can	see	in	the	signature	of	the
encode	function,	we	are	using	the	RS256	algorithm	this	time.	We	need	to	open	the
private	key	file	by	using	the	special	load_pem_private_key	function,	which	allows	us
to	specify	a	content,	password,	and	backend.	.pem	is	the	name	of	the	format	in
which	our	keys	have	been	created.	If	you	take	a	look	at	those	files,	you	will
probably	recognize	them,	since	they	are	quite	popular.

The	logic	is	pretty	straightforward,	and	I	would	encourage	you	to	think	about	at
least	one	use	case	where	this	technique	might	be	more	suitable	than	using	a
shared	key.

Useful	references
	

Here,	you	can	find	a	list	of	useful	references	if	you	want	to	dig	deeper	in	to	the
fascinating	world	of	cryptography:

Cryptography:	https://en.wikipedia.org/wiki/Cryptography
JSON	Web	Tokens:	https://jwt.io

Hash	functions:	https://en.wikipedia.org/wiki/Cryptographic_hash_function
HMAC:	https://en.wikipedia.org/wiki/HMAC
Cryptography	services	(Python	STD	library):	https://docs.python.org/3.7/libra
ry/crypto.html

IANA	JSON	Web	Token	Claims	Registry:	https://www.iana.org/assignments/jwt/
jwt.xhtml

PyJWT	library:	https://pyjwt.readthedocs.io/
Cryptography	library:	https://cryptography.io/

There	is	way	more	on	the	web,	and	plenty	of	books	you	can	also	study,	but	I'd
recommend	that	you	start	with	the	main	concepts	and	then	gradually	dive	into
the	specifics	you	want	to	understand	more	thoroughly.

	

	

	

https://en.wikipedia.org/wiki/Cryptography
https://jwt.io
https://en.wikipedia.org/wiki/Cryptographic_hash_function
https://en.wikipedia.org/wiki/HMAC
https://docs.python.org/3.7/library/crypto.html
https://www.iana.org/assignments/jwt/jwt.xhtml
https://pyjwt.readthedocs.io/
https://cryptography.io/

Summary
In	this	short	chapter,	we	explored	the	world	of	cryptography	in	the	Python
standard	library.	We	learned	how	to	create	a	hash	(or	digest)	for	a	message	using
different	cryptographic	functions.	We	also	learned	how	to	create	tokens	and	deal
with	random	data	when	it	comes	to	the	cryptography	context.

We	then	took	a	small	tour	outside	the	standard	library	to	learn	about	JSON	Web
Tokens,	which	are	used	intensively	today	in	authentication	and	claims-related
functionalities	by	modern	systems	and	applications.

The	most	important	thing	is	to	understand	that	doing	things	manually	can	be
very	risky	when	it	comes	to	cryptography,	so	it's	always	best	to	leave	it	to	the
professionals	and	simply	use	the	tools	we	have	available.

The	next	chapter	will	be	all	about	moving	away	from	one	line	of	software
execution.	We're	going	to	learn	how	software	works	in	the	real	world,	explore
concurrent	execution,	and	learn	about	threads,	processes,	and	the	tools	Python
gives	us	to	do	more	than	one	thing	at	a	time,	so	to	speak.

Concurrent	Execution
"What	do	we	want?	Now!	When	do	we	want	it?	Fewer	race	conditions!"

–	Anna	Melzer

In	this	chapter,	I'm	going	to	up	the	game	a	little	bit,	both	in	terms	of	the	concepts
I'll	present,	and	in	the	complexity	of	the	code	snippets	I'll	show	you.	If	you	don't
feel	up	to	the	task,	or	as	you	are	reading	through	you	realize	it	is	getting	too
difficult,	feel	free	to	skip	it.	You	can	always	come	back	to	it	when	you	feel	ready.

The	plan	is	to	take	a	detour	from	the	familiar	single-threaded	execution
paradigm,	and	deep	dive	into	what	can	be	described	as	concurrent	execution.	I
will	only	be	able	to	scratch	the	surface	of	this	complex	topic,	so	I	won't	expect
you	to	be	a	master	of	concurrency	by	the	time	you're	done	reading,	but	I	will,	as
usual,	try	to	give	you	enough	information	so	that	you	can	then	proceed	by
walking	the	path,	so	to	speak.

We	will	learn	about	all	the	important	concepts	that	apply	to	this	area	of
programming,	and	I	will	try	to	show	you	examples	coded	in	different	styles,	to
give	you	a	solid	understanding	of	the	basics	of	these	topics.	To	dig	deep	into	this
challenging	and	interesting	branch	of	programming,	you	will	have	to	refer	to	the
Concurrent	Execution	section	in	the	Python	documentation	(https://docs.python.or
g/3.7/library/concurrency.html),	and	maybe	supplement	your	knowledge	by	studying
books	on	the	subject.

In	particular,	we	are	going	to	explore	the	following:

The	theory	behind	threads	and	processes
Writing	multithreaded	code
Writing	multiprocessing	code
Using	executors	to	spawn	threads	and	processes
A	brief	example	of	programming	with	asyncio

Let's	start	by	getting	the	theory	out	of	the	way.

https://docs.python.org/3.7/library/concurrency.html

Concurrency	versus	parallelism
Concurrency	and	parallelism	are	often	mistaken	for	the	same	thing,	but	there	is	a
distinction	between	them.	Concurrency	is	the	ability	to	run	multiple	things	at
the	same	time,	not	necessarily	in	parallel.	Parallelism	is	the	ability	to	do	a
number	of	things	at	the	same	time.

Imagine	you	take	your	other	half	to	the	theater.	There	are	two	lines:	that	is,	for
VIP	and	regular	tickets.	There	is	only	one	functionary	checking	tickets	and	so,	in
order	to	avoid	blocking	either	of	the	two	queues,	they	check	one	ticket	from	the
VIP	line,	then	one	from	the	regular	line.	Over	time,	both	queues	are	processed.
This	is	an	example	of	concurrency.

Now	imagine	that	another	functionary	joins,	so	now	we	have	one	functionary	per
queue.	This	way,	both	queues	will	be	processed	each	by	its	own	functionary.
This	is	an	example	of	parallelism.

Modern	laptop	processors	feature	multiple	cores	(normally	two	to	four).	A	core
is	an	independent	processing	unit	that	belongs	to	a	processor.	Having	more	than
one	core	means	that	the	CPU	in	question	has	the	physical	ability	to	actually
execute	tasks	in	parallel.	Within	each	core,	normally	there	is	a	constant
alternation	of	streams	of	work,	which	is	concurrent	execution.

Bear	in	mind	that	I'm	keeping	the	discussion	generic	on	purpose	here.	According
to	which	system	you	are	using,	there	will	be	differences	in	how	execution	is
handled,	so	I	will	concentrate	on	the	concepts	that	are	common	to	all,	or	at	least
most,	systems.

Threads	and	processes	–	an	overview
A	thread	can	be	defined	as	a	sequence	of	instructions	that	can	be	run	by	a
scheduler,	which	is	that	part	of	the	operating	system	that	decides	which	chunk	of
work	will	receive	the	necessary	resources	to	be	carried	out.	Typically,	a	thread
lives	within	a	process.	A	process	can	be	defined	as	an	instance	of	a	computer
program	that	is	being	executed.

In	previous	chapters,	we	have	run	our	own	modules	and	scripts	with	commands
similar	to	$	python	my_script.py.	What	happens	when	a	command	like	that	is	run,	is
that	a	Python	process	is	created.	Within	it,	a	main	thread	of	execution	is
spawned.	The	instructions	in	the	script	are	what	will	be	run	within	that	thread.

This	is	just	one	way	of	working	though,	and	Python	can	actually	use	more	than
one	thread	within	the	same	process,	and	can	even	spawn	multiple	processes.
Unsurprisingly,	these	branches	of	computer	science	are	called	multithreading
and	multiprocessing.

In	order	to	understand	the	difference,	let's	take	a	moment	to	explore	threads	and
processes	in	slightly	more	depth.

Quick	anatomy	of	a	thread
	

Generally	speaking,	there	are	two	different	types	of	threads:

User-level	threads:	Threads	that	we	can	create	and	manage	in	order	to
perform	a	task
Kernel-level	threads:	Low-level	threads	that	run	in	kernel	mode	and	act	on
behalf	of	the	operating	system

Given	that	Python	works	at	the	user	level,	we're	not	going	to	deep	dive	into
kernel	threads	at	this	time.	Instead,	we	will	explore	several	examples	of	user-
level	threads	in	this	chapter's	examples.

A	thread	can	be	in	any	of	the	following	states:

New	thread:	A	thread	that	hasn't	started	yet,	and	hasn't	been	allocated	any
resources.
Runnable:	The	thread	is	waiting	to	run.	It	has	all	the	resources	needed	to
run,	and	as	soon	as	the	scheduler	gives	it	the	green	light,	it	will	be	run.
Running:	A	thread	whose	stream	of	instructions	is	being	executed.	From
this	state,	it	can	go	back	to	a	non-running	state,	or	die.
Not-running:	A	thread	that	has	been	paused.	This	could	be	due	to	another
thread	taking	precedence	over	it,	or	simply	because	the	thread	is	waiting	for
a	long-running	IO	operation	to	finish.
Dead:	A	thread	that	has	died	because	it	has	reached	the	natural	end	of	its
stream	of	execution,	or	it	has	been	killed.

Transitions	between	states	are	provoked	either	by	our	actions	or	by	the
scheduler.	There	is	one	thing	to	bear	in	mind,	though;	it	is	best	not	to	interfere
with	the	death	of	a	thread.

	

	

	

Killing	threads
Killing	threads	is	not	considered	to	be	good	practice.	Python	doesn't	provide	the
ability	to	kill	a	thread	by	calling	a	method	or	function,	and	this	should	be	a	hint
that	killing	threads	isn't	something	you	want	to	be	doing.

One	reason	is	that	a	thread	might	have	children—threads	spawned	from	within
the	thread	itself—which	would	be	orphaned	when	their	parent	dies.	Another
reason	could	be	that	if	the	thread	you're	killing	is	holding	a	resource	that	needs
to	be	closed	properly,	you	might	prevent	that	from	happening	and	that	could
potentially	lead	to	problems.

Later,	we	will	see	an	example	of	how	we	can	work	around	these	issues.

Context-switching
We	have	said	that	the	scheduler	can	decide	when	a	thread	can	run,	or	is	paused,
and	so	on.	Any	time	a	running	thread	needs	to	be	suspended	so	that	another	can
be	run,	the	scheduler	saves	the	state	of	the	running	thread	in	a	way	that	it	will	be
possible,	at	a	later	time,	to	resume	execution	exactly	where	it	was	paused.

This	act	is	called	context-switching.	People	do	that	all	the	time	too.	We	are
doing	some	paperwork,	and	we	hear	bing!	on	our	phone.	We	stop	the	paperwork
and	check	our	phone.	When	we're	done	dealing	with	what	was	probably	the
umpteenth	picture	of	a	funny	cat,	we	go	back	to	our	paperwork.	We	don't	start
the	paperwork	from	the	beginning,	though;	we	simply	continue	where	we	had
left	off.

Context-switching	is	a	marvelous	ability	of	modern	computers,	but	it	can
become	troublesome	if	you	generate	too	many	threads.	The	scheduler	then	will
try	to	give	each	of	them	a	chance	to	run	for	a	little	time,	and	there	will	be	a	lot	of
time	spent	saving	and	recovering	the	state	of	the	threads	that	are	respectively
paused	and	restarted.

In	order	to	avoid	this	problem,	it	is	quite	common	to	limit	the	amount	of	threads
(the	same	consideration	applies	to	processes)	that	can	be	run	at	any	given	point
in	time.	This	is	achieved	by	using	a	structure	called	a	pool,	the	size	of	which	can
be	decided	by	the	programmer.	In	a	nutshell,	we	create	a	pool	and	then	assign
tasks	to	its	threads.	When	all	the	threads	of	the	pool	are	busy,	the	program	won't
be	able	to	spawn	a	new	thread	until	one	of	them	terminates	(and	goes	back	to	the
pool).	Pools	are	also	great	for	saving	resources,	in	that	they	provide	recycling
features	to	the	thread	ecosystem.

When	you	write	multithreaded	code,	it	is	useful	to	have	information	about	the
machine	our	software	is	going	to	run	on.	That	information,	coupled	with	some
profiling	(we'll	learn	about	it	in	Chapter	11,	Debugging	and	Troubleshooting),
should	enable	us	to	calibrate	the	size	of	our	pools	correctly.

The	Global	Interpreter	Lock
In	July	2015,	I	attended	the	EuroPython	conference	in	Bilbao,	where	I	gave	a
talk	about	test-driven	development.	The	camera	operator	unfortunately	lost	the
first	half	of	it,	but	I've	since	been	able	to	give	that	talk	another	couple	of	times,
so	you	can	find	a	complete	version	of	it	on	the	web.	At	the	conference,	I	had	the
great	pleasure	of	meeting	Guido	van	Rossum	and	talking	to	him,	and	I	also
attended	his	keynote	speech.

One	of	the	topics	he	addressed	was	the	infamous	Global	Interpreter	Lock
(GIL).	The	GIL	is	a	mutex	that	protects	access	to	Python	objects,	preventing
multiple	threads	from	executing	Python	bytecodes	at	once.	This	means	that	even
though	you	can	write	multithreaded	code	in	Python,	there	is	only	one	thread
running	at	any	point	in	time	(per	process,	of	course).

In	computer	programming,	a	mutual	exclusion	object	(mutex)	is	a	program	object	that	allows
multiple	program	threads	to	share	the	same	resource,	such	as	file	access,	but	not
simultaneously.

This	is	normally	seen	as	an	undesired	limitation	of	the	language,	and	many
developers	take	pride	in	cursing	this	great	villain.	The	truth	lies	somewhere	else
though,	as	was	beautifully	explained	by	Raymond	Hettinger	in	his	Keynote	on
Concurrency,	at	PyBay	2017	(https://bit.ly/2KcijOB).	About	10	minutes	in,
Raymond	explains	that	it	is	actually	quite	simple	to	remove	the	GIL	from
Python.	It	takes	about	a	day	of	work.	The	price	you	pay	for	this	GIL-ectomy
though,	is	that	you	then	have	to	apply	locks	yourself	wherever	they	are	needed	in
your	code.	This	leads	to	a	more	expensive	footprint,	as	multitudes	of	individual
locks	take	more	time	to	be	acquired	and	released,	and	most	importantly,	it
introduces	the	risk	of	bugs,	as	writing	robust	multithreaded	code	is	not	easy	and
you	might	end	up	having	to	write	dozens	or	hundreds	of	locks.

In	order	to	understand	what	a	lock	is,	and	why	you	might	want	to	use	it,	we	first
need	to	talk	about	one	of	the	perils	of	multithreaded	programming:	race
conditions.

https://bit.ly/2KcijOB

Race	conditions	and	deadlocks
	

When	it	comes	to	writing	multithreaded	code,	you	need	to	be	aware	of	the
dangers	that	come	when	your	code	is	no	longer	executed	linearly.	By	that,	I
mean	that	multithreaded	code	is	exposed	to	the	risk	of	being	paused	at	any	point
in	time	by	the	scheduler,	because	it	has	decided	to	give	some	CPU	time	to
another	stream	of	instructions.

This	behavior	exposes	you	to	different	types	of	risks,	the	two	most	famous	being
race	conditions	and	deadlocks.	Let's	talk	about	them	briefly.

	

	

	

Race	conditions
A	race	condition	is	a	behavior	of	a	system	where	the	output	of	a	procedure
depends	on	the	sequence	or	timing	of	other	uncontrollable	events.	When	these
events	don't	unfold	in	the	order	intended	by	the	programmer,	a	race	condition
becomes	a	bug.

It's	much	easier	to	explain	this	with	an	example.

Imagine	you	have	two	threads	running.	Both	are	performing	the	same	task,
which	consists	of	reading	a	value	from	a	location,	performing	an	action	with	that
value,	incrementing	the	value	by	1	unit,	and	saving	it	back.	Say	that	the	action	is
to	post	that	value	to	an	API.

Scenario	A	–	race	condition	not
happening
	

Thread	A	reads	the	value	(1),	posts	1	to	the	API,	then	increments	it	to	2,	and
saves	it	back.	Right	after	this,	the	scheduler	pauses	Thread	A,	and	runs	Thread	B.
Thread	B	reads	the	value	(now	2),	posts	2	to	the	API,	increments	it	to	3,	and
saves	it	back.

At	this	point,	after	the	operation	has	happened	twice,	the	value	stored	is	correct:
1	+	2	=	3.	Moreover,	the	API	has	been	called	with	both	1	and	2,	correctly.

	

	

	

Scenario	B	–	race	condition
happening
Thread	A	reads	the	value	(1),	posts	it	to	the	API,	increments	it	to	2,	but	before	it
can	save	it	back,	the	scheduler	decides	to	pause	thread	A	in	favor	of	Thread	B.

Thread	B	reads	the	value	(still	1!),	posts	it	to	the	API,	increments	it	to	2,	and
saves	it	back.	The	scheduler	then	switches	over	to	Thread	A	again.	Thread	A
resumes	its	stream	of	work	by	simply	saving	the	value	it	was	holding	after
incrementing,	which	is	2.

After	this	scenario,	even	though	the	operation	has	happened	twice	as	in	Scenario
A,	the	value	saved	is	2,	and	the	API	has	been	called	twice	with	1.

In	a	real-life	situation,	with	multiple	threads	and	real	code	performing	several
operations,	the	overall	behavior	of	the	program	explodes	into	a	myriad	of
possibilities.	We'll	see	an	example	of	this	later	on,	and	we'll	fix	it	using	locks.

The	main	problem	with	race	conditions	is	that	they	make	our	code	non-
deterministic,	which	is	bad.	There	are	areas	in	computer	science	where	non-
determinism	is	used	to	achieve	things,	and	that's	fine,	but	in	general	you	want	to
be	able	to	predict	how	your	code	will	behave,	and	race	conditions	make	it
impossible	to	do	so.

Locks	to	the	rescue
Locks	come	to	the	rescue	when	dealing	with	race	conditions.	For	example,	in
order	to	fix	the	preceding	example,	all	you	need	is	a	lock	around	the	procedure.
A	lock	is	like	a	guardian	that	will	allow	only	one	thread	to	take	hold	of	it	(we	say
to	acquire	a	lock),	and	until	that	thread	releases	the	lock,	no	other	thread	can
acquire	it.	They	will	have	to	sit	and	wait	until	the	lock	is	available	again.

	

Scenario	C	–	using	a	lock
Thread	A	acquires	the	lock,	reads	the	value	(1),	posts	to	the	API,	increases	to	2,
and	the	scheduler	suspends	it.	Thread	B	is	given	some	CPU	time,	so	it	tries	to
acquire	the	lock.	But	the	lock	hasn't	been	released	yet	by	Thread	A,	so	Thread	B
sits	and	waits.	The	scheduler	might	notice	this,	and	quickly	decide	to	switch
back	to	Thread	A.

Thread	A	saves	2,	and	releases	the	lock,	making	it	available	to	all	other	threads.

At	this	point,	whether	the	lock	is	acquired	again	by	Thread	A,	or	by	Thread	B
(because	the	scheduler	might	have	decided	to	switch	again),	is	not	important.
The	procedure	will	always	be	carried	out	correctly,	since	the	lock	makes	sure
that	when	a	thread	reads	a	value,	it	has	to	complete	the	procedure	(ping	API,
increment,	and	save)	before	any	other	thread	can	read	the	value	as	well.

There	are	a	multitude	of	different	locks	available	in	the	standard	library.	I
definitely	encourage	you	to	read	up	on	them	to	understand	all	the	perils	you
might	encounter	when	coding	multithreaded	code,	and	how	to	solve	them.

Let's	now	talk	about	deadlocks.

Deadlocks
A	deadlock	is	a	state	in	which	each	member	of	a	group	is	waiting	for	some	other
member	to	take	action,	such	as	sending	a	message	or,	more	commonly,	releasing
a	lock,	or	a	resource.

A	simple	example	will	help	you	get	the	picture.	Imagine	two	little	kids	playing
together.	Find	a	toy	that	is	made	of	two	parts,	and	give	each	of	them	one	part.
Naturally,	neither	of	them	will	want	to	give	the	other	one	their	part,	and	they	will
want	the	other	one	to	release	the	part	they	have.	So	neither	of	them	will	be	able
to	play	with	the	toy,	as	they	each	hold	half	of	it,	and	will	indefinitely	wait	for	the
other	kid	to	release	the	other	half.

Don't	worry,	no	kids	were	harmed	during	the	making	of	this	example.	It	all	happened	in	my
mind.

Another	example	could	be	having	two	threads	execute	the	same	procedure	again.
The	procedure	requires	acquiring	two	resources,	A	and	B,	both	guarded	by	a
separate	lock.	Thread	1	acquires	A,	and	Thread	2	acquires	B,	and	then	they	will
wait	indefinitely	until	the	other	one	releases	the	resource	it	has.	But	that	won't
happen,	as	they	both	are	instructed	to	wait	and	acquire	the	second	resource	in
order	to	complete	the	procedure.	Threads	can	be	much	more	stubborn	than	kids.

You	can	solve	this	problem	in	several	ways.	The	easiest	one	might	be	simply	to
apply	an	order	to	the	resources	acquisition,	which	means	that	the	thread	that	gets
A,	will	also	get	all	the	rest:	B,	C,	and	so	on.

Another	way	is	to	put	a	lock	around	the	whole	resources	acquisition	procedure,
so	that	even	if	it	might	happen	out	of	order,	it	will	still	be	within	the	context	of	a
lock,	which	means	only	one	thread	at	a	time	can	actually	gather	all	the	resources.

Let's	now	pause	our	talk	on	threads	for	a	moment,	and	explore	processes.

Quick	anatomy	of	a	process
	

Processes	are	normally	more	complex	than	threads.	In	general,	they	contain	a
main	thread,	but	can	also	be	multithreaded	if	you	choose.	They	are	capable	of
spawning	multiple	sub-threads,	each	of	which	contains	its	own	set	of	registers
and	a	stack.	Each	process	provides	all	the	resources	that	the	computer	needs	in
order	to	execute	the	program.

Similarly	to	using	multiple	threads,	we	can	design	our	code	to	take	advantage	of
a	multiprocessing	design.	Multiple	processes	are	likely	to	run	over	multiple
cores,	therefore	with	multiprocessing,	you	can	truly	parallelize	computation.
Their	memory	footprints,	though,	are	slightly	heavier	than	those	of	threads,	and
another	drawback	to	using	multiple	processes	is	that	inter-process
communication	(IPC)	tends	to	be	more	expensive	than	communication	between
threads.

	

	

	

Properties	of	a	process
	

A	UNIX	process	is	created	by	the	operating	system.	It	typically	contains	the
following:

A	process	ID,	process	group	ID,	user	ID,	or	group	ID
An	environment	and	working	directory
Program	instructions
Registers,	a	stack,	and	a	heap
File	descriptors
Signal	actions
Shared	libraries
Inter-process	communication	tools	(pipes,	message	queues,	semaphores,	or
shared	memory)

If	you	are	curious	about	processes,	open	up	a	shell	and	type	$	top.	This	command
displays	and	updates	sorted	information	about	the	processes	that	are	running	in
your	system.	When	I	run	it	on	my	machine,	the	first	line	tells	me	the	following:

$	top

Processes:	477	total,	4	running,	473	sleeping,	2234	threads

...

This	gives	you	an	idea	about	how	much	work	our	computers	are	doing	without
us	being	really	aware	of	it.

	

	

	

Multithreading	or	multiprocessing?
Given	all	this	information,	deciding	which	approach	is	the	best	means	having	an
understanding	of	the	type	of	work	that	needs	to	be	carried	out,	and	knowledge
about	the	system	that	will	be	dedicated	to	doing	that	work.

There	are	advantages	to	both	approaches,	so	let's	try	to	clarify	the	main
differences.

Here	are	some	advantages	of	using	multithreading:

Threads	are	all	born	within	the	same	process.	They	share	resources	and	can
communicate	with	one	another	very	easily.	Communication	between
processes	requires	more	complex	structures	and	techniques.
The	overhead	of	spawning	a	thread	is	smaller	than	that	of	a	process.
Moreover,	their	memory	footprint	is	also	smaller.
Threads	can	be	very	effective	at	blocking	IO-bound	applications.	For
example,	while	one	thread	is	blocked	waiting	for	a	network	connection	to
give	back	some	data,	work	can	be	easily	and	effectively	switched	to	another
thread.
Because	there	aren't	any	shared	resources	between	processes,	we	need	to
use	IPC	techniques,	and	they	require	more	memory	than	communication
between	threads.

Here	are	some	advantages	of	using	multiprocessing:

We	can	avoid	the	limitations	of	the	GIL	by	using	processes.
Sub-processes	that	fail	won't	kill	the	main	application.
Threads	suffer	from	issues	such	as	race	conditions	and	deadlocks;	while
using	processes	the	likelihood	of	having	to	deal	with	them	is	greatly
reduced.
Context-switching	of	threads	can	become	quite	expensive	when	their
amount	is	above	a	certain	threshold.
Processes	can	make	better	use	of	multicore	processors.
Processes	are	better	than	multiple	threads	at	handling	CPU-intensive	tasks.

In	this	chapter,	I'll	show	you	both	approaches	for	multiple	examples,	so

hopefully	you'll	gain	a	good	understanding	of	the	various	different	techniques.
Let's	get	to	the	code	then!

Concurrent	execution	in	Python
Let's	start	by	exploring	the	basics	of	Python	multithreading	and	multiprocessing
with	some	simple	examples.

Keep	in	mind	that	several	of	the	following	examples	will	produce	an	output	that	depends	on	a
particular	run.	When	dealing	with	threads,	things	can	get	non-deterministic,	as	I	mentioned
earlier.	So,	if	you	experience	different	results,	it	is	absolutely	fine.	You	will	probably	notice
that	some	of	your	results	will	vary	from	run	to	run	too.

	

Starting	a	thread
First	things	first,	let's	start	a	thread:

#	start.py

import	threading

def	sum_and_product(a,	b):

				s,	p	=	a	+	b,	a	*	b

				print(f'{a}+{b}={s},	{a}*{b}={p}')

t	=	threading.Thread(

				target=sum_and_product,	name='SumProd',	args=(3,	7)

)

t.start()

After	importing	threading,	we	define	a	function:	sum_and_product.	This	function
calculates	the	sum	and	the	product	of	two	numbers,	and	prints	the	results.	The
interesting	bit	is	after	the	function.	We	instantiate	t	from	threading.Thread.	This	is
our	thread.	We	passed	the	name	of	the	function	that	will	be	run	as	the	thread
body,	we	gave	it	a	name,	and	passed	the	arguments	3	and	7,	which	will	be	fed
into	the	function	as	a	and	b,	respectively.

After	having	created	the	thread,	we	start	it	with	the	homonymous	method.

At	this	point,	Python	will	start	executing	the	function	in	a	new	thread,	and	when
that	operation	is	done,	the	whole	program	will	be	done	as	well,	and	exit.	Let's
run	it:

$	python	start.py

3+7=10,	3*7=21

Starting	a	thread	is	therefore	quite	simple.	Let's	see	a	more	interesting	example
where	we	display	more	information:

#	start_with_info.py

import	threading

from	time	import	sleep

def	sum_and_product(a,	b):

				sleep(.2)

				print_current()

				s,	p	=	a	+	b,	a	*	b

				print(f'{a}+{b}={s},	{a}*{b}={p}')

def	status(t):

				if	t.is_alive():

								print(f'Thread	{t.name}	is	alive.')

				else:

								print(f'Thread	{t.name}	has	terminated.')

def	print_current():

				print('The	current	thread	is	{}.'.format(

								threading.current_thread()

))

				print('Threads:	{}'.format(list(threading.enumerate())))

print_current()

t	=	threading.Thread(

				target=sum_and_product,	name='SumPro',	args=(3,	7)

)

t.start()

status(t)

t.join()

status(t)

In	this	example,	the	thread	logic	is	exactly	the	same	as	in	the	previous	one,	so
you	don't	need	to	sweat	on	it	and	can	concentrate	on	the	(insane!)	amount	of
logging	information	I	added.	We	use	two	functions	to	display	information:	status
and	print_current.	The	first	one	takes	a	thread	in	input	and	displays	its	name	and
whether	or	not	it's	alive	by	calling	its	is_alive	method.	The	second	one	prints	the
current	thread,	and	then	enumerates	all	the	threads	in	the	process.	This
information	comes	from	threading.current_thread	and	threading.enumerate.

There	is	a	reason	why	I	put	.2	seconds	of	sleeping	time	within	the	function.
When	the	thread	starts,	its	first	instruction	is	to	sleep	for	a	moment.	The	sneaky
scheduler	will	catch	that,	and	switch	execution	back	to	the	main	thread.	You	can
verify	this	by	the	fact	that	in	the	output,	you	will	see	the	result	of	status(t)	before
that	of	print_current	from	within	the	thread.	This	means	that	that	call	happens
while	the	thread	is	sleeping.

Finally,	notice	I	called	t.join()	at	the	end.	That	instructs	Python	to	block	until	the
thread	has	completed.	The	reason	for	that	is	because	I	want	the	last	call	to
status(t)	to	tell	us	that	the	thread	is	gone.	Let's	peek	at	the	output	(slightly
rearranged	for	readability):

$	python	start_with_info.py

The	current	thread	is

				<_MainThread(MainThread,	started	140735733822336)>.

Threads:	[<_MainThread(MainThread,	started	140735733822336)>]

Thread	SumProd	is	alive.

The	current	thread	is	<Thread(SumProd,	started	123145375604736)>.

Threads:	[

				<_MainThread(MainThread,	started	140735733822336)>,

				<Thread(SumProd,	started	123145375604736)>

]

3+7=10,	3*7=21

Thread	SumProd	has	terminated.

As	you	can	see,	at	first	the	current	thread	is	the	main	thread.	The	enumeration
shows	only	one	thread.	Then	we	create	and	start	SumProd.	We	print	its	status	and
we	learn	it	is	alive.	Then,	and	this	time	from	within	SumProd,	we	display
information	about	the	current	thread	again.	Of	course,	now	the	current	thread	is
SumProd,	and	we	can	see	that	enumerating	all	threads	returns	both	of	them.	After
the	result	is	printed,	we	verify,	with	one	last	call	to	status,	that	the	thread	has
terminated,	as	predicted.	Should	you	get	different	results	(apart	from	the	IDs	of
the	threads,	of	course),	try	increasing	the	sleeping	time	and	see	whether	anything
changes.

Starting	a	process
	

Let's	now	see	an	equivalent	example,	but	instead	of	using	a	thread,	we'll	use	a
process:

#	start_proc.py

import	multiprocessing

...

p	=	multiprocessing.Process(

				target=sum_and_product,	name='SumProdProc',	args=(7,	9)

)

p.start()

The	code	is	exactly	the	same	as	for	the	first	example,	but	instead	of	using	a
Thread,	we	actually	instantiate	multiprocessing.Process.	The	sum_and_product	function	is
the	same	as	before.	The	output	is	also	the	same,	except	the	numbers	are	different.

	

	

	

Stopping	threads	and	processes
As	mentioned	before,	in	general,	stopping	a	thread	is	a	bad	idea,	and	the	same
goes	for	a	process.	Being	sure	you've	taken	care	to	dispose	and	close	everything
that	is	open	can	be	quite	difficult.	However,	there	are	situations	in	which	you
might	want	to	be	able	to	stop	a	thread,	so	let	me	show	you	how	to	do	it:

#	stop.py

import	threading

from	time	import	sleep

class	Fibo(threading.Thread):

				def	__init__(self,	*a,	**kwa):

								super().__init__(*a,	**kwa)

								self._running	=	True

				def	stop(self):

								self._running	=	False

				def	run(self):

								a,	b	=	0,	1

								while	self._running:

												print(a,	end='	')

												a,	b	=	b,	a	+	b

												sleep(0.07)

								print()

fibo	=	Fibo()

fibo.start()

sleep(1)

fibo.stop()

fibo.join()

print('All	done.')

For	this	example,	we	use	a	Fibonacci	generator.	We've	seen	it	before	so	I	won't
explain	it.	The	important	bit	to	focus	on	is	the	_running	attribute.	First	of	all,
notice	the	class	inherits	from	Thread.	By	overriding	the	__init__	method,	we	can
set	the	_running	flag	to	True.	When	you	write	a	thread	this	way,	instead	of	giving	it
a	target	function,	you	simply	override	the	run	method	in	the	class.	Our	run	method
calculates	a	new	Fibonacci	number,	and	then	sleeps	for	about	0.07	seconds.

In	the	last	block	of	code,	we	create	and	start	an	instance	of	our	class.	Then	we
sleep	for	one	second,	which	should	give	the	thread	time	to	produce	about	14
Fibonacci	numbers.	When	we	call	fibo.stop(),	we	aren't	actually	stopping	the
thread.	We	simply	set	our	flag	to	False,	and	this	allows	the	code	within	run	to
reach	its	natural	end.	This	means	that	the	thread	will	die	organically.	We	call	join

to	make	sure	the	thread	is	actually	done	before	we	print	All	done.	on	the	console.
Let's	check	the	output:

$	python	stop.py

0	1	1	2	3	5	8	13	21	34	55	89	144	233

All	done.

Check	how	many	numbers	were	printed:	14,	as	predicted.

This	is	basically	a	workaround	technique	that	allows	you	to	stop	a	thread.	If	you
design	your	code	correctly	according	to	multithreading	paradigms,	you	shouldn't
have	to	kill	threads	all	the	time,	so	let	that	need	become	your	alarm	bell	that
something	could	be	designed	better.

Stopping	a	process
When	it	comes	to	stopping	a	process,	things	are	different,	and	fuss-free.	You	can
use	either	the	terminate	or	kill	method,	but	please	make	sure	you	know	what
you're	doing,	as	all	the	preceding	considerations	about	open	resources	left
hanging	are	still	true.

Spawning	multiple	threads
Just	for	fun,	let's	play	with	two	threads	now:

#	starwars.py

import	threading

from	time	import	sleep

from	random	import	random

def	run(n):

				t	=	threading.current_thread()

				for	count	in	range(n):

								print(f'Hello	from	{t.name}!	({count})')

								sleep(0.2	*	random())

obi	=	threading.Thread(target=run,	name='Obi-Wan',	args=(4,))

ani	=	threading.Thread(target=run,	name='Anakin',	args=(3,))

obi.start()

ani.start()

obi.join()

ani.join()

The	run	function	simply	prints	the	current	thread,	and	then	enters	a	loop	of	n
cycles,	in	which	it	prints	a	greeting	message,	and	sleeps	for	a	random	amount	of
time,	between	0	and	0.2	seconds	(random()	returns	a	float	between	0	and	1).

The	purpose	of	this	example	is	to	show	you	how	a	scheduler	might	jump
between	threads,	so	it	helps	to	make	them	sleep	a	little.	Let's	see	the	output:

$	python	starwars.py

Hello	from	Obi-Wan!	(0)

Hello	from	Anakin!	(0)

Hello	from	Obi-Wan!	(1)

Hello	from	Obi-Wan!	(2)

Hello	from	Anakin!	(1)

Hello	from	Obi-Wan!	(3)

Hello	from	Anakin!	(2)

As	you	can	see,	the	output	alternates	randomly	between	the	two.	Every	time	that
happens,	you	know	a	context	switch	has	been	performed	by	the	scheduler.

Dealing	with	race	conditions
Now	that	we	have	the	tools	to	start	threads	and	run	them,	let's	simulate	a	race
condition	such	as	the	one	we	discussed	earlier:

#	race.py

import	threading

from	time	import	sleep

from	random	import	random

counter	=	0

randsleep	=	lambda:	sleep(0.1	*	random())

def	incr(n):

				global	counter

				for	count	in	range(n):

								current	=	counter

								randsleep()

								counter	=	current	+	1

								randsleep()

n	=	5

t1	=	threading.Thread(target=incr,	args=(n,))

t2	=	threading.Thread(target=incr,	args=(n,))

t1.start()

t2.start()

t1.join()

t2.join()

print(f'Counter:	{counter}')

In	this	example,	we	define	the	incr	function,	which	gets	a	number	n	in	input,	and
loops	over	n.	In	each	cycle,	it	reads	the	value	of	the	counter,	sleeps	for	a	random
amount	of	time	(between	0	and	0.1	seconds)	by	calling	randsleep,	a	tiny	Lambda
function	I	wrote	to	improve	readability,	then	increases	the	value	of	the	counter	by
1.

I	chose	to	use	global	in	order	to	have	read/write	access	to	counter,	but	it	could	be
anything	really,	so	feel	free	to	experiment	with	that	yourself.

The	whole	script	basically	starts	two	threads,	each	of	which	runs	the	same
function,	and	gets	n	=	5.	Notice	how	we	need	to	join	on	both	threads	at	the	end	to
make	sure	that	when	we	print	the	final	value	of	the	counter	(last	line),	both
threads	are	done	doing	their	work.

When	we	print	the	final	value,	we	would	expect	the	counter	to	be	10,	right?	Two
threads,	five	loops	each,	that	makes	10.	However,	we	almost	never	get	10	if	we

run	this	script.	I	ran	it	myself	many	times,	and	it	seems	to	always	hit	somewhere
between	5	and	7.	The	reason	this	happens	is	that	there	is	a	race	condition	in	this
code,	and	those	random	sleeps	I	added	are	there	to	exacerbate	it.	If	you	removed
them,	there	would	still	be	a	race	condition,	because	the	counter	is	increased	in	a
non-atomic	way	(which	means	an	operation	that	can	be	broken	down	in	multiple
steps,	and	therefore	paused	in	between).	However,	the	likelihood	of	that	race
condition	showing	is	really	low,	so	adding	the	random	sleep	helps.

Let's	analyze	the	code.	t1	gets	the	current	value	of	the	counter,	say,	3.	t1	then
sleeps	for	a	moment.	If	the	scheduler	switches	context	in	that	moment,	pausing
t1	and	starting	t2,	t2	will	read	the	same	value,	3.	Whatever	happens	afterward,	we
know	that	both	threads	will	update	the	counter	to	be	4,	which	will	be	incorrect	as
after	two	readings	it	should	have	gone	up	to	5.	Adding	the	second	random	sleep
call,	after	the	update,	helps	the	scheduler	switch	more	frequently,	and	makes	it
easier	to	show	the	race	condition.	Try	commenting	out	one	of	them,	and	see	how
the	result	changes	(it	will	do	so,	dramatically).

Now	that	we	have	identified	the	issue,	let's	fix	it	by	using	a	lock.	The	code	is
basically	the	same,	so	I'll	show	you	only	what	changes:

#	race_with_lock.py

incr_lock	=	threading.Lock()

def	incr(n):

				global	counter

				for	count	in	range(n):

								with	incr_lock:

												current	=	counter

												randsleep()

												counter	=	current	+	1

												randsleep()

This	time	we	have	created	a	lock,	from	the	threading.Lock	class.	We	could	call	its
acquire	and	release	methods	manually,	or	we	can	be	Pythonic	and	use	it	within	a
context	manager,	which	looks	much	nicer,	and	does	the	whole	acquire/release
business	for	us.	Notice	I	left	the	random	sleeps	in	the	code.	However,	every	time
you	run	it,	it	will	now	return	10.

The	difference	is	this:	when	the	first	thread	acquires	that	lock,	it	doesn't	matter
that	when	it's	sleeping,	a	moment	later,	the	scheduler	switches	the	context.	The
second	thread	will	try	to	acquire	the	lock,	and	Python	will	answer	with	a
resounding	no.	So,	the	second	thread	will	just	sit	and	wait	until	that	lock	is

released.	As	soon	as	the	scheduler	switches	back	to	the	first	thread,	and	the	lock
is	released,	then	the	other	thread	will	have	a	chance	(if	it	gets	there	first,	which	is
not	necessarily	guaranteed),	to	acquire	the	lock	and	update	the	counter.	Try
adding	some	prints	into	that	logic	to	see	whether	the	threads	alternate	perfectly
or	not.	My	guess	is	that	they	won't,	at	least	not	every	time.	Remember	the
threading.current_thread	function,	to	be	able	to	see	which	thread	is	actually	printing
the	information.

Python	offers	several	data	structures	in	the	threading	module:	Lock,	RLock,
Condition,	Semaphore,	Event,	Timer,	and	Barrier.	I	won't	be	able	to	show	you	all
of	them,	because	unfortunately	I	don't	have	the	room	to	explain	all	the	use	cases,
but	reading	the	documentation	of	the	threading	module	(https://docs.python.org/3.7/l
ibrary/threading.html)	will	be	a	good	place	to	start	understanding	them.

Let's	now	see	an	example	about	thread's	local	data.

https://docs.python.org/3.7/library/threading.html

A	thread's	local	data
The	threading	module	offers	a	way	to	implement	local	data	for	threads.	Local	data
is	an	object	that	holds	thread-specific	data.	Let	me	show	you	an	example,	and
allow	me	to	sneak	in	a	Barrier	too,	so	I	can	tell	you	how	it	works:

#	local.py

import	threading

from	random	import	randint

local	=	threading.local()

def	run(local,	barrier):

				local.my_value	=	randint(0,	10**2)

				t	=	threading.current_thread()

				print(f'Thread	{t.name}	has	value	{local.my_value}')

				barrier.wait()

				print(f'Thread	{t.name}	still	has	value	{local.my_value}')

count	=	3

barrier	=	threading.Barrier(count)

threads	=	[

				threading.Thread(

								target=run,	name=f'T{name}',	args=(local,	barrier)

)	for	name	in	range(count)

]

for	t	in	threads:

				t.start()

We	start	by	defining	local.	That	is	the	special	object	that	holds	thread-specific
data.	We	run	three	threads.	Each	of	them	will	assign	a	random	value	to
local.my_value,	and	print	it.	Then	the	thread	reaches	a	Barrier	object,	which	is
programmed	to	hold	three	threads	in	total.	When	the	barrier	is	hit	by	the	third
thread,	they	all	can	pass.	It's	basically	a	nice	way	to	make	sure	that	N	amount	of
threads	reach	a	certain	point	and	they	all	wait	until	every	single	one	of	them	has
arrived.

Now,	if	local	was	a	normal,	dummy	object,	the	second	thread	would	override	the
value	of	local.my_value,	and	the	third	would	do	the	same.	This	means	that	we
would	see	them	printing	different	values	in	the	first	set	of	prints,	but	they	would
show	the	same	value	(the	last	one)	in	the	second	round	of	prints.	But	that	doesn't
happen,	thanks	to	local.	The	output	shows	the	following:

$	python	local.py

Thread	T0	has	value	61

Thread	T1	has	value	52

Thread	T2	has	value	38

Thread	T2	still	has	value	38

Thread	T0	still	has	value	61

Thread	T1	still	has	value	52

Notice	the	wrong	order,	due	to	the	scheduler	switching	context,	but	the	values
are	all	correct.

Thread	and	process	communication
We	have	seen	quite	a	lot	of	examples	so	far.	So,	let's	explore	how	to	make
threads	and	processes	talk	to	one	another	by	employing	a	queue.	Let's	start	with
threads.

Thread	communication
For	this	example,	we	will	be	using	a	normal	Queue,	from	the	queue	module:

#	comm_queue.py

import	threading

from	queue	import	Queue

SENTINEL	=	object()

def	producer(q,	n):

				a,	b	=	0,	1

				while	a	<=	n:

								q.put(a)

								a,	b	=	b,	a	+	b

				q.put(SENTINEL)

def	consumer(q):

				while	True:

								num	=	q.get()

								q.task_done()

								if	num	is	SENTINEL:

												break

								print(f'Got	number	{num}')

q	=	Queue()

cns	=	threading.Thread(target=consumer,	args=(q,))

prd	=	threading.Thread(target=producer,	args=(q,	35))

cns.start()

prd.start()

q.join()

The	logic	is	very	basic.	We	have	a	producer	function	that	generates	Fibonacci
numbers	and	puts	them	in	a	queue.	When	the	next	number	is	greater	than	a	given
n,	the	producer	exits	the	while	loop,	and	puts	one	last	thing	in	the	queue:	a
SENTINEL.	A	SENTINEL	is	any	object	that	is	used	to	signal	something,	and	in	our	case,
it	signals	to	the	consumer	that	the	producer	is	done.

The	interesting	bit	of	logic	is	in	the	consumer	function.	It	loops	indefinitely,
reading	values	out	of	the	queue	and	printing	them	out.	There	are	a	couple	of
things	to	notice	here.	First,	see	how	we	are	calling	q.task_done()?	That	is	to
acknowledge	that	the	element	in	the	queue	has	been	processed.	The	purpose	of
this	is	to	allow	the	final	instruction	in	the	code,	q.join(),	to	unblock	when	all
elements	have	been	acknowledged,	so	that	the	execution	can	end.

Second,	notice	how	we	use	the	is	operator	to	compare	against	the	items	in	order
to	find	the	sentinel.	We'll	see	shortly	that	when	using	a	multiprocessing.Queue	this

won't	be	possible	any	more.	Before	we	get	there,	would	you	be	able	to	guess
why?

Running	this	example	produces	a	series	of	lines,	such	as	Got	number	0,	Got	number	1,
and	so	on,	until	34,	since	the	limit	we	put	is	35,	and	the	next	Fibonacci	number
would	be	55.

Sending	events
Another	way	to	make	threads	communicate	is	to	fire	events.	Let	me	quickly
show	you	an	example	of	that:

#	evt.py

import	threading

def	fire():

				print('Firing	event...')

				event.set()

def	listen():

				event.wait()

				print('Event	has	been	fired')

event	=	threading.Event()

t1	=	threading.Thread(target=fire)

t2	=	threading.Thread(target=listen)

t2.start()

t1.start()

Here	we	have	two	threads	that	run	fire	and	listen,	respectively	firing	and
listening	for	an	event.	To	fire	an	event,	call	the	set	method	on	it.	The	t2	thread,
which	is	started	first,	is	already	listening	to	the	event,	and	will	sit	there	until	the
event	is	fired.	The	output	from	the	previous	example	is	the	following:

$	python	evt.py

Firing	event...

Event	has	been	fired

Events	are	great	in	some	situations.	Think	about	having	threads	that	are	waiting
on	a	connection	object	to	be	ready,	before	they	can	actually	start	using	it.	They
could	be	waiting	on	an	event,	and	one	thread	could	be	checking	that	connection,
and	firing	the	event	when	it's	ready.	Events	are	fun	to	play	with,	so	make	sure
you	experiment	and	think	about	use	cases	for	them.

Inter-process	communication	with
queues
Let's	now	see	how	to	communicate	between	processes	using	a	queue.	This
example	is	very	very	similar	to	the	one	for	threads:

#	comm_queue_proc.py

import	multiprocessing

SENTINEL	=	'STOP'

def	producer(q,	n):

				a,	b	=	0,	1

				while	a	<=	n:

								q.put(a)

								a,	b	=	b,	a	+	b

				q.put(SENTINEL)

def	consumer(q):

				while	True:

								num	=	q.get()

								if	num	==	SENTINEL:

												break

								print(f'Got	number	{num}')

q	=	multiprocessing.Queue()

cns	=	multiprocessing.Process(target=consumer,	args=(q,))

prd	=	multiprocessing.Process(target=producer,	args=(q,	35))

cns.start()

prd.start()

As	you	can	see,	in	this	case,	we	have	to	use	a	queue	that	is	an	instance	of
multiprocessing.Queue,	which	doesn't	expose	a	task_done	method.	However,	because
of	the	way	this	queue	is	designed,	it	automatically	joins	the	main	thread,
therefore	we	only	need	to	start	the	two	processes	and	all	will	work.	The	output	of
this	example	is	the	same	as	the	one	before.

When	it	comes	to	IPC,	be	careful.	Objects	are	pickled	when	they	enter	the
queue,	so	IDs	get	lost,	and	there	are	a	few	other	subtle	things	to	take	care	of.
This	is	why	in	this	example	I	can	no	longer	use	an	object	as	a	sentinel,	and
compare	using	is,	like	I	did	in	the	multi-threaded	version.	That	sentinel	object
would	be	pickled	in	the	queue	(because	this	time	the	Queue	comes	from
multiprocessing	and	not	from	queue	like	before),	and	would	assume	a	new	ID	after
unpickling,	failing	to	compare	correctly.	The	string	"STOP"	in	this	case	does	the

trick,	and	it	will	be	up	to	you	to	find	a	suitable	value	for	a	sentinel,	which	needs
to	be	something	that	could	never	clash	with	any	of	the	items	that	could	be	in	the
same	queue.	I	leave	it	up	to	you	to	refer	to	the	documentation,	and	learn	as	much
as	you	can	on	this	topic.

Queues	aren't	the	only	way	to	communicate	between	processes.	You	can	also	use
pipes	(multiprocessing.Pipe),	which	provide	a	connection	(as	in,	a	pipe,	clearly)
from	one	process	to	another,	and	vice	versa.	You	can	find	plenty	of	examples	in
the	documentation;	they	aren't	that	different	from	what	we've	seen	here.

Thread	and	process	pools
As	mentioned	before,	pools	are	structures	designed	to	hold	N	objects	(threads,
processes,	and	so	on).	When	the	usage	reaches	capacity,	no	work	is	assigned	to	a
thread	(or	process)	until	one	of	those	currently	working	becomes	available	again.
Pools,	therefore,	are	a	great	way	to	limit	the	number	of	threads	(or	processes)
that	can	be	alive	at	the	same	time,	preventing	the	system	from	starving	due	to
resource	exhaustion,	or	the	computation	time	from	being	affected	by	too	much
context	switching.

In	the	following	examples,	I	will	be	tapping	into	the	concurrent.futures	module	to
use	the	ThreadPoolExecutor	and	ProcessPoolExecutor	executors.	These	two	classes,	use
a	pool	of	threads	(and	processes,	respectively),	to	execute	calls	asynchronously.
They	both	accept	a	parameter,	max_workers,	which	sets	the	upper	limit	to	how
many	threads	(or	processes)	can	be	used	at	the	same	time	by	the	executor.

Let's	start	from	the	multithreaded	example:

#	pool.py

from	concurrent.futures	import	ThreadPoolExecutor,	as_completed

from	random	import	randint

import	threading

def	run(name):

				value	=	randint(0,	10**2)

				tname	=	threading.current_thread().name

				print(f'Hi,	I	am	{name}	({tname})	and	my	value	is	{value}')

				return	(name,	value)

with	ThreadPoolExecutor(max_workers=3)	as	executor:

				futures	=	[

								executor.submit(run,	f'T{name}')	for	name	in	range(5)

]

				for	future	in	as_completed(futures):

								name,	value	=	future.result()

								print(f'Thread	{name}	returned	{value}')

After	importing	the	necessary	bits,	we	define	the	run	function.	It	gets	a	random
value,	prints	it,	and	returns	it,	along	with	the	name	argument	it	was	called	with.
The	interesting	bit	comes	right	after	the	function.

As	you	can	see,	we're	using	a	context	manager	to	call	ThreadPoolExecutor,	to	which
we	pass	max_workers=3,	which	means	the	pool	size	is	3.	This	means	only	three

threads	at	any	time	will	be	alive.

We	define	a	list	of	future	objects	by	making	a	list	comprehension,	in	which	we
call	submit	on	our	executor	object.	We	instruct	the	executor	to	run	the	run
function,	with	a	name	that	will	go	from	T0	to	T4.	A	future	is	an	object	that
encapsulates	the	asynchronous	execution	of	a	callable.

Then	we	loop	over	the	future	objects,	as	they	are	are	done.	To	do	this,	we	use
as_completed	to	get	an	iterator	of	the	future	instances	that	returns	them	as	soon	as
they	complete	(finish	or	were	cancelled).	We	grab	the	result	of	each	future	by
calling	the	homonymous	method,	and	simply	print	it.	Given	that	run	returns	a
tuple	name,	value,	we	expect	the	result	to	be	a	two-tuple	containing	name	and	value.
If	we	print	the	output	of	a	run	(bear	in	mind	each	run	can	potentially	be	slightly
different),	we	get:

$	python	pool.py

Hi,	I	am	T0	(ThreadPoolExecutor-0_0)	and	my	value	is	5

Hi,	I	am	T1	(ThreadPoolExecutor-0_0)	and	my	value	is	23

Hi,	I	am	T2	(ThreadPoolExecutor-0_1)	and	my	value	is	58

Thread	T1	returned	23

Thread	T0	returned	5

Hi,	I	am	T3	(ThreadPoolExecutor-0_0)	and	my	value	is	93

Hi,	I	am	T4	(ThreadPoolExecutor-0_1)	and	my	value	is	62

Thread	T2	returned	58

Thread	T3	returned	93

Thread	T4	returned	62

Before	reading	on,	can	you	tell	why	the	output	looks	like	this?	Could	you
explain	what	happened?	Spend	a	moment	thinking	about	it.

So,	what	goes	on	is	that	three	threads	start	running,	so	we	get	three	Hi,	I	am...
messages	printed	out.	Once	all	three	of	them	are	running,	the	pool	is	at	capacity,
so	we	need	to	wait	for	at	least	one	thread	to	complete	before	anything	else	can
happen.	In	the	example	run,	T0	and	T2	complete	(which	is	signaled	by	the	printing
of	what	they	returned),	so	they	return	to	the	pool	and	can	be	used	again.	They	get
run	with	names	T3	and	T4,	and	finally	all	three,	T1,	T3,	and	T4	complete.	You	can
see	from	the	output	how	the	threads	are	actually	reused,	and	how	the	first	two
are	reassigned	to	T3	and	T4	after	they	complete.

Let's	now	see	the	same	example,	but	with	the	multiprocess	design:

#	pool_proc.py

from	concurrent.futures	import	ProcessPoolExecutor,	as_completed

from	random	import	randint

from	time	import	sleep

def	run(name):

				sleep(.05)

				value	=	randint(0,	10**2)

				print(f'Hi,	I	am	{name}	and	my	value	is	{value}')

				return	(name,	value)

with	ProcessPoolExecutor(max_workers=3)	as	executor:

				futures	=	[

								executor.submit(run,	f'P{name}')	for	name	in	range(5)

]

				for	future	in	as_completed(futures):

								name,	value	=	future.result()

								print(f'Process	{name}	returned	{value}')

The	difference	is	truly	minimal.	We	use	ProcessPoolExecutor	this	time,	and	the	run
function	is	exactly	the	same,	with	one	small	addition:	we	sleep	for	50
milliseconds	at	the	beginning	of	each	run.	This	is	to	exacerbate	the	behavior	and
have	the	output	clearly	show	the	size	of	the	pool,	which	is	still	three.	If	we	run
the	example,	we	get:

$	python	pool_proc.py

Hi,	I	am	P0	and	my	value	is	19

Hi,	I	am	P1	and	my	value	is	97

Hi,	I	am	P2	and	my	value	is	74

Process	P0	returned	19

Process	P1	returned	97

Process	P2	returned	74

Hi,	I	am	P3	and	my	value	is	80

Hi,	I	am	P4	and	my	value	is	68

Process	P3	returned	80

Process	P4	returned	68

This	output	clearly	shows	the	pool	size	being	three.	It	is	very	interesting	to
notice	that	if	we	remove	that	call	to	sleep,	most	of	the	time	the	output	will	have
five	prints	of	Hi,	I	am...,	followed	by	five	prints	of	Process	Px	returned....	How	can
we	explain	that?	Well	it's	simple.	By	the	time	the	first	three	processes	are	done,
and	returned	by	as_completed,	all	three	are	asked	for	their	result,	and	whatever	is
returned,	is	printed.	While	this	happens,	the	executor	can	already	start	recycling
two	processes	to	run	the	final	two	tasks,	and	they	happen	to	print	their	Hi,	I	am...
messages,	before	the	prints	in	the	for	loop	are	allowed	to	take	place.

This	basically	means	ProcessPoolExecutor	is	quite	fast	and	aggressive	(in	terms	of
getting	the	scheduler's	attention),	and	it's	worth	noting	that	this	behavior	doesn't
happen	with	the	thread	counterpart,	in	which,	if	you	recall,	we	didn't	need	to	use
any	artificial	sleeping.

The	important	thing	to	keep	in	mind	though,	is	being	able	to	appreciate	that	even

simple	examples	such	as	these	can	already	be	slightly	tricky	to	understand	or
explain.	Let	this	be	a	lesson	to	you,	so	that	you	raise	your	attention	to	110%
when	you	code	for	multithreaded	or	multiprocess	designs.

Let's	now	move	on	to	a	more	interesting	example.

Using	a	process	to	add	a	timeout	to	a
function
Most,	if	not	all,	libraries	that	expose	functions	to	make	HTTP	requests,	provide
the	ability	to	specify	a	timeout	when	performing	the	request.	This	means	that	if
after	X	seconds	(X	being	the	timeout),	the	request	hasn't	completed,	the	whole
operation	is	aborted	and	execution	resumes	from	the	next	instruction.	Not	all
functions	expose	this	feature	though,	so,	when	a	function	doesn't	provide	the
ability	to	being	interrupted,	we	can	use	a	process	to	simulate	that	behavior.	In
this	example,	we'll	be	trying	to	translate	a	hostname	into	an	IPv4	address.	The
gethostbyname	function,	from	the	socket	module,	doesn't	allow	us	to	put	a	timeout
on	the	operation	though,	so	we	use	a	process	to	do	that	artificially.	The	code	that
follows	might	not	be	so	straightforward,	so	I	encourage	you	to	spend	some	time
going	through	it	before	you	read	on	for	the	explanation:

#	hostres/util.py

import	socket

from	multiprocessing	import	Process,	Queue

def	resolve(hostname,	timeout=5):

				exitcode,	ip	=	resolve_host(hostname,	timeout)

				if	exitcode	==	0:

								return	ip

				else:

								return	hostname

def	resolve_host(hostname,	timeout):

				queue	=	Queue()

				proc	=	Process(target=gethostbyname,	args=(hostname,	queue))

				proc.start()

				proc.join(timeout=timeout)

				if	queue.empty():

								proc.terminate()

								ip	=	None

				else:

								ip	=	queue.get()

				return	proc.exitcode,	ip

def	gethostbyname(hostname,	queue):

				ip	=	socket.gethostbyname(hostname)

				queue.put(ip)

Let's	start	from	resolve.	It	simply	takes	a	hostname	and	a	timeout,	and	calls
resolve_host	with	them.	If	the	exit	code	is	0	(which	means	the	process	terminated

correctly),	it	returns	the	IPv4	that	corresponds	to	that	host.	Otherwise,	it	returns
the	hostname	itself,	as	a	fallback	mechanism.

Next,	let's	talk	about	gethostbyname.	It	takes	a	hostname	and	a	queue,	and	calls
socket.gethostbyname	to	resolve	the	hostname.	When	the	result	is	available,	it	is	put
into	the	queue.	Now,	this	is	where	the	issue	lies.	If	the	call	to	socket.gethostbyname
takes	longer	than	the	timeout	we	want	to	assign,	we	need	to	kill	it.

The	resolve_host	function	does	exactly	this.	It	receives	the	hostname	and	the	timeout,
and,	at	first,	it	simply	creates	a	queue.	Then	it	spawns	a	new	process	that	takes
gethostbyname	as	the	target,	and	passes	the	appropriate	arguments.	Then	the	process
is	started	and	joined	on,	but	with	a	timeout.

Now,	the	successful	scenario	is	this:	the	call	to	socket.gethostbyname	succeeds
quickly,	the	IP	is	in	the	queue,	the	process	terminates	well	before	its	timeout
time,	and	when	we	get	to	the	if	part,	the	queue	will	not	be	empty.	We	fetch	the	IP
from	it,	and	return	it,	alongside	the	process	exit	code.

In	the	unsuccessful	scenario,	the	call	to	socket.gethostbyname	takes	too	long,	and	the
process	is	killed	after	its	timeout	has	expired.	Because	the	call	failed,	no	IP	has
been	inserted	in	the	queue,	and	therefore	it	will	be	empty.	In	the	if	logic,	we
therefore	set	the	IP	to	None,	and	return	as	before.	The	resolve	function	will	find
that	the	exit	code	is	not	0	(as	the	process	didn't	terminate	happily,	but	was	killed
instead),	and	will	correctly	return	the	hostname	instead	of	the	IP,	which	we
couldn't	get	anyway.

In	the	source	code	of	the	book,	in	the	hostres	folder	of	this	chapter,	I	have	added
some	tests	to	make	sure	this	behavior	is	actually	correct.	You	can	find
instructions	on	how	to	run	them	in	the	README.md	file	in	the	folder.	Make	sure	you
check	the	test	code	too,	it	should	be	quite	interesting.

Case	examples
In	this	final	part	of	the	chapter,	I	am	going	to	show	you	three	case	examples	in
which	we'll	see	how	to	do	the	same	thing	by	employing	different	approaches
(single-thread,	multithread,	and	multiprocess).	Finally,	I'll	dedicate	a	few	words
to	asyncio,	a	module	that	introduces	yet	another	way	of	doing	asynchronous
programming	in	Python.

	

Example	one	–	concurrent	mergesort
	

The	first	example	will	revolve	around	the	mergesort	algorithm.	This	sorting
algorithm	is	based	on	the	divide	et	impera	(divide	and	conquer)	design
paradigm.	The	way	it	works	is	very	simple.	You	have	a	list	of	numbers	you	want
to	sort.	The	first	step	is	to	divide	the	list	into	two	parts,	sort	them,	and	merge	the
results	back	into	one	sorted	list.	Let	me	give	you	a	simple	example	with	six
numbers.	Imagine	we	have	a	list,	v=[8,	5,	3,	9,	0,	2].	The	first	step	would	be	to
divide	the	list,	v,	into	two	sublists	of	three	numbers:	v1=[8,	5,	3]	and	v2=[9,	0,	2].
Then	we	sort	v1	and	v2	by	recursively	calling	mergesort	on	them.	The	result
would	be	v1=[3,	5,	8]	and	v2=[0,	2,	9].	In	order	to	combine	v1	and	v2	back	into	a
sorted	v,	we	simply	consider	the	first	item	in	both	lists,	and	pick	the	minimum	of
those.	The	first	iteration	would	compare	3	and	0.	We	pick	0,	leaving	v2=[2,	9].
Then	we	rinse	and	repeat:	we	compare	3	and	2,	we	pick	2,	so	now	v2=[9].	Then	we
compare	3	and	9.	This	time	we	pick	3,	leaving	v1=[5,	8],	and	so	on	and	so	forth.
Next	we	would	pick	5	(5	versus	9),	then	8	(8	versus	9),	and	finally	9.	This	would
give	us	a	new,	sorted	version	of	v:	v=[0,	2,	3,	5,	8,	9].

The	reason	why	I	chose	this	algorithm	as	an	example	is	twofold.	First,	it	is	easy
to	parallelize.	You	split	the	list	in	two,	have	two	processes	work	on	them,	and
then	collect	the	results.	Second,	it	is	possible	to	amend	the	algorithm	so	that	it
splits	the	initial	list	into	any	N	≥	2,	and	assigns	those	parts	to	N	processes.
Recombination	is	as	simple	as	dealing	with	just	two	parts.	This	characteristic
makes	it	a	good	candidate	for	a	concurrent	implementation.

	

	

	

Single-thread	mergesort
Let's	see	how	all	this	translates	into	code,	starting	by	learning	how	to	code	our
own	homemade	mergesort:	#	ms/algo/mergesort.py
def	sort(v):
if	len(v)	<=	1:
return	v
mid	=	len(v)	//	2
v1,	v2	=	sort(v[:mid]),	sort(v[mid:])
return	merge(v1,	v2)

def	merge(v1,	v2):
v	=	[]
h	=	k	=	0
len_v1,	len_v2	=	len(v1),	len(v2)
while	h	<	len_v1	or	k	<	len_v2:
if	k	==	len_v2	or	(h	<	len_v1	and	v1[h]	<	v2[k]):
v.append(v1[h])
h	+=	1
else:
v.append(v2[k])
k	+=	1
return	v

Let's	start	from	the	sort	function.	First	we	encounter	the	base	of	the	recursion,
which	says	that	if	the	list	has	0	or	1	elements,	we	don't	need	to	sort	it,	we	can
simply	return	it	as	it	is.	If	that	is	not	the	case,	then	we	calculate	the	midpoint
(mid),	and	recursively	call	sort	on	v[:mid]	and	v[mid:].	I	hope	you	are	by	now	very
familiar	with	the	slicing	syntax,	but	just	in	case	you	need	a	refresher,	the	first
one	is	all	elements	in	v	up	to	the	mid	index	(excluded),	and	the	second	one	is	all
elements	from	mid	to	the	end.	The	results	of	sorting	them	are	assigned
respectively	to	v1	and	v2.	Finally,	we	call	merge,	passing	v1	and	v2.

The	logic	of	merge	uses	two	pointers,	h	and	k,	to	keep	track	of	which	elements	in
v1	and	v2	we	have	already	compared.	If	we	find	that	the	minimum	is	in	v1,	we

append	it	to	v,	and	increase	h.	On	the	other	hand,	if	the	minimum	is	in	v2,	we
append	it	to	v	but	increase	k	this	time.	The	procedure	is	running	in	a	while	loop
whose	condition,	combined	with	the	inner	if,	makes	sure	we	don't	get	errors	due
to	indexes	out	of	bounds.	It's	a	pretty	standard	algorithm	that	you	can	find	in
many	different	variations	on	the	web.

In	order	to	make	sure	this	code	is	solid,	I	have	written	a	test	suite	that	resides	in
the	ch10/ms	folder.	I	encourage	you	to	check	it	out.

Now	that	we	have	the	building	blocks,	let's	see	how	we	modify	this	to	make	it	so
that	it	works	with	an	arbitrary	number	of	parts.

Single-thread	multipart	mergesort
The	code	for	the	multipart	version	of	the	algorithm	is	quite	simple.	We	can	reuse
the	merge	function,	but	we'll	have	to	rewrite	the	sort	one:

#	ms/algo/multi_mergesort.py

from	functools	import	reduce

from	.mergesort	import	merge

def	sort(v,	parts=2):

				assert	parts	>	1,	'Parts	need	to	be	at	least	2.'

				if	len(v)	<=	1:

								return	v

				chunk_len	=	max(1,	len(v)	//	parts)

				chunks	=	(

								sort(v[k:	k	+	chunk_len],	parts=parts)

								for	k	in	range(0,	len(v),	chunk_len)

)

				return	multi_merge(*chunks)

def	multi_merge(*v):

				return	reduce(merge,	v)

We	saw	reduce	in	Chapter	4,	Functions,	the	Building	Blocks	of	Code,	when	we
coded	our	own	factorial	function.	The	way	it	works	within	multi_merge	is	to	merge
the	first	two	lists	in	v.	Then	the	result	is	merged	with	the	third	one,	after	which
the	result	is	merged	with	the	fourth	one,	and	so	on.

Take	a	look	at	the	new	version	of	sort.	It	takes	the	v	list,	and	the	number	of	parts
we	want	to	split	it	into.	The	first	thing	we	do	is	check	that	we	passed	a	correct
number	for	parts,	which	needs	to	be	at	least	two.	Then,	like	before,	we	have	the
base	of	the	recursion.	And	finally	we	get	into	the	main	logic	of	the	function,
which	is	simply	a	multipart	version	of	the	one	we	saw	in	the	previous	example.
We	calculate	the	length	of	each	chunk	using	the	max	function,	just	in	case	there	are
fewer	elements	in	the	list	than	parts.	And	then	we	write	a	generator	expression
that	calls	sort	recursively	on	each	chunk.	Finally,	we	merge	all	the	results	by
calling	multi_merge.

I	am	aware	that	in	explaining	this	code,	I	haven't	been	as	exhaustive	as	I	usually
am,	and	I'm	afraid	it	is	on	purpose.	The	example	that	comes	after	the	mergesort
will	be	much	more	complex,	so	I	would	like	to	encourage	you	to	really	try	to
understand	the	previous	two	snippets	as	thoroughly	as	you	can.

Now,	let's	take	this	example	to	the	next	step:	multithreading.

Multithreaded	mergesort
In	this	example,	we	amend	the	sort	function	once	again,	so	that,	after	the	initial
division	into	chunks,	it	spawns	a	thread	per	part.	Each	thread	uses	the	single-
threaded	version	of	the	algorithm	to	sort	its	part,	and	then	at	the	end	we	use	the
multi-merge	technique	to	calculate	the	final	result.	Translating	into	Python:

#	ms/algo/mergesort_thread.py

from	functools	import	reduce

from	math	import	ceil

from	concurrent.futures	import	ThreadPoolExecutor,	as_completed

from	.mergesort	import	sort	as	_sort,	merge

def	sort(v,	workers=2):

				if	len(v)	==	0:

								return	v

				dim	=	ceil(len(v)	/	workers)

				chunks	=	(v[k:	k	+	dim]	for	k	in	range(0,	len(v),	dim))

				with	ThreadPoolExecutor(max_workers=workers)	as	executor:

								futures	=	[

												executor.submit(_sort,	chunk)	for	chunk	in	chunks

]

								return	reduce(

												merge,

												(future.result()	for	future	in	as_completed(futures))

)

We	import	all	the	required	tools,	including	executors,	the	ceiling	function,	and
sort	and	merge	from	the	single-threaded	version	of	the	algorithm.	Notice	how	I
changed	the	name	of	the	single-threaded	sort	into	_sort	upon	importing	it.

In	this	version	of	sort,	we	check	whether	v	is	empty	first,	and	if	not	we	proceed.
We	calculate	the	dimension	of	each	chunk	using	the	ceil	function.	It's	basically
doing	what	we	were	doing	with	max	in	the	previous	snippet,	but	I	wanted	to	show
you	another	way	to	solve	the	issue.

When	we	have	the	dimension,	we	calculate	the	chunks	and	prepare	a	nice
generator	expression	to	serve	them	to	the	executor.	The	rest	is	straightforward:
we	define	a	list	of	future	objects,	each	of	which	is	the	result	of	calling	submit	on
the	executor.	Each	future	object	runs	the	single-threaded	_sort	algorithm	on	the
chunk	it	has	been	assigned	to.

Finally	as	they	are	returned	by	the	as_completed	function,	the	results	are	merged
using	the	same	technique	we	saw	in	the	earlier	multipart	example.

Multiprocess	mergesort
To	perform	the	final	step,	we	need	to	amend	only	two	lines	in	the	previous	code.
If	you	have	paid	attention	in	the	introductory	examples,	you	will	know	which	of
the	two	lines	I	am	referring	to.	In	order	to	save	some	space,	I'll	just	give	you	the
diff	of	the	code:

#	ms/algo/mergesort_proc.py

...

from	concurrent.futures	import	ProcessPoolExecutor,	as_completed

...

def	sort(v,	workers=2):

				...

				with	ProcessPoolExecutor(max_workers=workers)	as	executor:

				...

That's	it!	Basically	all	you	have	to	do	is	use	ProcessPoolExecutor	instead	of
ThreadPoolExecutor,	and	instead	of	spawning	threads,	you	are	spawning	processes.

Do	you	recall	when	I	was	saying	that	processes	can	actually	run	on	different
cores,	while	threads	run	within	the	same	process	so	they	are	not	actually	running
in	parallel?	This	is	a	good	example	to	show	you	a	consequence	of	choosing	one
approach	or	the	other.	Because	the	code	is	CPU-intensive,	and	there	is	no	IO
going	on,	splitting	the	list	and	having	threads	working	the	chunks	doesn't	add
any	advantage.	On	the	other	hand,	using	processes	does.	I	have	run	some
performance	tests	(run	the	ch10/ms/performance.py	module	by	yourself	and	you	will
see	how	your	machine	performs)	and	the	results	prove	my	expectations:

$	python	performance.py

Testing	Sort

Size:	100000

Elapsed	time:	0.492s

Size:	500000

Elapsed	time:	2.739s

Testing	Sort	Thread

Size:	100000

Elapsed	time:	0.482s

Size:	500000

Elapsed	time:	2.818s

Testing	Sort	Proc

Size:	100000

Elapsed	time:	0.313s

Size:	500000

Elapsed	time:	1.586s

The	two	tests	are	run	on	two	lists	of	100,000	and	500,000	items,	respectively.
And	I	am	using	four	workers	for	the	multithreaded	and	multiprocessing	versions.
Using	different	sizes	is	quite	useful	when	looking	for	patterns.	As	you	can	see,
the	time	elapsed	is	basically	the	same	for	the	first	two	versions	(single-threaded,
and	multithreaded),	but	they	are	reduced	by	about	50%	for	the	multiprocessing
version.	It's	slightly	more	than	50%	because	having	to	spawn	processes,	and
handle	them,	comes	at	a	price.	But	still,	you	can	definitely	appreciate	that	I	have
a	processor	with	two	cores	on	my	machine.

This	also	tells	you	that	even	though	I	used	four	workers	in	the	multiprocessing
version,	I	can	still	only	parallelize	proportionately	to	the	amount	of	cores	my
processor	has.	Therefore,	two	or	more	workers	makes	very	little	difference.

Now	that	you	are	all	warmed	up,	let's	move	on	to	the	next	example.

Example	two	–	batch	sudoku-solver
In	this	example,	we	are	going	to	explore	a	sudoku-solver.	We	are	not	going	to	go
into	much	detail	with	it,	as	the	point	is	not	that	of	understanding	how	to	solve
sudoku,	but	rather	to	show	you	how	to	use	multi-processing	to	solve	a	batch	of
sudoku	puzzles.

What	is	interesting	in	this	example,	is	that	instead	of	making	the	comparison
between	single	and	multithreaded	versions	again,	we're	going	to	skip	that	and
compare	the	single-threaded	version	with	two	different	multiprocess	versions.
One	will	assign	one	puzzle	per	worker,	so	if	we	solve	1,000	puzzles,	we'll	use
1,000	workers	(well,	we	will	use	a	pool	of	N	workers,	each	of	which	is
constantly	recycled).	The	other	version	will	instead	divide	the	initial	batch	of
puzzles	by	the	pool	size,	and	batch-solve	each	chunk	within	one	process.	This
means,	assuming	a	pool	size	of	four,	dividing	those	1,000	puzzles	into	chunks	of
250	puzzles	each,	and	giving	each	chunk	to	one	worker,	for	a	total	of	four	of
them.

The	code	I	will	present	to	you	for	the	sudoku-solver	(without	the	multiprocessing	part),	comes
from	a	solution	designed	by	Peter	Norvig,	which	has	been	distributed	under	the	MIT	license.
His	solution	is	so	efficient	that,	after	trying	to	re-implement	my	own	for	a	few	days,	and
getting	to	the	same	result,	I	simply	gave	up	and	decided	to	go	with	his	design.	I	did	do	a	lot	of
refactoring	though,	because	I	wasn't	happy	with	his	choice	of	function	and	variable	names,	so
I	made	those	more	book	friendly,	so	to	speak.	You	can	find	the	original	code,	a	link	to	the
original	page	from	which	I	got	it,	and	the	original	MIT	license,	in	the	ch10/sudoku/norvig	folder.
If	you	follow	the	link,	you'll	find	a	very	thorough	explanation	of	the	sudoku-solver	by	Norvig
himself.

What	is	Sudoku?
First	things	first.	What	is	a	sudoku	puzzle?	Sudoku	is	a	number-placement
puzzle	based	on	logic	that	originated	in	Japan.	The	objective	is	to	fill	a	9x9	grid
with	digits	so	that	each	row,	column,	and	box	(3x3	subgrids	that	compose	the
grid)	contains	all	of	the	digits	from	1	to	9.	You	start	from	a	partially	populated
grid,	and	add	number	after	number	using	logic	considerations.

Sudoku	can	be	interpreted,	from	a	computer	science	perspective,	as	a	problem
that	fits	in	the	exact	cover	category.	Donald	Knuth,	the	author	of	The	Art	of
Computer	Programming	(and	many	other	wonderful	books),	has	devised	an
algorithm,	called	Algorithm	X,	to	solve	problems	in	this	category.	A	beautiful
and	efficient	implementation	of	Algorithm	X,	called	Dancing	Links,	which
harnesses	the	power	of	circular	doubly-linked	lists,	can	be	used	to	solve	sudoku.
The	beauty	of	this	approach	is	that	all	it	requires	is	a	mapping	between	the
structure	of	the	sudoku,	and	the	Dancing	Links	algorithm,	and	without	having	to
do	any	of	the	logic	deductions	normally	needed	to	solve	the	puzzle,	it	gets	to	the
solution	at	the	speed	of	light.

Many	years	ago,	when	my	free	time	was	a	number	greater	than	zero,	I	wrote	a
Dancing	Links	sudoku-solver	in	C#,	which	I	still	have	archived	somewhere,
which	was	great	fun	to	design	and	code.	I	definitely	encourage	you	to	check	out
the	literature	and	code	your	own	solver,	it's	a	great	exercise,	if	you	can	spare	the
time.

In	this	example's	solution	though,	we're	going	to	use	a	search	algorithm	used	in
conjunction	with	a	process	that,	in	artificial	intelligence,	is	known	as	constraint
propagation.	The	two	are	quite	commonly	used	together	to	make	a	problem
simpler	to	solve.	We'll	see	that	in	our	example,	they	are	enough	for	us	to	be	able
to	solve	a	difficult	sudoku	in	a	matter	of	milliseconds.

Implementing	a	sudoku-solver	in
Python
Let's	now	explore	my	refactored	implementation	of	the	solver.	I'm	going	to
present	the	code	to	you	in	steps,	as	it	is	quite	involved	(also,	I	won't	repeat	the
source	name	at	the	top	of	each	snippet,	until	I	move	to	another	module):

#	sudoku/algo/solver.py

import	os

from	itertools	import	zip_longest,	chain

from	time	import	time

def	cross_product(v1,	v2):

				return	[w1	+	w2	for	w1	in	v1	for	w2	in	v2]

def	chunk(iterable,	n,	fillvalue=None):

				args	=	[iter(iterable)]	*	n

				return	zip_longest(*args,	fillvalue=fillvalue)

We	start	with	some	imports,	and	then	we	define	a	couple	of	useful	functions:
cross_product	and	chunk.	They	do	exactly	what	the	names	hint	at.	The	first	one
returns	the	cross-product	between	two	iterables,	while	the	second	one	returns	a
list	of	chunks	from	iterable,	each	of	which	has	n	elements,	and	the	last	of	which
might	be	padded	with	a	given	fillvalue,	should	the	length	of	iterable	not	be	a
multiple	of	n.	Then	we	proceed	to	define	a	few	structures,	which	will	be	used	by
the	solver:

digits	=	'123456789'

rows	=	'ABCDEFGHI'

cols	=	digits

squares	=	cross_product(rows,	cols)

all_units	=	(

				[cross_product(rows,	c)	for	c	in	cols]

				+	[cross_product(r,	cols)	for	r	in	rows]

				+	[cross_product(rs,	cs)

								for	rs	in	chunk(rows,	3)	for	cs	in	chunk(cols,	3)]

)

units	=	dict(

				(square,	[unit	for	unit	in	all_units	if	square	in	unit])

				for	square	in	squares

)

peers	=	dict(

				(square,	set(chain(*units[square]))	-	set([square]))

				for	square	in	squares

)

Without	going	too	much	into	detail,	let's	hover	over	these	objects.	squares	is	a	list

of	all	squares	in	the	grid.	Squares	are	represented	by	a	string	such	as	A3	or	C7.
Rows	are	numbered	with	letters,	and	columns	with	numbers,	so	A3	will	indicate
the	square	in	the	first	row,	and	third	column.

all_units	is	a	list	of	all	possible	rows,	columns,	and	blocks.	Each	of	those
elements	is	represented	as	a	list	of	the	squares	that	belong	to	the
row/column/block.	units	is	a	more	complex	structure.	It	is	a	dictionary	with	81
keys.	Each	key	represents	a	square,	and	the	corresponding	value	is	a	list	with
three	elements	in	it:	a	row,	a	column,	and	a	block.	Of	course,	those	are	the	row,
column,	and	block	that	the	square	belongs	to.

Finally,	peers	is	a	dictionary	very	similar	to	units,	but	the	value	of	each	key
(which	still	represents	a	square),	is	a	set	containing	all	peers	for	that	square.
Peers	are	defined	as	all	the	squares	belonging	to	the	row,	column,	and	block	the
square	in	the	key	belongs	to.	These	structures	will	be	used	in	the	calculation	of
the	solution,	when	attempting	to	solve	a	puzzle.

Before	we	take	a	look	at	the	function	that	parses	the	input	lines,	let	me	give	you
an	example	of	what	an	input	puzzle	looks	like:

1..3.......75...3..3.4.8.2...47....9.........689....4..5..178.4.....2.75.......1.

The	first	nine	characters	represent	the	first	row,	then	another	nine	for	the	second
row,	and	so	on.	Empty	squares	are	represented	by	dots:

def	parse_puzzle(puzzle):

				assert	set(puzzle)	<=	set('.0123456789')

				assert	len(puzzle)	==	81

				grid	=	dict((square,	digits)	for	square	in	squares)

				for	square,	digit	in	zip(squares,	puzzle):

								if	digit	in	digits	and	not	place(grid,	square,	digit):

												return	False		#	Incongruent	puzzle

				return	grid

def	solve(puzzle):

				grid	=	parse_puzzle(puzzle)

				return	search(grid)

This	simple	parse_puzzle	function	is	used	to	parse	an	input	puzzle.	We	do	a	little
bit	of	sanity	checking	at	the	beginning,	asserting	that	the	input	puzzle	has	to
shrink	into	a	set	that	is	a	subset	of	the	set	of	all	numbers	plus	a	dot.	Then	we
make	sure	we	have	81	input	characters,	and	finally	we	define	grid,	which	initially
is	simply	a	dictionary	with	81	keys,	each	of	which	is	a	square,	all	with	the	same

value,	which	is	a	string	of	all	possible	digits.	This	is	because	a	square	in	a
completely	empty	grid	has	the	potential	to	become	any	number	from	1	to	9.
The	for	loop	is	definitely	the	most	interesting	part.	We	parse	each	of	the	81
characters	in	the	input	puzzle,	coupling	them	with	the	corresponding	square	in
the	grid,	and	we	try	to	"place"	them.	I	put	that	in	double	quotes	because,	as	we'll
see	in	a	moment,	the	place	function	does	much	more	than	simply	setting	a	given
number	in	a	given	square.	If	we	find	that	we	cannot	place	a	digit	from	the	input
puzzle,	it	means	the	input	is	invalid,	and	we	return	False.	Otherwise,	we're	good
to	go	and	we	return	the	grid.

parse_puzzle	is	used	in	the	solve	function,	which	simply	parses	the	input	puzzle,
and	unleashes	search	on	it.	What	follows	is	therefore	the	heart	of	the	algorithm:

def	search(grid):

				if	not	grid:

								return	False

				if	all(len(grid[square])	==	1	for	square	in	squares):

								return	grid		#	Solved

				values,	square	=	min(

								(len(grid[square]),	square)	for	square	in	squares

								if	len(grid[square])	>	1

)

				for	digit	in	grid[square]:

								result	=	search(place(grid.copy(),	square,	digit))

								if	result:

												return	result

This	simple	function	first	checks	whether	the	grid	is	actually	non-empty.	Then	it
tries	to	see	whether	the	grid	is	solved.	A	solved	grid	will	have	one	value	per
square.	If	that	is	not	the	case,	it	loops	through	each	square	and	finds	the	square
with	the	minimum	amount	of	candidates.	If	a	square	has	a	string	value	of	only
one	digit,	it	means	a	number	has	been	placed	in	that	square.	But	if	the	value	is
more	than	one	digit,	then	those	are	possible	candidates,	so	we	need	to	find	the
square	with	the	minimum	amount	of	candidates,	and	try	them.	Trying	a	square
with	23	candidates	is	much	better	than	trying	one	with	23589.	In	the	first	case,	we
have	a	50%	chance	of	getting	the	right	value,	while	in	the	second	one,	we	only
have	20%.	Choosing	the	square	with	the	minimum	amount	of	candidates
therefore	maximizes	the	chances	for	us	to	place	good	numbers	in	the	grid.

Once	the	candidates	have	been	found,	we	try	them	in	order	and	if	any	of	them
results	in	being	successful,	we	have	solved	the	grid	and	we	return.	You	might
have	noticed	the	use	of	the	place	function	in	the	search	too.	So	let's	explore	its
code:

def	place(grid,	square,	digit):

				"""Eliminate	all	the	other	values	(except	digit)	from

				grid[square]	and	propagate.

				Return	grid,	or	False	if	a	contradiction	is	detected.

				"""

				other_vals	=	grid[square].replace(digit,	'')

				if	all(eliminate(grid,	square,	val)	for	val	in	other_vals):

								return	grid

				return	False

This	function	takes	a	work-in-progress	grid,	and	tries	to	place	a	given	digit	in	a
given	square.	As	I	mentioned	before,	"placing"	is	not	that	straightforward.	In
fact,	when	we	place	a	number,	we	have	to	propagate	the	consequences	of	that
action	throughout	the	grid.	We	do	that	by	calling	the	eliminate	function,	which
applies	two	strategies	of	the	sudoku	game:

If	a	square	has	only	one	possible	value,	eliminate	that	value	from	the
square's	peers
If	a	unit	has	only	one	place	for	a	value,	place	the	value	there

Let	me	briefly	offer	an	example	of	both	points.	For	the	first	one,	if	you	place,
say,	number	7	in	a	square,	then	you	can	eliminate	7	from	the	list	of	candidates
for	all	the	squares	that	belong	to	the	row,	column,	and	block	that	square	belongs
to.

For	the	second	point,	say	you're	examining	the	fourth	row	and,	of	all	the	squares
that	belong	to	it,	only	one	of	them	has	number	7	in	its	candidates.	This	means
that	number	7	can	only	go	in	that	precise	square,	so	you	should	go	ahead	and
place	it	there.

The	following	function,	eliminate,	applies	these	two	rules.	Its	code	is	quite
involved,	so	instead	of	going	line	by	line	and	offering	an	excruciating
explanation,	I	have	added	some	comments,	and	will	leave	you	with	the	task	of
understanding	it:

def	eliminate(grid,	square,	digit):

				"""Eliminate	digit	from	grid[square].	Propagate	when	candidates

				are	<=	2.

				Return	grid,	or	False	if	a	contradiction	is	detected.

				"""

				if	digit	not	in	grid[square]:

								return	grid		#	already	eliminated

				grid[square]	=	grid[square].replace(digit,	'')

				##	(1)	If	a	square	is	reduced	to	one	value,	eliminate	value

				##	from	peers.

				if	len(grid[square])	==	0:

								return	False		#	nothing	left	to	place	here,	wrong	solution

				elif	len(grid[square])	==	1:

								value	=	grid[square]

								if	not	all(

												eliminate(grid,	peer,	value)	for	peer	in	peers[square]

):

												return	False

				##	(2)	If	a	unit	is	reduced	to	only	one	place	for	a	value,

				##	then	put	it	there.

				for	unit	in	units[square]:

								places	=	[sqr	for	sqr	in	unit	if	digit	in	grid[sqr]]

								if	len(places)	==	0:

												return	False		#	No	place	for	this	value

								elif	len(places)	==	1:

												#	digit	can	only	be	in	one	place	in	unit,

												#	assign	it	there

												if	not	place(grid,	places[0],	digit):

																return	False

				return	grid

The	rest	of	the	functions	in	the	module	aren't	important	for	the	rest	of	this
example,	so	I	will	skip	them.	You	can	run	this	module	by	itself;	it	will	first
perform	a	series	of	checks	on	its	data	structures,	and	then	it	will	solve	all	the
sudoku	puzzles	I	have	placed	in	the	sudoku/puzzles	folder.	But	that	is	not	what
we're	interested	in,	right?	We	want	to	see	how	to	solve	sudoku	using
multiprocessing	techniques,	so	let's	get	to	it.

Solving	sudoku	with	multiprocessing
In	this	module,	we're	going	to	implement	three	functions.	The	first	one	simply
solves	a	batch	of	sudoku	puzzles,	with	no	multiprocessing	involved.	We	will	use
the	results	for	benchmarking.	The	second	and	the	third	ones	will	use
multiprocessing,	with	and	without	batch-solving,	so	we	can	appreciate	the
differences.	Let's	start:

#	sudoku/process_solver.py

import	os

from	functools	import	reduce

from	operator	import	concat

from	math	import	ceil

from	time	import	time

from	contextlib	import	contextmanager

from	concurrent.futures	import	ProcessPoolExecutor,	as_completed

from	unittest	import	TestCase

from	algo.solver	import	solve

@contextmanager

def	timer():

				t	=	time()

				yield

				tot	=	time()	-	t

				print(f'Elapsed	time:	{tot:.3f}s')

After	a	long	list	of	imports,	we	define	a	context	manager	that	we're	going	to	use
as	a	timer	device.	It	takes	a	reference	to	the	current	time	(t),	and	then	it	yields.
After	having	yielded,	that's	when	the	body	of	the	managed	context	is	executed.
Finally,	on	exiting	the	managed	context,	we	calculate	tot,	which	is	the	total
amount	of	time	elapsed,	and	print	it.	It's	a	simple	and	elegant	context	manager
written	with	the	decoration	technique,	and	it's	super	fun.	Let's	now	see	the	three
functions	I	mentioned	earlier:

def	batch_solve(puzzles):

				#	Single	thread	batch	solve.

				return	[solve(puzzle)	for	puzzle	in	puzzles]

This	one	is	a	single-threaded	simple	batch	solver,	which	will	give	us	a	time	to
compare	against.	It	simply	returns	a	list	of	all	solved	grids.	Boring.	Now,	check
out	the	following	code:

def	parallel_single_solver(puzzles,	workers=4):

				#	Parallel	solve	-	1	process	per	each	puzzle

				with	ProcessPoolExecutor(max_workers=workers)	as	executor:

								futures	=	(

												executor.submit(solve,	puzzle)	for	puzzle	in	puzzles

)

								return	[

												future.result()	for	future	in	as_completed(futures)

]

This	one	is	much	better.	It	uses	ProcessPoolExecutor	to	use	a	pool	of	workers,	each	of
which	is	used	to	solve	roughly	one-fourth	of	the	puzzles.	This	is	because	we	are
spawning	one	future	object	per	puzzle.	The	logic	is	extremely	similar	to	any
multiprocessing	example	we	have	already	seen	in	the	chapter.	Let's	see	the	third
function:

def	parallel_batch_solver(puzzles,	workers=4):

				#	Parallel	batch	solve	-	Puzzles	are	chunked	into	`workers`

				#	chunks.	A	process	for	each	chunk.

				assert	len(puzzles)	>=	workers

				dim	=	ceil(len(puzzles)	/	workers)

				chunks	=	(

								puzzles[k:	k	+	dim]	for	k	in	range(0,	len(puzzles),	dim)

)

				with	ProcessPoolExecutor(max_workers=workers)	as	executor:

								futures	=	(

												executor.submit(batch_solve,	chunk)	for	chunk	in	chunks

)

								results	=	(

												future.result()	for	future	in	as_completed(futures)

)

								return	reduce(concat,	results)

This	last	function	is	slightly	different.	Instead	of	spawning	one	future	object	per
puzzle,	it	splits	the	total	list	of	puzzles	into	workers	chunks,	and	then	creates	one
future	object	per	chunk.	This	means	that	if	workers	is	eight,	we're	going	to	spawn
eight	future	objects.	Notice	that	instead	of	passing	solve	to	executor.submit,	we're
passing	batch_solve,	which	does	the	trick.	The	reason	why	I	coded	the	last	two
functions	so	differently	is	because	I	was	curious	to	see	the	severity	of	the	impact
of	the	overhead	we	incur	into	when	we	recycle	processes	from	a	pool	a	non-
negligible	amount	of	times.

Now	that	we	have	the	functions	defined,	let's	use	them:

puzzles_file	=	os.path.join('puzzles',	'sudoku-topn234.txt')

with	open(puzzles_file)	as	stream:

				puzzles	=	[puzzle.strip()	for	puzzle	in	stream]

#	single	thread	solve

with	timer():

				res_batch	=	batch_solve(puzzles)

#	parallel	solve,	1	process	per	puzzle

with	timer():

				res_parallel_single	=	parallel_single_solver(puzzles)

#	parallel	batch	solve,	1	batch	per	process

with	timer():

				res_parallel_batch	=	parallel_batch_solver(puzzles)

#	Quick	way	to	verify	that	the	results	are	the	same,	but

#	possibly	in	a	different	order,	as	they	depend	on	how	the

#	processes	have	been	scheduled.

assert_items_equal	=	TestCase().assertCountEqual

assert_items_equal(res_batch,	res_parallel_single)

assert_items_equal(res_batch,	res_parallel_batch)

print('Done.')

We	use	a	set	of	234	very	hard	sudoku	puzzles	for	this	benchmarking	session.	As
you	can	see,	we	simply	run	the	three	functions,	batch_solve,	parallel_single_solver,
and	parallel_batch_solver,	all	within	a	timed	context.	We	collect	the	results,	and,
just	to	make	sure,	we	verify	that	all	the	runs	have	produced	the	same	results.

Of	course,	in	the	second	and	third	runs,	we	have	used	multiprocessing,	so	we
cannot	guarantee	that	the	order	in	the	results	will	be	the	same	as	that	of	the
single-threaded	batch_solve.	This	minor	issue	is	brilliantly	solved	with	the	aid	of
assertCountEqual,	one	of	the	worst-named	methods	in	the	Python	standard	library.
We	find	it	in	the	TestCase	class,	which	we	can	instantiate	just	to	take	a	reference	to
the	method	we	need.	We're	not	actually	running	unit	tests,	but	this	is	a	cool	trick,
and	I	wanted	to	show	it	to	you.	Let's	see	the	output	of	running	this	module:

$	python	process_solver.py

Elapsed	time:	5.368s

Elapsed	time:	2.856s

Elapsed	time:	2.818s

Done.	

Wow.	That	is	quite	interesting.	First	of	all,	you	can	once	again	see	that	my
machine	has	a	two-core	processor,	as	the	time	elapsed	for	the	multiprocessing
runs	is	about	half	the	time	taken	by	the	single-threaded	solver.	However,	what	is
actually	much	more	interesting	is	the	fact	that	there	is	basically	no	difference	in
the	time	taken	by	the	two	multiprocessing	functions.	Multiple	runs	sometimes
end	in	favor	of	one	approach,	and	sometimes	in	favor	of	the	other.
Understanding	why	requires	a	deep	understanding	of	all	the	components	that	are
taking	part	in	the	game,	not	just	the	processes,	and	therefore	is	not	something	we
can	discuss	here.	It	is	fairly	safe	to	say	though,	that	the	two	approaches	are
comparable	in	terms	of	performance.

In	the	source	code	for	the	book,	you	can	find	tests	in	the	sudoku	folder,	with
instructions	on	how	to	run	them.	Take	the	time	to	check	them	out!

And	now,	let's	get	to	the	final	example.

Example	three	–	downloading
random	pictures
This	example	has	been	fun	to	code.	We	are	going	to	download	random	pictures
from	a	website.	I'll	show	you	three	versions:	a	serial	one,	a	multiprocessing	one,
and	finally	a	solution	coded	using	asyncio.	In	these	examples,	we	are	going	to	use
a	website	called	http://lorempixel.com,	which	provides	you	with	an	API	that	you
can	call	to	get	random	images.	If	you	find	that	the	website	is	down	or	slow,	you
can	use	an	excellent	alternative	to	it:	https://lorempizza.com/.

It	may	be	something	of	a	cliché	for	a	book	written	by	an	Italian,	but	the	pictures
are	gorgeous.	You	can	search	for	another	alternative	on	the	web,	if	you	want	to
have	some	fun.	Whatever	website	you	choose,	please	be	sensible	and	try	not	to
hammer	it	by	making	a	million	requests	to	it.	The	multiprocessing	and	asyncio
versions	of	this	code	can	be	quite	aggressive!

Let's	start	by	exploring	the	single-threaded	version	of	the	code:

#	aio/randompix_serial.py

import	os

from	secrets	import	token_hex

import	requests

PICS_FOLDER	=	'pics'

URL	=	'http://lorempixel.com/640/480/'

def	download(url):

				resp	=	requests.get(URL)

				return	save_image(resp.content)

def	save_image(content):

				filename	=	'{}.jpg'.format(token_hex(4))

				path	=	os.path.join(PICS_FOLDER,	filename)

				with	open(path,	'wb')	as	stream:

								stream.write(content)

				return	filename

def	batch_download(url,	n):

				return	[download(url)	for	_	in	range(n)]

if	__name__	==	'__main__':

				saved	=	batch_download(URL,	10)

				print(saved)

This	code	should	be	straightforward	to	you	by	now.	We	define	a	download

http://lorempixel.com/
https://lorempizza.com/

function,	which	makes	a	request	to	the	given	URL,	saves	the	result	by	calling
save_image,	and	feeds	it	the	body	of	the	response	from	the	website.	Saving	the
image	is	very	simple:	we	create	a	random	filename	with	token_hex,	just	because
it's	fun,	then	we	calculate	the	full	path	of	the	file,	create	it	in	binary	mode,	and
write	into	it	the	content	of	the	response.	We	return	the	filename	to	be	able	to	print
it	on	screen.	Finally	batch_download	simply	runs	the	n	requests	we	want	to	run	and
returns	the	filenames	as	a	result.

You	can	leapfrog	the	if	__name__	...	line	for	now,	it	will	be	explained	in	Chapter	12,
GUIs	and	Scripts	and	it's	not	important	here.	All	we	do	is	call	batch_download	with
the	URL	and	we	tell	it	to	download	10	images.	If	you	have	an	editor,	open	the
pics	folder,	and	you	can	see	it	getting	populated	in	a	few	seconds	(also	notice:	the
script	assumes	the	pics	folder	exists).

Let's	spice	things	up	a	bit.	Let's	introduce	multiprocessing	(the	code	is	vastly
similar,	so	I	will	not	repeat	it):

#	aio/randompix_proc.py

...

from	concurrent.futures	import	ProcessPoolExecutor,	as_completed

...

def	batch_download(url,	n,	workers=4):

				with	ProcessPoolExecutor(max_workers=workers)	as	executor:

								futures	=	(executor.submit(download,	url)	for	_	in	range(n))

								return	[future.result()	for	future	in	as_completed(futures)]

...

The	technique	should	be	familiar	to	you	by	now.	We	simply	submit	jobs	to	the
executor,	and	collect	the	results	as	they	become	available.	Because	this	is	IO
bound	code,	the	processes	work	quite	fast	and	there	is	heavy	context-switching
while	the	processes	are	waiting	for	the	API	response.	If	you	have	a	view	over	the
pics	folder,	you	will	notice	that	it's	not	getting	populated	in	a	linear	fashion	any
more,	but	rather,	in	batches.

Let's	now	look	at	the	asyncio	version	of	this	example.

Downloading	random	pictures	with
asyncio
The	code	is	probably	the	most	challenging	of	the	whole	chapter,	so	don't	feel	bad
if	it	is	too	much	for	you	at	this	moment	in	time.	I	have	added	this	example	just	as
a	mouthwatering	device,	to	encourage	you	to	dig	deeper	into	the	heart	of	Python
asynchronous	programming.	Another	thing	worth	knowing	is	that	there	are
probably	several	other	ways	to	write	this	same	logic,	so	please	bear	in	mind	that
this	is	just	one	of	the	possible	examples.

The	asyncio	module	provides	infrastructure	for	writing	single-threaded,
concurrent	code	using	coroutines,	multiplexing	IO	access	over	sockets	and	other
resources,	running	network	clients	and	servers,	and	other	related	primitives.	It
was	added	to	Python	in	version	3.4,	and	some	claim	it	will	become	the	de	facto
standard	for	writing	Python	code	in	the	future.	I	don't	know	whether	that's	true,
but	I	know	it	is	definitely	worth	seeing	an	example:

#	aio/randompix_corout.py

import	os

from	secrets	import	token_hex

import	asyncio

import	aiohttp

First	of	all,	we	cannot	use	requests	any	more,	as	it	is	not	suitable	for	asyncio.	We
have	to	use	aiohttp,	so	please	make	sure	you	have	installed	it	(it's	in	the
requirements	for	the	book):

PICS_FOLDER	=	'pics'

URL	=	'http://lorempixel.com/640/480/'

async	def	download_image(url):

				async	with	aiohttp.ClientSession()	as	session:

								async	with	session.get(url)	as	resp:

												return	await	resp.read()

The	previous	code	does	not	look	too	friendly,	but	it's	not	so	bad,	once	you	know
the	concepts	behind	it.	We	define	the	async	coroutine	download_image,	which	takes
a	URL	as	parameter.

In	case	you	don't	know,	a	coroutine	is	a	computer	program	component	that	generalizes

subroutines	for	non-preemptive	multitasking,	by	allowing	multiple	entry	points	for	suspending
and	resuming	execution	at	certain	locations.	A	subroutine	is	a	sequence	of	program
instructions	that	performs	a	specific	task,	packaged	as	a	unit.

Inside	download_image,	we	create	a	session	object	using	the	ClientSession	context
manager,	and	then	we	get	the	response	by	using	another	context	manager,	this
time	from	session.get.	The	fact	that	these	managers	are	defined	as	asynchronous
simply	means	that	they	are	able	to	suspend	execution	in	their	enter	and	exit
methods.	We	return	the	content	of	the	response	by	using	the	await	keyword,
which	allows	suspension.	Notice	that	creating	a	session	for	each	request	is	not
optimal,	but	I	felt	that	for	the	purpose	of	this	example	I	would	keep	the	code	as
straightforward	as	possible,	so	I	leave	its	optimization	to	you,	as	an	exercise.

Let's	proceed	with	the	next	snippet:

async	def	download(url,	semaphore):

				async	with	semaphore:

								content	=	await	download_image(url)

				filename	=	save_image(content)

				return	filename

def	save_image(content):

				filename	=	'{}.jpg'.format(token_hex(4))

				path	=	os.path.join(PICS_FOLDER,	filename)

				with	open(path,	'wb')	as	stream:

								stream.write(content)

				return	filename

Another	coroutine,	download,	gets	a	URL	and	a	semaphore.	All	it	does	is	fetch	the
content	of	the	image,	by	calling	download_image,	saving	it,	and	returning	the
filename.	The	interesting	bit	here	is	the	use	of	that	semaphore.	We	use	it	as	an
asynchronous	context	manager,	so	that	we	can	suspend	this	coroutine	as	well,
and	allow	a	switch	to	something	else,	but	more	than	how,	it	is	important	to
understand	why	we	want	to	use	a	semaphore.	The	reason	is	simple,	this	semaphore	is
kind	of	the	equivalent	of	a	pool	of	threads.	We	use	it	to	allow	at	most	N
coroutines	to	be	active	at	the	same	time.	We	instantiate	it	in	the	next	function,
and	we	pass	10	as	the	initial	value.	Every	time	a	coroutine	acquires	the	semaphore,
its	internal	counter	is	decreased	by	1,	therefore	when	10	coroutines	have	acquired
it,	the	next	one	will	sit	and	wait,	until	the	semaphore	is	released	by	a	coroutine
that	has	completed.	This	is	a	nice	way	to	try	to	limit	how	aggressively	we	are
fetching	images	from	the	website	API.

The	save_image	function	is	not	a	coroutine,	and	its	logic	has	already	been
discussed	in	the	previous	examples.	Let's	now	get	to	the	part	of	the	code	where

execution	takes	place:

def	batch_download(images,	url):

				loop	=	asyncio.get_event_loop()

				semaphore	=	asyncio.Semaphore(10)

				cors	=	[download(url,	semaphore)	for	_	in	range(images)]

				res,	_	=	loop.run_until_complete(asyncio.wait(cors))

				loop.close()

				return	[r.result()	for	r	in	res]

if	__name__	==	'__main__':

				saved	=	batch_download(20,	URL)

				print(saved)

We	define	the	batch_download	function,	which	takes	a	number,	images,	and	the	URL
of	where	to	fetch	them.	The	first	thing	it	does	is	create	an	event	loop,	which	is
necessary	to	run	any	asynchronous	code.	The	event	loop	is	the	central	execution
device	provided	by	asyncio.	It	provides	multiple	facilities,	including:

Registering,	executing,	and	cancelling	delayed	calls	(timeouts)
Creating	client	and	server	transports	for	various	kinds	of	communication
Launching	subprocesses	and	the	associated	transports	for	communication
with	an	external	program
Delegating	costly	function	calls	to	a	pool	of	threads

After	the	event	loop	is	created,	we	instantiate	the	semaphore,	and	then	we
proceed	to	create	a	list	of	futures,	cors.	By	calling	loop.run_until_complete,	we	make
sure	the	event	loop	will	run	until	the	whole	task	has	been	completed.	We	feed	it
the	result	of	a	call	to	asyncio.wait,	which	waits	for	the	futures	to	complete.

When	done,	we	close	the	event	loop,	and	return	a	list	of	the	results	yielded	by
each	future	object	(the	filenames	of	the	saved	images).	Notice	how	we	capture
the	results	of	the	call	to	loop.run_until_complete.	We	don't	really	care	for	the	errors,
so	we	assign	_	to	the	second	item	in	the	tuple.	This	is	a	common	Python	idiom
used	when	we	want	to	signal	that	we're	not	interested	in	that	object.

At	the	end	of	the	module,	we	call	batch_download	and	we	get	20	images	saved.
They	come	in	batches,	and	the	whole	process	is	limited	by	a	semaphore	with
only	10	available	spots.

And	that's	it!	To	learn	more	about	asyncio,	please	refer	to	the	documentation	page
(https://docs.python.org/3.7/library/asyncio.html)	for	the	asyncio	module	on	the
standard	library.	This	example	was	fun	to	code,	and	hopefully	it	will	motivate

https://docs.python.org/3.7/library/asyncio.html

you	to	study	hard	and	understand	the	intricacies	of	this	wonderful	side	of
Python.

Summary
In	this	chapter,	we	learned	about	concurrency	and	parallelism.	We	saw	how
threads	and	processes	help	in	achieving	one	and	the	other.	We	explored	the
nature	of	threads	and	the	issues	that	they	expose	us	to:	race	conditions	and
deadlocks.

We	learned	how	to	solve	those	issues	by	using	locks	and	careful	resource
management.	We	also	learned	how	to	make	threads	communicate	and	share	data,
and	we	talked	about	the	scheduler,	which	is	that	part	of	the	operating	system	that
decides	which	thread	will	run	at	any	given	time.	We	then	moved	to	processes,
and	explored	a	bunch	of	their	properties	and	characteristics.

Following	the	initial	theoretical	part,	we	learned	how	to	implement	threads	and
processes	in	Python.	We	dealt	with	multiple	threads	and	processes,	fixed	race
conditions,	and	learned	workarounds	to	stop	threads	without	leaving	any
resource	open	by	mistake.	We	also	explored	IPC,	and	used	queues	to	exchange
messages	between	processes	and	threads.	We	also	played	with	events	and
barriers,	which	are	some	of	the	tools	provided	by	the	standard	library	to	control
the	flow	of	execution	in	a	non-deterministic	environment.

After	all	these	introductory	examples,	we	deep	dived	into	three	case	examples,
which	showed	how	to	solve	the	same	problem	using	different	approaches:
single-thread,	multithread,	multiprocess,	and	asyncio.

We	learned	about	mergesort	and	how,	in	general,	divide	and	conquer	algorithms
are	easy	to	parallelize.

We	learned	about	sudoku,	and	explored	a	nice	solution	that	uses	a	little	bit	of
artificial	intelligence	to	run	an	efficient	algorithm,	which	we	then	ran	in	different
serial	and	parallel	modes.

Finally,	we	saw	how	to	download	random	pictures	from	a	website,	using	serial,
multiprocess,	and	asyncio	code.	The	latter	was	by	far	the	hardest	piece	of	code	in
the	whole	book,	and	its	presence	in	the	chapter	serves	as	a	reminder,	or	some
sort	of	milestone	that	will	encourage	the	reader	to	learn	Python	well,	and	deeply.

Now	we'll	move	on	to	much	simpler,	and	mostly	project-oriented	chapters,
where	we	get	a	taste	of	different	real-world	applications	in	different	contexts.

Debugging	and	Troubleshooting
"If	debugging	is	the	process	of	removing	software	bugs,	then	programming	must	be	the	process	of	putting
them	in."

–	Edsger	W.	Dijkstra

In	the	life	of	a	professional	coder,	debugging	and	troubleshooting	take	up	a
significant	amount	of	time.	Even	if	you	work	on	the	most	beautiful	code	base
ever	written	by	a	human,	there	will	still	be	bugs	in	it;	that	is	guaranteed.

We	spend	an	awful	lot	of	time	reading	other	people's	code	and,	in	my	opinion,	a
good	software	developer	is	someone	who	keeps	their	attention	high,	even	when
they're	reading	code	that	is	not	reported	to	be	wrong	or	buggy.

Being	able	to	debug	code	efficiently	and	quickly	is	a	skill	that	every	coder	needs
to	keep	improving.	Some	think	that	because	they	have	read	the	manual,	they're
fine,	but	the	reality	is,	the	number	of	variables	in	the	game	is	so	great	that	there
is	no	manual.	There	are	guidelines	one	can	follow,	but	there	is	no	magic	book
that	will	teach	you	everything	you	need	to	know	in	order	to	become	good	at	this.

I	feel	that	on	this	particular	subject,	I	have	learned	the	most	from	my	colleagues.
It	amazes	me	to	observe	someone	very	skilled	attacking	a	problem.	I	enjoy
seeing	the	steps	they	take,	the	things	they	verify	to	exclude	possible	causes,	and
the	way	they	consider	the	suspects	that	eventually	lead	them	to	a	solution.

Every	colleague	we	work	with	can	teach	us	something,	or	surprise	us	with	a
fantastic	guess	that	turns	out	to	be	the	right	one.	When	that	happens,	don't	just
remain	in	wonderment	(or	worse,	in	envy),	but	seize	the	moment	and	ask	them
how	they	got	to	that	guess	and	why.	The	answer	will	allow	you	to	see	whether
there	is	something	you	can	study	in-depth	later	on	so	that,	maybe	next	time,
you'll	be	the	one	who	will	catch	the	bug.

Some	bugs	are	very	easy	to	spot.	They	come	out	of	coarse	mistakes	and,	once
you	see	the	effects	of	those	mistakes,	it's	easy	to	find	a	solution	that	fixes	the
problem.

But	there	are	other	bugs	that	are	much	more	subtle,	much	more	slippery,	and

require	true	expertise,	and	a	great	deal	of	creativity	and	out-of-the-box	thinking,
to	be	dealt	with.

The	worst	of	all,	at	least	for	me,	are	the	nondeterministic	ones.	These	sometimes
happen,	and	sometimes	don't.	Some	happen	only	in	environment	A	but	not	in
environment	B,	even	though	A	and	B	are	supposed	to	be	exactly	the	same.	Those
bugs	are	the	truly	evil	ones,	and	they	can	drive	you	crazy.

And	of	course,	bugs	don't	just	happen	in	the	sandbox,	right?	With	your	boss
telling	you,	"Don't	worry!	Take	your	time	to	fix	this.	Have	lunch	first!"	Nope.
They	happen	on	a	Friday	at	half	past	five,	when	your	brain	is	cooked	and	you
just	want	to	go	home.	It's	in	those	moments	when	everyone	is	getting	upset	in	a
split	second,	when	your	boss	is	breathing	down	your	neck,	that	you	have	to	be
able	to	keep	calm.	And	I	do	mean	it.	That's	the	most	important	skill	to	have	if
you	want	to	be	able	to	fight	bugs	effectively.	If	you	allow	your	mind	to	get
stressed,	say	goodbye	to	creative	thinking,	to	logical	deduction,	and	to
everything	you	need	at	that	moment.	So	take	a	deep	breath,	sit	properly,	and
focus.

In	this	chapter,	I	will	try	to	demonstrate	some	useful	techniques	that	you	can
employ	according	to	the	severity	of	the	bug,	and	a	few	suggestions	that	will
hopefully	boost	your	weapons	against	bugs	and	issues.

Specifically,	we're	going	to	look	at	the	following:

Debugging	techniques
Profiling
Assertions

Troubleshooting	guidelines

Debugging	techniques
In	this	part,	I'll	present	you	with	the	most	common	techniques,	the	ones	I	use
most	often;	however,	please	don't	consider	this	list	to	be	exhaustive.

Debugging	with	print
This	is	probably	the	easiest	technique	of	all.	It's	not	very	effective,	it	cannot	be
used	everywhere,	and	it	requires	access	to	both	the	source	code	and	a	Terminal
that	will	run	it	(and	therefore	show	the	results	of	the	print	function	calls).

However,	in	many	situations,	this	is	still	a	quick	and	useful	way	to	debug.	For
example,	if	you	are	developing	a	Django	website	and	what	happens	in	a	page	is
not	what	you	would	expect,	you	can	fill	the	view	with	prints	and	keep	an	eye	on
the	console	while	you	reload	the	page.	When	you	scatter	calls	to	print	in	your
code,	you	normally	end	up	in	a	situation	where	you	duplicate	a	lot	of	debugging
code,	either	because	you're	printing	a	timestamp	(like	we	did	when	we	were
measuring	how	fast	list	comprehensions	and	generators	were),	or	because	you
have	somehow	to	build	a	string	of	some	sort	that	you	want	to	display.

Another	issue	is	that	it's	extremely	easy	to	forget	calls	to	print	in	your	code.

So,	for	these	reasons,	rather	than	using	a	bare	call	to	print,	I	sometimes	prefer	to
code	a	custom	function.	Let's	see	how.

Debugging	with	a	custom	function
Having	a	custom	function	in	a	snippet	that	you	can	quickly	grab	and	paste	into
the	code,	and	then	use	to	debug,	can	be	very	useful.	If	you're	fast,	you	can
always	code	one	on	the	fly.	The	important	thing	is	to	code	it	in	a	way	that	it
won't	leave	stuff	around	when	you	eventually	remove	the	calls	and	its	definition.
Therefore	it's	important	to	code	it	in	a	way	that	is	completely	self-contained.
Another	good	reason	for	this	requirement	is	that	it	will	avoid	potential	name
clashes	with	the	rest	of	the	code.

Let's	see	an	example	of	such	a	function:

#	custom.py

def	debug(*msg,	print_separator=True):

				print(*msg)

				if	print_separator:

								print('-'	*	40)

debug('Data	is	...')

debug('Different',	'Strings',	'Are	not	a	problem')

debug('After	while	loop',	print_separator=False)

In	this	case,	I	am	using	a	keyword-only	argument	to	be	able	to	print	a	separator,
which	is	a	line	of	40	dashes.

The	function	is	very	simple.	I	just	redirect	whatever	is	in	msg	to	a	call	to	print	and,
if	print_separator	is	True,	I	print	a	line	separator.	Running	the	code	will	show	the
following:

$	python	custom.py

Data	is	...

--

Different	Strings	Are	not	a	problem

--

After	while	loop

As	you	can	see,	there	is	no	separator	after	the	last	line.

This	is	just	one	easy	way	to	somehow	augment	a	simple	call	to	the	print
function.	Let's	see	how	we	can	calculate	a	time	difference	between	calls,	using
one	of	Python's	tricky	features	to	our	advantage:

#	custom_timestamp.py

from	time	import	sleep

def	debug(*msg,	timestamp=[None]):

				print(*msg)

				from	time	import	time		#	local	import

				if	timestamp[0]	is	None:

								timestamp[0]	=	time()		#1

				else:

								now	=	time()

								print(

												'	Time	elapsed:	{:.3f}s'.format(now	-	timestamp[0])

)

								timestamp[0]	=	now		#2

debug('Entering	nasty	piece	of	code...')

sleep(.3)

debug('First	step	done.')

sleep(.5)

debug('Second	step	done.')

This	is	a	bit	trickier,	but	still	quite	simple.	First,	notice	we	import	the	time
function	from	the	time	module	from	inside	the	debug	function.	This	allows	us	to
avoid	having	to	add	that	import	outside	of	the	function,	and	maybe	forget	it
there.

Take	a	look	at	how	I	defined	timestamp.	It's	a	list,	of	course,	but	what's	important
here	is	that	it	is	a	mutable	object.	This	means	that	it	will	be	set	up	when	Python
parses	the	function	and	it	will	retain	its	value	throughout	different	calls.
Therefore,	if	we	put	a	timestamp	in	it	after	each	call,	we	can	keep	track	of	time
without	having	to	use	an	external	global	variable.	I	borrowed	this	trick	from	my
studies	on	closures,	a	technique	that	I	encourage	you	to	read	about	because	it's
very	interesting.

Right,	so,	after	having	printed	whatever	message	we	had	to	print	and	some
importing	time,	we	then	inspect	the	content	of	the	only	item	in	timestamp.	If	it	is
None,	we	have	no	previous	reference,	therefore	we	set	the	value	to	the	current
time	(#1).

On	the	other	hand,	if	we	have	a	previous	reference,	we	can	calculate	a	difference
(which	we	nicely	format	to	three	decimal	digits)	and	then	we	finally	put	the
current	time	again	in	timestamp	(#2).	It's	a	nice	trick,	isn't	it?

Running	this	code	shows	this	result:

$	python	custom_timestamp.py

Entering	nasty	piece	of	code...

First	step	done.

	Time	elapsed:	0.304s

Second	step	done.

	Time	elapsed:	0.505s

Whatever	your	situation,	having	a	self-contained	function	like	this	can	be	very
useful.

Inspecting	the	traceback
We	briefly	talked	about	the	traceback	in	Chapter	8,	Testing,	Profiling,	and	Dealing
with	Exceptions,	when	we	saw	several	different	kinds	of	exceptions.	The
traceback	gives	you	information	about	what	went	wrong	in	your	application.	It's
helpful	to	read	it,	so	let's	see	a	small	example:

#	traceback_simple.py

d	=	{'some':	'key'}

key	=	'some-other'

print(d[key])

We	have	a	dictionary	and	we	try	to	access	a	key	that	isn't	in	it.	You	should
remember	that	this	will	raise	a	KeyError	exception.	Let's	run	the	code:

$	python	traceback_simple.py

Traceback	(most	recent	call	last):

		File	"traceback_simple.py",	line	3,	in	<module>

				print(d[key])

KeyError:	'some-other'

You	can	see	that	we	get	all	the	information	we	need:	the	module	name,	the	line
that	caused	the	error	(both	the	number	and	the	instruction),	and	the	error	itself.
With	this	information,	you	can	go	back	to	the	source	code	and	try	to	understand
what's	going	on.

Let's	now	create	a	more	interesting	example	that	builds	on	top	of	this,	and
exercises	a	feature	that	is	only	available	in	Python	3.	Imagine	that	we're
validating	a	dictionary,	working	on	mandatory	fields,	therefore	we	expect	them
to	be	there.	If	not,	we	need	to	raise	a	custom	ValidationError	that	we	will	trap
further	upstream	in	the	process	that	runs	the	validator	(which	is	not	shown	here,
so	it	could	be	anything,	really).	It	should	be	something	like	this:

#	traceback_validator.py

class	ValidatorError(Exception):

				"""Raised	when	accessing	a	dict	results	in	KeyError.	"""

d	=	{'some':	'key'}

mandatory_key	=	'some-other'

try:

				print(d[mandatory_key])

except	KeyError	as	err:

				raise	ValidatorError(

								f'`{mandatory_key}`	not	found	in	d.'

)	from	err

We	define	a	custom	exception	that	is	raised	when	the	mandatory	key	isn't	there.
Note	that	its	body	consists	of	its	documentation	string,	so	we	don't	need	to	add
any	other	statements.

Very	simply,	we	define	a	dummy	dict	and	try	to	access	it	using	mandatory_key.	We
trap	KeyError	and	raise	ValidatorError	when	that	happens.	And	we	do	it	by	using	the
raise	...	from	...	syntax,	which	was	introduced	in	Python	3	by	PEP	3134	(https://
www.python.org/dev/peps/pep-3134/),	to	chain	exceptions.	The	purpose	of	doing	this	is
that	we	may	also	want	to	raise	ValidatorError	in	other	circumstances,	not
necessarily	as	a	consequence	of	a	mandatory	key	being	missing.	This	technique
allows	us	to	run	the	validation	in	a	simple	try/except	that	only	cares	about
ValidatorError.

Without	being	able	to	chain	exceptions,	we	would	lose	information	about
KeyError.	The	code	produces	this	result:

$	python	traceback_validator.py

Traceback	(most	recent	call	last):

		File	"traceback_validator.py",	line	7,	in	<module>

				print(d[mandatory_key])

KeyError:	'some-other'

The	above	exception	was	the	direct	cause	of	the	following	exception:

Traceback	(most	recent	call	last):

		File	"traceback_validator.py",	line	10,	in	<module>

				'`{}`	not	found	in	d.'.format(mandatory_key))	from	err

__main__.ValidatorError:	`some-other`	not	found	in	d.

This	is	brilliant,	because	we	can	see	the	traceback	of	the	exception	that	led	us	to
raise	ValidationError,	as	well	as	the	traceback	for	the	ValidationError	itself.

I	had	a	nice	discussion	with	one	of	my	reviewers	about	the	traceback	you	get
from	the	pip	installer.	He	was	having	trouble	setting	everything	up	in	order	to
review	the	code	for	Chapter	13,	Data	Science.	His	fresh	Ubuntu	installation	was
missing	a	few	libraries	that	were	needed	by	the	pip	packages	in	order	to	run
correctly.

The	reason	he	was	blocked	was	that	he	was	trying	to	fix	the	errors	displayed	in
the	traceback	starting	from	the	top	one.	I	suggested	that	he	started	from	the
bottom	one	instead,	and	fix	that.	The	reason	was	that,	if	the	installer	had	gotten
to	that	last	line,	I	guess	that	before	that,	whatever	error	may	have	occurred,	it
was	still	possible	to	recover	from	it.	Only	after	the	last	line,	pip	decided	it	wasn't

https://www.python.org/dev/peps/pep-3134/

possible	to	continue	any	further,	and	therefore	I	started	fixing	that	one.	Once	the
libraries	required	to	fix	that	error	had	been	installed,	everything	else	went
smoothly.

Reading	a	traceback	can	be	tricky,	and	my	friend	was	lacking	the	necessary
experience	to	address	this	problem	correctly.	Therefore,	if	you	end	up	in	the
same	situation.	Don't	be	discouraged,	and	try	to	shake	things	up	a	bit,	don't	take
anything	for	granted.

Python	has	a	huge	and	wonderful	community	and	it's	very	unlikely	that,	when
you	encounter	a	problem,	you're	the	first	one	to	see	it,	so	open	a	browser	and
search.	By	doing	so,	your	searching	skills	will	also	improve	because	you	will
have	to	trim	the	error	down	to	the	minimum	but	essential	set	of	details	that	will
make	your	search	effective.

If	you	want	to	play	and	understand	the	traceback	a	bit	better,	in	the	standard
library	there	is	a	module	you	can	use	called,	surprise	surprise,	traceback.	It
provides	a	standard	interface	to	extract,	format,	and	print	stack	traces	of	Python
programs,	mimicking	the	behavior	of	the	Python	interpreter	when	it	prints	a
stack	trace.

Using	the	Python	debugger
Another	very	effective	way	of	debugging	Python	is	to	use	the	Python	debugger:
pdb.	Instead	of	using	it	directly	though,	you	should	definitely	check	out	the	pdbpp
library.	pdbpp	augments	the	standard	pdb	interface	by	providing	some	convenient
tools,	my	favorite	of	which	is	the	sticky	mode,	which	allows	you	to	see	a	whole
function	while	you	step	through	its	instructions.

There	are	several	different	ways	to	use	this	debugger	(whichever	version,	it's	not
important),	but	the	most	common	one	consists	of	simply	setting	a	breakpoint	and
running	the	code.	When	Python	reaches	the	breakpoint,	execution	is	suspended
and	you	get	console	access	to	that	point	so	that	you	can	inspect	all	the	names,
and	so	on.	You	can	also	alter	data	on	the	fly	to	change	the	flow	of	the	program.

As	a	toy	example,	let's	pretend	we	have	a	parser	that	is	raising	KeyError	because	a
key	is	missing	in	a	dictionary.	The	dictionary	is	from	a	JSON	payload	that	we
cannot	control,	and	we	just	want,	for	the	time	being,	to	cheat	and	pass	that
control,	since	we're	interested	in	what	comes	afterward.	Let's	see	how	we	could
intercept	this	moment,	inspect	the	data,	fix	it,	and	get	to	the	bottom	of	it,	with
pdbpp:

#	pdebugger.py

#	d	comes	from	a	JSON	payload	we	don't	control

d	=	{'first':	'v1',	'second':	'v2',	'fourth':	'v4'}

#	keys	also	comes	from	a	JSON	payload	we	don't	control

keys	=	('first',	'second',	'third',	'fourth')

def	do_something_with_value(value):

				print(value)

for	key	in	keys:

				do_something_with_value(d[key])

print('Validation	done.')

As	you	can	see,	this	code	will	break	when	key	gets	the	'third'	value,	which	is
missing	in	the	dictionary.	Remember,	we're	pretending	that	both	d	and	keys	come
dynamically	from	a	JSON	payload	we	don't	control,	so	we	need	to	inspect	them
in	order	to	fix	d	and	pass	the	for	loop.	If	we	run	the	code	as	it	is,	we	get	the
following:

$	python	pdebugger.py

v1

v2

Traceback	(most	recent	call	last):

		File	"pdebugger.py",	line	10,	in	<module>

				do_something_with_value(d[key])

KeyError:	'third'

So	we	see	that	that	key	is	missing	from	the	dictionary,	but	since	every	time	we
run	this	code	we	may	get	a	different	dictionary	or	keys	tuple,	this	information
doesn't	really	help	us.	Let's	inject	a	call	to	pdb	just	before	the	for	loop.	You	have
two	options:

import	pdb

pdb.set_trace()

This	is	the	most	common	way	of	doing	it.	You	import	pdb	and	call	its	set_trace
method.	Many	developers	have	macros	in	their	editor	to	add	this	line	with	a
keyboard	shortcut.	As	of	Python	3.7	though,	we	can	simplify	things	even	further,
to	this:

breakpoint()

The	new	breakpoint	built-in	function	calls	sys.breakpointhook()	under	the	hood,
which	is	programmed	by	default	to	call	pdb.set_trace().	However,	you	can
reprogram	sys.breakpointhook()	to	call	whatever	you	want,	and	therefore	breakpoint
will	point	to	that	too,	which	is	very	convenient.

The	code	for	this	example	is	in	the	pdebugger_pdb.py	module.	If	we	now	run	this
code,	things	get	interesting	(note	that	your	output	may	vary	a	little	and	that	all
the	comments	in	this	output	were	added	by	me):

$	python	pdebugger_pdb.py

(Pdb++)	l

	16

	17	->	for	key	in	keys:		#	breakpoint	comes	in

	18	do_something_with_value(d[key])

	19

(Pdb++)	keys		#	inspecting	the	keys	tuple

('first',	'second',	'third',	'fourth')

(Pdb++)	d.keys()		#	inspecting	keys	of	`d`

dict_keys(['first',	'second',	'fourth'])

(Pdb++)	d['third']	=	'placeholder'		#	add	tmp	placeholder

(Pdb++)	c		#	continue

v1

v2

placeholder

v4

Validation	done.

First,	note	that	when	you	reach	a	breakpoint,	you're	served	a	console	that	tells
you	where	you	are	(the	Python	module)	and	which	line	is	the	next	one	to	be
executed.	You	can,	at	this	point,	perform	a	bunch	of	exploratory	actions,	such	as
inspecting	the	code	before	and	after	the	next	line,	printing	a	stack	trace,	and
interacting	with	the	objects.	Please	consult	the	official	Python	documentation	(ht
tps://docs.python.org/3.7/library/pdb.html)	on	pdb	to	learn	more	about	this.	In	our
case,	we	first	inspect	the	keys	tuple.	After	that,	we	inspect	the	keys	of	d.	We	see
that	'third'	is	missing,	so	we	put	it	in	ourselves	(could	this	be	dangerous—think
about	it).	Finally,	now	that	all	the	keys	are	in,	we	type	c,	which	means	(c)ontinue.

pdb	also	gives	you	the	ability	to	proceed	with	your	code	one	line	at	a	time	using
(n)ext,	to	(s)tep	into	a	function	for	deeper	analysis,	or	to	handle	breaks	with
(b)reak.	For	a	complete	list	of	commands,	please	refer	to	the	documentation	or
type	(h)elp	in	the	console.

You	can	see,	from	the	output	of	the	preceding	run,	that	we	could	finally	get	to
the	end	of	the	validation.

pdb	(or	pdbpp)	is	an	invaluable	tool	that	I	use	every	day.	So,	go	and	have	fun,	set	a
breakpoint	somewhere,	and	try	to	inspect	it,	follow	the	official	documentation
and	try	the	commands	in	your	code	to	see	their	effect	and	learn	them	well.

Notice	that	in	this	example	I	have	assumed	you	installed	pdbpp.	If	that	is	not	the	case,	then	you
might	find	that	some	commands	don't	work	the	same	in	pdb.	One	example	is	the	letter	d,	which
would	be	interpreted	from	pdb	as	the	down	command.	In	order	to	get	around	that,	you	would
have	to	add	a	!	in	front	of	d,	to	tell	pdb	that	it	is	meant	to	be	interpreted	literally,	and	not	as	a
command.

https://docs.python.org/3.7/library/pdb.html

Inspecting	log	files
Another	way	of	debugging	a	misbehaving	application	is	to	inspect	its	log	files.
Log	files	are	special	files	in	which	an	application	writes	down	all	sorts	of	things,
normally	related	to	what's	going	on	inside	of	it.	If	an	important	procedure	is
started,	I	would	typically	expect	a	corresponding	line	in	the	logs.	It	is	the	same
when	it	finishes,	and	possibly	for	what	happens	inside	of	it.

Errors	need	to	be	logged	so	that	when	a	problem	happens,	we	can	inspect	what
went	wrong	by	taking	a	look	at	the	information	in	the	log	files.

There	are	many	different	ways	to	set	up	a	logger	in	Python.	Logging	is	very
malleable	and	you	can	configure	it.	In	a	nutshell,	there	are	normally	four	players
in	the	game:	loggers,	handlers,	filters,	and	formatters:

Loggers:	Expose	the	interface	that	the	application	code	uses	directly
Handlers:	Send	the	log	records	(created	by	loggers)	to	the	appropriate
destination
Filters:	Provide	a	finer-grained	facility	for	determining	which	log	records
to	output
Formatters:	Specify	the	layout	of	the	log	records	in	the	final	output

Logging	is	performed	by	calling	methods	on	instances	of	the	Logger	class.	Each
line	you	log	has	a	level.	The	levels	normally	used	are:	DEBUG,	INFO,	WARNING,	ERROR,
and	CRITICAL.	You	can	import	them	from	the	logging	module.	They	are	in	order	of
severity	and	it's	very	important	to	use	them	properly	because	they	will	help	you
filter	the	contents	of	a	log	file	based	on	what	you're	searching	for.	Log	files
usually	become	extremely	big	so	it's	very	important	to	have	the	information	in
them	written	properly	so	that	you	can	find	it	quickly	when	it	matters.

You	can	log	to	a	file	but	you	can	also	log	to	a	network	location,	to	a	queue,	to	a
console,	and	so	on.	In	general,	if	you	have	an	architecture	that	is	deployed	on
one	machine,	logging	to	a	file	is	acceptable,	but	when	your	architecture	spans
over	multiple	machines	(such	as	in	the	case	of	service-oriented	or	microservice
architectures),	it's	very	useful	to	implement	a	centralized	solution	for	logging	so
that	all	log	messages	coming	from	each	service	can	be	stored	and	investigated	in

a	single	place.	It	helps	a	lot,	otherwise	trying	to	correlate	giant	files	from	several
different	sources	to	figure	out	what	went	wrong	can	become	truly	challenging.

A	service-oriented	architecture	(SOA)	is	an	architectural	pattern	in	software	design	in	which
application	components	provide	services	to	other	components	via	a	communications	protocol,
typically	over	a	network.	The	beauty	of	this	system	is	that,	when	coded	properly,	each	service
can	be	written	in	the	most	appropriate	language	to	serve	its	purpose.	The	only	thing	that
matters	is	the	communication	with	the	other	services,	which	needs	to	happen	via	a	common
format	so	that	data	exchange	can	be	done.
Microservice	architectures	are	an	evolution	of	SOAs,	but	follow	a	different	set	of
architectural	patterns.

Here,	I	will	present	you	with	a	very	simple	logging	example.	We	will	log	a	few
messages	to	a	file:

#	log.py

import	logging

logging.basicConfig(

				filename='ch11.log',

				level=logging.DEBUG,		#	minimum	level	capture	in	the	file

				format='[%(asctime)s]	%(levelname)s:	%(message)s',

				datefmt='%m/%d/%Y	%I:%M:%S	%p')

mylist	=	[1,	2,	3]

logging.info('Starting	to	process	`mylist`...')

for	position	in	range(4):

				try:

								logging.debug(

												'Value	at	position	%s	is	%s',	position,	mylist[position]

)

				except	IndexError:

								logging.exception('Faulty	position:	%s',	position)

logging.info('Done	parsing	`mylist`.')

Let's	go	through	it	line	by	line.	First,	we	import	the	logging	module,	then	we	set
up	a	basic	configuration.	In	general,	a	production-logging	configuration	is	much
more	complicated	than	this,	but	I	wanted	to	keep	things	as	easy	as	possible.	We
specify	a	filename,	the	minimum	logging	level	we	want	to	capture	in	the	file,
and	the	message	format.	We'll	log	the	date	and	time	information,	the	level,	and
the	message.

I	will	start	by	logging	an	info	message	that	tells	me	we're	about	to	process	our
list.	Then,	I	will	log	(this	time	using	the	DEBUG	level,	by	using	the	debug	function)
which	is	the	value	at	some	position.	I'm	using	debug	here	because	I	want	to	be
able	to	filter	out	these	logs	in	the	future	(by	setting	the	minimum	level	to
logging.INFO	or	more),	because	I	might	have	to	handle	very	big	lists	and	I	don't

want	to	log	all	the	values.

If	we	get	IndexError	(and	we	do,	since	I'm	looping	over	range(4)),	we	call
logging.exception(),	which	is	the	same	as	logging.error(),	but	it	also	prints	the
traceback.

At	the	end	of	the	code,	I	log	another	info	message	saying	we're	done.	The	result
is	this:

#	ch11.log

[05/06/2018	11:13:48	AM]	INFO:Starting	to	process	`mylist`...

[05/06/2018	11:13:48	AM]	DEBUG:Value	at	position	0	is	1

[05/06/2018	11:13:48	AM]	DEBUG:Value	at	position	1	is	2

[05/06/2018	11:13:48	AM]	DEBUG:Value	at	position	2	is	3

[05/06/2018	11:13:48	AM]	ERROR:Faulty	position:	3

Traceback	(most	recent	call	last):

		File	"log.py",	line	15,	in	<module>

				position,	mylist[position]))

IndexError:	list	index	out	of	range

[05/06/2018	11:13:48	AM]	INFO:Done	parsing	`mylist`.

This	is	exactly	what	we	need	to	be	able	to	debug	an	application	that	is	running
on	a	box,	and	not	on	our	console.	We	can	see	what	went	on,	the	traceback	of	any
exception	raised,	and	so	on.

The	example	presented	here	only	scratches	the	surface	of	logging.	For	a	more	in-depth
explanation,	you	can	find	information	in	the	Python	HOWTOs	section	of	the	official	Python
documentation:	Logging	HOWTO,	and	Logging	Cookbook.

Logging	is	an	art.	You	need	to	find	a	good	balance	between	logging	everything
and	logging	nothing.	Ideally,	you	should	log	anything	that	you	need	to	make	sure
your	application	is	working	correctly,	and	possibly	all	errors	or	exceptions.

Other	techniques
In	this	final	section,	I'd	like	to	demonstrate	briefly	a	couple	of	techniques	that
you	may	find	useful.

Profiling
We	talked	about	profiling	in	Chapter	8,	Testing,	Profiling,	and	Dealing	with
Exceptions,	and	I'm	only	mentioning	it	here	because	profiling	can	sometimes
explain	weird	errors	that	are	due	to	a	component	being	too	slow.	Especially
when	networking	is	involved,	having	an	idea	of	the	timings	and	latencies	your
application	has	to	go	through	is	very	important	in	order	to	understand	what	may
be	going	on	when	problems	arise,	therefore	I	suggest	you	get	acquainted	with
profiling	techniques	and	also	for	a	troubleshooting	perspective.

	

Assertions
Assertions	are	a	nice	way	to	make	your	code	ensure	your	assumptions	are
verified.	If	they	are,	all	proceeds	regularly	but,	if	they	are	not,	you	get	a	nice
exception	that	you	can	work	with.	Sometimes,	instead	of	inspecting,	it's	quicker
to	drop	a	couple	of	assertions	in	the	code	just	to	exclude	possibilities.	Let's	see
an	example:

#	assertions.py

mylist	=	[1,	2,	3]		#	this	ideally	comes	from	some	place

assert	4	==	len(mylist)		#	this	will	break

for	position	in	range(4):

				print(mylist[position])

This	code	simulates	a	situation	in	which	mylist	isn't	defined	by	us	like	that,	of
course,	but	we're	assuming	it	has	four	elements.	So	we	put	an	assertion	there,
and	the	result	is	this:

$	python	assertions.py

Traceback	(most	recent	call	last):

		File	"assertions.py",	line	3,	in	<module>

				assert	4	==	len(mylist)		#	this	will	break

AssertionError

This	tells	us	exactly	where	the	problem	is.

Where	to	find	information
In	the	Python	official	documentation,	there	is	a	section	dedicated	to	debugging
and	profiling,	where	you	can	read	up	about	the	bdb	debugger	framework,	and
about	modules	such	as	faulthandler,	timeit,	trace,	tracemallock,	and	of	course	pdb.
Just	head	to	the	standard	library	section	in	the	documentation	and	you'll	find	all
this	information	very	easily.

	

Troubleshooting	guidelines
In	this	short	section,	I'd	like	to	give	you	a	few	tips	that	come	from	my
troubleshooting	experience.

Using	console	editors
First,	get	comfortable	using	Vim	or	nano	as	an	editor,	and	learn	the	basics	of	the
console.	When	things	break,	you	don't	have	the	luxury	of	your	editor	with	all	the
bells	and	whistles	there.	You	have	to	connect	to	a	box	and	work	from	there.	So
it's	a	very	good	idea	to	be	comfortable	browsing	your	production	environment
with	console	commands,	and	be	able	to	edit	files	using	console-based	editors,
such	as	vi,	Vim,	or	nano.	Don't	let	your	usual	development	environment	spoil
you.

	

Where	to	inspect
My	second	suggestion	concerns	where	to	place	your	debugging	breakpoints.	It
doesn't	matter	if	you	are	using	print,	a	custom	function,	or	pdb,	you	still	have	to
choose	where	to	place	the	calls	that	provide	you	with	the	information,	right?

Well,	some	places	are	better	than	others,	and	there	are	ways	to	handle	the
debugging	progression	that	are	better	than	others.

I	normally	avoid	placing	a	breakpoint	in	an	if	clause	because,	if	that	clause	is	not
exercised,	I	lose	the	chance	of	getting	the	information	I	wanted.	Sometimes	it's
not	easy	or	quick	to	get	to	the	breakpoint,	so	think	carefully	before	placing	them.

Another	important	thing	is	where	to	start.	Imagine	that	you	have	100	lines	of
code	that	handle	your	data.	Data	comes	in	at	line	1,	and	somehow	it's	wrong	at
line	100.	You	don't	know	where	the	bug	is,	so	what	do	you	do?	You	can	place	a
breakpoint	at	line	1	and	patiently	go	through	all	the	lines,	checking	your	data.	In
the	worst	case	scenario,	99	lines	(and	many	cups	of	coffee)	later,	you	spot	the
bug.	So,	consider	using	a	different	approach.

You	start	at	line	50,	and	inspect.	If	the	data	is	good,	it	means	the	bug	happens
later,	in	which	case	you	place	your	next	breakpoint	at	line	75.	If	the	data	at	line
50	is	already	bad,	you	go	on	by	placing	a	breakpoint	at	line	25.	Then,	you	repeat.
Each	time,	you	move	either	backward	or	forward,	by	half	the	jump	you	did	last
time.

In	our	worst-case	scenario,	your	debugging	would	go	from	1,	2,	3,	...,	99,	in	a
linear	fashion,	to	a	series	of	jumps	such	as	50,	75,	87,	93,	96,	...,	99	which	is	way
faster.	In	fact,	it's	logarithmic.	This	searching	technique	is	called	binary	search,
it's	based	on	a	divide-and-conquer	approach,	and	it's	very	effective,	so	try	to
master	it.

Using	tests	to	debug
Do	you	remember	Chapter	8,	Testing,	Profiling,	and	Dealing	with	Exceptions,
about	tests?	Well,	if	we	have	a	bug	and	all	tests	are	passing,	it	means	something
is	wrong	or	missing	in	our	test	code	base.	So,	one	approach	is	to	modify	the	tests
in	such	a	way	that	they	cater	for	the	new	edge	case	that	has	been	spotted,	and
then	work	your	way	through	the	code.	This	approach	can	be	very	beneficial,
because	it	makes	sure	that	your	bug	will	be	covered	by	a	test	when	it's	fixed.

	

Monitoring
	

Monitoring	is	also	very	important.	Software	applications	can	go	completely
crazy	and	have	non-deterministic	hiccups	when	they	encounter	edge-case
situations	such	as	the	network	being	down,	a	queue	being	full,	or	an	external
component	being	unresponsive.	In	these	cases,	it's	important	to	have	an	idea	of
what	the	big	picture	was	when	the	problem	occurred	and	be	able	to	correlate	it	to
something	related	to	it	in	a	subtle,	perhaps	mysterious	way.

You	can	monitor	API	endpoints,	processes,	web	pages	availability	and	load
times,	and	basically	almost	everything	that	you	can	code.	In	general,	when
starting	an	application	from	scratch,	it	can	be	very	useful	to	design	it	keeping	in
mind	how	you	want	to	monitor	it.

	

	

	

Summary
In	this	short	chapter,	we	looked	at	different	techniques	and	suggestions	for
debugging	and	troubleshooting	our	code.	Debugging	is	an	activity	that	is	always
part	of	a	software	developer's	work,	so	it's	important	to	be	good	at	it.

If	approached	with	the	correct	attitude,	it	can	be	fun	and	rewarding.

We	explored	techniques	to	inspect	our	code	base	on	functions,	logging,
debuggers,	traceback	information,	profiling,	and	assertions.	We	saw	simple
examples	of	most	of	them	and	we	also	talked	about	a	set	of	guidelines	that	will
help	when	it	comes	to	facing	the	fire.

Just	remember	always	to	stay	calm	and	focused,	and	debugging	will	be	much
easier.	This	too,	is	a	skill	that	needs	to	be	learned	and	it's	the	most	important.	An
agitated	and	stressed	mind	cannot	work	properly,	logically,	and	creatively,
therefore,	if	you	don't	strengthen	it,	it	will	be	hard	for	you	to	put	all	of	your
knowledge	to	good	use.

In	the	next	chapter,	we	are	going	to	explore	GUIs	and	scripts,	taking	an
interesting	detour	from	the	more	common	web-application	scenario.

GUIs	and	Scripts
"A	user	interface	is	like	a	joke.	If	you	have	to	explain	it,	it's	not	that	good."

–	Martin	LeBlanc

In	this	chapter,	we're	going	to	work	on	a	project	together.	We	are	going	to	write	a
simple	scraper	that	finds	and	saves	images	from	a	web	page.	We'll	focus	on	three
parts:

A	simple	HTTP	webserver	in	Python
A	script	that	scrapes	a	given	URL
A	GUI	application	that	scrapes	a	given	URL

A	graphical	user	interface	(GUI)	is	a	type	of	interface	that	allows	the	user	to	interact	with	an
electronic	device	through	graphical	icons,	buttons,	and	widgets,	as	opposed	to	text-based	or
command-line	interfaces,	which	require	commands	or	text	to	be	typed	on	the	keyboard.	In	a
nutshell,	any	browser,	any	office	suite	such	as	LibreOffice,	and,	in	general,	anything	that	pops
up	when	you	click	on	an	icon,	is	a	GUI	application.

So,	if	you	haven't	already	done	so,	this	would	be	the	perfect	time	to	start	a
console	and	position	yourself	in	a	folder	called	ch12	in	the	root	of	your	project	for
this	book.	Within	that	folder,	we'll	create	two	Python	modules	(scrape.py	and
guiscrape.py)	and	a	folder	(simple_server).	Within	simple_server,	we'll	write	our
HTML	page:	index.html.	Images	will	be	stored	in	simple_server/img.

The	structure	in	ch12	should	look	like	this:

$	tree	-A

.

├──	guiscrape.py

├──	scrape.py

└──	simple_server

				├──	img

				│	├──	owl-alcohol.png

				│	├──	owl-book.png

				│	├──	owl-books.png

				│	├──	owl-ebook.jpg

				│	└──	owl-rose.jpeg

				├──	index.html

				└──	serve.sh

If	you're	using	either	Linux	or	macOS,	you	can	do	what	I	do	and	put	the	code	to
start	the	HTTP	server	in	a	serve.sh	file.	On	Windows,	you'll	probably	want	to	use
a	batch	file.

The	HTML	page	we're	going	to	scrape	has	the	following	structure:

#	simple_server/index.html

<!DOCTYPE	html>

<html	lang="en">

		<head><title>Cool	Owls!</title></head>

		<body>

				<h1>Welcome	to	my	owl	gallery</h1>

				<div>

						

						

						

						

						

				</div>

				<p>Do	you	like	my	owls?</p>

		</body>

</html>

It's	an	extremely	simple	page,	so	let's	just	note	that	we	have	five	images,	three	of
which	are	PNGs	and	two	of	which	are	JPGs	(note	that	even	though	they	are	both
JPGs,	one	ends	with	.jpg	and	the	other	with	.jpeg,	which	are	both	valid	extensions
for	this	format).

So,	Python	gives	you	a	very	simple	HTTP	server	for	free	that	you	can	start	with
the	following	command	(in	the	simple_server	folder):

$	python	-m	http.server	8000

Serving	HTTP	on	0.0.0.0	port	8000	(http://0.0.0.0:8000/)	...

127.0.0.1	-	-	[06/May/2018	16:54:30]	"GET	/	HTTP/1.1"	200	-

...

The	last	line	is	the	log	you	get	when	you	access	http://localhost:8000,	where	our
beautiful	page	will	be	served.	Alternatively,	you	can	put	that	command	in	a	file
called	serve.sh,	and	just	run	that	with	this	command	(make	sure	it's	executable):

$./serve.sh

It	will	have	the	same	effect.	If	you	have	the	code	for	this	book,	your	page	should
look	something	like	this:

Feel	free	to	use	any	other	set	of	images,	as	long	as	you	use	at	least	one	PNG	and
one	JPG,	and	that	in	the	src	tag	you	use	relative	paths,	not	absolute	ones.	I	got
these	lovely	owls	from	https://openclipart.org/.

https://openclipart.org/

First	approach	–	scripting
Now,	let's	start	writing	the	script.	I'll	go	through	the	source	in	three	steps:
imports,	arguments	parsing,	and	business	logic.

The	imports
Here's	how	the	script	starts:

#	scrape.py

import	argparse

import	base64

import	json

import	os

from	bs4	import	BeautifulSoup

import	requests

Going	through	them	from	the	top,	you	can	see	that	we'll	need	to	parse	the
arguments,	which	we'll	feed	to	the	script	itself	(argparse).	We	will	need	the	base64
library	to	save	the	images	within	a	JSON	file	(json),	and	we'll	need	to	open	files
for	writing	(os).	Finally,	we'll	need	BeautifulSoup	for	scraping	the	web	page	easily,
and	requests	to	fetch	its	content.	I	assume	you're	familiar	with	requests	as	we	have
used	it	in	previous	chapters.

We	will	explore	the	HTTP	protocol	and	the	requests	mechanism	in	Chapter	14,	Web	Development,
so	for	now,	let's	just	(simplistically)	say	that	we	perform	an	HTTP	request	to	fetch	the	content
of	a	web	page.	We	can	do	it	programmatically	using	a	library,	such	as	requests,	and	it's	more
or	less	the	equivalent	of	typing	a	URL	in	your	browser	and	pressing	Enter	(the	browser	then
fetches	the	content	of	a	web	page	and	displays	it	to	you).

Of	all	these	imports,	only	the	last	two	don't	belong	to	the	Python	standard
library,	so	make	sure	you	have	them	installed:

$	pip	freeze	|	egrep	-i	"soup|requests"

beautifulsoup4==4.6.0

requests==2.18.4

Of	course,	the	version	numbers	might	be	different	for	you.	If	they're	not
installed,	use	this	command	to	do	so:

$	pip	install	beautifulsoup4==4.6.0	requests==2.18.4

At	this	point,	the	only	thing	that	I	reckon	might	confuse	you	is	the	base64/json
couple,	so	allow	me	to	spend	a	few	words	on	that.

As	we	saw	in	the	previous	chapter,	JSON	is	one	of	the	most	popular	formats	for
data	exchange	between	applications.	It's	also	widely	used	for	other	purposes	too,

for	example,	to	save	data	in	a	file.	In	our	script,	we're	going	to	offer	the	user	the
ability	to	save	images	as	image	files,	or	as	a	JSON	single	file.	Within	the	JSON,
we'll	put	a	dictionary	with	keys	as	the	image	names	and	values	as	their	content.
The	only	issue	is	that	saving	images	in	the	binary	format	is	tricky,	and	this	is
where	the	base64	library	comes	to	the	rescue.

The	base64	library	is	actually	quite	useful.	For	example,	every	time	you	send	an
email	with	an	image	attached	to	it,	the	image	gets	encoded	with	base64	before	the
email	is	sent.	On	the	recipient	side,	images	are	automatically	decoded	into	their
original	binary	format	so	that	the	email	client	can	display	them.

Parsing	arguments
Now	that	the	technicalities	are	out	of	the	way,	let's	see	the	second	section	of	our
script	(it	should	be	at	the	end	of	the	scrape.py	module):

if	__name__	==	"__main__":

				parser	=	argparse.ArgumentParser(

								description='Scrape	a	webpage.')

				parser.add_argument(

								'-t',

								'--type',

								choices=['all',	'png',	'jpg'],

								default='all',

								help='The	image	type	we	want	to	scrape.')

				parser.add_argument(

								'-f',

								'--format',

								choices=['img',	'json'],

								default='img',

								help='The	format	images	are	_saved	to.')

				parser.add_argument(

								'url',

								help='The	URL	we	want	to	scrape	for	images.')

				args	=	parser.parse_args()

				scrape(args.url,	args.format,	args.type)

Look	at	that	first	line;	it	is	a	very	common	idiom	when	it	comes	to	scripting.
According	to	the	official	Python	documentation,	the	'__main__'	string	is	the	name
of	the	scope	in	which	top-level	code	executes.	A	module's	__name__	is	set	equal	to
'__main__'	when	read	from	standard	input,	a	script,	or	from	an	interactive	prompt.

Therefore,	if	you	put	the	execution	logic	under	that	if,	it	will	be	run	only	when
you	run	the	script	directly,	as	its	__name__	will	be	'__main__'.	On	the	other	hand,
should	you	import	from	this	module,	then	its	name	will	be	set	to	something	else,
so	the	logic	under	the	if	won't	run.

The	first	thing	we	do	is	define	our	parser.	I	would	recommend	using	the	standard
library	module,	argparse,	which	is	simple	enough	and	quite	powerful.	There	are
other	options	out	there,	but	in	this	case,	argparse	will	provide	us	with	all	we	need.

We	want	to	feed	our	script	three	different	pieces	of	data:	the	types	of	images	we
want	to	save,	the	format	in	which	we	want	to	save	them,	and	the	URL	for	the
page	to	be	scraped.

The	types	can	be	PNGs,	JPGs,	or	both	(default),	while	the	format	can	be	either
image	or	JSON,	image	being	the	default.	URL	is	the	only	mandatory	argument.

So,	we	add	the	-t	option,	allowing	also	the	long	version,	--type.	The	choices	are
'all',	'png',	and	'jpg'.	We	set	the	default	to	'all'	and	we	add	a	help	message.

We	do	a	similar	procedure	for	the	format	argument,	allowing	both	the	short	and
long	syntax	(-f	and	--format),	and	finally	we	add	the	url	argument,	which	is	the
only	one	that	is	specified	differently	so	that	it	won't	be	treated	as	an	option,	but
rather	as	a	positional	argument.

In	order	to	parse	all	the	arguments,	all	we	need	is	parser.parse_args().	Very	simple,
isn't	it?

The	last	line	is	where	we	trigger	the	actual	logic,	by	calling	the	scrape	function,
passing	all	the	arguments	we	just	parsed.	We	will	see	its	definition	shortly.	The
nice	thing	about	argparse	is	that	if	you	call	the	script	by	passing	-h,	it	will	print	a
nice	usage	text	for	you	automatically.	Let's	try	it	out:

$	python	scrape.py	-h

usage:	scrape.py	[-h]	[-t	{all,png,jpg}]	[-f	{img,json}]	url

Scrape	a	webpage.

positional	arguments:

		url	The	URL	we	want	to	scrape	for	images.

optional	arguments:

		-h,	--help	show	this	help	message	and	exit

		-t	{all,png,jpg},	--type	{all,png,jpg}

																								The	image	type	we	want	to	scrape.

		-f	{img,json},	--format	{img,json}

																								The	format	images	are	_saved	to.

If	you	think	about	it,	the	one	true	advantage	of	this	is	that	we	just	need	to	specify
the	arguments	and	we	don't	have	to	worry	about	the	usage	text,	which	means	we
won't	have	to	keep	it	in	sync	with	the	arguments'	definition	every	time	we
change	something.	This	is	precious.

Here	are	a	few	different	ways	to	call	our	scrape.py	script,	which	demonstrate	that
type	and	format	are	optional,	and	how	you	can	use	the	short	and	long	syntaxes	to
employ	them:

$	python	scrape.py	http://localhost:8000

$	python	scrape.py	-t	png	http://localhost:8000

$	python	scrape.py	--type=jpg	-f	json	http://localhost:8000

The	first	one	is	using	default	values	for	type	and	format.	The	second	one	will	save
only	PNG	images,	and	the	third	one	will	save	only	JPGs,	but	in	JSON	format.

The	business	logic
Now	that	we've	seen	the	scaffolding,	let's	deep	dive	into	the	actual	logic	(if	it
looks	intimidating,	don't	worry;	we'll	go	through	it	together).	Within	the	script,
this	logic	lies	after	the	imports	and	before	the	parsing	(before	the	if	__name__
clause):

def	scrape(url,	format_,	type_):

				try:

								page	=	requests.get(url)

				except	requests.RequestException	as	err:

								print(str(err))

				else:

								soup	=	BeautifulSoup(page.content,	'html.parser')

								images	=	_fetch_images(soup,	url)

								images	=	_filter_images(images,	type_)

								save(images,	format)

Let's	start	with	the	scrape	function.	The	first	thing	it	does	is	fetch	the	page	at	the
given	url	argument.	Whatever	error	may	happen	while	doing	this,	we	trap	it	in
RequestException	(err)	and	print	it.	RequestException	is	the	base	exception	class	for	all
the	exceptions	in	the	requests	library.

However,	if	things	go	well,	and	we	have	a	page	back	from	the	GET	request,	then
we	can	proceed	(else	branch)	and	feed	its	content	to	the	BeautifulSoup	parser.	The
BeautifulSoup	library	allows	us	to	parse	a	web	page	in	no	time,	without	having	to
write	all	the	logic	that	would	be	needed	to	find	all	the	images	in	a	page,	which
we	really	don't	want	to	do.	It's	not	as	easy	as	it	seems,	and	reinventing	the	wheel
is	never	good.	To	fetch	images,	we	use	the	_fetch_images	function	and	we	filter
them	with	_filter_images.	Finally,	we	call	_save	with	the	result.

Splitting	the	code	into	different	functions	with	meaningful	names	allows	us	to
read	it	more	easily.	Even	if	you	haven't	seen	the	logic	of	the	_fetch_images,
_filter_images,	and	_save	functions,	it's	not	hard	to	predict	what	they	do,	right?
Check	out	the	following:

def	_fetch_images(soup,	base_url):

				images	=	[]

				for	img	in	soup.findAll('img'):

								src	=	img.get('src')

								img_url	=	f'{base_url}/{src}'

								name	=	img_url.split('/')[-1]

								images.append(dict(name=name,	url=img_url))

				return	images

_fetch_images	takes	a	BeautifulSoup	object	and	a	base	URL.	All	it	does	is	loop
through	all	of	the	images	found	on	the	page	and	fill	in	the	name	and	url
information	about	them	in	a	dictionary	(one	per	image).	All	dictionaries	are
added	to	the	images	list,	which	is	returned	at	the	end.

There	is	some	trickery	going	on	when	we	get	the	name	of	an	image.	We	split	the
img_url	(http://localhost:8000/img/my_image_name.png)	string	using	'/'	as	a	separator,
and	we	take	the	last	item	as	the	image	name.	There	is	a	more	robust	way	of
doing	this,	but	for	this	example	it	would	be	overkill.	If	you	want	to	see	the
details	of	each	step,	try	to	break	this	logic	down	into	smaller	steps,	and	print	the
result	of	each	of	them	to	help	yourself	understand.	Toward	the	end	of	the	book,
I'll	show	you	another	technique	for	debugging	in	a	much	more	efficient	way.

Anyway,	by	just	adding	print(images)	at	the	end	of	the	_fetch_images	function,	we
get	this:

[{'url':	'http://localhost:8000/img/owl-alcohol.png',	'name':	'owl-alcohol.png'},	

{'url':	'http://localhost:8000/img/owl-book.png',	'name':	'owl-book.png'},	...]		

I	truncated	the	result	for	brevity.	You	can	see	each	dictionary	has	a	url	and	name
key/value	pair,	which	we	can	use	to	fetch,	identify,	and	save	our	images	as	we
like.	At	this	point,	I	hear	you	asking	what	would	happen	if	the	images	on	the
page	were	specified	with	an	absolute	path	instead	of	a	relative	one,	right?	Good
question!

The	answer	is	that	the	script	will	fail	to	download	them	because	this	logic
expects	relative	paths.	I	was	about	to	add	a	bit	of	logic	to	solve	this	issue	when	I
thought	that,	at	this	stage,	it	would	be	a	nice	exercise	for	you	to	do	it,	so	I'll	leave
it	up	to	you	to	fix	it.

Hint:	Inspect	the	start	of	that	src	variable.	If	it	starts	with	'http',	it's	probably	an	absolute
path.	You	might	also	want	to	checkout	urllib.parse	to	do	that.

I	hope	the	body	of	the	_filter_images	function	is	interesting	to	you.	I	wanted	to
show	you	how	to	check	on	multiple	extensions	using	a	mapping	technique:

def	_filter_images(images,	type_):

				if	type_	==	'all':

								return	images

				ext_map	=	{

								'png':	['.png'],

								'jpg':	['.jpg',	'.jpeg'],

				}

				return	[

								img	for	img	in	images

								if	_matches_extension(img['name'],	ext_map[type_])

]

def	_matches_extension(filename,	extension_list):

				name,	extension	=	os.path.splitext(filename.lower())

				return	extension	in	extension_list

In	this	function,	if	type_	is	all,	then	no	filtering	is	required,	so	we	just	return	all
the	images.	On	the	other	hand,	when	type_	is	not	all,	we	get	the	allowed
extensions	from	the	ext_map	dictionary,	and	use	it	to	filter	the	images	in	the	list
comprehension	that	ends	the	function	body.	You	can	see	that	by	using	another
helper	function,	_matches_extension,	I	have	made	the	list	comprehension	simpler
and	more	readable.

All	_matches_extension	does	is	split	the	name	of	the	image	getting	its	extension	and
check	whether	it	is	within	the	list	of	allowed	ones.	Can	you	find	one	micro-
improvement	(speed-wise)	that	could	be	made	to	this	function?

I'm	sure	you're	wondering	why	I	have	collected	all	the	images	in	the	list	and	then
removed	them,	instead	of	checking	whether	I	wanted	to	save	them	before	adding
them	to	the	list.	The	first	reason	is	that	I	needed	_fetch_images	in	the	GUI
application	as	it	is	now.	The	second	reason	is	that	combining,	fetching,	and
filtering	would	produce	a	longer	and	more	complicated	function,	and	I'm	trying
to	keep	the	complexity	level	down.	The	third	reason	is	that	this	could	be	a	nice
exercise	for	you	to	do:

def	_save(images,	format_):

				if	images:

								if	format_	==	'img':

												_save_images(images)

								else:

												_save_json(images)

								print('Done')

				else:

								print('No	images	to	save.')

def	_save_images(images):

				for	img	in	images:

								img_data	=	requests.get(img['url']).content

								with	open(img['name'],	'wb')	as	f:

												f.write(img_data)

def	_save_json(images):

				data	=	{}

				for	img	in	images:

								img_data	=	requests.get(img['url']).content

								b64_img_data	=	base64.b64encode(img_data)

								str_img_data	=	b64_img_data.decode('utf-8')

								data[img['name']]	=	str_img_data

				with	open('images.json',	'w')	as	ijson:

								ijson.write(json.dumps(data))

Let's	keep	going	through	the	code	and	inspect	the	_save	function.	You	can	see
that,	when	images	isn't	empty,	this	basically	acts	as	a	dispatcher.	We	either	call
_save_images	or	_save_json,	depending	on	what	information	is	stored	in	the	format_
variable.

We	are	almost	done.	Let's	jump	to	_save_images.	We	loop	on	the	images	list	and	for
each	dictionary	we	find	there,	we	perform	a	GET	request	on	the	image	URL	and
save	its	content	in	a	file,	which	we	name	as	the	image	itself.

Finally,	let's	now	step	into	the	_save_json	function.	It's	very	similar	to	the	previous
one.	We	basically	fill	in	the	data	dictionary.	The	image	name	is	the	key,	and	the
Base64	representation	of	its	binary	content	is	the	value.	When	we're	done
populating	our	dictionary,	we	use	the	json	library	to	dump	it	in	the	images.json	file.
I'll	give	you	a	small	preview	of	that:

#	images.json	(truncated)

{

		"owl-alcohol.png":	"iVBORw0KGgoAAAANSUhEUgAAASwAAAEICA...

		"owl-book.png":	"iVBORw0KGgoAAAANSUhEUgAAASwAAAEbCAYAA...

		"owl-books.png":	"iVBORw0KGgoAAAANSUhEUgAAASwAAAElCAYA...

		"owl-ebook.jpg":	"/9j/4AAQSkZJRgABAQEAMQAxAAD/2wBDAAEB...

		"owl-rose.jpeg":	"/9j/4AAQSkZJRgABAQEANAA0AAD/2wBDAAEB...

}

And	that's	it!	Now,	before	proceeding	to	the	next	section,	make	sure	you	play
with	this	script	and	understand	how	it	works.	Try	to	modify	something,	print	out
intermediate	results,	add	a	new	argument	or	functionality,	or	scramble	the	logic.
We're	going	to	migrate	it	into	a	GUI	application	now,	which	will	add	a	layer	of
complexity	simply	because	we'll	have	to	build	the	GUI	interface,	so	it's
important	that	you're	well	acquainted	with	the	business	logic—it	will	allow	you
to	concentrate	on	the	rest	of	the	code.

Second	approach	–	a	GUI	application
There	are	several	libraries	that	write	GUI	applications	in	Python.	The	most
famous	ones	are	Tkinter,	wxPython,	PyGTK,	and	PyQt.	They	all	offer	a	wide
range	of	tools	and	widgets	that	you	can	use	to	compose	a	GUI	application.

The	one	I'm	going	to	use	for	the	rest	of	this	chapter	is	Tkinter.	Tkinter	stands	for
Tk	interface	and	it	is	the	standard	Python	interface	to	the	Tk	GUI	toolkit.	Both
Tk	and	Tkinter	are	available	on	most	Unix	platforms,	macOS	X,	as	well	as	on
Windows	systems.

Let's	make	sure	that	tkinter	is	installed	properly	on	your	system	by	running	this
command:

$	python	-m	tkinter

It	should	open	a	dialog	window,	demonstrating	a	simple	Tk	interface.	If	you	can
see	that,	we're	good	to	go.	However,	if	it	doesn't	work,	please	search	for	tkinter
in	the	Python	official	documentation
(https://docs.python.org/3.7/library/tkinter.html).	You	will	find	several	links	to
resources	that	will	help	you	get	up	and	running	with	it.

We're	going	to	make	a	very	simple	GUI	application	that	basically	mimics	the
behavior	of	the	script	we	saw	in	the	first	part	of	this	chapter.	We	won't	add	the
ability	to	save	JPGs	or	PNGs	singularly,	but	after	you've	gone	through	this
chapter,	you	should	be	able	to	play	with	the	code	and	put	that	feature	back	in	by
yourself.

So,	this	is	what	we're	aiming	for:

https://docs.python.org/3.7/library/tkinter.html

Gorgeous,	isn't	it?	As	you	can	see,	it's	a	very	simple	interface	(this	is	how	it
should	look	on	a	mac).	There	is	a	frame	(that	is,	a	container)	for	the	URL	field
and	the	Fetch	info	button,	another	frame	for	the	Listbox	(Content)	to	hold	the
image	names	and	the	radio	button	to	control	the	way	we	save	them,	and	finally
there	is	a	Scrape!	button	at	the	bottom.	We	also	have	a	status	bar,	which	shows
us	some	information.

In	order	to	get	this	layout,	we	could	just	place	all	the	widgets	on	a	root	window,
but	that	would	make	the	layout	logic	quite	messy	and	unnecessarily	complicated.
So,	instead,	we	will	divide	the	space	using	frames	and	place	the	widgets	in	those
frames.	This	way	we	will	achieve	a	much	nicer	result.	So,	this	is	the	draft	for	the
layout:

We	have	a	Root	Window,	which	is	the	main	window	of	the	application.	We
divide	it	into	two	rows,	the	first	one	in	which	we	place	the	Main	Frame,	and	the
second	one	in	which	we	place	the	Status	Frame	(which	will	hold	the	status	bar
text).	The	Main	Frame	is	subsequently	divided	into	three	rows.	In	the	first	one,

we	place	the	URL	Frame,	which	holds	the	URL	widgets.	In	the	second	one,	we
place	the	Img	Frame,	which	will	hold	the	Listbox	and	the	Radio	Frame,	which
will	host	a	label	and	the	radio	button	widgets.	And	finally	we	have	the	third	one,
which	will	just	hold	the	Scrape	button.

In	order	to	lay	out	frames	and	widgets,	we	will	use	a	layout	manager,	called
grid,	that	simply	divides	up	the	space	into	rows	and	columns,	as	in	a	matrix.

Now,	all	the	code	I'm	going	to	write	comes	from	the	guiscrape.py	module,	so	I
won't	repeat	its	name	for	each	snippet,	to	save	space.	The	module	is	logically
divided	into	three	sections,	not	unlike	the	script	version:	imports,	layout	logic,
and	business	logic.	We're	going	to	analyze	them	line	by	line,	in	three	chunks.

The	imports
Imports	are	like	in	the	script	version,	except	we've	lost	argparse,	which	is	no
longer	needed,	and	we	have	added	two	lines:	#	guiscrape.py
from	tkinter	import	*	from	tkinter	import	ttk,	filedialog,	messagebox	...

The	first	line	is	quite	common	practice	when	dealing	with	tkinter,	although	in
general	it	is	bad	practice	to	import	using	the	*	syntax.	You	can	incur	in	name
collisions	and,	if	the	module	is	too	big,	importing	everything	would	be
expensive.

After	that,	we	import	ttk,	filedialog,	and	messagebox	explicitly,	following	the
conventional	approach	used	with	this	library.	ttk	is	the	new	set	of	styled	widgets.
They	behave	basically	like	the	old	ones,	but	are	capable	of	drawing	themselves
correctly	according	to	the	style	your	OS	is	set	on,	which	is	nice.

The	rest	of	the	imports	(omitted)	is	what	we	need	in	order	to	carry	out	the	task
you	know	well	by	now.	Note	that	there	is	nothing	we	need	to	install	with	pip	in
this	second	part;	we	already	have	everything	we	need.

The	layout	logic
I'm	going	to	paste	it	chunk	by	chunk	so	that	I	can	explain	it	easily	to	you.	You'll
see	how	all	those	pieces	we	talked	about	in	the	layout	draft	are	arranged	and
glued	together.	What	I'm	about	to	paste,	as	we	did	in	the	script	before,	is	the	final
part	of	the	guiscrape.py	module.	We'll	leave	the	middle	part,	the	business	logic,	for
last:

if	__name__	==	"__main__":

				_root	=	Tk()

				_root.title('Scrape	app')

As	you	know	by	now,	we	only	want	to	execute	the	logic	when	the	module	is	run
directly,	so	that	first	line	shouldn't	surprise	you.

In	the	last	two	lines,	we	set	up	the	main	window,	which	is	an	instance	of	the	Tk
class.	We	instantiate	it	and	give	it	a	title.	Note	that	I	use	the	prepending
underscore	technique	for	all	the	names	of	the	tkinter	objects,	in	order	to	avoid
potential	collisions	with	names	in	the	business	logic.	I	just	find	it	cleaner	like
this,	but	you're	allowed	to	disagree:

_mainframe	=	ttk.Frame(_root,	padding='5	5	5	5')

				_mainframe.grid(row=0,	column=0,	sticky=(E,	W,	N,	S))

Here,	we	set	up	the	Main	Frame.	It's	a	ttk.Frame	instance.	We	set	_root	as	its
parent,	and	give	it	some	padding.	The	padding	is	a	measure	in	pixels	of	how	much
space	should	be	inserted	between	the	inner	content	and	the	borders	in	order	to	let
our	layout	breathe	a	little,	otherwise	we	have	a	sardine	effect,	where	widgets	are
packed	too	tightly.

The	second	line	is	more	interesting.	We	place	this	_mainframe	on	the	first	row	(0)
and	first	column	(0)	of	the	parent	object	(_root).	We	also	say	that	this	frame	needs
to	extend	itself	in	each	direction	by	using	the	sticky	argument	with	all	four
cardinal	directions.	If	you're	wondering	where	they	came	from,	it's	the	from
tkinter	import	*	magic	that	brought	them	to	us:

_url_frame	=	ttk.LabelFrame(

								_mainframe,	text='URL',	padding='5	5	5	5')

				_url_frame.grid(row=0,	column=0,	sticky=(E,	W))

				_url_frame.columnconfigure(0,	weight=1)

				_url_frame.rowconfigure(0,	weight=1)

Next,	we	start	by	placing	the	URL	Frame	down.	This	time,	the	parent	object	is
_mainframe,	as	you	will	recall	from	our	draft.	This	is	not	just	a	simple	Frame,	it's
actually	a	LabelFrame,	which	means	we	can	set	the	text	argument	and	expect	a
rectangle	to	be	drawn	around	it,	with	the	content	of	the	text	argument	written	in
the	top-left	part	of	it	(check	out	the	previous	picture	if	it	helps).	We	position	this
frame	at	(0,	0),	and	say	that	it	should	expand	to	the	left	and	to	the	right.	We	don't
need	the	other	two	directions.

Finally,	we	use	rowconfigure	and	columnconfigure	to	make	sure	it	behaves	correctly,
should	it	need	to	resize.	This	is	just	a	formality	in	our	present	layout:

_url	=	StringVar()

				_url.set('http://localhost:8000')

				_url_entry	=	ttk.Entry(

								_url_frame,	width=40,	textvariable=_url)

				_url_entry.grid(row=0,	column=0,	sticky=(E,	W,	S,	N),	padx=5)

				_fetch_btn	=	ttk.Button(

								_url_frame,	text='Fetch	info',	command=fetch_url)

				_fetch_btn.grid(row=0,	column=1,	sticky=W,	padx=5)

Here,	we	have	the	code	to	lay	out	the	URL	textbox	and	the	_fetch	button.	A
textbox	in	this	environment	is	called	Entry.	We	instantiate	it	as	usual,	setting
_url_frame	as	its	parent	and	giving	it	a	width.	Also,	and	this	is	the	most	interesting
part,	we	set	the	textvariable	argument	to	be	_url.	_url	is	a	StringVar,	which	is	an
object	that	is	now	connected	to	Entry	and	will	be	used	to	manipulate	its	content.
Therefore,	we	don't	modify	the	text	in	the	_url_entry	instance	directly,	but	by
accessing	_url.	In	this	case,	we	call	the	set	method	on	it	to	set	the	initial	value	to
the	URL	of	our	local	web	page.

We	position	_url_entry	at	(0,	0),	setting	all	four	cardinal	directions	for	it	to	stick	to,
and	we	also	set	a	bit	of	extra	padding	on	the	left	and	right	edges	using	padx,
which	adds	padding	on	the	x-axis	(horizontal).	On	the	other	hand,	pady	takes	care
of	the	vertical	direction.

By	now,	you	should	get	that	every	time	you	call	the	.grid	method	on	an	object,
we're	basically	telling	the	grid	layout	manager	to	place	that	object	somewhere,
according	to	rules	that	we	specify	as	arguments	in	the	grid()	call.

Similarly,	we	set	up	and	place	the	_fetch	button.	The	only	interesting	parameter	is
command=fetch_url.	This	means	that	when	we	click	this	button,	we	call	the	fetch_url

function.	This	technique	is	called	callback:

_img_frame	=	ttk.LabelFrame(

								_mainframe,	text='Content',	padding='9	0	0	0')

				_img_frame.grid(row=1,	column=0,	sticky=(N,	S,	E,	W))

This	is	what	we	called	Img	Frame	in	the	layout	draft.	It	is	placed	on	the	second
row	of	its	parent	_mainframe.	It	will	hold	the	Listbox	and	the	Radio	Frame:

_images	=	StringVar()

				_img_listbox	=	Listbox(

								_img_frame,	listvariable=_images,	height=6,	width=25)

				_img_listbox.grid(row=0,	column=0,	sticky=(E,	W),	pady=5)

				_scrollbar	=	ttk.Scrollbar(

								_img_frame,	orient=VERTICAL,	command=_img_listbox.yview)

				_scrollbar.grid(row=0,	column=1,	sticky=(S,	N),	pady=6)

				_img_listbox.configure(yscrollcommand=_scrollbar.set)

This	is	probably	the	most	interesting	bit	of	the	whole	layout	logic.	As	we	did
with	_url_entry,	we	need	to	drive	the	contents	of	Listbox	by	tying	it	to	an	_images
variable.	We	set	up	Listbox	so	that	_img_frame	is	its	parent,	and	_images	is	the
variable	it's	tied	to.	We	also	pass	some	dimensions.

The	interesting	bit	comes	from	the	_scrollbar	instance.	Note	that,	when	we
instantiate	it,	we	set	its	command	to	_img_listbox.yview.	This	is	the	first	half	of	the
contract	between	Listbox	and	Scrollbar.	The	other	half	is	provided	by	the
_img_listbox.configure	method,	which	sets	yscrollcommand=_scrollbar.set.

By	providing	this	reciprocal	bond,	when	we	scroll	on	Listbox,	Scrollbar	will	move
accordingly	and	vice	versa,	when	we	operate	Scrollbar,	Listbox	will	scroll
accordingly:

_radio_frame	=	ttk.Frame(_img_frame)

				_radio_frame.grid(row=0,	column=2,	sticky=(N,	S,	W,	E))

We	place	the	Radio	Frame,	ready	to	be	populated.	Note	that	Listbox	is	occupying
(0,	0)	on	_img_frame,	Scrollbar	(0,	1),	and	therefore	_radio_frame	will	go	in	(0,	2):

_choice_lbl	=	ttk.Label(

								_radio_frame,	text="Choose	how	to	save	images")

				_choice_lbl.grid(row=0,	column=0,	padx=5,	pady=5)

				_save_method	=	StringVar()

				_save_method.set('img')

				_img_only_radio	=	ttk.Radiobutton(

								_radio_frame,	text='As	Images',	variable=_save_method,

								value='img')

				_img_only_radio.grid(

								row=1,	column=0,	padx=5,	pady=2,	sticky=W)

				_img_only_radio.configure(state='normal')

				_json_radio	=	ttk.Radiobutton(

								_radio_frame,	text='As	JSON',	variable=_save_method,

								value='json')

				_json_radio.grid(row=2,	column=0,	padx=5,	pady=2,	sticky=W)

Firstly,	we	place	the	label,	and	we	give	it	some	padding.	Note	that	the	label	and
radio	buttons	are	children	of	_radio_frame.

As	for	the	Entry	and	Listbox	objects,	Radiobutton	is	also	driven	by	a	bond	to	an
external	variable,	which	I	called	_save_method.	Each	Radiobutton	instance	sets	a	value
argument,	and	by	checking	the	value	on	_save_method,	we	know
which	button	is	selected:

_scrape_btn	=	ttk.Button(

								_mainframe,	text='Scrape!',	command=save)

				_scrape_btn.grid(row=2,	column=0,	sticky=E,	pady=5)

On	the	third	row	of	_mainframe	we	place	the	Scrape	button.	Its	command	is	save,
which	saves	the	images	to	be	listed	in	Listbox,	after	we	have	successfully	parsed	a
web	page:

_status_frame	=	ttk.Frame(

								_root,	relief='sunken',	padding='2	2	2	2')

				_status_frame.grid(row=1,	column=0,	sticky=(E,	W,	S))

				_status_msg	=	StringVar()

				_status_msg.set('Type	a	URL	to	start	scraping...')

				_status	=	ttk.Label(

								_status_frame,	textvariable=_status_msg,	anchor=W)

				_status.grid(row=0,	column=0,	sticky=(E,	W))

We	end	the	layout	section	by	placing	down	the	status	frame,	which	is	a	simple
ttk.Frame.	To	give	it	a	little	status	bar	effect,	we	set	its	relief	property	to	'sunken'
and	give	it	a	uniform	padding	of	two	pixels.	It	needs	to	stick	to	the	left,	right,
and	bottom	parts	of	the	_root	window,	so	we	set	its	sticky	attribute	to	(E,	W,	S).

We	then	place	a	label	in	it	and,	this	time,	we	tie	it	to	a	StringVar	object,	because
we	will	have	to	modify	it	every	time	we	want	to	update	the	status	bar	text.	You
should	be	acquainted	with	this	technique	by	now.

Finally,	on	the	last	line,	we	run	the	application	by	calling	the	mainloop	method	on
the	Tk	instance:

_root.mainloop()

Please	remember	that	all	these	instructions	are	placed	under	the	if	__name__	==

"__main__":	clause	in	the	original	script.

As	you	can	see,	the	code	to	design	our	GUI	application	is	not	hard.	Granted,	at
the	beginning,	you	have	to	play	around	a	little	bit.	Not	everything	will	work	out
perfectly	at	the	first	attempt,	but	I	promise	you	it's	very	easy	and	you	can	find
plenty	of	tutorials	on	the	web.	Let's	now	get	to	the	interesting	bit,	the	business
logic.

The	business	logic
We'll	analyze	the	business	logic	of	the	GUI	application	in	three	chunks.	There	is
the	fetching	logic,	the	saving	logic,	and	the	alerting	logic.

Fetching	the	web	page
Let's	start	with	the	code	to	fetch	the	page	and	images:

config	=	{}

def	fetch_url():

				url	=	_url.get()

				config['images']	=	[]

				_images.set(())		#	initialised	as	an	empty	tuple

				try:

								page	=	requests.get(url)

				except	requests.RequestException	as	err:

								_sb(str(err))

				else:

								soup	=	BeautifulSoup(page.content,	'html.parser')

								images	=	fetch_images(soup,	url)

								if	images:

												_images.set(tuple(img['name']	for	img	in	images))

												_sb('Images	found:	{}'.format(len(images)))

								else:

												_sb('No	images	found')

								config['images']	=	images

def	fetch_images(soup,	base_url):

				images	=	[]

				for	img	in	soup.findAll('img'):

								src	=	img.get('src')

								img_url	=	f'{base_url}/{src}'

								name	=	img_url.split('/')[-1]

								images.append(dict(name=name,	url=img_url))

				return	images

First	of	all,	let	me	explain	that	config	dictionary.	We	need	some	way	of	passing
data	between	the	GUI	application	and	the	business	logic.	Now,	instead	of
polluting	the	global	namespace	with	many	different	variables,	my	personal
preference	is	to	have	a	single	dictionary	that	holds	all	the	objects	we	need	to	pass
back	and	forth,	so	that	the	global	namespace	isn't	clogged	up	with	all	those
names,	and	we	have	a	single,	clean,	easy	way	of	knowing	where	all	the	objects
that	are	needed	by	our	application	are.

In	this	simple	example,	we'll	just	populate	the	config	dictionary	with	the	images
we	fetch	from	the	page,	but	I	wanted	to	show	you	the	technique	so	that	you	have
at	least	one	example.	This	technique	comes	from	my	experience	with	JavaScript.
When	you	code	a	web	page,	you	often	import	several	different	libraries.	If	each
of	these	cluttered	the	global	namespace	with	all	sorts	of	variables,	there	might	be
issues	in	making	everything	work,	because	of	name	clashes	and	variable

overriding.

So,	it's	much	better	to	leave	the	global	namespace	as	clean	as	we	can.	In	this
case,	I	find	that	using	one	config	variable	is	more	than	acceptable.

The	fetch_url	function	is	quite	similar	to	what	we	did	in	the	script.	First,	we	get
the	url	value	by	calling	_url.get().	Remember	that	the	_url	object	is	a	StringVar
instance	that	is	tied	to	the	_url_entry	object,	which	is	an	Entry.	The	text	field	you
see	on	the	GUI	is	the	Entry,	but	the	text	behind	the	scenes	is	the	value	of	the
StringVar	object.

By	calling	get()	on	_url,	we	get	the	value	of	the	text,	which	is	displayed	in
_url_entry.

The	next	step	is	to	prepare	config['images']	to	be	an	empty	list,	and	to	empty	the
_images	variable,	which	is	tied	to	_img_listbox.	This,	of	course,	has	the	effect	of
cleaning	up	all	the	items	in	_img_listbox.

After	this	preparation	step,	we	can	try	to	fetch	the	page,	using	the	same	try/except
logic	we	adopted	in	the	script	at	the	beginning	of	the	chapter.	The	one	difference
is	the	action	we	take	if	things	go	wrong.	We	call	_sb(str(err)).	_sb	is	a	helper
function	whose	code	we'll	see	shortly.	Basically,	it	sets	the	text	in	the	status	bar
for	us.	Not	a	good	name,	right?	I	had	to	explain	its	behavior	to	you–food	for
thought.

If	we	can	fetch	the	page,	then	we	create	the	soup	instance,	and	fetch	the	images
from	it.	The	logic	of	fetch_images	is	exactly	the	same	as	the	one	explained	before,
so	I	won't	repeat	myself	here.

If	we	have	images,	using	a	quick	tuple	comprehension	(which	is	actually	a
generator	expression	fed	to	a	tuple	constructor)	we	feed	the	_images	as	StringVar
and	this	has	the	effect	of	populating	our	_img_listbox	with	all	the	image	names.
Finally,	we	update	the	status	bar.

If	there	were	no	images,	we	still	update	the	status	bar,	and	at	the	end	of	the
function,	regardless	of	how	many	images	were	found,	we	update	config['images']
to	hold	the	images	list.	In	this	way,	we'll	be	able	to	access	the	images	from	other
functions	by	inspecting	config['images']	without	having	to	pass	that	list	around.

Saving	the	images
The	logic	to	save	the	images	is	pretty	straightforward.	Here	it	is:

def	save():

				if	not	config.get('images'):

								_alert('No	images	to	save')

								return

				if	_save_method.get()	==	'img':

								dirname	=	filedialog.askdirectory(mustexist=True)

								_save_images(dirname)

				else:

								filename	=	filedialog.asksaveasfilename(

												initialfile='images.json',

												filetypes=[('JSON',	'.json')])

								_save_json(filename)

def	_save_images(dirname):

				if	dirname	and	config.get('images'):

								for	img	in	config['images']:

												img_data	=	requests.get(img['url']).content

												filename	=	os.path.join(dirname,	img['name'])

												with	open(filename,	'wb')	as	f:

																f.write(img_data)

								_alert('Done')

def	_save_json(filename):

				if	filename	and	config.get('images'):

								data	=	{}

								for	img	in	config['images']:

												img_data	=	requests.get(img['url']).content

												b64_img_data	=	base64.b64encode(img_data)

												str_img_data	=	b64_img_data.decode('utf-8')

												data[img['name']]	=	str_img_data

								with	open(filename,	'w')	as	ijson:

												ijson.write(json.dumps(data))

								_alert('Done')

When	the	user	clicks	the	Scrape!	button,	the	save	function	is	called	using	the
callback	mechanism.

The	first	thing	that	this	function	does	is	check	whether	there	are	actually	any
images	to	be	saved.	If	not,	it	alerts	the	user	about	it,	using	another	helper
function,	_alert,	whose	code	we'll	see	shortly.	No	further	action	is	performed	if
there	are	no	images.

On	the	other	hand,	if	the	config['images']	list	is	not	empty,	save	acts	as	a	dispatcher,
and	it	calls	_save_images	or	_save_json,	according	to	which	value	is	held	by

_same_method.	Remember,	this	variable	is	tied	to	the	radio	buttons,	therefore	we
expect	its	value	to	be	either	'img'	or	'json'.

This	dispatcher	is	a	bit	different	from	the	one	in	the	script.	According	to	which
method	we	have	selected,	a	different	action	must	be	taken.

If	we	want	to	save	the	images	as	images,	we	need	to	ask	the	user	to	choose	a
directory.	We	do	this	by	calling	filedialog.askdirectory	and	assigning	the	result	of
the	call	to	the	dirname	variable.	This	opens	up	a	nice	dialog	window	that	asks	us	to
choose	a	directory.	The	directory	we	choose	must	exist,	as	specified	by	the	way
we	call	the	method.	This	is	done	so	that	we	don't	have	to	write	code	to	deal	with
a	potentially	missing	directory	when	saving	the	files.

Here's	how	this	dialog	should	look	on	a	mac:

If	we	cancel	the	operation,	dirname	will	be	set	to	None.

Before	finishing	analyzing	the	logic	in	save,	let's	quickly	go	through	_save_images.

It's	very	similar	to	the	version	we	had	in	the	script	so	just	note	that,	at	the
beginning,	in	order	to	be	sure	that	we	actually	have	something	to	do,	we	check
on	both	dirname	and	the	presence	of	at	least	one	image	in	config['images'].

If	that's	the	case,	it	means	we	have	at	least	one	image	to	save	and	the	path	for	it,
so	we	can	proceed.	The	logic	to	save	the	images	has	already	been	explained.	The
one	thing	we	do	differently	this	time	is	join	the	directory	(which	means	the
complete	path)	to	the	image	name,	by	means	of	os.path.join.

At	the	end	of	_save_images,	if	we	saved	at	least	one	image,	we	alert	the	user	that
we're	done.

Let's	go	back	now	to	the	other	branch	in	save.	This	branch	is	executed	when	the
user	selects	the	As	JSON	radio	button	before	pressing	the	Scrape	button.	In	this
case,	we	want	to	save	a	file;	therefore,	we	cannot	just	ask	for	a	directory.	We
want	to	give	the	user	the	ability	to	choose	a	filename	as	well.	Hence,	we	fire	up	a
different	dialog:	filedialog.asksaveasfilename.

We	pass	an	initial	filename,	which	is	proposed	to	the	user–they	have	the	ability
to	change	it	if	they	don't	like	it.	Moreover,	because	we're	saving	a	JSON	file,
we're	forcing	the	user	to	use	the	correct	extension	by	passing	the	filetypes
argument.	It	is	a	list,	with	any	number	of	two-tuples	(description,	extension),	that
runs	the	logic	of	the	dialog.

Here's	how	this	dialog	should	look	on	a	macOS:

Once	we	have	chosen	a	place	and	a	filename,	we	can	proceed	with	the	saving
logic,	which	is	the	same	as	it	was	in	the	previous	script.	We	create	a	JSON	object
from	a	Python	dictionary	(data)	that	we	populate	with	key/value	pairs	made	by
the	images	name	and	Base64-encoded	content.

In	_save_json	as	well,	we	have	a	little	check	at	the	beginning	that	makes	sure	that

we	don't	proceed	unless	we	have	a	filename	and	at	least	one	image	to	save.	This
ensures	that	if	the	user	presses	the	Cancel	button,	nothing	bad	happens.

Alerting	the	user
Finally,	let's	see	the	alerting	logic.	It's	extremely	simple:

def	_sb(msg):

				_status_msg.set(msg)

def	_alert(msg):

				messagebox.showinfo(message=msg)

That's	it!	To	change	the	status	bar	message	all	we	need	to	do	is	to	access
_status_msg	StringVar,	as	it's	tied	to	the	_status	label.

On	the	other	hand,	if	we	want	to	show	the	user	a	more	visible	message,	we	can
fire	up	a	message	box.	Here's	how	it	should	look	on	a	mac:

The	messagebox	object	can	also	be	used	to	warn	the	user	(messagebox.showwarning)	or	to
signal	an	error	(messagebox.showerror).	But	it	can	also	be	used	to	provide	dialogs
that	ask	us	whether	we're	sure	we	want	to	proceed	or	if	we	really	want	to	delete
that	file,	and	so	on.

If	you	inspect	messagebox	by	simply	printing	out	what	dir(messagebox)	returns,	you'll
find	methods	such	as	askokcancel,	askquestion,	askretrycancel,	askyesno,	and
askyesnocancel,	as	well	as	a	set	of	constants	to	verify	the	response	of	the	user,	such
as	CANCEL,	NO,	OK,	OKCANCEL,	YES,	and	YESNOCANCEL.	You	can	compare	these	to	the	user's
choice	so	that	you	know	the	next	action	to	execute	when	the	dialog	closes.

How	can	we	improve	the	application?
Now	that	you're	accustomed	to	the	fundamentals	of	designing	a	GUI	application,
I'd	like	to	give	you	some	suggestions	on	how	to	make	ours	better.

We	can	start	with	the	code	quality.	Do	you	think	this	code	is	good	enough,	or
would	you	improve	it?	If	so,	how?	I	would	test	it,	and	make	sure	it's	robust	and
caters	for	all	the	various	scenarios	that	a	user	might	create	by	clicking	around	on
the	application.	I	would	also	make	sure	the	behavior	is	what	I	would	expect
when	the	website	we're	scraping	is	down	for	any	reason.

Another	thing	that	we	could	improve	is	the	naming.	I	have	prudently	named	all
the	components	with	a	leading	underscore,	both	to	highlight	their	somewhat
private	nature,	and	to	avoid	having	name	clashes	with	the	underlying	objects
they	are	linked	to.	But	in	retrospect,	many	of	those	components	could	use	a
better	name,	so	it's	really	up	to	you	to	refactor	until	you	find	the	form	that	suits
you	best.	You	could	start	by	giving	a	better	name	to	the	_sb	function!

For	what	concerns	the	user	interface,	you	could	try	to	resize	the	main
application.	See	what	happens?	The	whole	content	stays	exactly	where	it	is.
Empty	space	is	added	if	you	expand,	or	the	whole	widgets	set	disappears
gradually	if	you	shrink.	This	behavior	isn't	exactly	nice,	therefore	one	quick
solution	could	be	to	make	the	root	window	fixed	(that	is,	unable	to	resize).

Another	thing	that	you	could	do	to	improve	the	application	is	to	add	the	same
functionality	we	had	in	the	script,	to	save	only	PNGs	or	JPGs.	In	order	to	do	this,
you	could	place	a	combo	box	somewhere,	with	three	values:	All,	PNGs,	JPGs,	or
something	similar.	The	user	should	be	able	to	select	one	of	those	options	before
saving	the	files.

Even	better,	you	could	change	the	declaration	of	Listbox	so	that	it's	possible	to
select	multiple	images	at	the	same	time,	and	only	the	selected	ones	will	be	saved.
If	you	manage	to	do	this	(it's	not	as	hard	as	it	seems,	believe	me),	then	you
should	consider	presenting	the	Listbox	a	bit	better,	maybe	providing	alternating
background	colors	for	the	rows.

Another	nice	thing	you	could	add	is	a	button	that	opens	up	a	dialog	to	select	a
file.	The	file	must	be	one	of	the	JSON	files	the	application	can	produce.	Once
selected,	you	could	run	some	logic	to	reconstruct	the	images	from	their	Base64-
encoded	version.	The	logic	to	do	this	is	very	simple,	so	here's	an	example:

with	open('images.json',	'r')	as	f:

				data	=	json.loads(f.read())

for	(name,	b64val)	in	data.items():

				with	open(name,	'wb')	as	f:

								f.write(base64.b64decode(b64val))

As	you	can	see,	we	need	to	open	images.json	in	read	mode,	and	grab	the	data
dictionary.	Once	we	have	it,	we	can	loop	through	its	items,	and	save	each	image
with	the	Base64-decoded	content.	I'll	leave	it	up	to	you	to	tie	this	logic	to	a
button	in	the	application.

Another	cool	feature	that	you	could	add	is	the	ability	to	open	up	a	preview	pane
that	shows	any	image	you	select	from	Listbox,	so	that	the	user	can	take	a	peek	at
the	images	before	deciding	to	save	them.

Finally,	one	last	suggestion	for	this	application	is	to	add	a	menu.	Maybe	even	a
simple	menu	with	File	and	?	to	provide	the	usual	Help	or	About.	Just	for	fun.
Adding	menus	is	not	that	complicated;	you	can	add	text,	keyboard	shortcuts,
images,	and	so	on.

Where	do	we	go	from	here?
If	you	are	interested	in	digging	deeper	into	the	world	of	GUIs,	then	I'd	like	to
offer	you	the	following	suggestions.

The	turtle	module
The	turtle	module	is	an	extended	reimplementation	of	the	eponymous	module
from	the	Python	standard	distribution	up	to	version	Python	2.5.	It's	a	very
popular	way	to	introduce	children	to	programming.

It's	based	on	the	idea	of	an	imaginary	turtle	starting	at	(0,	0)	in	the	Cartesian
plane.	You	can	programmatically	command	the	turtle	to	move	forward	and
backward,	rotate,	and	so	on;	by	combining	all	the	possible	moves,	all	sorts	of
intricate	shapes	and	images	can	be	drawn.

It's	definitely	worth	checking	out,	if	only	to	see	something	different.

wxPython,	PyQt,	and	PyGTK
After	you	have	explored	the	vastness	of	the	tkinter	realm,	I'd	suggest	you	explore
other	GUI	libraries:	wxPython	(https://www.wxpython.org/),	PyQt	(https://riverbankcom
puting.com/software/pyqt/intro),	and	PyGTK
(https://pygobject.readthedocs.io/en/latest/).	You	may	find	out	one	of	these	works
better	for	you,	or	it	makes	it	easier	for	you	to	code	the	application	you	need.

I	believe	that	coders	can	realize	their	ideas	only	when	they	are	conscious	of	what
tools	they	have	available.	If	your	toolset	is	too	narrow,	your	ideas	may	seem
impossible	or	extremely	hard	to	realize,	and	they	risk	remaining	exactly	what
they	are,	just	ideas.

Of	course,	the	technological	spectrum	today	is	humongous,	so	knowing
everything	is	not	possible;	therefore,	when	you	are	about	to	learn	a	new
technology	or	a	new	subject,	my	suggestion	is	to	grow	your	knowledge	by
exploring	breadth	first.

Investigate	several	things,	and	then	go	deep	with	the	one	or	the	few	that	looked
most	promising.	This	way	you'll	be	able	to	be	productive	with	at	least	one	tool,
and	when	the	tool	no	longer	fits	your	needs,	you'll	know	where	to	dig	deeper,
thanks	to	your	previous	exploration.

https://www.wxpython.org/
https://riverbankcomputing.com/software/pyqt/intro
https://pygobject.readthedocs.io/en/latest/

The	principle	of	least	astonishment
When	designing	an	interface,	there	are	many	different	things	to	bear	in	mind.
One	of	them,	which	for	me	is	the	most	important,	is	the	law	or	principle	of	least
astonishment.	It	basically	states	that	if	in	your	design	a	necessary	feature	has	a
high	astonishing	factor,	it	may	be	necessary	to	redesign	your	application.	To	give
you	one	example,	when	you're	used	to	working	with	Windows,	where	the
buttons	to	minimize,	maximize,	and	close	a	window	are	on	the	top-right	corner,
it's	quite	hard	to	work	on	Linux,	where	they	are	at	the	top-left	corner.	You'll	find
yourself	constantly	going	to	the	top-right	corner	only	to	discover	once	more	that
the	buttons	are	on	the	other	side.

If	a	certain	button	has	become	so	important	in	applications	that	it's	now	placed	in
a	precise	location	by	designers,	please	don't	innovate.	Just	follow	the	convention.
Users	will	only	become	frustrated	when	they	have	to	waste	time	looking	for	a
button	that	is	not	where	it's	supposed	to	be.

The	disregard	for	this	rule	is	the	reason	why	I	cannot	work	with	products	such	as
Jira.	It	takes	me	minutes	to	do	simple	things	that	should	require	seconds.

Threading	considerations
This	topic	is	outside	the	scope	of	this	book,	but	I	do	want	to	mention	it.

If	you	are	coding	a	GUI	application	that	needs	to	perform	a	long-running
operation	when	a	button	is	clicked,	you	will	see	that	your	application	will
probably	freeze	until	the	operation	has	been	carried	out.	In	order	to	avoid	this,
and	maintain	the	application's	responsiveness,	you	may	need	to	run	that	time-
expensive	operation	in	a	different	thread	(or	even	a	different	process)	so	that	the
OS	will	be	able	to	dedicate	a	little	bit	of	time	to	the	GUI	every	now	and	then,	to
keep	it	responsive.

Gain	a	good	grasp	of	the	fundamentals	first,	and	then	have	fun	exploring	them!

Summary
In	this	chapter,	we	worked	on	a	project	together.	We	have	written	a	script	that
scrapes	a	very	simple	web	page	and	accepts	optional	commands	that	alter	its
behavior	in	doing	so.	We	also	coded	a	GUI	application	to	do	the	same	thing	by
clicking	buttons	instead	of	typing	on	a	console.	I	hope	you	enjoyed	reading	it
and	following	along	as	much	as	I	enjoyed	writing	it.

We	saw	many	different	concepts,	such	as	working	with	files	and	performing
HTTP	requests,	and	we	talked	about	guidelines	for	usability	and	design.

I	have	only	been	able	to	scratch	the	surface,	but	hopefully	you	have	a	good
starting	point	from	which	to	expand	your	exploration.

Throughout	the	chapter,	I	have	pointed	out	several	different	ways	you	could
improve	the	application,	and	I	have	challenged	you	with	a	few	exercises	and
questions.	I	hope	you	have	taken	the	time	to	play	with	those	ideas.	You	can	learn
a	lot	just	by	playing	around	with	fun	applications	like	the	one	we've	coded
together.

In	the	next	chapter,	we're	going	to	talk	about	data	science,	or	at	least	about	the
tools	that	a	Python	programmer	has	when	it	comes	to	facing	this	subject.

Data	Science
"If	we	have	data,	let's	look	at	data.	If	all	we	have	are	opinions,	let's	go	with	mine."

–	Jim	Barksdale,	former	Netscape	CEO

Data	science	is	a	very	broad	term	and	can	assume	several	different	meanings
based	on	context,	understanding,	tools,	and	so	on.	There	are	countless	books	on
this	subject,	which	is	not	suitable	for	the	faint-hearted.

In	order	to	do	proper	data	science,	you	need	to,	at	the	very	least,	know
mathematics	and	statistics.	Then,	you	may	want	to	dig	into	other	subjects,	such
as	pattern	recognition	and	machine	learning	and,	of	course,	there	is	a	plethora	of
languages	and	tools	you	can	choose	from.

I	won't	be	able	to	talk	about	everything	here.	Therefore,	in	order	to	render	this
chapter	meaningful,	we're	going	to	work	on	a	cool	project	together	instead.

Around	the	year	2012/2013,	I	was	working	for	a	top-tier	social	media	company
in	London.	I	stayed	there	for	two	years,	and	I	was	privileged	to	work	with
several	people	whose	brilliance	I	can	only	start	to	describe.	We	were	the	first	in
the	world	to	have	access	to	the	Twitter	Ads	API,	and	we	were	partners	with
Facebook	as	well.	That	means	a	lot	of	data.

Our	analysts	were	dealing	with	a	huge	number	of	campaigns	and	they	were
struggling	with	the	amount	of	work	they	had	to	do,	so	the	development	team	I
was	a	part	of	tried	to	help	by	introducing	them	to	Python	and	to	the	tools	Python
gives	you	to	deal	with	data.	It	was	a	very	interesting	journey	that	led	me	to
mentor	several	people	in	the	company	and	eventually	took	me	to	Manila	where,
for	two	weeks,	I	gave	intensive	training	in	Python	and	data	science	to	the
analysts	over	there.

The	project	we're	going	to	do	in	this	chapter	is	a	lightweight	version	of	the	final
example	I	presented	to	my	students	in	Manila.	I	have	rewritten	it	to	a	size	that
will	fit	this	chapter,	and	made	a	few	adjustments	here	and	there	for	teaching
purposes,	but	all	the	main	concepts	are	there,	so	it	should	be	fun	and
instructional	for	you.

Specifically,	we	are	going	to	explore	the	following:

The	Jupyter	Notebook
Pandas	and	NumPy:	main	libraries	for	data	science	in	Python
A	few	concepts	around	Pandas's	DataFrame	class
Creating	and	manipulating	a	dataset

Let's	start	by	talking	about	Roman	gods.

IPython	and	Jupyter	Notebook
In	2001,	Fernando	Perez	was	a	graduate	student	in	physics	at	CU	Boulder,	and
was	trying	to	improve	the	Python	shell	so	that	he	could	have	the	niceties	he	was
used	to	when	he	was	working	with	tools	such	as	Mathematica	and	Maple.	The
result	of	that	effort	took	the	name	IPython.

In	a	nutshell,	that	small	script	began	as	an	enhanced	version	of	the	Python	shell
and,	through	the	effort	of	other	coders	and	eventually	with	proper	funding	from
several	different	companies,	it	became	the	wonderful	and	successful	project	it	is
today.	Some	10	years	after	its	birth,	a	Notebook	environment	was	created,
powered	by	technologies	such	as	WebSockets,	the	Tornado	web	server,	jQuery,
CodeMirror,	and	MathJax.	The	ZeroMQ	library	was	also	used	to	handle	the
messages	between	the	Notebook	interface	and	the	Python	core	that	lies	behind	it.

The	IPython	Notebook	has	become	so	popular	and	widely	used	that,	over	time,
all	sorts	of	goodies	have	been	added	to	it.	It	can	handle	widgets,	parallel
computing,	all	sorts	of	media	formats,	and	much,	much	more.	Moreover,	at	some
point,	it	became	possible	to	code	in	languages	other	than	Python	from	within	the
Notebook.

This	has	led	to	a	huge	project	that	at	some	stage	has	been	split	into	two:	IPython
has	been	stripped	down	to	focus	more	on	the	kernel	part	and	the	shell,	while	the
Notebook	has	become	a	brand	new	project	called	Jupyter.	Jupyter	allows
interactive	scientific	computations	to	be	made	in	more	than	40	languages.

This	chapter's	project	will	all	be	coded	and	run	in	a	Jupyter	Notebook,	so	let	me
explain	in	a	few	words	what	a	Notebook	is.

A	Notebook	environment	is	a	web	page	that	exposes	a	simple	menu	and	the	cells
in	which	you	can	run	Python	code.	Even	though	the	cells	are	separate	entities
that	you	can	run	individually,	they	all	share	the	same	Python	kernel.	This	means
that	all	the	names	that	you	define	in	a	cell	(the	variables,	functions,	and	so	on)
will	be	available	in	any	other	cell.

Simply	put,	a	Python	kernel	is	a	process	in	which	Python	is	running.	The	Notebook	web	page

is,	therefore,	an	interface	exposed	to	the	user	for	driving	this	kernel.	The	web	page
communicates	to	it	using	a	very	fast	messaging	system.

Apart	from	all	the	graphical	advantages,	the	beauty	of	having	such	an
environment	lies	in	the	ability	to	run	a	Python	script	in	chunks,	and	this	can	be	a
tremendous	advantage.	Take	a	script	that	is	connecting	to	a	database	to	fetch	data
and	then	manipulate	that	data.	If	you	do	it	in	the	conventional	way,	with	a
Python	script,	you	have	to	fetch	the	data	every	time	you	want	to	experiment	with
it.	Within	a	Notebook	environment,	you	can	fetch	the	data	in	a	cell	and	then
manipulate	and	experiment	with	it	in	other	cells,	so	fetching	it	every	time	is	not
necessary.

The	Notebook	environment	is	also	extremely	helpful	for	data	science	because	it
allows	for	step-by-step	introspection.	You	do	one	chunk	of	work	and	then	verify
it.	You	then	do	another	chunk	and	verify	again,	and	so	on.

It's	also	invaluable	for	prototyping	because	the	results	are	there,	right	in	front	of
your	eyes,	immediately	available.

If	you	want	to	know	more	about	these	tools,	please	check	out	ipython.org	and	jupyt
er.org.

I	have	created	a	very	simple	example	Notebook	with	a	fibonacci	function	that
gives	you	the	list	of	all	the	Fibonacci	numbers	smaller	than	a	given	N.	In	my
browser,	it	looks	like	this:

https://ipython.org/
http://jupyter.org/

Every	cell	has	an	In	[]	label.	If	there's	nothing	between	the	brackets,	it	means
that	a	cell	has	never	been	executed.	If	there	is	a	number,	it	means	that	the	cell
has	been	executed,	and	the	number	represents	the	order	in	which	the	cell	was
executed.	Finally,	a	*	means	that	the	cell	is	currently	being	executed.

You	can	see	in	the	picture	that	in	the	first	cell	I	have	defined	the	fibonacci
function,	and	I	have	executed	it.	This	has	the	effect	of	placing	the	fibonacci	name
in	the	global	frame	associated	with	the	Notebook,	therefore	the	fibonacci	function
is	now	available	to	the	other	cells	as	well.	In	fact,	in	the	second	cell,	I	can	run
fibonacci(100)	and	see	the	results	in	Out	[2].	In	the	third	cell,	I	have	shown	you
one	of	the	several	magic	functions	you	can	find	in	a	Notebook	in	the	second	cell.
%timeit	runs	the	code	several	times	and	provides	you	with	a	nice	benchmark	for
it.	All	the	measurements	for	the	list	comprehensions	and	generators	I	did	in	Chapt
er	5,	Saving	Time	and	Memory,	were	carried	out	with	this	nice	feature.

You	can	execute	a	cell	as	many	times	as	you	want,	and	change	the	order	in
which	you	run	them.	Cells	are	very	malleable,	you	can	also	put	in	markdown
text	or	render	them	as	headers.

Markdown	is	a	lightweight	markup	language	with	plain	text	formatting	syntax	designed	so
that	it	can	be	converted	to	HTML	and	many	other	formats.

Also,	whatever	you	place	in	the	last	row	of	a	cell	will	be	automatically	printed
for	you.	This	is	very	handy	because	you're	not	forced	to	write	print(...)

explicitly.

Feel	free	to	explore	the	Notebook	environment;	once	you're	friends	with	it,	it's	a
long-lasting	relationship,	I	promise.

Installing	the	required	libraries
In	order	to	run	the	Notebook,	you	have	to	install	a	handful	of	libraries,	each	of
which	collaborates	with	the	others	to	make	the	whole	thing	work.	Alternatively,
you	can	just	install	Jupyter	and	it	will	take	care	of	everything	for	you.	For	this
chapter,	there	are	a	few	other	dependencies	that	we	need	to	install.	You	can	find
them	listed	in	requirements/requirements.data.science.in.	To	install	them,	please	take
a	look	at	README.rst	in	the	root	folder	of	the	project,	and	you	will	find	instructions
specifically	for	this	chapter.

	

Using	Anaconda
Sometimes	installing	data	science	libraries	can	be	extremely	painful.	If	you	are
struggling	to	install	the	libraries	for	this	chapter	in	your	virtual	environment,	an
alternative	choice	you	have	is	to	install	Anaconda.	Anaconda	is	a	free	and	open
source	distribution	of	the	Python	and	R	programming	languages	for	data	science
and	machine-learning-related	applications	that	aims	to	simplify	package
management	and	deployment.	You	can	download	it	from	the	anaconda.org	website.
Once	you	have	installed	it	in	your	system,	take	a	peek	at	the	various
requirements	for	this	chapter	and	install	them	through	Anaconda.

	

https://anaconda.org/

Starting	a	Notebook
Once	you	have	all	the	required	libraries	installed,	you	can	either	start	a	Notebook
with	the	following	command	or	by	using	the	Anaconda	interface:	$	jupyter
notebook

You	will	have	an	open	page	in	your	browser	at	this	address	(the	port	might	be
different):	http://localhost:8888/.	Go	to	that	page	and	create	a	new	Notebook	using
the	menu.	When	you	feel	comfortable	with	it,	you're	ready	to	go.	I	strongly
encourage	you	to	try	and	get	a	Jupyter	environment	running,	before	you	proceed
reading	on.	It	is	an	excellent	exercise	sometimes	to	have	to	deal	with	difficult
dependencies.

Our	project	will	take	place	in	a	Notebook,	therefore	I	will	tag	each	code	snippet
with	the	cell	number	it	belongs	to,	so	that	you	can	easily	reproduce	the	code	and
follow	along.

If	you	familiarize	yourself	with	the	keyboard	shortcuts	(look	in	the	Notebook's	Help	section),
you	will	be	able	to	move	between	cells	and	handle	their	content	without	having	to	reach	for
the	mouse.	This	will	make	you	more	proficient	and	way	faster	when	you	work	in	a	Notebook.

Let's	now	move	on	and	talk	about	the	most	interesting	part	of	this	chapter:	data.

Dealing	with	data
	

Typically,	when	you	deal	with	data,	this	is	the	path	you	go	through:	you	fetch	it,
you	clean	and	manipulate	it,	and	then	you	inspect	it,	and	present	results	as
values,	spreadsheets,	graphs,	and	so	on.	I	want	you	to	be	in	charge	of	all	three
steps	of	the	process	without	having	any	external	dependency	on	a	data	provider,
so	we're	going	to	do	the	following:

1.	 We're	going	to	create	the	data,	simulating	the	fact	that	it	comes	in	a	format
that	is	not	perfect	or	ready	to	be	worked	on

2.	 We're	going	to	clean	it	and	feed	it	to	the	main	tool	we'll	use	in	the	project
such	as	DataFrame	from	the	pandas	library

3.	 We're	going	to	manipulate	the	data	in	DataFrame
4.	 We're	going	to	save	DataFrame	to	a	file	in	different	formats
5.	 We're	going	to	inspect	the	data	and	get	some	results	out	of	it

	

	

Setting	up	the	Notebook
	

First	things	first,	let's	produce	the	data.	We	start	from	the	ch13-dataprep	Notebook:

#1

import	json

import	random

from	datetime	import	date,	timedelta

import	faker

Cell	#1	takes	care	of	the	imports.	We	have	already	encountered	them,	apart	from
faker.	You	can	use	this	module	to	prepare	fake	data.	It's	very	useful	in	tests,	when
you	prepare	your	fixtures,	to	get	all	sorts	of	things	such	as	names,	email
addresses,	phone	numbers,	and	credit	card	details.	It	is	all	fake,	of	course.

	

	

	

Preparing	the	data
We	want	to	achieve	the	following	data	structure:	we're	going	to	have	a	list	of
user	objects.	Each	user	object	will	be	linked	to	a	number	of	campaign	objects.	In
Python,	everything	is	an	object,	so	I'm	using	this	term	in	a	generic	way.	The	user
object	may	be	a	string,	a	dictionary,	or	something	else.

A	campaign	in	the	social	media	world	is	a	promotional	campaign	that	a	media
agency	runs	on	social	media	networks	on	behalf	of	a	client.	Remember	that	we're
going	to	prepare	this	data	so	that	it's	not	in	perfect	shape	(but	it	won't	be	that	bad
either...):

#2

fake	=	faker.Faker()	

Firstly,	we	instantiate	the	Faker	that	we'll	use	to	create	the	data:

#3

usernames	=	set()

usernames_no	=	1000

#	populate	the	set	with	1000	unique	usernames

while	len(usernames)	<	usernames_no:

				usernames.add(fake.user_name())

Then	we	need	usernames.	I	want	1,000	unique	usernames,	so	I	loop	over	the
length	of	the	usernames	set	until	it	has	1,000	elements.	A	set	method	doesn't	allow
duplicated	elements,	therefore	uniqueness	is	guaranteed:

#4

def	get_random_name_and_gender():

				skew	=	.6		#	60%	of	users	will	be	female

				male	=	random.random()	>	skew

				if	male:

								return	fake.name_male(),	'M'

				else:

								return	fake.name_female(),	'F'

def	get_users(usernames):

				users	=	[]

				for	username	in	usernames:

								name,	gender	=	get_random_name_and_gender()

								user	=	{

												'username':	username,

												'name':	name,

												'gender':	gender,

												'email':	fake.email(),

												'age':	fake.random_int(min=18,	max=90),

												'address':	fake.address(),

								}

								users.append(json.dumps(user))

				return	users

users	=	get_users(usernames)

users[:3]

Here,	we	create	a	list	of	users.	Each	username	has	now	been	augmented	to	a	full-
blown	user	dictionary,	with	other	details	such	as	name,	gender,	and	email.	Each	user
dictionary	is	then	dumped	to	JSON	and	added	to	the	list.	This	data	structure	is
not	optimal,	of	course,	but	we're	simulating	a	scenario	where	users	come	to	us
like	that.

Note	the	skewed	use	of	random.random()	to	make	60%	of	users	female.	The	rest	of
the	logic	should	be	very	easy	for	you	to	understand.

Note	also	the	last	line.	Each	cell	automatically	prints	what's	on	the	last	line;
therefore,	the	output	of	#4	is	a	list	with	the	first	three	users:

['{"username":	"samuel62",	"name":	"Tonya	Lucas",	"gender":	"F",	"email":	

"anthonyrobinson@robbins.biz",	"age":	27,	"address":	"PSC	8934,	Box	4049\\nAPO	AA	

43073"}',

	'{"username":	"eallen",	"name":	"Charles	Harmon",	"gender":	"M",	"email":	

"courtneycollins@hotmail.com",	"age":	28,	"address":	"38661	Clark	Mews	Apt.	

528\\nAnthonychester,	ID	25919"}',

	'{"username":	"amartinez",	"name":	"Laura	Dunn",	"gender":	"F",	"email":	

"jeffrey35@yahoo.com",	"age":	88,	"address":	"0536	Daniel	Court	Apt.	541\\nPort	

Christopher,	HI	49399-3415"}']

I	hope	you're	following	along	with	your	own	Notebook.	If	you	are,	please	note	that	all	data	is
generated	using	random	functions	and	values;	therefore,	you	will	see	different	results.	They
will	change	every	time	you	execute	the	Notebook.

In	the	following	code	#5	is	the	logic	to	generate	a	campaign	name:

#5

#	campaign	name	format:

#	InternalType_StartDate_EndDate_TargetAge_TargetGender_Currency

def	get_type():

				#	just	some	gibberish	internal	codes

				types	=	['AKX',	'BYU',	'GRZ',	'KTR']

				return	random.choice(types)

def	get_start_end_dates():

				duration	=	random.randint(1,	2	*	365)

				offset	=	random.randint(-365,	365)

				start	=	date.today()	-	timedelta(days=offset)

				end	=	start	+	timedelta(days=duration)

				

				def	_format_date(date_):

								return	date_.strftime("%Y%m%d")

				return	_format_date(start),	_format_date(end)

def	get_age():

				age	=	random.randint(20,	45)

				age	-=	age	%	5

				diff	=	random.randint(5,	25)

				diff	-=	diff	%	5

				return	'{}-{}'.format(age,	age	+	diff)

def	get_gender():

				return	random.choice(('M',	'F',	'B'))

def	get_currency():

				return	random.choice(('GBP',	'EUR',	'USD'))

def	get_campaign_name():

				separator	=	'_'

				type_	=	get_type()

				start,	end	=	get_start_end_dates()

				age	=	get_age()

				gender	=	get_gender()

				currency	=	get_currency()

				return	separator.join(

								(type_,	start,	end,	age,	gender,	currency))

Analysts	use	spreadsheets	all	the	time,	and	they	come	up	with	all	sorts	of	coding
techniques	to	compress	as	much	information	as	possible	into	the	campaign
names.	The	format	I	chose	is	a	simple	example	of	that	technique—there	is	a
code	that	tells	us	the	campaign	type,	then	the	start	and	end	dates,	then	the	target
age	and	gender,	and	finally	the	currency.	All	values	are	separated	by	an
underscore.

In	the	get_type	function,	I	use	random.choice()	to	get	one	value	randomly	out	of	a
collection.	Probably	more	interesting	is	get_start_end_dates.	First,	I	get	the
duration	for	the	campaign,	which	goes	from	one	day	to	two	years	(randomly),
then	I	get	a	random	offset	in	time	which	I	subtract	from	today's	date	in	order	to
get	the	start	date.	Given	that	an	offset	is	a	random	number	between	-365	and
365,	would	anything	be	different	if	I	added	it	to	today's	date	instead	of
subtracting	it?

When	I	have	both	the	start	and	end	dates,	I	return	a	stringified	version	of	them,
joined	by	an	underscore.

Then,	we	have	a	bit	of	modular	trickery	going	on	with	the	age	calculation.	I	hope
you	remember	the	modulo	operator	(%)	from	Chapter	2,	Built-in	Data	Types.

What	happens	here	is	that	I	want	a	date	range	that	has	multiples	of	five	as
extremes.	So,	there	are	many	ways	to	do	it,	but	what	I	do	is	to	get	a	random

number	between	20	and	45	for	the	left	extreme,	and	remove	the	remainder	of	the
division	by	5.	So,	if,	for	example,	I	get	28,	I	will	remove	28	%	5	=	3	from	it,
getting	25.	I	could	have	just	used	random.randrange(),	but	it's	hard	to	resist	modular
division.

The	rest	of	the	functions	are	just	some	other	applications	of	random.choice()	and
the	last	one,	get_campaign_name,	is	nothing	more	than	a	collector	for	all	these	puzzle
pieces	that	returns	the	final	campaign	name:

#6

#	campaign	data:

#	name,	budget,	spent,	clicks,	impressions

def	get_campaign_data():

				name	=	get_campaign_name()

				budget	=	random.randint(10**3,	10**6)

				spent	=	random.randint(10**2,	budget)	

				clicks	=	int(random.triangular(10**2,	10**5,	0.2	*	10**5))	

				impressions	=	int(random.gauss(0.5	*	10**6,	2))

				return	{

								'cmp_name':	name,

								'cmp_bgt':	budget,

								'cmp_spent':	spent,

'cmp_clicks':	clicks,

								'cmp_impr':	impressions

				}

In	#6,	we	write	a	function	that	creates	a	complete	campaign	object.	I	used	a	few
different	functions	from	the	random	module.	random.randint()	gives	you	an	integer
between	two	extremes.	The	problem	with	it	is	that	it	follows	a	uniform
probability	distribution,	which	means	that	any	number	in	the	interval	has	the
same	probability	of	coming	up.

Therefore,	when	dealing	with	a	lot	of	data,	if	you	distribute	your	fixtures	using	a
uniform	distribution,	the	results	you	get	will	all	look	similar.	For	this	reason,	I
chose	to	use	triangular	and	gauss,	for	clicks	and	impressions.	They	use	different
probability	distributions	so	that	we'll	have	something	more	interesting	to	see	in
the	end.

Just	to	make	sure	we're	on	the	same	page	with	the	terminology:	clicks	represents
the	number	of	clicks	on	a	campaign	advertisement,	budget	is	the	total	amount	of
money	allocated	for	the	campaign,	spent	is	how	much	of	that	money	has	already
been	spent,	and	impressions	is	the	number	of	times	the	campaign	has	been	fetched,
as	a	resource,	from	its	source,	regardless	of	the	number	of	clicks	that	were
performed	on	the	campaign.	Normally,	the	amount	of	impressions	is	greater	than

the	number	of	clicks.

Now	that	we	have	the	data,	it's	time	to	put	it	all	together:

#7

def	get_data(users):

				data	=	[]

				for	user	in	users:

								campaigns	=	[get_campaign_data()

																					for	_	in	range(random.randint(2,	8))]

								data.append({'user':	user,	'campaigns':	campaigns})

				return	data

As	you	can	see,	each	item	in	data	is	a	dictionary	with	a	user	and	a	list	of
campaigns	that	are	associated	with	that	user.

Cleaning	the	data
Let's	start	cleaning	the	data:

#8

rough_data	=	get_data(users)

rough_data[:2]		#	let's	take	a	peek

We	simulate	fetching	the	data	from	a	source	and	then	inspect	it.	The	Notebook	is
the	perfect	tool	for	inspecting	your	steps.	You	can	vary	the	granularity	to	your
needs.	The	first	item	in	rough_data	looks	like	this:

{'user':	'{"username":	"samuel62",	"name":	"Tonya	Lucas",	"gender":	"F",	"email":	

"anthonyrobinson@robbins.biz",	"age":	27,	"address":	"PSC	8934,	Box	4049\\nAPO	AA	

43073"}',

		'campaigns':	[{'cmp_name':	'GRZ_20171018_20171116_35-55_B_EUR',

				'cmp_bgt':	999613,

				'cmp_spent':	43168,

				'cmp_clicks':	35603,

				'cmp_impr':	500001},

				...

			{'cmp_name':	'BYU_20171122_20181016_30-45_B_USD',

				'cmp_bgt':	561058,

				'cmp_spent':	472283,

				'cmp_clicks':	44823,

				'cmp_impr':	499999}]}	

So,	we	now	start	working	on	it:

#9

data	=	[]

for	datum	in	rough_data:

				for	campaign	in	datum['campaigns']:

								campaign.update({'user':	datum['user']})

								data.append(campaign)

data[:2]		#	let's	take	another	peek

The	first	thing	we	need	to	do	in	order	to	be	able	to	feed	DataFrame	with	this	data	is
to	denormalize	it.	This	means	transforming	data	into	a	list	whose	items	are
campaign	dictionaries,	augmented	with	their	relative	user	dictionary.	Users	will
be	duplicated	in	each	campaign	they	belong	to.	The	first	item	in	data	looks	like
this:

{'cmp_name':	'GRZ_20171018_20171116_35-55_B_EUR',

		'cmp_bgt':	999613,

		'cmp_spent':	43168,

		'cmp_clicks':	35603,

		'cmp_impr':	500001,

		'user':	'{"username":	"samuel62",	"name":	"Tonya	Lucas",	"gender":	"F",	"email":	

"anthonyrobinson@robbins.biz",	"age":	27,	"address":	"PSC	8934,	Box	4049\\nAPO	AA	

43073"}'}

You	can	see	that	the	user	object	has	been	brought	into	the	campaign	dictionary,
which	was	repeated	for	each	campaign.

Now,	I	would	like	to	help	you	and	offer	a	deterministic	second	part	of	the
chapter,	so	I'm	going	to	save	the	data	I	generated	here	so	that	I	(and	you,	too)
will	be	able	to	load	it	from	the	next	Notebook,	and	we	should	then	have	the	same
results:

#10

with	open('data.json',	'w')	as	stream:

				stream.write(json.dumps(data))

You	should	find	the	data.json	file	in	the	source	code	for	the	book.	Now	we	are
done	with	ch13-dataprep,	so	we	can	close	it,	and	open	up	ch13.

Creating	the	DataFrame
First,	we	have	another	round	of	imports:

#1

import	json

import	calendar

import	numpy	as	np

from	pandas	import	DataFrame

import	arrow

import	pandas	as	pd

The	json	and	calendar	libraries	come	from	the	standard	library.	numpy	is	the	NumPy
library,	the	fundamental	package	for	scientific	computing	with	Python.	NumPy
stands	for	Numeric	Python,	and	it	is	one	of	the	most	widely-used	libraries	in	the
data	science	environment.	I'll	say	a	few	words	about	it	later	on	in	this	chapter.
pandas	is	the	very	core	upon	which	the	whole	project	is	based.	Pandas	stands	for
Python	Data	Analysis	Library.	Among	many	other	things,	it	provides	DataFrame,
a	matrix-like	data	structure	with	advanced	processing	capabilities.	It's	customary
to	import	DataFrame	separately	and	then	to	import	pandas	as	pd.

arrow	is	a	nice	third-party	library	that	speeds	up	dealing	with	dates	dramatically.
Technically,	we	could	do	it	with	the	standard	library,	but	I	see	no	reason	not	to
expand	the	range	of	the	example	and	show	you	something	different.

After	the	imports,	we	load	the	data	as	follows:

#2

with	open('data.json')	as	stream:

				data	=	json.loads(stream.read())

And	finally,	it's	time	to	create	DataFrame:

#3

df	=	DataFrame(data)

df.head()

We	can	inspect	the	first	five	rows	using	the	head	method	of	DataFrame.	You	should
see	something	like	this:

Jupyter	renders	the	output	of	the	df.head()	call	as	HTML	automatically.	In	order
to	have	a	text-based	output,	simply	wrap	df.head()	in	a	print	call.

The	DataFrame	structure	is	very	powerful.	It	allows	us	to	manipulate	a	lot	of	its
contents.	You	can	filter	by	rows,	columns,	aggregate	on	data,	and	many	other
operations.	You	can	operate	with	rows	or	columns	without	suffering	the	time
penalty	you	would	have	to	pay	if	you	were	working	on	data	with	pure	Python.
This	happens	because,	under	the	covers,	pandas	is	harnessing	the	power	of	the
NumPy	library,	which	itself	draws	its	incredible	speed	from	the	low-level
implementation	of	its	core.

Using	DataFrame	allows	us	to	couple	the	power	of	NumPy	with	spreadsheet-like
capabilities	so	that	we'll	be	able	to	work	on	our	data	in	a	fashion	that	is	similar	to
what	an	analyst	could	do.	Only,	we	do	it	with	code.

But	let's	go	back	to	our	project.	Let's	see	two	ways	to	quickly	get	a	bird's	eye
view	of	the	data:

#4

df.count()

count	yields	a	count	of	all	the	non-empty	cells	in	each	column.	This	is	good	to
help	you	understand	how	sparse	your	data	can	be.	In	our	case,	we	have	no
missing	values,	so	the	output	is:

cmp_bgt							5037

cmp_clicks				5037

cmp_impr						5037

cmp_name						5037

cmp_spent					5037

user										5037

dtype:	int64

Nice!	We	have	5,037	rows,	and	the	data	type	is	integers	(dtype:	int64	means	long
integers	because	they	take	64	bits	each).	Given	that	we	have	1,000	users	and	the
amount	of	campaigns	per	user	is	a	random	number	between	2	and	8,	we're

exactly	in	line	with	what	I	was	expecting:

#5

df.describe()	

The	describe	method	is	a	nice,	quick	way	to	introspect	a	bit	further:

											cmp_bgt			cmp_clicks						cmp_impr					cmp_spent

count		5037.000000		5037.000000			5037.000000			5037.000000

mean	496930.317054	40920.962676	499999.498312	246963.542783

std		287126.683484	21758.505210						2.033342	217822.037701

min				1057.000000			341.000000	499993.000000				114.000000

25%		247663.000000	23340.000000	499998.000000		64853.000000

50%		491650.000000	37919.000000	500000.000000	183716.000000

75%		745093.000000	56253.000000	500001.000000	379478.000000

max		999577.000000	99654.000000	500008.000000	975799.000000

As	you	can	see,	it	gives	us	several	measures,	such	as	count,	mean,	std	(standard
deviation),	min,	and	max,	and	shows	how	data	is	distributed	in	the	various
quadrants.	Thanks	to	this	method,	we	already	have	a	rough	idea	of	how	our	data
is	structured.

Let's	see	which	are	the	three	campaigns	with	the	highest	and	lowest	budgets:

#6

df.sort_index(by=['cmp_bgt'],	ascending=False).head(3)	

This	gives	the	following	output:

						cmp_bgt		cmp_clicks		cmp_impr																											cmp_name

3321			999577								8232				499997		GRZ_20180810_20190107_40-55_M_EUR			

2361			999534							53223				499999		GRZ_20180516_20191030_25-30_B_EUR			

2220			999096							13347				499999		KTR_20180620_20190809_40-50_F_USD

And	a	call	to	tail	shows	us	the	ones	with	the	lowest	budgets:

#7

df.sort_values(by=['cmp_bgt'],	ascending=False).tail(3)

Unpacking	the	campaign	name
Now	it's	time	to	increase	the	complexity.	First	of	all,	we	want	to	get	rid	of	that
horrible	campaign	name	(cmp_name).	We	need	to	explode	it	into	parts	and	put	each
part	in	one	dedicated	column.	In	order	to	do	this,	we'll	use	the	apply	method	of
the	Series	object.

The	pandas.core.series.Series	class	is	basically	a	powerful	wrapper	around	an	array
(think	of	it	as	a	list	with	augmented	capabilities).	We	can	extrapolate	a	Series
object	from	DataFrame	by	accessing	it	in	the	same	way	we	do	with	a	key	in	a
dictionary,	and	we	can	call	apply	on	that	Series	object,	which	will	run	a	function
feeding	each	item	in	the	Series	to	it.	We	compose	the	result	into	a	new	DataFrame,
and	then	join	that	DataFrame	with	df:

#8

def	unpack_campaign_name(name):

				#	very	optimistic	method,	assumes	data	in	campaign	name

				#	is	always	in	good	state

				type_,	start,	end,	age,	gender,	currency	=	name.split('_')

				start	=	arrow.get(start,	'YYYYMMDD').date()

				end	=	arrow.get(end,	'YYYYMMDD').date()

				return	type_,	start,	end,	age,	gender,	currency

campaign_data	=	df['cmp_name'].apply(unpack_campaign_name)

campaign_cols	=	[

				'Type',	'Start',	'End',	'Age',	'Gender',	'Currency']

campaign_df	=	DataFrame(

				campaign_data.tolist(),	columns=campaign_cols,	index=df.index)

campaign_df.head(3)

Within	unpack_campaign_name,	we	split	the	campaign	name	in	parts.	We	use	arrow.get()
to	get	a	proper	date	object	out	of	those	strings	(arrow	makes	it	really	easy	to	do	it,
doesn't	it?),	and	then	we	return	the	objects.	A	quick	peek	at	the	last	line	reveals:

		Type							Start									End				Age	Gender	Currency

0		KTR		2019-03-24		2020-11-06		20-35						F						EUR

1		GRZ		2017-05-21		2018-07-24		30-45						B						GBP

2		KTR		2017-12-18		2018-02-08		30-40						F						GBP

Nice!	One	important	thing:	even	if	the	dates	appear	as	strings,	they	are	just	the
representation	of	the	real	date	objects	that	are	hosted	in	DataFrame.

Another	very	important	thing:	when	joining	two	DataFrame	instances,	it's
imperative	that	they	have	the	same	index,	otherwise	pandas	won't	be	able	to	know

which	rows	go	with	which.	Therefore,	when	we	create	campaign_df,	we	set	its	index
to	the	one	from	df.	This	enables	us	to	join	them.	When	creating	this	DataFrame,	we
also	pass	the	column's	names:

#9

df	=	df.join(campaign_df)

And	after	join,	we	take	a	peek,	hoping	to	see	matching	data:

#10

df[['cmp_name']	+	campaign_cols].head(3)

The	truncated	output	of	the	preceding	code	snippet	is	as	follows:

																											cmp_name	Type						Start								End

0	KTR_20190324_20201106_20-35_F_EUR		KTR	2019-03-24	2020-11-06

1	GRZ_20170521_20180724_30-45_B_GBP		GRZ	2017-05-21	2018-07-24

2	KTR_20171218_20180208_30-40_F_GBP		KTR	2017-12-18	2018-02-08

As	you	can	see,	join	was	successful;	the	campaign	name	and	the	separate
columns	expose	the	same	data.	Did	you	see	what	we	did	there?	We're	accessing
DataFrame	using	the	square	brackets	syntax,	and	we	pass	a	list	of	column	names.
This	will	produce	a	brand	new	DataFrame,	with	those	columns	(in	the	same	order),
on	which	we	then	call	the	head()	method.

Unpacking	the	user	data
We	now	do	the	exact	same	thing	for	each	piece	of	user	JSON	data.	We	call	apply
on	the	user	series,	running	the	unpack_user_json	function,	which	takes	a	JSON	user
object	and	transforms	it	into	a	list	of	its	fields,	which	we	can	then	inject	into	a
brand	new	DataFrame,	user_df.	After	that,	we'll	join	user_df	back	with	df,	like	we	did
with	campaign_df:

#11

def	unpack_user_json(user):

				#	very	optimistic	as	well,	expects	user	objects

				#	to	have	all	attributes

				user	=	json.loads(user.strip())

				return	[

								user['username'],

								user['email'],

								user['name'],

								user['gender'],

								user['age'],

								user['address'],

]

user_data	=	df['user'].apply(unpack_user_json)

user_cols	=	[

				'username',	'email',	'name',	'gender',	'age',	'address']

user_df	=	DataFrame(

				user_data.tolist(),	columns=user_cols,	index=df.index)

Very	similar	to	the	previous	operation,	isn't	it?	We	should	also	note	here	that,
when	creating	user_df,	we	need	to	instruct	DataFrame	about	the	column	names	and
the	index.	Let's	join	and	take	a	quick	peek:

#12

df	=	df.join(user_df)

#13

df[['user']	+	user_cols].head(2)

The	output	shows	us	that	everything	went	well.	We're	good,	but	we're	not	done
yet.	If	you	call	df.columns	in	a	cell,	you'll	see	that	we	still	have	ugly	names	for	our
columns.	Let's	change	that:

#14

better_columns	=	[

				'Budget',	'Clicks',	'Impressions',

				'cmp_name',	'Spent',	'user',

				'Type',	'Start',	'End',

				'Target	Age',	'Target	Gender',	'Currency',

				'Username',	'Email',	'Name',

				'Gender',	'Age',	'Address',

]

df.columns	=	better_columns

Good!	Now,	with	the	exception	of	'cmp_name'	and	'user',	we	only	have	nice	names.

Completing	the	datasetNext	step	will	be	to	add	some	extra	columns.	For	each
campaign,	we	have	the	numbers	of	clicks	and	impressions,	and	we	have	the
amounts	spent.	This	allows	us	to	introduce	three	measurement	ratios:	CTR,
CPC,	and	CPI.	They	stand	for	Click	Through	Rate,	Cost	Per	Click,	and	Cost
Per	Impression,	respectively.

The	last	two	are	straightforward,	but	CTR	is	not.	Suffice	it	to	say	that	it	is	the
ratio	between	clicks	and	impressions.	It	gives	you	a	measure	of	how	many	clicks
were	performed	on	a	campaign	advertisement	per	impression—the	higher	this
number,	the	more	successful	the	advertisement	is	in	attracting	users	to	click	on
it:

#15

def	calculate_extra_columns(df):

				#	Click	Through	Rate

				df['CTR']	=	df['Clicks']	/	df['Impressions']

				#	Cost	Per	Click

				df['CPC']	=	df['Spent']	/	df['Clicks']

				#	Cost	Per	Impression

				df['CPI']	=	df['Spent']	/	df['Impressions']

calculate_extra_columns(df)

I	wrote	this	as	a	function,	but	I	could	have	just	written	the	code	in	the	cell.	It's
not	important.	What	I	want	you	to	notice	here	is	that	we're	adding	those	three
columns	with	one	line	of	code	each,	but	DataFrame	applies	the	operation
automatically	(the	division,	in	this	case)	to	each	pair	of	cells	from	the
appropriate	columns.	So,	even	if	they	are	masked	as	three	divisions,	these	are
actually	5037	*	3	divisions,	because	they	are	performed	for	each	row.	Pandas
does	a	lot	of	work	for	us,	and	also	does	a	very	good	job	of	hiding	the	complexity
of	it.

The	function,	calculate_extra_columns,	takes	DataFrame,	and	works	directly	on	it.	This
mode	of	operation	is	called	in-place.	Do	you	remember	how	list.sort()	was
sorting	the	list?	It	is	the	same	deal.	You	could	also	say	that	this	function	is	not
pure,	which	means	it	has	side	effects,	as	it	modifies	the	mutable	object	it	is
passed	as	an	argument.

We	can	take	a	look	at	the	results	by	filtering	on	the	relevant	columns	and	calling
head:

#16

df[['Spent',	'Clicks',	'Impressions',

				'CTR',	'CPC',	'CPI']].head(3)

This	shows	us	that	the	calculations	were	performed	correctly	on	each	row:

				Spent		Clicks		Impressions							CTR							CPC							CPI

0			39383			62554							499997		0.125109		0.629584		0.078766

1		210452			36176							500001		0.072352		5.817448		0.420903

2		342507			62299							500001		0.124598		5.497793		0.685013

Now,	I	want	to	verify	the	accuracy	of	the	results	manually	for	the	first	row:

#17

clicks	=	df['Clicks'][0]

impressions	=	df['Impressions'][0]

spent	=	df['Spent'][0]

CTR	=	df['CTR'][0]

CPC	=	df['CPC'][0]

CPI	=	df['CPI'][0]

print('CTR:',	CTR,	clicks	/	impressions)

print('CPC:',	CPC,	spent	/	clicks)

print('CPI:',	CPI,	spent	/	impressions)

This	yields	the	following	output:

CTR:	0.1251087506525039	0.1251087506525039

CPC:	0.6295840393899671	0.6295840393899671

CPI:	0.0787664725988356	0.0787664725988356

This	is	exactly	what	we	saw	in	the	previous	output.	Of	course,	I	wouldn't
normally	need	to	do	this,	but	I	wanted	to	show	you	how	can	you	perform
calculations	this	way.	You	can	access	Series	(a	column)	by	passing	its	name	to
DataFrame,	in	square	brackets,	and	then	you	access	each	row	by	its	position,
exactly	as	you	would	with	a	regular	list	or	tuple.

We're	almost	done	with	our	DataFrame.	All	we	are	missing	now	is	a	column	that
tells	us	the	duration	of	the	campaign	and	a	column	that	tells	us	which	day	of	the
week	corresponds	to	the	start	date	of	each	campaign.	This	allows	me	to	expand
on	how	to	play	with	date	objects:

#18

def	get_day_of_the_week(day):

				number_to_day	=	dict(enumerate(calendar.day_name,	1))

				return	number_to_day[day.isoweekday()]

def	get_duration(row):

				return	(row['End']	-	row['Start']).days

df['Day	of	Week']	=	df['Start'].apply(get_day_of_the_week)

df['Duration']	=	df.apply(get_duration,	axis=1)

We	used	two	different	techniques	here	but	first,	the	code.

get_day_of_the_week	takes	a	date	object.	If	you	cannot	understand	what	it	does,
please	take	a	few	moments	to	try	to	understand	for	yourself	before	reading	the
explanation.	Use	the	inside-out	technique	like	we've	done	a	few	times	before.

So,	as	I'm	sure	you	know	by	now,	if	you	put	calendar.day_name	in	a	list	call,	you
get	['Monday',	'Tuesday',	'Wednesday',	'Thursday',	'Friday',	'Saturday',	'Sunday'].	This
means	that,	if	we	enumerate	calendar.day_name	starting	from	1,	we	get	pairs	such	as
(1,	'Monday'),	(2,	'Tuesday'),	and	so	on.	If	we	feed	these	pairs	to	a	dictionary,	we
get	a	mapping	between	the	days	of	the	week	as	numbers	(1,	2,	3,	...)	and	their
names.	When	the	mapping	is	created,	in	order	to	get	the	name	of	a	day,	we	just
need	to	know	its	number.	To	get	it,	we	call	date.isoweekday(),	which	tells	us	which
day	of	the	week	that	date	is	(as	a	number).	You	feed	that	into	the	mapping	and,
boom!	You	have	the	name	of	the	day.

get_duration	is	interesting	as	well.	First,	notice	it	takes	an	entire	row,	not	just	a
single	value.	What	happens	in	its	body	is	that	we	perform	a	subtraction	between
a	campaign's	end	and	start	dates.	When	you	subtract	date	objects,	the	result	is	a
timedelta	object,	which	represents	a	given	amount	of	time.	We	take	the	value	of
its	.days	property.	It	is	as	simple	as	that.

Now,	we	can	introduce	the	fun	part,	the	application	of	those	two	functions.

The	first	application	is	performed	on	a	Series	object,	like	we	did	before	for	'user'
and	'cmp_name';	there	is	nothing	new	here.

The	second	one	is	applied	to	the	whole	DataFrame	and,	in	order	to	instruct	pandas	to
perform	that	operation	on	the	rows,	we	pass	axis=1.

We	can	verify	the	results	very	easily,	as	shown	here:

#19

df[['Start',	'End',	'Duration',	'Day	of	Week']].head(3)

The	preceding	code	yields	the	following	output:

								Start									End		Duration	Day	of	Week

0		2019-03-24		2020-11-06							593						Sunday

1		2017-05-21		2018-07-24							429						Sunday

2		2017-12-18		2018-02-08								52						Monday

So,	we	now	know	that	between	the	24th	of	March,	2019	and	the	6th	of	November,
2020	there	are	593	days,	and	that	the	24th	of	March,	2019	is	a	Sunday.

If	you're	wondering	what	the	purpose	of	this	is,	I'll	provide	an	example.	Imagine
that	you	have	a	campaign	that	is	tied	to	a	sports	event	that	usually	takes	place	on
a	Sunday.	You	may	want	to	inspect	your	data	according	to	the	days	so	that	you
can	correlate	them	to	the	various	measurements	you	have.	We're	not	going	to	do
it	in	this	project,	but	it	was	useful	to	see,	if	only	for	the	different	way	of	calling
apply()	on	DataFrame.

Cleaning	everything	up
Now	that	we	have	everything	we	want,	it's	time	to	do	the	final	cleaning;
remember	we	still	have	the	'cmp_name'	and	'user'	columns.	Those	are	useless	now,
so	they	have	to	go.	Also,	I	want	to	reorder	the	columns	in	DataFrame	so	that	it	is
more	relevant	to	the	data	it	now	contains.	In	order	to	do	this,	we	just	need	to
filter	df	on	the	column	list	we	want.	We'll	get	back	a	brand	new	DataFrame	that	we
can	reassign	to	df	itself:

#20

final_columns	=	[

				'Type',	'Start',	'End',	'Duration',	'Day	of	Week',	'Budget',

				'Currency',	'Clicks',	'Impressions',	'Spent',	'CTR',	'CPC',

				'CPI',	'Target	Age',	'Target	Gender',	'Username',	'Email',

				'Name',	'Gender',	'Age'

]

df	=	df[final_columns]

I	have	grouped	the	campaign	information	at	the	beginning,	then	the
measurements,	and	finally	the	user	data	at	the	end.	Now	our	DataFrame	is	clean	and
ready	for	us	to	inspect.

Before	we	start	going	crazy	with	graphs,	what	about	taking	a	snapshot	of
DataFrame	so	that	we	can	easily	reconstruct	it	from	a	file,	rather	than	having	to
redo	all	the	steps	we	did	to	get	here.	Some	analysts	may	want	to	have	it	in
spreadsheet	form,	to	do	a	different	kind	of	analysis	than	the	one	we	want	to	do,
so	let's	see	how	to	save	DataFrame	to	a	file.	It's	easier	done	than	said.

Saving	the	DataFrame	to	a	file
We	can	save	DataFrame	in	many	different	ways.	You	can	type	df.to_	and	then	press
Tab	to	make	autocompletion	pop	up,	to	see	all	the	possible	options.

We're	going	to	save	DataFrame	in	three	different	formats,	just	for	fun.	First,	CSV:
#21
df.to_csv('df.csv')

Then	JSON:

#22

df.to_json('df.json')

And	finally,	in	an	Excel	spreadsheet:

#23

df.to_excel('df.xls')

The	CSV	file	looks	like	this	(output	truncated):

,Type,Start,End,Duration,Day	of	Week,Budget,Currency,Clicks,Im

0,KTR,2019-03-24,2020-11-06,593,Sunday,847110,EUR,62554,499997

1,GRZ,2017-05-21,2018-07-24,429,Sunday,510835,GBP,36176,500001

2,KTR,2017-12-18,2018-02-08,52,Monday,720897,GBP,62299,500001,

And	the	JSON	one	looks	like	this	(again,	output	truncated):

{

		"Age":	{

				"0":	29,

				"1":	29,

				"10":	80,

So,	it's	extremely	easy	to	save	DataFrame	in	many	different	formats,	and	the	good
news	is	that	the	reverse	is	also	true:	it's	very	easy	to	load	a	spreadsheet	into
DataFrame.	The	programmers	behind	pandas	went	a	long	way	to	ease	our	tasks,
something	to	be	grateful	for.

Visualizing	the	results
Finally,	the	juicy	bits.	In	this	section,	we're	going	to	visualize	some	results.	From
a	data	science	perspective,	I'm	not	very	interested	in	going	deep	into	analysis,
especially	because	the	data	is	completely	random,	but	still,	this	code	will	get	you
started	with	graphs	and	other	features.

Something	I	learned	in	my	life,	and	this	may	come	as	a	surprise	to	you,	is	that
—looks	also	count,	so	it's	very	important	that	when	you	present	your	results,	you
do	your	best	to	make	them	pretty.

First,	we	tell	pandas	to	render	graphs	in	the	cell	output	frame,	which	is	convenient.
We	do	it	with	the	following:

#24

%matplotlib	inline

Then,	we	proceed	with	some	styling:

#25

import	matplotlib.pyplot	as	plt

plt.style.use(['classic',	'ggplot'])

import	pylab

pylab.rcParams.update({'font.family'	:	'serif'})

Its	purpose	is	to	make	the	graphs	we	will	look	at	in	this	section	a	little	bit
prettier.	You	can	also	instruct	the	Notebook	to	do	this	when	you	start	it	from	the
console	by	passing	a	parameter,	but	I	wanted	to	show	you	this	way	too	since	it
can	be	annoying	to	have	to	restart	the	Notebook	just	because	you	want	to	plot
something.	In	this	way,	you	can	do	it	on	the	fly	and	then	keep	working.

We	also	use	pylab	to	set	the	font.family	to	serif.	This	might	not	be	necessary	on
your	system.	Try	to	comment	it	out	and	execute	the	Notebook,	and	see	whether
anything	changes.

Now	that	DataFrame	is	complete,	let's	run	df.describe()	(#26)	again.	The	results
should	look	something	like	this:

This	kind	of	quick	result	is	perfect	for	satisfying	those	managers	who	have	20
seconds	to	dedicate	to	you	and	just	want	rough	numbers.

Once	again,	please	keep	in	mind	that	our	campaigns	have	different	currencies,	so	these
numbers	are	actually	meaningless.	The	point	here	is	to	demonstrate	the	DataFrame	capabilities,
not	to	get	to	a	correct	or	detailed	analysis	of	real	data.

Alternatively,	a	graph	is	usually	much	better	than	a	table	with	numbers	because
it's	much	easier	to	read	it	and	it	gives	you	immediate	feedback.	So,	let's	graph
out	the	four	pieces	of	information	we	have	on	each	campaign—'Budget',	'Spent',
'Clicks',	and	'Impressions':

#27

df[['Budget',	'Spent',	'Clicks',	'Impressions']].hist(

				bins=16,	figsize=(16,	6));

We	extrapolate	those	four	columns	(this	will	give	us	another	DataFrame	made	with
only	those	columns)	and	call	the	histogram	hist()	method	on	it.	We	give	some
measurements	on	the	bins	and	figure	sizes,	but	basically,	everything	is	done
automatically.

One	important	thing:	since	this	instruction	is	the	only	one	in	this	cell	(which	also
means,	it's	the	last	one),	the	Notebook	will	print	its	result	before	drawing	the
graph.	To	suppress	this	behavior	and	have	only	the	graph	drawn	with	no	printing,
just	add	a	semicolon	at	the	end	(you	thought	I	was	reminiscing	about	Java,	didn't
you?).	Here	are	the	graphs:

They	are	beautiful,	aren't	they?	Did	you	notice	the	serif	font?	How	about	the
meaning	of	those	figures?	If	you	go	back	and	take	a	look	at	the	way	we	generate
the	data,	you	will	see	that	all	these	graphs	make	perfect	sense:

Budget	is	simply	a	random	integer	in	an	interval,	therefore	we	were
expecting	a	uniform	distribution,	and	there	we	have	it;	it's	practically	a
constant	line.
Spent	is	a	uniform	distribution	as	well,	but	the	high	end	of	its	interval	is	the
budget,	which	is	moving.	This	means	we	should	expect	something	such	as	a
quadratic	hyperbole	that	decreases	to	the	right.	And	there	it	is	as	well.
Clicks	was	generated	with	a	triangular	distribution	with	a	mean	roughly
20%	of	the	interval	size,	and	you	can	see	that	the	peak	is	right	there,	at
about	20%	to	the	left.
Impressions	was	a	Gaussian	distribution,	which	is	the	one	that	assumes	the
famous	bell	shape.	The	mean	was	exactly	in	the	middle	and	we	had	a
standard	deviation	of	2.	You	can	see	that	the	graph	matches	those
parameters.

Good!	Let's	plot	out	the	measures	we	calculated:

#28

df[['CTR',	'CPC',	'CPI']].hist(

				bins=20,	figsize=(16,	6))

Here	is	the	plot	representation:

We	can	see	that	the	CPC	is	highly	skewed	to	the	left,	meaning	that	most	of	the
CPC	values	are	very	low.	The	CPI	has	a	similar	shape,	but	is	less	extreme.

Now,	all	this	is	nice,	but	if	you	wanted	to	analyze	only	a	particular	segment	of
the	data,	how	would	you	do	it?	We	can	apply	a	mask	to	DataFrame	so	that	we	get
another	one	with	only	the	rows	that	satisfy	the	mask	condition.	It's	like	applying
a	global,	row-wise	if	clause:

#29

mask	=	(df.Spent	>	0.75	*	df.Budget)

df[mask][['Budget',	'Spent',	'Clicks',	'Impressions']].hist(

				bins=15,	figsize=(16,	6),	color='g');

In	this	case,	I	prepared	mask	to	filter	out	all	the	rows	for	which	the	amount	spent
is	less	than	or	equal	to	75%	of	the	budget.	In	other	words,	we'll	include	only
those	campaigns	for	which	we	have	spent	at	least	three-quarters	of	the	budget.
Notice	that	in	mask,	I	am	showing	you	an	alternative	way	of	asking	for	a	DataFrame
column,	by	using	direct	property	access	(object.property_name),	instead	of
dictionary-like	access	(object['property_name']).	If	property_name	is	a	valid	Python
name,	you	can	use	both	ways	interchangeably	(JavaScript	works	like	this	as
well).

mask	is	applied	in	the	same	way	that	we	access	a	dictionary	with	a	key.	When	you
apply	mask	to	DataFrame,	you	get	back	another	one	and	we	select	only	the	relevant
columns	on	this	and	call	hist()	again.	This	time,	just	for	fun,	we	want	the	results
to	be	green:

Note	that	the	shapes	of	the	graphs	haven't	changed	much,	apart	from	the	Spent
graph,	which	is	quite	different.	The	reason	for	this	is	that	we've	asked	only	for
the	rows	where	the	amount	spent	is	at	least	75%	of	the	budget.	This	means	that
we're	including	only	the	rows	where	the	amount	spent	is	close	to	the	budget.	The
budget	numbers	come	from	a	uniform	distribution.	Therefore,	it	is	quite	obvious
that	the	Spent	graph	is	now	assuming	that	kind	of	shape.	If	you	make	the
boundary	even	tighter	and	ask	for	85%	or	more,	you'll	see	the	Spent	graph
become	more	and	more	like	the	Budget	one.

Let's	now	ask	for	something	different.	How	about	the	measure	of	'Spent',	'Clicks',
and	'Impressions'	grouped	by	day	of	the	week:

#30

df_weekday	=	df.groupby(['Day	of	Week']).sum()

df_weekday[['Impressions',	'Spent',	'Clicks']].plot(

				figsize=(16,	6),	subplots=True);

The	first	line	creates	a	new	DataFrame,	df_weekday,	by	asking	for	a	grouping	by	'Day
of	Week'	on	df.	The	function	used	to	aggregate	the	data	is	an	addition.

The	second	line	gets	a	slice	of	df_weekday	using	a	list	of	column	names,	something
we're	accustomed	to	by	now.	On	the	result,	we	call	plot(),	which	is	a	bit	different
to	hist().	The	subplots=True	option	makes	plot	draw	three	independent	graphs:

Interestingly	enough,	we	can	see	that	most	of	the	action	happens	on	Sundays	and
Wednesdays.	If	this	were	meaningful	data,	this	would	potentially	be	important
information	to	give	to	our	clients,	which	is	why	I'm	showing	you	this	example.

Note	that	the	days	are	sorted	alphabetically,	which	scrambles	them	up	a	bit.	Can
you	think	of	a	quick	solution	that	would	fix	the	issue?	I'll	leave	it	to	you	as	an
exercise	to	come	up	with	something.

Let's	finish	this	presentation	section	with	a	couple	more	things.	First,	a	simple
aggregation.	We	want	to	aggregate	on	'Target	Gender'	and	'Target	Age',	and	show
'Impressions'	and	'Spent'.	For	both,	we	want	to	see	'mean'	and	the	standard
deviation	('std'):

#31

agg_config	=	{

				'Impressions':	['mean',	'std'],

				'Spent':	['mean',	'std'],

}

df.groupby(['Target	Gender',	'Target	Age']).agg(agg_config)

It's	very	easy	to	do.	We	will	prepare	a	dictionary	that	we'll	use	as	a
configuration.	Then,	we	perform	a	grouping	on	the	'Target	Gender'	and	'Target	Age'
columns,	and	we	pass	our	configuration	dictionary	to	the	agg()	method.	The
result	is	truncated	and	rearranged	a	little	bit	to	make	it	fit,	and	shown	here:

																												Impressions																				Spent

																																			mean							std											mean

Target	Gender	Target	Age																																								

B													20-25							499999.741573		1.904111		218917.000000

														20-30							499999.618421		2.039393		237180.644737

														20-35							499999.358025		2.039048		256378.641975

...																																

M													20-25							499999.355263		2.108421		277232.276316

														20-30							499999.635294		2.075062		252140.117647

														20-35							499999.835821		1.871614		308598.149254		

This	is	the	textual	representation,	of	course,	but	you	can	also	have	the	HTML
one.

Let's	do	one	more	thing	before	we	wrap	this	chapter	up.	I	want	to	show	you
something	called	a	pivot	table.	It's	kind	of	a	buzzword	in	the	data	environment,
so	an	example	such	as	this	one,	albeit	very	simple,	is	a	must:

#32

pivot	=	df.pivot_table(

				values=['Impressions',	'Clicks',	'Spent'],

				index=['Target	Age'],

				columns=['Target	Gender'],

				aggfunc=np.sum

)

pivot

We	create	a	pivot	table	that	shows	us	the	correlation	between	'Target	Age'	and
'Impressions',	'Clicks',	and	'Spent'.	These	last	three	will	be	subdivided	according	to
'Target	Gender'.	The	aggregation	function	(aggfunc)	used	to	calculate	the	results	is
the	numpy.sum	function	(numpy.mean	would	be	the	default,	had	I	not	specified
anything).

After	creating	the	pivot	table,	we	simply	print	it	with	the	last	line	in	the	cell,	and
here's	a	crop	of	the	result:

It's	pretty	clear	and	provides	very	useful	information	when	the	data	is
meaningful.

That's	it!	I'll	leave	you	to	discover	more	about	the	wonderful	world	of	IPython,
Jupyter,	and	data	science.	I	strongly	encourage	you	to	get	comfortable	with	the
Notebook	environment.	It's	much	better	than	a	console,	it's	extremely	practical

and	fun	to	use,	and	you	can	even	create	slides	and	documents	with	it.

Where	do	we	go	from	here?
Data	science	is	indeed	a	fascinating	subject.	As	I	said	in	the	introduction,	those
who	want	to	delve	into	its	meanders	need	to	be	well-trained	in	mathematics	and
statistics.	Working	with	data	that	has	been	interpolated	incorrectly	renders	any
result	about	it	useless.	The	same	goes	for	data	that	has	been	extrapolated
incorrectly	or	sampled	with	the	wrong	frequency.	To	give	you	an	example,
imagine	a	population	of	individuals	that	are	aligned	in	a	queue.	If	for	some
reason,	the	gender	of	that	population	alternated	between	male	and	female,	the
queue	would	be	something	like	this:	F-M-F-M-F-M-F-M-F...

If	you	sampled	it	taking	only	the	even	elements,	you	would	draw	the	conclusion
that	the	population	was	made	up	only	of	males,	while	sampling	the	odd	ones
would	tell	you	exactly	the	opposite.

Of	course,	this	was	just	a	silly	example,	I	know,	but	it's	very	easy	to	make
mistakes	in	this	field,	especially	when	dealing	with	big	data	where	sampling	is
mandatory	and	therefore,	the	quality	of	the	introspection	you	make	depends,	first
and	foremost,	on	the	quality	of	the	sampling	itself.

When	it	comes	to	data	science	and	Python,	these	are	the	main	tools	you	want	to
look	at:

NumPy	(http://www.numpy.org/):	This	is	the	main	package	for	scientific
computing	with	Python.	It	contains	a	powerful	N-dimensional	array	object,
sophisticated	(broadcasting)	functions,	tools	for	integrating	C/C++	and
Fortran	code,	useful	linear	algebra,	the	Fourier	transform,	random	number
capabilities,	and	much	more.
Scikit-Learn	(http://scikit-learn.org/):	This	is	probably	the	most	popular
machine	learning	library	in	Python.	It	has	simple	and	efficient	tools	for	data
mining	and	data	analysis,	accessible	to	everybody,	and	reusable	in	various
contexts.	It's	built	on	NumPy,	SciPy,	and	Matplotlib.
Pandas	(http://pandas.pydata.org/):	This	is	an	open	source,	BSD-licensed
library	providing	high-performance,	easy-to-use	data	structures,	and	data
analysis	tools.	We've	used	it	throughout	this	chapter.
IPython	(http://ipython.org/)/Jupyter	(http://jupyter.org/):	These	provide	a

http://www.numpy.org/
http://scikit-learn.org/
http://pandas.pydata.org/
http://ipython.org/
http://jupyter.org/

rich	architecture	for	interactive	computing.
Matplotlib	(http://matplotlib.org/):	This	is	a	Python	2-D	plotting	library	that
produces	publication-quality	figures	in	a	variety	of	hard-copy	formats	and
interactive	environments	across	platforms.	Matplotlib	can	be	used	in	Python
scripts,	the	Python	and	IPython	shell,	Jupyter	Notebook,	web	application
servers,	and	four	graphical	user	interface	toolkits.
Numba	(http://numba.pydata.org/):	This	gives	you	the	power	to	speed	up	your
applications	with	high-performance	functions	written	directly	in	Python.
With	a	few	annotations,	array-oriented	and	math-heavy	Python	code	can	be
just-in-time	compiled	to	native	machine	instructions,	similar	in
performance	to	C,	C++,	and	Fortran,	without	having	to	switch	languages	or
Python	interpreters.
Bokeh	(http://bokeh.pydata.org/):	This	is	a	Python-interactive	visualization
library	that	targets	modern	web	browsers	for	presentation.	Its	goal	is	to
provide	elegant,	concise	construction	of	novel	graphics	in	the	style	of	D3.js,
but	also	deliver	this	capability	with	high-performance	interactivity	over
very	large	or	streaming	datasets.

Other	than	these	single	libraries,	you	can	also	find	ecosystems,	such	as	SciPy	(ht
tp://scipy.org/)	and	the	aforementioned	Anaconda	(https://anaconda.org/),	that
bundle	several	different	packages	in	order	to	give	you	something	that	just	works
in	an	"out-of-the-box"	fashion.

Installing	all	these	tools	and	their	several	dependencies	is	hard	on	some	systems,
so	I	suggest	that	you	try	out	ecosystems	as	well	to	see	whether	you	are
comfortable	with	them.	It	may	be	worth	it.

http://matplotlib.org/
http://numba.pydata.org/
https://bokeh.pydata.org/
http://scipy.org/
https://anaconda.org/

Summary
In	this	chapter,	we	talked	about	data	science.	Rather	than	attempting	to	explain
anything	about	this	extremely	wide	subject,	we	delved	into	a	project.	We
familiarized	ourselves	with	the	Jupyter	Notebook,	and	with	different	libraries,
such	as	Pandas,	Matplotlib,	and	NumPy.

Of	course,	having	to	compress	all	this	information	into	one	single	chapter	means
I	could	only	touch	briefly	on	the	subjects	I	presented.	I	hope	the	project	we've
gone	through	together	has	been	comprehensive	enough	to	give	you	an	idea	of
what	could	potentially	be	the	workflow	you	might	follow	when	working	in	this
field.

The	next	chapter	is	dedicated	to	web	development.	So,	make	sure	you	have	a
browser	ready	and	let's	go!

Web	Development
"Don't	believe	everything	you	read	on	the	web."

–	Confucius

In	this	chapter,	we're	going	to	work	on	a	website	together.	By	working	on	a	small
project,	my	aim	is	to	open	a	window	for	you	to	take	a	peek	into	what	web
development	is,	along	with	the	main	concepts	and	tools	you	should	know	if	you
want	to	be	successful	with	it.

In	particular,	we	are	going	to	explore	the	following:

The	basic	concepts	around	web	programming
The	Django	web	framework
Regular	expressions
A	brief	overview	of	the	Flask	and	Falcon	web	frameworks

Let's	start	with	the	fundamentals.

What	is	the	web?
	

The	World	Wide	Web	(WWW),	or	simply	the	web,	is	a	way	of	accessing
information	through	the	use	of	a	medium	called	the	internet.	The	internet	is	a
huge	network	of	networks,	a	networking	infrastructure.	Its	purpose	is	to	connect
billions	of	devices	together,	all	around	the	globe,	so	that	they	can	communicate
with	one	another.	Information	travels	through	the	internet	in	a	rich	variety	of
languages,	called	protocols,	that	allow	different	devices	to	speak	the	same
tongue	in	order	to	share	content.

The	web	is	an	information-sharing	model,	built	on	top	of	the	internet,	which
employs	the	Hypertext	Transfer	Protocol	(HTTP)	as	a	basis	for	data
communication.	The	web,	therefore,	is	just	one	of	several	different	ways
information	can	be	exchanged	over	the	internet;	email,	instant	messaging,	news
groups,	and	so	on,	all	rely	on	different	protocols.

	

	

	

How	does	the	web	work?
In	a	nutshell,	HTTP	is	an	asymmetric	request-response	client-server	protocol.
An	HTTP	client	sends	a	request	message	to	an	HTTP	server.	The	server,	in	turn,
returns	a	response	message.	In	other	words,	HTTP	is	a	pull	protocol	in	which
the	client	pulls	information	from	the	server	(as	opposed	to	a	push	protocol,	in
which	the	server	pushes	information	down	to	the	client).	Take	a	look	at	the
following	diagram:

HTTP	is	based	on	TCP/IP	(or	the	Transmission	Control	Protocol/Internet
Protocol),	which	provides	the	tools	for	a	reliable	communication	exchange.

An	important	feature	of	the	HTTP	protocol	is	that	it's	stateless.	This	means	that
the	current	request	has	no	knowledge	about	what	happened	in	previous	requests.
This	is	a	limitation,	but	you	can	browse	a	website	with	the	illusion	of	being
logged	in.	Under	the	covers	though,	what	happens	is	that,	on	login,	a	token	of
user	information	is	saved	(most	often	on	the	client	side,	in	special	files	called
cookies)	so	that	each	request	the	user	makes	carries	the	means	for	the	server	to
recognize	the	user	and	provide	a	custom	interface	by	showing	their	name,
keeping	their	basket	populated,	and	so	on.

Even	though	it's	very	interesting,	we're	not	going	to	delve	into	the	rich	details	of
HTTP	and	how	it	works.	However,	we're	going	to	write	a	small	website,	which
means	we'll	have	to	write	the	code	to	handle	HTTP	requests	and	return	HTTP
responses.	I	won't	keep	prepending	HTTP	to	the	terms	request	and	response	from
now	on,	as	I	trust	there	won't	be	any	confusion.

The	Django	web	framework
For	our	project,	we're	going	to	use	one	of	the	most	popular	web	frameworks	you
can	find	in	the	Python	ecosystem:	Django.

A	web	framework	is	a	set	of	tools	(libraries,	functions,	classes,	and	so	on)	that
we	can	use	to	code	a	website.	We	need	to	decide	what	kind	of	requests	we	want
to	allow	to	be	issued	against	our	web	server	and	how	we	respond	to	them.	A	web
framework	is	the	perfect	tool	for	doing	that	because	it	takes	care	of	many	things
for	us	so	that	we	can	concentrate	only	on	the	important	bits	without	having	to
reinvent	the	wheel.

There	are	different	types	of	frameworks.	Not	all	of	them	are	designed	for	writing	code	for	the
web.	In	general,	a	framework	is	a	tool	that	provides	functionalities	to	facilitate	the
development	of	software	applications,	products,	and	solutions.

Django	design	philosophy
	

Django	is	designed	according	to	the	following	principles:

Don't	repeat	yourself	(DRY):	Don't	repeat	code,	and	code	in	a	way	that
makes	the	framework	deduce	as	much	as	possible	from	as	little	as	possible.
Loose	coupling:	The	various	layers	of	the	framework	shouldn't	know	about
each	other	(unless	absolutely	necessary	for	whatever	reason).	Loose
coupling	works	best	when	paralleled	with	high	cohesion.	Putting	together
things	which	change	for	the	same	reason,	and	spreading	apart	those	which
change	for	different	reasons.
Less	code:	Applications	should	use	the	least	possible	amount	of	code,	and
be	written	in	a	way	that	favors	reuse	as	much	as	possible.
Consistency:	When	using	the	Django	framework,	regardless	of	which	layer
you're	coding	against,	your	experience	will	be	very	consistent	with	the
design	patterns	and	paradigms	that	were	chosen	to	lay	out	the	project.

The	framework	itself	is	designed	around	the	model-template-view	(MTV)
pattern,	which	is	a	variant	of	model-view-controller	(MVC),	which	is	widely
employed	by	other	frameworks.	The	purpose	of	such	patterns	is	to	separate
concerns	and	promote	code	reuse	and	quality.

	

	

	

The	model	layer
Of	the	three	layers,	this	is	the	one	that	defines	the	structure	of	the	data	that	is
handled	by	the	application,	and	deals	with	data	sources.	A	model	is	a	class	that
represents	a	data	structure.	Through	some	Django	magic,	models	are	mapped	to
database	tables	so	that	you	can	store	your	data	in	a	relational	database.

A	relational	database	stores	data	in	tables	in	which	each	column	is	a	property	of	the	data	and
each	row	represents	a	single	item	or	entry	in	the	collection	represented	by	that	table.	Through
the	primary	key	of	each	table,	which	is	that	part	of	the	data	that	allows	it	to	uniquely	identify
each	item,	it	is	possible	to	establish	relationships	between	items	belonging	to	different	tables,
that	is,	to	put	them	into	relation.

The	beauty	of	this	system	is	that	you	don't	have	to	write	database-specific	code
in	order	to	handle	your	data.	You	just	have	to	configure	your	models	correctly
and	use	them.	The	work	on	the	database	is	done	for	you	by	the	Django	object-
relational	mapping	(ORM),	which	takes	care	of	translating	operations	done	on
Python	objects	into	a	language	that	a	relational	database	can	understand:	SQL
(or	Structured	Query	Language).	We	saw	an	example	of	ORM	in	Chapter	7,
Files	and	Data	Persistence,	where	we	explored	SQLAlchemy.

One	benefit	of	this	approach	is	that	you	will	be	able	to	change	databases	without
rewriting	your	code,	since	all	the	database-specific	code	is	produced	by	Django
on	the	fly,	according	to	which	database	it's	connected	to.	Relational	databases
speak	SQL,	but	each	of	them	has	its	own	unique	flavor	of	it;	therefore,	not
having	to	hardcode	any	SQL	in	our	application	is	a	tremendous	advantage.

Django	allows	you	to	modify	your	models	at	any	time.	When	you	do,	you	can
run	a	command	that	creates	a	migration,	which	is	the	set	of	instructions	needed
to	port	the	database	in	a	state	that	represents	the	current	definition	of	your
models.

To	summarize,	this	layer	deals	with	defining	the	data	structures	you	need	to
handle	in	your	website	and	gives	you	the	means	to	save	and	load	them	from	and
to	the	database	by	simply	accessing	the	models,	which	are	Python	objects.

The	view	layer
The	function	of	a	view	is	handling	a	request,	performing	whatever	action	needs
to	be	carried	out,	and	eventually	returning	a	response.	For	example,	if	you	open
your	browser	and	request	a	page	corresponding	to	a	category	of	products	in	an	e-
commerce	shop,	the	view	will	likely	talk	to	the	database,	asking	for	all	the
categories	that	are	children	of	the	selected	category	(for	example,	to	display
them	in	a	navigation	sidebar)	and	for	all	the	products	that	belong	to	the	selected
category,	in	order	to	display	them	on	the	page.

Therefore,	the	view	is	the	mechanism	through	which	we	can	fulfill	a	request.	Its
result,	the	response	object,	can	assume	several	different	forms:	a	JSON	payload,
text,	an	HTML	page,	and	so	on.	When	you	code	a	website,	your	responses
usually	consist	of	HTML	or	JSON.

The	Hypertext	Markup	Language,	or	HTML,	is	the	standard	markup	language	used	to	create
web	pages.	Web	browsers	run	engines	that	are	capable	of	interpreting	HTML	code	and	render
it	into	what	we	see	when	we	open	a	page	of	a	website.

The	template	layer
	

This	is	the	layer	that	provides	the	bridge	between	backend	and	frontend
development.	When	a	view	has	to	return	HTML,	it	usually	does	it	by	preparing	a
context	object	(a	dictionary)	with	some	data,	and	then	it	feeds	this	context	to	a
template,	which	is	rendered	(that	is	to	say,	transformed	into	HTML),	and
returned	to	the	caller	in	the	form	of	a	response	(more	precisely,	the	body	of	the
response).	This	mechanism	allows	for	maximum	code	reuse.	If	you	go	back	to
the	category	example,	it's	easy	to	see	that,	if	you	browse	a	website	that	sells
products,	it	doesn't	really	matter	which	category	you	click	on	or	what	type	of
search	you	perform,	the	layout	of	the	products	page	doesn't	change.	What	does
change	is	the	data	with	which	that	page	is	populated.

Therefore,	the	layout	of	the	page	is	defined	by	a	template,	which	is	written	in	a
mixture	of	HTML	and	Django	template	languages.	The	view	that	serves	that
page	collects	all	the	products	to	be	displayed	in	the	context	dictionary,	and	feeds
it	to	the	template,	which	will	be	rendered	into	an	HTML	page	by	the	Django
template	engine.

	

	

	

The	Django	URL	dispatcher
The	way	Django	associates	a	Uniform	Resource	Locator	(URL)	with	a	view	is
by	matching	the	requested	URL	with	the	patterns	that	are	registered	in	a	special
file.	A	URL	represents	a	page	in	a	website	so	http://mysite.com/categories?id=123
would	probably	point	to	the	page	for	the	category	with	ID	123	on	my	website,
while	https://mysite.com/login	would	probably	be	the	user	login	page.

The	difference	between	HTTP	and	HTTPS	is	that	the	latter	adds	encryption	to	the	protocol	so
that	the	data	that	you	exchange	with	the	website	is	secured.	When	you	put	your	credit	card
details	on	a	website,	or	log	in	anywhere,	or	do	anything	around	sensitive	data,	you	want	to
make	sure	that	you're	using	HTTPS.

	

Regular	expressions
The	way	Django	matches	URLs	to	patterns	is	through	a	regular	expression.	A
regular	expression	is	a	sequence	of	characters	that	defines	a	search	pattern	with
which	we	can	carry	out	operations,	such	as	pattern	and	string	matching,	and
find/replace.

Regular	expressions	have	a	special	syntax	to	indicate	things	such	as	digits,
letters,	and	spaces,	as	well	as	how	many	times	we	expect	a	character	to	appear,
and	much	more.	A	complete	explanation	of	this	topic	is	outside	the	scope	of	this
book.	However,	it	is	a	very	important	subject,	so	the	project	we're	going	to	work
on	together	will	revolve	around	it,	in	the	hope	that	you	will	be	stimulated	to	find
the	time	to	explore	it	a	bit	more	on	your	own.

To	give	you	a	quick	example,	imagine	that	you	wanted	to	specify	a	pattern	to
match	a	date,	such	as	"26-12-1947".	This	string	consists	of	two	digits,	one	dash,
two	digits,	one	dash,	and	finally	four	digits.	Therefore,	we	could	write	it	like
this:	r'[0-9]{2}-[0-9]{2}-[0-9]{4}'.	We	created	a	class	by	using	square	brackets,	and
we	defined	a	range	of	digits	inside,	from	0	to	9,	hence	all	the	possible	digits.
Then,	between	curly	brackets,	we	say	that	we	expect	two	of	them.	Then	a	dash,
then	we	repeat	this	pattern	once	as	it	is,	and	once	more,	by	changing	how	many
digits	we	expect,	and	without	the	final	dash.	Having	a	class	such	as	[0-9]	is	such
a	common	pattern	that	a	special	notation	has	been	created	as	a	shortcut:	'\d'.
Therefore,	we	can	rewrite	the	pattern	like	this:	r'\d{2}-\d{2}-\d{4}'	and	it	will
work	exactly	the	same.	That	r	in	front	of	the	string	stands	for	raw,	and	its
purpose	is	to	prevents	python	from	trying	to	interpret	backslash	escape
sequences,	so	that	they	can	be	passed	as-is	to	the	regular	expression	engine.

A	regex	website
So,	here	we	are.	We'll	code	a	website	that	stores	regular	expressions	so	that	we'll
be	able	to	play	with	them	a	little	bit.

Before	we	proceed	with	creating	the	project,	I'd	like	to	talk	about	Cascading	Style	Sheets
(CSS).	CSS	are	files	in	which	we	specify	how	the	various	elements	on	an	HTML	page	look.
You	can	set	all	sorts	of	properties,	such	as	shape,	size,	color,	margins,	borders,	and	fonts.	In
this	project,	I	have	tried	my	best	to	achieve	a	decent	result	on	the	pages,	but	I'm	neither	a
frontend	developer	nor	a	designer,	so	please	don't	pay	too	much	attention	to	how	things	look.
Try	to	focus	on	how	they	work.

	

Setting	up	Django
On	the	Django	website	(https://www.djangoproject.com/),	you	can	follow	the	tutorial,
which	gives	you	a	pretty	good	idea	of	Django's	capabilities.	If	you	want,	you	can
follow	that	tutorial	first	and	then	come	back	to	this	example.	So,	first	things	first;
let's	install	Django	in	your	virtual	environment	(you	will	find	it	is	already
installed,	as	it	is	part	of	the	requirements	file):	$	pip	install	django

When	this	command	is	done,	you	can	test	it	within	a	console	(try	doing	it	with
bpython,	it	gives	you	a	shell	similar	to	IPython	but	with	nice	introspection
capabilities):

>>>	import	django

>>>	django.VERSION

(2,	0,	5,	'final',	0)	

Now	that	Django	is	installed,	we're	good	to	go.	We'll	have	to	do	some
scaffolding,	so	I'll	quickly	guide	you	through	that.

https://www.djangoproject.com/

Starting	the	project
Choose	a	folder	in	the	book's	environment	and	change	into	that.	I'll	use	ch14.
From	there,	we	can	start	a	Django	project	with	the	following	command:

$	django-admin	startproject	regex		

This	will	prepare	the	skeleton	for	a	Django	project	called	regex.	Change	into	the
regex	folder	and	run	the	following:

$	python	manage.py	runserver		

You	should	be	able	to	go	to	http://127.0.0.1:8000/	with	your	browser	and	see	the	It
worked!	default	Django	page.	This	means	that	the	project	is	correctly	set	up.
When	you've	seen	the	page,	kill	the	server	with	Ctrl	+	C	(or	whatever	it	says	in
the	console).	I'll	paste	the	final	structure	for	the	project	now	so	that	you	can	use
it	as	a	reference:

$	tree	-A	regex		#	from	the	ch14	folder

regex

├──	entries

│	├──	__init__.py

│	├──	admin.py

│	├──	forms.py

│	├──	migrations

│	│	├──	0001_initial.py

│	│	└──	__init__.py

│	├──	models.py

│	├──	static

│	│	└──	entries

│	│	└──	css

│	│	└──	main.css

│	├──	templates

│	│	└──	entries

│	│	├──	base.html

│	│	├──	footer.html

│	│	├──	home.html

│	│	├──	insert.html

│	│	└──	list.html

│	└──	views.py

├──	manage.py

└──	regex

				├──	__init__.py

				├──	settings.py

				├──	urls.py

				└──	wsgi.py

Don't	worry	if	you're	missing	files,	we'll	get	there.	A	Django	project	is	typically

a	collection	of	several	different	applications.	Each	application	is	meant	to
provide	a	functionality	in	a	self-contained,	reusable	fashion.	We'll	create	just
one,	called	entries:

$	python	manage.py	startapp	entries		

Within	the	entries	folder	that	has	been	created,	you	can	get	rid	of	the	tests.py
module.

Now,	let's	fix	the	regex/settings.py	file	in	the	regex	folder.	We	need	to	add	our
application	to	the	INSTALLED_APPS	list	so	that	we	can	use	it	(add	it	at	the	bottom	of
the	list):

INSTALLED_APPS	=	[

				'django.contrib.admin',

				...

				'entries',

]

Then,	you	may	want	to	fix	the	language	and	time	zone	according	to	your
personal	preference.	I	live	in	London,	so	I	set	them	like	this:

LANGUAGE_CODE	=	'en-gb'

TIME_ZONE	=	'Europe/London'

There	is	nothing	else	to	do	in	this	file,	so	you	can	save	and	close	it.

Now	it's	time	to	apply	the	migrations	to	the	database.	Django	needs	database
support	to	handle	users,	sessions,	and	things	like	that,	so	we	need	to	create	a
database	and	populate	it	with	the	necessary	data.	Luckily,	this	is	very	easily	done
with	the	following	command:

$	python	manage.py	migrate		

For	this	project,	we	use	an	SQLite	database,	which	is	basically	just	a	file.	On	a	real	project,
you	would	use	a	different	database	engine,	such	as	MySQL	or	PostgreSQL.

Creating	users
Now	that	we	have	a	database,	we	can	create	a	superuser	using	the	console:

$	python	manage.py	createsuperuser		

After	entering	the	username	and	other	details,	we	have	a	user	with	admin
privileges.	This	is	enough	to	access	the	Django	admin	section,	so	try	to	start	the
server:

$	python	manage.py	runserver		

This	will	start	the	Django	development	server,	which	is	a	very	useful	built-in
web	server	that	you	can	use	while	working	with	Django.	Now	that	the	server	is
running,	we	can	access	the	admin	page	at	http://localhost:8000/admin/.	I	will	show
you	a	screenshot	of	this	section	later.	If	you	log	in	with	the	credentials	of	the
user	you	just	created	and	head	to	the	Authentication	and	Authorization	section,
you'll	find	Users.	Open	that	and	you	will	be	able	to	see	the	list	of	users.	You	can
edit	the	details	of	any	user	you	want	as	an	admin.	In	our	case,	make	sure	you
create	a	different	one	so	that	there	are	at	least	two	users	in	the	system	(we'll	need
them	later).	I'll	call	the	first	user	Fabrizio	(username:	fab)	and	the	second	one
Adriano	(username:	adri),	in	honor	of	my	father.

By	the	way,	you	should	see	that	the	Django	admin	panel	comes	for	free
automatically.	You	define	your	models,	hook	them	up,	and	that's	it.	This	is	an
incredible	tool	that	shows	how	advanced	Django's	introspection	capabilities	are.
Moreover,	it	is	completely	customizable	and	extendable.	It's	truly	an	excellent
piece	of	work.

Adding	the	Entry	model
Now	that	the	boilerplate	is	out	of	the	way,	and	we	have	a	couple	of	users,	we're
ready	to	code.	We	start	by	adding	the	Entry	model	to	our	application	so	that	we
can	store	objects	in	the	database.	Here's	the	code	you'll	need	to	add	(remember	to
use	the	project	tree	for	reference):

#	entries/models.py

from	django.db	import	models

from	django.contrib.auth.models	import	User

from	django.utils	import	timezone

class	Entry(models.Model):

				user	=	models.ForeignKey(User,	on_delete=models.CASCADE)

				pattern	=	models.CharField(max_length=255)

				test_string	=	models.CharField(max_length=255)

				date_added	=	models.DateTimeField(default=timezone.now)

				class	Meta:

								verbose_name_plural	=	'entries'

This	is	the	model	we'll	use	to	store	regular	expressions	in	our	system.	We'll	store
a	pattern,	a	test	string,	a	reference	to	the	user	who	created	the	entry,	and	the
moment	of	creation.	You	can	see	that	creating	a	model	is	actually	quite	easy,	but
nonetheless,	let's	go	through	it	line	by	line.

First	we	need	to	import	the	models	module	from	django.db.	This	will	give	us	the
base	class	for	our	Entry	model.	Django	models	are	special	classes	and	much	is
done	for	us	behind	the	scenes	when	we	inherit	from	models.Model.

We	want	a	reference	to	the	user	who	created	the	entry,	so	we	need	to	import	the
User	model	from	Django's	authorization	application	and	we	also	need	to	import
the	timezone	model	to	get	access	to	the	timezone.now()	function,	which	provides	us
with	a	timezone-aware	version	of	datetime.now().	The	beauty	of	this	is	that	it's
hooked	up	with	the	TIME_ZONE	settings	I	showed	you	before.

As	for	the	primary	key	for	this	class,	if	we	don't	set	one	explicitly,	Django	will
add	one	for	us.	A	primary	key	is	a	key	that	allows	us	to	uniquely	identify	an
Entry	object	in	the	database	(in	this	case,	Django	will	add	an	auto-incrementing
integer	ID).

So,	we	define	our	class,	and	we	set	up	four	class	attributes.	We	have	a	ForeignKey
attribute	that	is	our	reference	to	the	User	model.	We	also	have	two	CharField
attributes	that	hold	the	pattern	and	test	strings	for	our	regular	expressions.	We
also	have	DateTimeField,	whose	default	value	is	set	to	timezone.now.	Note	that	we
don't	call	timezone.now	right	there,	it's	now,	not	now().	So,	we're	not	passing	a	DateTime
instance	(set	at	the	moment	in	time	when	that	line	is	parsed)	rather,	we're	passing
a	callable,	a	function	that	is	called	when	we	save	an	entry	in	the	database.	This	is
similar	to	the	callback	mechanism	we	used	in	Chapter	12,	GUIs	and	Scripts,	when
we	were	assigning	commands	to	button	clicks.

The	last	two	lines	are	very	interesting.	We	define	a	Meta	class	within	the	Entry
class	itself.	The	Meta	class	is	used	by	Django	to	provide	all	sorts	of	extra
information	for	a	model.	Django	has	a	great	deal	of	logic	under	the	hood	to	adapt
its	behavior	according	to	the	information	we	put	into	the	Meta	class.	In	this	case,
in	the	admin	panel,	the	pluralized	version	of	Entry	would	be	Entrys,	which	is
wrong,	therefore	we	need	to	set	it	manually.	We	specify	the	plural	in	all
lowercase,	as	Django	takes	care	of	capitalizing	it	for	us	when	needed.

Now	that	we	have	a	new	model,	we	need	to	update	the	database	to	reflect	the
new	state	of	the	code.	In	order	to	do	this,	we	need	to	instruct	Django	that	it	needs
to	create	the	code	to	update	the	database.	This	code	is	called	migration.	Let's
create	it	and	execute	it:

$	python	manage.py	makemigrations	entries

$	python	manage.py	migrate		

After	these	two	instructions,	the	database	will	be	ready	to	store	Entry	objects.

There	are	two	different	kinds	of	migrations:	data	and	schema	migrations.	Data	migrations
port	data	from	one	state	to	another	without	altering	its	structure.	For	example,	a	data
migration	could	set	all	products	for	a	category	as	out	of	stock	by	switching	a	flag	to	False	or	0.
A	schema	migration	is	a	set	of	instructions	that	alter	the	structure	of	the	database	schema.
For	example,	that	could	be	adding	an	age	column	to	a	Person	table,	or	increasing	the	maximum
length	of	a	field	to	account	for	very	long	addresses.	When	developing	with	Django,	it's	quite
common	to	have	to	perform	both	kinds	of	migrations	over	the	course	of	development.	Data
evolves	continuously,	especially	if	you	code	in	an	agile	environment.

Customizing	the	admin	panel
The	next	step	is	to	hook	the	Entry	model	up	with	the	admin	panel.	You	can	do	it
with	one	line	of	code,	but	in	this	case,	I	want	to	add	some	options	to	customize
the	way	the	admin	panel	shows	the	entries,	both	in	the	list	view	of	all	entry	items
in	the	database	and	in	the	form	view	that	allows	us	to	create	and	modify	them.

All	we	need	to	do	is	to	add	the	following	code:

#	entries/admin.py

from	django.contrib	import	admin

from	.models	import	Entry

@admin.register(Entry)

class	EntryAdmin(admin.ModelAdmin):

				fieldsets	=	[

								('Regular	Expression',

									{'fields':	['pattern',	'test_string']}),

								('Other	Information',

									{'fields':	['user',	'date_added']}),

]

				list_display	=	('pattern',	'test_string',	'user')

				list_filter	=	['user']

				search_fields	=	['test_string']

This	is	simply	beautiful.	My	guess	is	that	you	probably	already	understand	most
of	it,	even	if	you're	new	to	Django.

So,	we	start	by	importing	the	admin	module	and	the	Entry	model.	Because	we	want
to	foster	code	reuse,	we	import	the	Entry	model	using	a	relative	import	(there's	a
dot	before	models).	This	will	allow	us	to	move	or	rename	the	application	without
too	much	trouble.	Then,	we	define	the	EntryAdmin	class,	which	inherits	from
admin.ModelAdmin.	The	decoration	on	the	class	tells	Django	to	display	the	Entry
model	in	the	admin	panel,	and	what	we	put	in	the	EntryAdmin	class	tells	Django
how	to	customize	the	way	it	handles	this	model.

First,	we	specify	the	fieldsets	for	the	create/edit	page.	This	will	divide	the	page
into	two	sections	so	that	we	get	a	better	visualization	of	the	content	(pattern	and
test	string)	and	the	other	details	(user	and	timestamp)	separately.

Then,	we	customize	the	way	the	list	page	displays	the	results.	We	want	to	see	all
the	fields,	but	not	the	date.	We	also	want	to	be	able	to	filter	on	the	user	so	that

we	can	have	a	list	of	all	the	entries	by	just	one	user,	and	we	want	to	be	able	to
search	on	test_string.

I	will	go	ahead	and	add	three	entries,	one	for	myself	and	two	on	behalf	of	my
father.	The	result	is	shown	in	the	next	two	screenshots.	After	inserting	them,	the
list	page	looks	like	this:

I	have	highlighted	the	three	parts	of	this	view	that	we	customized	in	the	EntryAdmin
class.	We	can	filter	by	user,	we	can	search,	and	we	have	all	the	fields	displayed.
If	you	click	on	a	pattern,	the	edit	view	opens	up.

After	our	customization,	it	looks	like	this:

Notice	how	we	have	two	sections:	Regular	Expression	and	Other	Information,
thanks	to	our	custom	EntryAdmin	class.	Have	a	go	with	it,	add	some	entries	to	a
couple	of	different	users,	get	familiar	with	the	interface.	Isn't	it	nice	to	have	all
this	for	free?

Creating	the	form
Every	time	you	fill	in	your	details	on	a	web	page,	you're	inserting	data	in	form
fields.	A	form	is	a	part	of	the	HTML	Document	Object	Model	(DOM)	tree.	In
HTML,	you	create	a	form	by	using	the	form	tag.	When	you	click	on	the	submit
button,	your	browser	normally	packs	the	form	data	together	and	puts	it	in	the
body	of	a	POST	request.	As	opposed	to	GET	requests,	which	are	used	to	ask	the	web
server	for	a	resource,	a	POST	request	normally	sends	data	to	the	web	server	with
the	aim	of	creating	or	updating	a	resource.	For	this	reason,	handling	POST	requests
usually	requires	more	care	than	GET	requests.

When	the	server	receives	data	from	a	POST	request,	that	data	needs	to	be
validated.	Moreover,	the	server	needs	to	employ	security	mechanisms	to	protect
against	various	types	of	attacks.	One	attack	that	is	very	dangerous	is	the	cross-
site	request	forgery	(CSRF)	attack,	which	happens	when	data	is	sent	from	a
domain	that	is	not	the	one	the	user	is	authenticated	on.	Django	allows	you	to
handle	this	issue	in	a	very	elegant	way.

So,	instead	of	being	lazy	and	using	the	Django	admin	to	create	the	entries,	I'm
going	to	show	you	how	to	do	it	using	a	Django	form.	By	using	the	tools	the
framework	gives	you,	you	get	a	very	good	degree	of	validation	work	already
done	(in	fact,	we	won't	need	to	add	any	custom	validation	ourselves).

There	are	two	kinds	of	form	classes	in	Django:	Form	and	ModelForm.	You	use	the
former	to	create	a	form	whose	shape	and	behavior	depends	on	how	you	code	the
class,	what	fields	you	add,	and	so	on.	On	the	other	hand,	the	latter	is	a	type	of
form	that,	albeit	still	customizable,	infers	fields	and	behavior	from	a	model.
Since	we	need	a	form	for	the	Entry	model,	we'll	use	that	one:

#	entries/forms.py

from	django.forms	import	ModelForm

from	.models	import	Entry

class	EntryForm(ModelForm):

				class	Meta:

								model	=	Entry

								fields	=	['pattern',	'test_string']

Amazingly	enough,	this	is	all	we	have	to	do	to	have	a	form	that	we	can	put	on	a

page.	The	only	notable	thing	here	is	that	we	restrict	the	fields	to	only	pattern	and
test_string.	Only	logged-in	users	will	be	allowed	access	to	the	insert	page,	and
therefore	we	don't	need	to	ask	who	the	user	is,	we	already	know	that.	As	for	the
date,	when	we	save	an	Entry,	the	date_added	field	will	be	set	according	to	its
default,	therefore	we	don't	need	to	specify	that	as	well.	We'll	see	in	the	view	how
to	feed	the	user	information	to	the	form	before	saving.	So,	now	that	the
background	work	is	done,	all	we	need	is	the	views	and	the	templates.	Let's	start
with	the	views.

Writing	the	views
	

We	need	to	write	three	views.	We	need	one	for	the	home	page,	one	to	display	the
list	of	all	entries	for	a	user,	and	one	to	create	a	new	entry.	We	also	need	views	to
log	in	and	log	out.	But	thanks	to	Django,	we	don't	need	to	write	them.	I'll	paste
the	code	in	steps:

#	entries/views.py

import	re

from	django.contrib.auth.decorators	import	login_required

from	django.contrib.messages.views	import	SuccessMessageMixin

from	django.urls	import	reverse_lazy

from	django.utils.decorators	import	method_decorator

from	django.views.generic	import	FormView,	TemplateView

from	.forms	import	EntryForm

from	.models	import	Entry

Let's	start	with	the	imports.	We	need	the	re	module	to	handle	regular	expressions,
then	we	need	a	few	classes	and	functions	from	Django,	and	finally,	we	need	the
Entry	model	and	the	EntryForm	form.

	

	

	

The	home	view
The	first	view	is	HomeView:

#	entries/views.py

class	HomeView(TemplateView):

				template_name	=	'entries/home.html'

				@method_decorator(

								login_required(login_url=reverse_lazy('login')))

				def	get(self,	request,	*args,	**kwargs):

								return	super(HomeView,	self).get(request,	*args,	**kwargs)

It	inherits	from	TemplateView,	which	means	that	the	response	will	be	created	by
rendering	a	template	with	the	context	we'll	create	in	the	view.	All	we	have	to	do
is	specify	the	template_name	class	attribute	to	point	to	the	correct	template.	Django
promotes	code	reuse	to	a	point	that	if	we	didn't	need	to	make	this	view
accessible	only	to	logged-in	users,	the	first	two	lines	would	have	been	all	we
needed.

However,	we	want	this	view	to	be	accessible	only	to	logged-in	users;	therefore,
we	need	to	decorate	it	with	login_required.	Now,	historically	views	in	Django	were
functions;	therefore,	this	decorator	was	designed	to	accept	a	function,	and	not	a
method	like	we	have	in	this	class.	We're	using	Django	class-based	views	in	this
project	so,	in	order	to	make	things	work,	we	need	to	transform	login_required	so
that	it	accepts	a	method	(the	difference	being	in	the	first	argument:	self).	We	do
this	by	passing	login_required	to	method_decorator.

We	also	need	to	feed	the	login_required	decorator	with	login_url	information,	and
here	comes	another	wonderful	feature	of	Django.	As	you'll	see	after	we're	done
with	the	views,	in	Django,	you	tie	a	view	to	a	URL	through	a	pattern,	consisting
of	a	string	which	may	or	may	not	be	a	regular	expression,	and	possibly	other
information.	You	can	give	a	name	to	each	entry	in	the	urls.py	file	so	that	when
you	want	to	refer	to	a	URL,	you	don't	have	to	hardcode	its	value	into	your	code.
All	you	have	to	do	is	get	Django	to	reverse-engineer	that	URL	from	the	name	we
gave	to	the	entry	in	urls.py,	defining	the	URL	and	the	view	that	is	tied	to	it.	This
mechanism	will	become	clearer	later.	For	now,	just	think	of	reverse('...')	as	a
way	of	getting	a	URL	from	an	identifier.	In	this	way,	you	only	write	the	actual
URL	once,	in	the	urls.py	file,	which	is	brilliant.	In	the	views.py	code,	we	need	to

use	reverse_lazy,	which	works	exactly	like	reverse	with	one	major	difference:	it
only	finds	the	URL	when	we	actually	need	it	(in	a	lazy	fashion).	The	reason	why
reverse_lazy	can	be	so	useful	is	that	sometimes	it	might	happen	that	we	need	to
reverse	an	URL	from	an	identifier,	but	at	the	moment	we	call	reverse,	the	urls.py
module	hasn't	been	loaded	yet,	which	causes	a	failure.	The	lazy	behavior	of
reverse_lazy	solves	the	issue	because	even	if	the	call	is	made	before	the	urls.py
module	has	been	loaded,	the	actual	reversing	of	the	identifier,	to	get	to	the
related	URL,	happens	in	a	lazy	fashion,	later	on,	when	urls.py	has	surely	been
loaded.

The	get	method,	which	we	just	decorated,	simply	calls	the	get	method	of	the
parent	class.	Of	course,	the	get	method	is	the	method	that	Django	calls	when	a	GET
request	is	performed	against	the	URL	tied	to	this	view.

The	entry	list	view
This	view	is	much	more	interesting	than	the	previous	one:

#	entries/views.py

class	EntryListView(TemplateView):

				template_name	=	'entries/list.html'

				@method_decorator(

								login_required(login_url=reverse_lazy('login')))

				def	get(self,	request,	*args,	**kwargs):

								context	=	self.get_context_data(**kwargs)

								entries	=	Entry.objects.filter(

												user=request.user).order_by('-date_added')

								matches	=	(self._parse_entry(entry)	for	entry	in	entries)

								context['entries']	=	list(zip(entries,	matches))

								return	self.render_to_response(context)

				def	_parse_entry(self,	entry):

								match	=	re.search(entry.pattern,	entry.test_string)

								if	match	is	not	None:

												return	(

																match.group(),

																match.groups()	or	None,

																match.groupdict()	or	None

)

								return	None

First	of	all,	we	decorate	the	get	method	as	we	did	before.	Inside	of	it,	we	need	to
prepare	a	list	of	Entry	objects	and	feed	it	to	the	template,	which	shows	it	to	the
user.	In	order	to	do	so,	we	start	by	getting	the	context	dictionary	like	we're
supposed	to	do,	by	calling	the	get_context_data	method	of	the	TemplateView	class.
Then,	we	use	the	ORM	to	get	a	list	of	the	entries.	We	do	this	by	accessing	the
objects	manager,	and	calling	a	filter	on	it.	We	filter	the	entries	according	to
which	user	is	logged	in,	and	we	ask	for	them	to	be	sorted	in	descending	order
(that	'-'	in	front	of	the	name	specifies	the	descending	order).	The	objects
manager	is	the	default	manager	every	Django	model	is	augmented	with	on
creation:	it	allows	us	to	interact	with	the	database	through	its	methods.

We	parse	each	entry	to	get	a	list	of	matches	(actually,	I	coded	it	so	that	matches	is
a	generator	expression).	Finally,	we	add	to	the	context	an	'entries'	key	whose
value	is	the	coupling	of	entries	and	matches,	so	that	each	Entry	instance	is	paired
with	the	resulting	match	of	its	pattern	and	test	string.

On	the	last	line,	we	simply	ask	Django	to	render	the	template	using	the	context

we	created.

Take	a	look	at	the	_parse_entry	method.	All	it	does	is	perform	a	search	on	the
entry.test_string	with	the	entry.pattern.	If	the	resulting	match	object	is	not	None,	it
means	that	we	found	something.	If	so,	we	return	a	tuple	with	three	elements:	the
overall	group,	the	subgroups,	and	the	group	dictionary.

Notice	that	match.groups()	and	match.groupdict()	might	return	respectively	an	empty	tuple	and	an
empty	dict.	In	order	to	normalize	empty	results	to	a	simpler	None,	I	use	a	common	pattern	in
Python	by	exploiting	the	or	operator.	A	or	B,	in	fact,	will	return	A	if	A	evaluates	to	a	truthy
value,	or	B	otherwise.	Can	you	think	how	this	might	differ	from	the	behavior	of	the	and
operator?

If	you're	not	familiar	with	those	terms,	don't	worry,	you'll	see	a	screenshot	soon
with	an	example.	We	return	None	if	there	is	no	match	(which	technically	is	not
needed,	as	Python	would	do	that	anyway,	but	I	have	included	it	here	for	the	sake
of	being	explicit).

The	form	view
Finally,	let's	examine	EntryFormView:

#	entries/views.py

class	EntryFormView(SuccessMessageMixin,	FormView):

				template_name	=	'entries/insert.html'

				form_class	=	EntryForm

				success_url	=	reverse_lazy('insert')

				success_message	=	"Entry	was	created	successfully"

				@method_decorator(

								login_required(login_url=reverse_lazy('login')))

				def	get(self,	request,	*args,	**kwargs):

								return	super(EntryFormView,	self).get(

												request,	*args,	**kwargs)

				@method_decorator(

								login_required(login_url=reverse_lazy('login')))

				def	post(self,	request,	*args,	**kwargs):

								return	super(EntryFormView,	self).post(

												request,	*args,	**kwargs)

				def	form_valid(self,	form):

								self._save_with_user(form)

								return	super(EntryFormView,	self).form_valid(form)

				def	_save_with_user(self,	form):

								self.object	=	form.save(commit=False)

								self.object.user	=	self.request.user

								self.object.save()

This	is	particularly	interesting	for	a	few	reasons.	First,	it	shows	us	a	nice
example	of	Python's	multiple	inheritance.	We	want	to	display	a	message	on	the
page,	after	having	inserted	an	Entry,	so	we	inherit	from	SuccessMessageMixin.	But	we
want	to	handle	a	form	as	well,	so	we	also	inherit	from	FormView.

Note	that,	when	you	deal	with	mixins	and	inheritance,	you	may	have	to	consider	the	order	in
which	you	specify	the	base	classes	in	the	class	declaration,	as	it	will	affect	how	methods	are
found	when	going	up	the	inheritance	chain	to	serve	a	call.

In	order	to	set	up	this	view	correctly,	we	need	to	specify	a	few	attributes	at	the
beginning:	the	template	to	be	rendered,	the	form	class	to	be	used	to	handle	the
data	from	the	POST	request,	the	URL	we	need	to	redirect	the	user	to	in	the	case	of
success,	and	the	success	message.

Another	interesting	feature	is	that	this	view	needs	to	handle	both	GET	and	POST
requests.	When	we	land	on	the	form	page	for	the	first	time,	the	form	is	empty,

and	that	is	the	GET	request.	On	the	other	hand,	when	we	fill	in	the	form	and	want
to	submit	the	Entry,	we	make	a	POST	request.	You	can	see	that	the	body	of	get	is
conceptually	identical	to	HomeView.	Django	does	everything	for	us.

The	post	method	is	just	like	get.	The	only	reason	we	need	to	code	these	two
methods	is	so	that	we	can	decorate	them	to	require	login.

Within	the	Django	form-handling	process	(in	the	FormView	class),	there	are	a	few
methods	that	we	can	override	in	order	to	customize	the	overall	behavior.	We
need	to	do	it	with	the	form_valid	method.	This	method	will	be	called	when	the
form	validation	is	successful.	Its	purpose	is	to	save	the	form	so	that	an	Entry
object	is	created	out	of	it,	and	then	stored	in	the	database.

The	only	problem	is	that	our	form	is	missing	the	user.	We	need	to	intercept	that
moment	in	the	chain	of	calls	and	put	the	user	information	in	ourselves.	This	is
done	by	calling	the	_save_with_user	method,	which	is	very	simple.

First,	we	ask	Django	to	save	the	form	with	the	commit	argument	set	to	False.	This
creates	an	Entry	instance	without	attempting	to	save	it	to	the	database.	Saving	it
immediately	would	fail	because	the	user	information	is	not	there.

The	next	line	updates	the	Entry	instance	(self.object),	adding	the	user	information
and,	on	the	last	line,	we	can	safely	save	it.	The	reason	I	called	object	and	set	it	on
the	instance	like	that	was	to	follow	what	the	original	FormView	class	does.

We're	fiddling	with	the	Django	mechanism	here,	so	if	we	want	the	whole	thing	to
work,	we	need	to	pay	attention	to	when	and	how	we	modify	its	behavior,	and
make	sure	we	don't	alter	it	incorrectly.	For	this	reason,	it's	very	important	to
remember	to	call	the	form_valid	method	of	the	base	class	(we	use	super	for	that)	at
the	end	of	our	own	customized	version,	to	make	sure	that	every	other	action	that
method	usually	performs	is	carried	out	correctly.

Note	how	the	request	is	tied	to	each	view	instance	(self.request)	so	that	we	don't
need	to	pass	it	through	when	we	refactor	our	logic	into	methods.	Note	also	that
the	user	information	has	been	added	to	the	request	automatically	by	Django.
Finally,	the	reason	why	all	the	process	is	split	into	very	small	methods	like	these
is	so	that	we	can	only	override	those	that	we	need	to	customize.	All	this	removes
the	need	to	write	a	lot	of	code.

Now	that	we	have	the	views	covered,	let's	see	how	we	couple	them	to	the	URLs.

Tying	up	URLs	and	views
In	the	urls.py	module,	we	tie	each	view	to	a	URL.	There	are	many	ways	of	doing
this.	I	chose	the	simplest	one,	which	works	perfectly	for	the	extent	of	this
exercise,	but	you	may	want	to	explore	this	subject	more	deeply	if	you	intend	to
work	with	Django.	This	is	the	core	around	which	the	whole	website	logic	will
revolve;	therefore,	you	should	try	to	get	it	down	correctly.	Note	that	the	urls.py
module	belongs	to	the	project	folder:

#	regex/urls.py

from	django.contrib	import	admin

from	django.urls	import	path

from	django.contrib.auth	import	views	as	auth_views

from	django.urls	import	reverse_lazy

from	entries.views	import	HomeView,	EntryListView,	EntryFormView

urlpatterns	=	[

				path('admin/',	admin.site.urls),

				path('entries/',	EntryListView.as_view(),	name='entries'),

				path('entries/insert',

								EntryFormView.as_view(),

								name='insert'),

				path('login/',

								auth_views.login,

								kwargs={'template_name':	'admin/login.html'},

								name='login'),

				path('logout/',

								auth_views.logout,

								kwargs={'next_page':	reverse_lazy('home')},

								name='logout'),

				path('',	HomeView.as_view(),	name='home'),

]	

If	you	are	familiar	with	version	1	of	Django,	you	will	notice	some	differences
here,	as	this	project	is	coded	in	version	2.	As	you	can	see,	the	magic	comes	from
the	path	function,	which	has	recently	replaced	the	url	function.	First,	we	pass	it	a
path	string	(also	known	as	a	route),	then	the	view,	and	finally	a	name,	which	is
what	we	will	use	in	the	reverse	and	reverse_lazy	functions	to	recover	the	URL.

Note	that,	when	using	class-based	views,	we	have	to	transform	them	into
functions,	which	is	what	path	is	expecting.	To	do	that,	we	call	the	as_view()
method	on	them.

Note	also	that	the	first	path	entry,	for	the	admin,	is	special.	Instead	of	specifying	a

URL	and	a	view,	it	specifies	a	URL	prefix	and	another	urls.py	module	(from	the
admin.site	package).	In	this	way,	Django	will	complete	all	the	URLs	for	the	admin
section	by	prepending	'admin/'	to	all	the	URLs	specified	in	admin.site.urls.	We
could	have	done	the	same	for	our	entries	application	(and	we	should	have),	but	I
feel	it	would	have	been	a	bit	of	overkill	for	this	simple	project.

The	URL	paths	defined	in	this	module	are	so	simple	that	they	don't	require	any
regular	expression	to	be	defined.	Should	you	need	to	use	a	regular	expression,
you	can	check	out	the	re_path	function,	which	is	designed	for	that	purpose.

We	also	include	login	and	logout	functionalities,	by	employing	views	that	come
straight	out	of	the	django.contrib.auth	package.	We	enrich	the	declaration	with	the
necessary	information	(such	as	the	next	page,	for	the	logout	view,	for	example)
and	we	don't	need	to	write	a	single	line	of	code	to	handle	authentication.	This	is
brilliant	and	saves	us	a	lot	of	time.

Each	path	declaration	must	be	done	within	the	urlpatterns	list	and	on	this	matter,
it's	important	to	consider	that,	when	Django	is	trying	to	find	a	view	for	a	URL
that	has	been	requested,	the	patterns	are	exercised	in	order,	from	top	to	bottom.
The	first	one	that	matches	is	the	one	that	will	provide	the	view	for	it	so,	in
general,	you	have	to	put	specific	patterns	before	generic	ones,	otherwise	they
will	never	get	a	chance	to	be	caught.	To	show	you	an	example	that	uses	regular
expressions	in	the	route	declaration,	'^shop/categories/$'	needs	to	come	before
'^shop'	(notice	that	the	'$'	signals	the	end	of	the	pattern,	and	it	is	not	specified	in
the	latter),	otherwise	it	would	never	be	called.

So,	models,	forms,	admin,	views,	and	URLs	are	all	done.	All	that's	left	is	to	take
care	of	the	templates.	I'll	have	to	be	very	brief	on	this	part	because	HTML	can	be
very	verbose.

Writing	the	templates
All	templates	inherit	from	a	base	one,	which	provides	the	HTML	structure	for	all
others,	in	a	very	object-oriented	programming	(OOP)	fashion.	It	also	specifies
a	few	blocks,	which	are	areas	that	can	be	overridden	by	children	so	that	they	can
provide	custom	content	for	those	areas.	Let's	start	with	the	base	template:

#	entries/templates/entries/base.html

{%	load	static	from	staticfiles	%}

<!DOCTYPE	html>

<html	lang="en">

		<head>

				{%	block	meta	%}

						<meta	charset="utf-8">

						<meta	name="viewport"

							content="width=device-width,	initial-scale=1.0">

				{%	endblock	meta	%}

				{%	block	styles	%}

						<link	href="{%	static	"entries/css/main.css"	%}"

							rel="stylesheet">

				{%	endblock	styles	%}

				<title>	{%	block	title	%}Title{%	endblock	title	%}	</title>

		</head>

		<body>

				<div	id="page-content">

						{%	block	page-content	%}

						{%	endblock	page-content	%}

				</div>

				<div	id="footer">

						{%	block	footer	%}

						{%	endblock	footer	%}

				</div>

		</body>

</html>

There	is	a	good	reason	to	repeat	the	entries	folder	from	the	templates	one.
When	you	deploy	a	Django	website,	you	collect	all	the	template	files	under	one
folder.	If	you	don't	specify	the	paths	like	I	did,	you	may	get	a	base.html	template
in	the	entries	application,	and	a	base.html	template	in	another	app.	The	last	one	to
be	collected	will	override	any	other	file	with	the	same	name.	For	this	reason,	by
putting	them	in	a	templates/entries	folder	and	using	this	technique	for	each	Django
application	you	write,	you	avoid	the	risk	of	name	collisions	(the	same	goes	for
any	other	static	file).

There	is	not	much	to	say	about	this	template,	really,	apart	from	the	fact	that	it

loads	the	static	tag	so	that	we	can	get	easy	access	to	the	static	path	without
hardcoding	it	in	the	template	using	{%	static	...	%}.	The	code	in	the	special	{%	...
%}	sections	is	code	that	defines	logic.	The	code	in	the	special	{{	...	}}	represents
variables	that	will	be	rendered	on	the	page.

We	define	five	blocks:	styles,	meta,	title,	page-content,	and	footer,	whose	purpose	is
to	hold	the	metadata,	style	information,	title,	the	content	of	the	page,	and	the
footer,	respectively.	Blocks	can	be	optionally	overridden	by	child	templates	in
order	to	provide	different	content	within	them.

Here's	the	footer:

#	entries/templates/entries/footer.html

<div	class="footer">

		Go	back	home.

</div>

It	gives	us	a	nice	link	to	the	home	page,	which	comes	from	the	following
template:

#	entries/templates/entries/home.html

{%	extends	"entries/base.html"	%}

{%	block	title%}Welcome	to	the	Entry	website.{%	endblock	title	%}

{%	block	page-content	%}

		<h1>Welcome	{{	user.first_name	}}!</h1>

		<div	class="home-option">To	see	the	list	of	your	entries

				please	click	here.

		</div>

		<div	class="home-option">To	insert	a	new	entry	please	click

				here.

		</div>

		<div	class="home-option">To	login	as	another	user	please	click

				here.

		</div>

				<div	class="home-option">To	go	to	the	admin	panel

				please	click	here.

		</div>

{%	endblock	page-content	%}

It	extends	the	base.html	template,	and	overrides	title	and	page-content.	You	can	see
that	basically	all	it	does	is	provide	four	links	to	the	user.	These	are	the	list	of
entries,	the	insert	page,	the	logout	page,	and	the	admin	page.	All	of	this	is	done
without	hardcoding	a	single	URL,	through	the	use	of	the	{%	url	...	%}	tag,	which
is	the	template	equivalent	of	the	reverse	function.

The	template	for	inserting	Entry	is	as	follows:

#	entries/templates/entries/insert.html

{%	extends	"entries/base.html"	%}

{%	block	title%}Insert	a	new	Entry{%	endblock	title	%}

{%	block	page-content	%}

		{%	if	messages	%}

				{%	for	message	in	messages	%}

						<p	class="{{	message.tags	}}">{{	message	}}</p>

				{%	endfor	%}

		{%	endif	%}

		<h1>Insert	a	new	Entry</h1>

		<form	action="{%	url	"insert"	%}"	method="post">

				{%	csrf_token	%}{{	form.as_p	}}

				<input	type="submit"	value="Insert">

		</form>

{%	endblock	page-content	%}

{%	block	footer	%}

		<div>See	your	entries.</div>

		{%	include	"entries/footer.html"	%}

{%	endblock	footer	%}

There	is	some	conditional	logic	at	the	beginning	to	display	messages,	if	any,	and
then	we	define	the	form.	Django	gives	us	the	ability	to	render	a	form	by	simply
calling	{{	form.as_p	}}	(alternatively,	form.as_ul	or	form.as_table).	This	creates	all	the
necessary	fields	and	labels	for	us.	The	difference	between	the	three	commands	is
in	the	way	the	form	is	laid	out:	as	a	paragraph,	as	an	unordered	list,	or	as	a	table.
We	only	need	to	wrap	it	in	form	tags	and	add	a	submit	button.	This	behavior	was
designed	for	our	convenience:	we	need	the	freedom	to	shape	that	<form>	tag	as	we
want,	so	Django	isn't	intrusive	on	that.	Also,	note	that	{%	csrf_token	%}.

It	will	be	rendered	into	a	token	by	Django	and	will	become	part	of	the	data	sent
to	the	server	on	submission.	This	way,	Django	will	be	able	to	verify	that	the
request	was	from	an	allowed	source,	thus	avoiding	the	aforementioned	CSRF
issue.	Did	you	see	how	we	handled	the	token	when	we	wrote	the	view	for	the
Entry	insertion?	Exactly.	We	didn't	write	a	single	line	of	code	for	it.	Django	takes
care	of	it	automatically	thanks	to	a	middleware	class	(CsrfViewMiddleware).	Please
refer	to	the	official	Django	documentation	(https://docs.djangoproject.com/en/2.0/)	to
explore	this	subject	further.

For	this	page,	we	also	use	the	footer	block	to	display	a	link	to	the	home	page.
Finally,	we	have	the	list	template,	which	is	the	most	interesting	one:

#	entries/templates/entries/list.html

{%	extends	"entries/base.html"	%}

{%	block	title%}	Entries	list	{%	endblock	title	%}

{%	block	page-content	%}

https://docs.djangoproject.com/en/2.0/

	{%	if	entries	%}

		<h1>Your	entries	({{	entries|length	}}	found)</h1>

		<div>Insert	new	entry.</div>

		<table	class="entries-table">

			<thead>

					<tr><th>Entry</th><th>Matches</th></tr>

			</thead>

			<tbody>

				{%	for	entry,	match	in	entries	%}

					<tr	class="entries-list	{%	cycle	'light-gray'	'white'	%}">

						<td>

								Pattern:	<code	class="code">

									"{{	entry.pattern	}}"</code>

								Test	String:	<code	class="code">

									"{{	entry.test_string	}}"</code>

								Added:	{{	entry.date_added	}}

						</td>

						<td>

								{%	if	match	%}

									Group:	{{	match.0	}}

									Subgroups:

										{{	match.1|default_if_none:"none"	}}

									Group	Dict:	{{	match.2|default_if_none:"none"	}}

								{%	else	%}

									No	matches	found.

								{%	endif	%}

						</td>

					</tr>

				{%	endfor	%}

			</tbody>

		</table>

	{%	else	%}

		<h1>You	have	no	entries</h1>

		<div>Insert	new	entry.</div>

	{%	endif	%}

{%	endblock	page-content	%}

{%	block	footer	%}

	{%	include	"entries/footer.html"	%}

{%	endblock	footer	%}

It	may	take	you	a	while	to	get	used	to	the	template	language,	but	really,	all	there
is	to	it	is	the	creation	of	a	table	using	a	for	loop.	We	start	by	checking	whether
there	are	any	entries	and,	if	so,	we	create	a	table.	There	are	two	columns,	one	for
Entry,	and	the	other	for	the	match.

In	the	Entry	column,	we	display	the	Entry	object	(apart	from	the	user),	and	in	the
Matches	column,	we	display	that	three-tuple	we	created	in	the	EntryListView.	Note
that	to	access	the	attributes	of	an	object,	we	use	the	same	dot	syntax	we	use	in
Python,	for	example	{{	entry.pattern	}}	or	{{	entry.test_string	}},	and	so	on.

When	dealing	with	lists	and	tuples,	we	cannot	access	items	using	the	square
brackets	syntax,	so	we	use	the	dot	one	as	well	({{	match.0	}}	is	equivalent	to
match[0],	and	so	on).	We	also	use	a	filter,	through	the	pipe	(|)	operator	to	display	a

custom	value	if	a	match	is	None.

The	Django	template	language	(which	is	not	properly	Python)	is	kept	simple	for
a	precise	reason.	If	you	find	yourself	limited	by	the	language,	it	means	you're
probably	trying	to	do	something	in	the	template	that	should	actually	be	done	in
the	view,	where	that	logic	is	more	pertinent.

Allow	me	to	show	you	a	couple	of	screenshots	of	the	list	and	insert	templates.
This	is	what	the	list	of	entries	looks	like	for	my	father:

Note	how	the	use	of	the	cycle	tag	alternates	the	background	color	of	the	rows
from	white	to	light	gray.	Those	classes	are	defined	in	the	main.css	file.

The	Entry	insertion	page	is	smart	enough	to	provide	a	few	different	scenarios.
When	you	land	on	it	at	first,	it	presents	you	with	just	an	empty	form.	If	you	fill	it
in	correctly,	it	will	display	a	nice	message	for	you	(see	the	following	picture).
However,	if	you	fail	to	fill	in	both	fields,	it	will	display	an	error	message	before
them,	alerting	you	that	those	fields	are	required.

Note	also	the	custom	footer,	which	includes	both	a	link	to	the	entries	list	and	a
link	to	the	home	page:

And	that's	it!	You	can	play	around	with	the	CSS	styles	if	you	want.	Download
the	code	for	the	book	and	have	fun	exploring	and	extending	this	project.	Add
something	else	to	the	model,	create	and	apply	a	migration,	play	with	the
templates,	there's	lots	to	do!

Django	is	a	very	powerful	framework,	and	offers	so	much	more	than	what	I've
been	able	to	show	you	in	this	chapter,	so	you	should	definitely	check	it	out.	The
beauty	of	it	is	that	Django	is	Python,	so	reading	its	source	code	is	a	very	useful
exercise.

The	future	of	web	development
Computer	science	is	a	very	young	subject,	compared	to	other	branches	of
science	that	have	existed	alongside	humankind	for	centuries.	One	of	its	main
characteristics	is	that	it	moves	extremely	fast.	It	leaps	forward	with	such	speed
that,	in	just	a	few	years,	you	can	see	changes	that	are	comparable	to	real-world
changes	that	took	a	century	to	happen.	Therefore,	as	a	coder,	you	must	pay
attention	to	what	happens	in	this	world,	all	the	time.

Currently,	because	powerful	computers	are	quite	cheap	and	almost	everyone	has
access	to	them,	the	trend	is	to	try	to	avoid	putting	too	much	workload	on	the
backend,	and	let	the	frontend	handle	part	of	it.	Therefore,	in	the	last	few	years,
JavaScript	frameworks	and	libraries,	such	as	jQuery,	Backbone	and,	more
recently,	React,	have	become	very	popular.	Web	development	has	shifted	from	a
paradigm	where	the	backend	takes	care	of	handling	data,	preparing	it,	and
serving	it	to	the	frontend	to	display	it,	to	a	paradigm	where	the	backend	is
sometimes	just	used	as	an	API,	a	sheer	data	provider.	The	frontend	fetches	the
data	from	the	backend	with	an	API	call,	and	then	it	takes	care	of	the	rest.	This
shift	facilitates	the	existence	of	paradigms	such	as	Single-Page	Application
(SPA),	where,	ideally,	the	whole	page	is	loaded	once	and	then	evolves,	based	on
the	content	that	usually	comes	from	the	backend.	E-commerce	websites	that	load
the	results	of	a	search	in	a	page	that	doesn't	refresh	the	surrounding	structure	are
made	with	similar	techniques.	Browsers	can	perform	asynchronous	calls	such	as
Asynchronous	JavaScript	and	XML	(AJAX)	that	can	return	data	that	can	be
read,	manipulated,	and	injected	back	into	the	page	with	JavaScript	code.

So,	if	you're	planning	to	work	on	web	development,	I	strongly	suggest	you	to	get
acquainted	with	JavaScript	(if	you're	not	already),	and	also	with	APIs.	In	the	last
few	pages	of	this	chapter,	I'll	give	you	an	example	of	how	to	make	a	simple	API
using	two	different	Python	microframeworks:	Flask	and	Falcon.

Writing	a	Flask	view
Flask	(http://flask.pocoo.org/)	is	a	Python	microframework.	It	provides	far	fewer
features	than	Django,	but	if	your	project	is	meant	to	be	very	small,	then	it	might
be	a	better	choice.	In	my	experience	though,	when	developers	choose	Flask	at
the	beginning	of	a	project,	they	eventually	end	up	adding	plugin	after	plugin,
until	they	have	what	I	call	a	Django	Frankenstein	project.	Being	agile	means
having	periodically	to	spend	time	reducing	the	technical	debt	accumulated	over
time.	However,	switching	from	Flask	to	Django	can	be	a	daunting	operation,	so
when	starting	a	new	project,	make	sure	you	consider	its	evolution.	My	cheeky
opinion	on	this	matter	is	very	simple:	I	always	go	with	Django,	as	I	personally
prefer	it	to	Flask,	but	you	might	disagree	with	me,	so	I	want	to	offer	you	an
example.

In	your	ch14	folder,	create	a	flask	folder	with	the	following	structure:

$	tree	-A	flask		#	from	the	ch14	folder

flask

├──	main.py

└──	templates

				└──	main.html

Basically,	we're	going	to	code	two	simple	files:	a	Flask	application	and	an
HTML	template.	Flask	uses	Jinja2	as	a	template	engine.	It's	extremely	popular
and	very	fast,	to	the	point	that	even	Django	started	offering	native	support	for	it:

#	flask/templates/main.html

<!doctype	html>

<title>Hello	from	Flask</title>

<h1>

		{%	if	name	%}

				Hello	{{	name	}}!

		{%	else	%}

				Hello	shy	person!

		{%	endif	%}

</h1>

The	template	is	almost	offensively	simple.	All	it	does	is	change	the	greeting
according	to	the	presence	of	the	name	variable.	A	bit	more	interesting	is	the	Flask
application	that	renders	it:

#	flask/main.py

from	flask	import	Flask,	render_template

http://flask.pocoo.org/

app	=	Flask(__name__)

@app.route('/')

@app.route('/<name>')

def	hello(name=None):

				return	render_template('main.html',	name=name)

We	create	an	app	object,	which	is	a	Flask	application.	We	only	feed	the	fully
qualified	name	of	the	module,	which	is	stored	in	__name__.

Then,	we	write	a	simple	hello	view,	which	takes	an	optional	name	argument.	In	the
body	of	the	view,	we	simply	render	the	main.html	template,	passing	to	it	the	name
argument,	regardless	of	its	value.

What's	interesting	is	the	routing.	Differently	from	Django's	way	of	tying	up
views	and	URLs	(the	urls.py	module),	in	Flask	you	decorate	your	views	with	one
or	more	@app.route	decorators.	In	this	case,	we	decorate	twice:	the	first	line	ties
the	view	to	the	root	URL	(/),	while	the	second	line	ties	the	view	to	the	root	URL
with	a	name	information	(/<name>).

Change	into	the	flask	folder	and	type	(make	sure	you	have	either	installed	Flask
with	$	pip	install	flask	or	by	installing	the	requirements	in	the	source	code	for	the
book):

$	FLASK_APP=main.py	flask	run

You	can	open	a	browser	and	go	to	http://127.0.0.1:5000/.	This	URL	has	no	name
information;	therefore,	you	will	see	Hello	shy	person!	It	is	written	all	nice	and
big.	Try	to	add	something	to	that	URL,	such	as	http://127.0.0.1:5000/Milena.	Hit
Enter	and	the	page	will	change	to	Hello	Milena!	(so	you	will	have	said	hello	to
my	sister).

Of	course,	Flask	offers	you	much	more	than	this,	but	we	don't	have	the	room	to
go	through	a	more	complex	example.	It's	definitely	worth	exploring,	though.
Several	projects	use	it	successfully	and	it's	fun	and	nice	to	create	websites	or
APIs	with	it.	Flask's	author,	Armin	Ronacher,	is	a	successful	and	very	prolific
coder.	He	also	created	or	collaborated	on	several	other	interesting	projects,	such
as	Werkzeug,	Jinja2,	Click,	and	Sphinx.	He	also	contributed	functionalities	to	the
Python	AST	module.

Building	a	JSON	quote	server	in
Falcon
Falcon	(http://falconframework.org/)	is	another	microframework	written	in	Python,
which	was	designed	to	be	light,	fast,	and	flexible.	I	have	seen	this	relatively
young	project	evolve	to	become	something	really	popular	due	to	its	speed,	which
is	impressive,	so	I'm	happy	to	show	you	a	tiny	example	using	it.	We're	going	to
build	an	API	that	returns	a	random	quote	from	the	Buddha.

In	your	ch14	folder,	create	a	new	one	called	falcon.	We'll	have	two	files:	quotes.py
and	main.py.	To	run	this	example,	install	Falcon	and	Gunicorn	($	pip	install	falcon
gunicorn	or	the	full	requirements	for	the	book).	Falcon	is	the	framework,	and
Gunicorn	(Green	Unicorn)	is	a	Python	WSGI	HTTP	Server	for	Unix	(which,	in
layman's	terms,	means	the	technology	that	is	used	to	run	the	server).

The	Web	Server	Gateway	Interface	(WSGI)	is	a	simple	calling	convention	for	web	servers	to
forward	requests	to	web	applications	or	frameworks	written	in	Python.	If	you	wish	to	learn
more,	please	checkout	PEP333,	which	defines	the	interface.

When	you're	all	set	up,	start	by	creating	the	quotes.py	file:

#	falcon/quotes.py

quotes	=	[

				"Thousands	of	candles	can	be	lighted	from	a	single	candle,	"

				"and	the	life	of	the	candle	will	not	be	shortened.	"

				"Happiness	never	decreases	by	being	shared.",

				...

				"Peace	comes	from	within.	Do	not	seek	it	without.",

				...

]

You	will	find	the	complete	list	of	quotes	in	the	source	code	for	this	book.	If	you
don't	have	it,	you	can	instead	fill	in	your	favorite	quotes.	Note	that	not	every	line
has	a	comma	at	the	end.	In	Python,	it's	possible	to	concatenate	strings	like	that,
as	long	as	they	are	in	brackets	(or	braces).	It's	called	implicit	concatenation.

The	code	for	the	main	application	is	not	long,	but	it	is	interesting:

#	falcon/main.py

import	json

import	random

http://falconframework.org/
https://www.python.org/dev/peps/pep-0333/

import	falcon

from	quotes	import	quotes

class	QuoteResource:

				def	on_get(self,	req,	resp):

								quote	=	{

												'quote':	random.choice(quotes),

												'author':	'The	Buddha'

								}

								resp.body	=	json.dumps(quote)

api	=	falcon.API()

api.add_route('/quote',	QuoteResource())

Let's	start	with	the	class.	In	Django	we	had	a	get	method,	in	Flask	we	defined	a
function,	and	here	we	write	an	on_get	method,	a	naming	style	that	reminds	me	of
Java/C#	event	handlers.	It	takes	a	request	and	a	response	argument,	both
automatically	fed	by	the	framework.	In	its	body,	we	define	a	dictionary	with	a
randomly	chosen	quote,	and	the	author	information.	Then	we	dump	that
dictionary	to	a	JSON	string	and	set	the	response	body	to	its	value.	We	don't	need
to	return	anything,	Falcon	will	take	care	of	it	for	us.

At	the	end	of	the	file,	we	create	the	Falcon	application,	and	we	call	add_route	on	it
to	tie	the	handler	we	have	just	written	to	the	URL	we	want.

When	you're	all	set	up,	change	to	the	falcon	folder	and	type:

$	gunicorn	main:api		

Then,	make	a	request	(or	simply	open	the	page	with	your	browser)	to
http://127.0.0.1:8000/quote.	When	I	did	it,	I	got	this	JSON	in	response:

{

		quote:	"Peace	comes	from	within.	Do	not	seek	it	without.",

		author:	"The	Buddha"

}

Within	the	falcon	folder,	I	have	left	a	stress.py	module	for	you,	which	tests	how
fast	our	Falcon	code	is.	See	if	you	can	make	it	work	by	yourself,	it	should	be
very	easy	for	you	at	this	point.

Whatever	framework	you	end	up	using	for	your	web	development,	try	to	keep
yourself	informed	about	other	choices	too.	Sometimes	you	may	be	in	situations
where	a	different	framework	is	the	right	way	to	go,	and	having	a	working
knowledge	of	different	tools	will	give	you	an	advantage.

Summary
In	this	chapter,	we	took	a	look	at	web	development.	We	talked	about	important
concepts,	such	as	the	DRY	philosophy	and	the	concept	of	a	framework	as	a	tool
that	provides	us	with	many	things	we	need	in	order	to	write	code	to	serve
requests.	We	also	talked	about	the	MTV	pattern,	and	how	nicely	these	three
layers	play	together	to	realize	a	request-response	path.

Then,	we	briefly	introduced	regular	expressions,	which	is	a	subject	of	paramount
importance,	and	it's	the	layer	that	provides	the	tools	for	URL	routing.

There	are	many	different	frameworks	out	there,	and	Django	is	definitely	one	of
the	best	and	most	widely	used,	so	it's	worth	exploring,	especially	its	source	code,
which	is	well	written.

There	are	other	very	interesting	and	important	frameworks	too,	such	as	Flask.
They	provide	fewer	features	but	might	be	faster,	both	in	execution	time	and	to
set	up.	One	that	is	extremely	fast	is	the	Falcon	project,	whose	benchmarks	are
outstanding.

It's	important	to	get	a	solid	understanding	of	how	the	request-response
mechanism	works,	and	how	the	web	in	general	works,	so	that	eventually	it	won't
matter	too	much	which	framework	you	have	to	use.	You	will	be	able	to	pick	it	up
quickly	because	it	will	only	be	a	matter	of	getting	familiar	with	a	way	of	doing
something	you	already	know	a	lot	about.

Explore	at	least	three	frameworks	and	try	to	come	up	with	different	use	cases	to
decide	which	one	of	them	could	be	the	ideal	choice.	When	you	are	able	to	make
that	choice,	you	will	know	you	have	a	good	enough	understanding	of	them.

A	farewell
I	hope	that	you	are	still	thirsty	and	that	this	book	will	be	just	the	first	of	many
steps	you	take	towards	Python.	It's	a	truly	wonderful	language,	well	worth
learning	deeply.

I	hope	that	you	enjoyed	this	journey	with	me,	I	did	my	best	to	make	it	interesting
for	you.	It	sure	was	for	me,	I	had	such	a	great	time	writing	these	pages.

Python	is	open	source,	so	please	keep	sharing	it	and	consider	supporting	the
wonderful	community	around	it.

Until	next	time,	my	friend,	farewell!

Other	Books	You	May	Enjoy
If	you	enjoyed	this	book,	you	may	be	interested	in	these	other	books	by	Packt:

Secret	Recipes	of	the	Python	Ninja
Cody	Jackson

ISBN:	978-1-78829-487-4

Know	the	differences	between	.py	and	.pyc	files
Explore	the	different	ways	to	install	and	upgrade	Python	packages
Understand	the	working	of	the	PyPI	module	that	enhances	built-in
decorators
See	how	coroutines	are	different	from	generators	and	how	they	can	simulate
multithreading
Grasp	how	the	decimal	module	improves	floating	point	numbers	and	their
operations
Standardize	sub	interpreters	to	improve	concurrency
Discover	Python’s	built-in	docstring	analyzer

Python	Programming	Blueprints

https://www.packtpub.com/application-development/secret-recipes-python-ninja
https://www.packtpub.com/application-development/python-programming-blueprints

Daniel	Furtado,	Marcus	Pennington

ISBN:	978-1-78646-816-1

Learn	object-oriented	and	functional	programming	concepts	while
developing	projects
The	dos	and	don'ts	of	storing	passwords	in	a	database
Develop	a	fully	functional	website	using	the	popular	Django	framework
Use	the	Beautiful	Soup	library	to	perform	web	scrapping
Get	started	with	cloud	computing	by	building	microservice	and	serverless
applications	in	AWS
Develop	scalable	and	cohesive	microservices	using	the	Nameko	framework
Create	service	dependencies	for	Redis	and	PostgreSQL

Leave	a	review	-	let	other	readers
know	what	you	think
Please	share	your	thoughts	on	this	book	with	others	by	leaving	a	review	on	the
site	that	you	bought	it	from.	If	you	purchased	the	book	from	Amazon,	please
leave	us	an	honest	review	on	this	book's	Amazon	page.	This	is	vital	so	that	other
potential	readers	can	see	and	use	your	unbiased	opinion	to	make	purchasing
decisions,	we	can	understand	what	our	customers	think	about	our	products,	and
our	authors	can	see	your	feedback	on	the	title	that	they	have	worked	with	Packt
to	create.	It	will	only	take	a	few	minutes	of	your	time,	but	is	valuable	to	other
potential	customers,	our	authors,	and	Packt.	Thank	you!

	

	Title Page
	Copyright and Credits
	Learn Python Programming Second Edition

	Dedication
	Packt Upsell
	Why subscribe?
	PacktPub.com

	Foreword
	Contributors
	About the author
	About the reviewers
	Packt is searching for authors like you

	Preface
	Who this book is for
	What this book covers
	To get the most out of this book
	Download the example code files
	Conventions used

	Get in touch
	Reviews

	A Gentle Introduction to Python
	A proper introduction
	Enter the Python
	About Python
	Portability
	Coherence
	Developer productivity
	An extensive library
	Software quality
	Software integration
	Satisfaction and enjoyment

	What are the drawbacks?
	Who is using Python today?
	Setting up the environment
	Python 2 versus Python 3

	Installing Python
	Setting up the Python interpreter
	About virtualenv
	Your first virtual environment
	Your friend, the console

	How you can run a Python program
	Running Python scripts
	Running the Python interactive shell
	Running Python as a service
	Running Python as a GUI application

	How is Python code organized?
	How do we use modules and packages?

	Python's execution model
	Names and namespaces
	Scopes
	Objects and classes

	Guidelines on how to write good code
	The Python culture
	A note on IDEs
	Summary

	Built-in Data Types
	Everything is an object
	Mutable or immutable? That is the question
	Numbers
	Integers
	Booleans
	Real numbers
	Complex numbers
	Fractions and decimals

	Immutable sequences
	Strings and bytes
	Encoding and decoding strings
	Indexing and slicing strings
	String formatting

	Tuples

	Mutable sequences
	Lists
	Byte arrays

	Set types
	Mapping types – dictionaries
	The collections module
	namedtuple
	defaultdict
	ChainMap

	Enums
	Final considerations
	Small values caching
	How to choose data structures
	About indexing and slicing
	About the names

	Summary

	Iterating and Making Decisions
	Conditional programming
	A specialized else – elif
	The ternary operator

	Looping
	The for loop
	Iterating over a range
	Iterating over a sequence

	Iterators and iterables
	Iterating over multiple sequences
	The while loop
	The break and continue statements
	A special else clause

	Putting all this together
	A prime generator
	Applying discounts

	A quick peek at the itertools module
	Infinite iterators
	Iterators terminating on the shortest input sequence
	Combinatoric generators

	Summary

	Functions, the Building Blocks of Code
	Why use functions?
	Reducing code duplication
	Splitting a complex task
	Hiding implementation details
	Improving readability
	Improving traceability

	Scopes and name resolution
	The global and nonlocal statements

	Input parameters
	Argument-passing
	Assignment to argument names doesn't affect the caller
	Changing a mutable affects the caller
	How to specify input parameters
	Positional arguments
	Keyword arguments and default values
	Variable positional arguments
	Variable keyword arguments
	Keyword-only arguments
	Combining input parameters
	Additional unpacking generalizations
	Avoid the trap! Mutable defaults

	Return values
	Returning multiple values

	A few useful tips
	Recursive functions
	Anonymous functions
	Function attributes
	Built-in functions
	One final example
	Documenting your code
	Importing objects
	Relative imports

	Summary

	Saving Time and Memory
	The map, zip, and filter functions
	map
	zip
	filter

	Comprehensions
	Nested comprehensions
	Filtering a comprehension
	dict comprehensions
	set comprehensions

	Generators
	Generator functions
	Going beyond next
	The yield from expression
	Generator expressions

	Some performance considerations
	Don't overdo comprehensions and generators
	Name localization
	Generation behavior in built-ins
	One last example
	Summary

	OOP, Decorators, and Iterators
	Decorators
	A decorator factory

	Object-oriented programming (OOP)
	The simplest Python class
	Class and object namespaces
	Attribute shadowing
	Me, myself, and I – using the self variable
	Initializing an instance
	OOP is about code reuse
	Inheritance and composition

	Accessing a base class
	Multiple inheritance
	Method resolution order

	Class and static methods
	Static methods
	Class methods

	Private methods and name mangling
	The property decorator
	Operator overloading
	Polymorphism – a brief overview
	Data classes

	Writing a custom iterator
	Summary

	Files and Data Persistence
	Working with files and directories
	Opening files
	Using a context manager to open a file

	Reading and writing to a file
	Reading and writing in binary mode
	Protecting against overriding an existing file

	Checking for file and directory existence
	Manipulating files and directories
	Manipulating pathnames

	Temporary files and directories
	Directory content
	File and directory compression

	Data interchange formats
	Working with JSON
	Custom encoding/decoding with JSON

	IO, streams, and requests
	Using an in-memory stream
	Making HTTP requests

	Persisting data on disk
	Serializing data with pickle
	Saving data with shelve
	Saving data to a database

	Summary

	Testing, Profiling, and Dealing with Exceptions
	Testing your application
	The anatomy of a test
	Testing guidelines
	Unit testing
	Writing a unit test
	Mock objects and patching
	Assertions

	Testing a CSV generator
	Boundaries and granularity
	Testing the export function
	Final considerations

	Test-driven development
	Exceptions
	Profiling Python
	When to profile?

	Summary

	Cryptography and Tokens
	The need for cryptography
	Useful guidelines

	Hashlib
	Secrets
	Random numbers
	Token generation
	Digest comparison

	HMAC
	JSON Web Tokens
	Registered claims
	Time-related claims
	Auth-related claims

	Using asymmetric (public-key) algorithms

	Useful references
	Summary

	Concurrent Execution
	Concurrency versus parallelism
	Threads and processes – an overview
	Quick anatomy of a thread
	Killing threads
	Context-switching

	The Global Interpreter Lock
	Race conditions and deadlocks
	Race conditions
	Scenario A – race condition not happening
	Scenario B – race condition happening

	Locks to the rescue
	Scenario C – using a lock

	Deadlocks

	Quick anatomy of a process
	Properties of a process

	Multithreading or multiprocessing?

	Concurrent execution in Python
	Starting a thread
	Starting a process
	Stopping threads and processes
	Stopping a process

	Spawning multiple threads
	Dealing with race conditions
	A thread's local data
	Thread and process communication
	Thread communication
	Sending events
	Inter-process communication with queues

	Thread and process pools
	Using a process to add a timeout to a function

	Case examples
	Example one – concurrent mergesort
	Single-thread mergesort
	Single-thread multipart mergesort
	Multithreaded mergesort
	Multiprocess mergesort

	Example two – batch sudoku-solver
	What is Sudoku?
	Implementing a sudoku-solver in Python
	Solving sudoku with multiprocessing

	Example three – downloading random pictures
	Downloading random pictures with asyncio

	Summary

	Debugging and Troubleshooting
	Debugging techniques
	Debugging with print
	Debugging with a custom function
	Inspecting the traceback
	Using the Python debugger
	Inspecting log files
	Other techniques
	Profiling
	Assertions

	Where to find information

	Troubleshooting guidelines
	Using console editors
	Where to inspect
	Using tests to debug
	Monitoring

	Summary

	GUIs and Scripts
	First approach – scripting
	The imports
	Parsing arguments
	The business logic

	Second approach – a GUI application
	The imports
	The layout logic
	The business logic
	Fetching the web page
	Saving the images
	Alerting the user

	How can we improve the application?

	Where do we go from here?
	The turtle module
	wxPython, PyQt, and PyGTK
	The principle of least astonishment
	Threading considerations

	Summary

	Data Science
	IPython and Jupyter Notebook
	Installing the required libraries
	Using Anaconda
	Starting a Notebook

	Dealing with data
	Setting up the Notebook
	Preparing the data
	Cleaning the data
	Creating the DataFrame
	Unpacking the campaign name
	Unpacking the user data
	Cleaning everything up

	Saving the DataFrame to a file
	Visualizing the results

	Where do we go from here?
	Summary

	Web Development
	What is the web?
	How does the web work?
	The Django web framework
	Django design philosophy
	The model layer
	The view layer
	The template layer

	The Django URL dispatcher
	Regular expressions

	A regex website
	Setting up Django
	Starting the project
	Creating users

	Adding the Entry model
	Customizing the admin panel
	Creating the form
	Writing the views
	The home view
	The entry list view
	The form view

	Tying up URLs and views
	Writing the templates

	The future of web development
	Writing a Flask view
	Building a JSON quote server in Falcon

	Summary
	A farewell

	Other Books You May Enjoy
	Leave a review - let other readers know what you think

