

This book is brought to you by Zenva - Enroll in our Unity Game Development Mini-Degree to learn and

master game development with Unity

© Zenva Pty Ltd 2018. All rights reserved

Learn Unity by Creating a 3D

Multi-Level Platformer Game

By Pablo Farias Navarro

Certified Unity Developer and Founder of Zenva

https://academy.zenva.com/product/unity-game-development-mini-degree/?zva_src=gamedevacademy-unity-platformer-ebook

This book is brought to you by Zenva - Enroll in our Unity Game Development Mini-Degree to learn and

master game development with Unity

© Zenva Pty Ltd 2018. All rights reserved

Table of Contents

Introduction

Tutorial requirements and project files

Scene basics

Transform Component

The Floor

Adding more game elements

Coin rotation script

Player movement

Player jumping

Collecting coins

Game Manager

Enemy movement

Multi-level game

Adding the HUD

Home screen

Game Over screen

Finishing up

https://academy.zenva.com/product/unity-game-development-mini-degree/?zva_src=gamedevacademy-unity-platformer-ebook

This book is brought to you by Zenva - Enroll in our Unity Game Development Mini-Degree to learn and

master game development with Unity

© Zenva Pty Ltd 2018. All rights reserved

Introduction

Interested in making games with Unity? In this guide you’ll learn to create a simple a 3D, multi-

level platformer game with Unity.

We’ll start from the very basics and I’ve done my best to leave no stone unturned!

Tutorial requirements and project files

No prior Unity or C# experience is required to follow along, although you should have familiarity

with basic programming concepts such as variables, conditional statements and objects.

Project files can be downloaded here. This zip file contains all the files included in the Assets

folder. You’ll still need to create a new project as covered in the tutorial.

Some of the topics we’ll cover include:

● Basics of the Unity Editor, scenes, game objects and components

● Understanding game object core methods in C# scripts

● Working with object transforms both from the Inspector and from scripts

● Accessing user input from scripts

● Collision detection and rigid bodies

● Implementing multiple scenes to create a multi-level game and passing objects along

● Basic UI and importing fonts

● Building your game

Scene basics

Start by opening Unity. Click New, enter a name for the project (“Zenva 3D Platformer”), make

sure 3D is selected, then click on Create project.

https://academy.zenva.com/product/unity-game-development-mini-degree/?zva_src=gamedevacademy-unity-platformer-ebook
https://gamedevacademy.org/tutorial-multi-level-platformer-game-in-unity/

This book is brought to you by Zenva - Enroll in our Unity Game Development Mini-Degree to learn and

master game development with Unity

© Zenva Pty Ltd 2018. All rights reserved

This will bring us to an empty Unity scene. I will now describe some of the main panels and

elements present in the Unity Editor. If you are already familiar with the basics you can skip

straight to the next section.

https://academy.zenva.com/product/unity-game-development-mini-degree/?zva_src=gamedevacademy-unity-platformer-ebook

This book is brought to you by Zenva - Enroll in our Unity Game Development Mini-Degree to learn and

master game development with Unity

© Zenva Pty Ltd 2018. All rights reserved

What is a scene? The word “scene” comes from the Greek skene, and was used back in

ancient world for the area in the theater that faces the public, where all the action takes place. In

Unity the definition is not too distant: a scene in your game is an object that contains all game

objects such as players, enemies, cameras, lights, etc. Every game object within a scene has a

position which is described in coordinates X, Y and Z.

The following image shows the main elements we find in the Unity Editor:

● Project Window: this area shows the files and folders of our project. The only folder

we’ll see in our new scene is the Assets folder, which is created automatically and it’s

where we’ll place all the game assets (3D models, scripts, audio files, images, etc).

● Hierarchy Window: shows all the game objects that are present in our scene. By

default, Unity creates a camera and a directional light.

● Scene View: shows the 3D view of your game scene. All the objects that you create in

the Hierarchy Window will appear here in their corresponding X, Y, Z positions, and by

using different “gizmos” or tools you can move, rotate and scale these objects around.

● Game View: this view shows what the game actually looks like. In this case, it shows

whatever the camera (which was created by default) is looking at.

https://academy.zenva.com/product/unity-game-development-mini-degree/?zva_src=gamedevacademy-unity-platformer-ebook
https://www.britannica.com/art/skene

This book is brought to you by Zenva - Enroll in our Unity Game Development Mini-Degree to learn and

master game development with Unity

© Zenva Pty Ltd 2018. All rights reserved

● Inspector: whenever you select a game object, the Inspector will show different options

and properties that are available for that game object.

● Toolbar: this area contains different tools we can use to modify our game objects, move

around the scene, and modify how the Editor works.

When creating a new scene the first thing you’ll want to do is to save it. Let’s go to File – Save

Scene and give it a name (“Game“).

As a Unity project grows, it becomes paramount to keep your files organized. In the Project

Window, right click in Assets and create a new folder called Scenes. Drag our newly created

Game scene in there.

Transform Component

All game objects in a scene have a Component named Transform. What is a component?

Think of components as reusable “Lego pieces” that can be used in different objects. A

component provides a game object with certain behaviors and properties.

As we mentioned before, all game objects in a scene have a position described in coordinates

X,Y,Z. That in Unity is called the Transform component. This is the only component that is

present in all game objects. There can’t be a game object without a Transform component!

https://academy.zenva.com/product/unity-game-development-mini-degree/?zva_src=gamedevacademy-unity-platformer-ebook

This book is brought to you by Zenva - Enroll in our Unity Game Development Mini-Degree to learn and

master game development with Unity

© Zenva Pty Ltd 2018. All rights reserved

On the Hierarchy Window, click on both the default camera and directional light, and observe

how the Transform component appears in the Inspector, indicating the position of the object,

plus values for rotation and scale.

Lets create a Cube to experiment with transforms. In the Hierarchy Window, right click and

select 3D Object – Cube.

Click on the cube and change the position values in it’s Transform component to see how it’s

position in the scene changes as well. Experiment changing the scale and rotation as well.

A scale of 1 means no change in size. If you set it to 2, it will twice the size in that axis. If you

want it halved, set the scale to 0.5.

Notice that Unity uses what’s called a left-handed coordinate system:

Rotation values are entered in degrees. If you enter, for instance 45 in X, that means that the

game object will rotate 45° around the X axis. To determine to which side it will rotate, use the

left-hand rule as shown in the image below. If the rotation value is negative, use your right hand.

https://academy.zenva.com/product/unity-game-development-mini-degree/?zva_src=gamedevacademy-unity-platformer-ebook
https://en.wikipedia.org/wiki/Degree_(angle)

This book is brought to you by Zenva - Enroll in our Unity Game Development Mini-Degree to learn and

master game development with Unity

© Zenva Pty Ltd 2018. All rights reserved

Besides changing the Transform properties of a game object from the Inspector, you can do so

by using the Toolbar buttons and the “gizmos” in the Scene View:

https://academy.zenva.com/product/unity-game-development-mini-degree/?zva_src=gamedevacademy-unity-platformer-ebook

This book is brought to you by Zenva - Enroll in our Unity Game Development Mini-Degree to learn and

master game development with Unity

© Zenva Pty Ltd 2018. All rights reserved

Unity units

You may wonder, what’s the unit of measure in a Unity game? if we move an object from X = 1

to X = 2, how much would that represent in the real world? Unity uses Unity units. By

convention (and this even includes some official Unity tutorials), 1 Unity unit is 1 meter.

The Floor

Let’s go ahead and create the floor of the game. For that, we will use a plane. Right click on

your scene in the Hierarchy Window and select 3D Object – Plane. This will bring up a plane

into our scene. From the Hierarchy Window, we can rename this object by right clicking –

Rename, by selecting it and pressing F2, or by single-clicking on it after we’ve selected it. Call it

“Floor”.

We will now create a new material so that it can look green. Un Unity, a material is an asset

that controls the visual appearance of a game object. We can easily create materials from the

Project Window and assign them to objects in our scene.

Create a new folder inside of Assets called Materials. Inside of this new folder, right click and

select Create – Material. This will create a new material file. Rename it to “Grass”. If you click on

this file, the Inspector will show the properties of the newly created material. Click on the color

white in Albedo and pick a color for the grass in the game:

https://academy.zenva.com/product/unity-game-development-mini-degree/?zva_src=gamedevacademy-unity-platformer-ebook

This book is brought to you by Zenva - Enroll in our Unity Game Development Mini-Degree to learn and

master game development with Unity

© Zenva Pty Ltd 2018. All rights reserved

Now drag the material file to the floor in the Scene View. The plane will look green, and if you

click on it, you’ll see the material in the Mesh Renderer component in the Inspector.

https://academy.zenva.com/product/unity-game-development-mini-degree/?zva_src=gamedevacademy-unity-platformer-ebook

This book is brought to you by Zenva - Enroll in our Unity Game Development Mini-Degree to learn and

master game development with Unity

© Zenva Pty Ltd 2018. All rights reserved

Lastly, since the floor won’t be moving around in the game, check the Static checkbox located

on the top-right of the Inspector.

By making a game object static, we are informing Unity that this object won’t be moving in our

game. This allows Unity to perform behind the scenes optimizations when running the game.

Adding more game elements

Let’s add the remaining elements of our game. Start by creating the new materials. Pick

whichever color you want for each one:

● Platform

● Coin

● Enemy

● Goal

● Player

https://academy.zenva.com/product/unity-game-development-mini-degree/?zva_src=gamedevacademy-unity-platformer-ebook

This book is brought to you by Zenva - Enroll in our Unity Game Development Mini-Degree to learn and

master game development with Unity

© Zenva Pty Ltd 2018. All rights reserved

This is what mine look like:

What we’ll do next is add all the remaining elements to create our level, so that we can get a

clear idea of what it will look like. We haven’t implemented our player, the behavior of the

enemies or coins yet. Moreover, we haven’t written a single line of code. However, it’s good

practice to design a game as early as possible.

Moving around blocks in Unity like we’ll do now is very easy and anyone can do it. This process

can give you a very clear idea of what your game will look like, and allow you to save time

further down the road, and to show other people what the game will look like. This process is

called prototyping.

Let’s thus begin this process by adding some cubes to be used as platforms. Use the position

gizmos or the Inspector to position them in different places. Set their scale in Y to a smaller

value to make them thinner, and scale them up in X and Y so make them wider. Make sure to

drag the Platform material we created to give them the color you want.

Since platforms won’t be moving make sure to set them as “static” (unless you want to create

moving platforms of course!).

As we create more platforms, the Hierarchy Window can start to get crowded of elements.

Game objects in Unity can be children of other objects. This means that their position is relative

https://academy.zenva.com/product/unity-game-development-mini-degree/?zva_src=gamedevacademy-unity-platformer-ebook

This book is brought to you by Zenva - Enroll in our Unity Game Development Mini-Degree to learn and

master game development with Unity

© Zenva Pty Ltd 2018. All rights reserved

to that of the parent. In this case, grouping all the platforms inside of a single parent object can

help us keep this window more clear – we won’t be moving this parent object.

In the Hierarchy Window right click and select Create Empty. Rename this new object to

“Platforms”. Drag and drop all the platforms you created into this object. Notice that even though

Platforms is empty (it doesn’t render anything on the screen), it still has a Transform

component. As we said before, this component is always present in Unity game objects.

For the coins we’ll start by creating a cylinder in the Hierarchy Window (3D Object – Cylinder).

Shrink it (this means, scale it down) on Y so that it looks more like a coin. Also, scale it down on

X and Z to make it smaller (I’ve never seen a coin with a 1-meter diameter!). Lastly, rotate it 90

degrees in X or Z.

https://academy.zenva.com/product/unity-game-development-mini-degree/?zva_src=gamedevacademy-unity-platformer-ebook

This book is brought to you by Zenva - Enroll in our Unity Game Development Mini-Degree to learn and

master game development with Unity

© Zenva Pty Ltd 2018. All rights reserved

Rename the cylinder to “Coin”. Drag the Coin material into your coin and you’ll have your coin

ready! Once we get into scripting, coins will have a C# script associated to them which will

determine how they behave. Since we’ll have many coins, having to re-create them each time is

not the best approach. Imagine we want to change how all coins behave at once? We need to

create what’s called a prefab.

Unity prefabs are templates of game objects that can be reused (even used in different

projects), and that allow us to generate many game objects that share properties and behaviors.

Changes made to a prefab are reflected in all of it’s instances.

Create a new folder in Assets called Prefabs to keep our code organized. To create a prefab,

simply drag and drop the coin you created (from the Hierarchy Window) into this new folder in

the Project Window.

Now that we have our prefab ready, you could safely delete the coin from the Hierarchy

Window, but you don’t really have to. To create more instances of our prefab, simply drag and

drop the coin Prefab into the Scene View. Do it many times (you can also do it once and

duplicate the object with Control + D).

If you select any of these instance you’ll see a Prefab area in the Inspector. If you click on

Select in there, see how the Coin prefab is selected. If you make changes to this particular

instance (for example, change the scale, rotation or material) and press Apply, the changes

made will be applied to the prefab itself, changing thus all other instances!

https://academy.zenva.com/product/unity-game-development-mini-degree/?zva_src=gamedevacademy-unity-platformer-ebook

This book is brought to you by Zenva - Enroll in our Unity Game Development Mini-Degree to learn and

master game development with Unity

© Zenva Pty Ltd 2018. All rights reserved

Place coins across your level. This will help you get familiar with moving around the scene,

duplicating or copying and pasting objects, and using the position gizmo. When you are done

we’ll finish off with the design of our level. Make sure to group all the coins in an empty object,

just like we did with the platforms before.

https://academy.zenva.com/product/unity-game-development-mini-degree/?zva_src=gamedevacademy-unity-platformer-ebook

This book is brought to you by Zenva - Enroll in our Unity Game Development Mini-Degree to learn and

master game development with Unity

© Zenva Pty Ltd 2018. All rights reserved

We’ll now follow a similar process for the player, enemies and the level goal. For the player and

enemies do the following:

● Create a cube

● Scale it to 0.6 in all axes

● Assign the corresponding material

● Drag to the Prefabs folder

● Drag the newly created prefab on to the Scene View to create an instance (for the

enemy, create more than one, and group them in an empty object)

We can, of course, change of all this later, so don’t much in too much thought or try to be

perfectionist at this stage.

For the goal, the only difference is that instead of a cube, we’ll use a sphere (3D Object –

Sphere). The process described about is the same.

This is what my level looks like:

Pro tip: when moving a game object with the position gizmo, if you keep the Control key

pressed (CMD in Mac) the object will move in fixed increments (which you can change in Edit –

Snap Settings). If you grab the object from it’s center, and press both Control and Shift, the

https://academy.zenva.com/product/unity-game-development-mini-degree/?zva_src=gamedevacademy-unity-platformer-ebook

This book is brought to you by Zenva - Enroll in our Unity Game Development Mini-Degree to learn and

master game development with Unity

© Zenva Pty Ltd 2018. All rights reserved

object will snap to the surface of any near object. This is useful to place the player on the

ground with precision. Read the documentation under “Snapping” for more details.

Coin rotation script

Coins will always be rotating around the Y axis. This is really a cosmetic aspect of the game. As

you might have guessed, I like to create a rough version of the full game before diving into this

kinds of details (which I tend to leave for the very end). However, I think coin rotation can give

us a very simple example to cover the basics of Unity scripting, so this will be our first approach

to scripting, in preparation for the more complex implementation of the player controller.

Unity scripts are a necessary part of any game. Scripts can be written in C#, UnityScript (aka

“JavaScript for Unity”) and a language called Boo. C# is the most popular option these days, so

that’s the only language we’ll be using.

Let’s begin by creating a new folder inside of Assets called Scripts. In this new folder, right click

and select Create – C# Script, name it CoinController. Voilá! You have created your first Unity

script.

Double click on this new file and Visual Studio will open. The default contents are as follows:

https://academy.zenva.com/product/unity-game-development-mini-degree/?zva_src=gamedevacademy-unity-platformer-ebook
https://docs.unity3d.com/Manual/PositioningGameObjects.html

This book is brought to you by Zenva - Enroll in our Unity Game Development Mini-Degree to learn and

master game development with Unity

© Zenva Pty Ltd 2018. All rights reserved

What we have here is:

● A new class has been created for us. This class is called , and inherits

from another class called . Think of a class as a blueprint (“a recipe to

make a cupcake”) that can be used to create objects with certain characteristics and

behaviors (“an actual cupcake”). Objects created from a class are called instances of

that class.

● Our new class has two methods: and . In Unity, there are some

reserved method names used in classes that inherit from . We’ll now

explain what these two methods do. You can find the full list of

methods here.

○ is called on the first frame of the game.

○ is called on every frame, multiple times per second!

What we want to do with our coin is rotate it all the time at a certain speed. We don’t need to

perform any action on the first frame of a coin, so we’ll delete the method code.

On the other hand, we do want to rotate it slightly on each frame. One way to do that is access

the transform of the coin, which as we’ve seen contains it’s position, scaling and rotation values.

We’ll start by defining a rotation speed, as a public variable, and give it a default value (more

on this later).

https://academy.zenva.com/product/unity-game-development-mini-degree/?zva_src=gamedevacademy-unity-platformer-ebook
https://docs.unity3d.com/ScriptReference/MonoBehaviour.html

This book is brought to you by Zenva - Enroll in our Unity Game Development Mini-Degree to learn and

master game development with Unity

© Zenva Pty Ltd 2018. All rights reserved

A public variable is a property of the class that can be modified from outside the class. As we’ll

see shortly, by assigning this property as public we’ll be able to modify it directly from the Unity

Editor.

On Unity scripts we have access to an object , which has a property called

and provides the time in seconds since the last frame.

Basic physics stats that speed is equal to distance divided by time. This means, distance is

equal to speed times time. We’ll use that formula to determine how much the coin needs to

rotate on each frame:

The rotation needs to be about the vertical axis (Y). We can access the object’s transform and

make it rotate as shown below:

https://academy.zenva.com/product/unity-game-development-mini-degree/?zva_src=gamedevacademy-unity-platformer-ebook

This book is brought to you by Zenva - Enroll in our Unity Game Development Mini-Degree to learn and

master game development with Unity

© Zenva Pty Ltd 2018. All rights reserved

● allows us to rotate the transform. For the full documentation see

here.

● gives us the vertical axis. An alternative would be to create a new

 object like so:

● The last parameter needs to be specified in this case, and it means that

the rotation needs to be to the “up” direction in the world, not relative to the object.

Remember how we created our coins: we inserted a cylinder, reduced it in size then

rotated it so that it would look like a coin. If you don’t specify this parameter, the rotation

will be applied on local coordinates, in which the Y axis is tilted.

Last but not least, we need to attach this script to our coin prefab. So far, Unity has no way of

knowing that this script is to be used on coins!

Select your coin prefab (from the Prefabs folder). In the Inspector click on Add Component,

select Scripts – Coin Controller. This action will attach the script to all the coins you have

created. Notice how we can also change the rotation speed from here – all public properties

show in the Inspector and can be edited directly from the Unity Editor. This is quite useful in

case you are working with people who don’t do coding but need to make changes to the game.

https://academy.zenva.com/product/unity-game-development-mini-degree/?zva_src=gamedevacademy-unity-platformer-ebook
https://docs.unity3d.com/ScriptReference/Transform.Rotate.html

This book is brought to you by Zenva - Enroll in our Unity Game Development Mini-Degree to learn and

master game development with Unity

© Zenva Pty Ltd 2018. All rights reserved

See it in action! Press the “play” icon on the Toolbar and see how the coins rotate in either the

Scene View or the Game View.

https://academy.zenva.com/product/unity-game-development-mini-degree/?zva_src=gamedevacademy-unity-platformer-ebook

This book is brought to you by Zenva - Enroll in our Unity Game Development Mini-Degree to learn and

master game development with Unity

© Zenva Pty Ltd 2018. All rights reserved

Where did the “100” for rotation speed come from? The answer is: from trial and error.

When making games you’ll quite often need to set arbitrary values such as speeds, jumping

distances, etc. What I usually do is throw in a number and adjust until it looks/feels good.

Player movement

In this section we’ll implement player movement using the arrow keys. Let’s first place the

camera in a position where the whole level can be seen easily. See below where I’ve placed

mine (you can copy the values in Transform if you want). Feel free to manually adjust it.

Our player will be subject to physics laws: gravity, momentum, etc. For that, Unity provides a

component named Rigid Body, which we need to assign to our Player prefab. In the Inspector

click Add Component, select Physics – Rigidbody.

https://academy.zenva.com/product/unity-game-development-mini-degree/?zva_src=gamedevacademy-unity-platformer-ebook

This book is brought to you by Zenva - Enroll in our Unity Game Development Mini-Degree to learn and

master game development with Unity

© Zenva Pty Ltd 2018. All rights reserved

Create a new script in the Scripts folder and call it PlayerController. We’ll start by adding some

public properties for the walking and jumping speed of our player. Attach the script to the Player

prefab as described in the previous section.

https://academy.zenva.com/product/unity-game-development-mini-degree/?zva_src=gamedevacademy-unity-platformer-ebook

This book is brought to you by Zenva - Enroll in our Unity Game Development Mini-Degree to learn and

master game development with Unity

© Zenva Pty Ltd 2018. All rights reserved

We’ll begin our implementation of basic cursor keys movement by reading user input from the

 method. When it comes to player controllers, it’s good practice in Unity to read input

axes instead of specific keys. For example, when you press the “up” key, you activate the

vertical axis. This axis would also be activated if you pressed the “up” key on a gamepad, or

some other device. Moreover, people with certain disabilities can map their gamepads or

joysticks in different ways. So it’s always good practice to read “axes” instead of specific keys

(unless, or course, you really need to read a certain key).

If you are curious, you can see the axes available if you go to the menu Edit – Project Settings –

Input. We’ll be using Horizontal and Vertical.

To be sure that we are reading the arrow keys correctly, add the following code to ,

which will show in the the Editor’s Console (tab next to Projects) a message with the values we

get:

If you play the game and press the arrow keys you’ll notice that shows values from -1

(left) to 1 (right). shows values from -1 (down) to 1 (up). The value of 0 is shown when

no key is pressed.

Each time the input is read, we’ll move a certain distance which can be calculated as speed *

time. (remember: speed = distance / time, which means distance = speed * time).

We’ll create a vector that points out where we are moving, based on our current position:

https://academy.zenva.com/product/unity-game-development-mini-degree/?zva_src=gamedevacademy-unity-platformer-ebook

This book is brought to you by Zenva - Enroll in our Unity Game Development Mini-Degree to learn and

master game development with Unity

© Zenva Pty Ltd 2018. All rights reserved

Now, how do we actually move our player? We need to access the player’s rigid body in order

to do that (yes, we could just move the transform like we did with the coins, but in this case we

want to have an accurate physics simulation with velocity, gravity, etc, so we need to use the

rigid body instead).

We need to create a variable to store our rigid body and put the Rigid Body component in it (at

the start of our script, for which we can use the method), so that we can then access it

for movement, jumping, and whatever else we need.

To make our code cleaner we’ll put all the movement code in it’s own function, named

.

https://academy.zenva.com/product/unity-game-development-mini-degree/?zva_src=gamedevacademy-unity-platformer-ebook

This book is brought to you by Zenva - Enroll in our Unity Game Development Mini-Degree to learn and

master game development with Unity

© Zenva Pty Ltd 2018. All rights reserved

https://academy.zenva.com/product/unity-game-development-mini-degree/?zva_src=gamedevacademy-unity-platformer-ebook

This book is brought to you by Zenva - Enroll in our Unity Game Development Mini-Degree to learn and

master game development with Unity

© Zenva Pty Ltd 2018. All rights reserved

You can now move around! But as you crash against an enemy or a platform you’ll notice that

the player rotates after the collision:

Our player is represented by a rigid body which simulates real physics. If you put a dice on a

surface and hit it on a side, it will of course rotate! What we need to do is disable our player from

rotating, which can be easily done from the Inspector. Find the Rigid Body component of the

player prefab, under Constraints go and check Freeze Rotation for all axes.

Player jumping

We can now move our player around the game with the arrow keys, and it’s time to give it the

ability to jump. Implementing proper jumping logic will take some thought, but we’ll go step by

step covering all that it entails.

Unity comes with an Input Axis called “Jump”, which activates with the spacebar by default. Go

to Edit – Project Settings – Input to double check it’s there on your end.

https://academy.zenva.com/product/unity-game-development-mini-degree/?zva_src=gamedevacademy-unity-platformer-ebook

This book is brought to you by Zenva - Enroll in our Unity Game Development Mini-Degree to learn and

master game development with Unity

© Zenva Pty Ltd 2018. All rights reserved

When should the player be allowed to jump? Should it be allowed to jump while it’s already in

the air? You start to realize that there are some rules around when the player should be allowed

to jump. I’ve put these together in the following diagram:

https://academy.zenva.com/product/unity-game-development-mini-degree/?zva_src=gamedevacademy-unity-platformer-ebook

This book is brought to you by Zenva - Enroll in our Unity Game Development Mini-Degree to learn and

master game development with Unity

© Zenva Pty Ltd 2018. All rights reserved

Let’s begin by creating a function to take care of all the jumping logic. We’ll call that on .

If we just check that the Jump axis has been pressed, we can make our player jump like so:

Of course, this is an incomplete implementation, as we are not checking whether the player is

grounded or not. Also, if you keep the spacebar pressed, the player will fly away!

We’ll now make sure that we can’t jump more than once on the same key press. We can do that

by using a boolean variable which we’ll use as a “flag” to indicate whether we’ve jumped on the

current keypress or not.

https://academy.zenva.com/product/unity-game-development-mini-degree/?zva_src=gamedevacademy-unity-platformer-ebook

This book is brought to you by Zenva - Enroll in our Unity Game Development Mini-Degree to learn and

master game development with Unity

© Zenva Pty Ltd 2018. All rights reserved

https://academy.zenva.com/product/unity-game-development-mini-degree/?zva_src=gamedevacademy-unity-platformer-ebook

This book is brought to you by Zenva - Enroll in our Unity Game Development Mini-Degree to learn and

master game development with Unity

© Zenva Pty Ltd 2018. All rights reserved

Is it really over? We’ll, there is just one last thing. See what happens if you jump against a wall

and keep on pushing towards that direction. Yep, you’ll get stuck on the wall.

https://academy.zenva.com/product/unity-game-development-mini-degree/?zva_src=gamedevacademy-unity-platformer-ebook

This book is brought to you by Zenva - Enroll in our Unity Game Development Mini-Degree to learn and

master game development with Unity

© Zenva Pty Ltd 2018. All rights reserved

This is caused by friction. This can be disabled so that our player doesn’t rotate by creating a

physics material. Physics materials allow us to give our game object custom physical

properties such as friction, bounciness, and how it will behave when colliding with other objects.

In your Assets folder, create a subfolder called Physics Materials, and inside of that folder right

click and select Create – Physics Material, name it Player.

Give this new material properties as shown below, so that we don’t have any friction. Make sure

to select Minimum in Friction Combine. This means that no matter what the friction is of the

colliding object, the minimum value will be used for physics calculations.

Select your Player prefab, in the Inspector look for the Box Collider component and click in

Material. Select the physics material you just created in order to assign it to the prefab.

Now we are finally done with player jumping 🙂

https://academy.zenva.com/product/unity-game-development-mini-degree/?zva_src=gamedevacademy-unity-platformer-ebook

This book is brought to you by Zenva - Enroll in our Unity Game Development Mini-Degree to learn and

master game development with Unity

© Zenva Pty Ltd 2018. All rights reserved

Collecting coins

In this section we’ll implement coin collection. When the player collects a coin, a sound will be

played. In the next section, we’ll keep track of the score of the player in an object we’ll call

GameManager, which will keep track of game-level information (score, high score, level).

Currently, if you touch a coin you’ll notice that they actually stop the player, they are “solid”. This

is not the behavior we want. We want to be able to detect a collision between the player an a

coin, however, we don’t want coins to affect the velocity, or any physics property, of our player.

We need to make our coins a trigger collider. When another object collides with a coins, a

trigger event will be fired, and the physics properties of the object won’t be affected, just as if

you were going through thin air! Select the coin prefab, find the component Capsure Collider in

the Inspector, and check Is Trigger.

Do the same for the enemy prefab and goal prefab. We can now jump through coins. We need

to know “collect” these coins on collision, play a sound and destroy the coins after collected. In

our player controller script, we can use a method named (learn more about it

here). This method will be called each time the player runs into a trigger collider. The following

code outlines the steps of what we’ll do next. In this section, we’ll only take care of playing the

sound and destroying the coin:

To detect whether the trigger object the player ran into is a coin we can give our coin prefab a

tag that identifies it. Select the coin prefab and in the Inspector, in Tag go and select Add Tag.

Create a “Coin” tag. Also, create “Goal” and “Enemy” as we’ll use those later. After creating the

tags, make sure the coin prefab has the Coin tag in Tag on the Inspector (pick it from the list).

Do the same for the enemy and goal prefabs.

https://academy.zenva.com/product/unity-game-development-mini-degree/?zva_src=gamedevacademy-unity-platformer-ebook
https://docs.unity3d.com/ScriptReference/MonoBehaviour.OnTriggerEnter.html

This book is brought to you by Zenva - Enroll in our Unity Game Development Mini-Degree to learn and

master game development with Unity

© Zenva Pty Ltd 2018. All rights reserved

We can check the tag of the object we’ve collided with, and destroy the coin we’ve collected by

doing:

Let’s now take care of the coin sound. Create a folder in Assets called Audio, copy the coin.ogg

file provided with the tutorial source code (download at the start of the tutorial or here). In the

Hierarchy Window, right click and select Audio – Audio Source, rename it to “Coin Audio

Source”. Select the newly created object. In the Inspector, drag the coin.ogg file to AudioClip.

Uncheck the box Play On Awake so that the sound doesn’t play each time the game starts.

https://academy.zenva.com/product/unity-game-development-mini-degree/?zva_src=gamedevacademy-unity-platformer-ebook
https://gamedevacademy.org/tutorial-multi-level-platformer-game-in-unity/

This book is brought to you by Zenva - Enroll in our Unity Game Development Mini-Degree to learn and

master game development with Unity

© Zenva Pty Ltd 2018. All rights reserved

We need to know be able to pass this audio source to our player, so that it can be played each

time a coin is collected.

For that, we can create a public variable in our player controller, of type , and pass

our audio source object to it via the Inspector. Add the following at the start of your player

controller:

Now drag and drop the coin audio source object into the Coin Audio Source field in the player

prefab’s Inspector, Script component.

https://academy.zenva.com/product/unity-game-development-mini-degree/?zva_src=gamedevacademy-unity-platformer-ebook

This book is brought to you by Zenva - Enroll in our Unity Game Development Mini-Degree to learn and

master game development with Unity

© Zenva Pty Ltd 2018. All rights reserved

In your player controller file, we can now play the file in :

Game Manager

Most games have some sort of high-level parameters and operations, such as resetting the

game, managing game over, number of lives, current level, options, etc. In our game for

instance, we want to keep track of the player score, the high score, and the level we are in.

To keep track of these things, we can create an object that keeps track of these things and

helps manage it it all. We’ll call this object the Game Manager.

Something we know for sure about this Game Manager object is that we’ll only want a single

instance of this object to exist at the same time. In computer science terminology, we want this

object to be a singleton.

Create a script and call it GameManager. The following code will help us keep track of the

score.

https://academy.zenva.com/product/unity-game-development-mini-degree/?zva_src=gamedevacademy-unity-platformer-ebook
https://en.wikipedia.org/wiki/Singleton_pattern

This book is brought to you by Zenva - Enroll in our Unity Game Development Mini-Degree to learn and

master game development with Unity

© Zenva Pty Ltd 2018. All rights reserved

To actually have this script in our game, create an empty game object in the Hierarchy Window,

name it “Game Manager”, and assign our script to it.

We now need to access this object and its method in our player controller in order

to increase the score every time we collect a coin. One way to do this is to repeat the steps we

took when attaching the coin audio source to our player (creating a “gameManager” public

property and dragging the “Game Manager” object to the player’s Inspector). That works and

there is nothing wrong in doing that.

Since we are talking about the game manager here, it’s highly likely that we’ll want to access it

from many game objects, not just the player. Having to drag and drop it each time can become

time consuming. A different approach is to use a static variable that can be accessed from

anywhere in the code, without having to declare public variables each time and drag and drop

elements. This will also help us enforce the fact that there will only be a single instance of the

Game Manager in our game (the singleton pattern).

The following implementation will provide all of the above. Plus, when we load different scenes

(game over scene, or other levels) the Game Manager is not destroyed, which would happen by

default. For more explanations see this official tutorial and this tutorial on game manager.

https://academy.zenva.com/product/unity-game-development-mini-degree/?zva_src=gamedevacademy-unity-platformer-ebook
https://en.wikipedia.org/wiki/Static_variable
https://unity3d.com/learn/tutorials/projects/2d-roguelike-tutorial/writing-game-manager
http://nologogames.com/2015/05/17/unity-tutorial-simple-gamemanager-object/

This book is brought to you by Zenva - Enroll in our Unity Game Development Mini-Degree to learn and

master game development with Unity

© Zenva Pty Ltd 2018. All rights reserved

In our player, we can increase the score like so:

https://academy.zenva.com/product/unity-game-development-mini-degree/?zva_src=gamedevacademy-unity-platformer-ebook

This book is brought to you by Zenva - Enroll in our Unity Game Development Mini-Degree to learn and

master game development with Unity

© Zenva Pty Ltd 2018. All rights reserved

We can now collect coins and see the increased score in the Console!

What about keeping high score? That will be be quite straightforward and can be done directly

in GameManager:

https://academy.zenva.com/product/unity-game-development-mini-degree/?zva_src=gamedevacademy-unity-platformer-ebook

This book is brought to you by Zenva - Enroll in our Unity Game Development Mini-Degree to learn and

master game development with Unity

© Zenva Pty Ltd 2018. All rights reserved

Of course, for now our high score updates just like our score. This will be fully finished once we

implement game over.

Enemy movement

Enemies will have an up-and-down movement within a range. We’ll make it so that you can

easily change the speed, initial direction and movement range. In the tutorial we’ll only

implement movement in Y, but you can easily modify this code to have enemies moving in other

directions too!

https://academy.zenva.com/product/unity-game-development-mini-degree/?zva_src=gamedevacademy-unity-platformer-ebook

This book is brought to you by Zenva - Enroll in our Unity Game Development Mini-Degree to learn and

master game development with Unity

© Zenva Pty Ltd 2018. All rights reserved

Start by creating a new script which we’ll call “EnemyController”. Attach it to the enemy prefab.

We’ll add some public variables, and also keep the initial position so that we can move around

it.

In each frame, we’ll do the following:

● Calculate how much we are moving (distance = elapsed time * speed * direction).

● Calculate the new Y position (new position = old position + distance)

● If we’ve passed the movement range, change direction

The code of will then be:

https://academy.zenva.com/product/unity-game-development-mini-degree/?zva_src=gamedevacademy-unity-platformer-ebook

This book is brought to you by Zenva - Enroll in our Unity Game Development Mini-Degree to learn and

master game development with Unity

© Zenva Pty Ltd 2018. All rights reserved

Feel free to adjust the range, speed and direction of each one of your individual enemies if you

are not happy with the default values!

To detect enemy collision (for game over purposes!), add the following to your player

controller’s method, after the if statement where we check for the coin tag

(this assumes you’ve checked Is Trigger on the enemy prefab):

Multi-level game

In this section we’ll implement multi-level functionality. Each level will have it’s own scene, and

we’ll use the Game Manager to keep track of the current level, the number of levels, and the

level loading process.

https://academy.zenva.com/product/unity-game-development-mini-degree/?zva_src=gamedevacademy-unity-platformer-ebook

This book is brought to you by Zenva - Enroll in our Unity Game Development Mini-Degree to learn and

master game development with Unity

© Zenva Pty Ltd 2018. All rights reserved

Go to your Scenes folder (some people like to name this folder _Scenes so that it shows first on

the folder list), rename the scene we’ve been using to Level1. Create a new scene by right

clicking and selecting Create – Scene. Name it Level2.

If you double click on the new scene, you will see that you are taken to a blank scene. The

easiest way to start a new level is to “copy and paste” the objects from the Hierarchy Window of

Level1, into Level2. In Level1, simply select the objects you want, right click and pick “copy”. In

Level2 right click in and pick “paste”.

If you double click on the new scene, you will see that you are taken to a blank scene. The

easiest way to start a new level is to “copy and paste” the objects from the Hierarchy Window of

Level1, into Level2. In Level1, simply select the objects you want, right click and pick “copy”. In

Level2 right click in and pick “paste”.

Lets modify GameManager so that it can take us from one level to the next. I’ve only

implemented two levels for this tutorial, but the code is completely genetic – it can be used for

hundreds of levels if you so want!

We’ll specify the starting level, and the highest level we have in our game. If we pass that level,

we’ll send the user back to level 1. Let’s also add a method to restart the game (used for game

over).

To change Unity scenes, we need to import the package.

https://academy.zenva.com/product/unity-game-development-mini-degree/?zva_src=gamedevacademy-unity-platformer-ebook

This book is brought to you by Zenva - Enroll in our Unity Game Development Mini-Degree to learn and

master game development with Unity

© Zenva Pty Ltd 2018. All rights reserved

https://academy.zenva.com/product/unity-game-development-mini-degree/?zva_src=gamedevacademy-unity-platformer-ebook

This book is brought to you by Zenva - Enroll in our Unity Game Development Mini-Degree to learn and

master game development with Unity

© Zenva Pty Ltd 2018. All rights reserved

To detect when the level goal is reached. Provided you’ve checked Is Trigger on the goal

prefab:

If you try playing the game now and you reach the level goal, you’ll see an error message in the

console that will say something in the lines of:

To add a scene to the build settings use the menu File->Build Settings and add your scenes to

the list (you might have to click Add Open Scenes for each scene).

https://academy.zenva.com/product/unity-game-development-mini-degree/?zva_src=gamedevacademy-unity-platformer-ebook

This book is brought to you by Zenva - Enroll in our Unity Game Development Mini-Degree to learn and

master game development with Unity

© Zenva Pty Ltd 2018. All rights reserved

We can now play our game and move from one scene to the next! Notice how the score stays in

between scenes. Basically, our GameManager object survives between scenes because of the

statement (and of course, the rest of the Game Manager

implementation).

Adding the HUD

So far we have no idea what our score is. We need to show it to the player. Let’s implement a

very simple HUD where we show the current score.

Start by adding a text element in the Hierarchy Window. Right-click, UI – Text. This will create a

Canvas element, with a Text element inside. Rename the text element to “Score Label”. In the

Scene View, click 2D, select the text and press f. This will show you the canvas location of the

text label.

https://academy.zenva.com/product/unity-game-development-mini-degree/?zva_src=gamedevacademy-unity-platformer-ebook

This book is brought to you by Zenva - Enroll in our Unity Game Development Mini-Degree to learn and

master game development with Unity

© Zenva Pty Ltd 2018. All rights reserved

When adding UI elements, a canvas is created automatically. A canvas in Unity is a game

object where all UI elements should be located. Some UI elements such as buttons handle user

input, for which the canvas provides event system support, for which an EventSystem object

was automatically created in our Hierarchy Window, as you can probably see. You can read

more about the canvas in the docs.

Drag the text label to the upper-left area of the canvas. Select the canvas object and find the

Canvas Scaler component in the Inspector. Change UI Scale Mode to Scale with Screen Size

so that the whole canvas scales up or down depending on the screen size. In this manner, the

text label will always stay in that relative position. Set the Reference Resolution to 1024 x 576.

We’ll now import a much nicer pixel art font to use called Press Start. Create a folder called

“Fonts”. Assuming you’ve downloaded the tutorial files, copy the files prstart.ttf and license.txt

https://academy.zenva.com/product/unity-game-development-mini-degree/?zva_src=gamedevacademy-unity-platformer-ebook
https://docs.unity3d.com/Manual/UICanvas.html

This book is brought to you by Zenva - Enroll in our Unity Game Development Mini-Degree to learn and

master game development with Unity

© Zenva Pty Ltd 2018. All rights reserved

(both located in Assets/Fonts) into your Fonts folder. Make sure to read the license file which

covers how you are allowed to use this font.

Now, if you select Score Label, find the Font field and click on the circle next to it, you’ll be able

to select our Press Start font. Set the font size to 32.

We can now see our text in this pixel font! However, it does look a bit blurry:

This can be easily fixed by making a change in the Import Settings of the font. Go to your Fonts

folder, select the font file, and in the Inspector, change Rendering Mode to Hinted Raster. Press

apply and you are pixel crispy good!

https://academy.zenva.com/product/unity-game-development-mini-degree/?zva_src=gamedevacademy-unity-platformer-ebook

This book is brought to you by Zenva - Enroll in our Unity Game Development Mini-Degree to learn and

master game development with Unity

© Zenva Pty Ltd 2018. All rights reserved

Before we move on to the HUD functionality, feel free to change the font color or style (I’m

changing it to white).

We’ll create a new object that will take care of managing the HUD. Create an empty object

called Hud Manager. Create a new script and name it HudManager. Drag this new script onto

the Hud Manager object in the Hierarchy View.

The HudManager script needs to be able to access the text label we created, so that it can

change it’s contents. This will be added as a public variable. We’ll give it a public method called

Refresh, so that we can trigger a HUD update from anywhere in our code.

● We start by importing the UnityEngine.UI namespace so that we can easily access UI-

related functionality

https://academy.zenva.com/product/unity-game-development-mini-degree/?zva_src=gamedevacademy-unity-platformer-ebook

This book is brought to you by Zenva - Enroll in our Unity Game Development Mini-Degree to learn and

master game development with Unity

© Zenva Pty Ltd 2018. All rights reserved

● Create a public variable of type UnityEngine.UI.Text for our score label.

● We’ll refresh the HUD on the first frame of the game, to show the initial score.

● The Refresh method modifies the actual text content of the score field. Notice how we

can easily access the current score in our game from the GameManager.

Make sure to drag the Score Label object in your Hierarchy Window to the Hud Manager object,

so that it knows which text element to modify!

The last bit missing is to actually call this Refresh method in our game! We’ll do this in our

PlayerController. Let’s refresh the HUD at the start of the game (on the first frame), and every

time the player gets a coin.

In order to be able to access the HudManager from our PlayerController, we’ll add a public

variable:

Let’s refresh the HUD upon first frame:

https://academy.zenva.com/product/unity-game-development-mini-degree/?zva_src=gamedevacademy-unity-platformer-ebook

This book is brought to you by Zenva - Enroll in our Unity Game Development Mini-Degree to learn and

master game development with Unity

© Zenva Pty Ltd 2018. All rights reserved

And every time we collect a coin:

Make sure to drag and drop the Hud Manager object onto our Player object. To make this work

multilevel, simply copy these new objects (canvas, HUD manager) into each level, and make

the corresponding dragging and dropping so it all wires up.

https://academy.zenva.com/product/unity-game-development-mini-degree/?zva_src=gamedevacademy-unity-platformer-ebook

This book is brought to you by Zenva - Enroll in our Unity Game Development Mini-Degree to learn and

master game development with Unity

© Zenva Pty Ltd 2018. All rights reserved

Note: you could also take a different approach and incorporate HUD management into the

Game Manager, or create similar type of object. There is no single correct way and this seemed

to be the simplest approach for our game.

Note 2: if you are an advanced programmer and don’t like doing so much “dragging and

dropping” I’d recommend reading the Dependency Injection series by Ashley Davis. Keep in

mind the approach presented there is definitely more advanced.

Home screen

In this section we’ll implement a simple home screen. Create a new scene in your Scenes folder

and call it “Home”. Add it to your Build Settings like we did before, make sure it’s at the start of

the list.

https://academy.zenva.com/product/unity-game-development-mini-degree/?zva_src=gamedevacademy-unity-platformer-ebook
http://www.what-could-possibly-go-wrong.com/dependency-injection-for-unity-part-1/

This book is brought to you by Zenva - Enroll in our Unity Game Development Mini-Degree to learn and

master game development with Unity

© Zenva Pty Ltd 2018. All rights reserved

For the background of our home screen (and our game over screen) I’ll be using the image that

comes in Assets/Images. Feel free to use that or any other image. Create an Images folder in

your project, and put the background image in there. The size of the image is 1024 x 576.

We’ll create a text field like before (which will automatically create a canvas). Inside this canvas,

also create a new button (UI – Button) and a raw image (UI – Raw Image).

The order in which each UI element is rendered on the screen is that of the elements in the

Hierarchy Window. If you want an element to appear on top of everything, move it all the way

down. On the contrary, to have an element in the background, move it all the way up. We’ll

make sure the raw image is in the background.

https://academy.zenva.com/product/unity-game-development-mini-degree/?zva_src=gamedevacademy-unity-platformer-ebook

This book is brought to you by Zenva - Enroll in our Unity Game Development Mini-Degree to learn and

master game development with Unity

© Zenva Pty Ltd 2018. All rights reserved

Select the Canvas, set the UI Scale Mode to Scale With Screen Size, which will make

everything look small. Change the Reference Resolution to 1024 x 576.

Extend the corners of the raw image element to match those of the canvas. In the Inspector,

select our background image on the Texture field (or drag the image file onto the RawImage

object).

Rename the RawImage object to “Background”, the text to “Title” and the button to “Start

Button”.

Change the font of Title to our Press Start font. Change the font size to 48, color white. Move it

around so that it looks nicer. You can easily style the button too by expending it in the Hierarchy

Window, and editing it’s child Text field just like we did with the title. This is what my home

screen looks like:

The last step here is to make our button work and actually make the game start. Create an

empty object called UI Manager. Create a new script named HomeUIManager and drag it on to

the newly created object.

This new script will contain a single public method which we’ll call StartGame (not to be

confused with Start):

https://academy.zenva.com/product/unity-game-development-mini-degree/?zva_src=gamedevacademy-unity-platformer-ebook

This book is brought to you by Zenva - Enroll in our Unity Game Development Mini-Degree to learn and

master game development with Unity

© Zenva Pty Ltd 2018. All rights reserved

Select Start Button in the Hierarchy Window, find the component Button (Script) in the

Inspector. Where it says On Click() click the plus button and find the public method we just

created (StartGame). After this, your homescreen should work is you press play!

Game Over screen

For simplicity, we’ll make the Game Over screen will work very similarly to the Home screen.

Start by creating a new scene called Game Over. As a starting point, I’d recommend copying

and pasting all the objects from the Home scene. Rename the text to “Game Over”. Add the

scene to the Build Settings as we’ve done with the previous scenes.

https://academy.zenva.com/product/unity-game-development-mini-degree/?zva_src=gamedevacademy-unity-platformer-ebook

This book is brought to you by Zenva - Enroll in our Unity Game Development Mini-Degree to learn and

master game development with Unity

© Zenva Pty Ltd 2018. All rights reserved

We’ll add 4 additional text labels. Give them style and text values as shown below (enter any

number for the score and high score):

The following functionality needs to be implemented:

● Restart the game when Play is pressed

● Show the score and high score

For that, we’ll take a similar approach to what we did for the home screen. We already have a

UI Manager object in our Hierarchy Window (provided you copied and pasted everything from

the Home screen). We’ll use this object, but with a different script, so remove the

HomeUIManager script component in the Inspector.

This new script will make use of the object, which as we’ve seen keeps track of the

score and high score, and already has a method to restart the game. Create a new empty

object, name it Game Manager, and drag the GameManager script to it.

Create a new script called GameOverUIManager. This new class will have public variables so

that we can pass on the text elements where we want to show the score and high score. Also, it

will have a public method to restart the game, which we can use in our Play button.

https://academy.zenva.com/product/unity-game-development-mini-degree/?zva_src=gamedevacademy-unity-platformer-ebook

This book is brought to you by Zenva - Enroll in our Unity Game Development Mini-Degree to learn and

master game development with Unity

© Zenva Pty Ltd 2018. All rights reserved

Go to your button, rename it to “Restart Button”, remove the previous method in the On Click

section, and find the newly created public method.

You should be seeing zero values on the score and high score fields. Also, if you click on Play

that should take you to Level 1.

The last piece of the puzzle is to actually send the player to Game Over, which we’ll do in

, upon collision with an enemy. Start by including the

 namespace so we can easily switch between scenes:

Then send to Game Over:

https://academy.zenva.com/product/unity-game-development-mini-degree/?zva_src=gamedevacademy-unity-platformer-ebook

This book is brought to you by Zenva - Enroll in our Unity Game Development Mini-Degree to learn and

master game development with Unity

© Zenva Pty Ltd 2018. All rights reserved

Finishing up

If you’ve followed along all the way here I have to say well done! We’ve already covered a lot of

ground and all the concepts we’ve covered here apply to pretty much all games.

You are definitely on the right path if your goal is to make games with Unity.

The last part is to actually build your game, so that you can run it as a native application on your

computer, whether you are on Windows, Mac or Linux (that is the magic of Unity!).

Build the game by going to Build Settings, selecting PC, Mac & Linux Standalone. I’ll select

Windows as my target platform and x86 as the system architecture, then click Build and Run.

Make sure all the scenes are showing under Scenes to Build.

We’ve built our game assuming a screen ratio of 16:9 (that is the screen ratio of the background

image we are using), so we want to make sure only this ratio is supported. Otherwise, in some

screens people might see the area outside of our background. Go to Player Settings, find

Resolution and Presentation – Supported Aspect Ratios – uncheck all but 16:9.

https://academy.zenva.com/product/unity-game-development-mini-degree/?zva_src=gamedevacademy-unity-platformer-ebook

This book is brought to you by Zenva - Enroll in our Unity Game Development Mini-Degree to learn and

master game development with Unity

© Zenva Pty Ltd 2018. All rights reserved

Choose a destination and a name for the executable file (I’ve called mine game.exe). Choose a

resolution and whether you want your game to be windowed or not. You can disable this

window in Player Settings – Resolution and Presentation – Display Resolution Dialog.

https://academy.zenva.com/product/unity-game-development-mini-degree/?zva_src=gamedevacademy-unity-platformer-ebook

This book is brought to you by Zenva - Enroll in our Unity Game Development Mini-Degree to learn and

master game development with Unity

© Zenva Pty Ltd 2018. All rights reserved

And we are done! We can now play our newly created game. Good job making it all the way

here!

https://academy.zenva.com/product/unity-game-development-mini-degree/?zva_src=gamedevacademy-unity-platformer-ebook

