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Abstract 

In this paper, we suggested an utility learning 
algorithm for tuning fuzzy rules by using training input- 
output data, based on the gradient descent method. The 
major advantage of this method is that fuzzy rules or 
membership functions can be learned without changing 
the form of the fuzzy rule table used in usual fuzzy 
controls, so that the case of weak-firing can be avoided 
well, which is different from the conventional learning 
algorithm. Furthermore, we illustrated the efficiency of 
the suggested learning algorithm by means of several 
numerical examples. 

1. Introduction 

As the development of fuzzy applications in industry, 
it is getting more important to generate or tune fuzzy 
rules by using some of learning techniques such as neuro- 
fuzzy learning algorithms. Based on the back-propagation 
method of neural networks [l] ,  Ichihashi [2], Wang and 
Mendel [3] have proposed a neuro-fuzzy learning 
algorithm for generating or tuning fuzzy rules for a given 
fuzzy model with Gaussian-type membership functions. 
While the fitting for training data is fast and good by 
using the method, the number of tuning parameters 
increases quickly as the number of input variables 
increases, and that, the representation of the fuzzy rule 
base in the form fuzzy rule table [4] becomes hard or 
impossible. Thus, it is possible to occur the case of weak- 
firing for unknown data, so that it will affect the fuzzy 
inference result. To improve the above problems, in this 
paper, we suggest a new learning algorithm for tuning 
fuzzy rules by using training input-output data, based on 
the gradient descent method. The major advantage of this 
method is that fuzzy rules or membership functions can be 
tuned without changing the form of the fuzzy rule table, 
so that the case of weak-firing can be avoided well, which 
is different from the conventional learning algorithm 
[2,3] .  Moreover, the properties of the conventional 
methods and the new method are discussed in detail. 
Finally, we illustrate the efficiency of the suggested 
learning algorithm by numerical examples. 
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2. The conventionall learning algorithm 

First, we introduce the conventional learning algorithm 
for learning fuzzy rules or membership functions, which 
is widely used in recent fuzzy controls and fuzzy expert 
systems [2,3,5,6]. 

For a given fuzzy system model with n input variables 
XI, x2, ,,,, xn and one output variable y ,  the fuzzy rule base 
is defined as follows [2,3]: 

Rule i: IF x1 is A l i  and x2 is A2i and ... and x, is Ani, 
THEN y is yi (i = 1,2, ..., m) (1) 

where Aji (j=1,2 ,..., n; i=1,2 ,.,., m) is a Gaussian-type 
membership function for the input variable xj which is 
expressed in Eq.(2), yi is a real number on the output 
universe U, and m is the number of the fuzzy rules. 

A,i(xj) = exp(-(xj-a,J2/bjl ) j=1,2 ..., n; i=1,2 ,..., m (2) 

where aJ1 is the center of Aji , b,, means the width of Ajl. 
When an observation ( ~ 1 . ~ 2 ,  ,x,) is given, according to 

simplified fuzzy reasoning method [2], a fuzzy inference 
conclusion y can be obtained in the following way: 

First, for i =1, 2, ..., m, the agreement of the i-th 
antecedent part is calculated by using the product operator: 

(3) 

Then, a consequence y is calculated by using the center 
of gravity method as follows: 

m m 
(4) 

It should be noted that there is another form for Eq.(4) 
in [2], that is, a fuzzy consequence is obtained without 
operating the center of gravity, so the denominator is 
omitted. We shall adopt the form of Eq.(4) throughout our 
discussions. 
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When a training input-output datum (xl,x2, , ,xn; y*)  is 
given for the fuzzy system model, it is well known to use 
the following objective function E for evaluating an error 
between y* and y, which can be regarded as an optimum 
problem: 

E = ( y * - y 1 2 / 2  ( 5 )  

where y *  is a desired output value, and y is a fuzzy 
inference result. 

In order to minimize the objective function E ,  a 
learning algorithm for updating the parameters uJi, bJI, and 
y, has been proposed in [2,3] based on the gradient descent 

where a, /3 and y are the learning rates that are the 
constants in the learning process, and t means the learning 
iteration. 

The main advantages of the above learning algorithm 
are that: the training data are fitted fast and well because 
each membership function depends on only one fuzzy rule, 
and the iterative formula is simple for the computation. 

However, as analyzed in the following, we shall point 
out some of problems on the learning algorithm of 

Property (1): According to the arrangement Eq.(l) 
and the algorithm Eqs. (6)-(8), we can prove easily that 
each membership function A,, Cj=1,2 ,..., n; i=1,2 ,..., m) 
exists in the fuzzy rule base independently, only 
corresponding to i-th fuzzy rule [8]. This means that, first, 
the fuzzy partitions for all of input variables must be 
same and equal to the number of the fuzzy rules, although 
each input variable may have different behaviors in the 
fuzzy system model potentially; second, for each 
membership function AJi, it is only used one time in the 
fuzzy rule base; third, for a multiple-inputs fuzzy system, 
the number of tuning parameters is great because of the 
equivalence of the fuzzy partition for each input variable 
and the number of the fuzzy rules. 

For example, for a fuzzy system model with 4 input 
variables and one output variable, if we assume that 100 

Eqs.(6)-( 8). 

fuzzy rules are necessary, then the number of fuzzy sets 
for each input variable is also 100. In this case, the 
number of tuning parameters can be calculated as: 100 (the 
number of membership functions for each input variable) 
x2 (the center and the width of the membership function) 
x4  (the number of input variables) +lo0 (the number of 
the consequent parts) = 900. Need less to say, expressing 
100 fuzzy sets by using linguistic variables for a fixed 
input variable is too hard. Obviously, these stronger 
restrictions for membership functions of antecedent parts 
are inconvenient for constructing a fuzzy system model in 
real-world applications. 

Property (2): Based on Property ( l) ,  the 
representation of the fuzzy rule base in the form of the 
fuzzy rule table used in usual fuzzy control and other fuzzy 
application fields becomes very difficult or impossible 
under the conventional method, in generally. 

For example, for a fuzzy system model with two 
variables X I ,  x2 and one output variable y, it is well 
known that the following representation of the fuzzy rule 
base in the form of the fuzzy rule table is a most common 
thing in fuzzy controls as shown in Figure 1 [4], where 
A I ,  (i=1,2,3,4) is a fuzzy set for X I ,  A2, (j=1,2,3) is a 
fuzzy set for x2, and Rk (k=1,2,..,12) denotes a fuzzy rule. 

From Figure 1, one can see that, first, the fuzzy 
partition for XI and the fuzzy partition for x2 may be 
different because of the behaviors of input variables; 
second, it allows that each membership function is used 
more than one time (for example, A l l r A 2 1  a R I ,  A l l ,  
A22 3 R 2 ,  etc.); third, the input space is covered by the 
fuzzy rules enough. 

x2 

A21 A22 A23 

Figure 1. Representation of fuzzy rule base in 
the form of the fuzzy rule table 

On the other hand, according to Property (l), the 
representation of the fuzzy rule base in the form of the 
fuzzy rule table by using the conventional method must 
be the following form as shown in Figure 2, if we assume 
9 fuzzy rules to be necessary for the fuzzy system model. 
Because the support of each Gaussian-type membership 
function is infinite, for any a (E [0,1 I), we can obtain all 
of a-cut sets, corresponding to the membership functions 
as shown in Figure 2. In this case, one can understand that 
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all of the agreements of antecedent parts will be h,  = 
AII(xI)A2,(x2) < a ( i = 1,2, ..., 9 ), if ( ~ 1 ~ x 2 )  is given in 
out of Ri ( i = 1,2 ,..., 9 ). Clearly, if a is enough small, 
the fuzzy inference rules are very weak for unknown data 
given in the blank places as shown in Figure 2. This 
shows that expressing fuzzy inference rules in the form of 
the fuzzy rule table is very hard or impossible. 

Figure 2 does not only restrict the fuzzy partition for 
each input variable, but also makes each fuzzy set to be 
only used one time in  the fuzzy rule base. Especially, 
since the input space can not be covered by the fuzzy rules 
enough, the case of weak-firing will occur when we input 
(xl,x2) to be out of R, (i=1,2, ..., 9) as shown in Figure 2. 

A l r  

a 
Figure 2. Representation of fuzzy rule base in 
the form of the fuzzy rule table under the con- 
ventional method 

Yrk 
...... y(r-l)k+l 

In Figure 2, for example, let an observation (xl,x2) be 
given as shown in the t, t, then one can see that no 
suitable fuzzy rule exists corresponding to ( ~ 1 ~ 2 ) .  In this 
case, all of grades A l i ( x l ) ,  Azi(x2) (i=1,2, ..., 9) can be 
calculated as follows: 

Ali(x1) 2 a, i = 7,8,9; A&l)  < a, otherwise; 

A2i(xI) 2 a, i = 2,3; Al i (x l )  < a, otherwise. 

Thus, all of agreements become hi  = A li(xl)A2i(n2) < a 
(i=1,2, ..., 9) to be very small if a is small enough, that 
is, there exists a weak-firing state. Clearly, the fuzzy 
consequence will be influenced when a weak-firing state 

Therefore, we can say that the conventional learning 
algorithm sometimes is not suitable to a multiple-input 
fuzzy system, or is inconvenient to construct a fuzzy rule 
base in a form of the fuzzy rule table because of the above 
problems. 

In order to improve above problems, we shall suggest a 
new learning algorithm for tuning fuzzy rules by using 
training input-output data, based on the gradient descent 
method. 

occurs. 

3. A new learning algorithm for tuning 
fuzzy rules 

For convenience, we ishall derive our new learning 
algorithm in which the fuzzy system model has only two 
input variables and one output variable. It is not difficult 
to extend our idea to the case of multiple input variables 
in the same way. 

First, like Eq.(2), the Gaussian-type membership 
functions A l i ,  A 2 j  (i=1,2 ,..., r; j=1,2 ,..., k) for input 
variables x1 and x2 are defined as follows [8]: 

Ali(x1) = exp(-(xl-ali)2/bli ) i=1,2, ..., r (9) 

A2,(x2) = exp(-(x2-~2,)”/62j ) j=1,2, ..., k ( IO)  

where r means the number of fuzzy partitions for XI, k 
means the number of fuzzy partitions for x2. Obviously, 
it allows the case of r # IC, which is different from the 
conventional method [4,5]. 

Then, we assume that a fuzzy rule base is defined based 
on all of the combinations of A l i  and A 2 j  ( i=l,  ..., r; 
j= l ,  ..., k), which is different from Eq.(l) as shown in 
Eq.( 11): 

Rule 1: ‘4Il,A2Zt =3 Y I  
A1 I ,  A22 - Y2 Rule 2: 

.......... 
Rule k: A 1  1, ‘421‘ 3 Yk 
Rule k+l: A12, A21 =3 Yk+i 

.......... 
Rule 2k: A129 A2k Y2k 

.......... (1 1) 
Rule (i-l)k+j: Al i ,  A2j + Y(i-l)k+j 

Rule rxk: 
.......... 

A l p  A2k * Yrxk 

where Y(i-l)k+, (i=1,2 ,..., r; j=1,2 ,..., k) is a real number on 
the output universe Y. 

Clearly, we can express the above fuzzy rule base 
Eq.(l 1) in the form of the fuzzy rule table as the same as 
Figure 2, which is shown in Table 1 [7,8]. 

Table 1. Fuzzy rule table for Eq.(ll) 

A21 A22 ... A2j ... A2k 

I I  .......... 
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According to the above assumption, when an 
observation (XI ,x2) is given, a fuzzy inference conclusion 
y can be obtained by using the simplified fuzzy reasoning 
method as follows: 

First, the agreement of A l I  and A 2 j  at (x 1 ,x2)  is 
calculated by using the product operator: 

h(i-l)k+j = Ali(xi)A2j(x2) i=1,2 ,..., r; J=1,2 ,..., k (12) 

Then, a consequence y is calculated by using the center 
of gravity method: 

r k  r k  

In order to minimize the objective function E (see 
Eq.(5)), a new learning algorithm for updating the 
parameters ali ,  bli,  a 2 j ,  b 2 j  and Y(i-l)k+j (i=1,2, ..., r; 
j=1,2, ..., k) is derived based on the gradient descent method 
as follows: 

=a&) + 

= U2j(t) + 
r k  

= b2j(t) + 
r k  

where a, p and yare the learning rates, and t means the 
learning iteration. 

Obviously, the iterative formulas Eqs.( 14)-( 18) derived 
under the assumption Eq.(l 1) are different from the 
iterative formulas Eqs.(6)-(8). The differences between the 
new method and the conventional method lead to that the 
problems of the conventional method analyzed in last 
section have been improved well by the new method, 
namely, first, the fuzzy partitions for each input variable 
is allowed to be different from other ones; second, a 
membership function can be used more than one time in 
the fuzzy rule base; third, the representation of the fuzzy 
rule base in Table 1 is never destroyed even after the 
learning process, so that the case of weak-firing can be 
avoided well by the new method, in general. 

For example, if we take r = 3, k = 4 in Eq.(9) and 
Eq.(lO), then by using the new method we get the 
representation of the fuzzy rule base in the form of the 
fuzzy rule table as shown in Figure 3 ,  corresponding to 
Figure 2. 

Unlike the conventional method, the fuzzy rules can 
tuned without changing the form of the fuzzy rule table by 

A21 A22 A23 A24 

a 

a 
epresentation of fuzzy rule base in 

the form of the fuzzy rule table un 
method 
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using the new method, the problems in the conventional 
method have been solved, and that, the expression of fuzzy 
rules is intuitive and convenient for a practical 
application. 

4. Numerical examples 

In the following, we apply our method to the 
following two nonlinear functions with two input 
variables and one output variable to compare it with the 
conventional learning algorithm for identifying and 
evaluating the problems, and show the efficiency of the 
new method. The two nonlinear functions are given as 
follows: 

Func.1: y = (2xl+4x2+0. 1)2 / 37.21 (19) 

Func.11: y = [4sin(ml)+2cos(m2)]/12 + 0.5 (20) 

where X I ,  x2 E [-1,1] are input variables, and y E [0,1] is a 
normalized output variable. 

First, we can arrange two kinds of initial fuzzy rules 
under the above two learning algorithms respectively, as 
shown in Table 2 and Table 3. 

In Table 2, there exist five membership functions for 
each input variable, where -1, -0.5, 0, 0.5 and 1 are the 
centers of the membership functions, b = 0.09 means a 
width of each membership function, and 0 denotes a real 
number of the consequent part. 

Table 2. Initial fuzzy rules under the new method 

On the other hand, for a fuzzy model with 25 fuzzy 
rules, the initial fuzzy rules must be given in the form of 
Table 3 under the conventional method, otherwise, a case 
of weak-firing will occur before the learning [SI. 

Then, 49 training data are employed for identifying 
Func.1 and Func.11, respectively. In our case, the learning 
rates are taken as a = 0.01, p = 0.05 and y=  0.65. Each 
method stops the learning process when the inference error 
D for identifying data is less than the threshold 6. In this 
case, 6 is taken as 0.005 for both Func.1 and Func.11. 
Here, D is defined as follows: 

were Y*d (d=1,2, ..., 49) is a desired output value, and yd is 
a fuzzy inference value. 

Table 3. Initial fuzzy rules under 
the conventional method - 

No 

1 
2 
3 
4 
5 
6 
7 
8 
9 

so 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 

- 

- 
Table 4. Comparison between the new method (B)  
and the conventional method (A)  for Func.1 

learning evaluation absolute error 
(A) ( B )  (A)  ( B )  (A)  ( B )  

63 515 0.0084 0.0037 0.8952 0.7710 
51 306 0.0069 0.005 0.9020 0.8180 
62 118 0.0020 0.0015 0.2350 0.1892 
89 783 0.0177 0.0117 0.9725 0.9022 
49 95 0.0009 0.0009 I 0.1558 0.1200 

Table 4 and Table 5 show the iteration of the learning 
for training data, the error of evaluation and the maximum 
absolute error for checking data for identifying Func.1 and 
Func.11 respectively, where (A) denotes the case of the 
conventional method and ( B )  means the case of the new 
method. Here, the error of evaluation denotes a mean 
square error for the checking data. In our case, 2601 
checking data (xl,x2) are employed from (-1,-I) to (l , l) ,  
equally. 
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Table 5. Comparison between the new method ( B )  
and the conventiona~ method ( A )  for Func.11 

1 

0.5 

0 
- 

(a) Fuzzy inference results by the conventional method 

(b) Fuzzy inference results by the new method 

(c) The desired output results 
Figure 4. Comparison between two kinds of fuzzy 
inference results 

0.5 

0 

(a) Fuzzy inference errors by the conventional method 

(b) Fuzzy inference errors by the new method 
Figure 5. Comparison between two kinds of fuzzy 
inference errors 

One can see from Table 4 and Table 5 that, the 
iteration of the learning by using the conventional 
algorithm is smaller than the new method, because each 
membership function is independent with others, so that, 
the training data is usual fitted fast. However, one should 
note a fact that the number of tuning parameters under the 
new method is smaller than the conventional method (in 
this case, the number of the new method is 45, the 
number of the conventional method is 125). The learning 
times of both methods are not so different. 

On the other hand, one can also see the rather finer 
evaluation for both Func.1 and Func.11 by the new method 
than the conventional method, according to Table 4 and 
Table 5. 

As an illustration, Figure 4 (a), (b) show the two fuzzy 
inference results for Func.11 using the fuzzy rule bases 
No.2  i n  Table 5 ,  which were generated by the 
conventional method and the new method, respectively, 
Figure 4 (c)  shows the corresponded desired output results 
for Func.11. Moreover, Figure 5 (a), (b) show the errors of 
evaluation corresponding to Figure 4 (a), (b), receptively. 

From Figure 4 and Figure 5, one can see that the new 
method has a good approximation. Since the input space 
is covered by the fuzzy rule base even after the learning 
process, so that, the fuzzy inference results are smooth. 

On the other hand, while the fitting for training data is 
often good under the conventional method, the input space 
can not be covered by the fuzzy rule base enough after the 
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learning process, so that the fitting for unknown data 
must be not always well. 

5. Conclusion 

We have suggested a new learning algorithm for tuning 
fuzzy rules, which is different from the conventional 
method. The best advantage of the new method is that the 
fuzzy rules can be tuned without changing the form of the 
fuzzy rule table, so that the case of weak-firing occurring 
in the conventional method can be avoided well. 

However, the speed of training data is sometimes fitted 
slow under the new method if the number of the fuzzy 
partitions is too small for each input variable, because of 
the dependency of the membership functions. Therefore, it 
should be considered to give suitable fuzzy partitions for a 
practical fuzzy system model. 
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