Learning Compact Visual Attributes for Large-scale Image Classification

Yu Su and Frédéric Jurie

Université de Caen Basse Normandie GREYC-CNRS UMR 6072

universite de Caen Basse-Normandie

Outline

- Motivation
- Method
- **Experiments**

Image Classification

Assign one or multiple labels to an image based on its semantic content.

Image Classification

Assign one or multiple labels to an image based on its semantic content.

Small scale datasets

- 15Scene (15 classes, ~5K images)
- PASCAL VOC (20 classes, ~10K images)
- Caltech101 (101 classes, ~8K images)

Large scale datasets

- SUN (397 classes, ~100K images)
- LSVRC (1K classes, ~1.2M images)
- ImageNet (10K classes, ~9M images)

Fisher Vector [Perronnin et al., ECCV'10]

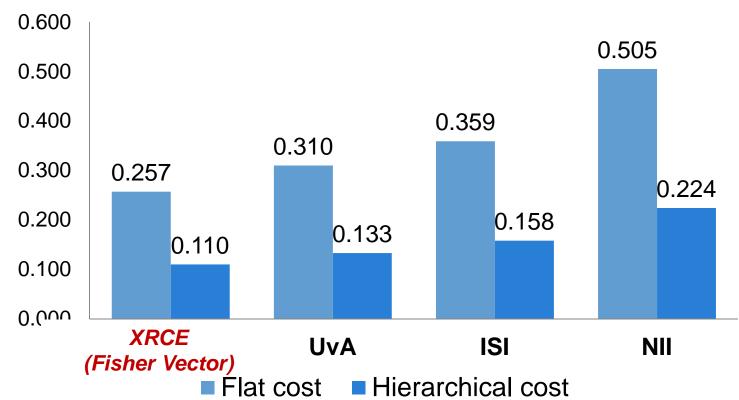
State-of-the-art image representation

	BoW	LLC	Super Vector	Fisher Vector
PASCAL VOC (20 classes)	56.1%	57.6%	58.2%	61.7%
SUN (397 classes)	27.9%	34.1%	35.5%	41.3%

- Bag of Words (BoW) [Sivic&Zisserman, ICCV'03]
- Locality-constrained Linear Coding (LLC) [Wang et al., CVPR'10]
- Super Vector [Zhou et al., ECCV'10]

Fisher Vector [Perronnin et al., ECCV'10]

State-of-the-art image representation

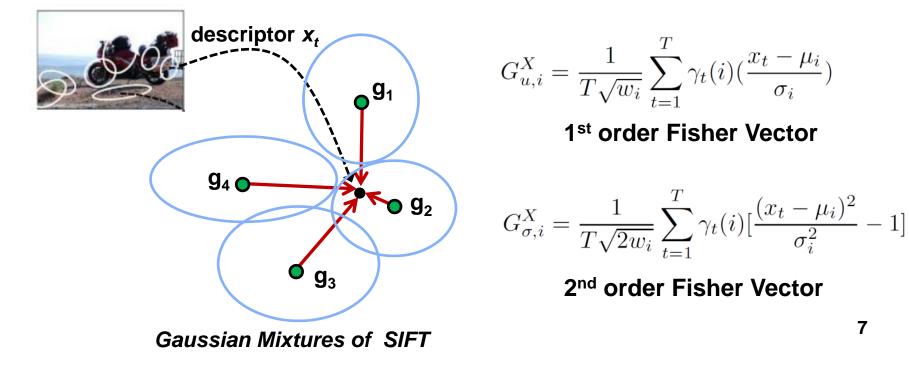


Large Scale Visual Recognition Challenge (LSVRC, 2011)

Fisher Vector [Perronnin et al., ECCV'10]

High dimensionality

- GMM with 256 components, SIFT reduced to 64-d by PCA
- Spatial pyramid: 1x1, 2x2, 3x1
- Fisher Vector: 256x64x2x8 = 262,144-d



Fisher Vector [Perronnin et al., ECCV'10]

High dimensionality

- **GMM** with 256 components, SIFT reduced to 64-d by PCA
- Spatial pyramid: 1x1, 2x2, 3x1
- □ Fisher Vector: 256x64x2x8 = 262,144-d

Compression

- Product Quantization (PQ)
- Locality-Sensitive Hashing (LSH)
- Principal Component Analysis (PCA)
- Visual Attributes (our work)

Visual Attributes

Lampert et al., CVPR'09

Unknown Has Wheel Has Wood

Farhadi et al., CVPR'09

harbor 0.64 water 0.37 ocean 0.26 blue 0.21 boat 0.20 triangle 0.22

Sailboat

Water Sky

Objects

Bear

Su and Jurie., IJCV'12

Response

- Compact image representation
- BUT need large amont of human efforts
 - Define attributes from expertise or ontology
 - Collect and annotate training images

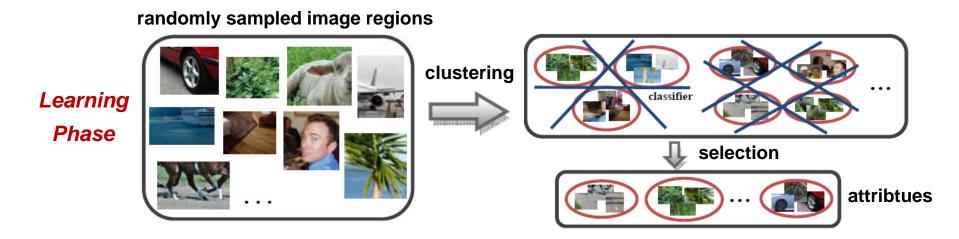
Outline

Motivation

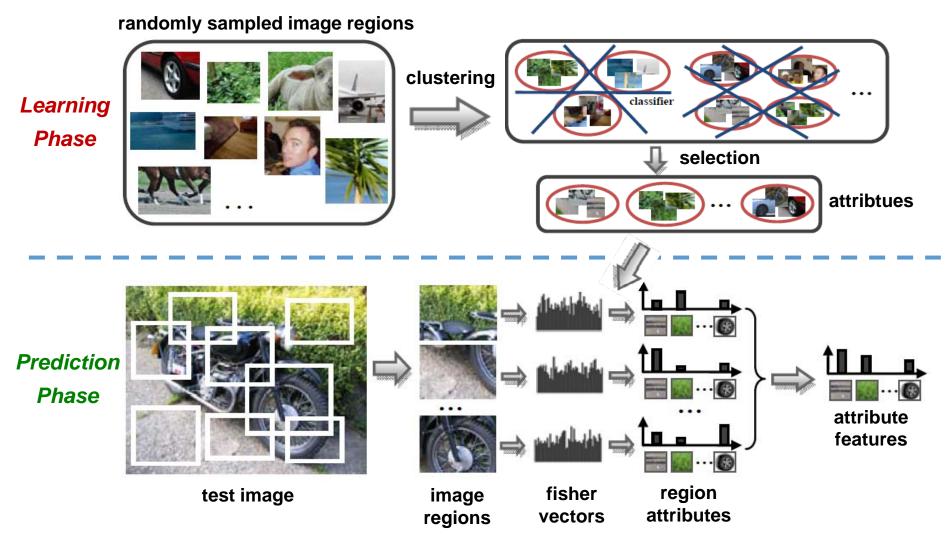
Method

Experiments

Overview – Region Attributes

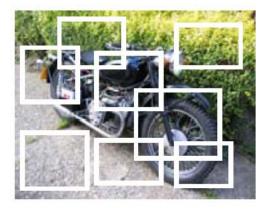


Overview – Region Attributes



Image/Region Representation

Generate image regions



VS.

Randomly sampling + simple, no paras - less meaningful

Image segmentation + semantic meaningful - many paras, slower

Fisher Vector

$$G_{u,i}^{X} = \frac{1}{T\sqrt{w_i}} \sum_{t=1}^{T} \gamma_t(i) \left(\frac{x_t - \mu_i}{\sigma_i}\right) \quad G_{\sigma,i}^{X} = \frac{1}{T\sqrt{2w_i}} \sum_{t=1}^{T} \gamma_t(i) \left[\frac{(x_t - \mu_i)^2}{\sigma_i^2} - 1\right]$$

Image/Region Clustering

- Spectral clustering
 - Suits for high-dimensional Fisher Vector (32,768-d)
 - Gaussian kernel as similarity measurement

$$s(f_i, f_j) = \exp(-||f_i - f_j||^2/2\sigma^2)$$

- Multi-level clustering
 - # of clusters: 50, 100, ..., 500 (totally 2750 clusters)
- Learn attribute (cluster) classifiers
 - SVM with linear kernel
 - One-vs-rest strategy

Generate Attribute Features

Classifier-based soft assignment

$$\Theta(f,a) = \frac{1}{1 + \exp(-\phi_a(f))}$$

 $\Theta(f, a)$: the probability that attribute **a** appears in image/region **f**

 $\phi_a(f) = w_a^T f + b_a$: linear classifier (SVM) of attribute a

Image attributes: $\Psi^g(I, a^g) = \Theta(f, a^g)$

Region attributes: $\Psi^{l}(I, a^{l}) = \frac{1}{R} \sum_{i=1}^{R} \Theta(f_{i}, a^{l})$

Compact Image Signature

Attribute selection

- Objective: compact set of attributes with low redundancy
- Algorithm: sequential greedy search [Peng et al, PAMI'05]

Compact Image Signature

Attribute selection

- Objective: compact set of attributes with low redundancy
- Algorithm: sequential greedy search [Peng et al, PAMI'05]

Binarization

 Locality-Sensitive Hashing: random projection and thresholding.

$$h_p(x) = \begin{cases} 1, & p^T x \ge 0\\ 0, & else \end{cases}$$

p : randomly generated projection.

Outline

- Motivation
- Proposed method
- **Experiments**

Examples of Learned Attributes

"horizontal structure"

"vertical structure"

"circular object"

"road/ground"

"group of persons"

"animal in the grass"

Databases

PASCAL VOC 2007 [Everingham et al., 2007]

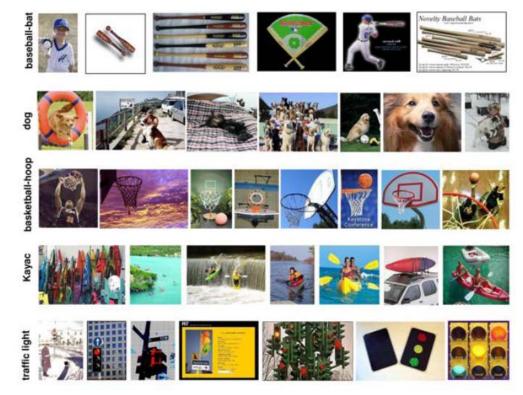
- 20 objects, 9963 images
- Binary classification
- Performance measure: mean Average Precision (mAP)

http://raweb.inria.fr/rapportsactivite/RA2007/lear/uid64.html

Databases

Caltech-256 [Griffin et al., CIT-TR, 2007]

- 256 objects, ~30K images
- Multi-class classification
- Performance measure: mean accuracy



Databases

- **SUN-397** [Xiao et al., CVPR'10]
 - 397 scenes, ~100K images
 - Multi-class classification
 - Performance measure: mean accuracy

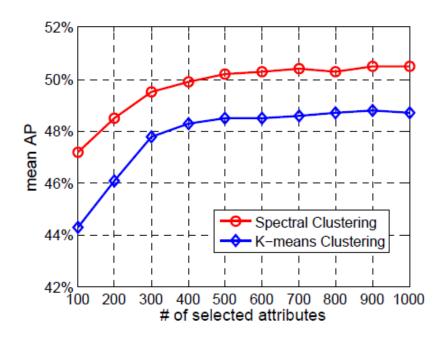
Implementation Details

- SIFT descriptor
 - Densely sampled, reduced to 64-d by PCA
- Fisher Vector
 - GMM with 256 components
 - Dimension: 256x64x2=32,768
- Image classification
 - SVM with linear kernel
 - λ is determined on PASCAL train/val set

Attribute learning (including clustering, feature selection etc.) is ONLY performed on PASCAL train/val set.

Learn & Predict Attribute

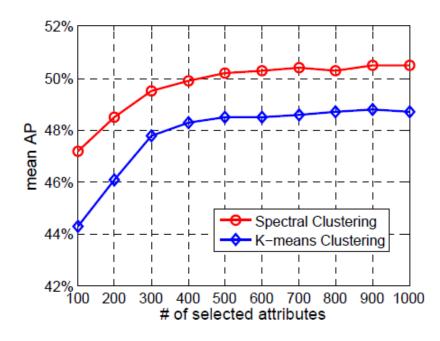
PASCAL VOC 2007 train/validation



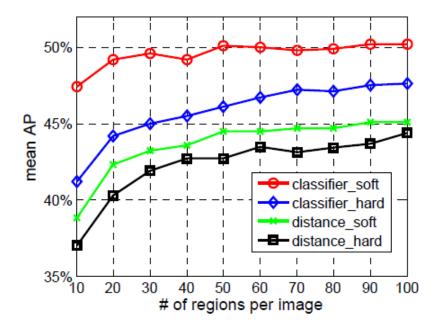
Spectral Clustering vs. K-means

Learn & Predict Attribute

PASCAL VOC 2007 train/validation

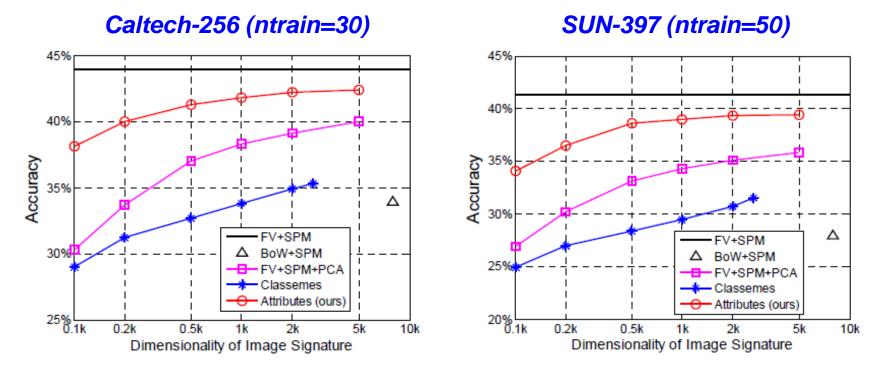


Spectral Clustering vs. K-means



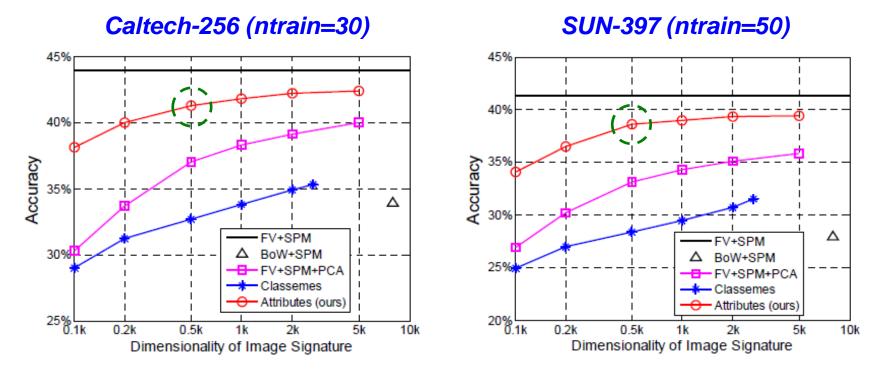
Different Encoding Methods

Real-valued Attribute Feature



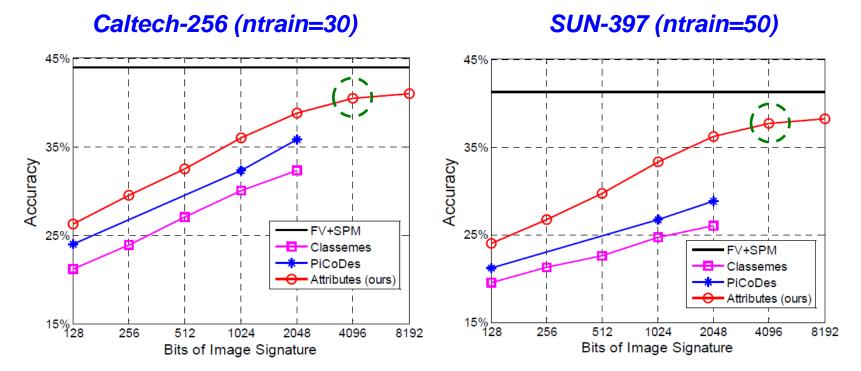
- FV with SPM (1x1, 2x2, 3x1) : 262,144-d
- FV+SPM+PCA: PCA is learnt on PASCAL VOC
- Classemes [Torresani, ECCV'10]: multiple low-level features
- Our method:
 - (1) 500 times more compact than FV+SPM with 3% performance loss
 - (2) better than PCA and Classemes

Real-valued Attribute Feature



- FV with SPM (1x1, 2x2, 3x1) : 262,144-d
- FV+SPM+PCA: PCA is learnt on PASCAL VOC
- Classemes [Torresani, ECCV'10]: multiple low-level features
- Our method:
 - (1) 500 times more compact than FV+SPM with 3% performance loss
 - (2) better than PCA and Classemes

Binary Attribute Feature



- FV+SPM: 262,144 x 4 bytes
- Classemes [Torresani, ECCV'10] : binarized by thresholding
- PiCoDes [Bergamo, NIPS'11]: optimizing an independent classification task
- Our method:
 - (1) 2048 times more compact than FV+SPM with 3% performance loss
 - (2) better than Classemes and PiCodes

Thanks for your attention !