

Learning Computer
Programming using

with

Examples

JAVA
101

Atiwong Suchato

LEARNING COMPUTER PROGRAMMING
USING JAVA WITH 101 EXAMPLES
Atiwong Suchato

1. Java (Computer program language).

005.133

ISBN 978-616-551-368-5

First Printing: July, 2011

All rights reserved. No part of this publication may be reproduced or
distributed in any forms or by any means without the prior written
consent of the author.

Published by

Department of Computer Engineering
Faculty of Engineering,
Chulalongkorn University
Phayathai, Bangkok, 10330
THAILAND
http://www.cp.eng.chula.ac.th

This book is a creation of the Knowledge Collection and Contribution
Initiatives by the Department of Computer Engineering, Chulalongkorn
University

To my parents, who have always committed
to providing the best education for me.

 I

Preface

Computer programming skills are currently must-have skills for every
university graduate in any fields of Science and Engineering. This book
is aimed to be a textbook suitable to be used in a first programming
course for university-level students. The primary goals of this book are to
introduce students to creating computer programs to solve problems
with high-level languages. Programming concepts appearing in modern
programming languages are presented through writing Java programs.
Java is selected as the language of choice due to its relatively simple
grammars. It is also a good choice for introducing students to the concept
of object-oriented programming which is one of the most popular
paradigms in the current days. Furthermore, Java is one of the most
widely-adopted programming languages by the industries.

This book is developed from the class notes that the author wrote for the
introductory computer programming course offered to students in the
International School of Engineering, Chulalongkorn University. The
writing style and the content organization of this book is designed to be
straight-forward. Details not crucial to understanding the main materials
presented in their related sections are usually omitted in order to relieve
the readers from worrying about having to know ‘too much’. References
for further readings will be given along the way.

The author hopes that this book would introduce readers to the joy of
creating computer programs and, with examples given in this book,
writing computer programs would appear to be more realizable,
especially for beginners with absolutely no programming background.

The source code used in all 101 examples, as well as possible list of errata,
can be found on the Facebook page of this book:

http://www.facebook.com/programming101

II

Typographical Conventions

The following typographical conventions are used in this book:

Italic
indicates new terms, class names, method names, and arithmetic
variables.

Bold constant width

indicates Java keywords, source codes, expressions used in their
related source codes.

About the Author

Dr. Atiwong Suchato is currently an assistant professor at the
department of Computer Engineering, Faculty of Engineering,
Chulalongkorn University. He earned his bachelor degree in Electrical
Engineering with the first-class honor from Chulalongkorn University
while being ranked in the 1st among the graduated class.

Dr. Suchato received the Anandamahidol foundation scholarship in 1997
to pursue his advanced degrees at Massachusetts Institute of Technology
(MIT). In 2004, he received his doctoral degree in Electrical Engineering
and Computer Science from MIT and joined the Department of
Computer Engineering, Faculty of Engineering, Chulalongkorn
University. Since then, Dr. Suchato has been teaching computer
programming courses to students in several programs including
programs in the International Engineering School (ISE), Chulalongkorn
University. He was appointed an assistant dean position overlooking the
Information Technology strategies and their implementation in 2008. He
was also a key member in the team that initiated the Information and
Communication Engineering (ICE) program for the faculty in 2005 as
well as the committee revising its curriculum in 2010.

His research interests are in the area of computerized speech and
language technologies and their applications to assistive technology.

 III

 Table of Contents

Chapter 1: Introduction to Computer Systems 1
Hello Computer, my dear friend!..1
Computers in Our Lives ...2
What Computers do..4
Hardware..6

Central Processing Unit ..6
Memory ..7
I/O Devices...8

Software ..9
Application Software Vs. System Software ...10
Operating System (OS)...11

Binary Representation of Data...11
The Power of Two ...12
Units of Measure..13
Problem Solving Using Computer Program..14

Exercise ..18
Chapter 2: Programming Concepts ...21

Programming Languages ...21
Running a Java Program...22
Typical Programming Cycle ..23
Preparing Java Computing Environment ..24

Getting the required software ...24
Letting Your OS Know Where to Find Java...25

Compiling and Running Java Programs ..27
Integrated Development Environment (IDE) ..28
Basic Program Structure in Java ..29
Syntax, Keywords, and Identifiers ..31
Comments...32
Be Neat and Organized...33
A First Look at Methods ...33
Escape Sequences...36
Variable at a Glance...37
Naming Rules and Styles..38
Statements and Expressions...40

IV

Simple Calculation...41
Representing Algorithms Using Flowcharts..42
Manual Input..44
Decisions and Iterations..45
Subroutines...49
More Shapes ...51

Exercise ..52
Chapter 3: Working with Data ... 55

Strong Data Typing ...55
Data Types in Java ...56
Primitive Data Type for Integers ...56
Primitive Types for Floating-Point Values...57
Primitive Type for Characters..58
Primitive Type for Logical Values...59
String ...59
Pointers..59
Assigning Data to Variables ...60
Final Variables..63
Un-initialized Variables ..64
Operators ..65
String and the addition operator (+) ...67
Math methods ..68
Precedence and Associativity...70

Exercise ..76
Chapter 4: More Issues on Data Manipulation 79

Numeric Data Type Specification..79
Data Type Conversion ..80
Automatic Type Conversion and Explicit Type Casting........................82
Expressions with Multiple Data Types...83
Limitation on Floating Point Computation..85
An Issue on Floating Point Value Comparison87
Overflow and Underflow ...87
Numbers Divided by Zero ...90
Compound Assignment..94
Increment and Decrement ..94

Exercise ..96

 V

Chapter 5: Using Objects ..101
Classes and Objects ...101
Using Data and Methods provided in Classes103
Useful String methods ..107

charAt() ..107
length() ...107
concat()...108
indexOf() ..109
lastIndexOf() ..110
startsWith() ...113
endsWith() ..113
trim()...113
substring()...114
toLowerCase() ..114
toUpperCase() ..114
valueOf() ..116

Reading Input String from Keyboards ...116
Converting Strings to numbers..118

parseInt() ..118
parseDouble() ...119

Useful Methods and Values in Class Integer and Class Double.........119
Reading Formatted Input using Scanner ...127

next() ..128
nextBoolean() ...130
nextByte()...130
nextDouble()...130
nextFloat() ..130
nextInt() ..130
nextLong() ..130
nextShort()..131
Exercise ..132

Chapter 6: Decisions ...137
Controlling the Flow of Your Program...137
‘If’ Construct...138
‘If-else’ Construct...142
Nested If..145
‘If-else-if’ Construct...148
Use Braces to Avoid Coding Confusions ...151
The ? : Operator ...152

VI

Equality Testing for Values of Primitive Data Types153
Safe Ways to Compare Floating Point Values155
Equality Testing for Non-Primitive Data Types....................................157
String Equality Testing..158

compareTo() ...159
‘Switch’ Constructs ..160
Common Instructions for Multiple Cases ..164

Exercise ..168
Chapter 7: Iterations ...173

Repetitive Execution..173
‘do-while’ Statement..173
‘while’ statement..174
‘for’ statement...182
‘break’ and ‘continue’..188
Nested Loops..191
Scope of Variables..194

Exercise ..197
Chapter 8: Methods ...203

Methods...203
Using a Method..205
Defining a Method...206
Multiple Return Statements..213
Local Variables ...214
Method Invocation Mechanism ...216
Passing by Value Vs. Passing by Reference ...222
Method Overloading...222

Exercise ..226
Chapter 9: Arrays ..233

Requirement for a List of Values ...233
One-dimensional Array ..235
Accessing Array Elements..237
Explicit Initialization ...240
Array Variable Assignment..241
Array Utilities...243
Arrays and Methods..245

Passing an array to a method ..245

 VII

Returning an array ..246
‘String [] args’ Demystified ...250
Sequential Search...251
Selection Sort ..254
Multi-dimensional Arrays..260
Initializer Lists for Multi-dimensional Arrays.......................................261

Exercise ..267
Chapter 10: Recursive Problem Solving.....................................275

Recursive Problem Solving ..275
Recursive Method Design ..278
Costs of Recursion ...282
Reducing Numbers of Method Calls ..283

Exercise ..290
Chapter 11: Creating Classes..295

Defining Your Own Data Type..295
Java Programs and Java Classes ..297
Components of Class Definitions ..297
Diagram for Class Descriptions...299
Instance Variables and their Access Levels..301
Object Composition...304
Static and Non-static Data Members ..306
Methods ..308
Discriminating data Members and Variables Declared inside Methods
..309
Accessor and Mutator Methods..310
toString() ...310
Putting main() into Class Definitions ...315
Constructors ...317
Overloading Constructors..318

No-argument Constructor ...318
Detailed Constructor...318
Copy Constructor..318

Calling a Constructor from Other Constructors....................................322
Exercise ..328

Chapter 12: Inheritance...337
Inheritance: Creating Subclasses from Superclasses.............................337

VIII

Designing Class Inheritance Hierarchy ..341
Access Levels and Subclasses...345
Keyword ‘super’ ..346
Polymorphism..349
Method Overriding..350
Instance Creation Mechanism..356

Exercise ..359
What are the Next Steps? ..363
References..365
Index ...367

 IX

List of Figures

Figure 1: ENIAC ..3
Figure 2: Different types of computers ...4
Figure 3: Conceptual diagram of how a computer works5
Figure 4: A 2GB DDR2 RAM with integrated heat sinks.7
Figure 5: Different types of secondary storages ..8
Figure 6: The Wiimote, a device capable of delivering many forms of

input and output such as button pressing, position and acceleration
of the device, lamp signals, vibration as well as audio output9

Figure 7: Relationships among users, application software, and system
software...10

Figure 8: Screenshots of some application software10
Figure 9: An example binary representation of 1-byte data11
Figure 10: An electrical circuit with a resistor connected in series with a

voltage source of 220 Volts. ..16
Figure 11: A screenshot showing the source code of a Java program17
Figure 12: Platform-independent architecture of Java language22
Figure 13: Typical cycle in Java programming..23
Figure 14: Sample search results for the keywords “jdk download”25
Figure 15: Windows in an MS Windows operating system for setting up

the system’s environment variables, including the system variable
called "Path" which is highlighted in the right window27

Figure 16: Compiling and running a Java program from the command
prompt...28

Figure 17: Blocks visualization in MyFirstProgram.java............................30
Figure 18: A Java program printing a Christmas tree35
Figure 19: Demonstration of using print() and println() with both String

and numeric input ...35
Figure 20: Demonstration of some usages of escape sequences................37
Figure 21: Declaration of variables..37
Figure 22: Assigning values to variables ..38
Figure 23: Declaring and assigning values to variables in single

statements ...38
Figure 24: Java expressions ..40
Figure 25: Java statements ..40
Figure 26: Invalid Java statements ..40

X

Figure 27: Symbols in a flowchart used for regular actions, starting points
and process termination..43

Figure 28: The flowchart of the AverageDemo program44
Figure 29: Symbol used in a flowchart for manual input...........................44
Figure 30: The flowchart of a program greeting a person whose name is

manually input via keyboard...45
Figure 31: Symbol used in a flowchart for decisions45
Figure 32: Flowchart of program calculating the absolute value of a

manually input integer value...46
Figure 33: Flowchart of program calculating the factorial of a manually-

input integer value...48
Figure 34: Symbols used in a flowchart for a subroutine...........................49
Figure 35: Flowchart of a program calculating a combinatorial function50
Figure 36: Some of other symbols used in a flowchart51
Figure 37: Flowchart of a program finding the biggest of the three

manually-input values ..52
Figure 38: A recipe for shrimp scampi bake ..54
Figure 39: Storing values into variables..61
Figure 40: Reassigning a String variable...61
Figure 41: Various variable declaration and assignment examples..........62
Figure 42: Invalid variable declarations and assignments62
Figure 43: Redundantly declaring variables ..62
Figure 44: Assigning a new value to a final variable64
Figure 45: Using an uninitialized variable ...65
Figure 46: Operating on int variables..66
Figure 47: Operating on boolean variables...66
Figure 48: String concatenation with + operator ...67
Figure 49: Using + operators with String and other data types68
Figure 50: Using + operators with String and other data types70
Figure 51: Order of operations in evaluating 4*2+20/4..............................72
Figure 52: Order of operations in evaluating 2+2==6-2+073
Figure 53: Order of operations in evaluating (x=3)==(x=+1-2)&&true....74
Figure 54: The source code of the Distance3d program75
Figure 55: The output of the Distance3d program76
Figure 56: A program demonstrating data type conversion......................81
Figure 57: Another program demonstrating data type conversion82
Figure 58: A Java program showing expressions with operands being of

multiple data types ..84

 XI

Figure 59: A demonstration of the fact that precisions are limited in the
floating-point calculation using computers ...86

Figure 60: Demonstration of several occurrences of overflow for int88
Figure 61: A Java program that results in the double-valued Infinity89
Figure 62: A demonstration of cases when underflow occurs90
Figure 63: A Java program that produces the divided-by-zero exception

..91
Figure 64: A Java program with expressions evaluated to the double-

valued Infinity, -Infinity and NaN..92
Figure 65: Compilation errors due to data type mismatch in the cases

when numbers are divided by zeros...93
Figure 66: A Java program demonstrating the difference between the

prefix and the postfix versions of the increment operator.................96
Figure 67: A classroom with 17 desks and 16 chairs.................................101
Figure 68: Declaration and assignment of a String object103
Figure 69: An abstract representation of the details of a class.................104
Figure 70: An abstract representation classes, objects, and methods

involving in System.out.print() and System.out.println()................105
Figure 71: A program calculating the area of a circle106
Figure 72: Demonstration of using charAt() and length()........................108
Figure 73: Demonstration of using concat()...109
Figure 74: Demonstration of using indexOf()..110
Figure 75: Demonstration of using lastIndexOf()......................................111
Figure 76: Finding Strings in another String..112
Figure 77: Demonstration of using lastIndexOf()......................................112
Figure 78: Demonstration of using trim(), startsWith(), and endsWith()

..114
Figure 79: Demonstration of using substring() with methods that find the

position of characters in String objects as well as toUppercase()....115
Figure 80: A program that reads two String inputs from the keyboard 118
Figure 81: A program that reads two String inputs from the keyboard 121
Figure 82: A program that reads two String inputs from the keyboard 122
Figure 83: The code listing of the FunnyEncoder program124
Figure 84: An output of the FunnyEncoder program...............................124
Figure 85: Decomposition of a vector F into Fx and Fy............................125
Figure 86: A program decomposing a force vector...................................126
Figure 87: The default pattern used by a Scanner object..........................128
Figure 88: Using Scanner to read String objects ..129

XII

Figure 89: Using Scanner to read String objects and double values132
Figure 90: Run-time errors from the FunnyEncoder program without

input validation..138
Figure 91: A flowchart associated with an if construct.............................139
Figure 92: A program showing the absolute value of the input..............140
Figure 93: A program showing inputs from the smaller to the larger....141
Figure 94: A flowchart associated with an if-else construct.....................142
Figure 95: A program that use an if-else construct to check for the bigger

input of the two inputs..143
Figure 96: A program that use an if-else construct to choose which

functions to be calculated ...144
Figure 97: A flowchart associated with a nested if construct145
Figure 98: An example nested if statement ..146
Figure 99: A flowchart representing a portion of a program...................147
Figure 100: A flowchart representing a portion of a program.................147
Figure 101: A program that prints out the comparison between two

inputs using an if-else-if construct ..149
Figure 102: FunnyEncoder with input length checking151
Figure 103: A program finding the absolute value of the input in which ?:

is used instead of the full if construct ...153
Figure 104: Demonstration of using == to compare values of primitive

data types..155
Figure 105: Demonstration of using == to compare values of primitive

data types..156
Figure 106: Demonstration showing compareTo() in action160
Figure 107: A flowchart representing a switch construct.........................161
Figure 108: A program printing whose number is determined using a

switch construct based on the keyboard input162
Figure 109: Demonstration of a program that the break statements are

intentionally omitted from the switch construct163
Figure 110: Demonstration of a program that the break statements are

intentionally omitted from the switch construct167
Figure 111: A program converting an integer in the decimal system to

binary, octal, or hexadecimal system ..167
Figure 112: A flowchart representing a do-while statement....................174
Figure 113: A flowchart representing a while statement..........................175
Figure 114: A program coded to run five iterations of statements using a

do-while loop ...176

 XIII

Figure 115: A program coded to run five iterations of statements using a
while loop ...177

Figure 116: A program that keeps prompting for input178
Figure 117: A program used to find the average of numbers..................179
Figure 118: A guessing game program...181
Figure 119: A flowchart representing a for statement182
Figure 120: A program calculating the average of input data where the

number of data point can be determined via keyboard185
Figure 121: A program that finds prime factors of an input integer186
Figure 122: A program calculating term values in a first-order recurrence

relation ..188
Figure 123: Demonstration of using the break statement189
Figure 124: Demonstration of using the continue statement which allows

the program to ignore statements in some certain iteration............190
Figure 125: An example of nested loops in action192
Figure 126: Another example of nested loops in action193
Figure 127: A compilation error caused by that a variable being declared

inside a for loop is used outside ..195
Figure 128: Another example of error caused by a variable’s scope195
Figure 129: A program finding all possible solutions to a2+b2+c2=200 ..197
Figure 130: Two vectors in the Cartesian coordinate................................209
Figure 131: A flowchart showing various subroutines used in the

VectorAngle program ...211
Figure 132: A program finding the angle between two vectors..............213
Figure 133: Compilation error due to usage of a variable declared inside

a method outside the method ..215
Figure 134: Illustration of variables when f() is invoked(Step1)217
Figure 135: Illustration of variables when f() is invoked (Step2)217
Figure 136: Illustration of variables when f() is invoked (Step3)218
Figure 137: Illustration of variables when f() is invoked (Step4)218
Figure 138: A program demonstrating variable name re-use..................219
Figure 139: A program that swaps values of two variables.....................220
Figure 140: An incorrect implementation of a method that swaps values

of its two input argument...221
Figure 141: A program demonstrating method overloading223
Figure 142: A program demonstrating method overloading including a

case where the input argument list is not entirely matched with any
overloaded methods..225

XIV

Figure 143: Compilation error due to unmatched overloaded methods226
Figure 144: Illustration of memory allocation when a variable is declared

and assigned with an array ..236
Figure 145: Illustration of accessing an array element..............................237
Figure 146: Demonstration of how array elements are accessed.............238
Figure 147: An improved version of a program counting digits.............239
Figure 148: Illustration of some usage of initializer lists241
Figure 149: Assigning a new array to a variable241
Figure 150: Assigning an array variable to another array variable.........243
Figure 151: Passing arrays as input to methods ..246
Figure 152: Generating an array with random integers247
Figure 153: Finding the minimum and the maximum values in an array

..248
Figure 154: A program summing numbers read from the command line

..251
Figure 155: The sequential search algorithm..252
Figure 156: Demonstration of the sequential search253
Figure 157: An example of performing the selection sort on an array.

Each traversal only traverses the portion of the array that is not
shaded. ..256

Figure 158: A program utilizing the selection sort to sort its inputs259
Figure 159: An array of arrays of int ...260
Figure 160: A three dimensional array of boolean261
Figure 161: Some outputs of a program finding powers of matrices266
Figure 162: Finding s(n)=s(n-1)+n where n=3 recursively276
Figure 163: Finding 4! recursively ...277
Figure 164: How variables change when the loop keeps iterating280
Figure 165: Finding Fibonacci numbers..281
Figure 166: Recursively invoking methods to find fibo(4).......................282
Figure 167: Comparison of invoking fibo() and fiboNew()......................285
Figure 168: The initial setting of the towers of Hanoi puzzle..................286
Figure 169: Solutions to the Towers of Hanoi puzzle289
Figure 170: A class diagram ...300
Figure 171: A diagram describing three objects...300
Figure 172: Accessing values of public instance variables303
Figure 173: Compilation errors due to attempts in accessing values of

private instance variables from outside if their class definition......304
Figure 174: A Polygon instance..305

 XV

Figure 175: Object composition ...306
Figure 176: Relationships among MyLabelledPolygon and the classes of

its data members..306
Figure 177: Demonstration of using static and non-static data member307
Figure 178: A diagram showing three objects of the C11A class and the

values of their instance and class variables..308
Figure 179: A program using various methods of the MyPoint class312
Figure 180: Using static methods inside a utility class315
Figure 181: A program creating instances of its own class316
Figure 182: Demonstration of using overloaded constructors320
Figure 183: Compilation error due to missing a constructor...................322
Figure 184: Re-using the detailed constructor ...323
Figure 185: A program testing a data type presenting complex numbers

..327
Figure 186: Creating and using a subclass without any additional data

members and methods..338
Figure 187: Diagram representing relationship between a subclass and its

superclass..339
Figure 188: Class inheritance diagram relating C12A, C12B, and C12C 340
Figure 189: Subclass with additional data members and methods341
Figure 190: Class inheritance hierarchy of quadrilateral342
Figure 191: A map with 5 5 tiles ...343
Figure 192: Relationships among GameMap, GameTile and Image344
Figure 193: A maze with 20 10 tiles..344
Figure 194: Relationships among GameMap, GameTile, Image,

GameMaze, and RestrictedGameTile ...345
Figure 195: Using the keyword super to identify variables of the

superclass..348
Figure 196: Demonstration of method overriding351
Figure 197: A program that makes use of late-binding............................356
Figure 198: Constructors invocation during instantiation of objects......358

 XVII

List of Tables

Table 1: Values of 2n ..13
Table 2: Powers of two and their abbreviation..13
Table 3: Escape sequences ..36
Table 4: Primitive data types in Java...56
Table 5: Some examples of characters with their corresponding unicode

encodings..58
Table 6: Description of logic operators ...66
Table 7: Precedence and associativity of some basic operators.................71
Table 8: Data type conversion table ..83
Table 9: Data types from expression evaluation ...85
Table 10: FunnyEncoder encoding scheme..123
Table 11: Examples of real-world objects together with their attributes

and behaviors ...298
Table 12: Summary of access levels (packages are ignored)....................346

 XIX

List of Examples

Example 1: How large is a giga byte? ...13
Example 2: Memory card capacity ..14
Example 3: An electrical resistive circuit problem......................................15
Example 4: Trivial printing samples ...34
Example 5: Tabulated output...36
Example 6: Simple calculation and adaptation ...41
Example 7: An algorithm to find absolute values.......................................46
Example 8: Factorial function algorithm ..47
Example 9: Combination function algorithm ..49
Example 10: An algorithm for finding the biggest of three inputs51
Example 11: Using + to concatenate multiple strings together67
Example 12: Mathematic methods ..70
Example 13: Applying rules on precedence and associativity (1).............71
Example 14: Applying rules on precedence and associativity (2).............72
Example 15: Applying rules on precedence and associativity (3).............73
Example 16: Applying rules on precedence and associativity (4).............74
Example 17: Distance in 3-D space..75
Example 18: Data type conversion ..80
Example 19: Resulting data type of an expression......................................83
Example 20: Oops! They are too big..88
Example 21: Once an infinity, always an infinity..89
Example 22: Too close to zero..89
Example 23: Dividing by zeros: Types matter. ..91
Example 24: An ‘infinity’ has its data type ..93
Example 25: Prefix-postfix frenzy ...95
Example 26: Area of a circle ...105
Example 27: Demonstration of String methods (1)107
Example 28: Demonstration of String methods (2)108
Example 29: Demonstration of String methods (3)110
Example 30: Demonstration of String methods (4)112
Example 31: Demonstration of String methods (5)113
Example 32: Demonstration of String methods (6)115
Example 33: Greeting the users by their names ..117
Example 34: Showing the binary representation of the input number ..120
Example 35: Selective substrings...121

XX

Example 36: Funny encoder ...122
Example 37: Vector decomposition ...124
Example 38: Reading one String at a time using Scanner128
Example 39: Reading formatted data input ...131
Example 40: Implementing an absolute value finder139
Example 41: Ad-hoc sorting of three inputs...140
Example 42: The bigger number..142
Example 43: Functions of x...144
Example 44: Nested conditions..146
Example 45: If neither one is bigger, they are equal149
Example 46: Funny encoder revisited...150
Example 47: The absolute value (again! but with short-handed

expression) ..153
Example 48: Equality testing ..154
Example 49: Floating-point value comparison ..155
Example 50: Comparing Strings with compareTo()..................................159
Example 51: Printing Stars..161
Example 52: Number base converter ..165
Example 53: Basic loops with while and do-while....................................175
Example 54: q for quit ...177
Example 55: Guessing a number ...179
Example 56: Averaging input numbers..184
Example 57: Prime factors ..185
Example 58: Recurrence relations..186
Example 59: The magic word...188
Example 60: The biggest digit in an alphanumeric String input.............190
Example 61: Nested loops...192
Example 62: Variable scope ..194
Example 63: All solutions to a2+b2+c2=200...196
Example 64: Introducing methods ..203
Example 65: Angle between two vectors..209
Example 66: Method’s local variables ...215
Example 67: Parameter passing and returning values216
Example 68: Different variables with the same identifiers.......................219
Example 69: Value swapping...220
Example 70: Overloaded number adding ..222
Example 71: How overloaded methods are selected225
Example 72: Accessing array elements ...237

 XXI

Example 73: Improved digit frequency counting......................................239
Example 74: Passing arrays to methods ...245
Example 75: Generating an array with random elements........................247
Example 76: Finding the maximum and the minimum array elements 248
Example 77: Command line summation utility...250
Example 78: Sequential search...253
Example 79: Selection sort ..258
Example 80: Lengths of multi-dimensional arrays263
Example 81: The nth power of a matrix...264
Example 82: Positive integer summation ...275
Example 83: Factorial function ..276
Example 84: Iterative to recursive ...278
Example 85: Fibonacci numbers ..280
Example 86: Fibonacci numbers revisited..283
Example 87: The towers of Hanoi..286
Example 88: A blank class ..296
Example 89: Points in the Cartesian coordinate ..302
Example 90: Static vs. non-static data members..307
Example 91: Accessor, mutator, toString() and other methods...............310
Example 92: Utility class with only static methods...................................313
Example 93: Executable class definition...316
Example 94: Overloaded constructors..319
Example 95: Missing no-argument constructor...321
Example 96: Complex numbers...324
Example 97: Designing classes for a map and a maze..............................343
Example 98: Using super ..347
Example 99: Overriding methods..350
Example 100: A book shop ...352
Example 101: Creation of inherited instances..357

 1

Chapter 1: Introduction to
Computer Systems

Objectives
Readers should
 Be familiar with computer components and understand their main

functionalities.
 Conceptually understand how data are represented in computers.
 Be able to conceptually explain how to solve problems using

computers.

Hello Computer, my dear friend!

A computer is a machine capable of automatically processing data
according to instruction lists given. Data processing includes, but not
limited to, carrying out arithmetic operations, comparing logical values,
as well as, transmitting, receiving and storing information. Data
processing tasks, no matter how long or complex they are, can be
performed with series of some simple commands, considered “native” to
the computers processing those data.

From day one until now, the so-called “native” commands are done
electronically in most computers. Many benefits we gain by using
computers as our tools to problem solving are due to the fact that
electronic devices can perform these commands in a very fast and
reliable fashion. Here are some examples of such benefits in normal
circumstances.

Computers work fast. Despite common complaints that sounds like “My
computer is slow”, it does work very fast! A computer can execute
billions commands in a second. Suppose we have golf balls that each of
them can be either white or black, how fast can you compare the colors of
one thousand pairs of golf balls and say how many pairs are different? A
computer can do it in one nanosecond.

2

Computers work consistently. No matter how many times a computer
performs the same job, the result is similar every time. (Telling a
computer to intentionally does something randomly dose not count!)

Computers remember a huge amount of stuffs. A large amount of data
can be written into computers’ memory. Hundreds of books can be
stored in and recalled back from a computer’s memory with ease.

Computers are loyal. Computers do and only do as instructed,
straightforwardly. If the instruction is right, the result is right.

Computers work hard. Computers do not complain about doing
repetitive tasks. It does not get bored as it happens with people.
Surprisingly, repetitive tasks are things that computers do all the time
and do well. Furthermore, computers can work continuously for very
long periods.

Despite all the good points, ones need to keep in mind that a computer is
just another invention of our planet earth. As of the current technological
advance, computer does not think by itself and it does not have human’s
common sense. What we can do with the help of computers are not
unlimited, but, trust me; they are more than enough in most cases.

To learn how to “instruct” computers using sets of instructions called
“programs” is the main focus of reading this book.

Computers in Our Lives

Although the word “computers” was originally used to refer to a person
who performs calculation, nowadays, when coming across the word,
ones usually picture machines or devices manufactured in some certain
different form factors. Core capabilities of these machines include
“automated calculation” and “programmability” with the former infers
that the machines can perform some pre-defined calculation procedures
automatically and the later infers that there are ways to schedule series
of operations that the machines are capable of. In computers’ early days,
the two capabilities of the machines were enabled using mechanical

 3

components while modern computers mainly rely on combinations of
electronic devices and mechanical parts. Advancements in many
technological fronts contribute to improved computer capabilities. The
“brain” of a computer was used to be a room filled with vacuum tubes
and large mechanical parts. It is now a package of wired electronic
devices with its size smaller than a matchbox due to advancements in
Semiconductor technologies. Paper-based punched cards were once used
to stored data which are represented by series of holes punched through
paper cards. Today’s data storages still more or less adopt such a concept
of data representation but with significantly reductions in time and space
requirements. For example, magnetic characteristics of a miniscule
region on the surface of a hard disk are manipulated instead of punching
a hole on a paper card. This allows data processing to be performed more
quickly and efficiently.

Figure 1 is a picture of the ENIAC, one of the first computers invented.
Its programmability is achieved by physically re-wiring its circuits.
Luckily for us who are now in the 21st century, computers are far more
powerful and, although their enabling technologies are complex, they are
far less complicate to use.

Figure 1: ENIAC
(This picture is a work of U.S. Army Photo and is available in the public domain.)

Today’s computers come in many different appearances, sizes, and
capabilities. Some are general-purposed computers, while some are
designed or pre-programmed for more specific tasks. Desktop and
notebook computers together with popularity-gaining “slate” or tablet

4

computers are probably among the most recognized forms of computers
in our everyday lives. However, do not ignore the fact that specific-
purposed computers embedded in appliances are far from rare. We
sometimes just do not notice one.

Figure 2: Different types of computers

What Computers do

Every form of computers has the same basic structures of operation.
First, they must have ways of taking input data into the systems. Data

Notebook computer
(picture from www.sonystyle.com)

Tablet computer
(picture from www.hp.no)

Portable game console
(picture from www.nintendo.com)

Smart mobile phone
(picture from www.apple.com)

Washing machine with embedded
computer

(picture from www.lg.com)

Desktop Computer
(picture from www.dell.com)

 5

supplied into computer systems could be in various forms such as
keystrokes, text messages, images, actions and etc. No matter which
forms they take, they will be converted into a uniform representation,
which will be discussed later in this chapter, and stored in the memory of
the systems. Then, computers process the data by reading from the
memory and placing the processed results back. Finally, they present
outputs to users or components outside their systems. During the
process, if computers need to store some data more permanently, they
can write those data into storages which are either integrated in the
systems or located externally outside their systems.

Figure 3: Conceptual diagram of how a computer works

Do computers need memory in order to process data? The answer is
“Yes, they do.” Memory is used for storing data either temporarily or
permanently in order to facilitate the desired data processing task. Let's

Processor

Memory

Input Output

1001 1110 1101 1111 1111 1000 1000 1011

data

data

d
ata

Storage

d
ata

6

take performing an Arithmetic calculation as our example of data
processing. Suppose that we are to compute the result of multiplying two
numbers by ourselves, manually. Before our brains can perform such
multiplication, somehow, we have to memorize the two numbers first. If
the numbers are too large or the multiplication is too complex, we might
have to jot them down on a piece of paper. Memorizing or writing down
those numbers is analogous to the computer placing data into its
memory waiting for the data to be processed. Furthermore, the steps or
sequences of actions required for executing the calculation must also be
registered in the memory so that they can be retrieved in order for the
computer to figure out what to do for achieving the calculation result,
which, once obtained, will be written into the memory too.

Electronic devices and mechanical parts of computers are called
hardware, while contents that instruct computers what to do are called
software. Information or messages that do not directly control computer
hardware are considered data.

Hardware

Computer hardware can be grouped into three groups according to their
functionalities. They are:

 Central Processing Unit (CPU)
 Memory
 Input/Output (I/O) device

Given a program, every components work together according to the
instructions in that program.

Central Processing Unit

Central Processing Unit (CPU) is responsible for execute given
instructions. It is the brain that does arithmetic and logic processing, as
well as control other hardware coordination. A CPU is typically a small
chip whose functionalities are done via the controlling of electric current
flowing through the miniscule integrated circuit inside the chip.

 7

Different generations and brands of CPUs differ in their architectures
and speed of operation. We often refer to different CPUs by their
commercial names, such as Intel Pentium M, Intel CoreTM 2 Duo,
Intel CoreTM i7, Intel AtomTM, Intel Itanium, AMD AthlonTM 64,
AMD OpteronTM, AMD PhenomTM, Sun UltraSPARC, PowerPC, and etc.

Each of most CPUs requires a clock signal that synchronizes the CPU’s
processes as well as other hardware devices. Generally, the faster the
clock signal, the more steps in the processes to be executed in certain
time intervals. Clock speeds are measured in the unit hertz (Hz). The
higher the clock speed, the more steps a CPU can perform in one second.

Memory

Memory is responsible for storing data and program. There are two
types of memory grouped by the purposed task for which that type of
memory is used. The first type is called main memory, which is a
temporary storage used for storing instructions and data currently in
use. This type of memory is usually more expensive but faster than the
other type of memory, called secondary storage. This type of storage is
used for storing data that is wished to be remembered permanently, or at
least, longer than the one stored in the main memory. Typically, such
data might be user’s data, for example document files, multimedia files,
and archived data etc. Secondary storages are slower but cheaper than
main memory.

Figure 4: A 2GB DDR2 RAM with integrated heat sinks.
(The picture was publicly distributed at http://commons.wikimedia.org by Victorrocha,

retrieved on Sept 13th, 2010)

8

Figure 5: Different types of secondary storages

Examples of main memory are various types of Random Access Memory
(RAM), while Floppy disks, Hard Disk Drives, Compact Disc (CD) such
as CD-ROM, CD-R, CD-RW, etc., Digital Video Disc (DVD) such as
DVD-ROM, DVD-R, DVD+R, DVD-RW, etc., and flash memory devices
belong to the secondary storage.

I/O Devices

I/O is abbreviated for Input/Output. Input devices are responsible for
taking data or information into computer systems. In contrary, output
devices are responsible for providing data or information to the outside
world. I/O devices can be used between computers and their users, as
well as among computer systems. Devices that can transmit data among
computer systems are also considered I/O devices.

Input into and output from computers can be of many forms. More
traditional forms of input information could be keystrokes made via
computer keyboards and movements of computer mice, while recent
trends in novel input forms come in the forms of multi-finger gestures
made on some input surfaces, live video input via web cameras, velocity
and acceleration measured by accelerometer embedded in input devices
of various forms, as well as voice commands spoken by human users. On
the output side of the story, nowadays output information are presented
to the users by many more means beyond graphical displays of
computer monitors or printed media made by printers. Information
encoded in rhythms of mechanical vibrations made on a device hold by
the users serves as an example belonging to this case. Considering a

Floppy disk Compact Disc Flash memory device

 9

device from its whole package, we usually can find devices that provide
both the input and the output.

Figure 6: The Wiimote, a device capable of delivering many forms of
input and output such as button pressing, position and acceleration of

the device, lamp signals, vibration as well as audio output
(The picture was publicly distributed at http://commons.wikimedia.org by Asmodia,

retrieved on September 15th, 2010. This file is licensed under the Creative Commons license.
(free to share and/or to remix))

Software

Software is a set of instructions that is used for controlling computer
hardware. Some software are designed to communicate directly with
computer hardware, while some other software are not, but they operate
on top of other software, such as operating systems (OS), that acts as
their delegates in communicating with hardware. Conceptually, the
relationship among users, application software, system software, and
hardware can be shown as in Figure 7. The users interact with computers
by having physical contacts with the hardware parts as well as consume
the output presented via the hardware. Application software normally
focuses on supporting users to accomplish the tasks they desire, while
system software takes care of providing environments of the computer
systems that are required for other applications to run as expected.

10

Figure 7: Relationships among users, application software, and system
software

Application Software Vs. System Software

Application software covers programs that help user in accomplishing
specific tasks such as word processors, web authoring tools, computer
games, and etc. System software usually covers programs that are not
directly intended to help accomplishing the user’s task but supports
other application software. System software could involve providing
needed functionality for application software, maintaining computer
systems so that they are in suitable condition, facilitating application
software with productivity-related services, or even building other
application software. Examples of system software are operating
systems, system tools (e.g. antivirus, archiving tools, disk defragmenter),
and software development tools (e.g. compilers, debuggers, integrated
development environment suites).

Figure 8: Screenshots of some application software

user

hardware

System software

Application software

Computer Hardware

Photo editing software Word processing software

 11

Operating System (OS)

An operating system (OS) is a system software that operates resources,
both hardware and software, of a computer. An OS usually pre-define
basic functionalities that are common to most applications and provide
such functionalities, such as file and device management, graphical user
interface rendering, and computer networking, to applications running
on that OS. This makes the development of application software easier
and faster. Examples of well-known OS’s include various versions of
Microsoft Windows, MacOS, and other Unix-based OS’s. In current
computing trends, OS’s designed for portable electronic devices are
gaining more influences. Some examples of these OS’s are variations of
the Andriod OS as well as the iphone OS.

Binary Representation of Data

In today's computer systems, places where data as well as programs can
be stored are manufactured in various ways. However, what is common
to most of them is the fact that, logically, they are designed to hold a long
sequence of "blocks" where each of the blocks, when ready, can be in
either one of two different states. We call each one of these blocks as a bit
and we usually refer to the two different states as the state '0' and the
state '1'. In other words, we say that each bit takes a binary value which
can be either 0 or 1. Different combinations of the binary values
associated with a bit sequence are used to represent different values
stored in the location corresponding to those bits. The amount of eight
bits is called one byte. The capacity of computer storage is measured in
numbers of bits or numbers of bytes.

Figure 9: An example binary representation of 1-byte data

In old days, these blocks were implemented using mechanical relays.
Today, they were implemented based on smaller (by several

1 0 0 1 1 1 0 1

12

magnitudes) devices utilizing electrical, optical, and other properties of
fabricated materials.

Different types of data, including but not limited to numerical data,
alphabetical data, and logical data, are represented in forms of sequences
of binary values using different encoding schemes. With a given
encoding scheme, a value can be converted correspondingly to its binary
representation and written into the memory. Unsurprisingly, with the
encoding scheme known, the binary values of a bit sequence can be read
from the memory and converted back to its original form.

For positive integer values, each value is stored in the memory using its
corresponding representation in base 2, E.g. the integer value ‘eleven
(11)’ in the decimal system (base 10) is stored in the memory as 10112. We
usually neglect the subscript 2 when it is obvious.

It is not within the scope of this book to cover encoding schemes for
various data types being used in computer systems.

The Power of Two

Since computers represent all data and instructions in binary formats, we
usually run into cases when the value of 2n, where n is a positive integer,
is needed. For example, we might want to calculate how many different
values can be stored in n bits of memory. Being familiar with the values
of 2n where n is a small positive integer can help us come up with
answers to some questions arising when we design our programs more
quickly. Adept programmers, computer scientists, and other computer-
related professionals use these numbers so often that they can naturally
tell their values without having to pause and calculate.

The following table lists the values of 2n from n being 0 to n being 11. It is
not much of a burden to memorize these values.

 13

n Values of 2n n Values of 2n
0 1 6 64
1 2 7 128
2 4 8 256
3 8 9 512
4 16 10 1024
5 32 11 2048

Table 1: Values of 2n

Units of Measure

When measuring capacity of computer storage, people add prefixes such
as kilo, mega, and giga in front of the byte unit to avoid explicitly using
large number. The commonly used prefixes, SI prefixes, are based on
powers of ten. For SI prefixes, kilo means one thousand (103), mega
means one million (106), giga means one billion (109), and tera means one
million millions (1012). Thus, the distance of 1 kilometer means 1,000
meters. However, in the computer industry, another type of prefixes
which are Binary prefixes are also used. In this latter system things are
counted using powers of two. The binary prefixes become as shown
below. E.g.: The capacity 1 Gigabyte (GB) equals to 1,073,741,824 bytes.

Binary Prefix Power of two Value
kilo (k) 210 1,024
mega (M) 220 1,048,576
giga (G) 230 1,073,741,824
tera (T) 240 1,099,511,627,776

Table 2: Binary prefixes

Example 1: How large is a giga byte?

Given that binary prefixes are used, how many kilobytes are there in 1
gigabyte?

14

There are 230 bytes in 1 Gigabyte and 1 kilobyte is 210 byte. Therefore,
there are 230/210 = 2(30-10) = 220 = 1,048,576 kilobytes in 1 gigabyte.

Example 2: Memory card capacity

Suppose that a digital camera invariably uses a space of 256kB to store an
image and it also reserves a space of 20kB per each memory card to store
some camera specific data. How many images can be stored on a blank
512MB memory card?

The remaining space of the card once the space required for the camera
specific information is deducted in kB is (512 210)-20 kB. Let n be the
number of images. Therefore, the maximum value of n is the largest
integer not exceeding

256
202

256
2022

256
20)2512(1110

10

.

Recall that 211 is 2,048, and we know that 20/256 is a positive value less
than 1. That makes 2,048 – 20/256 being 2,047 plus some fraction of 1.
Therefore, the maximum value of integer n in this case is 2047, or this
memory card can hold 2,047 images when using with this digital camera.

Problem Solving Using Computer Program

When you, as a novice programmer, would like to solve some problems
by writing a computer program to solve them, you should have a set of
steps about how to do it in your mind. Different people may take
different steps. Experienced programmers are likely to deliver programs
(which are not too big) out of pure intuitions. However, for those with
less experience, it does not hurt to follow some steps. Here, we introduce
the following steps when developing a computer program for some
problems.

 15

Problem defining: Make sure you understand the thing you want to
solve. You want to make sure that your efforts are spent in solving the
real problem. A clever solution for the wrong problem is a waste!

Analysis: Determine inputs, outputs, and relevant factors for the defined
problem.

Design: Describe the methods used for solving the defined problem.
Provide a detailed process required to be done in order to go from taking
the inputs to producing the outputs.

Implementation: Write the code corresponding to the design. You can
always go back to improve earlier steps so that the code can be written in
an efficient fashion.

Testing: Test the program whether it delivers the correct results. You
may need to prepare some test cases, in which you know the expected
outputs for a set of test inputs. If any outputs do not appear as expected,
go back to the analysis and design steps. Once you are sure that they are
done correctly, the problem is likely to be caused by ‘bugs’ in the code.
Never deliver your code without carefully testing it.

Let’s look at an example scenario that we will use it to walk through
these steps in creating a computer program that solves an electrical
circuit problem.

Example 3: An electrical resistive circuit problem

Suppose that we would like a way to quickly find the amount of current
flowing through the circuits shown below in Figure 10, in which the
voltage source is fixed at 220 Volts while the amount of the resistance in
the circuit could be set to any positive value in Ohms.

16

Figure 10: An electrical circuit with a resistor connected in series with a
voltage source of 220 Volts.

Problem defining: A program that calculates the amount of current in the
circuit with a voltage source of 220 Volts is connected in series with a
resistor whose resistance value will be defined at run-time, i.e. when the
program runs each time.

Analysis: Since the value of the resistance needs to be defined each time
the program runs, that value should be the input to the program. Let’s
decide that the input must be typed in correctly by the user of the
program via keyboards once prompted by the program. From the
problem definition, the output will be the corresponding amount of
current flows in the circuit. We will have the program show it on screen.
Another relevant factor is the amount of the voltage supplied by the
voltage source. This is always 220 Volts.

Design: From what we have learned from Circuit theory (or at least from
what I am about to tell you now), to obtain the output which is the
amount of current in Ampere, i, flowing through a resistance of r Ohms
connected in series with a 220V voltage source, we rely on the equation: i
= 220/r. Therefore, once the input value r is obtained, the program must
calculate the value of 220/r and show the result on screen.

Implementation: The source code of a Java program that is capable of
doing what are described above looks like the one in Figure 11. How to
come up with such a program (as well as more complicated Java
programs) is the main focus of the rest of this book.

220V

r

i

 17

Figure 11: A screenshot showing the source code of a Java program

Testing: Once the program is written. We have to compile and run the
program with a reasonable amount of test cases to ensure that the
program does not contain any bugs which are error caused by the
program. If there are bugs in the program, we re-consider our design and
implementation and correct them. This process of correcting error is
called debugging.

Methodologies used in precisely testing a program are beyond the scope
of this book. Interested readers should learn further in additional
readings such as [Pre2010] and [Mcc2009]

In this book, we will follow the problem solving steps presented here in
some examples that the steps are not trivial. In others, we will mainly

18

focus on the details of the programs which are the deliverables of the
implementation step. Discussion will be made based on every source
code and relevant information presented in all examples.

Exercise

1. For each of the following fields, give an example of how
computer can be used to assist human’s job. (Be creative!)

 Automobile manufacturing
 Education
 Healthcare
 Homeland security
 News agency
 Retail business

2. Which part(s) of a computer that you think its/their
functionalities are the closest to human’s brains?

3. How is the speed of a CPU measured?

4. Name two devices that can act as both input and output devices.

5. How many bits are required to store the decimal value 5,000?

6. A computer has 512MB RAM. How many bits can be stored at
once in its RAM?

7. How many Megabytes are there in a Gigabyte?

8. Argue whether each of the following software is application
software or system software.

 Antivirus
 Games
 Calculator
 Instant messenger
 Java runtime environment
 Operating system

9. Describe in brief what the following applications do.

 Web browser
 Word processor

 19

 Media player
 Instant messaging program

10. Analyze and design a computer program that find the average of
5 numbers entered by the user of the program.

11. Suppose you are to write a currency converter program that can
convert the amount money among Baht, US Dollar, and Euro.
Describe how you would analyze the problem and design the
program to be written.

 21

Chapter 2: Programming
Concepts

Objectives
Readers should
 Know the steps required to create programs using a programming

language and related terminology.
 Be familiar with the basic structure of a Java program.
 Be able to modify simple Java program to obtain desired results.
 Be able to use flowcharts to describe program processes.

Programming Languages

A program is a set of instructions that tell a computer what to do.

We execute a program to carry out the instruction listed by that program.

Instructions are described using programming languages.

High-level programming languages are programming languages that are
rather natural for people to write. Examples of high-level programming
languages include Java, C, C++, C#, Objective-C, Visual Basic, Pascal,
Delphi, FORTRAN, and COBOL. Still, these names are just a small
fraction of high-level programming languages available nowadays for
the general public to use.

The most primitive type of programming language is a machine language
or object code. Object code is a set of binary code that is unique to the type
of CPU. Each instruction of the object code corresponds to a fundamental
operation of the CPU. That means it usually requires many object code
instructions to do what can be done in one line of high-level language
code. Writing object code directly is tedious and error-prone.

22

High-level language code does not get executed on a computer directly.
It needs to be translated from the high-level language to suitable
machine language first. Such a translator program is normally referred to
as a compiler.

The input of a compiler is referred to as source code. Source code is
compiled by a compiler to obtain target code.

Running a Java Program

Unlike other programming languages, compiling Java source code does
not result in a machine language program. Instead, when Java source
code is compiled, we get what is called Java bytecode. Java bytecode is a
form of machine language instructions. However, it is not primitive to
the CPU. Java bytecode runs on a program that mimics itself as a real
machine. This program is called the Java Virtual Machine (JVM) or Java
Run-time Environment (JRE).

This architecture makes Java bytecode runs on any machines that have
JVM, independent of the OSs and CPUs. This means the effort in writing
Java source code for a certain program is spent once and the target
program can run on any platforms. (E.g. Windows, MacOS, Unix, etc.)

Figure 12: Platform-independent architecture of Java language

OS

Machine

JVM
Java programs

Java programs

 23

Typical Programming Cycle

During the implementation of a program, programmers always run into
a typical cycle, shown in Figure 13.

Figure 13: Typical cycle in Java programming

It normally starts with the coding step, in which the source code is
written in any text editors or integrated programming environment. In
Java, source code files are usually saved with .java extension. Once the
Java source code is saved, it is compiled using a java compiler, such as
javac.exe, to obtain the resulting Java bytecode, which is also called a Java
class. The actual Java class file is created with .class extension. Then, the
program is executed by running the command ‘java.exe’ on the class file.
If the result appears as expected, the cycle terminates. Otherwise, the
source code has to be edited, then compiled and executed again. The
process of fixing the source code in order to obtain the right result is
called ‘debugging’.

edit run compile

source code Java bytecode Java application

debug

If there are errors

24

Preparing Java Computing Environment

Getting the required software

A necessary step before ones can write computer programs to help solve
some problems is to prepare the required computing environment. Once
a programmer decides that he or she will use a specific programming
language (or an application development framework) to create computer
programs, certain sets of software needs to be installed. For a high-level
programming language, these usually include a text editor, which lets
programmers type in the instructions of the programs and save into a
text file, and a software that can change that text file into a file filled with
binary representations that can be understood by the operating systems
of the computer, upon which the programs are aimed to be run. Since the
platform-independent nature of Java relies on the fact that the Java
Virtual Machine (JVM) must be there to nullify the differences among
different operating systems, there is another piece of software that must
be installed on the machine apart from the two already mentioned.

Any text editors in the market would work for writing Java programs.
For beginners learning Java as their first programming language, a
simple text editor would suffice. In fact, beginners are encouraged to use
a really simple text editor such as notepad for their first few programs
rather than using a sophisticated Java-enabled editor that automatically
creates some mundane parts of Java code. Getting your hands dirty by
actually typing in every characters required in the Java code should help
you learn Java programming more profoundly, especially once different
parts of the Java code are demystified later on in this book.

Apart from the text editor which ones can choose according to their
preferences, probably, the easiest way to obtain the rest of the required
software is to download and install the Java Development Kit (JDK) from
the official Java website. Due to the quickly changing nature of computer
business, the website's specific URL might be changed over years. The
trick in finding it is to simply perform a search for "JDK download" on a
search engine.

 25

Figure 14: Sample search results for the keywords “jdk download”

The Java platform has many editions offered to be downloaded and
installed such as Java SE, Java Embedded, Java EE, Java ME, and etc. For
general purpose Java programs, Java SE (Java Platform, Standard
Edition) would be the most suitable one.

The JDK package contains many things useful for developing a Java
program as well as the Java Runtime Environment (JRE) that is needed
for running any Java programs developed by anyone. When JDK is
installed on a machine, it also installs JRE too. Note that for ordinary
users that may wish to just run a Java program, they only need to install
JRE.

Letting Your OS Know Where to Find Java

One way to compile the source code of a Java program and to run the
compiled Java bytecode on JVM is to execute certain programs from the
command prompt of the computer's operating system. The Java compiler
is the program file with the name javac.exe, and the Java interpreter,
which is the program to be called when executing any compiled Java
bytecode, is the program file with the name java.exe. The former one can
be founded in a subdirectory called bin (short for binaries) of the folder

26

that JDK is installed, while the latter one is in the bin subdirectory of the
folder that JRE is installed.

How to open the command prompt differs among different operating
systems. In MS Windows, the command prompt can be found from the
start menu, while in MacOS as well as other Linux-based operating
systems, the command prompt are basically the Terminal program.

For the purpose of learning and practicing writing Java programs, we
usually save our source codes and run the corresponding programs in
directories different from the ones that JDK and JRE get installed. We
generally want to call javac.exe and java.exe directly from the directories
that the source codes are saved, or in other words, the directories in
which we are currently working and avoid providing the full path to
both javac.exe and java.exe each and every time we need to compile and
run Java programs. Therefore, in order to do that, we need to let the
operating system know where to look for programs that are called from
the command prompt and cannot be found in the current working
directory.

Readers should consult manuals of their operating systems of how to set
the paths that they should look inside for unfound programs. For MS
Windows, these paths can be registered by setting the environment
variable called path to include the paths to the bin subdirectories of both
the JDK and the JRE folders.

 27

Figure 15: Windows in an MS Windows operating system for setting
up the system’s environment variables, including the system variable

called "Path" which is highlighted in the right window

Compiling and Running Java Programs

To compile a Java source code, the javac.exe program could be called
from the command prompt. The syntax used here is:

javac [Sample.java]

where [Sample.java] should be replaced with the filename of the Java
source code to be compiled. Programmers should always be aware of the
cases (uppercases or lowercases) of each letters used in the filename and
be precise about them. Although in some operating systems, including
MS Windows, the cases of every character are ignored. Uppercase and
lowercase characters are considered different in some systems. If the
latter is the case, it would make the file whose name is Sample.java

28

different from the file named sample.java and also different from
Sample.Java.

To run or execute the compiled Java program, we call the java.exe
program using:

java [Sample]

where [Sample] should be replaced with the program name which is
identical to the name of your source code without its extension (without
.java). Note that, at the execution time, the file that is actually needed is
the compiled bytecode which is named with the name of the original
source code but with .class extension. Figure 16 shows a screenshot of a
command prompt in an MS Windows operating system when a Java
program called is compiled by javac.exe and run by java.exe respectively.
Note that the sign “>” appearing on screen is part of the command
prompt.

Figure 16: Compiling and running a Java program from the command
prompt

Integrated Development Environment (IDE)
An Integrated Development Environment (IDE) is a program that
facilitates steps in computer program development. An IDE usually
provides all functionalities a programmer would need in developing a
computer program. It usually consists of:

 29

 a built-in source code editor that highlights and colors texts
according to the keywords and syntactic constraints of chosen
programming languages,

 compilers and related tools of chosen programming langauges as
well as user interfaces for using them, including but not limited
to a console showing output and related messages,

 and a debugging tools facilitating users in debugging programs
with functionalities such as stepping through each instruction
and variable monitoring.

There are many IDEs that support Java and can be downloaded and used
for free. Some among the most popular ones are Eclipse
(http://www.eclipse.org) and NetBeans IDE (http://www.
netbeans.org). Some guides to using these IDEs can be found in
[Bur2005] and [Dan2004] for Eclipse and [Mya2008] for NetBeans.

Basic Program Structure in Java

Let’s look at a source code named MyFirstProgram.java below. Note that
the number at the end of each line indicates line number. They are not
part of the source code.

public class MyFirstProgram 1
{ 2
 //This program just shows message on a console. 3
 public static void main(String [] args) 4
 { 5
 System.out.print("Hello World!"); 6
 } 7
} 8

When compiled, this program shows the message “Hello World!” on
screen. Now we will investigate the structure of this Java source code in
order to get familiar with the basic structure.

First of all, we can observe that there are two pairs of curly brackets {}.
The opening curly bracket on line 2 and the closing curly bracket on the

30

last line make a pair. The ones on line 5 and line 7 make another pair
locating inside the first one. Here, we will refer to the content between a
pair of curly brackets together with its associated header, i.e. public
class MyFirstProgram for the outer pair or public static void

main(String [] args)for the inner pair, as a block. The idea of looking at
the program structure as blocks can be illustrated in
Figure 17.

public class MyFirstProgram 1
{ 2
 //This program just shows message on a console. 3
 public static void main(String [] args) 4
 { 5
 System.out.print("Hello World!"); 6
 } 7
} 8

Figure 17: Blocks visualization in MyFirstProgram.java

Block 1 is the definition of the program. Block 2 is a part of the definition
which is called the main() method. The symbol // is used for indicating
that any texts after that until the end of the line are comments, which are
ignored by the compiler. They are just there for programmers to make
notes for themselves or other people reading their source code. Thus, we
can say that the definition of this program consists of a comment on line
3 and the main() method from line 4 to 7.

The main() method is the program’s entry point. A program is executed
following the commands listed in its main(), starting from the top. From
this example, when the program is executed, it is the statement on line 6
that prints the message “Hello World!” (without double quotes) on
screen.

 In Java, what we do all the time is creating what are called classes. In this
MyFirstProgram.java source code, we create a class named
MyFirstProgram. Each class that is created in Java can have one or more
methods, which are units of code that perform some action. They can be
generally thought of as subprograms which appear in the forms of
functions, procedures, or subroutines in other programming languages. A

Block 1

Block 2

 31

class whose definition contains the main() method can be executed, or, in
other words, is a program. Classes that do not have the main() method
cannot be executed. They are there for other program to use.

Now that you have heard about the term class, Block 1 in the above
example is called the class definition of the class named MyFirstProgram,
which is a Java program since it has the main() method. The statement
public class MyFirstProgram indicates the starting of the class definition,
while the statement public static void main(String [] args)explains
how the method named main() should be used. We will go into details
about these later.

Note that Java requires the source code to be saved using the same name
as the class contained in the file (with the extension .java).

Below is an example of a Java program that is perfectly correct but seems
to do nothing at all.

public class MyFirstProgram 1
{ 2
 public static void main(String [] args) 3
 { 4
 } 5
} 6

Syntax, Keywords, and Identifiers

Writing program in Java, or other computer programming languages, is
like writing in any human spoken language but a lot more formal. When
constructing a sentence in a human language, we need to follow its
grammar. Programming languages also have syntax or rules of the
language and they have to be followed strictly.

Keywords are words that are reserved for particular purposes. They have
special meanings and cannot be changed or used for other purposes. For
example, from the class definition header in the last example, public
class MyFirstProgram , the word public and class are keywords. Thus,

32

both words cannot be used in Java programs for naming classes,
methods, or variables.

Identifiers are names that programmers give to classes, methods, and
variables. There are certain rules and styles for Java naming, which we
will discussed in details later in this book. For the previous example,
public class MyFirstProgram, the word MyFirstProgram is a Java
identifier selected as the name of the class.

Note that Java is a case-sensitive language. Uppercase and lowercase
letters are not considered the same. Java keywords are only consisted of
lowercase letters.

Comments

It is a good practice to always add meaningful comments into the source
code. There are two ways of commenting in Java source code. The first
way is called single line commenting. It is done by using double slashes //
as shown previously. Any texts between and including // and the end of
the line are ignored by the compiler.

The second way is called block commenting. In contrary to the first way,
this can make comment span more than one line. Any texts that are
enclosed by a pair of the symbol /* and */ are ignored by the compiler,
no matter how many lines there are.

The following program, MyCommentedProgram.java, yields the same
result as MyFirstProgram.java. Lighter texts are the parts commented
out.

// An example of how to add comments 1
 2
public class MyCommentedProgram 3
{ 4
 //Program starting point 5
 public static void main(String [] args) 6
 { 7
 System.out.print("Hello World!"); 8
 //This part of code is commented out. 9
 /* 10
 System.out.print("Hello again."); 11
 System.out.println(); 12
 */ 13
 }//end of main() 14
}// end of class 15

 33

Be Neat and Organized

Whitespace characters between various elements of the program are
ignored during the compilation. Together with comments, good
programmers use space, new line, and indentation to make their
program more readable.

Observe the differences between the following two source code listings.

public class ExampleClass{
public static void main(String [] args){
 double x=5;double z,y=2;z=x+y;
System.out.println(z);
}}

public class ExampleClass
{
 public static void main(String [] args)
 {
 double x=5;
 double z,y=2;
 z=x+y;
 System.out.println(z);
 }
}

Both perform exactly the same task. Still, it is obvious that the bottom
one is easier to read and follow. Indentation is used in the bottom one, so
that the lines in the same block have the same indentation. And, the
indentation increases in deeper blocks. Curly brackets are aligned so that
the pairing is clear. Also, the programmer tries to avoid multiple
operations on the same line.

A First Look at Methods

Just a reminder, we mentioned that methods are units of code that
perform some actions. Here, without going too deep into the details, we
will take a look at two frequently-used methods. They are the method
print() and println().

34

You might notice that when we talk about methods, there is always a
pair of parentheses () involved. It is not wrong to say that when you see
an identifier with a pair of trailing parentheses, you can tell right away
that it is a method name. When invoking a method, we put arguments
that are required for the action of that method inside its associated pair
of parentheses. What to put in there and in which order are defined
when the method is made. Right now, we will not pay attention to the
making of new methods just yet.

The method print() and println() are methods that print some messages
onto the screen. They are defined in a standard Java class called System.
When we say standard, it means that we can just use them and the
compiler will know where to look for definitions of those standard
methods. The print() and println() method are invoked by using:

System.out.print(<message you want to print>);
System.out.println(<message you want to print>);

If you want to show a string of character on screen, replace <message you
want to print> with that string of characters enclosed in double quotes.
If you replace <message you want to print> with a numeric value
without double quotes, both methods will show the number associated
with that numerical value. The different between the two methods is that
method println() makes the screen cursor enter the next line before
executing other instructions.

Example 4: Trivial printing samples

public class PrintDemo
{
 public static void main(String [] args)
 {
 System.out.println("");
 System.out.println(" X");
 System.out.println(" * *");
 System.out.println(" * *");
 System.out.println(" * o *");
 System.out.println(" * v *");
 System.out.println(" * v *");
 System.out.println(" * o *");
 System.out.println(" ***********");
 System.out.println(" ___|_|___");
 }
}

 35

Figure 18: A Java program printing a Christmas tree

The PrintDemo program simply shows a simple Java program that
invokes println() many times in order to print some patterns on screen
line by line.

Here is another example program.

public class PrintDemo2 1
{ 2
 public static void main(String [] args) 3
 { 4
 System.out.print(" "); 5
 System.out.println(299); 6
 System.out.println("+ 800"); 7
 System.out.println("-------------"); 8
 System.out.print(" "); 9
 System.out.println(299+800); 10
 System.out.println("============="); 11
 } 12
} 13

Figure 19: Demonstration of using print() and println() with both
String and numeric input

36

In the PrintDemo2 program, you should notice that different types of
value are used as inputs for the print() and println() methods. A sequence
of characters enclosed by double quotes is called a string. Strings (which
will be discussed later in this book that they are objects of a class called
String) are used as inputs on lines 5, 7, 8, 9, and 11. On lines 6 and 10,
numeric values are used as inputs to the println() method.

Escape Sequences

An escape sequence is a special character sequence that represents
another character. Each of these special character sequences starts with a
backslash, which is followed by another character. Escape sequences are
used to represent characters that cannot be used directly in a string
(double quoted message). Some escape sequences are listed in the table
below.

Escape
sequence

Represented
character

Escape
sequence

Represented
character

\b Backspace \\ Backslash
\n Newline \" Double quote
\t Tab \' Single quote
\r Carriage return

Table 3: Escape sequences

Example 5: Tabulated output

The following Java code shows an example of how escape sequences
work.

public class EscapeSeq
{
 public static void main(String [] args)
 {
 System.out.print("\n");

(continued on next page)

 37

(continued from previous page)

 System.out.println("Name\tHeight\tGender");
 System.out.println("-----------------------");
 System.out.println("Anna\t5\'4\"\tF");
 System.out.println("Artit\t6\'2\"\tM");
 System.out.println("Bina\t5\'7\"\tF");
 }
}

In this example, \n is used for entering a new line and \t is used for
inserting the tab character. The use of escape sequences is useful when
the output to the screen needs to be formatted nicely.

Figure 20: Demonstration of some usages of escape sequences

Variable at a Glance

Variables are symbolic names of memory locations. They are used for
storing values used in programs. We will discuss Java types of values
and variables later in this book. In many programming languages
including Java, before a variable can be used, it has to be declared so that
its name is known and proper space in memory is allocated. Syntax used
for declaring variables can be observed from Figure 21.

int x;
double y;
String myText;

Figure 21: Declaration of variables

38

On the first line, a variable x is created for storing an int (integer) value.
On the second line, a variable y is created for storing a double (double-
precision floating point) value. On the last line, a variable myText is
created for storing a reference to String (a Java standard class
representing double quoted text) object. The name x, y, and myText are
Java identifiers. int and double are Java keywords. String is the name of
a Java class.

Variables are normally used with the assignment operator (=), which
assign the value on the right to the variable on the left as can be observed
in Figure 22

x = 3;
y = 6.5;
myText = "Java Programming";

int z;
z = x;

Figure 22: Assigning values to variables

On the first three lines, values are assigned to the three variables
according to their types. On the last two lines, a variable z is declared
and then assigned the value of the variable x.

Declaration and value assignment (initialization) could be done in the
same statement as can be observed in Figure 23

int i = 1;
double f = 0.0;
String mySecondText = "Java is fun.";

Figure 23: Declaring and assigning values to variables in single
statements

Naming Rules and Styles

There are certain rules for the naming of Java identifiers. Valid Java
identifier must be consistent with the following rules.

 39

 An identifier cannot be a Java reserve word.
 An identifier must begin with an alphabetic letter, underscore

(_), or a dollar sign ($).
 If there are any characters subsequent to the first one, those

characters must be alphabetic letters, digits, underscores (_), or
dollar signs ($).

 Whitespace cannot be used in a valid identifier.
 An identifier must not be longer than 65,535 characters.

Also, there are certain styles that programmers widely used in naming
variables, classes and methods in Java. Here are some of them.

 Use lowercase letter for the first character of variables’ and
methods’ names.

 Use uppercase letter for the first character of class names.
 Use meaningful names.
 Compound words or short phrases are fine, but use uppercase

letter for the first character of the words subsequent to the first.
Do not use underscore to separate words.

 Use uppercase letter for all characters in a constant. Use
underscore to separate words.

 Apart from the mentioned cases, always use lowercase letter.
 Use verbs for methods’ names.

Here are some examples for good Java identifiers.

 Variables: height, speed, filename, tempInCelcius,

incomingMsg, textToShow.
 Constant: SOUND_SPEED, KM_PER_MILE, BLOCK_SIZE.
 Class names: Account, DictionaryItem, FileUtility, Article.
 Method names: locate, sortItem, findMinValue,

checkForError.

Not following these styles does not mean breaking the rules, but it is
always good to be in style!

40

Statements and Expressions

An expression is a value, a variable, a method, or one of their
combinations that can be evaluated to a value. Each line in Figure 24 is
an expression.

3.857
a + b – 10
8 >= x
p || q
"go"
Math.sqrt(2)
squareRootTwo = Math.sqrt(2)

Figure 24: Java expressions

A statement is any complete sentence that causes some action to occur. A
valid Java statement must end with a semicolon. Each line in Figure 25 is
a Java statement.

int k;
int j = 10;
double d1, d2, d3;
k = a + b – 10;
boolean p = (a >= b);
System.out.print(“go”);
squareRootTwo = Math.sqrt(2);

Figure 25: Java statements

Each of statement in Figure 26 is not a valid Java statement since it either
does not cause any action to occur or is syntactically incorrect.

i;
2 <= 3;
1 + 2 + 3 + 4;
“go”;
Math.sqrt(2);

Figure 26: Invalid Java statements

 41

Simple Calculation

Numeric values can be used in calculation using arithmetic operators,
such as add (+), subtract (-), multiply (*), divide (/), and modulo (%). An
assignment operator (=) is used to assign the result obtained from the
calculation to a variable. Parentheses are used to define the order of the
calculation.

Example 6: Simple calculation and adaptation

The following program computes and prints out the average of the
integers from 1 to 10.

public class AverageDemo 1
{ 2
 public static void main(String[] args) 3
 { 4
 double avg, sum; 5
 sum = 1.0+2.0+3.0+4.0+5.0+6.0+7.0+8.0+9.0+10.0; 6
 avg = sum/10; 7
 System.out.println(avg); 8
 } 9
} 10

In this example, the statement on line 5 declares two variables that are
used to stored floating point numbers. On line 6, the values from 1.0 to
10.0 are summed together using the + operator and the resulting value is
assigned to sum. On line 7, the value of sum is divided by 10 which to
obtain their average. The statement on line 8 just prints the result on
screen.

Here, let’s look at how we can adapt the AverageDemo program a little in
order for the new program to calculate the sum of squares of the integer
values of 1.0 to 10.0

public class SumSquareDemo 1
{ 2
 public static void main(String[] args) 3
 { 4
 double sumSquare; 5
 sumSquare = 1.0*1.0+2.0*2.0+3.0*3.0 6

(continued on next page)

42

(continued from previous page)
 +4.0*4.0+5.0*5.0+6.0*6.0+7.0*7.0 7
 +8.0*8.0+9.0*9.0+10.0*10.0; 8
 System.out.println(sumSquare); 9
 } 10
} 11

A key modification made in this example compared to the previous one
is the statement calculating the main result of the program which is the
sum of squares of 1.0 to 10.0. The square of each number is found by
using the * operator with both operands being that number in order to
multiply the number, which consequently results in its square. Then,
multiple + operators are used to sum them together.

This example shows that sometimes there is no need to be an expert of
the language (just yet!) to modify an existing source code for it to work
as we desire.

More operators will be presented later in the next chapter.

Representing Algorithms Using Flowcharts

To create a computer program that works, one need not only the
knowledge about the rules and syntaxes of a programming language but
also a procedure or a process that is used to accomplish the objectives of
that program. Such a procedure is called an algorithm. Usually, before
creating a computer program, an algorithm is developed based on the
objective of the program before the source code is written. An algorithm
could be as simple as a single command. More often than not, they are
more complex.

Representing an algorithm using diagrams is useful both in designing an
algorithm for a complicate task and for expressing the algorithm to other
people. More than one ways of creating such diagrams have been created
and standardized. One of the simplest ways is to use a flowchart.
Although representing an algorithm using a flowchart might not be an

 43

ideal way for some situations, it is the most intuitive and should be
sufficient for beginners of computer programming.

Figure 27: Symbols in a flowchart used for regular actions, starting
points and process termination

A flowchart needs a starting point of the program it represents and one
or more terminations. Steps or commands involved in the program are
represented using rectangles containing textual descriptions of the
corresponding steps or commands. These steps as well as the starting
and terminating points are connected together with line segments in
which arrows are used for determining the order of these steps. Shapes
are typically placed from the top of the chart to the bottom according to
their orders. The starting and terminating points are represented using
round-corner rectangles. Different shapes apart from the two shapes
already mentioned are defined so that they imply some specific
meanings.

The following flowchart shows an algorithm of a computer program that
prints out the average of the integers from 1 to 10 (which is the Java
program showed in Example 6).

<details> <details> Normal action Starting point /
termination

44

Figure 28: The flowchart of the AverageDemo program

In the flowchart above, the shape located just before the termination is
used to represent a step involving displaying an output on to the screen.

Manual Input

Skewed rectangles like the one in Figure 29 are used for steps which
involve manual input such as received user’s inputs from keyboards.
Detailed operations will be described as needed inside the shape.

Figure 29: Symbol used in a flowchart for manual input

The following flowchart is another example where the program prompts
the user to input his/her name and then prints a greeting message
containing the input name on screen.

<details >

Starting Point

Display

Action

Declare variables avg and sum

sum = 1.0+2.0+3.0+4.0
+5.0+6.0+7.0+8.0+9.0+10.0

avg = sum/10

Show avg
on screen

Termination

Start

End

 45

true false
<decision>

Figure 30: The flowchart of a program greeting a person whose name is
manually input via keyboard

Decisions and Iterations

A procedure that always follows a single path every time the program is
run might not be very attractive and is hardly useful. Usually, decisions
on which steps to be executed have to be made based on some specified

conditions. The symbol used in this case can be shown in Figure 31

Figure 31: Symbol used in a flowchart for decisions

Declare variable name

Start

End

Receive keyboard input

Store the input in name

Show “Hello”
+name

Show “What is
your name?” Manual Input

46

Example 7: An algorithm to find absolute values

Consider the following example. The program shown receives an integer
from the user via keyboards and shows the absolute value of that integer
using the logic “If an integer, n, is non-negative, then its absolute value is
just n. Otherwise; its absolute value is -n”. A rhombus specified with its
corresponding conditional statement is used for representing a decision
step. If the statement is true, the flow of the program follows the line
labeled true. If it is false, the flow follows the other path.

Figure 32: Flowchart of program calculating the absolute value of a
manually input integer value

Declare variables n and absN

Receive keyboard input

Store the input in n

n 0

absN = n absN = -n

true false

Show “Enter
an integer”

Show the result

Decision

End

Start

 47

Conditional statements in decision steps might not necessary result in
boolean (true or false) values. A decision step could result in more than
two paths, given that each path is labeled with the value(s) of the
conditional statement that makes the program follow that path.

Decision steps are also useful in developing algorithms in which some
portions of them are repeated for a certain number of iterations or until
some conditions are met.

Example 8: Factorial function algorithm

The following flowchart demonstrates a program that finds and prints
out the value of n!, where n is a non-negative integer input via
keyboards. Note that n! is defined as:

1,01

11)...2)(1(
!

n
nnnn

n

Note that the circular shapes labeled with the same number (which is 1
in this case) connect two parts of the flowchart together.

48

Figure 33: Flowchart of program calculating the factorial of a manually-
input integer value

In this example, a loop is used. The value stored in i is used for counting
the number of iterations that have been performed. From the flowchart,
we can see that i is initialized with 1, and as long as the value of i does
not exceed the input n, the flow of the program will keep going back to
the point just prior to the decision step. This makes the value of nFact be
updated with the product of the original value of itself and the iteration
number stored in i. Note that i has to be updated in a way so that the
loop will eventually be exited.

To actually write a Java program that performs the process in the above
flowchart, you will need to know more on rules and syntaxes of the
language, which will be covered in later chapters.

false

Declare variables i, n, and nFact

Start

End

Receive keyboard input

Store the input in n

i n

nFact = nFact*i

true

i = 1, nFact = 1

i = i + 1

Prompt for n

Show
“n!=”+nFact

1

1

 49

Subroutines

A subroutine is a portion of code within a larger program or a sub-process
within a bigger process. In creating a computer program, specific tasks
that might be performed many times or are relatively independent of the
rest of the programs are usually defined as subroutines. In Java,
subroutines are supported using methods briefly mentioned earlier.
More details concerning methods will be discussed in later chapters. The
symbol used for subroutines is shown in Figure 34.

Figure 34: Symbols used in a flowchart for a subroutine

Example 9: Combination function algorithm

The following flowchart shows an example of how to represent
subroutines. The program finds the value of the combination function,
c(n,k), where n and k are integer values taken as the inputs to the
program. The function is defined as:

!)!(
!),(

kkn
n

knc

(Note that this function is used for finding the number of subsets with k
elements where each element is taken from a set with n elements.)

<details>

50

Figure 35: Flowchart of a program calculating a combinatorial function

The sub-process used in finding the value of n! is defined in a subroutine
whose detailed steps could be described in another flowchart such as the
one in the previous example. Notice the symbol used for representing
subroutines.

Subroutines

Declare variables c, n, k, nFact, kFact, and nMinusKFact

Receive keyboard input

Store the inputs in n and k

Prompt for n
and k

Show c

Find n! and store
in nFact

Find k! and store
in kFact

Find (n-k)! and
store in

nMinusKFact

c = nFact/(nMinusKFact*kFact)

Start

End

 51

More Shapes

There are more shapes used and adopted in representing processes or
algorithms using flowcharts. Here are some more examples of the
shapes.

Figure 36: Some of other symbols used in a flowchart

More details on these shapes or other shapes and symbols not mentioned
here are intentionally omitted. Although using the proper notation is
important in communicating algorithms with other people, our primary
concern here is to be able to plan the steps required in creating a
program for accomplishing some tasks with the assist of flowcharts.

Example 10: An algorithm for finding the biggest of three inputs

Suppose we would like to create a simple program that lets the user
input three numeric values via keyboards and then shows the biggest
value among the three inputs, the simplest algorithm might be just
performing a comparison to find the maximum value between a pair of
the inputs first and then comparing whether the maximum of the two is
bigger than the other input. This way, we could use three variables to
hold the value of the three inputs and another variable, m, to store the
most up-to-date maximum value as we do the comparisons. Once we
finish the two comparisons mentioned, the value in m should be shown
on screen. The mentioned process could be described using a flowchart
as the following.

A printed document or
report

Database

Connectors

A manual loop

52

Figure 37: Flowchart of a program finding the biggest of the three
manually-input values

Exercise

1. What are the differences between machine languages and high-
level programming languages?

2. Explain why Java is said to be a platform-independent language.

3. Describe the benefit(s) of using proper indentation.

4. Write a complete Java program that shows your first name and
last name on screen.

Declare variables a, b, and c for
storing the three inputs, and a

variable m to store the maximum
value among them.

Start

End

Receive the three
keyboard inputs and

store them in a, b,
and c

Prompt for a, b,
and c

Show “maximum =”
+m

a b

m = a m = b

m c

m = c

true false

true

false

 1

1

 53

5. Write a complete Java program that shows the pattern similar to
the following.

******* *******
 * * *
 ******* *******

6. Change this source code as little as possible, so that it gets
compiled successfully?

public class Ex2_6
{
 public static void main(String [] args)

 System.out.println("What’s wrong with me?)
 }
}

7. Show how to use method print() once in order to print the
following message on screen.

 He called Clancy at headquarters and said:
 “There’s a family of ducks walkin’ down the street!”

8. Which of the following identifiers are not valid?

google $money company_motto java.org
12inches money$ X-Ray CC
Item3 $$money !alert_sign entry point
public main Class _piece
JavaApplet fillForms “Gorilla” _1234

9. List every keywords and identifiers appeared in the class
definition of AverageDemo.

10. Modify the source code of the class AverageDemo so that the
program shows both the summation and the average of the
integer 1 to 5 as the following. Also draw a flowchart for the
program.

 The sum of 1 to 5 is 15.0
 The average of 1 to 5 is 3.0

54

11. Draw a flowchart describing a process that a bank customer
could use in making cash withdrawal from an ATM machine.

12. Read the following recipe and draw a corresponding flowchart.

Figure 38: A recipe for shrimp scampi bake

Shrimp Scampi Bake
 Preheat oven to 450 degrees F (230

degrees C).
 In a small saucepan over medium

heat, combine the butter, mustard,
lemon juice, garlic, and parsley.
When the butter melts completely,
remove from heat.

 Arrange shrimp in a shallow baking
dish. Pour the butter mixture over
the shrimp.

 Bake in preheated oven for 12 to 15
minutes or until the shrimp are pink
and opaque.

 55

Chapter 3: Working with Data

Objectives
Readers should
 Be familiar with the eight primitive data types and non-primitive

data types.
 Understand memory allocations and value assignments of variables.
 Be able to use operators and some methods to do some

computations.

Strong Data Typing

Programming languages differ in many aspects. One aspect is whether
the languages place strict rules on identifying types of every piece of
data involved in the program. A programming language is called a
strong data typing language if the language needs the instructions in the
programs to clearly state the types of all data unless the data type can be
unambiguously implied. In contrary, if a programming language allows
creation of data whose type cannot be determined or it allows data to be
used as one type in one place and as another type at a different place
without any explicit transformation, the language is not a strong data
typing language.

Java as well as languages in the C-family (E.g. C, C++, C#) are strong
data typing languages, while some examples of popular programming
languages that are not strong data typing are Visual Basic and PHP.

Although writing a program without having to worry about data types
might seem tempting to programmers, strong data typing lets the
compiler catches possible errors more often and it also enable
programming languages to carry out more fancy features. Interested
readers can consult [Seb2009] for more advanced topic relating features
of programming languages.

56

Since Java is strongly typed, we have to learn about available data types
in Java and how to process data with concerns over their types in this
chapter. Conversions among data and variables of different data typed
will be discussed in the next chapter.

Data Types in Java

There are 2 main types of data in Java.

1. Primitive data types
2. Classes

Primitive data types are data types considered basic to Java. They cannot
be added or changed. There are eight primitive data types in Java
including 4 types for integer values, 2 types for floating-point values, 1
type for characters, and 1 type for logical values (true/false).

Value type Primitive data types

Integer (E.g.: 5, -1, 0, etc.) byte, short, int, long

Floating-point (E.g.: 1.0, 9.75, -3.06, etc.) float, double

Character (E.g.: 'a', 'ก', '@', '4', etc.) char

Logical (true/false) boolean

Table 4: Primitive data types in Java

Classes are more complex data types. There are classes that are standard
to Java such as String, Rectangle, etc. Also, new classes can be defined by
programmers when needed.

Primitive Data Type for Integers

There are four primitive data types for integer values, including byte,
short, int, and long. They are different in the sizes of the space they
occupied in memory. The reason why Java has multiple integer (as well
as, floating-point) types is to allow programmer to access all the types

 57

support natively by various computer hardware and let the program
works efficiently.

Recall that a space of 1 byte (8 bits) can store 28 different things.

A byte occupies 1 byte of memory. It can represent one of 28 (256)
integers in the range -128, -127, …, 0, 1, …, 126, 127.

A short occupies 2 bytes of memory. It can represent one of 216 (65,536)
integers in the range -32,678, …, 0, 1, …, 32,767.

An int occupies 4 bytes of memory. It can represent one of 232
(4,294,967,296) integers in the range -2,147,483,648, …, 0, 1, …,
2,147,483,647.

A long occupies 8 bytes of memory. It can represent one of 264 integers in
the range -263, …, 0, 1, …, 263-1.

The default primitive type for integer value is int.

Choosing the data type for an integer value according to its range leads
to efficient data processing as well as memory usage. However, for
beginners focusing on writing small application programs, it is perfectly
fine to handle all integer value with the int data type, unless the values
are beyond the value range of int.

Primitive Types for Floating-Point Values
There are two primitive data types for floating point values. They are
float, and double. They are different in their sizes and precisions. The
default primitive type for integer value is double.

A float occupies 4 bytes of memory. Its range is from -3.4 1038 to 3.4
1038, with typical precision of 6-9 decimal points.

A double occupies 8 bytes of memory. Its range is from -1.8 10308 to 1.8
10308, with typical precision of 15-17 decimal points.

58

There are two ways to write floating-point values. They can be written in
either decimal or scientific notation. 123.45, 0.001, 1.0, 8.357, 1., and .9 are
in decimal notation. 1.2345E2, 10E-4, 1E0, 0.8375E1, 1000E-3, and 9.0E-1 are
in scientific notation representing 1.2345102, 1010-4, 1100, 0.8375101,
100010-3, and 9.010-1 respectively. The character E can also be replaced
with e.

It is usually okay to use double for all of the floating point values in the
program.

Primitive Type for Characters

The primitive data type for characters is char. A character is represented
with single quotes. For example the character for the English alphabet Q
is represented using 'Q'.

Characters include alphabets in different languages ('a', 'b', 'ก'), numbers
in different languages ('1', '2', '๑'), symbols ('%', '#', '{'), and escape
sequences ('\t', '\n', '\"');

In fact, the underlying representation of a char is an integer in the
Unicode character set coding. Characters are encoded in 2 bytes using
the Unicode character set coding.

Character Unicode encoding
'A' 65
'B' 66
'a' 97
'b' 98
'1' 49
'#' 35

Table 5: Some examples of characters with their corresponding
unicode encodings

 59

Unicode character set encoding guarantees that '0' < '1' < '2' < … < '9', 'a'
< 'b' < 'c' < … < 'z', and 'A' < 'B' < 'C' < … < 'Z'. Also,

'0'+1 is '1', '1'+2 is '3', …, '8'+1 is '9',

'a'+1 is 'b', 'b'+1 is 'c', …, 'y'+1 is 'z', and

'A'+1 is 'B', 'B'+1 is 'C', …, 'Y'+1 is 'Z'.

Primitive Type for Logical Values

There are only two different logical values, which are true and false. A
primitive type called boolean is used for logical values. In Java, 0 does
not mean false and 1 does not mean true. Logical values and numeric
values cannot be interchangeably.

String

String is an example of a data type that is not a primitive data type.
String is a standard class in Java. It is used for representing a sequence of
zero or more characters. Double quotes are used to designate the String
type. For example, "Wow!" is a data of String type. Be aware that "100" is
not the same as the integer 100, and "Q" is not the same as the character
'Q'.

Pointers

In some programming languages such as C and C++, there is another
important data type called pointer. Data of the type pointer, or simply
called pointers, are memory locations or addresses of other data or
instructions. The use of pointers allows accessing data stored in specific
memory locations directly. In Java, pointers are not available. Most
functionality traditionally obtained by the use of pointers is available
with some other mechanisms in Java.

60

Assigning Data to Variables

Data can be assigned to or stored in variables using the assignment
operator (=). Like data, variables have types. A variable can only store a
value that has the same data type as itself. Assigning values whose data
types are different from the variables to which they are assigned must
involve data type conversions. Such conversions can be done either
implicitly or explicitly using cast operators. More discussion on this will
be brought up in the next chapter.

Variable types are specified when the variables are declared, using the
name of the desired data types followed by the name of the variables. Do
not forget semicolons at the end.

For each variable whose type is one of the primitive data types, memory
space of the size corresponding to its type is allocated. The allocated
space is used for storing the value of that type. However, it works
differently for a variable of a non-primitive type. The memory space
allocated for such a variable is for what is called a reference. When
assigned with a value, the reference points, or refers, to the memory
location that actually stores that value.

We have discussed briefly about how to declare variables and assign
values to them in the last chapter. Here, we revisit it again with another
example. This time, attention should be paid on the data types.

To better illustrate the memory allocation and value assignments of
variables, we add to the following example code segment with some
illustration of the allocated memory. Here, we represent a variable by a
box captioned with its name. When a value is assigned to a variable, we
write the value inside the box associated with that variable.

 61

 x d c b s
int x; -
double d; - -
char c; - - -
boolean b; - - - -
String s; - - - - -
x = 256; 256 - - - -
d = 1.5; 256 1.5 - - -
c = 'Q'; 256 1.5 'Q' - -
b = true; 256 1.5 'Q' true -
s = "Computer"; 256 1.5 'Q' true "Computer"

Figure 39: Storing values into variables

On the first four lines of the above code segment, a variable x of type int,
a variable d of type double, a variable c of type char, and a variable b of
type boolean are created and allocated with memory space of the size
according to the type. On the fifth line, String s is the declaration of a
variable s of String type. On this line, a reference to String is created but
it has not referred to anything yet. Variables are assigned with values of
the corresponding data types on the last five lines. For the last line, the
reference in s is made to point to the String "Computer" located
somewhere else in the memory.

Figure 40 shows an example of String assignment between two variables.

Figure 40: Reassigning a String variable

The next figure contains another code segment showing what we can do.
The discussion comes after the figure.

s1 s2 - -
s1 s2 - "John"

"Mary" s1 s2
s1 s2

"John"
"Mary" "John"

String s1, s2;
s1 = "John";
s2 = "Mary";
s1 = s2;

62

 int x,y = 8;
 double z = 0.6, w;
 double k=3.0;
 w = k;
 x = y;

Figure 41: Various variable declaration and assignment examples

The first two lines show how to declare two variables of the same type in
one statement. Also, they show how to assign values to variables at the
same time as the variables are declared. Note that, the integer value 8 is
only assigned to y, not x, on the first line. On second line from the
bottom, the double value stored in k is assigned to the variable w. On the
last line, the int value stored in y is assigned to the variable x.

Figure 42 and Figure 43 show some examples of bad variable
declarations and/or assignments.

int i = 9 // no semicolon at the end
int j = 1.0 ; // mismatched data type
boolean done = "false"; // mismatched data type
char input character = 'x'; /* syntax error
 or illegal identifier */
Int k = 1; // Undefined data type
double k; m = 5e-13; // undefined variable m
char class = 'A'; /* use a reserve word
 as an identifier */
String s1 = 'W'; // mismatched data type
string s2; // Undefined data type

Figure 42: Invalid variable declarations and assignments

int i, j;
int k = 2;
int i = 6; // declaration of redundant variable i
int j = 8; // declaration of redundant variable j

Figure 43: Redundantly declaring variables

 63

Final Variables

Sometimes, we want to store a value that cannot or will not be changed
as long as the program has not terminated in a variable. The variable
with such an unchangeable value is referred to as a final variable. The
keyword final is used when a variable is declared so that the value of
that variable cannot be changed once it is initialized, or assigned for the
first time. Programmers usually use all-uppercase letters for the
identifiers of final variables, and use underscore (_) to separate words in
the identifiers (E.g.: YOUNG_S_MODULUS, SPEED_OF_LIGHT).
Attempting to change the value of a final variable after a value has been
assigned results in an error.

For example:

// Declaration and assignment in a single statement
final double G = 6.67e-11;

// Declare first and then assign the value only once
final double SPEED_OF_SOUND;
SPEED_OF_SOUND = 349.5; // Speed of sound at 30 degree celcius

The following code segment will produce an error due to the assignment
statement on line 8. Observe the explanation of the error given by the
compiler in the output screen in Figure 44.

public class FinalVariableError { 1
 public static void main(String [] args){ 2
 final int C; 3
 int k = 6; 4
 C = 80; 5
 C = k + 300; 6
 } 7
} 8

64

Figure 44: Assigning a new value to a final variable

Un-initialized Variables

When a variable is declared, a space in the memory is reserved for the
size of the type of that variable. However, as long as it is not assigned
with a value, the variable does not contain any meaningful value, and it
is said that the variable has not been intitialized. If the value of an un-
initialized variable is used, an error occurs.

The following code segment will produce an error due to the attempt to
use an un-initialized variable (which is x) on line 4 .

public class UninitVarError { 1
 public static void main(String [] args){ 2
 int x, y = 2; 3
 System.out.println(x+y); 4
 } 5
} 6

 65

Figure 45: Using an uninitialized variable

Operators

Values can be manipulated using built-in arithmetic and logic operators
(such as +, -, *, /, %), or using available methods (such as abs(), sqrt(),
exp(), floor(), log(), getTime()). Many methods are defined in some
standard classes such as the Math class. Although you are expected to be
able to use the methods that have previously seen in this class, such as
print() and println(), we will defer the detailed discussion on using
methods for now. In this chapter, we will mostly discuss about using
built-in operators and some small number of selected methods to
manipulate data.

Arithmetic operators that you should know include addition (+),
subtraction (-), multiplication (*), division (/), modulo (%), for which a%b
returns the remainder of ab, and negation (-).

Logic operators that you should know is logical AND (&&), logical OR
(||), and logical negation (!).

Portions of code that are either constant values, variables, methods, or
any combinations of the mentioned items from which some values can be
computed are called expressions.

66

Logic operator Usage

&& a&&b yields true if and only if both a and b are true.

|| a||b yields false if and only if both a and b are false.

! !a yields the opposite logical value of a.

Table 6: Description of logic operators

Operators that require two operands are called binary operators, while
operators that require only one operand are called unary operators.

Parentheses, (), are called grouping operators. They indicate the portions of
the calculation that have to be done first.

Values can be compared using relational equality operators, == and !=,
which return either one of the boolean values depending on the value of
the operand. a==b yields true if and only if a and b have the same value.
a!=b yields true if and only if a and b have different value. Comparison
can also be done using <, >, <=, and >=.

Below are two examples showing how values of variables change due to
value assignments and the use of some operators.

 i j k
int i = 2, j, k; 2 - -
j = 3; 2 3 -
k = i + j; 2 3 5
i = i + k; 2 3 7

Figure 46: Operating on int variables

 p q r s
boolean p = true; true
boolean q = false, r = true, s; true false true -
s = p && q; true false true false
s = s || r; true false true true
p = (s == q); false false true true

Figure 47: Operating on boolean variables

 67

String and the addition operator (+)

The addition operator (+) can be used to concatenate two Strings
together. For example, “Comp”+ “uter.” will results in “Computer”. The
concatenation can also be used upon Strings that are stored in variables.

The following program shows an example of concatenating two String
objects referred to by two variables and assigning the new String to
another String variable.

public class StringConcat1 { 1
 public static void main(String [] args){ 2
 String s1 = "Computer", s2 = "ized", s3; 3
 s3 = s1 + s2; 4
 } 5
} 6

Figure 48: String concatenation with + operator

The variable s3 contains the String “Computerized” since it is the result
of concatenating s1 and s2 with the + operator on line 4.

Whenever one of the operands of the addition operator is a String, the
operator performs the String concatenation. Thus, if a String is added
with values of different data types, the compiler will try to convert the
values that are not String to String automatically. Good news is that the
automatic conversion usually returns the String that makes very much
sense! E.g.: numeric values will be converted to the Strings whose
contents are consistent with the original numbers.

Example 11: Using + to concatenate multiple strings together

Observe this source code and its output.

public class StringConcat2 1
{ 2
 public static void main(String[] args) 3
 { 4
 double distance, speed; 5
 distance = 2500; // meters 6

(continued on next page)

68

(continued from previous page)
 speed = 80; // km per hour 7
 System.out.print("It would take a car”); 8

System.out.print(“running at "+speed+" km/h "); 9
 System.out.print((distance/1000/speed)*60*60+" sec.”); 10

System.out.print(“to travel ”); 11
 System.out.println(distance/1000+" km."); 12
 } 13
} 14

Figure 49: Using + operators with String and other data types

Consider the input parameter to print() on line 9, the input to the method
is an expression that uses two + operators on operands which are Strings
as well as a number. The number in speed is converted to “80.0” prior to
String concatenation according to the principle mentioned just above.
Same things are applied with the statements on line 10 and on line 12.

Math methods

Among the first groups of problems that we usually write computer
programs to solve are performing mathematics calculation. Here are
some example methods that provide useful mathematic functions that
we might come across frequently.

Math.abs(<a numeric value>);

 returns the absolute value of the input value.

Math.round(<a numeric value>);

 returns the integer nearest to the input value.

Math.ceil(<a numeric value>);

 69

 returns the smallest integer that is bigger than or equal to the
input value.

Math.floor(<a numeric value>);

 returns the biggest integer that is smaller than or equal to the
input value.

Math.exp(<a numeric value>);

 returns the exponential of the input value.

Math.max(<a numeric value>,<a numeric value>);

 returns the bigger between the two input values.

Math.min(<a numeric value>,<a numeric value>);

 returns the smaller between the two input values.

Math.pow(<a numeric value>,<a numeric value>);

 returns the value of the first value raised to the power of the
second value.

Math.sqrt(<a numeric value>);

 returns the square root of the input value.

Math.sin(<a numeric value>);

 returns the trigonometric sine value of the input value in radian.

Math.cos(<a numeric value>);

 returns the trigonometric cosine value of the input value in
radian.

Math.tan(<a numeric value>);

 returns the trigonometric tangent value of the input value in
radian.

70

Example 12: Mathematic methods

The source code below demonstrates how to perform the calculation of
many mathematic functions. Readers should observe the result shown on
each line of the output in comparison to the statements presented on the
corresponding line of the source code to see that the methods work in the
fashion described above.

public class MathTest 1
{ 2
 public static void main(String[] args) 3
 { 4
 double a = 2.8, b = 3.1, c = 6.0; 5
 System.out.println("a+b \t\t= " + (a+b)); 6
 System.out.println("|a| \t\t= " + Math.abs(a)); 7
 System.out.println("round(a) \t= " + Math.round(a)); 8
 System.out.println("ceil(a) \t= " + Math.ceil(a)); 9
 System.out.println("floor(a) \t= " + Math.floor(a)); 10
 System.out.println("exp(a) \t\t= " + Math.exp(a)); 11
 System.out.println("max of a and b \t= " + Math.max(a,b)); 12
 System.out.println("min of a and b \t= " + Math.min(a,b)); 13
 System.out.println("2^c \t\t= "+Math.pow(2,c)); 14
 } 15
} 16

Figure 50: Using + operators with String and other data types

Precedence and Associativity

Consider the following expression.

 71

int myNumber = 3 + 2 * 6;

This expression is evaluated to 30 if the addition operator is executed
first. However, it is 15 if the multiplication operator is executed first. In
fact, Java compiler has no problem with such ambiguity. Order of the
operators can be determined using precedence and association rules.

Each operator is assigned a precedence level. Operators with higher
precedence levels are executed before ones with lower precedence levels.
Associativity is also assigned to operators with the same precedence
level. It indicates whether operators to the left or to the right are to be
executed first, in the case of equal precedence levels.

Expressions in parentheses () are executed first. In the case of nested
parentheses, the expression in the innermost pair is executed first.

Operator Precedence Associativity

Grouping operator (()) 17 Left to right

Unary operator (+, -, !) 13 Right to left

Multiplicative operator (*, /, %) 12 Left to right

Additive operator (+, -) 11 Left to right

Relational ordering (<, >, <=, >=) 10 Left to right

Relational equality (==, !=) 9 Left to right

Logical and (&&) 4 Left to right

Logical or (||) 3 Left to right

Assignment (=) 1 Right to left

Table 7: Precedence and associativity of some basic operators

Example 13: Applying rules on precedence and associativity (1)

Evaluate the following expression by clearly state the order of operations
of all operators according to the precedence and associativity rule.

4*2+20/4

72

There are three operators in the above expression. They are *, + and /.
The precedence values of * and / are both 12, while the precedence value
of + is just 11. Therefore, * and / must be operated prior to +. Since * and
/ have the same precedence value, we need to look at their associativity
which we can see that the one on the left have to be performed first.
Therefore, the order of operation from the first to the last is *, / and then
+. Consequently, the evaluation of the expression value can take place in
steps shown in the figure below, and the resulting value can be shown to
be 13.

Figure 51: Order of operations in evaluating 4*2+20/4

Example 14: Applying rules on precedence and associativity (2)

Evaluate the following expression.

2+2==6-2+0

Considering the precedence values of the four operators appearing in the
expression, which are + (the leftmost one), ==, , and + (the rightmost
one), we can see that +, and have the same precedence value of 11
(additive operators) which is higher than the one of ==. Among the three
additive operators, we perform the operation from the left to the right
according to their associativity. The resulting value of this expression can
be evaluated to true according to the figure below.

4 * 2 + 20 / 4

8 + 20 / 4

8 + 5

13

 73

Figure 52: Order of operations in evaluating 2+2==6-2+0

Example 15: Applying rules on precedence and associativity (3)

Evaluate the following expression. Also determine the value of the
variable x after the expression is evaluated. Assume that the variable x
has already been properly declared as an int variable.

(x=3)==(x=+1-2)&&true

First, we perform the expression in the left pair of parentheses. The
variable x is assigned with the int value 3 and this is also the resulting
value of the expression in this pair of parentheses. Then, the expression
x=+1-2 is evaluated due to the fact that it is in the next pair of
parentheses. In this expression, we have the assignment operator = (with
the precedence value of 1), the unary positive + (with the precedence
value of 13), and the binary operator (with the precedence value of 13).
Based on the comparison of their precedence value, the unary positive is
performed first. This operator just indicates the positiveness of its
operand. Consequently, the value of the right side of the assignment
operator is -1 and then it is assigned to x. Therefore, the new value of x is
-1 which is the value of this pair of parentheses too. The next operator to
be performed is the equality operator ==. It compares the values of
(x=3)and(x=+1-2), which have just been shown that they are not equal.
Therefore, the resulting value associated with the action of this operator
is the boolean value false. Finally, the logical AND (&&) is performed

2 + 2 == 6 - 2 + 0

4 == 6 - 2 + 0

4 == 4 + 0

4 == 4

true

74

and the final result of the expression in this example is the boolean value
false. Figure 53 illustrates the order of operations described above.

Figure 53: Order of operations in evaluating (x=3)==(x=+1-2)&&true

Example 16: Applying rules on precedence and associativity (4)

Place the grouping operators () into the following expression in order to
explicitly determine the order of operations of all operators appearing in
the expression. Evaluate the values of every expression involved in steps
according to the inserted parentheses.

-9.0+5.0*3.0–1.0/0.5 >= 5.0%2.0&&6.0+3.0-9.0==0

By considering the precedence values of all operators appearing in the
expression above, we can place parentheses into the expression in order
to explicitly determine the order of operation and then evaluate the
values of each part as shown below.

((-9.0)+(5.0*3.0)–(1.0/0.5) >= (5.0%2.0))&&(((6.0+3.0)-9.0)==0)
((-9.0)+15.0 - 2.0 >= 1.0)&&((9.0 -9.0)==0)
(4.0 >= 1.0)&&(0 ==0)
(true)&&(true)
true.

(x = 3) == (x = +1 – 2) && true

false

3 == (x = +1 – 2) && true

3 == (x = 1 – 2) && true

3 == (x = -1) && true

3 == -1 && true

false && true

 75

Let’s finish this chapter with a more realistic example of a program that
makes use of some mathematic functions from the methods defined in
the Math class.

Example 17: Distance in 3-D space

The distance, d, between two points in the three-dimensional space
(x1,y1,z1) and (x2,y2,z2) can be computed from:

2
21

2
21

2
21)()()(zzyyxxd

The program in Figure 54 computes and shows the distance between
(2,1,3) and (0,0,6).

public class Distance3d 1
{ 2
 public static void main(String[] args) 3
 { 4
 double x1,y1,z1,x2,y2,z2, d; 5
 double xDiff, yDiff, zDiff; 6
 x1 = 2.0; y1 = 1.0; z1 = 3.0; 7
 x2 = 0.0; y2 = 0.0; z2 = 6.0; 8
 xDiff = x1-x2; 9
 yDiff = y1-y2; 10
 zDiff = z1-z2; 11
 d = Math.sqrt(xDiff*xDiff+yDiff*yDiff+zDiff*zDiff); 12
 System.out.print("The distance between"); 13
 System.out.print("("+x1+","+y1+","+z1+") and"); 14
 System.out.println(" ("+x2+","+y2+","+z2+") is "+d+"."); 15
 } 16
} 17

Figure 54: The source code of the Distance3d program

On line 5 and line 6, we declare all variables needed in the program.
Then, on line 7 and line 8, we assign specific values into variables
associated with the co-ordinates of the two points. To make the
statement cleaner, we decide to calculate the different between the two
points in each dimension first (on lines 9-11) and store them into the
variable xDiff, yDiff, and zDiff. We then multiply each variable that
contain the difference with itself to obtain the square of its value before
passing their summation as an input to Math.sqrt(), on line 12. The result

76

is assigned to d. Finally, the statements on lines 13 to 15 format the result
and nicely place them on screen.

Figure 55: The output of the Distance3d program

Exercise

1. What are the differences between primitive data types and class?

2. How many different things can be represented using n bytes?

3. Which of the eight primitive data types can store a numeric
value 236?

4. Give the boolean values of the following expressions.

a. 01<2e-1
b. 8+0.0 >= 8.0
c. ‘a’>’b’
d. 2+3*2-6 == ((2+3)*2)-6
e. ‘a’>’$’||’b’<’$’
f. !(true||'6'>'#')&&!false

5. Determine the resulting values of x and y in the following code.

 public class Ex3_5
 {
 public static void main(String[] args)
 {
 int x=0,y=0;
 x = y + 1;
 y = x + 1;
 }
 }

 77

6. Give the reason why the following code will not be compiled
successfully.

 public class Ex3_6
 {
 public static void main(String[] args)
 {
 int x, y, z =3;
 y = x;
 z = y;
 }
 }

7. Write a Java program that calculates and shows these values on
screen.

a. (6+5)(7-3)

b.
22)7.3()5.6(

e
c. 3)2.1sin(

d. The floating point result of
101

8

e. The biggest integer that is less than 3.75
f. The smallest integer that is bigger than 3.75

g.

3

0

)1(

i

ii

8. Write a Java program that shows the truth values of the
following statements on screen for all possible combination of p
and q. (i.e. (true,true), (true,false), (false,true), and
(false,false))

a. p and q
b. p or q
c. either p or q
d. either p or its negation

9. Modify Distance3D.java so that the distance d is calculated from:

222

2
21

22
21

22
21

2)()()(

zyx

zyx

www

zzwyywxxw
d

where wx = 0.5, wy = 0.3, and wz = 0.2.

78

10. Write a Java program that performs the following steps.

a. Declare two int variables named x and y.
b. Assign 3 to x.
c. Assign twice the value of x to y.
d. Interchange the value of x and y (without explicitly

assign 3 to y).
e. Print the values of both variables on screen.

11. Show a single Java statement that can perform both tasks in step
b and c in the last problem.

 79

Chapter 4: More Issues on Data
Manipulation

Objectives
Readers should
 Understand how to work with different data types including

calculations and conversions.
 Be aware of imprecision in floating point calculations.
 Understand overflow, underflow, Infinity, NaN, and divided-by-zero

exception.
 Be able to use compound assignments correctly.
 Understand and be able to use increment and decrement operators

correctly.

Numeric Data Type Specification

If we type numbers without decimal points, such as 1, 0, -8, 99345 etc.,
the data types of those numbers are all int by default. If we type
numbers with decimal points, such as 1.0, 0.9, -8.753, 99345.0 etc., the
data types are all double by default.

At times, we may want to specify a specific data type, apart from the two
default types (int and double), to some numeric values. This can be done
by:

 adding an l or an L behind an integer to make its type long.
 adding an f or an F behind a floating point value to make its type

float.
 adding a d or a D behind a floating point value to make its type

double.

Note that for the type double, adding a d or a D is optional, since double is
the default type for a floating point value.

80

All of the following statements assign data to variables whose types are
similar to the type of the data.

int i = 1;
long l = 1L;
long k = 256l;
float f = 2.0f;
float g = -0.56F;
double d1 = 1.0;
double d2 = 2.0D;
double d3 = 2.0d;

Data Type Conversion

As mentioned earlier, data can be assigned to only variables whose types
are the same as the data. Failure to do so generally results in a
compilation error. However, in some situations we need to assign data to
variables of different types. Therefore, data type conversion is needed.

Data type conversion can be done explicitly by using cast operators,
written as the name of the data type, to which you want to convert your
data to, enclosed in parentheses. Cast operators are put in front of the
data to be converted. Cast operators have higher precedence than binary
arithmetic operators but lower precedence than parentheses and unary
operators. That means type conversion by a cast operator is done before
+, , *, /, and %, but after () and unary operators.

Converting floating point numbers to integers will cause the program to
discard all of the floating points, no matter how large they are.

Example 18: Data type conversion

Consider the following two programs and their outputs.

public class TypeConversionDemo1 1
{ 2
 public static void main(String[] args) 3
 { 4
 int i; 5
 double d = 0.0; 6

(continued on next page)

 81

(continued from previous page)
 i = (int) d; 7
 System.out.println("d ="+d); 8
 System.out.println("i ="+i); 9
 i = 9; 10
 d = (double) i; 11
 System.out.println("d ="+d); 12
 System.out.println("i ="+i); 13
 } 14
} 15

Figure 56: A program demonstrating data type conversion

The cast operator (int) is used on line 7 for converting the double value
0.0 stored in the variable d to the type int. Then it is assigned to the
variable i which is of type int. The cast operator (double) was used on
line 11 for converting the int value 9 stored in the variable i to 9.0. Then,
it is assigned to the variable d which is of type double.

Here is the second program showing explicit type conversions.

public class TypeConversionDemo2 1
{ 2
 public static void main(String[] args) 3
 { 4
 int i,j; 5
 double d1 = 0.5, d2 = 0.5, d3,d4; 6
 i = (int)d1+(int)8.735f; 7
 j = (int)(d1+d2); 8
 System.out.println("i = "+i); 9
 System.out.println("j = "+j); 10
 d3 = (double)i-(double)j; 11
 d4 = (double)(i-j); 12
 System.out.println("d3= "+d3); 13
 System.out.println("d4= "+d4); 14
 } 15
} 16

82

Figure 57: Another program demonstrating data type conversion

On line 7, d1 whose value is a double 0.5 is converted to int using the
(int) operator. The resulting int value is 0 since decimal points are
truncated. On the same line, the float value of 8.735f is also converted to
the int value of 8. So, i equals 0+8 = 8. On line 8, the sum of d1 and d2 is
a double 1.0. It has to be converted to an int 1 using the (int) operator.
On line 11, the int values in i and j are converted to double using the
(double) operator before being subtracted and assigned to the variable
d3, which is of type double. On line 12, the two double values in i and j
are operated first before the resulting int value is converted to double.

Automatic Type Conversion and Explicit Type
Casting

Explicit casting must be used (i.e. cast operators must be used) when
converting wider data types (i.e. data types with larger numbers of
bytes) to narrower data types (i.e. data types with smaller numbers of
bytes). However, converting narrower data types to wider data types can
be done implicitly without using cast operators. In other words, Java can
convert data types automatically if the value ranges of the destination
can cover the original data types. For example, double d = 2.5f; can be
done without any explicit use of a cast operator, while float g = 2.5;
will result in a compilation error. To perform such an assignment, float
g = (float) 2.5; must be used.

 83

The following table shows the possibility of converting among primitive
data types. The label 'A' means that the data type on that row can be
automatically converted to the data type in that column. The label 'C'
means that the associated cast operators are required. The label 'X' means
that such a conversion is not allowed in Java.

from\to byte short int long float double char boolean

byte A A A A A C X

short C A A A A C X

int C C A A* A C X

long C C C A* A* C X

float C C C C A C X

double C C C C C C X

char C C A A A A X

boolean X X X X X X X

* indicates that precision lost might occur from the conversion.

Table 8: Data type conversion table

Note that the conversion from a wider data type to a narrower data type
is called narrowing, while the opposite is called widening.

Expressions with Multiple Data Types

It is not uncommon to run into an expression that contains operators
whose operands are values and/or variables of different data types. In
Java, the data type of the resulting value from evaluating any one
expression can be determined precisely. Before we state the rule used for
determining it, let’s observe the expressions in the following example.

Example 19: Resulting data type of an expression

public class DataTypesFromExp 1
{ 2

(continued on next page)

84

(continued from previous page)
 public static void main(String[] args) 3
 { 4
 int k = 10; 5
 System.out.println("k/3 = "+k/3); 6
 System.out.println("k/(float)3 = "+k/((float)3)); 7
 System.out.println("k/3.0 = "+k/3.0); 8
 }
}

Figure 58: A Java program showing expressions with operands being
of multiple data types

On line 6, the expression k/3 is an operation between two int values. The
result of this expression is a value of type int, as we can see no decimal
points in the output. Doing simple division by hand, we can see that
10/3 results in 3.333… However, following some rules which we are
going to discuss later, the resulting data type of k/3 must be an int. Thus,
3.333… is truncated to the integer 3. Following the same set of rules, the
resulting type of an operation between an int and a float, such as
k/((float) 3), is a float and the resulting type of an operation between
an int and a double, such as k/3.0, is a double.

As promised, here is the rule that governs the resulting date types of
expressions with operands with mixed data types.

Consider A $ B where $ is a binary operator, while A and B are its
operands. When A and B are of the same data type, the resulting
data type is that data type.

 85

 If either operand is of type double, the other is converted to
double.

 Otherwise, if either operand is of type float, the other is
converted to float.

 Otherwise, if either operand is of type long, the other is
converted to long.

 Otherwise, both operands are converted to type int.

The table below gives us some example statements and their results.

Statement Value of x Statement Value of x

float x = 8/9; 0.0f int x = (int)(1.5+1.5) 3

double x = 10d + 8/9 10.0 double x = (int)1.5+1.5 2.5

double x = (10.0+8)/9 2.0 double x = 3/4.0 0.75

float x = 8.0+9; error double x = 3/4*4/3 0.0

double x = (1/4)*(12d-4) 0.0d double x = 4/3*(float)3/4 0.75

Table 9: Data types from expression evaluation

Limitation on Floating Point Computation

Consider the source code listed below. First, a variable d is defined and
initialized to 0.0. The program adds 0.1 to d ten times. The program
shows the current value of d after each time 0.1 is added to d.

public class LimitedPrecision1
{
 public static void main(String[] args)
 {
 double d = 0.0;
 double increment = 0.1;
 System.out.println("Original d \t\t="+d);
 d += increment;
 System.out.println("d + 1 increments \t="+d);
 d += increment;
 System.out.println("d + 2 increments \t="+d);
 d += increment;
 System.out.println("d + 3 increments \t="+d);

(continued on next page)

86

(continued from previous page)
 d += increment;
 System.out.println("d + 4 increments \t="+d);
 d += increment;
 System.out.println("d + 5 increments \t="+d);
 d += increment;
 System.out.println("d + 6 increments \t="+d);
 d += increment;
 System.out.println("d + 7 increments \t="+d);
 d += increment;
 System.out.println("d + 8 increments \t="+d);
 d += increment;
 System.out.println("d + 9 increments \t="+d);
 d += increment;
 System.out.print("d + 10 increments \t="+d);
 }
}

Figure 59: A demonstration of the fact that precisions are limited in the
floating-point calculation using computers

The above figure shows the output of the program. With simple
mathematics, one will definitely say that the eventual value of d is 1.0.
However, when this program is executed, we have found that the
eventual value of d is very close to but not exactly 1.0. This is because of
the imprecision of representing floating point values with binary
representation. Thus, some decimal points cannot retain their exact

 87

decimal values when represented with binary representation. And, 0.1 is
one of them.

An Issue on Floating Point Value Comparison

With the fact about limited precisions in the floating point calculation
kept in mind, one should be aware that floating point values should not
be compared directly with relational equality operators (== and !=). A
good practice for comparing a floating point value A and a floating point
value B is to compute d = |A B|, and see whether d is small enough. If
so, you could consider that A equals to B.

Overflow and Underflow

It is possible that the results of some arithmetic operations are larger or
smaller than what numeric values can handle. When a value is larger
than the biggest value that a data type can handle, it is said that an
overflow has occurred.

Programmers should be careful about the range of value that a data type
can handle. When an overflow of a value of the type int occurs, it neither
leads to any compilation errors or warnings nor causes the program to
terminate when executed. However, overflowed values could causes
unexpected (but explainable) results.

For floating point values, Java has special float and double values
representing a positive value that is larger than the largest positive value
that the respective data type can handle as well as values representing a
negative value that is smaller (more negative) than the smallest negative
value that the data type can handle. The former is the value Infinity,
and the latter is the value –Infinity.

If a floating point value is too close to zero for its associated data type
can handle, that value might be rounded to 0. This situation is called
underflow. Just like overflow, underflow might cause some arithmetic
computations to yield unexpected results.

88

Example 20: Oops! They are too big.

The program Overflow1.java listed below shows an example of when
overflows have occurred. A variable veryBigInteger of type int is
declared and set to a big integer value of 2,147,483,647, which is still in
the range that int can handle. Adding 1 to 2,147,483,647 would normally
result in 2,147,483,648. However, such a value is too large for an int.
Thus, the program gives an unexpected answer. A similar situation
happens when 1 is subtracted from a very small number -2,147,483,648
and when 2,147,483,647 is multiplied by 2. Notice that the program does
not warn or give any errors or exceptions when an overflow occurred
with int. Thus, programmer should be aware of this situation and
prevent it for happening.

public class Overflow1 1
{ 2
 public static void main(String[] args) 3
 { 4
 int veryBigInteger = 2147483647; 5
 System.out.print("veryBigInteger\t\t= "); 6
 System.out.println(veryBigInteger); 7
 System.out.print("veryBigInteger+1\t= "); 8
 System.out.println(veryBigInteger+1); 9
 System.out.print("veryBigInteger*2\t= "); 10
 System.out.println(veryBigInteger*2); 11
 int verySmallInteger = -2147483648; 12
 System.out.print("verySmallInteger\t= "); 13
 System.out.println(verySmallInteger); 14
 System.out.print("verySmallInteger-1\t= "); 15
 System.out.println(verySmallInteger-1); 16
 } 17
} 18

Figure 60: Demonstration of several occurrences of overflow for int

 89

Example 21: Once an infinity, always an infinity

The program Overflow2.java shows an example of when an overflow
occurred with double. However, Java has a floating point value (both
float and double) that can handle a very large number. Such a value is
Infinity. Remember that Infinity is a floating point value. So, it can be
treated as one. –Infinity represents a floating point value that is very
small. Also, notice the effect of Infinity from the result of line 10.

public class Overflow2 1
{ 2
 public static void main(String[] args) 3
 { 4
 double d = 1.0e308; 5
 double dSquare = d*d; 6
 System.out.println("d = "+d); 7
 System.out.println("d^2 = "+dSquare); 8
 System.out.println("-d^2 = "+(-dSquare)); 9
 System.out.println("sqrt(d^2) = "+Math.sqrt(dSquare)); 10
 } 11
} 12

Figure 61: A Java program that results in the double-valued Infinity

Example 22: Too close to zero

The program Underflow1.java shows an example when a value becomes
closer to zero than its associated data type can handle, it is rounded to
zero. In this example, d is set to 1.010-323, which is still in the precision

90

range of a double. Divide that value by 10 results in the value that is
closer to zero than what double can handle. Consequently, the result of
the expression d/10*10 becomes zero since the division is executed first
and it results in a zero. Notice the difference between the value of p and
g.

public class Underflow1 1
{ 2
 public static void main(String[] args) 3
 { 4
 double d = 1.0e-323; 5
 double p = d/10*10; 6
 double g = 10*d/10; 7
 System.out.println("d = "+d); 8
 System.out.println("d/10*10 = "+p); 9
 System.out.println("10*d/10 = "+g); 10
 } 11
} 12

Figure 62: A demonstration of cases when underflow occurs

Numbers Divided by Zero

Mathematically when a number is divided by zero, it is sometimes
considered as an undefined case or it can be thought of as resulting in a
infinitely large number. In Java, handling of such a case depends on the
data types of the values involved in the division operation. For int
operations, the compiler will not catch such a case during the
compilation and the program will produce a kind of error (technically
called exception) producing at the execution of the program and

 91

terminate the program at the step when the divided-by-zero event
happens. For operations that result in float or double values, a number
divided by zero will not cause the program to terminate and the
resulting floating point values will be the Infinity or –Infinity values.

When a floating point value of zero is divided by another zero, the
resulting value is NaN, which stands for “Not a Number”. NaN is also used
to represent a square root of negative number.

Example 23: Dividing by zeros: Types matter.

public class DivByIntZero1 { 1
 public static void main(String [] args){ 2
 int number = 4, zero = 0; 3
 System.out.println(number/zero); 4
 } 5
} 6

Figure 63: A Java program that produces the divided-by-zero exception

In this example, an int variable zero is intentionally assigned with the
int value of 0 in order to demonstrate that when it is used as a
denominator in the input of System.out.println() on line 4, the program
produces an exception that causes the program to terminate. It is
unsurprising that the compiler does not complain anything during the
compilation since it does not check for values of all variables used to
divide other values. Therefore, it cannot catch this during the time the
program gets compiled.

92

Now let’s look at another case in which floating-point numbers are
divided by zeros.

public class DivByFloatingPointZero1 { 1
 public static void main(String [] args){ 2
 float f = 4.0f, floatZero = 0.0f; 3
 double d = 4.0, doubleZero = 0.0; 4
 System.out.println(); 5
 System.out.print("f/floatZero\t=\t"); 6
 System.out.println(f/floatZero); 7
 System.out.print("d/doubleZero\t=\t"); 8
 System.out.println(d/doubleZero); 9
 System.out.print("-f/floatZero\t=\t"); 10
 System.out.println((-f)/floatZero); 11
 System.out.print("-d/doubleZero\t=\t"); 12
 System.out.println((-d)/doubleZero); 13
 System.out.print(" 0.0f/ 0.0f\t=\t"); 14
 System.out.println(floatZero/floatZero); 15
 System.out.print(" 0.0 / 0.0\t=\t"); 16
 System.out.println(doubleZero/doubleZero); 17
 System.out.print("-0.0f/ 0.0f\t=\t"); 18
 System.out.println((-floatZero)/floatZero); 19

 System.out.print("-0.0 / 0.0\t=\t"); 20
 System.out.println((-doubleZero)/doubleZero); 21
 } 22
} 23

Figure 64: A Java program with expressions evaluated to the double-
valued Infinity, -Infinity and NaN

 93

Observe the result of this program, we can see that the program prints
out Infinity or –Infinity in the cases that floating point numbers are
divided by zero. Both values differ in the way that the former one is
positive and the latter one is negative. Also, we can observe the
occurrences of NaN due to the fact that zeros are divided by zeros.

Example 24: An ‘infinity’ has its data type

The following source code shows errors that emphasize the fact that
Infinity is a value that is subjected to strong data typing as well as other
values.

public class TypeOfInfinity { 1
 public static void main(String [] args){ 2
 float f1 = 4.0/0.0; 3
 float f2 = 0.0/0.0; 4
 float f3 = 4.0f/0.0f; 5
 float f4 = 0.0f/0.0f; 6
 } 7
} 8

Figure 65: Compilation errors due to data type mismatch in the cases
when numbers are divided by zeros

From the screenshot showing the errors, we can see that the Java
compiler report two errors caused by the assignment statements on line 3
and on line 4. Although the expression 4.0/0.0 should be evaluated to

94

Infinity without any problems, its data type is double which cannot be
directly assigned to a float variable. On line 4, the expression 0.0/0.0
results in the value NaN of the type double which also caused another
error when assigned to a float variable. However, errors do not occur
for the statements on line 5 and on line 6 since the resulting Infinity and
NaN are of the type float.

Compound Assignment

One common task frequently found in general computer programming is
when an operator is applied to the value of a variable, and then the result
of the operation is assigned back to that variable. For example, k = k +
7;, m = m*3;, and s = s+”ful”;. These can be written in a shorthanded
fashion in Java.

Let be a Java operator, k be a variable, and m be any valid Java
expression. The operation:

k = k m; can be written as k = m;

For example,

k = k + 1; can be written as k += 1;
i = i * 8; can be written as i *= 8;
j = j / 3; can be written as j /= 3;
s1 = s1 + s2; can be written as s1 += s2;

Increment and Decrement

Java has special operators for incrementing and decrementing a numeric
variable. The increment operator (++) add to the value of the variable to
which it is applied. The decrement operator (--) subtract from the value
of the variable to which it is applied.

 95

++k and k++ is equivalent to k = k +1; or, similarly, k += 1;

--k and k-- is equivalent to k = k – 1; or, similarly, k -= 1;

The difference between when the increment or decrement operator is
applied prior to the variable (prefix version) and after the variable
(postfix version) becomes apparent when it is a part of a longer
expression when the value of the variable is used. In such a situation, if
an increment or decrement operator is applied prior to the variable, the
value of that variable increases or decreases by one prior to being used as
a part of the expression. In contrary, if it is applied after the variable, its
value is used prior to the incrementing or the decrementing.

Consider the following example.

Example 25: Prefix-postfix frenzy

Observe the difference between the results of the prefix and the postfix
versions of the increment operator used in the following program.

public class IncDecOp { 1
 public static void main(String [] args){ 2
 int x=1, y=1; 3
 System.out.println(); 4
 System.out.println("Start at x = 1"); 5
 System.out.println("Line 6 ->" + x++); 6
 System.out.println("Line 7 ->" + x); 7
 System.out.println(); 8
 System.out.println("Start at y = 1"); 9
 System.out.println("Line 10 ->" + ++y); 10
 System.out.println("Line 11 ->" + y); 11
 } 12
} 13

96

Figure 66: A Java program demonstrating the difference between the
prefix and the postfix versions of the increment operator

Let’s focus on the output due to the statement on line 6. In this statement,
x++ is used as a part of the expression supplied as the input to
System.out.println(). Since the increment operator used here is the postfix
version, the value of x (which is 1) is used as an operand for evaluating
the expression input to the method prior to the increment of x. As we
print the value of x out after that, we can observe that the resulting value
of x is indeed incremented from 1 to 2, as the result of the increment
operator.

In contrary to the postfix version, the increment expression in the
statement on line 10 uses the prefix version on y. This makes the
expression increase value of y by 1 before the increased value is used for
the rest of the statement. Therefore, the value 2 is concatenated with
“Line 10 ->” and printed out on screen.

Exercise

1. Specify the data type of these values.

9.0 8 15d 900F 258234
'8' "888" "16.0d" 15L "8"
0x99 (int)9.1 1e1 256f 900L
1.0e10

 97

2. Specify the data type of the values resulting from these
operations.

1/2 9F+3D (int)(5+5.0)
6.0%9 1.0*1/1 9+(double)4
1.5f+3 (int)5.0+5.0 (double)5+"6"

3. Explain widening and narrowing in the context of Java primitive
date type conversion.

4. Explain why the following code segment causes a compilation
error.

 int x1,x2;
 double y = 1.0;
 x1 = (int)y;
 x2 = 1L;

5. Determine the resulting value of the variable x in the following
code segment.

 double x;
 int y = 90;
 x = y/100;
 System.out.println("x="+x);

6. Write a Java program that performs the following steps. Perform
appropriate type casting when needed.

a. Declare a float variable called f.
b. Declare an int variable called k.
c. Assign 22.5 to f.
d. Assign the value of f to k.
e. Convert the current value of f to short and print it out on

screen.

7. Write a Java program that performs the following steps:

a. Declare an int variable called k.
b. Declare a double variable called pi and initialize it to the

value of
c. Calculate the smallest integer that is bigger than the

square of the value in pi, and assign the resulting value
to k. (Do not forget type casting.)

8. Determine what will be shown on screen if the following
statements are executed.

98

 float f = 500F, g = 500F;
 System.out.println(f/0);
 System.out.println(-f/0);
 System.out.println((f-500)/(f-g));
 System.out.println(-(f-500)/(f-g));

9. Determine the value of x when the following code segment is
executed.

 double x = 1;
 x += 3;
 x *= 10;
 x -= 10;
 x /= 5;
 x %= 5;

10. In one valid Java statement, assign y with twice the value of x
and then increase x by one. Assume that x and y are variables of
type int which are correctly declared and initialized.

11. In one valid Java statement, make the value of x twice as big as
its current value and then assign the value to y. Assume that x
and y are variables of type int which are correctly declared and
initialized.

12. Explain why the following code segment causes a compilation
error.

 int x;
 (x++)++;

13. Determine what will be shown on screen if the following
statements are executed.

 int x=1,y=5;
 System.out.print(++x+”,”+y++);

14. Determine what will be shown on screen if the following
statements are executed.

 int x=1;
 System.out.print(x+(x++)+(x++));

15. Determine what will be shown on screen if the following
statements are executed.

 int x=1;
 System.out.print(x+(++x)+(++x));

 99

16. Determine what will be shown on screen if the following
statements are executed.

 int x=1,y;
 System.out.print(y=x++ +x);

 101

Chapter 5: Using Objects

Objectives
Readers should
 Understand classes and objects.
 Be able to use class methods and data from existing classes.
 Be familiar with the String class and be able to use its methods.
 Be able to use the BufferedReader class as well as the Scanner class to

get users’ input from keyboards.
 Be able to process keyboard input as String and numeric values.

Classes and Objects

In real world, the word class is used to identify category of things, while
objects of a class are instances of things belonging to that category.

Figure 67: A classroom with 17 desks and 16 chairs

102

If we look at Figure 67 and say “There are 17 desks and 16 chairs in the
classroom”, we could consider that each of the word ‘desk’ and the word
‘chair’ is a class. Each of the 17 desks is an instance or object of the class
‘desk’ and each of the 16 chairs is an instance or object whose type is
different from each of the 17 desks. Objects of the same class must share
some aspects of their properties. From the setting of the classroom in the
figure, we might say that from the 17 desks, there are 16 desks that are
student desks and the other one is a teacher desk. An instance of a
student desk might have some properties that are absent from a teacher
desk. At the same time, it might have some properties that are irrelevant
to a teacher desk. However, both the student desk and the teacher desk
share some common aspects. They are both desks. This means it is
natural that they belong to the same class.

In Java, classes are data types which can be comparable to categories of
things in real world. Classes are considered non-native data types. New
classes can be created while primitive data types cannot. As in the real
world, an object is an instance of a class. The data type of an object is the
class it belongs to.

Consider the following Java statements. Note that, as we have
mentioned, String is a class in Java.

String s1;
s1 = "Chocolate Chip";

In the first statement, a variable named s1 is declared as a variable that is
used for storing an object of the class String. In the second statement, an
object of class String is created with the content "Chocolate Chip" and
assigned to the variable s1. In other words, s1 is made to point to the
String object "Chocolate Chip". What have occurred can be depicted in
Figure 68.

 103

Figure 68: Declaration and assignment of a String object

Using Data and Methods provided in Classes

An object of a class contains data and methods. For example, there is a
Java class names Rectangle, which is a data type used for representing a
rectangle. The data contained in each object of this Rectangle class are
height, width, x, and y, which stores necessary attributes that define a
rectangle. Apart from data, the class also provides several methods
related to using the rectangle, such as getHeight(), getWidth(), getX(),
getY(), and setLocation(). This class might be illustrated in Figure 69. Note
that the illustration used for describing class details here mainly adopts
an industry-standard notation for describing classes but it differs in
details for the sake of simplicity.

"Chocolate Chip"

"Chocolate Chip"

String s1;

s1 is created. It does not
contain anything yet.

s1 = "Chocolate Chip";

A String object containing
“Chocolate Chip” is created,
but unreferenced.

s1 = "Chocolate Chip";

s1 is made to point to the
String object "Chocolate Chip".

s1

s1

s1

104

Figure 69: An abstract representation of the details of a class

Generally, when we write computer programs in Java, we make use of
existing methods and data that have already been defined or made in
some existing classes. The dot operator (.) is used for accessing data or
methods from a class or an object of a class. We have already seen (and
used) two methods that print message onto the screen since earlier
chapters. Here, we discuss the meaning of them. Consider the two
methods below.

System.out.print("Strawberry Sundae");
System.out.println("Banana Split");

The four periods seen in both statements above are the dot operator.
System is a class in a standard Java package. This class contains an object
called out, whose class is a class called PrintStream. Thus, using the dot
operator, we refer to this out object in the class System by using
System.out. Consequently, the PrintStream class contains print() and
println(), and we can access the two methods using System.out.print()
and System.out.println().

Rectangle

height
width
x
y

getHeight()
getWidth()
getX()
getY()
setLocation()
 :

Data

Methods

 105

Figure 70: An abstract representation classes, objects, and methods
involving in System.out.print() and System.out.println()

Some data and methods can be accessed by using the dot operator with
the name of the class while some can be accessed by using the name of
the variable storing the object of that class. Data and methods that are
accessed via the class name are called class (or static) data and class (or
static) methods. Data and methods that are accessed via the object name
are called instance (or non-static) data and instance (or non-static) methods.
At this point, you are not expected to know that whether the data and
methods that you have never come across before are associated with
classes or instances (objects). Just make sure you understand what you
are doing when accessing ones.

Example 26: Area of a circle

public class AreaOfCircle 1
{ 2
 public static void main(String[] args) 3
 { 4
 double area, r = 10; 5

(continued on next page)

System

in
out

:

PrintStream

print()
println() :

:

data

methods

methods

data

System.out.print()

System.out.println()

System System.out

106

(continued from previous page)
 String s1 = "The Area of a circle with "; 6
 String s2 = " r = "; 7
 String s3 = " is "; 8
 String s4; 9
 area = Math.PI*Math.pow(r,2); 10
 s4 = s1.concat(s2); 11
 System.out.println(s4+area); 12
 } 13
} 14

Figure 71: A program calculating the area of a circle

This Java program calculates the area of a circle with radius r, where r
equals 10. On line 10, we calculate the area by multiplying Math.PI with
Math.pow(r,2). The former expression refers to the value that is defined
in a constant value names PI in the Math class. The later is the activation
of a method called pow() that is also defined in the Math class. pow(r,2)
computes the square of r. Notice that we do not need to create an object
of the Math class but we access the data and method from the name of
the class directly.

On line 11, we make use of a method called concat(). It is accessed from a
variable that contains a String object. s1.concat(s2) returns a String
object resulting from the concatenation of the String object in s1 and the
String object in s2. Also, on line 11, the concatenated String object is
assigned to s4.

 107

Useful String methods

Let’s look at some methods that we can use from a String object. The
methods discussed here do not make the complete list of the methods
provided by String. Examples are given so that you can see what each
method does as well as practice your code reading skill at the same time.

charAt()
Let s be a String object and i be an int. s.charAt(i) returns the char
value at the i th index.

length()
Let s be a String object. s.length() returns the int value equals to the
length of the String.

Example 27: Demonstration of String methods (1)

Consider the following Java program.

public class CharAtDemo 1
{ 2
 public static void main(String[] args) 3
 { 4
 String s = "ABCD\nEFGH"; 5
 char c; 6
 System.out.println("s = "); 7
 System.out.println(s); 8
 c = s.charAt(0); 9
 System.out.println("charAt(0)="+c); 10
 c = s.charAt(1); 11
 System.out.println("charAt(1)="+c); 12
 c = s.charAt(5); 13
 System.out.println("charAt(5)="+c); 14
 System.out.print("The length of this string is ") 15
 System.out.println(s.length()+" characters"); 16
 c = s.charAt(s.length()-1); 17
 System.out.println("The last char ="+c); 18
 } 19
} 20

108

Figure 72: Demonstration of using charAt() and length()

From the above Java program, the String s contains 9 characters, which
are ‘A’, ‘B’, ‘C’, ‘D’, ‘\n’, ‘E’, ‘F’, ‘G’, and ‘H’. Notice that an
escape sequence is considered a single character. On line 9, line 11, and
line 13, the characters at 0, 1, and 5 which are ‘A’, ‘B’ and ‘E’ are
assigned to the char variable c. Then, c is printed out to the screen after
each assignment. On line 16, and line 17, the length of the String in s is
extracted via the method length(). Be aware that, the first index of a
String is 0, so the location of the last character is s.length()-1.

concat()
Let s be a String object and r be another String object. s.concat(r)
returns an new String object whose content is the concatenation of
the String in s and r.

Example 28: Demonstration of String methods (2)

public class ConcatDemo 1
{ 2
 public static void main(String[] args) 3
 { 4
 String s1 = "First"; 5
 String s2 = "Second"; 6
 String s3, s4; 7
 8
 s3 = s1.concat(s2); 9
 s4 = s2.concat(s1); 10
 System.out.println("s1 is "+s1); 11

(continued on next page)

 109

(continued from previous page)
 System.out.println("s2 is "+s2); 12
 System.out.println("s3 is "+s3); 13
 System.out.println("s4 is "+s4); 14
 15
 String s5 = "AB".concat("CD").concat("EF"); 16
 System.out.println("s5 is "+s5); 17
 } 18
} 19

Figure 73: Demonstration of using concat()

Notice the difference between s1.concat(s2) and s2.concat(s1). Also
note that invoking the method concat() from a String s creates a new
String object based on s and the String input into the parentheses, it does
not change the value of the original String object. On line 16, we show
two things. Firstly, we can invoke String methods directly from a String
object without having to be referred to by a variable, i.e.
“AB”.concat(“CD”) can be done without any errors. Secondly, since
“AB”.concat(“CD”) results in a new String object, we can call a String
method from it directly, e.g. “AB”.concat(“CD”).concat(“EF”), and the
result is “ABCDEF”, as expected.

indexOf()
Let s be a String object and c be a char value. s.indexOf(c) returns
the index of the first c appearing in the String. It returns -1 if there is
no c in the String. If i is an int value equals to the Unicode value of
c, s.indexOf(i) returns the same result. A String r can also be used in
the place of c. In that case, the method finds that String inside the

110

String s. If there is one, it returns the index of the first character of r
found in the String s. Again, it returns -1 if r is not found in s.

lastIndexOf()
lastIndexOf() works similarly to indexOf() but it returns the index of
the last occurrence of the input character or the index of the first
character in the rightmost occurrence of the input String.

Example 29: Demonstration of String methods (3)

The following program demonstrate some results of using indexOf() on a
String object.

public class IndexOfDemo 1
{ 2
 public static void main(String[] args) 3
 { 4
 String s = "oxx-xo--xoXo"; 5
 System.out.println("The first 'x' is at "+s.indexOf('x')); 6
 System.out.println("The first 'o' is at "+s.indexOf('o')); 7
 System.out.println("The first '-' is at "+s.indexOf(45)); 8
 System.out.println("The first 'X' is at "+s.indexOf('X')); 9
 } 10
} 11

Figure 74: Demonstration of using indexOf()

From the program, we can see that the first occurrence of the character
‘x’ is at position 1 and it is at position 0 for ‘o’. You should be reminded
that the first position is indexed as the position 0. These can be compared
with the result of the statements on line 6 and line 7.

 111

The statement on line 8 shows an example of when the input to indexOf()
is an int value. Since the Unicode of ‘-‘ is 45, the method returns 3 as it
is the first position that ‘-‘ occurs.

Also, make sure you remember that Java is a case-sensitive language.
That is why the result of s.indexOf(‘x’) is different than the one of
s.indexOf(‘X’).

The following program use String objects as inputs to indexOf().

public class IndexOfDemo2 1
{ 2
 public static void main(String[] args) 3
 { 4
 String s = "Chulalongkorn University"; 5
 System.out.println(s); 6
 System.out.println("Univ is at "+s.indexOf("Univ")); 7
 System.out.println("0123 is at "+s.indexOf("0123")); 8
 } 9
} 10

Figure 75: Demonstration of using lastIndexOf()

The indexOf() methods on line 7 and line 8 find the first occurrences of
the input String objects in s. Each of them returns the position of the first
character of the first occurrence of the String supplied as input. Figure 76
illustrates the position of “Univ” in s.

112

Figure 76: Finding Strings in another String

The int value -1 is returned when the string cannot be found, as we can
see from the result of the statement on line 8.

Example 30: Demonstration of String methods (4)

This example demonstrate the use of lastIndexOf().

public class IndexOfDemo3 1
{ 2
 public static void main(String[] args) 3
 { 4
 String s = "say ABC ABC ABC"; 5
 System.out.println(s); 6
 System.out.print("lastIndexOf(\'B\') ="); 7
 System.out.println(s.lastIndexOf('B')); 8
 System.out.print("lastIndexOf(\"AB\")="); 9
 System.out.println(s.lastIndexOf("AB")); 10
 } 11
} 12

Figure 77: Demonstration of using lastIndexOf()

C h u l a l o n g

 U n i v e r s i t y n

k o r

Position

Position

1 2 3 4 5 6 7 8 9 10 11 0

12 13 14 15 16 17 18 19 20 21 22 23

“Univ”

 113

On line 8, the method is input with a char value while it is input with a
String object on line 10. In the case of String, the method returns the
position of the first character of the last occurrence.

startsWith()
Let s be a String object and prefix be another String object.
s.startsWith(prefix) returns true if the String s starts with prefix.
Otherwise, it returns false.

endsWith()
Let s be a String object and suffix be another String object.
s.endsWith(suffix) returns true if the String s ends with suffix.
Otherwise, it returns false.

trim()
Let s be a String object. s.trim() returns a new String object, which is
a copy of s, but with leading and trailing whitespaces omitted.

Example 31: Demonstration of String methods (5)

public class TrimDemo 1
{ 2
 public static void main(String[] args) 3
 { 4
 String s1 = " Computer Engineering "; 5
 String prefix = "Computer"; 6
 String suffix = "ing"; 7
 System.out.print("\""+s1+"\" has \""+prefix); 8
 System.out.print("\" as a prefix:\t"); 9
 System.out.println(s1.startsWith(prefix)+"."); 10
 System.out.print("\""+s1+"\" has \""+suffix); 11
 System.out.print("\" as a suffix:\t"); 12
 System.out.println(s1.endsWith(suffix)+"."); 13
 14
 String s2 = s1.trim(); 15
 System.out.print("\""+s2+"\" has \""+prefix); 16
 System.out.print("\" as a prefix:\t"); 17
 System.out.println(s2.startsWith(prefix)+"."); 18
 System.out.print("\""+s2+"\" has \""+suffix); 19
 System.out.print("\" as a suffix:\t\t"); 20

(continued on next page)

114

(continued from previous page)
 System.out.println(s2.endsWith(suffix)+"."); 21
 } 22
} 23

Figure 78: Demonstration of using trim(), startsWith(), and endsWith()

The String s1 contains one whitespace character at the beginning and
three of them at the end. A new String object is created with these
leading and trailing whitespace characters trimmed before being
assigned to s2. Since s2 contains “Computer” right at the beginning and
“ing” right at the end of the String, s2.startsWith(prefix) and
s2.endsWith(suffix) return the boolean value true.

substring()
Let s be a String object. s.substing(a,b), where a and b are int
values, returns a new String object whose content are the characters
of the String s from the ath index to the (b-1)th index. If b is omitted
the substring runs from a to the end of s.

toLowerCase()
Let s be a String object. s.toLowerCase() returns a new String object
which is a copy of s but with all uppercase characters converted to
lowercase.

toUpperCase()
Let s be a String object. s.toUpperCase()returns a new String object
which is a copy of s but with all lowercase characters converted to
uppercase.

 115

Example 32: Demonstration of String methods (6)

Sometimes we might want to extract portion of a String object in which
we know that a certain number of sub-strings reside as well as that a
certain character is used as the delimiter. In this example, we show a
program that extracts sub-strings from “One:Two:Three” when the
character ‘:’ is thought of the delimiter that divides the three words:
“One”, “Two”, and “Three”.

public class SubStringDemo1 { 1
 public static void main(String [] args){ 2
 String s = "One:Two:Three", s1,s2,s3; 3
 s1 = s.substring(0,s.indexOf(':')); 4
 s2 = s.substring(s.indexOf(':')+1,s.lastIndexOf(':')); 5
 s3 = s.substring(s.lastIndexOf(':')+1); 6
 System.out.println(s1); 7
 System.out.println(s2); 8
 System.out.println(s3); 9
 } 10
} 11

Figure 79: Demonstration of using substring() with methods that find
the position of characters in String objects as well as toUppercase()

The word “One” is extracted by creating a new String object from s
starting from the position 0 upto just before the first occurrence of ‘:’ The
word “Two” is from the position after the first occurrence of ‘:’ upto just
before the position of the last (second, in this case) occurrence of ‘:’. The
word “Three” is from the position after the last occurrence of ‘:’ up until
the end of s.

116

In this example, we also convert every characters to their uppercases
using toUppercase() before printing them on to the screen.

valueOf()
valueOf() is a static or class method provided by the String class. It
creates a new String object whose value is the corresponding String
representation of the value input to the method. Recall that to use a
class method, we use the dot operator with the name of the class.

Reading Input String from Keyboards

It is usually a common requirement to obtain values from the user of the
program via keyboards. In Java, this capability is provided by some
methods, already defined in classes. A class called BufferedReader
provides a method that read characters from keyboard input, until a
newline character is found, and store the characters into a String object.
This method is called readLine(). Note that the newline character (\n)
signaling the end of the input is not included in the String.

First, since we are going to use the BufferedReader class, which is not
packages which are included by default, we need to let the compiler
know where to look for the definition of this class by adding the
following statement in to our source code on a line prior to the start of
our program’s definition.

import java.io.*;

Then, we need to create an object of class BufferedReader by using the
following statement.

BufferedReader stdin = new BufferedReader(new
InputStreamReader(System.in));

This statement creates a variable named stdin that refers to a
BufferedReader object. For simplicity, we will say that stdin is a
BufferedReader object. It is perfectly fine that you use exactly this

 117

statement to create a BufferedReader object. Detailed explanation is
omitted here.

Once a BufferedReader object is created, we can access the readLine()
method from that object. For example, we can use the following
statement to read keyboard input to a String object called s. Note that
stdin is the object we created in the previous statement.

String s = stdin.readLine();

Once the statement is executed, the program waits for the user to type in
the input until a newline character is entered. This input can be used
later in the program from the String s.

Example 33: Greeting the users by their names

The following program asks the user to input his/her first and last name.
Then it prints a message containing the names on to the screen. Notice
that another thing that is required to be added is throws IOException in
the header of the main() method. Again, explanation is omitted until you
learn about exceptions in Java. At this time, make sure you do not forget
to adds it in your program when readLine() is used in the main() method.

import java.io.*; 1
public class Greeting 2
{ 3
 public static void main(String[] args) throws IOException 4
 { 5
 String firstname, lastname; 6
 BufferedReader stdin = 7
 new BufferedReader(8
 new InputStreamReader(System.in)); 9
 System.out.print("Please enter your firstname:"); 10
 firstname = stdin.readLine(); 11
 System.out.print("Please enter your lastname:"); 12
 lastname = stdin.readLine(); 13
 System.out.println("-----------------------------"); 14
 System.out.println("Hello "+firstname+" "+lastname); 15
 System.out.println("-----------------------------"); 16
 } 17
} 18

118

Figure 80: A program that reads two String inputs from the keyboard

In this example, italicized expressions are what you need to pay attention
to. On line 1, the import statement tells the compiler about a location that
it should look if there appear to be non-standard methods. In the
statement that spans line 7 to line 9, a BufferedReader object, which we
name it stdin, is created using the statement mentioned earlier. On line
11 and line 13, the method readLine() is used to bring in the keyboard
inputs. It is a common practice that messages are shown prior to the
execution of readLine() in order to instruct users about what they should
be doing. Such messages are shown using print() on line 10 and line 12.

Converting Strings to numbers

Since the readLine() method returns a String object and sometimes we
expect the keyboard input to be numeric data so that we can process
numerically, we need a way to convert a String object to an appropriate
numeric value. Luckily, Java has provided methods responsible for
doing so.

parseInt()
parseInt() is a static method that takes in a String object and returns
an int whose value associates with the content of that String.
parseInt() is defined in a class called Integer. Thus, we should know
by now that calling a static method named parseInt() from the Integer

 119

class takes the form: Integer.parseInt(s), where s is a String object
whose content we wish to convert to int.

parseDouble()
parseDouble() is a static method that takes in a String object and
returns an double whose value associates with the content of that
String. parseDouble() is defined in a class called Double. Again, calling
parseDouble() takes the form: Double.parseDouble(s), where s is a
String object whose content we wish to convert to double.

Useful Methods and Values in Class Integer and
Class Double

It is necessary to know that Integer is a class, not the primitive type int,
and Double is another class, not the primitive type double. Furthermore, it
might come in handy if you know some of the constants and static
methods provided in these two classes (Apart from parseInt() and
parseDouble(), of course).

Here are some of them.

Integer.MAX_VALUE
 is an int holding the maximum value an int can have (231-1).

Integer.MIN_VALUE
 is an int holding the minimum value an int can have (-231).

Integer.toBinaryString(<an int>)
 returns a String of the int argument as an unsigned integer in
base 2.

Integer.toOctalString(<an int>)
 returns a String of the int argument as an unsigned integer in
base 8.

Integer.toHexString(<an int>)
 returns a String of the int argument as an unsigned integer in
base 16.

120

Integer.toString(<an int>)
 returns the String representation of the int argument.

Double.MAX_VALUE
 is the largest positive finite value of type double.

Double.MIN_VALUE
 is the smallest positive nonzero value of type double.

Double.NaN
 is a Not-a-Number (NaN) value of type double.

Double.POSITIVE_INFINITY
 is the positive infinite value of type double.

Double.NEGATIVE_INFINITY
 is the negative infinite value of type double.

Double.isInfinite(<a double>)
 returns true if the double argument is infinitely large in
magnitude.

Double.isNaN(<a double>)
 returns true if the double argument is an NaN value.

Double.toHexString(<a double>)
 returns the hexadecimal String of the double argument.

Double.toString(<a double>)
 returns the String representation of the double argument.

Example 34: Showing the binary representation of the input number

The program ShowBinary.java shown below is used for showing the
binary representation of an integer input by the user. This program could
act as a simple tool that helps you convert integers to its base 2 format.
Make sure you go through the program and try to understand all of the
statements.

import java.io.*; 1
public class ShowBinary 2

(continued on next page)

 121

(continued from previous page)
{ 3
 public static void main(String[] args) throws IOException 4
 { 5
 String readStr; 6
 int i; 7
 BufferedReader stdin = 8
 new BufferedReader(new 9
 InputStreamReader(System.in)); 10
 System.out.print("Enter an integer:"); 11
 readStr = stdin.readLine(); 12
 i = Integer.parseInt(readStr); 13
 System.out.println("Binary -> "+Integer.toBinaryString(i)); 14
 } 15
} 16

Figure 81: A program that reads two String inputs from the keyboard

The key idea to this program is that whenever you need to use the input
entered from the keyboard via readLine() as numeric values, the input
String object usually has to be converted to values in some numeric data
types first. On line 13, we use Integer.partInt() to convert the input String
object obtained from readLine() to int before using it as a numeric value
further in the program.

Example 35: Selective substrings

This example shows a program that receives multiple keyboard inputs.
Some are treated as strings, while some are converted to numbers.

import java.io.*; 1
public class SelectiveSubString { 2

(continued on next page)

122

(continued from previous page)
 public static void main(String [] args) throws IOException 3
 { 4
 String input,output; 5
 int start,len; 6
 BufferedReader in; 7
 in = new BufferedReader(8
 new InputStreamReader(System.in)); 9
 System.out.print("Enter a message:"); 10
 input = in.readLine(); 11
 System.out.print("Enter the starting position:"); 12
 start = Integer.parseInt(in.readLine()); 13
 System.out.print("Enter the length of the sub-string:"); 14
 len = Integer.parseInt(in.readLine()); 15
 output = input.substring(start,start+len); 16
 System.out.println("\nYour sub-string is \""+output+"\""); 17
 } 18
} 19

Figure 82: A program that reads two String inputs from the keyboard

The program asks the user to input a line of text as well as to pick a
portion of the line by specifying the starting position together with the
number of characters of that portion. The program uses readLine() to read
in the input. On line 13 and line 15, the starting position and the length
are converted to int values. The int values are then used with
substring() correspondingly.

Example 36: Funny encoder

Let’s look at the following Java program called FunnyEncoder.java. This
program uses only what we have learnt so far. The program converts a 4-

 123

digit string (E.g. 0345, 1829, etc.) into a specific code by mapping each
digit to a specific funny pattern defined in the following table.

Digit Pattern Digit Pattern
0 (^_^) 5 (^v^)
1 (-_-) 6 (^o^)
2 (>_<) 7 (^_____^)
3 (o_o) 8 (@_@)
4 (O_o) 9 (*__*)

Table 10: FunnyEncoder encoding scheme

For example, if the input digit string is 0123, the encoded string is (-_-
)(>_<)(o_o)(O_o). Here is the source code for the program and some
example outputs. Make sure you go through the program and try to
understand all of the statements.

import java.io.*; 1
public class FunnyEncoder 2
{ 3
 public static void main(String[] args) throws IOException 4
 { 5
 int loc; 6
 String input, output = "", s = ""; 7
 s += "(^_^) "; 8
 s += "(-_-) "; 9
 s += "(>_<) "; 10
 s += "(o_o) "; 11
 s += "(O_o) "; 12
 s += "(^v^) "; 13
 s += "(^o^) "; 14
 s += "(^_____^)"; 15
 s += "(@_@) "; 16
 s += "(*__*) "; 17
 18
 BufferedReader stdin = new BufferedReader(19
 new InputStreamReader(System.in)); 20
 System.out.print("Enter a 4-digit string:"); 21
 input = stdin.readLine(); 22
 loc = 9*Integer.parseInt(input.substring(0,1)); 23
 output += s.substring(loc,loc+9).trim(); 24
 loc = 9*Integer.parseInt(input.substring(1,2)); 25
 output += s.substring(loc,loc+9).trim(); 26
 loc = 9*Integer.parseInt(input.substring(2,3)); 27
 output += s.substring(loc,loc+9).trim(); 28
 loc = 9*Integer.parseInt(input.substring(3)); 29

(continued on next page)

124

(continued from previous page)
 output += s.substring(loc,loc+9).trim(); 30
 System.out.println("Encoded String -> "+output); 31
 } 32
} 33

Figure 83: The code listing of the FunnyEncoder program

Figure 84: An output of the FunnyEncoder program

In this program, all patterns are concatenated into a long String object s,
in the order from 0 to 9. Each pattern is padded with spaces so that every
pattern spans 9 characters. The idea is to extract each digit from the input
string and use the digit to locate the starting position of its corresponding
pattern in s so that substring() can be used accordingly.

A BufferedReader object is used to read a line assumed to contain 4 digits.
The starting position of the pattern associated with a digit i can be
calculated based on the fact that the length of every pattern is fixed at 9
to be 9 i. The position is stored in the variable loc and the encoded
pattern of that digit can be found using s.substring(loc,loc+9). The
method trim() is used for getting rid of trailing whitespaces padded to
each pattern.

Example 37: Vector decomposition

 125

Now we wish to write a program that calculates the resulting force in the
x and y directions, as illustrated in Figure 85, from the magnitude of the
input force F (in Newton) and the angle between F and the x axis (in
Degree).

Figure 85: Decomposition of a vector F into Fx and Fy

Problem definition: The program needs to calculate the force in the x and
y directions from the magnitude of the input force, F, and the angle, θ.

Analysis: There are two inputs, F and θ. Output, which are the force
components in the two directions, are to be shown on screen.

Design:

 Prompt the user to input F, and store the input in f.
 Prompt the user to input θ, and store the input in theta.
 Convert θ, which is in degree, to radian by . Then,

store the converted angle in thetaRad.
 Calculate the force component in the x direction from .

Then, store the result in fx.
 Calculate the force component in the y direction from .

Then, store the result in fy.
 Show the fx and fy on the screen.

x

y

F

θ

Fx

Fy

0

180deg
 reeradian

)cos(radianx FF

)sin(radiany FF

126

Implementation:

import java.io.*; 1
public class FindFComponents 2
{ 3
 public static void main(String[] args) throws IOException 4
 { 5
 double theta, f, thetaRad, fx, fy; 6
 BufferedReader stdin = 7
 new BufferedReader(new InputStreamReader(System.in)); 8
 // prompt for f 9
 System.out.print("Enter the magnitude of F (Newton): "); 10
 f = Double.parseDouble(stdin.readLine()); 11
 // prompt for theta 12
 System.out.print("Enter the angle between "); 13
 System.out.print("F and the x axis (Degree): "); 14
 theta = Double.parseDouble(stdin.readLine()); 15
 // convert degree to radian 16
 thetaRad = theta*Math.PI/180; 17
 // calculate fx and fy 18
 fx = f*Math.cos(thetaRad); 19
 fy = f*Math.sin(thetaRad); 20
 // show the results 21
 System.out.println("Fx = "+fx+" N"); 22
 System.out.println("Fy = "+fy+" N"); 23
 } 24
} 25

Figure 86: A program decomposing a force vector

This example shows a non-trivial program that utilizes the capability of
reading inputs from the keyboard as well as how to perform Arithmetic

 127

calculations covered in earlier chapters and how to handle conversion of
String to double properly.

Reading Formatted Input using Scanner

Another alternative for reading input from keyboards is to use a class
called Scanner, which is provided with Java in the java.util package. The
class comes with methods that support reading String as well as input of
primitive data types in formats (patterns) that can be defined.

Like BufferedReader as well as many other classes, in order to take the
benefit from the static methods provided in the class, an object of the
class is to be created first. Since Scanner is not in the default package,
before we can use it in our program we have to import the class so that
the compiler knows about it when the program gets compiled. The
import statement is:

import java.util.Scanner;

To create an object of the class Scanner and have its input source bound
with the keyboard, the following statement can be used.

Scanner sc = new Scanner(System.in);

This statement also creates a variable of the Scanner type and makes it
refer to the new Scanner object whose source is bound to the standard
input stream (I.e. the keyboard). Later on in the program, we can make
use of the (non-static) methods provided by Scanner through this sc
variable.

A Scanner object matches its String input obtained from its source with an
input pattern that can be set. By default, the input pattern is a sequence
of tokens separated by whitespaces, where each token can be thought of
as a string of characters. The default pattern looks like the one in Figure
87.

128

Figure 87: The default pattern used by a Scanner object

A Scanner object can read each token at a time and convert each token to
its corresponding value in a specified primitive data type as well as
String using various non-static method provided by the Scanner class.

To read a token from its input as a String, we can use the next() method,
whose description is given below.

next()
When sc is a Scanner object, sc.next() considers the current input
read by sc, finds the next token according to the defined pattern and
parse it as a String object.

Note that when next() is called, it will cause the program to wait for the
user’s input if the Scanner object has not read any input before or when
there are no more token to be parsed.

Example 38: Reading one String at a time using Scanner

The following Java program uses the Scanner class to read two tokens of
input and use them as String objects.

import java.util.Scanner; 1
public class ScannerDemo1 { 2
 public static void main(String [] args){ 3
 Scanner sc = new Scanner(System.in); 4
 System.out.print("Enter firstname and lastname:"); 5

(continued on next page)

Token1 Token2 Token3 Token4

A whitespace character or multiple
whitespace characters

 129

(continued from previous page)
 String fname = sc.next(); 6
 String lname = sc.next(); 7
 System.out.println("Firstname ="+fname); 8
 System.out.println("Lastname ="+lname); 9
 } 10
} 11

Figure 88: Using Scanner to read String objects

The above program declares and creates a Scanner object on line 4. Note
that for the program to know about Scanner, we need the import
statement as coded on the first line. The program prompts the user to
input a first name and a last name via keyboard. The program assumes
that the two pieces are separated using one or more whitespaces. When
the next() method is invoked on line 6, the program waits for the user to
type in a line of input. The method then tries to read the first token, all
characters prior to the first occurrence of a whitespace, and assign it as a
String object to fname. On line 7, next() is called again from sc. Here, the
program looks at the line input previously received by sc and tries to
parse another token and assign it as a String object to lname.

Figure 88 shows two executions of the program whose user inputs are
different in number of whitespaces used to separate the two tokens. It
works in both cases.

130

There are more methods than next() that let a Scanner object read a token
from its input. These methods automatically convert tokens into different
primitive data types.

Let’s assume that sc is a Scanner object when considering the
descriptions of the following methods.

nextBoolean()
sc.nextBoolean() considers the current input read by sc, finds the
next token according to the defined pattern and parse it as a
primitive boolean value.

nextByte()
sc.nextByte() considers the current input read by sc, finds the next
token according to the defined pattern and parse it as a primitive
byte value.

nextDouble()
sc.nextDouble() considers the current input read by sc, finds the
next token according to the defined pattern and parse it as a
primitive double value.

nextFloat()
sc.nextFloat() considers the current input read by sc, finds the next
token according to the defined pattern and parse it as a primitive
float value.

nextInt()
sc.nextInt() considers the current input read by sc, finds the next
token according to the defined pattern and parse it as a primitive int
value.

nextLong()
sc.nextLong() considers the current input read by sc, finds the next
token according to the defined pattern and parse it as a primitive
long value.

 131

nextShort()
sc.nextShort() considers the current input read by sc, finds the next
token according to the defined pattern and parse it as a primitive
short value.

Example 39: Reading formatted data input

This example shows the use of Scanner to read in values of primitive data
types as well as String. The program finds the average score from two
data sets, each of which contains the name of a person and a numeric
score.

import java.util.Scanner; 1
public class ScannerDemo2 { 2
 public static void main(String [] args){ 3
 String name1, name2; 4
 double score1, score2; 5
 Scanner sc = new Scanner(System.in); 6
 System.out.println("---------------------------------"); 7
 System.out.println("Enter each data set by specifying"); 8
 System.out.println("a person name and his/her score "); 9
 System.out.println("separated by spaces"); 10
 System.out.println("---------------------------------"); 11
 12
 System.out.print("Data set 1:"); 13
 name1 = sc.next(); 14
 score1 = sc.nextDouble(); 15
 16
 System.out.print("Data set 2:"); 17
 name2 = sc.next(); 18
 score2 = sc.nextDouble(); 19
 20
 System.out.println("---------------------------------"); 21
 System.out.print("The average score of "+name1+" and "); 22
 System.out.print(name2+" is "+(score1+score2)/2); 23
 } 24
} 25

132

Figure 89: Using Scanner to read String objects and double values

The statements on line 4 to line 11 declare necessary variables, create a
Scanner object, and show brief instructions to the user. The statements on
line 13 to line 15 involve reading a String as well as a double value as two
tokens read from sc. Here, the input must be in a format that starts with
the name, follows with a single or multiple whitespaces, and then ends
with a number. The statements on line 17 to line 19 perform the same
thing with the second set of data. Once everything is read and assigned
to the variables, the output can be processed accordingly.

More realistic examples will be shown later when we learn about
decisions and iterations.

Exercise

1. Write valid Java statements that perform the following steps.
a. Declare a variable for storing a String. Name it s1.
b. Have s1 refer to a new String object whose content is

“Java”.
c. Declare another variable named s2 and have it refer to

a new String object whose content is “Programming”.
d. Print the concatenation of s1 and s2 on screen.

 133

2. Explain in your own words the functionality of the two dot
operators in the statement System.out.print(“I love

eating!”);.

3. Given that Calendar is a valid class in Java and c is a variable
referring to an object of the Calendar class, which of the
following expression involve calling a method in the Calendar
class. And, which ones simply access some data in the Calendar
class. (Ignore their meanings for now.)

a. Calendar.DECEMBER
b. Calendar.getInstance()
c. Calendar.getAvailableLocales()
d. c.isTimeSet
e. Calendar.MILLISECOND
f. c.clear()
g. c.get(1)

4. Write a Java program that calculates and shows the areas and
circumferences of three circles, each of which has its radius of
3, 100, and 8.75 centimeters.

5. What is the output of the following code segment?

 String s = “tachygraphometry”;
 System.out.println(s.charAt(1));
 System.out.println(s.charAt(5));
 System.out.println(s.charAt(12));
 System.out.println(s.charAt(s.length()-1));

6. What is the output of the following code segment?

 String s1 = "macaroni penguin";
 String s2 = s1.substring(
 s1.indexOf(' ')+1,s1.length()).toUpperCase();
 System.out.println(s1);
 System.out.println(s2);

7. What is the output of the following code segment?

 String s1 = "Houston";
 String s2 = "Dallas".concat(s1);
 s1 = s2.substring(2,4);
 System.out.println(s1.length());
 System.out.println(s2.length());

134

8. What is the output of the following code segment?

 String s = "Jacobian";
 System.out.println(s.indexOf('J'));
 System.out.println(s.indexOf('c'));
 System.out.println(s.indexOf('a'));
 System.out.println(s.indexOf('j'));
 System.out.println(s.indexOf('c'-1));

9. What is the output of the following code segment?

 String s1 = "A";
 String s2 = s1+1;
 char c = 'A';
 String s3 = c+1+"A";
 System.out.println(s2.concat(s3).concat(s1));

10. What is the output of the following code segment?

 String s = "1999";
 System.out.println(String.valueOf(s));
 System.out.println(String.valueOf(s)+1);
 System.out.println(String.valueOf(s+1));

11. Explain why the String class is available to our program
without the use of an import statement and why an import
statement is required when we want to use the BufferedReader
class in out program.

12. Write a Java program that prompts for and accepts a text
message from the user via keyboard and prints it out on
screen.

13. Write a Java program that prompts for two text messages from
the user via keyboard, connect them together, and print the
result on screen.

14. Write a Java program that prompts for and accepts a telephone
number of the form xx-xxx-xxxx where each x is a digit (e.g.
02-123-9999), and prints it out in the following form: x-xxxx-
xxxx (e.g. 0-2123-9999).

 135

15. Write a Java program that prompts for and accepts an email
address and prints the associated account’s name and domain
name in two separate lines. For example, me@somemail.com
should be printed out as:

 me
 somemail.com

16. Write a Java program that prompts for and accepts two
numbers, a and b, via keyboard, and prints out the results of
the following numeric computation:

bb aa
b
ababa and , , , ,

 137

Chapter 6: Decisions

Objectives
Students should
 Be able to use Java conditional constructs, including if, if-else, and

switch, as well as the nested version of those constructs correctly.
 Be able to perform equality testing suitable with each primitive data

type.
 Be able to design programs that require the inclusion of decisions.

Controlling the Flow of Your Program

Up to this point, you should be familiar with creating Java program that
runs in straight lines, i.e. statements are executed in the order they are
listed every time. Although this is enough for solving simple problems, it
is not enough for general problem solving. Generally, we need to have
control over which statements are executed and how often. In this
chapter, we will look at Java’s conditional constructs that control whether
statements listed. Conditional constructs include if, if-else, and switch.
In the next chapter, we will look at Java’s iterative constructs that control
how often statements are executed.

Before we look at conditional constructs, let’s revisit FunnyEncoder.java
presented in Example 36. The program converts a 4-digit string to its
corresponding encoded string. The 4-digit string to be converted is
supplied by the user of the program via keyboard. As long as the user
enters any legal 4-digit string, the program works fine. However, the
program is not fool-proof. What will happen if the length of the string
entered is less than 4? Below are the results of inputting a 3-digit and 2-
digit strings into the program.

138

Figure 90: Run-time errors from the FunnyEncoder program without
input validation

When the input is 123, which is a String of length 3, the program gives
out an error because we try to find substring(3) on a String of length 3,
in which case the index used for substring() is beyond the range of that
String. The cause of the error, when the input is 01, is because of
substring(2,3) which is due to the similar reason.

Naturally, we wish to have our program check for the length of the input
digit string first, and then let the program process with the rest of the
statements if the length equals 4. Otherwise, the program should prompt
the user to input a new digit string with the valid length by executing a
different set of statements. This is where conditional constructs comes
into play.

We will visit FunnyEncoder.java again after we have learned about the
syntax of Java’s conditional constructs.

‘If’ Construct

When we want to write a program that involves the program flow
shown below, i.e. Action is performed only when the Test Expression is
true, we use an if statement.

 139

Figure 91: A flowchart associated with an if construct

A form of an if statement has the following syntax.

if (Test Expression) Action

Test Expression can be any expression that can be evaluated to a boolean
value. Action can be a single Java statement or a series (or block) of
statements enclosed in curly braces {}. Whether it is a single Java
statement (E.g. j = k + 1;), or a block of statements (E.g. {j=k+1;
k=0;}), it will be executed only when the boolean value of Test

Expression is true. Otherwise, the program will skip over Action to the
next statements, if there are any.

Consider the following examples.

Example 40: Implementing an absolute value finder

The following program shows how to use an if statement to check the
sign of the input.

import java.io.*; 1
public class ShowAbsolute 2
{ 3
 public static void main(String[] args) throws IOException 4
 { 5
 double d; 6

(continued on next page)

Action

Test Expression
true

false

140

(continued from previous page)
 BufferedReader stdin = 7
 new BufferedReader(new 8
 InputStreamReader(System.in)); 9
 System.out.print("Enter a number:"); 10
 d = Double.parseDouble(stdin.readLine()); 11
 12
 if(d < 0) d = -d; 13
 14
 System.out.println("Its absolute value = "+d); 15
 } 16
} 17

Figure 92: A program showing the absolute value of the input

This program gets a number from keyboard and shows the absolute
value of that input. Line 13 uses an if statement to check whether d<0. If
d<0 is true, d = -d is executed. If d<0 is false, d = -d is not executed and
the program just continues on the next line. In this example, Action is a
single Java statement d = -d; (which is terminated with a semicolon).

Example 41: Ad-hoc sorting of three inputs

Consider the following program where Action in the if statement is a
block containing multiple statements.

import java.io.*; 1
public class ShowInOrder 2
{ 3
 public static void main(String[] args) throws IOException 4
 { 5
 double d1,d2,temp; 6

(continued on next page)

 141

(continued from previous page)
 BufferedReader stdin = 7
 new BufferedReader(new InputStreamReader(System.in)); 8
 System.out.print("Enter the 1 st. number:"); 9
 d1 = Double.parseDouble(stdin.readLine()); 10
 System.out.print("Enter the 2 nd. number:"); 11
 d2 = Double.parseDouble(stdin.readLine()); 12
 13
 if(d1 > d2){ 14
 temp = d1; 15
 d1 = d2; 16
 d2 = temp; 17
 } 18
 19
 System.out.print("Showing the numbers ”); 20
 System.out.println(“from small to large."); 21
 System.out.println(d1+", "+d2); 22
 } 23
} 24

Figure 93: A program showing inputs from the smaller to the larger

This program takes two numbers from the users and showing them on
screen in an ascending order. If you observe the code on line 22, you will
see that no matter what numbers are input into d1 and d2, we always
print out d1 and then d2. So, if d1 is greater than d2, its value needs to be
swapped. The swapping of the values are done on line 15, line 16, and
line 17, all of these will be executed only if d1 is greater than d2. That
means if d1 is originally smaller than d2, we do not have to do anything
to the values prior to the printing out on line 22.

142

‘If-else’ Construct

Many times, when Test Expression is false, we do not want the program
to just skip some portion of the code, but instead we want to execute a
portion of the code that is different than when Test Expression is true.
The mentioned situation can be depicted in the following picture.
Action1 will be done when Test Expression is true. Action2 will be done
when Test Expression is false.

Figure 94: A flowchart associated with an if-else construct

The syntax of an if-else statement is of the following structure.

if(Test Expression) Action1 else Action2

Again, Test Expression can be any expression that can be evaluated to a
boolean value. Action1 and Action2 can be single Java statements or
series (or blocks) of statements enclosed in curly braces {}. Whether each
of them is a single Java statement, or a block of statements, it will be
executed based on the boolean value of Test Expression. After the if-
else statement, the program will continue on to the next statements, if
there are any.

Example 42: The bigger number

The following Java program prints the number that is bigger between
two numbers input by the user.

Action1

Test
Expression

true false

Action2

 143

import java.io.*; 1
public class PrintBiggerNumber 2
{ 3
 public static void main(String[] args) throws IOException 4
 { 5
 double d1,d2,bigger; 6
 BufferedReader stdin = 7
 new BufferedReader(new InputStreamReader(System.in)); 8
 System.out.print("Enter the 1 st. number:"); 9
 d1 = Double.parseDouble(stdin.readLine()); 10
 System.out.print("Enter the 2 nd. number:"); 11
 d2 = Double.parseDouble(stdin.readLine()); 12
 13
 if(d1 < d2) 14
 bigger = d2; 15
 else 16
 bigger = d1; 17
 18
 System.out.println("The bigger number is "+bigger); 19
 } 20
} 21

Figure 95: A program that use an if-else construct to check for the
bigger input of the two inputs

d1 and d2 are the two numbers input by the user. On line 14, the two
numbers are compared. If d1<d2 is true, line 15 is executed and
consequently, the value in d2 is stored in bigger. After that, the program
proceeds on line 18 and so on. If d1<d2 is false, line 17 is executed and
consequently, the value in d1 is stored in bigger. In a similar fashion, the
program proceeds on line 18 and so on.

144

Example 43: Functions of x

The following program shows an example when Action1 and Action2 are
blocks of statement. This program computes the value of f(x) and g(x)
from these equations:

 otherwise ;0
1000 ;

)(

 otherwise ;0
1000 ;2

)(

2 xx
xg

xx
xf

import java.io.*; 1
public class FunctionsOfX 2
{ 3
 public static void main(String[] args) throws IOException 4
 { 5
 double x, f, g; 6
 BufferedReader stdin = 7
 new BufferedReader(new InputStreamReader(System.in)); 8
 System.out.print("Enter x:"); 9
 x = Double.parseDouble(stdin.readLine()); 10
 if(x>=0 && x<=100){ 11
 f = 2*x; 12
 g = x*x; 13
 }else{ 14
 f = 0; 15
 g = 0; 16
 } 17
 System.out.println("f(x)="+f); 18
 System.out.println("g(x)="+g); 19
 } 20
} 21

Figure 96: A program that use an if-else construct to choose which
functions to be calculated

 145

From line 11 to line 17, we can see that if x>=0 && x<=100 is true, the
block that contains f = 2*x; and g = x*x; is executed. Otherwise, the
block that contains f = 0; and g = 0; is executed.

Nested If

Decision statements can be nested inside other decision statements. This
should not come as a surprise to you since an if (and other decision
constructs) statement is a valid java statement and any Java statements
can be put inside an if statement (i.e. in the place of Action referred
earlier). All you have to do is to think of an if statement in the same way
as when you think of other Java statements.

Figure 97: A flowchart associated with a nested if construct

For example, the above program flow can be written using the syntax
shown in Figure 98.

Action

Test
Expression 1

true

false true

false

Test
Expression 2

Action to be done when
Test Expression 1 is
true.

146

Figure 98: An example nested if statement

Let’s consider the following example to see a little more complex nesting
of if constructs as well as other additional statements.

Example 44: Nested conditions

Write Java statements corresponding to the flowchart shown in Figure
99. Assume that all variables and methods are valid.

if(Test Expression 1){

 if(Test Expression 2){
 Action
 }

}

An if statement

Another if statement nested inside the first
one. This if statement is just one of valid
Java statements.

 147

Figure 99: A flowchart representing a portion of a program

Figure 100: A flowchart representing a portion of a program

a==b
false

true false

true

doAction2() doAction1()

d==c

doAction3() doAction4()

doAction5()

A B

C

D

 if(a==b){

 doAction1();

 }else{

 doAction2();

 if(d==c){
 doAction3();
 }else{
 doAction4();
 }

 doAction5();

 }

A

B

C

D

148

The code associated with the above program flow could take the form
shown in the following figure. Note that the letters A to D labeled to the
dotted shapes are used to associate parts of the flowchart with their
associated portions of the code.

‘If-else-if’ Construct

When the action to be done in an else case consists of only a nested if
statement, curly braces can be omitted, just like the case where the action
consists of only one of any Java statements.

For example, the following statement

if(Test Expression 1){
 Action1
}else{
 if(Test Expression 2){
 Action2
 }else{
 if(Test Expression 3){
 Action3
 }
 }
}

can also be written as,

if(Test Expression 1)
 Action1
else if(Test Expression 2)
 Action2
else if(Test Expression 3)
 Action3

The construct used just above is sometimes referred to as an if-else-if
construct. However, readers should think about it as just a way to write
some special cases of ordinary if-else statements.

 149

Example 45: If neither one is bigger, they are equal

Recalling the example of PrintBigNumber.java presented earlier in this
chapter, the program in the example prints on screen the bigger number
of the two numbers input by the user. Now we will modify the program
using a nested if statement so that the program handles the case where
the two numbers are equal better.

import java.io.*; 1
public class PrintBiggerNumber2 2
{ 3
 public static void main(String[] args) throws IOException 4
 { 5
 double d1,d2; 6
 BufferedReader stdin = 7
 new BufferedReader(new InputStreamReader(System.in)); 8
 System.out.print("Enter the 1 st. number:"); 9
 d1 = Double.parseDouble(stdin.readLine()); 10
 System.out.print("Enter the 2 nd. number:"); 11
 d2 = Double.parseDouble(stdin.readLine()); 12
 13
 if(d1 < d2) 14
 System.out.println("The bigger number is "+d2); 15
 else if(d1 > d2) 16
 System.out.println("The bigger number is "+d1); 17
 else 18
 System.out.println("The two numbers are equal."); 19
 20
 } 21
} 22

Figure 101: A program that prints out the comparison between two
inputs using an if-else-if construct

150

Example 46: Funny encoder revisited

Now, we revisit FunnyEncoder.java again. We left it that we would like
to check whether the user input a digit string of length four or not.

import java.io.*; 1
public class FunnyEncoder2 2
{ 3
 public static void main(String[] args) throws IOException 4
 { 5
 int loc; 6
 String input, output = "", s = ""; 7
 s += "(^_^) "; 8
 s += "(-_-) "; 9
 s += "(>_<) "; 10
 s += "(o_o) "; 11
 s += "(O_o) "; 12
 s += "(^v^) "; 13
 s += "(^o^) "; 14
 s += "(^_____^)"; 15
 s += "(@_@) "; 16
 s += "(*__*) "; 17
 18
 BufferedReader stdin = 19
 new BufferedReader(20
 new InputStreamReader(System.in)); 21
 22
 System.out.print("Enter a 4-digit string:"); 23
 input = stdin.readLine(); 24
 25
 //Validate input string 26
 int len = input.length(); 27
 if(len != 4){ 28
 System.out.println("Input must be of length 4!"); 29
 }else{ 30
 loc = 9*Integer.parseInt(input.substring(0,1)); 31
 output += s.substring(loc,loc+9).trim(); 32
 loc = 9*Integer.parseInt(input.substring(1,2)); 33
 output += s.substring(loc,loc+9).trim(); 34
 loc = 9*Integer.parseInt(input.substring(2,3)); 35
 output += s.substring(loc,loc+9).trim(); 36
 loc = 9*Integer.parseInt(input.substring(3)); 37
 output += s.substring(loc,loc+9).trim(); 38
 System.out.println("Encoded String -> "+output); 39
 } 40
 } 41
} 42

 151

Figure 102: FunnyEncoder with input length checking

Here, we add an if statement on line 28 in order to check the validity of
the input in terms of its length. The if statement decides whether to
proceed with converting each digit in the input into the given patterns or
not.

Furthermore, we should also check whether each character in the input
String is one of the ten digits or not. It is intentionally left as an exercise
for curious readers.

Use Braces to Avoid Coding Confusions

It is strongly recommended to always use curly braces even the action to
be done in each case consists of only one statement in order to avoid
confusions. Consider the following code segment.

if(p)
 System.out.println("A");
 if(q)
 System.out.println("B");
else{
 System.out.println("C");
}

Let’s say the question is what the program will print out when p is false
and q is true. The answer is that “B” will be printed out. If your answer is

152

different, you should pay attention to which if statement each action
belongs to. Do not let the indentation fool you. An equivalent code
segment can be written using proper curly braces as:

if(p){
 System.out.println("A");
}
if(q){
 System.out.println("B");
}else{
 System.out.println("C");
}

This is easier to read and less likely to generate confusions.

The ? : Operator

An if statement can sometimes be replaced by the ? : operator, which has
the following form.

Test Expression ? Expression1 : Expression2

A code segment of the above form is an expression. As a reminder, an
expression must be able to be evaluated to a value. The value of this
expression depends on the value of Test Expression. If Test Expression
is true, the value of the whole expression is equivalent to the value of
Expression1. If Test Expression is false, the value of the whole
expression is equivalent to the value of Expression2.

For example, the statement:

int bigger = (intA > intB) ? intA : intB;

is equivalent to:

int bigger;
if(intA > intB){
 bigger = intA;
else{
 bigger = intB;
}

 153

Example 47: The absolute value (again! but with short-handed
expression)

The following program works similarly to the ShowAbsolute program in
Example 40. However, the ? : operator is used in the place of the if
construct.

import java.io.*; 1
public class ShowAbsoluteShort { 2
 public static void main(String [] args) throws IOException{ 3
 BufferedReader in = 4
 new BufferedReader(5
 new InputStreamReader(System.in) 6
); 7
 System.out.print("Enter a number:"); 8
 double d = Double.parseDouble(in.readLine()); 9
 System.out.print("Its absolute value = "+(d<0?-d:d)); 10
 } 11
} 12

Figure 103: A program finding the absolute value of the input in which
?: is used instead of the full if construct

Reader should pay attention to the expression d<0?-d:d on line 10. The
value of this expression is –d if d<0 is true, otherwise it is just d.

Equality Testing for Values of Primitive Data
Types

When comparing two values to test whether they are equal, we need to
take their data types into account. Using variables with the == operator
compares the values stored in those variables. Using == to compare
values of primitive data types usually works fine, except for floating
points. Consider the following example.

154

Example 48: Equality testing

The EqualityTesting program listed below shows examples of
expressions comparing values of variables of primitive data types. The
equality operator == is used for the comparison.

public class EqualityTesting 1
{ 2
 public static void main(String[] args) 3
 { 4
 //comparing int 5
 int a, b; 6
 a = 1; 7
 b = 1; 8
 System.out.print("a and b are “); 9
 System.out.println((a==b)?"equal.":"not equal."); 10
 //comparing char 11
 char c1, c2; 12
 c1 = 'z'; 13
 c2 = 'z'; 14
 System.out.print("c1 and c2 are "); 15
 System.out.println((c1==c2)?"equal.":"not equal."); 16
 //comparing double 17
 double d1, d2; 18
 d1 = 1.44; 19
 d2 = 1.44; 20
 System.out.print("d1 and d2 are "); 21
 System.out.println((d1==d2)?"equal.":"not equal."); 22
 //comparing double 23
 double d3, d4; 24
 d3 = 0.9; 25
 d4 = 0.3+0.3+0.3; 26
 System.out.print("d3 and d4 are "); 27
 System.out.println((d3==d4)?"equal.":"not equal."); 28
 System.out.println("d3="+d3); 29
 System.out.println("d4="+d4); 30
 } 31
} 32

 155

Figure 104: Demonstration of using == to compare values of primitive
data types

We have found that a and b are equal, c1 and c2 are equal, as well as d1
and d2 are equal as expected. However, d3 and d4 are not while they
should. The reason lies in the limitation in representing floating points
with binary representation as discussed in Chapter 4. Thus, we have to
take this into account when comparing floating point values.

Safe Ways to Compare Floating Point Values

To compare whether two floating point values are equal, we instead test
whether the difference between them are small enough. Thus, two
values, x and y, are said to be equal as long as |x y| < ε, where ε is a
small tolerance value. Consider the following example.

Example 49: Floating-point value comparison

The following program shows a better way to compare two floating
point values than using the equality operator.

public class EqualityTesting2 1
{ 2
 public static void main(String[] args) 3
 { 4
 double d3, d4; 5
 final double MAX_DIFF = 1e-10; 6
 d3 = 0.9; 7

(continued on next page)

156

(continued from previous page)
 d4 = 0.3+0.3+0.3; 8
 System.out.println("d3="+d3); 9
 System.out.println("d4="+d4); 10
 boolean isEqual = 11
 (Math.abs(d3-d4)<MAX_DIFF)? true : false; 12
 System.out.print("d3 and d4 are "); 13
 System.out.println(isEqual?"equal.":"not equal."); 14
 } 15
} 16

Figure 105: Demonstration of using == to compare values of primitive
data types

In this example, d3 and d4 are considered equal if the difference between
them is less than 10-10.

From Example 49, whether the way we compare the values is considered
working depends on the context of the program. In the example, the
maximum allowed difference is at 10-10 which seems to be okay when
comparing values in the proximity of 0.9. However, let’s think about the
situation in which we would like to compare values of much smaller
magnitudes. Consider the answer to this question: “What is the value of
(810-11)/4?” We can simply tell that the answer is 210-11. Then, if a
program calculates (810-11)/4 as 110-11, will you consider it as a correct
answer? The answer should be “No.” Now, let’s consider if we use the
similar logic as presented in Example 49 (which is “d3 and d4 are
considered equal if the difference between them is less than 10-10”) in
comparing 210-11 and 110-11. Such a comparison will results in that both
values are considered equal since the difference between them is less

 157

than 10-10. This comparison does not deliver the desired result. To avoid
such a problem, ones need to be careful about the threshold difference
used in the program.

A neat trick normally used to avoid finding the threshold difference that
works well with values of all magnitudes is to consider the amount of the
difference relative to the size of the compared values. That means, if the
compared values are large, the allowed difference should be large and if
they are small, the allowed difference should also be small. For example,
one could use the following test to compare whether a and b are
considered equal.

100
),max(ba

ba

The expression max(|a|,|b|) represents the bigger value between the
absolute value of a and the absolute value of b. This test suggests that if
the absolute difference between the values a and b is smaller than ε % of
max(|a|,|b|), both values will be considered equal. Otherwise, they are
not.

Equality Testing for Non-Primitive Data Types

Recall that what is stored in a variable of any non-primitive data types,
or class, is a reference to an object of that class. Therefore, when the
relational equality (==) is used to compare two variables of non-
primitive data types, it compares whether the references are identical. In
other words, the relational equality will yield true if both variables
contain exactly the same object, not just different objects that might have
identical properties, or, more precisely, attributes. Equality testing for
objects of non-primitive data types with identical attributes can be
performed by using the equal() method.

The expression a.equals(b) where a is a variable referring to an object
and b is a variable referring to another object is evaluated as true if both
objects have identical properties without having to be the same object.
Otherwise, it is evaluated to false. The case when two String objects with

158

their contents containing the same character sequences is an example
case of when two objects have identical properties.

Note that the default implementation of equals() is reflexive meaning that
a.equals(b) should be evaluated to the same value as b.equals(a).

String Equality Testing

Just like other non-primitive data types, if a relational equality is used to
compare two variables containing String objects, it will return true if and
only if the two variables contain references to the same String object.
Consider the following code segment.

String s1 = "Espresso";
String s2 = "press";
System.out.println(s1.substring(2,7)==s2);

The output shown will be false even though the content of
s1.substring(2,7) and s2 are both "press". The reason is simply because
both String objects are different objects.

Still, in Java, there are cases where it seems like two variables refer to
different String objects but, underlyingly, they in fact refer to the same
object. To see this, let's consider the following code segment.

String s1 = "Viva Java";
String s2 = "Viva Java";
System.out.println(s1==s2);

The output of the code segment is true. With just the explanation
described above, it might be surprising since it seems like s1 and s2 are
assigned with two different String objects. This can be explained based
on the implementation of String in Java, in which String objects are
immutable objects. However, such a concept like immutable objects will
not be covered in this book and it should not be of concern at all for
beginners wishing to learn how to write Java programs.

Therefore, what you as a reader of this book should know is a suitable
way to compare String objects in Java without having to worry about

 159

such unnecessary issues and that suitable way of comparing String object
is to use the equals() method.

Both the boolean variables p and q in the following code segment are
true.

String s1 = “Viva Java”;
String s2 = “Viva Java”;
boolean p = s1.equals(s2);
boolean q = s2.equals(s1);

Another method that involves String comparison is called compareTo().

compareTo()
Given that s1 and s2 are String objects. The expression
s1.compareTo(s2) returns:

 0 if s1 and s2 have the same character sequence.
 s1.charAt(k)-s2.charAt(k) if there is a smallest position k,

at which they differ.
 s1.length()-s2.length() if there is no position k at which

they differ.

Example 50: Comparing Strings with compareTo()

Observe the output of the following program.

public class StringCompareDemo1 1
{ 2
 public static void main(String[] args) 3
 { 4
 System.out.println("Wonderland".compareTo("Wonderland")); 5
 System.out.println("Wonderful".compareTo("Wonderboy")); 6
 System.out.println("Wonder".compareTo("Wonderboy")); 7
 System.out.println("Wonderful".compareTo("Wonderland")); 8
 } 9
} 10

160

Figure 106: Demonstration showing compareTo() in action

The result from line 5 is 0 since both strings contain the same text. The
result from line 6 is 4 since the characters at the smallest position that
both strings differ are ‘f’ and ‘b’. Thus, the result equals ‘f’-‘b’. The result
from line 7 is -3 since there is no position that the two strings differ.
Thus, the result is the difference in their length. The result from line 8 is -
6 due to the same reason since -6 is ‘f’-‘l’.

‘Switch’ Constructs

It is common that decisions on which code segments will be executed are
determined on the value of a variable. Java provides a conditional
construct that selects which code segment to be executed from a number
of them based on an integer value, E.g. a value of type int, char, etc. This
construct is the switch construct, which has the following form.

switch(SwitchExpression){
 case CaseExp1 :
 Action1
 break;
 case CaseExp2 :
 Action2
 break;
 :
 :
 :
 case CaseExpN :
 ActionN
 break;
 default :
 DefaultAction
}

 161

When a switch statement is executed, SwitchExpression is evaluated.
Then, the program flow jumps to the case whose associated expression
CaseExp equals to the value of SwitchExpression. if the value of
SwitchExpression does not match with any CaseExp’s, the program flow
jumps to default. After that, the code below that point will be executed
in a regular fashion until a break command or the end of the switch block
is reached. When a break is reached, the program flow jumps to the
closing braces of that switch statement immediately. The program flow
corresponds to such a switch statement can be illustrated in Figure 107.

One thing to keep in mind is that if there are no break statements, the
program will not jump right to the end of the switch statement. It will
just execute the statements along its way from top to bottom until it goes
out of the switch statement naturally.

Figure 107: A flowchart representing a switch construct

Example 51: Printing Stars

Let’s look at the following code.

import java.io.*; 1
public class SwitchDemo 2
{ 3
 public static void main(String[] args) throws IOException 4
 { 5
 int n; 6

(continued on next page)

Default
Action

SwitchExpression

CaseExp1

Action2 ActionN

CaseExp2 CaseExpN Default

Action1 …

162

(continued from previous page)
 String stringToPrint; 7
 BufferedReader stdin = 8
 new BufferedReader(9
 new InputStreamReader(System.in)); 10
 System.out.print("Enter an integer from 1 to 4:"); 11
 n = Integer.parseInt(stdin.readLine()); 12
 switch(n){ 13
 case 1: 14
 stringToPrint = "*"; 15
 break; 16
 case 2: 17
 stringToPrint = "* *"; 18
 break; 19
 case 3: 20
 stringToPrint = "* * *"; 21
 break; 22
 case 4: 23
 stringToPrint = "* * * *"; 24
 break; 25

default: 26
 stringToPrint = "Integer out of range."; 27
 } 28
 System.out.println(stringToPrint); 29
 } 30
} 31

Figure 108: A program printing whose number is determined using a
switch construct based on the keyboard input

This program receives an integer from the user and stores that integer in
n, on line 11. The switch statement checks the value of n. Suppose n
equals 2, the program jumps to line 17 and then continues the execution
of line 18. The program reaches a break statement on line 19 which
makes the program jumps out of the switch statement onto line 28.

 163

Now consider the following program, which is rather similar to the
previous one. However, you should notice that the break statements are
intentionally omitted from the switch construct.

import java.io.*; 1
public class SwitchDemo2 2
{ 3
 public static void main(String[] args) throws IOException 4
 { 5
 int n; 6
 BufferedReader stdin = 7
 new BufferedReader(8
 new InputStreamReader(System.in)); 9
 System.out.print("Enter an integer from 1 to 4:"); 10
 n = Integer.parseInt(stdin.readLine()); 11
 switch(n){ 12
 case 1: 13
 System.out.println("*"); 14
 case 2: 15
 System.out.println("* *"); 16
 case 3: 17
 System.out.println("* * *"); 18
 case 4: 19
 System.out.println("* * * *"); 20
 default: 21
 System.out.println("Integer out of range."); 22
 } 23
 } 24
} 25

Figure 109: Demonstration of a program that the break statements are
intentionally omitted from the switch construct

164

Observe the screenshot shown in Figure 109, we can see that once the
program jumps to the case corresponding to the input, it continues
executing statements that are followed regardless of the occurrences of
the case keyword. When not using the break statement in some cases of
the switch construct, make sure that it is really what you want your
program to do.

Common Instructions for Multiple Cases

If we would like more than one case to execute the same set of
statements, we can put the cases together. For example, we can write:

switch(n){
 case 1:
 ActionA
 break;
 case 2: case 3:
 ActionB
 break;
 case 4:
 ActionC
 break;
 case 5: case 6:
 ActionD
 break;
 default:
 ActionE
}

to have ActionA performed when n is 1, ActionB performed when n is 2 or
3, ActionC performed when n is 4, ActionD performed when n is 5 or 6,
and ActionE performed when n is a number other than those that we
have mentioned.

Apart from data types for integers, a value of char type can also be used
as the condition in the switch statement. For example, if the variable
grade is of type char, we can write:

switch(grade){
 case 'A': case 'a': case 'B': case 'b':
 Action1
 break;

 165

 case 'C': case 'c': case 'D': case 'd':
 Action2
 break;
 case 'F': case 'f':
 Action3
 break;
 default:
 Action4
}

to have Action1 performed when grade is 'A', 'a', 'B', or 'b', Action2
performed when grade is 'C', 'c', 'D', or 'd', Action3 performed when grade
is 'F', or 'f'. Otherwise, Action4 is performed.

Example 52: Number base converter

A student is studying number systems and needs to convert integers
found in real life to its base 2, base 8, and base 16 representations. Write a
Java program that could be useful to him in this case.

Problem defining: Write a Java program that converts an input integer to
either its binary (base 2), octal (base 8), or hexadecimal (base 16)
representation.

Analysis: The input should be entered from the keyboard as decimal
integers only. The user can make a choice whether to convert the input
into which base system. The program should prompt the user about the
choices he can make. The choice is indentified by typing in the letter 'B'
for binary, 'O' for octal, and 'H' for hexadecimal. Cases of the letter will
be ignored. "Invalid choice" will be shown on screen if the choice is not
valid in a way and the program shall terminate normally. The result will
be shown on screen.

Design: A BufferedReader object will be used to read in a line of input each
time the program prompts the instruction to the user. We will assume
that the user is co-operative and always makes a valid integer input. The
program will perform just a simple input validity checking for the user’s
choice of the destination base system. When the choice is chosen, the
length of the input has to be one character. We will also use the default
case of a switch statement to handle a choice that is other than 'B', 'b', 'O',
'o', 'H', and 'h'. The switch statement will handle these valid choices

166

accordingly. Three static methods provided by the Integer class including
Integer.toBinaryString(), Integer.toOctalString(), and Integer.toHexString()
will be used to create String objects whose contents are the representation
in binary, octal, and hexadecimal systems of the int value supplied to the
methods respectively.

For the switch construct, the cases for 'B' and 'b' are listed together since
they bear the same meaning as we decide to ignore cases of the letter.
Same is applied to the cases for 'O' and 'o' as well as the cases for 'H' and
'h'.
Implementaion: The source code of the program can be observed in
Figure 110.

import java.io.*;
public class BaseConverter
{
 public static void main(String[] args) throws IOException
 {
 String base, output;
 int input;
 BufferedReader stdin =
 new BufferedReader(
 new InputStreamReader(System.in));
 System.out.print("Enter an integer in base 10:");
 input = Integer.parseInt(stdin.readLine());
 System.out.println("Convert "+input+" to?");
 System.out.println("----------------------");
 System.out.println("B or b for binary");
 System.out.println("O or o for octal");
 System.out.println("H or h for hexadecimal");
 System.out.println("----------------------");
 System.out.print(":");
 base = stdin.readLine();
 if(base.length()!=1){
 System.out.println("Invalid choice.");
 }else{
 switch(base.charAt(0)){
 case 'B': case 'b':
 output = Integer.toBinaryString(input);
 break;
 case 'O': case 'o':
 output = Integer.toOctalString(input);
 break;

(continued on next page)

 167

(continued from previous page)
 case 'H': case 'h':
 output = Integer.toHexString(input);
 break;
 default:
 output = "Invalid choice.";
 }
 System.out.println(output);
 }
 }
}

Figure 110: Demonstration of a program that the break statements are
intentionally omitted from the switch construct

Testing: Some screenshots of the output of the program is shown in
Figure 111.

Figure 111: A program converting an integer in the decimal system to
binary, octal, or hexadecimal system

168

Exercise

1. Assume that x and y are valid int variables. Consider the
following code segment:

 if(x!=y){
 System.out.println("1");
 }
 if(x>y){
 System.out.println("2");
 }
 if(x%y == 0){
 System.out.println("3");
 }

 What is the output if:

i. x = 2, y = 6
ii. x = 1, y = 1

iii. x = 9, y = 4
iv. x = 10, y = 5

2. Assume that p and q are valid boolean variables. Consider the
following code segment:

 if(p && q){
 q = false;
 }else{
 if(!q)
 System.out.println(p);
 if(p == q)
 System.out.println(p||q);
 }
 System.out.println(q);

 What is the output if:

i. p = true, q = true
ii. p = true, q = false

iii. p = false, q = true
iv. p = false, q = false

3. Assume that x, y and z are valid int variables. Consider the
following code segment (note the poor indentations):

 169

 if(x>y||z>y)
 System.out.println("1");
 else
 System.out.println("2");
 if(Math.abs(x-y)>=z)
 if(x>y)
 System.out.println("3");
 else
 System.out.println("4");
 else
 System.out.println("5");

 What is the output if:

i. x = 1, y = 1, z = 1
ii. x = 2, y = 1, z = 0

iii. x = 3, y = 5, z = 4

4. Write a code segment that prints the value of an int variable k
unless the value is less than 6.

5. Write a code segment that sets integer d to 1 if the integer a is
less than or equal to 5 while integer b is not bigger than the
difference between a and another integer c. Otherwise, set d to
0 if c is 0.

6. When a and b are two double variables, consider the following
code segment.

 double tol = 1e-25;
 double x = (a*b)/(b-a);
 double y = Math.sqrt(a/b);
 boolean p = Math.abs(a-b)/Math.max(a,b)>tol;
 boolean q = (a>b)||(b>x);
 if(p||q == y>x){
 System.out.println("BLUE");
 }else{
 System.out.println("RED");
 }

Give the ranges of values for a and b that cause the code segment
to display both “BLUE” and “RED”. If no ranges can be found,
explain why?

7. Convert the following code into a switch statement, when k
contains an int value.

170

 String cmd;
 if(k==1){
 cmd = "Edit";
 }else if(k==2){
 cmd = "Add";
 }else if(k==3){
 cmd = "Quit";
 }else{
 cmd = "Invalid";
 }

8. Write a statement that set a String s to “Odd” if an integer k is
an odd number and set s to “Even” if k is even. Using:

i. an if-else statement.
ii. a switch statement.

9. Convert the following code into a switch statement, when k
contains an int value.

 int p;
 if(k==1||k==3){
 p = 1;
 }else if(k==2||k==4){
 p = 2;
 }else if(k==5){
 p = 3;
 }else{
 p = 4;
 }

10. What are the outputs of the following code segment when k =
0, 1, 2, 3, 4.

 switch (k){
 case 1:
 System.out.println("A");
 case 2: case 3:
 System.out.println("B");
 break;
 case 4:
 System.out.println("C");
 default:
 System.out.println("D");
 }

 171

11. What is the output of the following code segment?

 int a = 1, b = 2;
 System.out.println(a>b?a:b);

12. What are the boolean values of p and q that make the output of
the following code segment true?

 System.out.println(p!=q&&!p?p:q);

13. Re-write the following code segment using ?: operators. Give
that c contain a char value.

 boolean p;
 if(c=='a'){
 p = true;
 }else{
 p = false;
 }

14. Re-write the code in the previous problem without using any
conditional constructs.

15. Re-write the following code segment using ?: operators. Give
that n contain an int value.

 if(n==0){
 System.out.println("Zero");
 }else if(n%2==0){
 System.out.println("Even");
 }else{
 System.out.println("Odd");
 }

16. What is the output of the following code segment?

 String s1 = "Bahamas";
 String s2 = "BAHAMAS";
 if(s1.toUpperCase() == s2)
 System.out.println("1");
 if(s1.toUpperCase().equals(s2))
 System.out.println("2");

172

17. Write a java program that receives a text message from
keyboard and print it out if its length is between 6-10
characters.

18. Write a java program that let the user choose his/her
username and password. The program verifies whether the
chosen username and password are valid. If either one of them
is invalid, it notifies the user and explain the cause of
invalidity. The rules for choosing valid usernames and
passwords are:

a. A username must be of length 6-15 characters.
b. A username must start with an uppercase English

alphabet A to Z.
c. A password must not be shorter than 8 characters but

must not exceed 256.
d. There cannot be any types of parentheses or

whitespaces in a valid username or password.
e. A password cannot contain or be the same as its

associated username.

 173

Chapter 7: Iterations

Objectives
Readers should
 Be able to use Java iterative constructs, including do-while, while,

and for, as well as the nested version of those constructs correctly.
 Be able to design programs that require the inclusion of iterations.

Repetitive Execution

In writing most of useful computer programs, it is necessary to have the
ability to execute a set of statements repeatedly for a certain number of
iterations or until some conditions are met or broken. In Java, such ability
is provided through three iterative constructs, namely do-while, while
and for statements.

‘do-while’ Statement

A do-while statement is of the form:

do{
 Actions
}while(Boolean Expression);

Its associated program flow can be shown in the following figure.

174

Figure 112: A flowchart representing a do-while statement

Actions can be one or more statements that will be repeatedly executed
as long as Boolean Expression is evaluated to true. Once the program
reaches the do-while statement, Actions will be execute first. Then,
Boolean Expression is evaluated, and its value determines whether the
program flow will loop back to repeat Actions, or finish the do-while
statement.

‘while’ statement

Another way to execute a set of statements repeatedly until a specified
condition is met is to use a while statement. A while statement is of the
form:

while(Boolean Expression){
 Actions
}

Its associated program flow can be shown in the following figure.

Boolean Expression

Actions

true

false

 175

Figure 113: A flowchart representing a while statement

Actions can be one or more statements that will be repeatedly executed
as in the do-while case. However, before the while block is entered,
Boolean Expression is checked. If its value is false, the statements in the
while block will not be executed. If its value is true, Actions will be
executed, and after that, the program flow loops back to checking
Boolean Expression.

Example 53: Basic loops with while and do-while

Observe how the do-while statement works by looking at the following
program and its output.

public class DoWhileDemo1 1
{ 2
 public static void main(String[] args) 3
 { 4
 int i = 1; 5
 final int N = 5; 6
 do{ 7
 System.out.println("Iteration # "+i); 8
 i++; 9
 }while(i<=N); 10
 System.out.println("Out of while loop when i="+i); 11
 } 12
} 13

Boolean Expression

Actions

true

false

176

Figure 114: A program coded to run five iterations of statements using
a do-while loop

Initially, this program sets i to 1. This variable can be thought of as a
counter of how many times the statements in the do-while block have
already been executed. Each time this do-while block is entered, the
program prints the iteration number from the variable i, which is
increased by 1 at the end of every iteration (on line 9) before the program
checks the boolean value of i<=N, where N equals 5. The program will exit
the do-while statement after the 5th iteration, at the end of which the
value of i is 6.

The following program performs the same task as the program above but
with the use of a while statement instead of the do-while one.

public class WhileDemo1 1
{ 2
 public static void main(String[] args) 3
 { 4
 int i = 1; 5
 final int N = 5; 6
 while(i<=N){ 7
 System.out.println("Iteration # "+i); 8
 i++; 9
 }; 10
 System.out.println("Out of while loop when i="+i); 11
 } 12
} 13

 177

Figure 115: A program coded to run five iterations of statements using
a while loop

Both programs in Example 53 produce the same outputs. The only
difference between using a do-while statement and a while statement is
that the statements in the do-while block is always executed at least once
since the condition checking is done after the do-while block, while the
checking is done prior to ever entering the while block. Thus, the
statements in the while block may never be executed.

Example 54: q for quit

The programs in this example shows how to use keep prompting for
character input from the user repeatedly until a specified character is
entered. The first one does nothing much apart from waiting for a ‘q’
character to be entered.

import java.io.*; 1
public class WhileMenuDemo 2
{ 3
 public static void main(String[] args) throws IOException 4
 { 5
 boolean done = false; 6
 char command; 7
 BufferedReader stdin = 8
 new BufferedReader(9
 new InputStreamReader(System.in)); 10
 while(!done){ 11
 System.out.print("Enter a character (q to quit): "); 12
 command = stdin.readLine().charAt(0); 13

(continued on next page)

178

(continued from previous page)
 if(command == 'q') done = true; 14
 } 15
 } 16
} 17

Figure 116: A program that keeps prompting for input

On line 6, a boolean variable called done is created and initialized to
false. This variable is used in the condition checking of the while
statement so that the statements in the while block will be iteratively
executed as long as done is false. done has to be set to true at some point
to avoid infinite loop (i.e. the situation when the iteration repeats
forever!), and in this program, it is when the char value that the user
enters equals 'q', as on line 14.

The following program finds average of a number of values entered by
the user. The program iteratively asks the user to enter each value at a
time, until a character 'q' is entered.

import java.io.*; 1
public class Average1 2
{ 3
 public static void main(String[] args) throws IOException 4
 { 5
 double sum = 0; int i = 0; 6
 boolean doneInputing = false; 7
 String input; 8
 BufferedReader stdin = 9
 new BufferedReader(10
 new InputStreamReader(System.in)); 11
 System.out.println("Please enter each value at a time."); 12
 System.out.println("Enter \'q\' when finished."); 13

(continued on next page)

 179

(continued from previous page)
 while(!doneInputing){ 14
 System.out.print("-- Enter value #"+(i+1)+" : "); 15
 input = stdin.readLine(); 16
 if((input.length()==1) && (input.charAt(0)=='q')){ 17
 doneInputing = true; 18
 }else{ 19
 i++; 20
 sum += Double.parseDouble(input); 21
 } 22
 } 23
 System.out.println("Average = "+(sum/i)); 24
 } 25
} 26

Figure 117: A program used to find the average of numbers

Try for yourself to write a rather similar program that finds the average
of the values input by the user, but the program asks how many values
will be entered first. Then, if the user specifies that there will be n values,
the program iteratively prompts the user for each input n times before
calculating the average of those values and shows the result on the
screen. Use a while statement or a do-while statement.

Example 55: Guessing a number

The following program is called GuessGame.java. The user of this
program will play a game in which he/she needs to guess a target
number, which is a number that the program has randomly picked in the
range that the user chooses. The program will repeatedly prompt for the

180

guessed number and provide a clue whether the guessed number is
bigger or smaller than the target number, until the guessed number
equals the target number.

Many things that we have learned so far are used in this program,
including method calling, conditional constructs, data type casting,
iterative constructs, and etc. Thus, you should observe the source code
and be able to understand every statement used in this program.

import java.io.*; 1
public class GuessGame 2
{ 3
 public static void main(String[] args) throws IOException 4
 { 5
 int x=0, y=0, target, nTrial=0, guess; 6
 boolean validBound = false; 7
 boolean notCorrect = true; 8
 String comparison; 9
 10
 BufferedReader stdin = 11
 new BufferedReader(new InputStreamReader(System.in)); 12
 System.out.print("\nGuess an integer “); 13
 System.out.println(“in the range of X to Y"); 14
 System.out.println("--------------------------------------"); 15
 16
 while(!validBound){ 17
 System.out.print("First, enter an integer for X : "); 18
 x = Integer.parseInt(stdin.readLine()); 19
 System.out.print("Then, enter an integer for Y : "); 20
 y = Integer.parseInt(stdin.readLine()); 21
 if(y>x){ 22
 validBound = true; 23
 }else{ 24
 System.out.println("-- !! Y must be greater than X."); 25
 } 26
 } 27
 28
 target = (int)Math.round(x+Math.random()*(y-x)); 29
 30
 System.out.println("...."); 31
 System.out.print("A random integer from "+x+" to "+y); 32
 System.out.println(" was created."); 33
 System.out.println("Guess it!"); 34
 System.out.println("--------------------------------------"); 35
 36
 while(notCorrect){ 37
 nTrial++; 38
 System.out.print("\nTrial #"+nTrial+"-->"); 39

(continued on next page)

 181

(continued from previous page)
 guess = Integer.parseInt(stdin.readLine()); 40
 if(guess == target){ 41
 notCorrect = false; 42
 System.out.println("-- Yes! You've got it right!"); 43
 }else{ 44
 comparison = (guess>target)? "big.":"small."; 45
 System.out.print("-- Your guess is too "); 46
 System.out.println(comparison); 48
 } 49
 } 50
 51
 System.out.println("--------------------------------------"); 52
 System.out.println(nTrial+" attempts used."); 53
 54
 } 55
} 56

Figure 118: A guessing game program

182

 ‘for’ statement

Another form of an iterative construct is the for statement, which is of
the form:

for(Init Expression; Cond Expression; Update Expression){
 Actions
}

which is equivalent to:

Init Expression;
while(cond Expression){
 Actions
 Update Expression;
}

Its associated program flow can be shown in the following figure.

Figure 119: A flowchart representing a for statement

CondExpression

Actions

true

false

InitExpression

UpdateExpression

 183

The process starts with the execution of InitExpression. This is usually
for assigning an initial value to a variable, which is often of type int.
Then, the program checks whether CondExpression is evaluated to true. If
so, the program executes Actions. If not, the program goes out of the for
statement. CondExpression usually involves checking the value of the
variable initialized in InitExpression. Once the program finishes the
execution of Actions, UpdateExpression is executed. UpdateExpression
typically involves changing the value of the variables used in
CondExpression. Variables determining how many times Actions will be
executed are called index variables.

Here are some examples of for loops.

 for(int i=1; i<=10; i++){
 System.out.println(i);
 }//for loop A

 for(int i=10; i>0; i--){
 System.out.println(i);
 }//for loop B

 for(int i=0; i<=10; i += 2){
 System.out.println(i);
 }//for loop C

 for(int i=1; i<100; i *= 2){
 System.out.println(i);
 }//for loop D

 for(char c='A'; c<='Z'; c++){
 System.out.println(c);

 }//for loop E

for loop A prints the values of i from 1 to 10. for loop B prints the
values of i, starting from 10 down to 1. for loop C prints 0, 2, 4, 6, 8, and
10. for loop D prints 1, 2, 4,8, 16, 32, 64. And, for loop E prints A to Z.

If needed, there can be more than one Init Expression’s as well as more
than one Update Expression’s. Each of them is separated using commas.
Look at such an example below. Notice that the initialization part
contains two assignments, i=0 and j=10, while the updating part contains
i++ and j--.

184

 for(int i=0, j=10; i<=j; i++, j--){
 System.out.println(i+","+j);
 }

The above for loop causes the program to print:

0,10
1,9
2,8
3,7
4,6
5,5

Example 56: Averaging input numbers

The following Java program finds the average of a number of values
input by the user using a for loop. The number of values to be averaged
is entered and stored in the variable n on line 11. Then, the for loop,
starting on line 12, executes the statement located inside the loop (on line
13 and on line 14) for n iterations. Notice how the variable n and the
variable i are used in order to iteratively execute the statements inside
the loop n times.

import java.io.*; 1
public class Average2 2
{ 3
 public static void main(String[] args) throws IOException 4
 { 5
 double sum = 0; int n = 0; 6
 String input; 7
 BufferedReader stdin = 8
 new BufferedReader(new InputStreamReader(System.in)); 9
 System.out.print("How many values you want to average? : "); 10
 n = Integer.parseInt(stdin.readLine()); 11
 for(int i=1;i<=n;i++){ 12
 System.out.print("-- Enter value #"+i+" : "); 13
 sum += Double.parseDouble(stdin.readLine()); 14
 } 15
 System.out.println("Average = "+(sum/n)); 16
 } 17
} 18

 185

Figure 120: A program calculating the average of input data where the
number of data point can be determined via keyboard

Example 57: Prime factors

Let’s look at a program called Factorization.java which is a program that
finds prime factors of an integer (e.g. the prime factorization of 120 is
22235). The algorithm used here (which is by no mean the best) is
that we will iteratively factor the smallest factor out. Let the integer to be
factorized be n. An integer i is a factor of n when n%i equals 0. A for
loop is used to perform the iteration, starting from using the index
variable of 2. In each iteration of the for loop, all factors equal the index
variable are factored out via a while statement. In the program, a variable
m is used for storing the resulting integer of the partially factorization.
The for loop continues as long as the index variable i is still less than m.
We assume that the input to the program is an integer greater than 1.

import java.io.*; 1
public class Factorization 2
{ 3
 public static void main(String[] args) throws IOException 4
 { 5
 int n, m; 6
 BufferedReader stdin = 7
 new BufferedReader(new InputStreamReader(System.in)); 8
 System.out.print("Enter an integer : "); 9
 n = Integer.parseInt(stdin.readLine()); 10
 m = n; 11
 for(int i=2;i<=m;i++){ 12
 while(m%i == 0){ 13
 System.out.print(i+", "); 14
 m = m/i; 15

(continued on next page)

186

(continued from previous page)
 } 16
 } 17
 System.out.println("\n"); 18
 } 19
} 20

Figure 121: A program that finds prime factors of an input integer

Example 58: Recurrence relations

A sequence of number can be defined using recurrent
relation, in which the value of the nth term of the sequence (an) is
described based on preceding terms. For the first-order recurrent
relation, the only preceding term required to compute the value of an is
an-1. Thus, the first-order recurrent relation can be written as:

kmaa nn 1 ,

where m and k are two constant values defining the relation. We can
compute the value of an in the sequence described by a first-order
recurrent relation for any positive integer n from its initial condition,
which is the value of a0, and its associated recurrent relation.

 ,...,,, 3210 aaaaan

 187

The following program finds the value of a1 to an for any positive integer
n defined by the user from a first-order recurrent relation and its initial
condition. A for loop is used for computing ai from ai-1 for i equals 1 to
the specified n.

import java.io.*; 1
public class RecurrenceRelation 2
{ 3
 public static void main(String[] args) throws IOException 4
 { 5
 double an, an_1, k, m, a0; 6
 int n; 7
 BufferedReader stdin = 8
 new BufferedReader(new InputStreamReader(System.in)); 9
 10
 System.out.print("\nRecurrence Relation:"); 11
 System.out.println(" a(n) = m*a(n-1) + k\n"); 12
 13
 System.out.print("m --> "); 14
 m = Double.parseDouble(stdin.readLine()); 15
 System.out.print("k --> "); 16
 k = Double.parseDouble(stdin.readLine()); 17
 System.out.print("a(0) --> "); 18
 a0 = Double.parseDouble(stdin.readLine()); 19
 System.out.print("n --> "); 20
 n = Integer.parseInt(stdin.readLine()); 21
 System.out.println("---------------------"); 22
 23
 an_1 = a0; 24
 for(int i=1;i<=n;i++){ 25
 an = m*an_1+k; 26
 System.out.println("a("+i+") = "+an); 27
 an_1 = an; 28
 } 29
 } 30
} 31

188

Figure 122: A program calculating term values in a first-order
recurrence relation

‘break’ and ‘continue’

We have seen in the previous chapter that a break statement causes the
program to jump out of the current conditional construct and continue
executing statements following that construct. If a break statement is put
inside an iterative construct, it causes the program to jump out of that
construct; no matter how many times the loop is left to be executed.

Example 59: The magic word

The following program is a trivial program that persistently prompts the
user to enter some texts. It will keep prompting the user for infinitely
many times unless the user enters Java.

import java.io.*; 1
public class BreakDemo1 2
{ 3
 public static void main(String[] args) throws IOException 4
 { String s; 5

(continued on next page)

 189

(continued from previous page)
 BufferedReader stdin = 6
 new BufferedReader(new InputStreamReader(System.in)); 7
 while(true){ 8
 System.out.print("Say the magic word\n>>"); 9
 s = stdin.readLine(); 10
 if(s.equals("Java")) break; 11
 } 12
 System.out.println(":)"); 13
 } 14
} 15

We can see on line 8 that the condition for the while loop is always true.
Thus, the while loop repeats forever unless the input String is “Java”, in
which case the break statement is executed, resulting in the program
jumping out of the while loop.

Figure 123: Demonstration of using the break statement

Figure 123 shows a screenshot when the BreakDemo1 program is
executed. From the figure, we can observe that while(true) is performed
three times before in the third iteration the break statement is called.

A continue statement causes the current iteration to terminate
immediately. However, unlike what happens with a break statement, a
continue statement pass the program flow to the start of the next
iteration.

190

Example 60: The biggest digit in an alphanumeric String input

The following program should give you an example of how continue
works. The program is used for finding a maximal-valued digit from a
string of character. Each character in the input string is not restricted to
being a digit. For example, if the input is "abc12D81", the maximal-
valued digit is 8.

import java.io.*; 1
public class ContinueDemo1 2
{ 3
 public static void main(String[] args) throws IOException 4
 { int len, max = 0; 5
 String s; 6
 BufferedReader stdin = 7
 new BufferedReader(new InputStreamReader(System.in)); 8
 System.out.print("Enter any string with digits : "); 9
 s = stdin.readLine(); 10
 len = s.length(); 11
 for(int i=0; i<len; i++){ 12
 char c = s.charAt(i); 13
 if(!(c>='0' && c<='9')) continue; 14
 int digit = Character.digit(c,10); 15
 if(digit > max) max = digit; 16
 } 17
 System.out.println("Max digit --> "+max); 18
 } 19
} 20

Figure 124: Demonstration of using the continue statement which
allows the program to ignore statements in some certain iteration

 191

A for statement starting on line 12 goes through every position of the
input String. In each position, if the character at that position does not
fall between '0' and '9' inclusively, that character is not a digit. Thus, if
!(c>='0' && c<='9') is true, there is no need to do anything else to the
character in that position. Therefore, continue is used in order for the
program to start the next iteration right away, as seen on line 14.

Note that the expression Character.digit(c,10) returns the numeric
value of c in the decimal (base 10) system.

Nested Loops

An iterative construct can be placed inside another iterative construct
causing what we called nested loops. Figuring out the program flow of
nested loops does not require any extra knowledge apart from what we
have discussed so far. We can just think about the inner loop as an
operation that needs to be finished (kept iterating until the loop
terminating condition is met) for each iteration of the outer loop.

The following code segment is an example of a for loop placed inside
another for loop. Note that Actions is to be replaced with a set of
statements.

for(int i=1; i<=n; i++){
 for(int j=1; j<=m; j++){
 Actions
 }
}

The outer for statement is associated with an index variable i that runs
from 1 to n, resulting in n iterations of the inner for statement. For each
iteration of the outer for statement, the inner for statement iterates m
times. So, this results in Actions being executed n m times.

The following code segment, using nested while constructs performs
similar actions to the one above.

192

int i=1;
while(i<=n){
 int j=1;
 while(j<=m){
 Actions
 j++;

}
i++;

}

Example 61: Nested loops

The program listed below use nested for loops in which the inner loop
runs for a fixed number of iteration regardless of the value of the index
variable used in the outer loop.

public class NestedLoopDemo1 1
{ 2
 public static void main(String[] args) 3
 { 4
 for(int x=1; x<=3; x++){ 5
 for(char y='A'; y<='C'; y++){ 6
 System.out.println(x+"-"+y); 7
 } 8
 } 9
 } 10
} 11

Figure 125: An example of nested loops in action

In this program, the outer for loop starts by setting the index variable i
to 1. For each iteration of this loop, the statements in the inner for loop is

 193

performed three times, with the inner loop’s index variable y being ‘A’,
‘B’, and ‘C’.

The nested loops used in the following program are different than the
ones used above in the aspect that the number of iteration of the inner
loop depends on the index variable of the outer loop.

public class NestedLoopDemo2 1
{ 2
 public static void main(String[] args) 3
 { 4
 for(int x=1; x<10; x++){ 5
 System.out.println("x="+x); 6
 System.out.print(" --> y="); 7
 for(int y=1; y<=x;y++){ 8
 System.out.print(y+","); 9
 } 10
 System.out.print("\n"); 11
 } 12
 } 13
} 14

Figure 126: Another example of nested loops in action

This example shows nested for loops in the case that the number of
iteration of the inner loop depends on a variable that changes with each
iteration of the outer loop. As we can see from the screenshot in Figure

194

126, the upper bound of the values of y is x which changes with each
iteration of the outer loop from 1 to 9.

Scope of Variables

If index variables are declared in the initialization part of a for statement
(i.e. in InitExpression), they are known only inside the block associated
with that for loop. Or, we can say that the scope of these variables is just
inside that for statement. If you attempt to use these variables outside, a
compilation error will occur.

In contrary, a variable declared in a block associated with a for loop can
be used in any for loops nested inside that block and locating after the
variable declaration. The same rule applies to any kind of blocks in a
Java program. This includes blocks associated with do-while, while, if,
if-else, if-else-if, switch, and etc.

Example 62: Variable scope

The following code segment cannot be compiled successfully since the
variable k is not known outside the for loop.

public static void main(String[] args)
{ int lastIndex;
 for(int k = 0; k < 10; k++){
 // Some statements
 }
 lastIndex = k; // This line causes a compilation error.
}

 195

Figure 127: A compilation error caused by that a variable being
declared inside a for loop is used outside

Consider another program below.

public class VariableAndBlock1 { 1
 public static void main(String [] args){ 2
 int x; 3
 if(true){ 4
 x = 1; 5
 int y = x; 6
 while(y<10){ 7
 y++; 8
 } 9
 } 10
 System.out.println(y); 11
 } 12
} 13

Figure 128: Another example of error caused by a variable’s scope

The program cannot be compiled due to an error about the variable y is
not known outside the if statement in which it is declare. Readers
should notice that the compiler only complains about the use of y on line

196

11. It does not complain anything about the usage of y on line 7 and line
8 since both lines are inside a block nested inside the if statement where
y is declared and the lines come after the variable’s declaration.

Let’s conclude this chapter with an interesting example that can help
solving real mathematic problems.

Example 63: All solutions to a2+b2+c2=200

(x,y,z) is a solution of a2+b2+c2 = 200 if the equation is true when a = x, b
= y, and c = z. How many unique solutions are there if we require that a,
b, and c can only take non-negative integers? We can write a Java
program utilizing nested for loops to count the number of all possible
solutions to the equation that meet the non-negative integer requirement.

The idea is to try all possible combinations of three non-negative integers
and see whether which ones of them satisfy a2+b2+c2 = 200. Due to the
non-negative integer requirement, each variable from a, b, and c can only
be as small as 0, while each of them cannot exceed . Thus, we use
three-level nested for loops, each of which is associated with a variable
that runs from 0 to . Whether each combination of the three non-
negative integers is a solution of the equation is tested in the innermost
for loop, where the solution is also printed out on the screen.

Here is a Java program that does the mentioned task.

public class SolutionsCount 1
{ 2
 public static void main(String[] args) 3
 { int a,b,c,nSolutions=0; 4
 int maxPossible = (int)Math.sqrt(200); 5
 for(a = 0; a < maxPossible; a++){ 6
 for(b = 0; b < maxPossible; b++){ 7
 for(c = 0;c < maxPossible; c++){ 8
 if(a*a+b*b+c*c == 200){ 9
 nSolutions++; 10
 System.out.print("Soltn # "+nSolutions+" is "); 11
 System.out.println("("+a+","+b+","+c+")"); 12
 } 13

(continued on next page)

 200

 200

 197

(continued from previous page)
 } 14
 } 15
 } 16
 System.out.print("# of non-negative integer solutions for "); 17
 System.out.println("a^2+b^2+c^2= 200 is "+nSolutions); 18
 } 19
} 20

Figure 129: A program finding all possible solutions to a2+b2+c2=200

Exercise

1. If n is an integer greater than 0, how many times is boohoo()
executed in the following code segment?

 int i = 0;
 do{
 i++;
 booHoo();
 }while(i<=n);

2. What is the output of the following code segment?

198

 int k = 0, m = 6;
 while(k<=3 && m>=4){
 System.out.println(k+","+m);
 k++;
 m--;
 }

3. What is the value of n after the following code segment is
executed?

 int n = 1, i = 100;
 while(n++<i--);

4. What are the values of n and m after the following code
segment is executed?

 int n=0, m=0, i=0,maxItt=300;
 while(i++<maxItt) n++;
 i=0;
 while(++i<maxItt) m++;

5. Rewrite the code segment in the last problem by using for
loops instead of the two while statements.

6. What is the value of n after the following code segment is
executed?

 int n = 0;
 for(int i = 1;i<=100;i++)
 for(int j = 1;j<=100;j++)
 n++;

7. What is the value of n after the following code segment is
executed?

 int n = 0;
 for(int i = 50;i>0;i--)
 for(int j = 40;j>0;j--)
 n++;

8. What is the output of the following code segment?

 int k=0;
 for(int i=100;i>1;i/=2,k++);
 System.out.println(k);

9. Explain why the following program cannot be compiled
successfully.

 199

 public class Ex7Test
 {
 public static void main(String[] args)
 {
 int n = 10, k = 0;
 for(int i=0;i<n;i++){
 k++;
 }
 System.out.println("i="+i+", k="+k);
 }
 }

10. Use a for statement to write a Java program to calculate the
value of 8!

11. Repeat the previous problem using a while statement instead
of the for statement.

12. Write a Java program that calculates n! from the integer n
obtained from keyboard. If the value of the input n causes an
overflow to occur, report it to the user. Otherwise, show the
value of n! on screen.

13. Write a Java program that randomly picks an English alphabet
(A-Z) and keeps asking the user to guess the alphabet until
he/she has got it right. Also report the number of trials.

14. Determine the output of the following code segment.

 int i,j;
 for(i=0,j=0;i<=100;i++){
 if(i%2==0)
 i++;
 else
 j++;
 }
 System.out.println(j);

15. Determine the output of the following code segment.

 int i=0,a=0,n=0;
 while((i=a+=2)<=100){
 n++;
 };
 System.out.println(i+","+a+","+n);

16. What is the value of k after the following code segment is
executed?

200

 int k=0, j=0;
 while(true){
 if(j<20){
 k++; j++;
 }else{
 break;
 }
 if(k>5){
 continue;
 }else{
 j++;
 }
 }

17. Use nested loops to write a Java program that generates a
multiplication table as shown below.

 | 2 3 4 5 6 7 8 9
 |
2 | 4 6 8 10 12 14 16 18
3 | 6 9 12 15 18 21 24 27
4 | 8 12 16 20 24 28 32 36
5 | 10 15 20 25 30 35 40 45
6 | 12 18 24 30 36 42 48 54
7 | 14 21 28 35 42 49 56 63
8 | 16 24 32 40 48 56 64 72
9 | 18 27 36 45 54 63 72 81

18. Write a Java program that reverses the order of the characters
in the string input from keyboard and show them on screen.

19. Write a Java program that finds the value of f(x,n), where x can
be any real value, n can only be a non-negative integer, and
f(x,n) is defined as:

n

i

ixnxf
0

),(

Your program must check whether the value of n input by the
user is valid or not. (i.e. n must have an integer value and be
non-negative.) Use Math.pow() to find the value of xi.

20. Repeat the previous problem without using any methods
provided by the Math class.

 201

21. Write a Java program that calculates and shows the sum of all
even integers from 0 to n, where n is specified by the user via
keyboard. Assume that n is an integer greater than 0.

22. An imaginary webmail service called “veryhotmail.com” is
kind enough to let its users choose their own passwords.
However, a valid password must comply with the following
(somewhat strange) rules:

1. The length must be between 6 to 15 characters, inclusive.
2. Each character must be either one of the 26 English

alphabets. Both uppercase and lower case letters are
allowed.

3. The difference between the number of the uppercase
letters and the lowercase letters cannot be greater than
20% of the password length.

Write a code segment that can validate the password stored in
a String reference s.

23. Write a Java program to shows the value of a0, a1, …, an that is
corresponding to the recurrence relation ak = k2ak-1-ak-2+3k
where k = 2, 3, 4 ,… The values of n and the initial conditions
(a0 and a1) are specified by the user at run-time via keyboard.

24. Write a Java program to find the number of solutions to the
equation x+y+z = 30 where x, y, and z are non-negative
integers.

25. Write a Java program to find the number of solutions to the
equation x+y+z = n where n is a constant integer supplied by
the user of the program and x, y, and z are integers between –
b and b. Also, b is an integer defined by the user.

26. Write a Java program that receives an English sentence from
keyboard. The program encodes the sentence by reversing the
order of letters in each word appearing in that sentence while
keeping the original word order and shows the result on
screen. Assuming that words are always separated by a single
space and there cannot be spaces at the beginning and the end
of the sentence. For example, “We are the champions.” is
encoded as “eW era eht .snoipmahc”.

202

27. Write a code segment that replaces any number of multiple
spaces connected together in a String reference s with single
spaces.

For example, if s contains:

“This does not contain multiple spaces.”,

it should be changed to:

“This does not contain multiple spaces.”

28. An integer n is prime if its only factors are 1 and itself. Write a
code segment for checking whether the value of an int n is
prime. Assume that n is a positive integer greater than 1.

 203

Chapter 8: Methods

Objectives
Readers should
 Be able to define new methods and use them correctly.
 Understand the process of method invocation.

Methods

Sometimes it is cumbersome to write, debug or try to understand a very
long program. Many times, there are some parts of the program that
redundantly perform similar tasks. Actually writing statements to
perform those similar tasks many times is obviously not very efficient,
when one can possibly write those statements once and reuse them later
when similar functionalities are needed. Programmers usually write
statements to be reused in sub-programs or subroutines. This does not
only allow efficient programming but also makes programs shorter
which, consequently, make the programs easier to be debug and
understood. Dividing statements intended to perform different tasks into
different subroutines is also preferred.

Methods in Java can serve the purpose just mentioned.

The following example shows a situation in which a program should be
re-written using methods.

Example 64: Introducing methods

The following program computes:

nnxxxxnxfy ...32),(32

for x = 1.5, 2.5, 3.5, and 4.5, where n = 3.

204

public class MethodDemo1 1
{ 2
 public static void main(String[] args) 3
 { 4
 double x1,x2,x3,x4; 5
 double y; 6
 x1 = 1.5; 7
 y = 0; 8
 for(int i=1;i<=3;i++){ 9
 y += i*Math.pow(x1,i); 10
 } 11
 System.out.println(y); 12
 x2 = 2.5; 13
 y = 0; 14
 for(int i=1;i<=3;i++){ 15
 y += i*Math.pow(x2,i); 16
 } 17
 System.out.println(y); 18
 x3 = 3.5; 19
 y = 0; 20
 for(int i=1;i<=3;i++){ 21
 y += i*Math.pow(x3,i); 22
 } 23
 System.out.println(y); 24
 x4 = 4.5; 25
 y = 0; 26
 for(int i=1;i<=3;i++){ 27
 y += i*Math.pow(x4,i); 28
 } 29
 System.out.println(y); 30
 } 31
} 32

We can observe that for each value of x, a for statement is used for
computing y. Writing the program this way makes the source code
longer than it is necessary. Furthermore, if the programmer made a
logical mistake in implementing the calculation of f(x,n) (which is not the
case in this example), the mistake would have to be fixed in many places.
Instead, we can make the functionality for computing f(x,n) a method
and call the method once for each value of x. This can result in the
following code.

public class MethodDemo2 1
{ 2
 public static void main(String[] args) 3
 { 4
 double x1,x2,x3,x4; 5

(continued on next page)

 205

(continued from previous page)
 x1 = 1.5; 6
 System.out.println(f(x1,3)); 7
 x2 = 2.5; 8
 System.out.println(f(x2,3)); 9
 x3 = 3.5; 10
 System.out.println(f(x3,3)); 11
 x4 = 4.5; 12
 System.out.println(f(x4,3)); 13
 } 14
 15
 public static double f(double x,int n){ 16
 double y = 0; 17
 for(int i=1;i<=n;i++){ 18
 y += i*Math.pow(x,i); 19
 } 20
 return y; 21
 } 22
} 23

From the code, observe that the program is not composed of only the
method main() like every program that we have seen so far anymore.
Instead, on line 16 to line 22, we can see a segment of code whose
structure looks a lot like the method main(). This segment of code is
called the definition of method f(), which is defined and given its name in
this program. This method is responsible for carrying out the iterative
computation of y based on the value of x and n. On line 7, line 9, line 11,
and line 13, this method is used to compute the value of y based on x and
n put in the parentheses of f() on each line.

Do not panic yet. At this point you are only expected to adopt a rough
idea of how one can define methods and make use of them. Next, we will
look at the detail structure (syntax) of how to use and define a method.

Using a Method

Using a method should not be new to you. Consider the following
statement.

double y = Math.pow(2.0,3.0);

206

We should know by now that the statement computes 23 and assigns the
resulting double value to y. What we should pay attention to now is the
fact that the method takes a double as its first argument, and another
double as its other argument. The double value of the first argument is
raised to the power of the value of the second double argument. The
resulting value, which we assign to y in the above statement, is said to be
returned from the method.

Observe from the use of method that has already be defined in a
standard Java class, we can see that to define a new method we at least
have to define what its argument list, how the arguments should be
used, and what the method should return.

Defining a Method

The definition of a method is of the form:

public static returnType methodName(
argType1 arg1,
argType2 arg2,
…,
argTypeN argN)

{
 methodBody
}

Here is an example of what the form above could look like. This example
shows how Math.pow() could be defined in side the Math class.

public static double pow(double a, double b)
{

 /* some statements that perform
 the calculation and return the

 result to the caller */

}

The first two words, public and static, are Java keywords. public
identifies that this method can be used by any classes. static identifies

 207

that this method is a class method. Now we will just use these two
keywords as they are.

returnType should be replaced with the name of the data type expected
to be returned by the method. returnType can be any of the eight
primitive data types or the name of a class. When a method returns
something, only one value can be returned. When a method does not
return any value, a keyword void is used for returnType.

methodName should be replaced with the name (identifier) you give to the
method. Java naming rules apply to the naming of methods as well as
other identifiers.

Inside the parentheses is the argument list consisting of parameters
expected to be input to the method. Each parameter in the list is declared
by identifying its type (any of the eight primitive data types or the name
of a class) followed by the name (identifier) to be used in the method for
that parameter. When the method does not need any input parameters,
do not put anything in the parentheses.

methodBody is the list of statements to be executed once the method is
called. These statements might be referred to as the body of the method.
The body of the method might contain a return statement, in which the
keyword return is placed in front of the value wished to be returned to
the caller of the method. You need to make sure that the value returned
is of the same type as, or can be automatically converted to, what is
declared as returnType in the method header. The return statements also
mark terminating points of the method. Whenever a return statement is
reached, the program flow is passed from the method back to the caller
of the method. If there is nothing to be returned, i.e. returnType is void,
the keyword return cannot be followed by any value. In this case, the
program flow is still passed back to the caller but there is no returned
value.

Now let’s look again at the f() method in the previous example. Matching
line 16 of the previous example with the form we have just mentioned,
we see that the method returns a double. Its argument list consists of a
double and an int. x is used as the name of the double parameter, while n

208

is used as the name of the other parameter. Line 17 to line 21 is the body
of the method. The keyword return is used to identify the value that will
be returned by the method to its caller. In this example, return y;
indicates that the value to be returned is the value of the variable y.

Here are some examples of method definitions.

 public static boolean isOdd(int n){
 return (n%2 != 0)? true : false;
 }

 public static int unicodeOf(char c){
 return (int)c;
 }

 public static String longer(String s1, String s2){
 return ((s1.length() > s2.length())?s1:s2);
 }

 public static int factorial(int n){
 int nFact = 1;
 for(int i=1;i<=n;i++){
 nFact *= i;
 }
 return nFact;
 }

 public static boolean hasSimilarChar(String s1, String s2){
 boolean similarChar = false;
 for(int i=0; i<s1.length() && !similarChar; i++){
 for(int j=0; j<s2.length(); j++){
 if(s1.charAt(i) == s2.charAt(j)){
 similarChar = true;
 break;
 }
 }
 }
 return similarChar;
 }

 209

 public static void printGreetings(String name){
 System.out.println("Hello "+name);
 System.out.println("Welcome to ISE mail system.");
 System.out.println("---------------------------");
 }

 public static double h(double a, double b, double c, double d){
 double num = g(a);
 double den = g(a)+g(b)+g(c)+g(d);
 return num/den;
 }

 public static double g(double d){
 return Math.exp(-d/2);
 }

Notice that, in the last example, two methods, h() and g(), are defined. In
the body of h(), g() is called several times. This shows that you can call
methods that you define by yourself inside another method definition in
a similar fashion to when you call them from main().

Example 65: Angle between two vectors

Let’s look at an example of writing a Java program where tasks are
performed via several separate methods. Here, we wish to find the angle
θ between two vectors in the Cartesian coordinate, both started at (0,0),
as depicted in the figure below.

Figure 130: Two vectors in the Cartesian coordinate

(0,0)

(xa,ya)

(xb,yb)
vector a

vector b θ

x

y

210

Problem definition: The program needs to calculate the angle θ between
two vectors in the Cartesian coordinate supplied by the user.

Analysis: Inputs are the two vectors. Since both of them always start at
(0,0), the program only need to know the coordinate of the ending point
of each vector. Coordinates can be specified using two numeric values
representing location in the x and y directions. Therefore, to specify input
vectors, two pairs of (x,y) should be input by entering each value at a
time via the keyboard. Calculation of the angle based on the input
should then be done and shown on screen.

The resulting angle should be in degrees and shown nicely on screen
using the maximum of two decimal points.

Design:

 Prompt the user to input the required coordinates: xa, ya, xb, and
yb. Store them in double variables.

 Calculate θ from:

2222

1cos
bbaa

baba

yxyx

yyxx

 22
aa yx and 22

bb yx are very similar and each of them

corresponds to the length of its associated vector. Thus, we could
consider finding each square root as calculating vector length.
Then, the resulting lengths are multiplied together and used as
the denominator of the above formula.

 θ calculated from the above formula is in radian. It needs to be
converted to degree using Math.toDegree().

 Show the resulting angle in degree on screen.

The above step can be depicted as the program flow below.

 211

Figure 131: A flowchart showing various subroutines used in the
VectorAngle program

Implementation: An implementation of the program could be similar to
the code shown below. Notice that the instructions of the program seen
in main() are divided into three major subroutines as described in Figure
131. Furthermore, most significant functionalities inside each of these
subroutines are also achieved by calling methods, some of which are
available via existing Java classes such as java.io.BufferedReader while
some are newly defined in our program.

import java.io.*; 1
public class VectorAngle 2
{ 3
 public static void main(String[] args) throws IOException 4
 { double xa,ya,xb,yb,theta; 5
 xa = readDouble("xa = "); 6
 ya = readDouble("ya = "); 7
 xb = readDouble("xb = "); 8
 yb = readDouble("yb = "); 9
 theta = calculateAngle(xa,ya,xb,yb); 10
 System.out.print("Angle between ("+xa+","+ya+") and"); 11
 System.out.print(" ("+xb+","+yb+") is "); 12
 System.out.println(setDecimalPoints(theta,2)+" degrees."); 13
 } 14

(continued on next page)

Read xa, ya, xb, yb

Calculate θ

Format what to be shown on
screen

Write a method called
readDouble() for showing the
desired prompt to the user and
store the input in each variable.

Write a method called
calculateAngle() that takes xa, ya,
xb, and yb in and calculate theta
(in degree) according to the
formula

Write a method called
setDecimalPoints() so that it
returns a String representation of
a given double value using the
desired number of decimal points

212

(continued from previous page)
 public static double readDouble(String s) throws IOException 15
 { BufferedReader stdin = 16
 new BufferedReader(new InputStreamReader(System.in)); 17
 System.out.print(s); 18
 return Double.parseDouble(stdin.readLine()); 19
 } 20
 public static double 21
 calculateAngle(double x1, double y1, double x2, double y2) 22
 { double len1, len2, thetaInRad; 23
 len1 = length(x1,y1); 24
 len2 = length(x2,y2); 25
 thetaInRad = Math.acos((x1*x2+y1*y2)/(len1*len2)); 26
 return Math.toDegrees(thetaInRad); 27
 } 28
 public static double length(double a,double b) 29
 { 30
 return Math.sqrt(a*a+b*b); 31
 } 32
 public static String setDecimalPoints(double d,int n) 33
 { 34
 double nPowerOf10 = Math.pow(10,n); 35
 String nDecimalPoints = 36
 "."+(int)(Math.round(d*nPowerOf10)%nPowerOf10); 37
 String integerDigit = (int)d+""; 38
 return integerDigit+nDecimalPoints; 39
 } 40
} 41

Readers are encouraged to analyze the statements in setDecimalPoints(),
which is the method that creates a String representation of the input
number with the specified number of digits in the fraction part of that
number, and see how they work.

Testing: A screenshot of the program is shown in Figure 132. In reality, a
number of test cases where the resulting angles are known should be
input to the program in order for the tester to manually check the
consistency of the results. In this figure, you can observe informal
attempts in testing the program in several conditions, including the
conditions where the results are expected to be 0, 90, and 180 degrees.

 213

Figure 132: A program finding the angle between two vectors

Multiple Return Statements

It is possible for a method to contain multiple return statements but all of
them have to return values of the type declared in the method header
and each return statement must be reachable.

The following method implements the function whose definition is:

214

otherwise

xx
xx

xf
0

21;
10;1

)(2

public static double f(double x){
 if(x>=0 && x<1){
 return x+1;
 }else if(x>=1 && x<2){
 return x*x;

 }else{
 return 0;
 }
}

Notice the method contains 3 return statements. They are all reachable
but which one is executed depending on the value of x. When the
execution of the method reaches any one of the return statements, the
program flow is returned to the caller along with the associated returned
value right away.

Now consider a trivial method g() as listed below. Compiling a source
code with such a method gives compilation errors due to the fact that
under no circumstances that the second and third return statement will
be executed.

public static double g(){
 return 1.0;
 return 2.0;
 return 3.0;
}

Local Variables

Variables declared in the argument list of the method header are
available throughout the method body, but not outside of the method.
The variables are created once the method is entered and destroyed once
the method is terminated.

Variables declared inside the method body are available inside the block
they are declared as well as blocks nested in the block they are declared.

 215

Within the block, variables are available after they are declared. Also,
they are destroyed once the method is terminated.

Example 66: Method’s local variables

The following program yields a compilation error due to a missing
variable.

public class ScopeError 1
{ 2
 public static void main(String[] args) 3
 { 4
 int x=0, y=0, z; 5
 z = f(x,y); 6
 System.out.println("myMultiplier = "+myMultiplier); 7
 System.out.println("z="+z); 8
 } 9
 public static int f(int a, int b) 10
 { int myMultiplier = 256; 11
 return myMultiplier*(a+b); 12
 } 13
} 14

Figure 133: Compilation error due to usage of a variable declared
inside a method outside the method

216

Method Invocation Mechanism

When a method is invoked, typical steps involving the values passed
between the caller and the method as well as the method’s local variables
are:

1. If there are input arguments to the method, the value of each
argument is copied to its corresponding local variable declared
inside the method header.

2. Local variables are declared and assigned with values according
to the statements implemented in the method.

3. If the method returns a value back to the caller, the returned
value is copied from inside the method to the caller. From the
scope of the caller, the expression corresponding to the invoked
method is evaluated to that returned value.

4. When the program flow is returned to the caller, all local
variables of the method are no longer accessible by the program.

Example 67: Parameter passing and returning values

Consider the following program, which calculates (62+82)1/2 using the
method f() which can calculate (an+bn)1/n for any numeric values a and b,
and any integer value n. We will learn about the mechanism that takes
place when a method is called from this example.

public class MethodInvokeDemo 1
{ 2
 public static void main(String[] args) 3
 { 4
 double x = 6.0, y = 8.0, z; 5
 z = f(x,y,2); 6
 System.out.println(z); 7
 } 8
 public static double f(double a,double b, int n) 9
 { 10
 double an = Math.pow(a,n); 11
 double bn = Math.pow(b,n); 12
 return Math.pow(an+bn,1.0/n); 13
 } 14
} 15

 217

When the method is called (z=f(x,y,2);), the following steps take place.

1. The program flow is passed to f() whose definition starts on line
9. Variables in the input argument list of the method header (line
9) are created. In this case, two variables of type double are
created and named a and b, while another int variable is created
and named n.

Figure 134: Illustration of variables when f() is invoked(Step1)

2. Each variable is assigned with its appropriate value. By calling
f(x,y,2), a is assigned with the value of x, b is assigned with the
value of y, and n is assigned with 2. Note that x and a do not
share the same memory location, the value of x is just copied to a
once. It is the same for y and b.

Figure 135: Illustration of variables when f() is invoked (Step2)

3. Then, the statements in the method body are executed. Line 11
and line 12 caused an and bn to be created and assigned values.
Remember that both variables are only local to f(). Before

x

y

z

6.0

8.0

-

a

b

n

6.0

8.0

2

main() f()

x

y

z

6.0

8.0

-

a

b

n

-

-

-

main() f()

218

returning the value to main(), Math.pow(an+bn,1.0/n) is evaluated
to 10.0.

Figure 136: Illustration of variables when f() is invoked (Step3)

4. The value of Math.pow(an+bn,1.0/n) is copied to the variable z in
main() as the result of the assignment operator. Variables local to
f() are then destroyed and the program flow is passed back to
main().

Figure 137: Illustration of variables when f() is invoked (Step4)

It is important to keep in mind that variables local to main() as well as
variables local to different methods are available inside the methods that
they are declared. Thus, it is possible, and is usually the case that,
variable names are reused in different methods. For example, the
variables a and b in f() could be named as x and y without any confusion.

x

y

z

6.0

8.0

10.0

a

b

n

6.0

8.0

2

main() f()
36.0

64.0

10.0

an

bn

Math.pow(…)

x

y

z

6.0

8.0

-

a

b

n

6.0

8.0

2

main() f()
36.0

64.0

10.0

an

bn

Math.pow(…)

 219

The fact that variables are local to the method they are declared enables
programmers to re-use variable names as long as the scopes of variables
of similar names are not overlapping.

Example 68: Different variables with the same identifiers

Observe the following program and its output.

public class MethodVariableName 1
{ 2
 public static void main(String[] args) 3
 { 4
 int x=1,y=1,w; 5
 w = add(x,y); 6
 System.out.println("x="+x+"y="+y); 7
 } 8
 public static int add(int x,int y) 9
 { 10
 int z = x+y; 11
 x = 0; 12
 y = 0; 13
 return z; 14
 } 15
} 16

Figure 138: A program demonstrating variable name re-use

If you are not surprised with the output (x=1 y=1), that is good. You may
skip this paragraph. If you think that the output should be x=0 y=0, you
should note that x and y declared in main() on line 5 are different from x
and y declared in add() on line 9. Thus, changing that value of x and y
local to add() does not have anything to do with x and y local to main(),
which are the ones printed out on screen.

220

Example 69: Value swapping

This example aims at discussing the difference between two programs.
The first program is called SwapDemo in which the values of two
variables are swapped with each other. A common way to swap values
between two variables is to introduce another temporary variable and
use it to store the original value of one variable before it is overwritten
with the value of the other variable. Statements on line 6 to line 8 of the
following program perform the swapping of the values of two variables.
The screenshot of the program’s output in Figure 139 shows that it works
as we want.

public class SwapDemo 1
{ 2
 public static void main(String[] args) 3
 { int a=9, b=8, temp; 4
 System.out.println("a="+a+" b="+b); 5
 temp = a; 6
 a = b; 7
 b = temp; 8
 System.out.println("Swapped!\na="+a+" b="+b); 9
 } 10
} 11

Figure 139: A program that swaps values of two variables

Now, let’s say that we would like to write this swap functionality as a
method so that whenever such a swapping is needed, the method can
then be invoked conveniently. The new program could end up like the
following.

public class SwapDemoWrong 1
{ 2

(continued on next page)

 221

(continued from previous page)
 public static void main(String[] args) 3
 { int a=9, b=8, temp; 4
 System.out.println("a="+a+" b="+b); 5
 swap(a,b); 6
 System.out.println("Swapped!\na="+a+" b="+b); 7
 } 8
 public static void swap(int a, int b){ 9
 int temp; 10
 temp = a; 11
 a = b; 12
 b = temp; 13
 } 14
} 15

Statements on line 6 to line 8 of the SwapDemo program are re-
implemented inside swap() in this new program. The swap() method takes
two input arguments whose values should be swapped by the method.
However, the output of the program shown in Figure 140 suggests that
there are something wrong with this method implementation.

Figure 140: An incorrect implementation of a method that swaps values
of its two input argument

What’s wrong is that the only values that are swapped are the values of a
and b local to the swap() method. Note that they are not the values of a
and b that are local to the main() method. As we can see from the output
of the program, the values of a and b of the main() method are still intact.
In the case that you are still confused, try following the steps described in
the “Method Invocation Mechanism” section.

Unfortunately, there is no easy way to implement a method that really
swaps the values of its input argument if the types of the input
arguments are primitive data types.

222

Passing by Value Vs. Passing by Reference

When passing input arguments to methods, Java copied values of the
arguments into their corresponding local variables in the methods.
Utilizing this way of passing arguments, it is said that Java pass the
arguments by values. Therefore, changes made to the method’s local
variables are unrelated to the values of the original variables. This pass-
by-value mechanism applies to all variables used as inputs to any Java
methods regardless of whether they are primitive or non-primitive.

Some programming languages (such as C, C++) support another way of
passing argument in which changes made to local variables declared in
the methods (or some other kinds of subroutine) affect the values of their
respective original variables that are supplied as input arguments to the
methods. This way of passing argument is referred to as a pass-by-
reference mechanism.

Method Overloading

Different methods, even though they behave differently, can have the
same name as long as their argument lists are different. This is called
Method overloading. Method overloading is useful when we need
methods that perform similar tasks but with different argument lists, i.e.
argument lists with different numbers or types of parameters. Java
knows which method to be called by comparing the number and types of
input parameters with the argument list of each method definition.
Readers should realize that methods are overloaded based on the
difference in the argument list, but not based on their return types.

Example 70: Overloaded number adding

Consider the following program.

public class OverloadingDemo 1
{ 2
 public static void main(String[] args) 3
 { 4

(continued on next page)

 223

(continued from previous page)
 System.out.println(numericAdd(1,2)); 5
 System.out.println(numericAdd(1,2,3)); 6
 System.out.println(numericAdd(1.5,2.5)); 7
 System.out.println(numericAdd(1.5,2.5,3.5)); 8
 System.out.println(numericAdd('1','2')); 9
 } 10
 11
 public static int numericAdd(int x,int y) 12
 { 13
 return x + y; 14
 } 15
 public static double numericAdd(double x,double y) 16
 { 17
 return x + y; 18
 } 19
 public static int numericAdd(int x,int y, int z) 20
 { 21
 return x + y + z; 22
 } 23
 public static double numericAdd(double x,double y, double z) 24
 { 25
 return x + y + z; 26
 } 27
 public static int numericAdd(char x, char y) 28
 { int xInt = x - '0'; 29
 int yInt = y - '0'; 30
 return xInt+yInt; 31
 } 32
} 33

Figure 141: A program demonstrating method overloading

In this program, we overload methods numericAdd(). On line 5 to line 9,
we call numericAdd() with different argument lists. Based on the input
parameters, methods with appropriate definition are activated.

224

numericAdd(1,2) activates numericAdd(int x,int y).

numericAdd(1,2,3) activates numericAdd(int x,int y,int z).

numericAdd(1.5,2.5) activates numericAdd(double x,double y).

numericAdd(1.5,2.5,3.5) activates numericAdd(double x,double y,double
z).

Finally, numericAdd(‘1’,’2’) activates numericAdd(char x,char y).

Now, let’s look at some examples of incorrect method overloading.

public static int f(int x, int y){
 …
}
public static double f(int x, int y){
 …
}

Both methods are not counted as methods overloading since the method
names as well as their argument lists are the same. Regardless of their
return types, they are considered the same methods. Consequently, their
definitions are considered redundant, and, therefore, cause a compilation
error.

public static int g(int x, int y){
 …
}
public static int g(int a, int b){
 …
}

The g() methods in the this example differ only in the variable names.
This difference does not make the two argument lists different. The
numbers and types of parameters are the same. We only call each
parameter differently, and this does not count as method overloading.
Therefore, their definitions are considered redundant. Again, this causes
a compilation error.

 225

Example 71: How overloaded methods are selected

Observe the following program. Pay attention to the way Java selects
which method to be called.

public class OverloadingDemo2 1
{ 2
 public static void main(String[] args) 3
 { 4
 h(1,1); 5
 h(1.0,1.0); 6
 h(1,1.0); 7
 } 8
 9
 public static void h(int x,int y) 10
 { 11
 System.out.println("h(int x, int y) is called."); 12
 } 13
 public static void h(double x,double y) 14
 { 15
 System.out.println("h(double x, double y) is called."); 16
 } 17
} 18

Figure 142: A program demonstrating method overloading including a
case where the input argument list is not entirely matched with any

overloaded methods

h(1,1) on line 5 is clearly corresponding to h(int x,int y) due to its
argument list. Similarly, the method h(1.0,1.0) on line 6 is clearly
corresponding to h(double x,double y). One interesting point is which
method corresponds with h(1,1.0). There is no exact match for the
argument list (int,double). However, int can be automatically
converted to double via widening data type conversion. Therefore, the

226

first input parameter in h(1,1.0), which is an int 1, is converted to 1.0
first. Then, h(double x, double y) is called.

The following program cannot be compiled successfully since
g(1.0,1.0)does not match any overloaded methods, and none of its
parameters can be converted so that it matches any overloaded methods.

public class OverloadingDemo3
{
 public static void main(String[] args)
 {
 g(1.0,1.0);
 }
 public static void g(int x,double y)
 {
 System.out.println("g(int x, double y) is called.");
 }
 public static void g(double x,int y)
 {
 System.out.println("g(double x, int y) is called.");
 }
}

Figure 143: Compilation error due to unmatched overloaded methods

Exercise

1. Explain the benefits of having a program perform some sets of
instruction inside methods. Can you think of any downsides of
doing so?

 227

2. Write a method header for the method m() each item that
makes the execution of the statement in that item valid.

a. int i = m(1,1);
b. float f = m(Math.exp(5));
c. String s = m(2f,8d);
d. IseStudent l = m(“John”,”K.”,”Maddy”);
e. for(double d=1;d<=256;d *= 2) m(d);

3. What is the output when main() is run?

 public static void main(String[] args)
 {
 System.out.println(g("A"));
 }
 public static String f(){
 System.out.println("A");
 return "A";
 }
 public static String g(String s){
 return f()+s;
 }

4. Explain why the following code segment cannot be compiled
successfully.

 public static void main(String[] args)
 {
 int i = f(2,3);
 }
 public static int f(int a, int b){
 return Math.pow(a,b)+Math.pow(b,a);
 }

5. Can the following program be compiled successfully? If so,
what is the output?

public class Ex8_5
{
 public static void main(String[] args){
 f(5);
 System.out.println("k="+k);
 }
 public static void f(int n){
 int k = 0;
 for(int i=0;i<n-1;i++){
 k += k*i;
 }
 }
}

6. Determine the output of the following code segment.

228

 public static void main(String[] args)
 { int n = 0;
 for(int i=0;i<5;i++){
 n = f(n++);
 }
 System.out.println(n);
 }
 public static int f(int n)
 {
 return n++;
 }

7. Determine the output of the following code segment.

 public static void main(String[] args)
 { int n = 0;
 for(int i=0;i<5;i++){
 n = f(++n);
 }
 System.out.println(n);
 }
 public static int f(int n)
 {
 return ++n;
 }

8. Given the definition of a() as the following:

 public static double a(double d)
 {
 return 3*d+1;
 }

Use a() to find the value of kn for n=4,
where kn = 3kn-1+1 and k0 = 0;

9. Write a method called cube() that returns its double parameter
raised to the third power.

10. Write a method called blankLine() used for inserting an empty
line to a message. Therefore, “First line\nSecond

line”+blankLine()+”Third line.” would appear as:

 First line
 Second line

 Third line.

 229

11. Write a method called readDigitString() that returns a new
String whose character sequence consisted of the input
provided by the user via keyboard if the input is a valid digit
string of any length. Otherwise, the method returns null. The
method takes a String as its input parameter. The method
prompts the user for the keyboard input by showing the
message in that String.

12. Tax rates in a specific country can be calculated from an
individual’s income (in G.) obtained during the past tax year
according to the following table.

Income (G.) Tax Rate (%)
1-100,000 0

100,001-500,000 10
500,001-1,000,000 20

1,000,001-4,000,000 30
above 4,000,000 37

According to the table, if a person’s income is 550,000 G., there
is no tax for the first 100,000 G., 10% of the income in the range
100,001-500,000 are taxed, which equals 40,000 G., The last
50,000 G. is taxed with the rate of 20% resulting 10,000 G.
Therefore, the total tax for this person is 60,000 G.

Write a method called tax() which returns the amount of tax
associated with the income supplied as the only input to the
method. Assume that there are no decimal points in any
incomes.

13. Write a method called nBits() that calculates the minimum
number of bits (in integer) required for using binary code to
represent n different symbols. n is input to the method as the
only input argument.

14. The chi-square distribution function f(x;k) is defined as:

2/1)2/(
2/

)2/(
)2/1();(xk
k

ex
k

kxf

230

when x 0, k is an integer greater than 0, and f(x;k) is zero
when x < 0.

Write a method for finding the value of the chi-square
distribution function at the input values of x and k. Assume
that the value of (a) can be obtained by calling a class method
called gamma() of a class called MyMath and use a as the only
input.

15. Determine the output of the following program.

public class Ex8_15
{
 public static void f()
 {
 System.out.println("A");
 }
 public static void f(int a, int b)
 {
 System.out.println("B");
 }
 public static void f(float a, float b)
 {
 System.out.println("C");
 }
 public static void f(double a, double b)
 {
 System.out.println("D");
 }
 public static void f(char a, char b)
 {
 System.out.println("E");
 }

 public static void main(String[] args)
 {
 f();
 f(1,2);
 f(1.0,2.0);
 f(1,2.0);
 f(1F,2.0);
 f('1','2');
 f('1',2);
 }
}

16. Write overloaded methods named nextValue().

If the input is numeric value of the type int, float, or double,
the associated methods should return a value that is one

 231

greater than the input parameter but with the data type
similar to the input.

If the input is a single character either a char or a String, the
associated methods should return a char or a String whose
value is the character immediately following the input
parameter. For example, nextValue(‘q’) must return ‘r’.

If the input is a String with more than one characters, the
method should return a new String whose content is the same
as the input but the last position is the character immediately
following the character in the last position of the original
String. For example, nextValue(“ABC”) must return “ABD”.

If the input is null, the method returns null.

17. Write a Java program that displays positive integer values less
than 10 million in words. The values are received from
keyboard. For example, the value 1500 is displayed as “one
thousand five hundred”. The program should keep asking for
another value until the user input -1.

 233

Chapter 9: Arrays

Objectives
Readers should
 Be able to define, initialize, and use one-dimensional as well as

multidimensional arrays correctly.
 Be able to use arrays as well as their elements as parameters to

methods.
 Be able to write code to sort array elements in any orders desired.
 Be able to write code to search for elements in an array.
 Be able to use arrays in problem solving using computer programs.

Requirement for a List of Values

Suppose we want to write a program that counts the number (frequency)
of each digit from 0 to 9 in a String entered by the user, the program
might be written using what we have studied so far be like this:

import java.io.*;
public class CountDigitFrequency
{
 public static void main(String[] args) throws IOException
 { BufferedReader stdin
 = new BufferedReader(
 new InputStreamReader(System.in));
 System.out.print("Enter string:");
 String s = stdin.readLine();
 int freq0 = 0; int freq1 = 0;
 int freq2 = 0; int freq3 = 0;
 int freq4 = 0; int freq5 = 0;
 int freq6 = 0; int freq7 = 0;
 int freq8 = 0; int freq9 = 0;
 for(int i=0;i<s.length();i++){
 char c = s.charAt(i);
 if(c >= '0' && c <= '9'){
 switch(c){
 case '0': freq0++; break;
 case '1': freq1++; break;
 case '2': freq2++; break;

(continued on next page)

234

(continued from previous page)
 case '3': freq3++; break;
 case '4': freq4++; break;
 case '5': freq5++; break;
 case '6': freq6++; break;
 case '7': freq7++; break;
 case '8': freq8++; break;
 case '9': freq9++; break;
 default:
 }
 }
 }
 System.out.println("Number of 0 = "+freq0);
 System.out.println("Number of 1 = "+freq1);
 System.out.println("Number of 2 = "+freq2);
 System.out.println("Number of 3 = "+freq3);
 System.out.println("Number of 4 = "+freq4);
 System.out.println("Number of 5 = "+freq5);
 System.out.println("Number of 6 = "+freq6);
 System.out.println("Number of 7 = "+freq7);
 System.out.println("Number of 8 = "+freq8);
 System.out.println("Number of 9 = "+freq9);
 }
}

From the code, you should be able to notice that ten variables are used
for storing the frequencies of the digits. Also, separate instances of
System.out.println() are called for printing the resulting frequencies.
Although the names of the variables storing the frequencies are rather
similar, they are independent from one another. Therefore, we cannot
make use of iterative constructs to traverse the values of these variables.
Being able to do so would significantly reduce the size of the code. Not
being able to use iterative constructs in this case also leads to clumsy and
error-prone source code.

What we require is a mechanism that enables us to store a list of related
values in a single structure, which can be referred to using a single
identifier. Java provides this mechanism through the use of arrays.

Specifically to the above example, we need a list of ten elements, in
which each element is used for storing the frequency of each digit.

 235

One-dimensional Array

An array variable is used for storing a list of element. Similar to a
variable of other data types, an array variable needs to be declared. The
declaration of an array takes a rather similar syntax to the declaration of
a variable of other data type, which is:

ElementType [] a;

ElementType is the data type of each element in the array. The square
bracket [] identifies that this is an array declaration. a is the identifier
used for referring to this array. Note that identifier naming rules applies
here also.

Below are some examples when arrays of various data types are
declared.

int [] freq;
int [] numICE, numADME;
double [] scores;
char [] charList;
String [] studentNames;

Note that more than one arrays of the same type can be declared in a
single statement such as the one shown in the second example. Also, it is
perfectly correct and common to create an array of non-primitive data
type such as an array of String shown in the last example above.

To initialize an array, the keyword new is used in the following syntax.

a = new ElementType[n];

n is a non-negative integer specifying the length of a. Here are some
examples of array initialization associated with the arrays declared in the
above example.

freq = new int[10];
numICE = new int[5];
int n = 5;
numADME = new int[n];
scores = new double[50];
charList = new char[2*n];
studentNames = new String[40];

236

Notice that we can use any expression that is evaluated to an int value,
as well as an explicit int value, to specify the length.

Declaration and initialization can be done in the same statement. For
example,

int [] freq = new int[10];
int n = 5;
int [] numADME = new int[n];

Whenever an array is initialized using the keyword new, every of its
element is set to a numeric zero if the elements are of numeric types, to
false if the elements are of boolean type, and to null (a valid reference
that refers to nothing) if the elements are of non-primitive data types.

When an array is created, the data type of its element has to be specified
strictly. Only values consistent with the data typed specified can be used
to fill array’s slots. All elements in an array must be of the same type.

Just like variables storing values of non-primitive data types (such as
String), array variables are reference variables. The value that is actually
stored in an array variable is a reference to the real array object locating
somewhere in the memory.

Figure 144 shows an illustration of what happens in the computer’s
memory when an array variable is created and assigned with a new
array.

Figure 144: Illustration of memory allocation when a variable is
declared and assigned with an array

a

- int [] a;

a = new int[8];

a an array with 8 slots each of
which is initialized with 0

0 0 0 0 0 0 0 0

 237

Accessing Array Elements

Elements in an array can be referred to using its associated index. For an
array of length n, the corresponding indexes run from 0 to n-1. An
element of an array a with index k can be referred to in the program
using a[k].

Consider Figure 145 which shows a case when the position indexed by 3
of an array of double is assign with a value which is later assigned to
another double variable.

Figure 145: Illustration of accessing an array element

Example 72: Accessing array elements

Consider the following program. Note that the length of an array a can
be found using a.length.

double [] d = new double[5];
d

0.0 0.0 0.0 0.0 0.0

d[3] = 1.2;
d

0.0 0.0 0.0 1.2 0.0

double g = d[3];
d

0.0 0.0 0.0 1.2 0.0
g

1.2

d[0]
d[1]

d[2]
d[3]

d[4]

d[0]
d[1]

d[2]
d[3]

d[4]

d[0]
d[1]

d[2]
d[3]

d[4]

238

public class ArrayDemo1 1
{ 2
 public static void main(String[] args) 3
 { 4
 int [] a = new int[5]; 5
 for(int i=0; i<a.length; i++){ 6
 System.out.print(a[i]+"\t"); 7
 } 8
 System.out.print("\n"); 9
 a[0] = 9; 10
 a[1] = 10; 11
 a[2] = a[0]+a[1]; 12
 a[3] = 20; 13
 a[4] = a[3]++; 14
 for(int i=0; i<a.length; i++){ 15
 System.out.print(a[i]+"\t"); 16
 } 17
 } 18
} 19

Figure 146: Demonstration of how array elements are accessed

An array of int of length 5 is declared and initialized on line 5. Then, a
for loop is used to iterate through a[i] from i equals 0 to a.length-1. We
can see that the program prints 0 0 0 0 0 out on the screen. This supports
what mentioned earlier about numeric array elements being set to zeroes
by default. Each element of the array a is assigned with different int
value from line 10 to line 14. The for loop on line 15 makes the program
prints the values of every element, which are 9, 10, 19, 21, and 20, on
screen. Recall that the post fix increment operator on line 14 makes
assign the value of a[3] to a[4] prior to increasing a[3] by 1.

 239

Example 73: Improved digit frequency counting

Here we can modify CountDigitFrequency.java by storing the frequency
of each digit occurrence in a single array. Appropriate iterative
constructs are also used. Notice that the code is much more compact.

import java.io.*; 1
public class CountDigitFrequency2 2
{ 3
 public static void main(String[] args) throws IOException 4
 { BufferedReader stdin 5
 = new BufferedReader(6
 new InputStreamReader(System.in)); 7
 System.out.print("Enter string:"); 8
 String s = stdin.readLine(); 9
 int [] freq = new int[10]; 10
 for(int i=0;i<s.length();i++){ 11
 char c = s.charAt(i); 12
 if(c >= '0' && c <= '9'){ 13
 freq[c-'0']++; 14
 } 15
 } 16
 for(int i=0;i<freq.length;i++){ 17
 System.out.println("Number of "+i+" = "+freq[i]); 18
 } 19
 } 20
} 21

Figure 147: An improved version of a program counting digits

Instead of storing the frequencies of the ten different digits using ten
separate variables, in this program, an array freq with 10 slots is used. If
the character c at a position of interest falls between ‘0’ to ‘9’ inclusively,

240

the statement freq[c-‘0’]++ is used for increasing the (c-‘0’)th slot by
one. Readers should recall that the value of the expression c-‘0’ is an
int value which equals to the difference between the Unicode of the
character stored in c and the character ‘0’ (E.g. it is 0 for ‘0’, 1 for ‘1’, 2
for ‘2’, and so on).

Explicit Initialization

If we would like each element in an array to have the value other than
the default value (zero for numeric types and false for boolean) during its
initialization, we can use an initializer list. An initializer list is a list of
values, each of which is separated by a comma, enclosed in a pair curly
bracket. For example:

int [] a = {1,2,3,4,5};
String [] directions = {“NORTH”, ”EAST”, ”SOUTH”, ”WEST”};
boolean [] allTrue = {true, true, true};

Initializer lists have to be used in the statements in which array variables
are declared. Therefore, the following statements are invalid.

int [] a;
a = {1,2,3,4,5}; // This is invalid.

Figure 148 illustrates a case when an array of int is initialized an
initializer list and an array of String is initialized with another one. Also,
notice the fact that values of primitive data types are stored in the array’s
slots directly while values of non-primitive data types are referred to by
the array’s slot. This works in the same way as when these data types are
assigned to individual variables.

 241

Figure 148: Illustration of some usage of initializer lists

Array Variable Assignment

Since an array variable is a reference variable, when it is re-assigned with
a new array, the array originally referred to by that variable is de-
referenced (and eventually destroyed). The variable then refers to the
new array. Figure 149 show an example of such a case.

Figure 149: Assigning a new array to a variable

int [] b = new int[5];
b

0 0 0 0 0

b = new int[3]; b

0 0 0 0 0

0 0 0

This array will eventually be
destroyed.

int [] a = {1,2,3,4,5};

a

1 2 3 4 5

String [] directions =
{“NORTH”,“EAST”,“SOUTH”,“WEST”};

directions

“NORTH”
“EAST” “SOUTH”

“WEST”

242

An array variable can be assigned with the value of another array
variable of the same type. For example, the following code segment is
valid.

char [] a = {‘A’,’B’,’C’};
char [] b = {‘X’,’Y’};
b = a;

Both a and b are variables referring to arrays of char. On the last line, b is
made to point to the same array as a using the assignment operator.
Notice that the fact that a and b used to refer to an array of char with
different lengths does not matter as long as they are both arrays of the
same data type.

The following code segment is invalid due to the conflicting array data
types.

int [] k = {1,2};
double [] j = {1.0,2.0,3.0};
j = k;

Assigning an array variable with another array variable makes the
former array variable refer to the same array as the later one. Consider
Figure 150. The statement a=b; makes a refers to the same array as b.
Therefore, b[1] is actually the same as a[1].

 243

Figure 150: Assigning an array variable to another array variable

Array Utilities

Java comes with a class called Arrays (note the capital 'A' and the 's'
suffix) that provides useful utility methods for manipulating arrays. This
class is in the java.util package. Therefore, java.util.Arrays needs to be

char [] a ={‘A’,‘B’,‘C’,‘D’}; a

‘A’char [] b ={‘X’,‘Y’,‘Z’}; ‘B’ ‘C’ ‘D’

b

‘X’ ‘Y’ ‘Z’

a = b; a

‘A’ ‘B’ ‘C’ ‘D’

b

‘X’ ‘Y’ ‘Z’

b[1]=‘E’; a

‘A’ ‘B’ ‘C’ ‘D’

b

‘X’ ‘E’ ‘Z’

char c = a[1]; a

‘A’ ‘B’ ‘C’ ‘D’

b

‘X’ ‘E’ ‘Z’

c

‘E’
Both a[1] and b[1]
mean this slot.

244

imported in order to use the class. Many static methods relating to
different kinds of array manipulation are provided so that programmers
can utilize those methods by invoking them from the class name.

Here, we will only introduce some methods in the Arrays class that could
be useful in examples presented later in this book. Theoretically,
functionalities provided by some of these methods seem straight-
forward to implement by ourselves. However, it is also a good idea to
learn to use what already exist. Readers should notice that these methods
are usually overloaded so that they work for all cases of primitive data
types as well as non-primitive ones.

More thorough information about this class can be found from the Java
API documentation on the official Java website (http://java.sun.com or
http://www.oracle.com/technetwork/java/index.html).

Arrays.toString(<an array>)

takes an array of values of a primitive or non-primitive data type
as its input. It returns a String representation corresponding to the
input array.

Arrays.equals(<an array>,<another array of the same data type>)

takes two arrays with the same data type as its input. It returns
true if the two arrays are equal to one another. Otherwise, it
returns false.

Arrays.fill(<an array>,<a value of the same data type>)

takes an array as its first input argument and a value whose data
type must be the same as the elements in the array as the second. It
does not return any values but assigns the value of the second
input argument to every element in the array referred to by the
first input argument.

Arrays.fill(<an array>,
 <first index>,<last index>,
 <a value of the same data type>)

works similarly to the previous fill() method but the value is
assigned to the array only in the range starting from the position

 245

specified by an int value <first index> to the position specified
by another int value <last index>.

Arrays and Methods

Passing an array to a method

Just like variables of other data types, array variables can be used as a
parameter in methods’ argument lists. One thing, you need to keep in
mind is that the actual value that is kept in an array variable is the
reference to its associated array stored somewhere in the memory.
Therefore, when an array variable is used as an input parameter to a
method, that reference is copied to the corresponding array variable
defined in the head of that method’s definition.

Example 74: Passing arrays to methods

Consider the following program.

public class ArraysAndMethods
{
 public static void main(String[] args)
 {
 int [] a = {100,101,102,103};
 int k = 100;
 printArrayValues(a);
 System.out.println("k = "+k);
 someMethod(k,a);
 printArrayValues(a);
 System.out.println("k = "+k);
 }
 public static void someMethod(int k,int [] b){
 System.out.println("-------------In the method.");
 k = 0;
 for(int i=0;i<b.length;i++) b[i]=0;
 printArrayValues(b);
 System.out.println("k = "+k);
 System.out.println("---Going out of the method.");
 }
 public static void printArrayValues(int [] a){
 for(int i=0;i<a.length;i++)
 System.out.print(a[i]+",");

(continued on next page)

246

(continued from previous page)
 System.out.println();
 }
}

Figure 151: Passing arrays as input to methods

From the above example, notice the values of the array variable a and the
int variable k before and after someMethod() is called. As we have
discussed in the last chapter, the value of k in main() does not change
when the value of the variable k in someMethod() is changed. (If this is not
clear to you, go back and consult Chapter 8.) However, the value of the
integers in the array associated with a are changed since the array
variable b in someMethod() refers to exactly the same array as a. Therefore,
b[i], for each i equals 0 to 3, is the same value as a[i] in main().

The method printArrayValues() serves as another example of how to
define a method that takes an array as its input. Note that this method
only aims at listing the elements of the input array. It could be replaced
with the usage of Arrays.toString() without any problems.

Returning an array

An array can also be used as a returned value from a method. To do so,
the return type must be specified in the method header appropriately as
it is done with the values of other data types. To indicate that an array of
a specific data type will be returned from a method, the return type must
be the data type of the array element followed by square brackets.

 247

For example,

public static int [] f(){
 // Body of f()
}

indicates that f() returns an array of int.

Example 75: Generating an array with random elements

The program listed below shows an example of a method that returns an
array of int. The method generates an array with the length specified by
an input argument, length. Each element in the array is an integer
randomly chosen from min to max specified by the input argument passed
to the method.

import java.util.Arrays; 1
public class GenRandomArray { 2
 public static void main(String [] args){ 3
 int len = 10; 4
 int min = 0; 5
 int max = 99; 6
 int [] randoms = genRandomIntArray(len,min,max); 7
 System.out.println(Arrays.toString(randoms)); 8
 } 9
 public static int [] genRandomIntArray(10
 int length,int min, int max){ 11
 int [] a = new int[length]; 12
 for(int i=0;i<length;i++){ 13
 a[i] = (int)Math.round(Math.random()*(max-min)+min); 14
 } 15
 return a; 16
 } 17
} 18

Figure 152: Generating an array with random integers

248

Example 76: Finding the maximum and the minimum array elements

The following Java program shows an example of methods that find the
maximum and minimum values of an array.

public class MinMaxDemo 1
{ 2
 public static void main(String[] args) 3
 { int [] a = {-128,65,-235,99,0,26}; 4
 int minIdx = findMinIdx(a); 5
 int maxIdx = findMaxIdx(a); 6
 System.out.println("min value is a["+minIdx+"]="+a[minIdx]); 7
 System.out.println("max value is a["+maxIdx+"]="+a[maxIdx]); 8
 } 9
 public static int findMinIdx(int [] a){ 10
 int k, minIdx=0; 11
 for(k=1;k<a.length;k++){ 12
 if(a[k]<a[minIdx]) 13
 minIdx = k; 14
 } 15
 return minIdx; 16
 } 17
 public static int findMaxIdx(int [] a){ 18
 int k, maxIdx=0; 19
 for(k=1;k<a.length;k++){ 20
 if(a[k]>a[maxIdx]) 21
 maxIdx = k; 22
 } 23
 return maxIdx; 24
 } 25
} 26

Figure 153: Finding the minimum and the maximum values in an array

findMinIdx() and findMaxIdx() defined on line 10 and line 18 are used for
finding the index of the minimum and the maximum values in an array

 249

input to the methods. The minimum value is located by first assuming
that the element at the 0th index is the minimum value, then iterating
through each element and compare each value with the minimum value.
If any element is smaller than the current minimum value, replace the
minimum value with that element. This way, when the comparison has
been performed with every element in an array, the minimum value
obtained in the end is the actual minimum value in that array. The
maximum value is located using a rather similar procedure.

Both the minimum and maximum values can be found using a single
method, if we let the method return an array containing the indexes of
the two values. Each index is placed in each position of the returned
array. This is shown in the program listed below.

public class MinMaxDemo2
{
 public static void main(String[] args)
 { int [] a = {-128,65,-235,99,0,26};
 int [] idx = new int[2];
 idx = findMinMaxIdx(a);
 System.out.println("min value is a["+idx[0]+"]="+a[idx[0]]);
 System.out.println("max value is a["+idx[1]+"]="+a[idx[1]]);
 }
 public static int [] findMinMaxIdx(int [] a){
 int k, minIdx=0, maxIdx=0;
 for(k=1;k<a.length;k++){
 if(a[k]<a[minIdx])minIdx = k;
 if(a[k]>a[maxIdx])maxIdx = k;
 }
 int [] idx = {minIdx,maxIdx};
 return idx;
 }
}

In this program, findMinMax() returns an array of two integers in which
the first position contains the index of the minimum value and the
second position contains the index of the maximum value. The elements
in the returned array can then be used accordingly.

250

‘String [] args’ Demystified

Now that we knows Java syntaxes related to arrays as well as how a
method is defined, it is a good time to look at the expression String []
args appearing in the header of main(). We know from the last chapter
that this expression is the declaration of a local variable to be used inside
the method and the initial value of this variable will be passed along
from the caller of this method. The value copied to this variable args is
an array of String obtained from the command prompt when java.exe is
called in order to execute the program. Elements of this array of String
are called command-line arguments. It is a convenient way to receive the
user’s input without going through implementing custom prompts in the
programs. When a Java program is executed, command-line arguments
will be typed after the program name before the ‘Enter’ key is pressed.
Multiple command-line arguments are separated with whitespaces
before being arranged into an array of String passing along to the main()
method, in which the program’s instructions are contained.

Example 77: Command line summation utility

The following is a simple Java program that takes any number of
command-line arguments and sums them together. We assume that
every argument can be converted to a double value without any
problems.

public class CommandLineSum { 1
 public static void main(String [] args){ 2
 double sum = 0.0; 3
 for(int i=0;i<args.length;i++){ 4
 sum += Double.parseDouble(args[i]); 5
 } 6
 System.out.println(sum); 7
 } 8
} 9

 251

Figure 154: A program summing numbers read from the command line

Notice that we use args.length to obtain the number of command-line
argument and args[i] to access the element at the ith index of the array
just similar to other arrays.

Sequential Search

We usually need an ability to search for data of a particular value in an
array. Sequential search is a search algorithm that operates by checking
every element of an array one at a time in sequence until a match is
found. A flow diagram of sequential search can be shown in Figure 155.

252

Figure 155: The sequential search algorithm

Suppose we want to search for a value k in an array a, we start checking
at a[i] when i=0. If a[i] is not k, we increase i by one and repeat the
checking. The process is iterated until a[i] = k, or until there is no more
element in a (i.e. i exceeds a.length-1). Once the loop is exited, we have
to check whether it is exited because k is found or there are no more
elements to search. If the former case happens, i will still be less than
a.length. If the latter case happens, i will be greater than or equal to
a.length. In this case, we assign -1 to i to indicate that k is not found in a.

A Java method for performing the sequential search for an int value k in
an array a could look like the one below.

initialize i to the first
index (i=0)

move to the next index
(i++)

true

false

i = -1

k is at i, if i is not -1

true

false

k is not yet found
and i<a.length

Search for k in an array a

loop exited since k is
found

 253

public static int seqSearch(int [] a, int k){
 int i = 0;
 int len = a.length;
 while(i<len && a[i]!=k){
 i++;
 }
 if(i>=len) i=-1;
 return i;
 }

Example 78: Sequential search

The following program demonstrates how the sequential search method
can be used.

import java.util.Arrays; 1
public class SeqSearchDemo 2
{ 3
 public static void main(String[] args) 4
 { int [] a = {99,105,86,34,108,25,11,96}; 5
 System.out.println("a="+Arrays.toString(a)); 6
 System.out.println("86 is found at a["+seqSearch(a,86)+"]"); 7
 System.out.println("96 is found at a["+seqSearch(a,96)+"]"); 8
 System.out.println("0 is found at a["+seqSearch(a,0)+"]"); 9
 } 10
 public static int seqSearch(int [] a, int k){ 11
 int i = 0; 12
 int len = a.length; 13
 while(i<len && a[i]!=k){ 14
 i++; 15
 } 16
 if(i>=len) i=-1; 17
 return i; 18
 } 19
} 20

Figure 156: Demonstration of the sequential search

254

In the program, seqSearch() is called on line 7, line 8, and line 9. The
sequential search algorithm is implemented in seqSearch() whose
definition is listed on line 11 to line 19.

Selection Sort

Sometimes we need to sort the values appeared in an array. Algorithms
performing the task are called sorting algorithms. Probably the most
intuitive sorting algorithm is selection sort, in which the array is
traversed several times. Each time of the traversal, the maximum or the
minimum element will be identified and placed in its correct position.
Then, the elements that have already been placed in their correct
positions will be ignored in later traversals.

To sort the values in an array increasingly, selection sort works as
follows:

1. Let k be the first position of the array (i.e. k = 0).

2. Find the minimum value of the portion of the array from the kth
position to the last position.

3. Swap the minimum value with the value in the kth position.

4. Increase k by one.

5. Repeat step 2 to step 4 until k reaches the end of the array.

Important points that we can gather from the steps above are:

 If the number of elements in the array is len. The total number of
traversal made is len – 1.

 For the ith traversal (where i runs from 1 to n – 1), the portion of
the array to be traversed is from the (i-1)th (which is the kth)

 255

position to the (len-1)th position. Therefore, the minimum value
found in the ith traversal is the minimum elements inside that
corresponding portion of the array.

 The value of k is always the position in which the original
element prior to the latest traversal will be swapped with the
minimum value found in that traversal.

 After the ith traversal, the first i slots of the array (from the 0th to
(i-1)th position) will be sorted.

 After the (len-1)th (last) traversal, the first len-1 slots of the array
is sorted which effectively means that the last single unsorted
element is also in its correct position. Therefore, the sorting can
stop here.

Let’s look at an illustrated example of the sorting of an array a = {1, -2,
4, 3} increasingly in Figure 157.

256

Figure 157: An example of performing the selection sort on an array.
Each traversal only traverses the portion of the array that is not shaded.

If the sorting is to be done decreasingly, the maximum element
associated with each traversal should be located and swapped with the
element in the kth position instead of the minimum element.

Another alternative modification to make the algorithm sorts the
elements decreasingly could be that we still look for the minimum
element but instead of running the value of k from the front of the array
to the back, k should be run from back to front.

The following method is a possible implementation of the selection sort
algorithm on an array of int. The method also takes the second input
argument as an argument to select whether the sorting should be
performed increasingly or decreasingly. Note that the method depends

0

k

1 0 4 3

a 0 1 2 3

0

k

1 0 4 3

a 0 1 2 3

1

k

0 1 4 3

a 1 2 3

1

k

0 1 4 3

a 0 1 2 3

2

k

0 1 4 3

a 0 1 2 3

2

k

0 1 4 3

a 0 1 2 3

3

k

0 1 3 4

a 0 1 2 3

k = 0

minimum among a[k] to
a[3] is a[1]

swap a[1] with a[k]
k++

minimum among a[k] to
a[3] is a[1]

swap a[1] with a[k]
k++

minimum among a[k] to
a[3] is a[3]

swap a[1] with a[k]
k++
k reaches the end of array

Traversal # 1

Traversal # 2

Traversal # 3

 257

on other methods that are responsible for finding the position of the
minimum element or the position of the maximum element.

 public static void selectionSort(double [] d,boolean inc){ 1
 int idxToBeSwapped, len = d.length; 2
 double temp; 3
 for(int i=1;i<=(len-1);i++){ 4
 int k = i-1; 5
 if(inc){ 6
 idxToBeSwapped = findMinIdx(d,k); 7
 }else{ 8
 idxToBeSwapped = findMaxIdx(d,k); 9
 } 10
 temp = d[idxToBeSwapped]; 11
 d[idxToBeSwapped] = d[k]; 12
 d[k] = temp; 13
 } 14
 } 15

The selectionSort() method is implemented so that it looks for the
minimum element in the portion of the input array according to a given
traversal and place it at the front of the portion when it sorts the array
increasingly. While it sorts the array decreasingly, the maximum element
is looked for instead of the minimum element. The statement on line 5 of
selectionSort() moves k forward as each iteration of the for loop has
passed. findMinIdx(d,k) and findMaxIdx(d,k) are the methods that find
the position of the maximum and the minimum elements in the portion
of the array starting from k to the last element respectively.
Implementations of these two methods are shown below. The statements
on line 11 to line 13 are there to swap the values between the element at
the kth position with the position returned by either findMinIdx() or
findMaxIdx().

 public static int findMinIdx(double [] d,int k){ 1
 int minIdx = k; 2
 for(int i=k+1;i<d.length;i++){ 3
 if(d[i] < d[minIdx]){ 4
 minIdx = i; 5
 } 6
 } 7
 return minIdx; 8
 } 9

258

 public static int findMaxIdx(double [] d,int k){ 1
 int maxIdx = k; 2
 for(int i=k+1;i<d.length;i++){ 3
 if(d[i] > d[maxIdx]){ 4
 maxIdx = i; 5
 } 6
 } 7
 return maxIdx; 8
 } 9

Example 79: Selection sort

Below is a program that uses the selection sort algorithm to sort the
numbers supplied via the command line with a menu to select the
direction of the sorting. Note that the method definitions of
selectionSort(), findMinIdx() and findMaxIdx() are similar to what are
presented earlier and are omitted from the code listing in this example.

import java.io.*; 1
import java.util.Arrays; 2
public class SelectionSortConsoleUI { 3
 public static void main(String [] args) throws IOException{ 4
 BufferedReader in = 5
 new BufferedReader(6
 new InputStreamReader(System.in) 7
); 8
 boolean inputOK = false, inc=true; 9
 String input; 10
 System.out.println("\nInput ->"+Arrays.toString(args)); 11
 while(!inputOK){ 12
 System.out.print("Sort increasingly"); 13
 System.out.print(" or decreasingly (d/i):"); 14
 input = in.readLine(); 15
 if(input.length()==1){ 16
 switch(input.charAt(0)){ 17
 case 'd': 18
 inc = false; 19
 inputOK = true; 20
 break; 21
 case 'i': 22
 inc = true; 23
 inputOK = true; 24
 break; 25
 default: 26
 inputOK = false; 27
 } 28
 } 29

(continued on next page)

 259

(continued from previous page)
 } 30
 double [] d = new double[args.length]; 31
 for(int i=0;i<args.length;i++){ 32
 d[i] = Double.parseDouble(args[i]); 33
 } 34
 selectionSort(d,inc); 35
 System.out.println("Sorted->"+Arrays.toString(d)+"\n"); 36
 } 37
 public static void selectionSort(double [] d,boolean inc){…}
 public static int findMinIdx(double [] d,int k){…}
 public static int findMaxIdx(double [] d,int k){…}
}

Figure 158: A program utilizing the selection sort to sort its inputs

This program reads the data to be sorted from the command line and
prompts for whether the user would like to sort the data increasingly or
decreasingly. After checking the user’s choice, it then converts each
element in args into a double value and put it in an array of double
which is consequently sorted by the selectionSort() method.

260

Multi-dimensional Arrays

An element contained in an array can be another array itself. An array in
which each element is another array is called multi-dimensional array.
Figure 159 illustrates an array of arrays of integers, or a two-dimensional
array of integers.

Figure 159: An array of arrays of int

A multi-dimensional array of a certain data type is declared by inserting
pairs of [] after the data type specification. The number of [] equals the
dimension of the array. Consider the following statements.

String [][] arrayOfString;
double [][][] a3DArray;

The first statement declares a variable named arrayOfString as a two-
dimensional array of String. The other statement declares another
variable named a3DArray as a three-dimensional array of double.

The following statements show how to declare and initialize multi-
dimensional arrays with default values according to their data types.

int [][] k = new int[3][5];

0

a[1]

a[0][0]

a a[0] a[3]a[2]

0

a[0][1]

0

a[0][2]

0

a[0][3]

0

a[1][0]

0

a[1][1]

0

a[1][2]

0

a[1][3]

0

a[2][0]

0

a[2][1]

0

a[2][2]

0

a[2][3]

0

a[3][0]

0

a[3][1]

0

a[3][2]

0

a[3][3]

 261

boolean [][][] p = new boolean[2][2][2];

The first statement declares a variable k and assigns to it a reference to an
array of length 3, each of whose elements is a reference to an array of five
integers. All elements in the arrays of integers are initialized to 0.

The second statement declares a variable p and assigns to it a reference to
an array of length 2, each of whose elements is a reference to a two-
dimensional array of boolean value of the size 2 x 2. All boolean values
are initialized to false.

Figure 160 shows an illustration of the variable p.

Figure 160: A three dimensional array of boolean

Initializer Lists for Multi-dimensional Arrays

Nested initializer lists can be used to initialize a multi-dimensional array
with values other than the default value. For example, the statement:

p[1][0] p[1][1]

p[0][0] p[0][1]

false

p[1][1][0] p[1][1][1]

false

false

p[1][0][0] p[1][0][1]

false

false

p[0][1][0] p[0][1][1]

false

false

p[0][0][0] p[0][0][1]

false

p[0] p[1]p

262

int [][] k = {{1,2},{3,4,5},{8,10,12,14}};

initializes the variable k to refer to an array of three elements, where the
first element is an array of two int values {1,2}, the second element is an
array of three int values {3,4,5}, and the last element is an array of four
int values {8,10,12,24}.

To access elements in k, we use these indexing mechanisms:

k : refers to the whole two-dimensional array of int.
k[0] : refers to the array {1,2}.
k[1] : refers to the array {3,4,5}.
k[2] : refers to the array {8,10,12,14}.
k[i][j] : refers to the jth element of k[i].

E.g. k[0][1] equals 2, k[1][0] equals 3, and k[2][3] equals 14 etc.

The following statement shows an example of using an initializer list to
initialize a three-dimensional array of String.

String [][][] s =
{
 {{“Hamburg”,”Berlin”,”Munich”},{“Paris”,”Dijon”}},
 {{“Hanoi”},{“Bangkok”,”Chiang Mai”}}
};

Being initialized this way,

s : refers to the whole three-dimensional array of String.
s[0] : refers to the two-dimensional array {{“Hamburg”,

”Berlin”, ”Munich”}, {“Paris”, ”Dijon”}}.
s[1] : refers the two-dimensional array

{{“Hanoi”},{“Bangkok”,”Chiang Mai”}}
s[0][0] : refers to the array {“Hamburg”, ”Berlin”, ”Munich”}.
s[0][1] : refers to the array {“Paris”, ”Dijon”}.
s[1][0] : refers to the array {“Hanoi”}.
s[1][1] : refers to the array {“Bangkok”,”Chiang Mai”}.
s[i][j][k] : refers to the kth element of s[i][j].

E.g. s[0][1][1] equals “Dijon”, s[1][1][0] equals “Bangkok”, and etc.

 263

Example 80: Lengths of multi-dimensional arrays

Let’s look at an example program demonstrating the indexing of multi-
dimensional array. Nested for loops are used for browsing through each
level of the three-dimensional array of int named a. Pay attention to the
length of a[i], a[i][j] and the value of each int value a[i][j][k].

public class ArrayLengthDemo 1
{ 2
 public static void main(String[] args) 3
 { 4
 int [][][] a = {{{1,2,3},{4,5},{6}},{{7,8},{9}}}; 5
 System.out.println("a.length = "+a.length); 6
 7
 for(int i=0;i<a.length;i++){ 8
 System.out.println("a["+i+"].length = "+a[i].length); 9
 10
 for(int j=0;j<a[i].length;j++){ 11
 System.out.print("a["+i+"]["+j+"].length = "); 12
 System.out.println(a[i][j].length); 13
 14
 for(int k=0;k<a[i][j].length;k++){ 15
 System.out.print("a["+i+"]["+j+"]["+k+"]="); 16
 System.out.print(a[i][j][k]+", "); 17
 } 18
 System.out.println(); 19
 } 20
 } 21
 } 22
} 23

The output of the program should prints the following text.

a.length = 2
a[0].length = 3
a[0][0].length = 3
a[0][0][0]=1, a[0][0][1]=2, a[0][0][2]=3,
a[0][1].length = 2
a[0][1][0]=4, a[0][1][1]=5,
a[0][2].length = 1
a[0][2][0]=6,
a[1].length = 2
a[1][0].length = 2
a[1][0][0]=7, a[1][0][1]=8,
a[1][1].length = 1
a[1][1][0]=9,

264

Readers should try to draw a picture of the array referred to be the
variable a from the initializer list on line 5 and see whether it is consistent
with what are printed out by the program in this example.

Let’s finish this chapter with a program that solves a matrix-related
calculation which Science and Engineering students will surely come
across in college.

Example 81: The nth power of a matrix

We would like to write a program that can calculate the result of An
where A is a square matrix and n is a positive integer.

Problem definition: The program needs to calculate the nth power of a
matrix whose elements, as well as the value of n, are specified by the
user.

Analysis: Elements of A and the power n should be read from keyboard.
The result of the calculation should be shown as the output on screen.

Design:

 The user must specify the size of the square matrix A via
keyboard. The dimension will be kept in an int variable named
dim.

 Elements of A will be kept in a two-dimensional array named a.
With the size of A known, the program should iteratively
prompt the user to input elements of A one by one. Each element
will be stored in a.

 The program prompts the user to enter n via keyboard. The
input will be kept in n.

 Ak can be calculated from Ak-1A for k = 2, 3, 4 , … , n. That
means An can be calculated by iteratively multiply A with the
result of the multiplication prior to the current iteration. After
each iteration of the multiplication, use another two-dimensional

 265

array named b to store Ak-1. Also, use another two-dimensional
array named c to store the result.

 To calculate C = BA. Use the relation:

n

k
kjikij abc

1

 Show each element of An on screen.

Implementation:

import java.io.*; 1
public class MatrixPower 2
{ 3
 public static void main(String[] args) throws IOException 4
 { // Declare variables 5
 double [][] a, b, c; 6
 int dim, n; 7
 BufferedReader stdin = 8
 new BufferedReader(9
 new InputStreamReader(System.in)); 10
 // Read matrix size 11
 System.out.print("Enter matrix size:"); 12
 dim = Integer.parseInt(stdin.readLine()); 13
 // Create a, b, c and read each element of a 14
 a = new double[dim][dim]; 15
 b = new double[dim][dim]; 16
 c = new double[dim][dim]; 17
 for(int i=0;i<dim;i++){ 18
 for(int j=0;j<dim;j++){ 19
 System.out.print("a"+(i+1)+(j+1)+"="); 20
 a[i][j] = Double.parseDouble(stdin.readLine()); 21
 } 22
 } 23
 // Read power n 24
 System.out.print("Enter n:"); 25
 n = Integer.parseInt(stdin.readLine()); 26
 // Perform raising a to the n th power 27
 b = a; 28
 for(int k=1;k<n;k++){ 29
 c = multSqMatrices(b,a); 30
 b = c; 31
 } 32
 // Show the result on screen 33
 showMatrix(c); 34
 } 35
 36
 public static double [][] multSqMatrices(37
 double [][] b,double [][] a){ 38

(continued on next page)

266

(continued from previous page)
 int dim = b.length; 39
 double [][] c = new double[dim][dim]; 40
 for(int i=0;i<dim;i++) 41
 for(int j=0;j<dim;j++) 42
 for(int k=0;k<dim;k++) 43
 c[i][j] = c[i][j]+b[i][k]*a[k][j]; 44
 return c; 45
 } 46
 47
 public static void showMatrix(double [][] c){ 48
 int nRows = c.length; 49
 int nCols = c[0].length; 50
 for(int i=0;i<nRows;i++){ 51
 for(int j=0;j<nCols;j++){ 52
 System.out.print(c[i][j]+"\t"); 53
 } 54
 System.out.println(); 55
 } 56
 } 57
} 58

Program testing: Figure 161 shows some screenshots when the program
is executed with some data.

Figure 161: Some outputs of a program finding powers of matrices

Let’s try computing the square of the matrix input to the program in the
left of Figure 161.

 267

270
198

39100920
35140524

30
12

90
54

30
12

33100320
13120122

30
12

30
12

30
12

Also, the input in the second screenshots shows the case when the
identity matrix is raised to the power of 20 which also results in the
identity matrix. It is left to the readers to verify the third case.

Anyway, the program seems to work well. Please be reminded that
precisely testing the program for its logical correctness is beyond the
scope of this book.

Exercise

1. Show how to declare variables corresponding to the following:

a. An array of int.
b. An array of boolean.
c. An array of String.
d. An array of arrays of double.
e. A two-dimensional array of Rectangle.
f. A three-dimensional array of char.

2. Declare and initialize arrays corresponding to the following:

a. An array of 20 int values.
b. An array of double where its length equals the length

of an array of int called b.
c. An array of boolean where its first three values are

true and the other two are false.
d. An array of String containing the names of the seven

days in a week.
e. An array containing an array of 1.0, 2.5, 3.0, and

another array of 2.5, 3.0, 4.5.

268

f. A two-dimensional array suitable for representing an
identity matrix of the size 3 3

3. Is it valid to create an array where each element is an array
whose length is different from the lengths of other elements in
the same array.

4. Determine the output of the following code segment.

 int [] a = new int[10];
 a[1] = 2;
 a[a.length-1]=8;
 for(int i=0;i<a.length;i++){
 System.out.print(a[i]+"\t");
 }

5. Determine the output of the following code segment.

 int [] a = new int[10];
 for(int i=0;i<a.length-1;i++){
 a[i] = a[++i]+i;
 }
 for(int i=0;i<a.length;i++){
 System.out.print(a[i]+"\t");
 }

6. Determine the output after main() is executed.

 public static void main(String[] args) {
 int k = 1;
 int [] a = {10,11,12,13,14};
 f(k,a);
 System.out.println(k);
 showArrayContent(a);
 }
 public static void f(int k,int [] b){
 if (k >= b.length) return;
 for(int i=k;i<b.length;i++){
 b[i]=b[b.length-i];
 }
 k = 0;
 }
 public static void showArrayContent(int [] a){

for(int i=0;i<a.length;i++)
 System.out.println(a[i]);

 }

 269

7. Write a method that receives an array of int and returns the
sum of every element in the array.

8. Write a method that evaluates the value of a polynomial
function p(x) at given values of x. The function is of the form
cnxn+ cn-1xn-1+…+ c0. The method header is given as:

public static double [] p(double [] x, double [] coeff)

The kth element in coeff is corresponding to the ck. Each
element in the returned array of double is the value of p(x)
evaluated at x being the value of the element in x at the same
index.

9. Write a method called findRep() whose header follows:

public static int findRep(int [] a, int target, int nRep)

The method finds whether a contains nRep consecutive
elements whose values equal target or not. If so, it returns the
position of the first element whose value equals target.
Otherwise, it returns -1. For example, if a contains 6, 8, 9, 9, 9,
3, 9, 2, 0, findRep(a,9,2) and findRep(a,9,3) return 2, while
findRep(a,9,4) and findRep(a,10,1) return -1.

10. Write a method that sorts an input array of int in place (i.e.
the elements in the original array are sorted. There is no new
array resulted from the sorting). There must be another
parameter determining whether to sort this array increasingly
or decreasingly.

11. Every method in this problem receives two arrays of int as their
input parameters.

a. Write combine() which returns a new array whose
elements are taken from both input arrays and their
orders are preserved starting from the elements from
the first input array followed by the ones from the
second.

b. Write union() which returns a new array whose
elements are unique elements taken from both input

270

arrays. The elements of the output array should be
sorted increasingly.

c. Write intersect() which returns a new array where
every elements in the array must be unique and
appear in both input arrays. The elements of the
output array should be sorted increasingly.

d. Write subtract() which returns a new array whose
elements are unique and appear in the first input array
but not in the second one. The elements of the output
array should be sorted increasingly.

e. Write xor() which returns a new array whose elements
are unique and appear in either one of the input arrays
but not both. The elements of the output array should
be sorted increasingly.

12. Suppose that two arrays of int are said to be equal if they have
similar lengths and every elements in the same positions of the
two arrays are equal. Write a method called isEqual() which
returns true if its two input arrays equal and false otherwise.

13. Repeat the previous problem in the case where positions do
not matter, i.e. the two arrays are said to be equal if their
elements form sets with similar members.

14. Write a method that receives an array of String , together with
a String and returns true if there is at least one element of the
input array that contains or equals the other String input.
Otherwise, it returns false.

15. Explain why the following code segment lead to a failed
compilation.

 final double RANGE = 200;
 int step = 12, k=6;
 int [][] a = new int[(int)(RANGE/step)][k];
 for(int i=0;i<a.length;i++)
 a[i] = new int[2][2];

16. What is the output of the following code segment?

 String [][][] x = new String[5][6][7];
 System.out.println(x.length*x[2].length);

 271

17. One way to represent a black-and-white image is to store
boolean values in a two-dimensional array, p. p[i][j] is true if
the pixel in the ith row and jth column is black. Similarly, it is
false if the corresponding pixel is white.

Write a method:

public static boolean drawRect(boolean p, int x, int y,
int width, int height, int ink)

If ink equals 0, the method draws a white rectangle whose
topleft corner locating at p[x][y]. Its width and height are the
values of width and height respectively. If ink equals 1, the
method draws a black rectangle instead. If ink equals -1, the
drawing is done in a way that every pixels of the rectangle
drawn by the method are toggled from white to black, or black
to white. The following array demonstrate an example of p
after performing drawRect(p,2,2,3,4,1) on an all-white array
p whose size is 1010.

The method returns true if the drawing is performed
successfully. It returns false and does not perform any
drawing when at least one of the following situations take
place:

 The value specified by ink is not -1, 0, ir 1.
 The specified topleft corner does not fall in the vicinity

of p, i.e. the value of x, y or both is not in the range of
the array.

 The rectangle exceeds the vicinity of p.

p[0][0]

p[2][2]

272

18. Repeat the previous problem. However, this time, the method
should attempt to draw the specified rectangle even though
the topleft corner does not fall in the vicinity of p or the whole
rectangle does fit in p.

For example, if p and q are of the size 88 and initially all
zeros. drawRect(p,5,5,2,5,1) and drawRect(q,-2,-2,4,4,1)
would result in the following arrays.

19. In a seat reservation program of an airline, the seating chart of

an airplane is represented using a two-dimensional array,
seats. The array seats[i][j] contains the name of the
passenger who has reserved the seat number j in the i+1th
row, where j is 0 for the seat number A, j is 1 for the seat
number B, and so on. seats[i][j] stores null if the seat is
vacant. Note that different airplanes may have different
numbers of rows. However, assume that the number of seats
in each row on the same airplane is constant.

Write methods, that have one of their input arguments being
the array seats, for performing the tasks in the following
items. Decide on the names, their input arguments, and their
returned values appropriately.

a. Showing seating chart, labeled with row and seat
numbers, by using ‘.’ to represent a vacant seat and ‘X’
to represent a reserved seat. An example of the seating
chart could by like the one shown below.

p[0][0]

p[5][5]

q[0][0]

 273

 A B C D E F G H I L K L
 1 X X X X X X
 2 . X X
 3 . X X
 4 X X X X . .
 5
 6
 7 X X X X
 8
 9
 10
 11
 12

If the caller of the method does not wish to see seating
of every rows, the caller can indicate the range of the
rows wished to be shown by specify the row numbers
of the first row and the last row to be shown.

b. Adding a passenger name to a selected seat. It returns
true if the operation is successful, and return false if
the selected seat is not empty. Given that the selected
seat is specified in the form of a String in the form:
“[row number]-[seat number]”, such as “1-A”, “25-E”,
and “36-I”. The method also checks whether the
specified seat is in the valid range. Unless the specified
seat is in the range of the array seats, the method does
nothing and returns false.

c. Removing the passenger at a specified seat.

d. Searching for the seat reserved by a passenger by
his/her name. The method returns the String
representing the seat location or null if there is no
passenger of the given name. Assume that each
passenger can occupy only one seat at a time.

e. Counting the number of seats available in each row.
The method returns an array of int where the value at
the ith index contains the number of available seats in
the i+1th row.

274

f. Searching for available n consecutive seats in the same
row. The method returns the String representing the
left-most seat location of the available n consecutive
seats in the front-most row that has such availability.
If there is no such availability the method returns null.

g. Randomly relocating passengers in the seating chart.
Each passenger must be assigned a seat not conflicting
with other passengers. The method returns the
randomized seating as its output, while the input
seating stays intact. (This method is not going to be
useful for any functioning airlines!)

 275

Chapter 10: Recursive Problem
Solving

Objectives
Readers should
 Be able to explain the concept of recursive definition
 Be able to use recursion in Java to solve problems

Recursive Problem Solving

To solve a problem using the recursive problem solving technique, we
break that problem into identical but smaller, or simpler, problems and
solve those smaller problems to obtain a solution to the original one. For
example, we can find the summation of integers from 0 to a positive
integer n by finding the summation of integers from 0 to a positive
integer n-1 first then add to that result the integer n to obtain the result of
the original problem. Finding the summation of integers from 0 to a
positive integer n-1 is considered a similar to but smaller problem than
finding the summation from 0 to n. Also, we know that if n equals 0, the
result is just zero.

The following example implements the above idea in a Java method.

Example 82: Positive integer summation

Mathematically, we can write the summation of the first n positive
integers as:

nnsns)1()(

where s(n) is the summation of integers from 0 to n for any positive
integer n. Also, we know that s(0) = 0.

276

A Java method for finding such a summation could be written in a
recursive fashion as in the following code segment.

public static int s(int n){ 1
 if(n==0) return 0; 2
 return s(n-1)+n; 3
} 4

In the body of s(), we can see that the method call itself but the input
parameter used is smaller every time the method is called. If n equals 2,
s(2) calls s(1), wait for the value to be returned from the method, and
adds n, which is now 2, to the returned value before returning the result
to the caller. In a similar fashion, once s(1) is called, it invokes s(0), wait
for the value to be returned from the method, which is 0, and adds 1 to
the returned value before returning the result to the s(2).

The invocation explained can be depicted in the following picture.

Figure 162: Finding s(n)=s(n-1)+n where n=2 recursively

Now let’s apply the idea of the recursive problem solving to finding the
factorial function.

Example 83: Factorial function

The factorial function of n, written as n!, which is the product of the first
n positive integers can be described as:

0

1

3

s(0)+1

s(1)+2

s(2)

s(1)

s(0)

 277

0 if1...)1(
0 if 1

!
nnn
n

n

From the definition of the function, (n – 1) (n – 2) … 1 is (n – 1)!.
Therefore, the definition above can be rewritten as:

0 if)!1(
0 if 1

!
nnn
n

n

Again, n! can be solved recursively from (n-1)! and we know that 0! is 1.
A Java method that can find n! recursively can be written as the
following code segment.

 public static int factorial(int n){ 1
 if(n==0) return 1; 2
 return factorial(n-1)*n; 3
 } 4

As we can see from line 3, given an input n, the method call itself but
with an input one which is one smaller than the original. When the input
reaches 0, the method just returns a value without further recursively
calling itself.

The picture below depict the method invocation of factorial(4).

Figure 163: Finding 4! recursively

2

6

factorial(2)*3

1

1

factorial(3)*4

factorial(1)*2

factorial(0)*1

24
factorial(4)

factorial(3)

factorial(2)

factorial(0)

factorial(1)

278

Solving the two problems shown in Example 82 and Example 83 can also
be done using iterative constructs such as for loops. You should try
writing the methods shown above using iterative approach and compare
them with the recursive approach in various aspects, such as their
lengths, their implementation complexity, as well as the difficulty in
coming up with the solutions via both approaches.

Recursive Method Design

In earlier examples presented in this chapter, we use methods containing
statements that call themselves in order to implement the recursive
problem solving idea. These methods are called recursive methods.

A recursive method must have two parts. The first part determines the
case where the recursive method invocation terminates. Cases where this
part occurred are called the base cases. The other part recursively calls
itself, but with simpler parameters. Cases where this part occurred are
called the recursive cases. Each time the method is recursively called the
parameters must be made simpler and must move towards the base
cases. Failure to terminate recursive methods either from the missing of
the base cases or the recursion never falls into the base cases results in an
infinite recursion when the method is called during its associated program
execution.

Example 84: Iterative to recursive

Implement the following method using the recursive approach.

 public static int f(int n){ 1
 int a = 0, b = 0, c = 0, i = 0; 2
 while(i<n){ 3
 c = b; 4
 b = a; 5
 a = 2*b+3*c+1; 6
 i++; 7
 } 8
 return a; 9
 } 10

 279

Let’s first analyze the method for the base cases. Notice that the method
returns the value of a which is initialized with 0 and it will never be
changed if the program flow does not go into the while loop on line 3 to
line 8. Such a condition is when the value of i is not less than n, which
also means that the input n is greater than or equal to i. Therefore, the
condition for the base cases which are cases when the program can
return a value right away should at least include these cases and the
value returned in the initial value of a which is 0.

Now, we turn to analyzing the while loop. Given the input n being a
positive integer, statements inside the while loop will be performed n
times. Figure 164 shows how the values of a, b, and c change as i
increases. Notice that the value of a after the kth iteration is the result of
the method when the method’s input n is k. Also, the value of b in the kth
iteration is the value of a in the (k-1)st iteration and the value of c in the
kth iteration is the value of a in the (k-2)st iteration. Therefore, in the kth
iteration, the statement a = 2*b+3*c+1; states that is the result of the
method when the method’s input n equals k is the summation three
values which are:

 two times the result of the method when the method’s input n
equals k-1,

 three times the result of the method when the method’s input n
equals k-2, and

 the integer value of 1.

Consequently, the resulting iterative method could be written as:

 public static int f(int n){
 if(n<=0) return 0;
 return 2*f(n-1)+3*f(n-2)+1;
 }

280

Figure 164: How variables change when the loop keeps iterating

Example 85: Fibonacci numbers

The Fibonacci numbers form a sequence of integer defined recursively by:

1 if)2()1(
1 if1
0 if0

)(
nnFnF
n
n

nF

where F(n) is the nth Fibonacci number for every non-negative integer n.

Therefore, the Fibonacci sequence is 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, … .
The Fibonacci numbers model many things in nature, such as branching
in trees and arrangement of pine cones.

The following Java program prints out the first 20 Fibonacci numbers
with the use of a recursive method fibo().

a b c

1 0 0

a b c

3 1 0

a b c

10 3 1

a b c

30 10 3

a b c

91 30 10

i

1

i

2

i

3

i

4

i

5

After the 1st iteration

After the 2nd iteration

After the 3rd iteration

After the 4th iteration

After the 5th iteration

 281

public class FiboDemo 1
{ 2
 public static void main(String[] args) 3
 { final int n = 20; 4
 for(int i=0;i<20;i++) 5
 System.out.print(fibo(i)+","); 6
 System.out.println(); 7
 } 8
 public static int fibo(int n){ 9
 if(n<=0) return 0; 10
 if(n==1) return 1; 11
 return fibo(n-1)+fibo(n-2); 12
 } 13
} 14

Figure 165: Finding Fibonacci numbers

The following picture depicts the invocation of fibo() in finding fibo(4).
The numbers listed in solid circles indicate the order of method
invocations and value returning.

282

Figure 166: Recursively invoking methods to find fibo(4)

Costs of Recursion

A recursive method accomplishes its task by successively calling itself.
Therefore, there are many invocations of method involved. As we have
discussed in Chapter 8, the mechanism of method invocation consists of
steps such as copying values of the input variables to the local variables
of the method, and copying the returned values from inside the method
to the caller. These steps make method invocation relatively
computationally expensive compared to evaluating expressions and
looping through sets of statements using iterative constructs.

Furthermore, each time a recursive call is made, a certain amount of
memory must be allocated. For a recursive method that makes very deep
recursions, a large amount of memory is required.

Consider fibo() in the previous example. We can see that to find fibo(4),
8 method invocations are made, and the recursion goes 3 level-deep. For
an input value of more than 30, there are more than 1 million method
invocations made, and the depth can be more than 30 levels.

fibo(4)

0

3

fibo(3)

fibo(2)

fibo(1)

fibo(0)

fibo(2)

fibo(1)

fibo(1)

fibo(0)

1

0

1

1

1

1

2

1
2

10
8

2

7

9

5

3

4

6

11

12

13

14

15

16

 283

Does this mean we should avoid recursive algorithms? No, it does not.
Sometimes, the easiest and the least error-prone ways to write programs
for solving some problems are recursive methods. Sometimes, an
iterative approach is much more difficult than the recursive ones. The
examples that we have discussed so far might not serve as a good
example to this claim. However, solving the “Towers of Hanoi” problem
presented later in this chapter should serve as a convincing example. Try
solving it using an iterative approach.

Reducing Numbers of Method Calls

Sometimes we can redesign our recursive methods so that the numbers
of times the methods are invoked can be reduced. One trick is to
introduce a storage variable, possibly an array variable, which stores the
values returned by a method when it is invoked with a set of input
values. Then, at any given time that the method is to be invoked in order
to be evaluated for its returned value based on its corresponding set of
input arguments, the program should check the stored values in the
storage variable first and see whether the method with that input has
been called and evaluated before or not. If such a value has already been
stored in the storage variable, that value can be used right away instead
of having to invoke the method again.

The example on Fibonacci numbers are revisited below. This time, we
will apply the trick mentioned just above in order to reduce the number
of method calls.

Example 86: Fibonacci numbers revisited

Let’s revisit the method fibo() presented previously. Most of the time,
calculating the nth Fibonacci number involves redundant method
invocations. For example, from the diagram showing method invocation
in fibo(4), we can see that fibo(2) and fibo(0) are called twice, while
fibo(1) is called three times. An alternative implementation that should
save some numbers of method invocation is to introduce a variable
storing previously computed values of Fibonacci numbers. If desired

284

Fibonacci number has been computed earlier, the program should read
from the stored values instead of making a method call.

The following program computes the nth Fibonacci number using the
method fibo() which is the same as in the previous example, and the
method fiboNew() in which an array of int is used for remembering the
Fibonacci numbers that have already been computed. A println()
statement is added into both fibo() and fiboNew(), so that it prints a
message whenever the method is called. The number of message printed
determines how many times each method is called. (To count how many
times each method is called, we could introduce static variables used for
storing the counts of method invocations. However, static variables have
not been discussed until the next chapter.)

import java.io.*; 1
public class FiboDemo2 2
{ 3
 public static void main(String[] args) throws IOException 4
 { BufferedReader stdin = 5
 new BufferedReader(new InputStreamReader(System.in)); 6
 System.out.print("Enter n:"); 7
 int n = Integer.parseInt(stdin.readLine()); 8
 System.out.println("---Using fibo()------------"); 9
 System.out.println("F("+n+")="+fibo(n)); 10
 System.out.println("---Using fiboNew()---------"); 11
 System.out.println("F("+n+")="+fiboNew(n)); 12
 } 13
 14
 // The same fibo() as the previous example 15
 public static int fibo(int n){ 16
 System.out.println("fibo("+n+") is called."); 17
 if(n<=0) return 0; 18
 if(n==1) return 1; 19
 return fibo(n-1)+fibo(n-2); 20
 } 21
 22
 // The new method in which already computed values 23
 // are stored in an array of length n+1 24
 public static int fiboNew(int n){ 25
 int [] remember = new int[n+1]; 26
 for(int i=0;i<=n;i++) remember[i]=-1; 27
 return fiboNew(n,remember); 28
 } 29
 public static int fiboNew(int n,int [] r){ 30
 System.out.println("fiboNew("+n+") is called."); 31
 if(n<=0){ 32

(continued on next page)

 285

(continued from previous page)
 r[0]=0; 33
 return r[0]; 34
 } 35
 if(n==1) 36
 r[n]=1; 37
 else 38
 r[n]=(r[n-1]==-1?fiboNew(n-1,r):r[n-1]) 39
 + (r[n-2]==-1?fiboNew(n-2,r):r[n-2]); 40
 return r[n]; 41
 } 42
} 43

Figure 167: Comparison of invoking fibo() and fiboNew()

From Figure 167, we can see that finding the 6th Fibonacci number using
fibo() requires more than three times as many method invocations as it is
required in the case of using fiboNew().

286

Example 87: The towers of Hanoi

The Towers of Hanoi is a puzzle invented in the late nineteenth century
by the French mathematician Édouard Lucas. The setting of this puzzle
consists of three pegs mounted on a board together with disks of
different sizes. Initially, these disks are placed on the first peg (peg A) in
order of their sizes, with the largest one on the bottom and the smallest
one on the top, as shown in the picture below. The goal of this puzzle is
to move all disks from their initial locations on Peg A to PegB. However,
a valid move in this puzzle must obey two rules:

 Only one disk can be moved at a time, and this disk must be top
disk on a tower.

 A larger disk cannot be placed on the top of a smaller disk.

Figure 168: The initial setting of the towers of Hanoi puzzle

Here, we would like to develop a program that finds the moves
necessary to complete the puzzle with n disks, where n is a positive
integer.

Let’s try making the list of the necessary moves for some small values of
n.

Peg A Peg B Peg C

 287

Starting from n = 1, the only move needed is to move the disk from Peg
A to Peg B.

For n = 2, let’s call the smaller disk Disk1 and the other disk Disk2. The
moves needed are:

 Move Disk1 from Peg A to Peg C.
 Move Disk2 from Peg A to Peg B.
 Move Disk1 from Peg C to Peg B.

For n = 3, the steps needed to complete the puzzle start from performing
the moves required to move the top two disk from Peg A to Peg C using
a similar set of moves used in solving the puzzle with n=2, but from Peg
A to Peg C instead of to the final destination, Peg B. Then, move the
biggest disk from Peg A to Peg B. Finally, we can again use the set of
moved used in moving two disks from one peg to another peg to move
the two disks left on Peg C to Peg B. Therefore, the puzzle is solved for n
= 3.

It is easy to notice that to solve the puzzle for any n, the move list starts
from the moves required to move the top n-1 disks from one peg to
another, which is from Peg A to Peg C, then a move that takes the largest
disk from Peg A to Peg B, and, finally, another set of moves required to
move n-1 disks from one peg to another which, this time, is from Peg C
to Peg B. Therefore, for any n, the problem can be solved recursively,
starting from the case where there is only one disk.

Naming the disks from top to bottom with Disk1, Disk2, to Diskn, the
following Java program, making use of a recursive method, produces the
required move list in the following format:

Move [disk] from [origin peg] to [destination peg].

Here is the program listing.

import java.io.*; 1
public class TowerOfHanoiDemo 2
{ 3
 public static void main(String[] args) throws IOException 4

(continued on next page)

288

(continued from previous page)
 { BufferedReader stdin = 5
 new BufferedReader(new InputStreamReader(System.in)); 6
 System.out.print("Enter number of disks:"); 7
 int n = Integer.parseInt(stdin.readLine()); 8
 move(n,"A","B","C"); 9
 } 10
 public static void move(int n, 11
 String orgPeg,String destPeg,String otherPeg){ 12
 String step; 13
 if(n<=1){ 14
 step = "Move Disk1 from Peg "; 15
 step += orgPeg+" to Peg "+destPeg; 16
 System.out.println(step); 17
 }else{ 18
 move(n-1,orgPeg,otherPeg,destPeg); 19
 step = "Move Disk"+n+" from Peg "; 20
 step += orgPeg+" to Peg "+destPeg; 21
 System.out.println(step); 22
 move(n-1,otherPeg,destPeg,orgPeg); 23
 } 24
 } 25
} 26

In the program, it is amazing in a sense that, apart for statements dealing
with the user input, there is only one statement, move(n, “A”, “B”, “C”),
calling a recursive method that is needed for solving the Towers of
Hanoi puzzle, no matter how big the value of n is.

The move() method is defined so that it takes four input arguments. The
first one is the number of disks, n, while the others are the names used to
call the peg where all the n disks are located at the moment where the
method is invoked, orgPeg, the peg which is the destination of the n disks
of interest, destPeg, and the other peg, otherPeg.

The base case of the move() method is when the number of disk reaches 1.
In that case, the move needed is to move that disk from orgPeg to
destPeg. For the recursive cases with k disks, the operation is divided into
three subtasks.

The first subtask is to move Disk1 to Diskk-1 from orgPeg to otherPeg.
This can be done simply by calling move() again but with input
parameters being set properly.

 289

The second subtask is to move the bottom-most disk, Diskk, from orgPeg
to destPeg. The last subtask is to move Disk1 to Diskk-1 from otherPeg to
destPeg. Again, this last subtask can simply be done by calling move()
again but with input parameters being set properly.

Figure 169: Solutions to the Towers of Hanoi puzzle

Moves obtained by solving the
problem with 3 disks.

Moves obtained by solving the
problem with 3 disks.

Moves obtained by solving the
problem with 2 disks.

Moves obtained by solving the
problem with 2 disks.

290

Exercise

1. What is the output when main() is executed?

 public static void main(String[] args)
 {
 System.out.println(f(5));
 }
 public static int f(int n){
 if(n<=0) return 1;
 return f(n-1)+2*f(n-2);
 }

2. What is the output when main() is executed?

 public static void main(String[] args)
 {
 System.out.println(g(4));
 }

 public static int g(int n)
 {
 if(n<=0) return 1;
 return 2*g(n-1)+ f(n+1);
 }

 public static int f(int n)
 {
 if(n<=0) return 1;
 if(n==1) return 2;
 return f(n-1)-f(n-2);
 }

3. Implement the following method using a recursive approach.

 public static int f(int n)
 {
 int a = 0;
 for(int i=1;i<=n;i++){
 a += 2*i;
 }
 return a;
 }

 291

4. Implement the following method using a recursive approach.

 public static int f(int n)
 {
 int a = 1;
 int b = 1;
 for(int i=1;i<=n;i++){
 a += ++b;
 b = a;
 }
 return a;
 }

5. Implement the following method using a recursive approach.

 public static int f(int n)
 {
 int a=0,b=1,c=0;
 if(n==1) return b;
 for(int i=2;i<=n;i++){
 a = b+c;
 c = b;
 b = a;
 }
 return a;
 }

6. Implement the following method using a recursive approach.

 public static double f(int n)
 {
 double a=2.0,b=2.0,c=2.0;
 if(n==1) return b;
 for(int i=2;i<=n;i++){
 a = b+0.5*c+i;
 c = b;
 b = a;
 }
 return a;
 }

7. Write a Java method for calculating the following function at a
given non-negative integer n. Based on your implementation,
plot the number of method invocation made as a function of n
ranging from 0 to 10.

,...4,3 if)3()2(
2,1,0 if1

)(
nnfnnf
n

nf

292

8. Write a Java method for calculating the following function at a
given non-negative integer n.

10;
1

3
))1()1()((

103;)3(
2
1)1(

2
1

2,1,0;
0

)(

n
n

nk
kfkkf

nnfnf

n
n

k
k

nf

9. Write a recursive Java method that calculates the sum of every
int element in an input array of int.

10. Write a recursive Java method that finds the smallest value in an
input array of int.

11. Write a recursive Java method that returns the index of the
smallest value in an input array of int.

12. The mathematical constant e is the base of the natural logarithm.
It is called Euler's number or Napier's constant. This constant is the
sum of the infinite series defined below.

...
!3

1
!2

1
!1

1

0 !0
1

!
1

n n
e

Write a method to approximate the value of e using the above
formula but with a finite number of terms. In other words,
instead of having n running to , it runs to an int value, N,
input to the method. Utilize the recursive approach as
appropriate. Then, write a Java program to compare the
results from the approximation at N = 5, 10, 15, and 20 with
the value of Math.exp(1).

Note that 0! equals 1. Also, you may use the following method
to find the value of n!.

 293

 public static double factorial(int n)
 {
 if(n<=0) return 1;
 return n*factorial(n-1);
 }

13. Write a recursive method called printInt() that receives an int
value as its input, and prints the associated digits on screen
one digit on each line, starting from the left. You are not
allowed to directly convert the input int value to String.
Assume that the input value is always positive. Also draw a
picture showing the method invocations occurred when
printInt(1942) is called.

14. The greatest common divisor (gcd) of two integers is the
largest integer that divides both of them. For example, the gcd
of 74 and 111 is 37.

a. Write a method that finds the gcd of two input
integers using an iterative approach.

b. Repeat part a. using an recursive approach based on:

otherwise)%,gcd(

0% if
),gcd(

bab
bab

ba

15. A palindrome is a word, phrase, number or other sequence of
units (such as a strand of DNA) that has the property of
reading the same in either direction where the punctuations
and spaces are generally ignored. For example, “civic”,
“level”, “Was it a cat I saw?”, and “A man, a plan, a canal:
Panama” are palindromes.

Write a recursive Java method that returns true if the String
passed to the method is a palindrome. Otherwise, it returns
false.

 295

Chapter 11: Creating Classes

Objectives
Readers should
 Recall the meaning of classes and objects in Java
 Know the components in the definition of a Java class
 Understand how constructors work
 Be able to create class and object methods
 Be able to create new Java classes and use them correctly

Defining Your Own Data Type

Recall that there are two categories of data in Java, namely primitive data
type and class. As mentioned earlier, we cannot create a new primitive
data type. However, most of the time programmers want to create new
data types; they can do so by creating new classes containing attributes
and behaviors of the desired data types. Creating a new class, we write a
class definition associated with that class in specific Java syntaxes, and
save the definition in a separated .java file named after the name of the
class. Once the definition is created, other programs can utilize the newly
created data type or class in a similar fashion to the primitive data types
or other existing classes. Go back and consult Chapter 5 if you cannot
recall the meaning of objects and how they are related to classes.

The structure of a Java class definition for a class named ClassName is:

public class ClassName
{
 // Details of the class goes
 // in here.
}

This looks like a Java program that we have covered since Chapter 2 but
a class definition that is not intended to be executable will not contain the
main() method. The body of the class definition, i.e. between the pair of

296

curly braces opened after the name of the class, is the place where
variables and methods specific to that class will be.

Example 88: A blank class

Suppose that we would like to create a new data type for representing
points in a Cartesian co-ordinate, we could create a new class called
MyPoint, whose definition follows the following structure.

public class MyPoint
{
 // a blank class definition
 // there’re no details yet
}

This definition has to be saved using the name MyPoint.java. Then, we
can write another program that makes use of this class. For example, we
could create another program that looks like:

public class TestMyPoint1 1
{ 2
 public static void main(String[] args) 3
 { 4
 MyPoint p, q; 5
 p = new MyPoint(); 6
 q = new MyPoint(); 7
 } 8
} 9

In the above program, variables p and q are declared as variables of the
type MyPoint on line 5 using a similar syntax as when variables of other
types are declared. On line 6 and line 7, p and q are assigned with, or in
other words, are made to refer to, new instances, or objects, of the class
MyPoint using the keyword new. This program just shows us a valid way
to make use of the newly created class. It has not done anything useful
since we did not define anything inside the definition of MyPoint.

In reality, we want to put something useful in the definition of our
classes so that they are not just blank as it appears in MyPoint above.

 297

Java Programs and Java Classes

Notice that source codes of Java programs that we have written so far
take the same structure as class definitions that we have just introduced
in this chapter. Actually, both Java programs and Java classes are the
same things. When an executable program is needed, a Java class with
the main() method is created and it can be executed with java.exe. When a
Java class is not intended to be executable but it is intended only for
describing a new type of data, there is no need for the main() method.
However, it should not be surprising to you to run into a Java class that
contain the main() method as well as a bunch of some other things that
describe a new type of data in the same .java file. Some Java classes even
create instances of the data type described by itself in its main() method.

Components of Class Definitions

The main functionality of a class definition is to define attributes and
behaviors of that class. Attributes are entities defining properties of an
object. Behaviors are actions (or reactions) of an object. The table below
shows example attributes and behaviors of some objects.

Object type Attributes Behaviors
Point in a 2D space The x coordinate

The y coordinate
etc.

Moving the point a specified location
Calculating distance from the point to a
specified location
etc.

Graphical line in a
3D space

Location of the
starting point
Location of the
ending point
Color
etc.

Calculating the length of the line
Moving the starting point to a specified
location
Moving the ending point to a specified
location
Changing the color of the line
etc.

Complex number Value of the real
part
Value of the
imaginary part
etc.

Adding the object with another complex
object,
Multiplying the object with another
complex object
Finding the conjugate of the object
Setting the real part to a specific number
Showing String representation of the object

298

etc.
Matrix Members of the

matrix
etc.

Adding elements to the object
Finding determinant
Adding the object with another matrix
object
Finding the inverse of the object
Raising to the power of n
etc.

Car Body color
Dimensions
Weight
Number of doors
Manufacturer
Engine status
etc.

Starting the engine
Shutting down the engine
Showing the name of its manufacturer
Accelerating
Decelerating
etc.

Bank account Account name
Owner
Account type
Balance
etc.

Showing the current balance
Showing all info associated with the
account
Withdrawing money from the account
Depositing to the account
Closing the account
etc.

Customer Customer ID
First name
Family name
Credit line
Gender
Favorite products
etc.

Showing all info of the customer
Changing the credit line
Checking whether the customer’s favorite
product consists of a specified product
etc.

Table 11: Examples of real-world objects together with their attributes
and behaviors

To describe attributes and behaviors of objects of the class, a class
definition can consist of the following components.

1. data members or fields
2. methods
3. constructors

An object’s attribute is represented using a data member. Variables used
for storing data members are called instance variables. The behaviors of an
object are described using methods. Constructors are special methods
invoked whenever objects of the class are created.

 299

The class definition shown below serves as an example aiming at giving
you a very broad overview the structure and syntaxes of a class
definition. Details are reserved for later sections.

public class OrderedIntPair
{
 private int x;
 private int y;

 public OrderedIntPair(){
 this(0,0);
 }
 public OrderedIntPair(int x,int y){
 this.x = x;
 this.y = y;
 }
 public int getX(){
 return x;
 }
 public int getY(){
 return y;
 }
 public void setX(int x){
 this.x = x;
 }
 public void setY(int y){
 this.y = y;
 }
 public void setValue(int x, int y){
 this.x = x;
 this.y = y;
 }
 public double d(OrderedIntPair p){
 double diffXSquare = Math.pow((p.getX()-x),2);
 double diffYSquare = Math.pow((p.getY()-y),2);
 return Math.sqrt(diffXSquare+diffYSquare);
 }
 public String toString(){
 return "("+x+","+y+")";
 }
}

Diagram for Class Descriptions

Starting from chapter 5, we have used some illustrations to describe
classes and objects. That we intend to keep those illustrations simple
makes those illustrations non-standard (meaning that they are used only

data members

constructors

methods

300

for readers of this book). However, it is good to take a look at how
people draw diagram to represent class definitions.

A popular diagram use for describing the details of a class is the class
diagram defined in the Unified Modeling Language (UML). In this diagram,
a class is shown using a rectangle in which its name, its data members
and its methods (including its constructors) are listed in separated
sections in the rectangle. Figure 170 shows a class diagram describing the
OrderedIntPair class listed above. Java syntaxes are used to describe the
class’s resources in this diagram.

Figure 170: A class diagram

An instance (object) of a class is normally represented using a diagram
very similar to the diagram shown in Figure 170 but with its method part
omitted, each variable assigned with a value associated with the object,
and the object name specified together with the class name. Object
diagrams describing three sample objects of the OrderedIntPair class are
shown in Figure 171. In the figure, there are three objects whose names
are firstPair, secondPair, and thirdPair. All of them are instances of the
OrderedIntPair class. The values of x and y for each object is also shown.

Figure 171: A diagram describing three objects

OrderedIntPair
private int x;
private int y;

public OrderedIntPair();
public OrderedIntPair(int x,int y);
public int getX();
public int getY();
public void setX(int x);
public void setY(int y);
public void setValue(int x, int y);
public double d(OrderedIntPair p);
public String toString();

firstPair:OrderedIntPair

x = 0
y = 0

secondPair:OrderedIntPair

x = 1
y = -1

thirdPair:OrderedIntPair

x = 2
y = 3

 301

Readers interested in learning more about UML should consult textbooks
on Software Engineering such as [Pre2010] or textbooks dedicated to
describing the UML itself such as [Mil2006] and [Pil2005].

Instance Variables and their Access Levels

Instance variables are used for storing data members. Instance variables
can be declared and possibly initialized inside a class definition but
outside of any methods defined in the class. The syntaxes used for
instance variable declaration are similar to the ones using to declare
variables inside a method.

Apart from the identifiers of the instance variables used for data
members and their data types, another aspect that ones wish to create
new data types need to concern about their data members is the
specification about their access levels.

Access level modifiers are used when instance variables are declared in
order to determine who (or which parts of the running program) have
the access rights to those instance variables. These modifiers are public,
private, and protected. Either one of these modifier is placed in the
instance variable declaration statements before the name of the data type
used in the declaration, such as

public int k = 1;
private double [] d;
protected String s1;

When an instance variable is declared as public, the dot operator can be
used to access the value of this instance variable from any instructions of
the running program. In contrary, if an instance variable is declared as
private, it is kept private to the class it is declared. That means the dot
operator cannot be used to access its value from anywhere outside the
class definition.

Another modifier determining access levels is the modifier protected.
Protected instance variables can only be accessed using the dot operator
within the class definition in which the instance variables are declared

302

and within the class definition of any subclasses of the class in which they
are declared. Subclasses will be discussed in Chapter 12.

If an instance variable is declared without an explicit access level
modifier, its access level is at the default level. In this case, dot operators
can be used to access this instance variable from only the definition of its
class and classes that are arranged in the same package as its class. The
discussion about arranging Java classes in packages is beyond the scope
of this book.

Therefore, in this chapter, we will pay attention to only the public and
private modifiers. Let’s notice the effect of access level modifiers in the
following examples.

Example 89: Points in the Cartesian coordinate

For an object of the class MyPoint to represent a point in the Cartesian
coordinate, it should at least have two double values representing the x-
coordinate and the y-coordinate of the point represented by the object.
Consequently, the class definition could look like:

public class MyPoint
{
 public double x;
 public double y;
}

The modifier public identifies that anyone can access the two instance
variables using the dot operator. The following program demonstrates
how the values of the two instance variables are accessed.

public class TestMyPoint2 1
{ 2
 public static void main(String[] args) 3
 { 4
 MyPoint p = new MyPoint(); 5
 MyPoint q = new MyPoint(); 6
 p.x = 2; 7
 p.y = 3; 8
 q.x = 0.5; 9
 q.y = -0.5; 10

(continued on next page)

 303

(continued from previous page)
 System.out.println("("+p.x+","+p.y+")"); 11
 System.out.println("("+q.x+","+q.y+")"); 12
 } 13
} 14

Figure 172: Accessing values of public instance variables

On line 5 and line 6, the variables named p and q are created. Each of
them is made to refer to a new MyPoint object. The instance variable x of
the object referred to by p is set to 2 while y is set to 3 on line 7 and line 8.
On the next two lines, the instance variable x of the object referred to by q
is set to 0.5 while y is set to -0.5. The code on line 11 and line 12 print the
output on the screen. They use the values of x and y in both objects
through p.x, p.y, q.x, and q.y.

Now if we change the class definition of MyPoint to:

public class MyPoint
{
 private double x;
 private double y;
}

Compiling TestMyPoint2.java again will lead to compilation errors as
shown in the picture below.

304

Figure 173: Compilation errors due to attempts in accessing values of
private instance variables from outside if their class definition

The modifier private makes instance variables private to the class they
are declared. That means the instance variables can be used or accessed
by that class or in the class definition of that class only. Errors occur
whenever the private instance variables x and y of any instances of
MyPoint are accessed directly by other classes. In this case, the class
trying to access those variables is TestMyPoint2. The modifier private
allows the creator of the class to hide data members from the outside
world. Doing this is crucial to the data encapsulation concept in Object-
Oriented Programming (OOP). However, we do not intend to elaborate on
OOP concepts in this course. Interested readers can learn more about
OOP concepts from many online and printed resources such as
[Wei2008] and [Jia2002].

Object Composition

Data members of a class can be objects of other classes which can be
either Java standard classes or newly-created classes. For example, let’s
suppose we would like to create a class MyLabelledPolygon representing

 305

polygons, each of which has its associated text label. We might decide
that its data members include an array of MyPoint objects for storing the
location of every vertex of the polygon, and a String object representing
the label. An instance of this polygon could look like the one in Figure
174.

Figure 174: A Polygon instance

The class definition could be listed as the code below.

public class MyLabelledPolygon
{ private MyPoint [] vertices;
 private String label;

 // ... other elements are omitted ...
}

Since an object of the class MyLabelledPolygon is an object that is
composed of some MyPoint objects and a String object, we can say that
MyLabelledPolygon is a new class that is a composition of objects of other
classes. The way to combine objects into an object of a new class can be
called object composition.

A class created by object composition is said to have the ‘has-a (has-an)’ or
‘has-some’ relationship with the objects it is composed of. For example, in
the case of MyLabelledPolygon, we can say that an object of the class
MyLabelledPolygon ‘has some’ objects of the class MyPoint and ‘has an’
object of the class String.

When an object of the class A is composed of one or many objects of the
class B, we can use a UML diagram shown in Figure 175 to indicate their

vertices[6]

vertices[5]

vertices[4]

vertices[3]

vertices[2]

vertices[1]

vertices[7]

vertices[0]

label

306

relationship. In the diagram, the diamond shape at the end of the line
linking the two classes indicating the ‘has-a’ or ‘has-some’ relationship in
which the class near the diamond is the composition of the class at the
other end of the line.

Figure 175: Object composition

The diagram in Figure 176 shows the relationships among
MyLabelledPolygon, MyPoint, and String.

Figure 176: Relationships among MyLabelledPolygon and the classes
of its data members.

Static and Non-static Data Members

Data members can be either static or non-static. Non-static data members
are attributes of instances of the class, while static data members are
attributes of the class itself. In other words, each instance of the class has
its own copy of non-static data members, while static data members are
shared among every instances of the class. Data members are non-static
by default. To make a data member static, we use the modifier static in
front of the declaration of variables storing the data members. Therefore,
to be precise, we will not call variables storing static data members
instance variables since the variables are not the attributes of any specific
instances but they are shared among every instances. Such variables may
be called class variables.

MyPoint

String

MylabelledPolygon

A B

 307

Example 90: Static vs. non-static data members

The following program shows how static and non-static variables are
declared and used.

public class C11A 1
{ 2
 public static int i; 3
 public int j; 4
} 5

public class StaticDataMemberDemo 1
{ 2
 public static void main(String[] args) 3
 { 4
 C11A x = new C11A(); 5
 C11A y = new C11A(); 6
 C11A z = new C11A(); 7
 x.j = 5; 8
 y.j = 10; 9
 z.j = 15; 10
 System.out.println("x.j = "+x.j); 11
 System.out.println("y.j = "+y.j); 12
 System.out.println("z.j = "+z.j); 13
 x.i = 0; 14
 y.i++; 15
 z.i += 3; 16
 System.out.println("x.i = "+x.i); 17
 System.out.println("y.i = "+y.i); 18
 System.out.println("z.i = "+z.i); 19
 } 20
} 21

Figure 177: Demonstration of using static and non-static data member

On line 5, line 6, and line 7, three instances of C11A are created and
referred to by x, y and z. On line 8, line 9, and line 10, the values of 5, 10,

308

and 15 are assigned to the instance variables j belonging to the objects
referred to by x, y, and z, respectively. These objects do not share the
value of j. However, the variable i is shared by the three objects. The
statement x.i = 0 on line 14 assign 0 to i. Note that at this point y.i and
z.i are also 0 since they refer to the same thing. i can be modified via
any objects. Therefore, we can see that the resulting value of i, shared by
x, y and z, is 4.

Figure 178: A diagram showing three objects of the C11A class and the
values of their instance and class variables

Methods

Methods describe behaviors of objects of the class. We have learned how
to use methods defined in existing classes in Chapter 5. In Chapter 5, we
also mentioned that there were two types of methods: static (class)
methods and non-static (instance) methods. A (public) method defined in
a class definition is by default non-static and it can be invoked by other
classes via the instance name of an object of that class using the dot
operator. To make a method static, the keyword static is put in the
method header. This way, the method can be invoked using the dot
operator with the name of the class. The general syntax of defining a
method in a class is similar to what we have already been familiar with
in Chapter 8. This time, we will look at the syntax in a more general
view. The syntax follows:

(modifier) (static) returnType methodName(argumentList){
 methodBody
}

x:C11A

i = 4

j = 5

y:C11A

i = 4

j = 10

z:C11A

i = 4

j = 15

i

4

Any static variable is
shared among every
object of the class.

 309

An access level modifier (shown as (modifier)), being either public,
private, or protected, can be specified at the beginning of the method
header. It determines whether which classes can make use of this
method. The access levels specified by public, private, and protected
are similar to when they are used with data members.

The keyword static makes the method static, or a class method. If
omitted, the method is considered as non-static, or an instance method.

The other parts of the method definition are the same as what we
discussed in Chapter 8.

We can define as many methods as we would like in the class definition.
If the definition contains a public method named main(), the class can be
executed by java.exe. In other words, the class is in fact a Java program.

Discriminating data Members and Variables
Declared inside Methods

When declaring a method inside a class, it is okay to name the variables
inside the input argument list of the method with the identifier similar to
a variable used for a data member of the class. However, since both data
members and variables declared in the method can be used inside the
method, programmers need to know how to distinguish between
variables for data members and variables declared in the method with
the same identifiers. Situations in which programmers choose to use
ambiguous variable names are not uncommon at all. Some examples of
such situations can be seen in accessor and mutator methods which will
be discussed shortly after this.

The this keyword is used with the dot operator for this situation.
Suppose that there is a data member that is represented by a variable var.
In the same class, there is a method whose input argument list contains
another variable that is also named var. The expression this.var will
refer to var that is the data member, while using var without the this
keyword will refer to var that is declared inside the method.

310

When the variable names are not ambiguous, using the name of the
variable alone can mean either the data member or the variable declared
in the input argument list, whichever applies. However, using the
variable with the this keyword always means the data member.

Accessor and Mutator Methods

Typically, in OOP, data members in a class are defined as private to
prevent users of the class accessing the data members directly. Instead,
the creator of the class usually provides public methods for reading or
changing some data members. Methods provided for other classes to
read the values of data members are called accessor methods, while
methods provided for changing the values of data members are called
mutator methods.

toString()

Whenever an object of a class needs to be converted to its String
representation, Java automatically calls a specific method called
toString(). Therefore, in order to provide a meaningful String
representation of the class we create, it is sensible to provide the method
named exactly as toString() that returns the String representation we
want.

Example 91: Accessor, mutator, toString() and other methods

The following code shows a more complex class definition of MyPoint.
The definition provide appropriate methods, including mutator
methods, accessor methods, toString() as well as some other useful
methods.

public class MyPoint 1
{ 2
 // data members 3
 private double x; 4
 private double y; 5

(continued on next page)

 311

(continued from previous page)
 6
 // accessor methods 7
 public double getX(){ 8
 return x; 9
 } 10
 public double getY(){ 11
 return y; 12
 } 13
 14
 // mutator methods 15
 public void setX(double x){ 16
 this.x = x; 17
 } 18
 public void setY(double y){ 19
 this.y = y; 20
 } 21
 22
 // other methods 23
 public void setLocation(double x, double y){ 24
 this.x = x; 25
 this.y = y; 26
 } 27
 public double distanceTo(MyPoint p){ 28
 double diffXSquare = Math.pow((p.getX()-x),2); 29
 double diffYSquare = Math.pow((p.getY()-y),2); 30
 return Math.sqrt(diffXSquare+diffYSquare); 31
 } 32
 public String toString(){ 33
 return "("+x+","+y+")"; 34
 } 35
} 36

The methods getX() and getY() declared on line 8 and line 11 allows other
classes to read the values of the private variables x and y, respectively.
These are accessor methods. The methods setX() and setY() declared on
line 16 and line 19 allows other classes to set the values of the private
variables x and y. These are mutator methods.

You should notice the usage of this. this is a reference used for referring
to the current instance of the class. On line 17 and line 20, this.x and
this.y refer to the instance variables x and y of the current instance, i.e.
the instance from which the methods are invoked.

Now, let’s use this class. Observe the following program and its output.

312

public class TestMyPoint3 1
{ 2
 public static void main(String[] args) 3
 { 4
 MyPoint p = new MyPoint(); 5
 MyPoint q = new MyPoint(); 6
 p.setX(6.0); 7
 p.setY(5.0); 8
 q.setLocation(p.getX(),p.getY()); 9
 System.out.println("q="+q); 10
 p.setLocation(10.0,2.0); 11
 System.out.print("Distance from "+p+" to "); 12
 System.out.println(q+" is "+p.distanceTo(q)); 13
 } 14
} 15

Figure 179: A program using various methods of the MyPoint class

On line 7, setX() is invoked from p. This set the value of x belonging to
the MyPoint object referred to by p to the value input to the method.
Similarly, the value of y belonging to the MyPoint object referred to by p
is set to 5.0 on line 8.

On line 9, p.getX() and p.getY() return the value of the instance
variables x and y belonging to the MyPoint object referred to by p. These
values are used as input parameters to setLocation() invoked from q, in
which the instance variable x of the object referred to by q is assigned
with the first input parameter to the method, while the instance variable
y of the object referred to by q is assigned with the other input parameter.

Whenever the String representation of a MyPoint object is needed, for
example in argument lists of print() and println() on line 10, line 12, and
line 13, toString() of that object is automatically invoked.

 313

Example 92: Utility class with only static methods

Static methods are also useful when we would like to build a class
providing useful functionalities to be used by other classes or programs,
such as the standard Math class. Such a class is not commonly
instantiated, or in other words, it is not common to create an object of
such a class. Therefore, the functionalities are provided through its
public static methods.

Here is a sample class made up for providing some functionality for int
array manipulations. Note that this class serves as an example when
static methods are used. There are some smarter ways to manipulate
arrays.

public class MyIntArrayUtil 1
{ 2
 public static int [] createRandomElements(3
 int n,int min, int max) 4
 { 5
 int [] a = new int[n]; 6
 for(int i=0;i<n;i++){ 7
 a[i] = (int)Math.round(Math.random()*(max-min)+min); 8
 } 9
 return a; 10
 } 11
 public static void showElements(int [] a) 12
 { 13
 System.out.print("["+a[0]); 14
 for(int i=1;i<a.length;i++){ 15
 System.out.print(", "+a[i]); 16
 } 17
 System.out.print("]\n"); 18
 } 19
 public static int [] removeAt(int [] a,int n){ 20
 if(n<0 || n>a.length-1) return a; 21
 int [] b = new int[a.length-1]; 22
 for(int i=0;i<n;i++){ 23
 b[i] = a[i]; 24
 } 25
 for(int i=n+1;i<a.length;i++){ 26
 b[i-1] = a[i]; 27
 } 28
 return b; 29
 } 30
 public static int [] insertAt(int [] a, int n, int k){ 31
 if(n<0 || n>a.length) return a; 32

(continued on next page)

314

(continued from previous page)
 int [] b = new int[a.length+1]; 33
 for(int i=0;i<n;i++){ 34
 b[i] = a[i]; 35
 } 36
 b[n] = k; 37
 for(int i=n;i<a.length;i++){ 38
 b[i+1] = a[i]; 39
 } 40
 return b; 41
 } 42
} 43

The class MyIntArrayUtil created here contains four public static
methods. The first one defined on line 3 creates an int array of length n
whose elements are integer randomly chosen from min to max, inclusively.
The method defined on line 12 prints all elements of the input array on
screen. The method defined on line 20 removes the element at a specified
position. Defined on line 31, the method inserts a given value to a
specified position of the input array.

The following program makes use of the public static methods in
MyIntArrayUtil. Observe the output of the program by yourself.

public class TestMyIntArrayUtil 1
{ 2
 public static void main(String[] args) 3
 { 4
 System.out.print("\nOriginal array:\t\t"); 5
 int [] a = MyIntArrayUtil.createRandomElements(5,1,10); 6
 MyIntArrayUtil.showElements(a); 7
 System.out.print("insert 6 at 0:\t\t"); 8
 a = MyIntArrayUtil.insertAt(a,0,6); 9
 MyIntArrayUtil.showElements(a); 10
 System.out.print("insert 9 at 3:\t\t"); 11
 a = MyIntArrayUtil.insertAt(a,3,9); 12
 MyIntArrayUtil.showElements(a); 13
 System.out.print("insert 1 after:\t\t"); 14
 a = MyIntArrayUtil.insertAt(a,a.length,1); 15
 MyIntArrayUtil.showElements(a); 16
 System.out.print("remove at 2:\t\t"); 17
 a = MyIntArrayUtil.removeAt(a,2); 18
 MyIntArrayUtil.showElements(a); 19
 System.out.print("remove at 0:\t\t"); 20
 a = MyIntArrayUtil.removeAt(a,0); 21
 MyIntArrayUtil.showElements(a); 22
 System.out.print("remove the last:\t"); 23

(continued on next page)

 315

(continued from previous page)
 a = MyIntArrayUtil.removeAt(a,a.length-1); 24
 MyIntArrayUtil.showElements(a); 25
 } 26
} 27

Figure 180: Using static methods inside a utility class

Putting main() into Class Definitions

As mentioned earlier, a Java class definition can also contain the main()
method. If that is the case, the class can be executed as a Java program
and the instructions executed are ones inside the main() method. This fact
comes in handy when we would like to create a new class and would like
to write some instructions to test the usage of the class. To do that, we
listed data members as well as methods as usual, but we can also add the
main() method in which instances of the class can be created and used
just like it is done in other programs.

316

Example 93: Executable class definition

Consider the following class definition that contains the main() method.

public class ExecutableClass { 1
 private int i = 0; 2
 public void setI(int i){ 3
 this.i = i; 4
 } 5
 public String doAction(){ 6
 return "<<"+i+">>"; 7
 } 8
 public static void main(String [] args){ 9
 ExecutableClass ex1 = new ExecutableClass(); 10
 ex1.setI(99); 11
 ExecutableClass ex2 = new ExecutableClass(); 12
 ex2.setI(108); 13
 System.out.println(ex1.doAction()); 14
 System.out.println(ex2.doAction()); 15
 } 16
} 17

In the main() method, the program creates two instances of the
ExecutableClass class, whose details are listed in the same class as the
program. The instance variable i of the first instance is set to 99 by the
statement on line 11 and the one of the second instance is set to 108 by
the statement on line 13. doAction() is called on each instances and the
results are printed out onto the screen.

Figure 181: A program creating instances of its own class

 317

Constructors

Constructors are special methods invoked whenever an object of the
class is created. Constructors are defined in the same fashion as defining
methods. However, constructors must have the same name as the class
name and there must not be any return types specified at the header of
the constructors. Constructors are usually for initializing or setting
instance variables in that class. How they are set is described in the body
of the constructor together with other possible intructions.

Given a class called MyClass, its constructors are in the following
structure.

public Myclass(<input argument list>){
 // Body of the constructor
}

Here is an example of a no-argument (no input) constructor for MyPoint,
in which its instance variables are set with 1.0.

public MyPoint(){
 x = 1.0;
 y = 1.0;
}

Adding this constructor to the class definition of MyPoint, we obtain:

public class MyPoint
{
 // data members
 private double x;
 private double y;

 // constuctors
 public MyPoint(){
 x = 1.0;
 y = 1.0;
 }

 // …………………………………………… Details are omitted…………………………………

 public String toString(){
 return "("+x+","+y+")";
 }
}

318

Once MyPoint is defined this way, whenever a MyPoint object is
instantiated with new MyPoint(), a new object is created with x and y
initialized with 1.0 due to that two statements in the constructor.

Overloading Constructors

Constructors can be overloaded just like methods. A class can have
multiple constructors with different input argument lists. Which
constructor to be called when an instance of the class is created depends
on the input argument list used with the new statement.

No-argument Constructor

The no-argument constructor is the constructor that does not take any
input arguments. Therefore, it usually contains a set of instructions that
provide a default initialization to the object’s data members.

Detailed Constructor

The detailed constructor usually refers to the constructor each input
argument of which is corresponding to a data member of the class.
Typical implementation of this constructor is to initialize every data
member with its corresponding input argument.

Copy Constructor

The copy constructor usually refers to the constructor that takes another
object of the same class as its input argument. It usually initializes each
data member of the new object with the value of the corresponding data
member of the input object. This results in that the new object has all of
its attributes copied from the original one.

There can be other constructors apart from the three listed above. The
rules of overloading constructors are the same as the ones governing the
overloading of any other methods.

 319

Example 94: Overloaded constructors

Consider a new class definition of MyPoint listed below when
overloaded constructors are added.

public class MyPoint
{
 // data members
 private double x;
 private double y;

 // constructors
 public MyPoint(){
 x = 1.0;
 y = 1.0;
 System.out.println("MyPoint() is called.");
 }
 public MyPoint(double x,double y){
 this.x = x;
 this.y = y;
 System.out.println("MyPoint(double,double) is called.");
 }
 public MyPoint(MyPoint p){
 x = p.getX();
 y = p.getY();
 System.out.println("MyPoint(MyPoint) is called.");
 }

 // …………………………………………… Details are omitted…………………………………

 public String toString(){
 return "("+x+","+y+")";
 }
}

The first constructor, MyPoint(), does not take any input arguments.
Therefore, it is called via the statement new Mypoint(). Such a constructor
is the no-argument constructor. MyPoint(double x, double y) is a
constructor that takes two double values as its input. It is called via the
statement new Mypoint(a,b), where a and b are any double values. This
constructor initializes the instance variables to the input values. Such a
constructor that requires the values of the instance variables as its input
is the detailed constructor. The last constructor is MyPoint(MyPoint q).
This constructor is invoked as a response to the statement new

Mypoint(c), where c is an instance of MyPoint. In this constructor the
value of x is set to the value of x from the instance of MyPoint supplied as

320

the input to the constructor, and the value of y is set to the value of y
from the same instance. Such a constructor that copies all attributes from
the input instance is the copy constructor. Just like method overloading,
you should notice that constructors are not limited to the ones shown in
this example. Also note that we add an invocation of println() inside each
of the constructor to observe that which one of the constructors is
invoked when each instance is created.

Observe the output of the following program by yourself. Pay attention
to the order of constructors invoked through the messages printed out on
the screen.

public class TestMyPoint5 1
{ 2
 public static void main(String[] args) 3
 { 4
 MyPoint p = new MyPoint(); 5
 System.out.println("p-->"+p); 6
 MyPoint q = new MyPoint(2.0,5.0); 7
 System.out.println("q-->"+q); 8
 MyPoint r = new MyPoint(q); 9
 System.out.println("r-->"+r); 10
 } 11
} 12

Figure 182: Demonstration of using overloaded constructors

When there is no constructor provided in a class, it is still okay to create
an instance of that class using the new statement without any input

 321

arguments. Java can handle the instantiation properly. If the variables for
data members are not explicitly initialized when they are declared inside
the class definition, default values will be used for those variables based
on their data types (zero for numeric data type, false for boolean, and
null for non-primitive types). Otherwise, the values explicitly used in the
initialization are used.

However, if there is at least one constructor defined in the class other
than the no-argument constructor which is absent, Java will treat the new
statement without any input arguments in the same way as in the case of
other missing overloaded constructors. That means it will produce a
compilation error.

Consider the following example.

Example 95: Missing no-argument constructor

The following class definition does not contain the no-argument
constructor but it does provide a detailed constructor. In the main()
method, the program tries to create an instance of this class with the new
statement without any input arguments on line 7. The program cannot be
compiled successfully since it cannot find the constructor that does not
take any arguments. Java will not instantiate the object using the default
mechanism due to the presence of a constructor (which is the detailed
constructor, in this case) in the class definition. The error can be observed
in Figure 183.

public class MissingConstructor { 1
 private double d; 2
 public MissingConstructor(double d){ 3
 this.d = d; 4
 } 5
 public static void main(String [] args){ 6
 MissingConstructor mc = new MissingConstructor(); 7
 } 8
} 9

322

Figure 183: Compilation error due to missing a constructor

Calling a Constructor from Other Constructors

We have mentioned that the detailed constructor is the constructor that
assigns values to each data member one by one based on the input
supplied to the constructor. Comparing the no-argument constructor
with the detailed constructor, we can see that the operation performed
by the no-argument constructor can be considered a special case of the
operation performed by the detailed constructor. This special case also
assigns values to every data members but with a default set of values.
The same thing applies when we compare the operation of the copy
constructor with the operation of the detailed constructor. The copy
constructor assigns values that are fixed by the input object to every data
members. This is considered a special case to the operation of the
detailed constructor as well. If we consider other possible constructors
that attempt to assign values to every data members based on some
inputs, their operations can also be considered special cases to the one of
the detailed constructor as well.

Therefore, it is usually considered desirable to have such constructors
prepare sets of values to be assigned to the data members and make use
of the detailed constructor to perform the actual assignment just like
what is shown in Figure 184 in the case of the MyPoint class.

 323

Figure 184: Re-using the detailed constructor

This is considered a good strategy especially when there are some
changes made to the data members such as when we decide to change
the names of the variables representing the class’s data members. If the
actual assignments made to the variables are all implemented in the
detailed constructor, it is the only place where the source code needs to
be changed.

The above paragraphs describe an example situation when there must be
a way to invoke a constructor from other constructors. In Java, a
constructor can be invoked within another constructor using
this([argument list]), where [argument list] is the list of arguments
corresponding to the argument list of the constructor to be called.

There is a limitation that you need to keep in mind. If the invocation of a
constructor via this() statement is used, the statement must be the first
statement in the constructor. Otherwise, it will lead to a compilation
error.

p1:MyPoint

x =
y =

q:MyPoint

x = 0.5
y = 1.5

MyPoint(double x, double y)

p1 = new MyPoint()

1.0 1.0

p1 = new MyPoint(q)

assigns
assigns

324

Adopting the mention strategy, we can re-implement the constructors of
MyPoint as listed below.

 // constructors
 public MyPoint(){
 this(1.0,1.0);
 }
 public MyPoint(double x,double y){
 this.x = x;
 this.y = y;
 }
 public MyPoint(MyPoint p){
 this(p.getX(),p.getY());
 }

Notice that if somehow we decide to change the names of the instance
variables from x and y to something else, the only statements we need to
change in the two statements inside the detailed constructor. Readers
should figure about what would happen in the case of this change if the
constructors make actual assignments to the two instance variables
instead of calling the detailed constructor to make the actual
assignments.

With the availability of the accessor methods, setX() and setY(), it will be
even better if the accessor methods are called by the detailed constructor
instead of having the constructor makes the actual assignments by itself.
The code for the detailed constructor could look like the following.

 public MyPoint(double x,double y){
 setX(x);
 setY(y);
 }

Consider the following non-trivial example where a new data type is
defined to represent complex numbers. The class provides useful non-
static methods for manipulating the object of this class.

Example 96: Complex numbers

A complex number is of the form a+jb, where a and b are real numbers,

and j is a quantity representing 1 . We would like to define a new
class for complex numbers. Complex numbers are added, subtracted,

 325

and multiplied by formally applying the associative, commutative and
distributive laws of algebra, together with the equation j2 = −1.
Therefore,

)()())((
)()()()(
)()()()(

adbcjbdacjdcjba

dbjcajdcjba

dbjcajdcjba

.

The reciprocal or multiplicative inverse of a complex number can be
written as:

 2222

1)(
ba

b
j

ba

a
jba ,

when the complex number is non-zero.

Division between two complex numbers is defined as:

1))((
)(
)(

jdcjba
jdc
jba

.

Complex conjugate of a complex number a+jb is a-jb, while the

magnitude of a+jb is calculated by)22(ba .

Here is an example of the class definition for Complex, a class we use for
representing complex numbers.

public class Complex
{
 // attributes: (re) + j(im)
 private double re;
 private double im;

 // constructors
 public Complex(){
 this(0,0);
 }

(continued on next page)

326

(continued from previous page)
 public Complex(double r, double i){
 setRe(r);
 setIm(i);
 }
 public Complex(Complex z){
 this(z.getRe(),z.getIm());
 }

 //accessor methods
 public double getRe(){
 return re;
 }
 public double getIm(){
 return im;
 }

 //mutator methods
 public void setRe(double r){
 re = r;
 }
 public void setIm(double i){
 im = i;
 }

 //other methods
 public Complex adds(Complex z){
 return new Complex(re+z.getRe(),im+z.getIm());
 }
 public Complex subtracts(Complex z){
 return new Complex(re-z.getRe(),im-z.getIm());
 }
 public Complex multiplies(Complex z){
 double r = re*z.getRe()-im*z.getIm();
 double i = im*z.getRe()+re*z.getIm();
 return new Complex(r,i);
 }
 public Complex divides(Complex z){
 return this.multiplies(z.multInverse());
 }
 public Complex multInverse(){
 double den = Math.pow(this.magnitude(),2);
 return new Complex(re/den,-im/den);
 }
 public Complex conjugate(){
 return new Complex(re,-im);
 }
 public double magnitude(){
 return Math.sqrt(re*re+im*im);
 }

(continued on next page)

 327

(continued from previous page)
 public String toString(){
 if(im>=0)
 return re+"+j"+im;
 else
 return re+"-j"+(-im);
 }
}

The following program shows the class Complex in action. Note that even
though we can put this program inside the class definition of Complex, it
is more realistic to create a separate program as an example of how other
people who do not have access to the source code of the class can make
use of the class.

public class TestComplex 1
{ 2
 public static void main(String[] args) 3
 { 4
 Complex p = new Complex(1,1); 5
 Complex q = new Complex(3,4); 6
 System.out.println("p="+p+", q="+q); 7
 System.out.println("p+q="+p.adds(q)); 8
 System.out.println("p-q="+p.subtracts(q)); 9
 System.out.println("p*q="+p.multiplies(q)); 10
 System.out.println("p/q="+p.divides(q)); 11
 System.out.println("conjugate of p="+p.conjugate()); 12
 System.out.println("magnitude of q="+q.magnitude()); 13
 } 14
} 15

Figure 185: A program testing a data type presenting complex numbers

328

Exercise

1. Explain the following words:
a. class
b. object
c. attribute
d. behavior
e. instance variable
f. constructor
g. accessor method
h. mutator method

2. Identify data members and methods of the following class.

 public class Ex11_2{
 public double d;
 public Color k;
 public void makeItem(){
 }
 public String describe(){
 return “Ex11_2:”+d+”,”+k;
 }
 }

3. Can the following class definition be compiled successfully? If
not, explain what is wrong.

public class Ex11_3{
 public d;
 public k;
}

4. Explain the difference between static and non-static data
members.

5. Explain the difference between static and non-static methods.

6. Consider the following class definition.

 public class Ex11_6
 {
 public int a,b;
 public int c = 2;
 public static int x = 6;
 }

 What are the values of a, b, c, and x, of instanceA and
instanceB after the following program is run?

 329

public class Ex11_6Test
{
 public static void main(String[] args)
 {
 Ex11_6 instanceA = new Ex11_6();
 Ex11_6 instanceB = new Ex11_6();
 instanceA.a = 8;
 instanceB.b = instanceA.x;
 instanceA.x++;
 instanceB.a = 10;
 instanceB.c = 90;
 instanceB.x++;
 }
}

7. A file named Capsule.java has the following content.

public class Capsule
{
 public static int nCapsules = 0;
 public double volume;
 public String screenText;

 public Capsule(double volume,String s){
 this.volume = volume;
 screenText = s;
 nCapsules++;
 }
}

Determine the value of nCapsules when the following program
is run.

public class Ex11_7Test
{
 public static void main(String[] args)
 { int [] nInPack = {5,10,10};
 Capsule [][] pack = new Capsule[3][];
 for(int i=0;i<pack.length;i++){
 pack[i] = new Capsule[nInPack[i]];
 for(int j=0;j<pack[i].length;j++){
 pack[i][j] = new Capsule(0.5,"Formular"+i+j);
 }
 }
 System.out.println(Capsule.nCapsules);
 }
}

330

8. Determine the output of the following program.

public class Ex11_8Test
{
 public static void main(String[] args)
 { int k = 5, j = 6;
 Ex11_8 a = new Ex11_8();
 Ex11_8 b = new Ex11_8(k*j);
 Ex11_8 c = new Ex11_8(k,j);
 }
}

 Given that the class Ex11_8 is defined as:

public class Ex11_8
{
 public Ex11_8(){
 this(0);
 System.out.println("A");
 }
 public Ex11_8(int k){
 this(0,0);
 System.out.println("B");
 }
 public Ex11_8(int k,int m){
 System.out.println("C");
 }
}

9. Modify the class MyIntArrayUtil so that it contains another
static method that takes an input array of int and sort it in
increasing order. Then write a Java program that performs the
following steps.

a. Create an array of ten int values, where each value is
randomly chosen from 1 to 100.

b. Show the elements of the array on screen.
c. Sort the elements of the array increasingly.
d. Show the elements of the array on screen again.

10. Create a class called Wrestler for representing a wrestler in a
wrestling simulation program, which simulates the result of a
wrestling match with two wrestler based on their wrestling
attributes.

A wrestler has the following attributes.

 331

Attribute
Name

Description Value

Name The name of the wrestler a text
Power(pow) Wrestlers cannot fight when their

power reach 0.
a number less than Max.
power

Max. power The power at the starting of a
match

100

Strength (str) The fighting strength of the
wrestler

an integer from 1 to 20

Toughness
(tou)

The ability to endure damage an integer from 1 to 20

Stamina (sta) A wrestler with high stamina can
fight longer.

an integer from 1 to 20

Speed (spd) The agility of the wrestler an integer from 1 to 20
Luck (lck) Luck determines how lucky the

wrestler is.
an integer from 1 to 20

Courage (cou) A wrestler with high courage
tends to become boosted more
often.

an integer from 1 to 20

Skill (skl) A wrestler with high skill can turn
defense to attack more frequently.

an integer from 1 to 20

Wrestler must have a constructor that sets the variable name to
a given String. All data members of the class must be private.

Also provide appropriate mutator and accessor methods. All
accessor methods are public. However, for str, sta, tou, spd,
lck, cou, and skl, make their mutator methods private and
have each of them check whether its input value are in the
valid range (1-20). Mutator methods whose inputs are not in
the valid range must return false. Otherwise, they must
return true.

Write a public method rest(), which resets pow to the value of
max. power.

Write a public method reducePow() that reduce the current pow
by a double value taken as its only input argument.

Furthermore, provide a public method called setAttr() that
takes in the 7 int values to be assigned to str, tou, sta, spd,
lck, cou, and skl, and makes use of all private mutator
methods to set the values appropriately. This method must

332

return false if any one of the private mutators return false.
Otherwise, it must return true.

11. Add toString() to Wrestler in the previous problem so that it
returns a String in the following format: Wrestler: [name]. For
example, System.out.print(x) would print Wrestler: Hulk

Hogan if x refers to a Wrestler object with the instance variable
name being “Hulk Hogan”.

12. The fighting between two wrestlers in a wrestling match in
our wrestling simulator is simulated in turns. Each turn
follows the following steps.

1) Determine who initiates the assault.
Each turn starts with determining which wrestler does the
attacking. For each wrestler, a random double number d is
uniformly drawn from 0 to (the wrestler’s spd)+(the wrestler’s
lck+the wrestler’s cou)/8.0. The wrestler with the bigger d
takes the attack chance. Redo if the two wrestlers have got the
same values of d. (A tie in the value of two randomly picked
double is rare.)

2) Counterattack.
Before the actual attack takes place, the attacker might loose
his attack chance if the defender successfully counterattacks.
For each wrestler, a random double number c is uniformly
drawn from 0 to (the wrestler’s skl+(the wrestler’s lck)/8.0). A
successful counterattack takes place if the defender has a
bigger c than the attacker. When the counterattack takes place,
the original defender takes the attack chance from the attacker.

3) Deal the damage.
The wrestler with the attack chance (w1) can now deal some
damage to the other wrestler (w2). A double number dmg is
calculated from:

dmg = (str of w1+10)-(tou of w2)+e

where e is a random double number uniformly taken from 0 to
(cou of w1)/4.0+(skl of w1)/4.0-(skl of w2)/4.0+(lck of
w1)/8.0-(lck of w2)/8.0

 333

If dmg is less than 0, dmg is set to 0. Then, dmg is subtracted
from w2’s current pow.

4) Account for tiredness.
After the damage dealing step, both wrestlers get some
reduction in their pow values. The reduction r in pow is a double
value and is calculated by:

r = (current pow/Max. Power)20 (sta+1)-1

5) Check whether the power is depleted.
A wrestling match is over if, after a turn is finished, pow values
of any one of the two wrestlers are less than or equal to 0.
Otherwise, a next turn is executed following similar steps,
with the pow value of each wrestler remains what it is at the
end of the current turn.

If the match is over, a wrestler with positive pow is the winner.
If there is no winner, the match is called a tie.

Now, create a class called FightingRule that contains non-static
methods needed for commencing a wrestling match according
to the steps above. These methods include:

 int determineAttacker(Wrestler w1, Wrestler w2)

The method returns 1 if w1 takes the attack chance as the result
of step 1). It returns 2 if w2 takes the attack chance.

 boolean canCounter(Wrestler w1, Wrestler 2)

The method assumes that w1 is the attacker and w2 is the
defender. It returns true if a counterattack takes place as the
result of step 2). Otherwise it returns false.

 double dealDamage(Wrestler w1, Wrestler w2)

The method assumes that after step 2) in the current turn w1
has the attack chance. It returns the value of inflicted damage
according to the rule explained in step 3). This method also
reduce pow of w2 according to the damage inflicted.

 void exhaust(Wrestler w)

334

The method reduces the value of pow of w according to the
tiredness explained in step 4).

boolean isKO(Wrestler w)

The method returns true if pow of w is less than or equal to 0.

13. Create a class called WrestlingMatch. An object of this class
represents a wrestling match between two wrestlers.

The data members of this class are:

 private Wrestler red;
 private Wrestler blue;
 private int maxStat;
 private FightingRule rule;

The two instance variables red and blue refer to the wrestlers
involved in this match. The instance variable maxStat
determines the maximum value that str, tou, sta, spd, lck,
cou, and skl of each wrestler can be summed to. If a wrestler
has such a sum exceeding maxStat, that wrestler is disqualified
for the match. The instance variable rule is a FightingRule
object adopted by the match.

Write a constructor that takes an int value and a reference to a
FightingRule object. It set maxStat to that int value and set rule
to the FightingRule object.

Write a method public boolean isQualified(Wrestler w) that
returns true if w is qualified for the current match. Otherwise,
it returns false.

Write a method public boolean setWrestlers(Wrestler

w1,Wrestler w2) that assigns the wrestler referred to by w1 to
red and the wrestler referred to by w2 to blue. The method
must return false if one of the wrestlers are disqualified.
Otherwise, it returns true.

Write a method public Wrestler commence() that simulates the
current wrestling match based on the two objects of Wrestler
referred to by red and blue according to the rules defined in
rule. The method must make use of the five methods provided

 335

in rule. Basically, the method introduces a loop inside which
each turn of the match is simulated based on the methods
provided in the FightingRule object. The loop is exited when
there is a winner to the match or the match is known as a tie. It
returns a reference to the Wrestler object who wins the match,
or it returns null if the match is a tie. Inside the method
println() should be used to echo the commentary of what has
happened in the match out on screen. Design your own style
of match commentary.

14. Write a program called ManualSimulation.java that performs
the following steps:

 Create an instance of FightingRule and have it be referred
to by a variable currentRule.

 Create an instance of WrestlingMatch and have it be
referred to by a variable match. This match should have its
maxStat at 70. Apply the instance of FightingRule created in
the previous step. Use the constructor of WrestlingMatch.

 Create the following wrestlers with the attributes
specified.

Name: Tiger Mask

str:
tou:
sta:
spd:

lck:
cou:
skl:

16
10
10
12

4
8
10

Attributes

Name: Nightmare

str:
tou:
sta:
spd:

lck:
cou:
skl:

10
18
12
14

7
7
2

Attributes

336

 Set the wrestlers in match to “Tiger Mask” and
“Nightmare”. If any one of the wrestlers is disqualified
due to their attributes, report it on screen. Simulate the
match for the winner.

 Set the wrestlers in match to “The Clown” and
“Lightspeed”. If any one of the wrestlers is disqualified
due to their attributes, report it on screen. Simulate the
match for the winner.

 Rest the winners of the two matches by using rest()
defined in Wrestler.

 Simulate a match between the winners of the two matches.

15. Explain what are needed to be done to the wrestling
simulation if the formulas used in step 1) to step 4) explained
in problem 12 are changed. List the names of the files whose
contents need modification according to the change.

Name: The Clown

str:
tou:
sta:
spd:

lck:
cou:
skl:

8
8
8
15

20
1
10

Attributes

Name: Lightspeed

str:
tou:
sta:
spd:

lck:
cou:
skl:

12
12
2
20

7
5
12

Attributes

 337

Chapter 12: Inheritance

Objectives
Readers should
 Understand the concept and role of inheritance.
 Be able to design appropriate class inheritance hierarchies.
 Be able to make use of inheritance to create new Java classes.
 Understand the mechanism involved in instance creation of a class

inherited from another class.
 Understand the mechanism involved in method invocation from a

class inherited from another class.

Inheritance: Creating Subclasses from
Superclasses

Inheritance is an ability to derive a new class from an existing class. That
new class is said to be a subclass, or derived class, of the class it is derived
from, which is called superclass, or base class. A subclass can be thought of
as an extension of its superclass. It inherits all attributes and behaviors
from its superclass. However, more attributes and behaviors can be
added to existing ones of its superclass.

Let’s look at a simple example of how we create subclasses. Although it
is not going to be very useful in any real programs, this should serve as
the first example of class inheritance that gives you a first look at how
corresponding class definition can be written. Suppose that we have a
class called C12A whose definition is:

public class C12A
{
 public int x;
 public double d;
 public double f(){
 return x*d;
 }
}

338

Now, let’s say that we would like to create a new class C12B that inherits
all attributes and behaviors from C12A with no extra attributes or
behaviors added. Writing the class definition of C12B does not involve
repeating the code in C12A. We use the keyword extends to let Java
know that C12B inherits from C12A. With no additional attributes or
behaviors, the class definition of C12B can be simply written as:

public class C12B extends C12A
{
}

This very short code segment is already a valid class definition of C12B
that we want. We could now write a program that makes use of C12B.
Consider the following program and its output.

public class InheritanceDemo0 1
{ public static void main(String[] args) 2
 { 3
 C12B b = new C12B(); 4
 b.x = 2; 5
 b.d = 1.5; 6
 System.out.println("b.f() = "+b.f()); 7
 } 8
} 9

Figure 186: Creating and using a subclass without any additional data
members and methods

We can see from the above program that an object of the class C12B
contains the instance variables x and d, as well as f(), without having to
explicitly write these attributes and behaviors in the class definition of
C12B. C12B is called a subclass of C12A. On the other hand, C12A is
called the superclass of C12B.

 339

A class inheritance diagram can be used to show the relationship among
classes. To show that C12B is extended or inherited from C12A, a
diagram in the figure below can be used.

Figure 187: Diagram representing relationship between a subclass and
its superclass

However, the real benefit of inheritance is not creating a new class that
behaves exactly the same way as its superclass but creating a new class
contains all attributes and behaviors of its superclass together with some
additional attributes and behaviors. For example, if we would like to
create a new class called C12C which has all the attributes and behaviors
of C12A but with a name for each instance of C12C, we could extends
C12A with an additional instance variable of type String as well as some
appropriate methods. Such a class could be written as:

public class C12C extends C12A
{
 public String name;
 public String toString(){
 return name+":"+x+","+d;
 }
}

From the class definitions of the three classes: C12A, C12B, and C12C,
their structures can be depicted as the following figure.

C12A

C12B

340

Figure 188: Class inheritance diagram relating C12A, C12B, and C12C

Now consider the following program and observe its output.

public class InheritanceDemo01 1
{ 2
 public static void main(String[] args) 3
 { 4
 C12C c = new C12C(); 5
 c.x = 5; 6
 c.d = 2.0; 7
 c.name = "An object with a name"; 8
 System.out.println("c.f() = "+c.f()); 9
 System.out.println("c.name = "+c.name); 10
 System.out.println(c); 11
 } 12
} 13

int x;
double d;

String name;

C12A

int x;
double d;

existing attributes

double f()

C12B

int x;
double d;

double f()

C12C

double f()

String toString()

extended attributes

existing attributes

 341

Figure 189: Subclass with additional data members and methods

On line 5, a variable c is created and is referred to a new object of C12C.
The statements line 6 and line 7 assign values to instance variables which
are defined in the class definition of C12A, the superclass of C12C. On
line 8, the instance variable name which is a part extended in C12C from
C12A is assigned with a String. On line 9, the existing method f() in the
superclass is called, while on line 10, the instance variable name is used,
and on line 11, Java automatically calls toString() defined in C12C in
response to System.out.println(c);.

Note that multiple-inheritance is not allowed. A subclass can only extend
from a single superclass, while a superclass can have more than one
subclass inherited from the class.

Designing Class Inheritance Hierarchy

Using inheritance effectively in creating new classes does not involve
only the Java syntax used in defining the new class but also organizing
classes in a hierarchical manner. A good class hierarchy helps us
understand the relationship among classes. Superclasses are always
more general than subclasses since a subclass possesses everything that
its superclass has while it can also possess additional attributes and
behaviors. There is an is-a (is-an) relationship between a subclass and its
superclass. That means an object of a subclass “is an” object of its
superclass.

342

A subclass can be inherited further by other classes. This makes a
hierarchy of classes. The figure below shows an example of a hierarchy
among some quadrilaterals.

Figure 190: Class inheritance hierarchy of quadrilateral

Here are the definitions of the shape shown above.

 Quadrilateral: A polygon with four sides and four vertices.

Quadrilateral

ConcaveQuadrilateral ConvexQuadrilateral

Parallelogram

Rectangle

Trapezoid

Square

is a

is a

is a

is a

is a

is a

 343

 Convex quadrilateral: A quadrilateral whose every internal angle is at most 180
degrees and every line segment between two vertices of the quadrilateral
remains inside or on the boundary of the quadrilateral.

 Concave quadrilateral: A quadrilateral that is not convex.

 Trapezoid: A convex quadrilateral in which one pair of opposite sides is parallel.

 Parallelogram: A trapezoid whose opposite sides have equal length, opposite
angles are equal and the diagonals bisect each other.

 Rectangle: A parallelogram where each angle is a right angle.

 Square: A rectangle where four sides have equal length.

A good class hierarchy must conform to that each subclass instance ‘is a’
superclass instance. From the class inheritance hierarchy in Figure 190,
we can say that a square is a rectangle, a rectangle is a parallelogram,
and so on. According to the hierarchy, a square is also a quadrilateral, or
we can say that a square is a more specific case of a quadrilateral. A
quadrilateral is the most general case of all the shapes in the hierarchy.
Therefore, every shape listed below the quadrilateral class is a
quadrilateral with additional attributes and behaviors.

Example 97: Designing classes for a map and a maze

Suppose we are part of a team to develop a computer game in each stage
of which a rectangular map for that stage is to be displayed on screen. It
is designed that a map is composed of NM tiles where N is the width of
the map of that stage and M is the height. When a stage is played, each
tile of the map of that stage will be rendered with a picture represented
with an Image object (an instance of the Image class in the java.awt
package). A map for a stage could look like what is shown in Figure 191.

Figure 191: A map with 5 5 tiles

344

If we create a class called GameMap to represent the map and another
class called GameTile to represent the tile according to what mentioned
above, the relationship of GameMap and GameTile together with Image
could be designed as shown in Figure 192.

Figure 192: Relationships among GameMap, GameTile and Image

Now, let’s extend our design so that our classes can represent a maze
which can be considered as a special case of a map but with at least two
extra characteristics which are:

1. A maze has a starting tile where players are placed at the tile
when a stage is entered or restarted as well as a destination tile
where the stage is cleared when players arrive at.

2. A maze is composed of special kind of tiles instead of tiles used
in a general map. When residing in each of these special tiles, a
player can only move to adjacent tiles only in the directions that
are not blocked.

A maze could look like the one shown in Figure 193. In the figure, the
picture on the left shows the rendered result of a maze and the one on
the right indicates which directions of each tile are blocked (shown with
solid black line along the border of each block).

Figure 193: A maze with 20 10 tiles

GameMap GameTile Image

Starting tile

Destination tile

 345

There are two classes that we should create in addition to GameMap and
GameTile. Let’s name the class representing a maze GameMaze and the
special kind of tile RestrictedGameTile. Since a GameMaze object is a
GameMap object with additional data members as well as possible
additional methods supporting the members, it makes sense that we
create the class by extending from the class GameMap. With the same
reasoning, the RestrictedGameTile should be extended from the regular
GameTile with additional data members containing information about
which directions are blocked together with some possible additional
related methods.

Therefore, the relationships among the classes should be like the ones in
Figure 194.

Figure 194: Relationships among GameMap, GameTile, Image,
GameMaze, and RestrictedGameTile

Access Levels and Subclasses

As discussed in Chapter 11, when data members and methods are
declared or defined in a class, creator of the class can use access level
modifiers to limit the access made to them. Now that we know about
subclasses, let’s re-visit the meaning of the access levels again.

Data members and methods with the public modifier can be accessed
using the dot operator from anywhere. For data members and methods
with the private modifier, they can be accessed only from inside the
same class where they are declared. In the case of the protected modifier,
data members and methods with this modifier can be accessed from

GameMap GameTile Image

GameMaze RestrictedGameTile

346

within the class where they are declared as well as from within any
subclasses of the class where they are declared. If the access level
modifiers are omitted, the access level used is called the default level,
which is rather similar to the private access level but the access is also
extended to any classes in the same package.

Accessing Class Access Level
current class subclass other

public
protected
default
private

Table 12: Summary of access levels (packages are ignored)

Table 12 summarizes the four access level without paying attention to the
concept of Java package which will not be covered in this book. A table
cell marked with means that the corresponding accessing class can
access resources with the corresponding access level. In other words, the
dot operator can be used in the code listed inside the accessing class to
access resources with the corresponding access level directly. A table cell
marked with means that we cannot use the dot operator inside the
accessing class in order to access resources with that access level directly.

Keyword ‘super’

Data members or methods in a superclass having either public or
protected access levels can be accessed directly from inside the class
definitions of its subclasses by referring to the name of the data members
or methods to be accessed. It is possible that there is a variable declared
within a subclass that has the same name as a variable declared in its
superclass. In this case, the super keyword is used with the dot operator
to indicate the variable declared in the superclass, while referring to the
variable with only its name indicate the variable declared in the subclass.
For example, let’s suppose that there is a variable called var declared
inside both the definition of the subclass and the definition of the
superclass. From within the definition of the subclass, the expression

 347

super.var will refer to the one in the superclass, while var will refer to
the one in the subclass. This works very similarly to the case of the this
keyword.

Example 98: Using super

Consider the following classes and observe the output of SuperDemo.

public class MySuperclass 1
{ 2
 public int a = 1; 3
 public int b = 2; 4
 public void f(){ 5
 System.out.println("\tf() of MySuperclass is called."); 6
 } 7
 public void g(){ 8
 System.out.println("\tg() of MySuperclass is called."); 9
 } 10
} 11

public class MySubclass extends MySuperclass 1
{ 2
 public int a = 9; 3
 public void f(){ 4
 System.out.println("\tf() of MySubclass is called."); 5
 } 6
 public void test(){ 7
 System.out.println("a = "+a); 8
 System.out.println("b = "+b); 9
 System.out.println("super.a = "+super.a); 10
 System.out.println("super.b = "+super.b); 11
 System.out.println("f()"); 12
 f(); 13
 System.out.println("g()"); 14
 g(); 15
 System.out.println("super.f()"); 16
 super.f(); 17
 System.out.println("super.g()"); 18
 super.g(); 19
 } 20
} 21

public class SuperDemo 1
{ 2
 public static void main(String[] args) 3
 { 4
 MySubclass y = new MySubclass(); 5

(continued on next page)

348

(continued from previous page)
 y.test(); 6
 } 7
} 8

Figure 195: Using the keyword super to identify variables of the
superclass

Let’s start by looking at the main() method of SuperDemo. The statement
on line 5 instantiates a new object if the class MySubclass. Next, it invoke
test() from that object. Considering the definition of Mysubclass, the test()
method prints the values of a, b, super.a and super.b on line 8 to line 11.
We can observe from the output that the value of a is 9, while super.a is
1 since the former one is the variable a inside the subclass and the later
one is the variable a from the superclass. The values of b and super.b are
both 2. Both expressions refer to the same variable b declared in the
superclass since there is no ambiguity here.

On line 13, line 15, line 17, and line 19, f(), g(), super.f(), and super.g()
are called respectively. We can see that f() in the subclass is called as the
result of f(), while f() in the superclass is called as the result of super.f().
Both g() and super.g() invoke g() in the superclass since there is no
method with that name defined in the subclass.

 349

Polymorphism

A variable whose type is a class can refer to an object of that class as well
as an object of any one of its subclasses (no matter how many levels
down the inheritance hierarchy). However, the opposite is not true. A
variable of a class cannot be used to refer to an object of its superclass,
just like when a variable cannot be used to refer an object whose class is
different from the variable type.

In OOP, this ability of an object of a class can be appeared as and used
like an object of its subclass is called polymorphism.

Recall the class hierarchy of C12A, C12B, and C12C shown in Figure 188
and consider the following code segments.

 C12A a = new C12A();
 C12B b = new C12B();
 C12C c = new C12C();
 a = b;
 a = c;

This code segments will not cause any compilation errors even though
the data types between a and b and between a and c are different. The
reason is because the data type of a which is C12A is the superclass of
both C12B and C12C.

 C12A a1 = new C12B();
 C12A a2 = new C12C();

The initialization of a1 and a2 shown above is also correct.

 C12A [] a = new C12A[3];
 a[0] = new C12A();
 a[1] = new C12B();
 a[3] = new C12C();

These statements also work fine since each element in the array can refer
to an object of C12A as well as an object of its subclass.

However, the following program cannot be compiled successfully.

350

 C12A a = new C12A();
 C12B b = new C12B();
 C12C c = new C12C();
 b = a;
 c = a;
 b = c;

There are three problems among these statements. First, b = a cannot be
done since the object referred to by a is a subclass of the data type of b.
Second, c = a cannot be done for a similar reason. Lastly, b = c cannot be
done either since the data type of the objects referred to be b and c are
not directly related at all. They only share the same superclass.

Method Overriding

When a method that has already been defined in a class is redefined in
its subclass using the same identifier and the same list of input
arguments, it is called that the method defined in the subclass overrides
the one defined in its superclass. When the method with that identifier is
invoked from an object of a class, Java looks for the method definition in
that class first and then looks inside the superclass later.

In the case that the data type of a variable is not the same as the data type
of the object that it is currently referring to (i.e. the object belongs to a
class that directly or indirectly inherits from the class that is the type of
the variable), Java chooses the method definition based on the type of the
object, not the type of the variable.

Example 99: Overriding methods

Observe the class definition of C12D.

public class C12D extends C12A
{
 public double y;
 public double f(){
 return x*d+y;
 }
}

 351

Then, consider the following program and its output.

public class MethodOverridingDemo1 1
{ 2
 public static void main(String[] args) 3
 { 4
 C12A a = new C12A(); 5
 a.x = 2; 6
 a.d = 1.0; 7
 8
 L12D d = new C12D(); 9
 d.x = 2; 10
 d.d = 1.0; 11
 d.y = 2.5; 12
 13
 System.out.println("a.f()="+a.f()); 14
 System.out.println("d.f()="+d.f()); 15
 16
 a = d; 17
 System.out.println("a.f()="+a.f()); 18
 } 19
} 20

Figure 196: Demonstration of method overriding

The important points in this example is the methods invoked when a.f()
and d.f() are called. On line 5, a is made to refer to an C12A object. On
line 9, d is made to refer to an C12D object. Therefore, a.f() on line 14
invokes f() from C12A, and d.f() on line 15 invokes f() from C12D.
However, after that, a is made to refer to an C12D object (the same object
that d refers to), which is a valid operation since C12D is a subclass of
C12A. Consequently, a.f() on line 18 invokes f() from C12D instead of f()
from C12A.

352

In conclusion, you have to keep in mind that it is not the variable type
that determines the method invocation, but the type of object to which
the variable refers.

Polymorphism also enables the ability of objects belonging to different
types to respond to method calls of methods with the same identifier,
each one according to an appropriate type-specific behavior. Java does
not have to know the exact type of the object in advance, so this behavior
can be implemented at run time. This is called late binding or dynamic
binding.

Example 100: A book shop

Consider the following class definitions.

public class BookItem
{
 protected String name;
 protected double listedPrice;

 public BookItem(String name,double price){
 this.name = name;
 listedPrice = price;
 }
 public double getSellingPrice(){
 return listedPrice;
 }
 public double getListedPrice(){
 return listedPrice;
 }
 public String toString(){
 return "BookItem:"+name;
 }
}

public class UsedBook extends BookItem
{
 protected double discountFactor;

 public UsedBook(String name,double price,double
discountFactor){
 super(name,price);
 this.discountFactor = discountFactor;
 }
 public double getSellingPrice(){

(continued on next page)

 353

(continued from previous page)
 return (1-discountFactor)*listedPrice;
 }
 public String toString(){
 return "UsedBook:"+name;
 }
}

public class RareBook extends BookItem
{
 protected double premiumFactor;

 public RareBook(String name,double price,double
premiumFactor){
 super(name,price);
 this.premiumFactor = premiumFactor;
 }
 public double getSellingPrice(){
 return (1+premiumFactor)*listedPrice;
 }
 public String toString(){
 return "RareBook:"+name;
 }
}

The three class definitions listed above show that the class BookItem is the
superclass of the other two classes, UsedBook and RareBook. Each of the
three class has its own implementation of getSellingPrice() and toString().
As mentioned, which implementation of these two methods is invoked
depends on the type of the object from which the method is called. The
following program uses the three classes we have just defined.

import java.io.*; 1
public class BookShop 2
{ 3
 public static void main(String[] args) throws IOException 4
 { 5
 BufferedReader stdin = 6
 new BufferedReader(new InputStreamReader(System.in)); 7
 System.out.print("Number of books:"); 8
 int nBooks = Integer.parseInt(stdin.readLine()); 9
 BookItem [] bookInventory = new BookItem[nBooks]; 10
 int i=1; 11
 while(i<=nBooks){ 12
 bookInventory[i-1] = getBook(i); 13
 i++; 14
 } 15

(continued on next page)

354

(continued from previous page)
 showBookInfo(bookInventory); 16
 17
 } 18
 public static BookItem getBook(int i) throws IOException{ 19
 BufferedReader stdin = 20
 new BufferedReader(new InputStreamReader(System.in)); 21
 BookItem b; 22
 while(true){ 23
 System.out.println("----------------\nBook #"+i); 24
 System.out.print("Type(1=Regular,2=Used,3=Rare):"); 25
 int type = Integer.parseInt(stdin.readLine()); 26
 if(type<1 || type>3){ 27
 System.out.println("Invalid type."); 28
 continue; 29
 } 30
 System.out.print("Book name:"); 31
 String name = stdin.readLine(); 32
 System.out.print("Listed price:"); 33
 double price = Double.parseDouble(stdin.readLine()); 34
 double factor; 35
 switch(type){ 36
 case 1: 37
 b = new BookItem(name,price); 38
 break; 39
 case 2: 40
 System.out.print("Discount factor:"); 41
 factor = Double.parseDouble(stdin.readLine()); 42
 b = new UsedBook(name,price,factor); 43
 break; 44
 case 3: 45
 System.out.print("Premium factor:"); 46
 factor = Double.parseDouble(stdin.readLine()); 47
 b = new RareBook(name,price,factor); 48
 break; 49
 default: 50
 b = null; 51
 } 52
 break; 53
 } 54
 return b; 55
 } 56
 public static void showBookInfo(BookItem [] bookInventory){ 57
 System.out.println("####################################"); 58
 for(int i=0;i<bookInventory.length;i++){ 59
 System.out.println("Item #"+i+":\t"+bookInventory[i]); 60
 System.out.print("Listed Price:\t"); 61
 System.out.println(bookInventory[i].getListedPrice()); 62
 System.out.print("Selling Price:\t"); 63
 System.out.println(bookInventory[i].getSellingPrice()); 64

(continued on next page)

 355

(continued from previous page)
 System.out.println(); 65
 } 66
 System.out.println("####################################"); 67
 } 68
} 69

Let’s look at main() first. The program asks the user to input the number
of books to be stored in an array of BookItem. Then, the user is asked to
input the information of each book. Finally, the program prints out
information associated with each element in the array. We can see that at
the compilation of the code, the program has no way to know the type of
each element in the array bookInventory except that it has to be of the
type BookItem or one of its subclasses.

On line 12 to line 15, a while loop is used to gather information of each
array element. Inside the method getBook(), an object of type either
BookItem, UsedBook, or RareBook is created and returned from the method.
The returned object is referred to as an element of bookInventory. Notice
that the return type of getBook() is BookItem, with which it is also perfectly
correct for the method to return an object of its subclass.

Polymorphism is used in showBookInfo() since the program does not
know in advance about the exact type of each object in bookInventory.
For each element in the array, toString() is called inexplicitly on line 60,
getListedPrice() is called on line 62, and getSellingPrice() is called on line
64. Late binding through polymorphism in Java makes the program
know at run-time which implementation of toString() and getSellingPrice()
(i.e. the implementations in the superclass or the subclass) to be invoked
based on the type of the object from which the methods are called. For
getListedPrice(), it is only implemented in the superclass. Therefore, there
is no confusion on which method to be invoked.

Observe an output of BookShop.java shown below. Pay attention to the
value of the selling price for each element printed on screen.

356

Figure 197: A program that makes use of late-binding

Note that we will not cover abstract classes and interface in this book.
These concepts are usually used with polymorphism in order to obtain
more benefits from late binding.

Instance Creation Mechanism

When an instance or object of a class is created, if there is no explicit call
to any constructors of its superclass, the no-argument constructor of the
superclass is called automatically before the execution of any statements
in the subclass’s constructor (if there are any).

To demonstrate this mechanism, let’s look at the following example.

 357

Example 101: Creation of inherited instances

public class C12E
{
 public C12E(){
 System.out.println("\tC12E() is called.");
 }
}

public class C12F extends C12E {}

public class C12G extends C12E
{
 public C12G(){
 System.out.println("\tC12G is called.");
 }
 public C12G(String s){
 System.out.println("\tC12G(String s) is called.");
 }
 public C12G(int i){
 super();
 System.out.println("\tC12G(int i) is called.");
 }
}

C12F and C12G are subclasses of C12E. Let’s consider the following
program. Pay attention to messages printed on screen when each object
is created.

public class CreationDemo1 1
{ 2
 public static void main(String[] args) 3
 { 4
 System.out.println("1)-----------------"); 5
 C12F f = new C12F(); 6
 System.out.println("2)-----------------"); 7
 C12G g1 = new C12G(); 8
 System.out.println("3)-----------------"); 9
 C12G g2 = new C12G("Hello"); 10
 System.out.println("4)-----------------"); 11
 C12G g3 = new C12G(8); 12
 } 13
} 14

358

Figure 198: Constructors invocation during instantiation of objects

When an object of C12F is created on line 5, since there is no
implementation of any constructor in C12F, the no-argument constructor
of its superclass, C12E(), is invoked automatically.

When an object of C12G is created, if either C12G() or C12G(String s) is
called, the no-argument constructor of its superclass, C12E(), is again
invoked automatically since there is no explicit call to the constructor of
C12E. If C12G(int i) is called, the constructor of C12E is not called
automatically since it is explicitly called by the first statement of
C12G(int i).

In order to explicitly call any constructor of the superclass, the super()
statement can be used but it has to be used as the first statement in the
constructor. Otherwise, it will result in a compilation error. The
following class cannot be compiled successfully.

public class C12H extends C12E
{
 public C12H(){
 System.out.println("\tC12H is called.");
 super(); // This causes a compilation error
 }
}

 359

Exercise

1. Why do we need an ability to create new classes from other base
classes?

2. Is it possible to create a new class called SmartString that
inherits from the String class?

3. Consider the following class definitions.

 public class Ex12_3
 {
 public int x;
 public int y;
 }

 What is the output of the following program?

public class Ex12_3run
{
 public static void main(String[] args)
 {
 Ex12_3 a = new Ex12_3();
 Ex12_3sub b = new Ex12_3sub();
 System.out.println(a.x+","+a.y);
 System.out.println(b.x+","+b.y+","+b.z);
 }
}

4. Consider the following class definition.

 public class Ex12_4
 {
 public String s;
 public Ex12_4(String s){
 this.s = s;
 }
 }

 As well as,

public class Ex12_3sub
extends Ex12_3

{
 public int y = 1;
 public int z = 1;
}

360

public class Ex12_4a extends Ex12_4
{
 public String s;
 public Ex12_4a(String s){
 super(s);
 this.s = revert(s);
 }
 public String revert(String s){
 if(s.length()<=1) return s;

return s.charAt(s.length()-1)+
revert(s.substring(0,s.length()-1));

 }
 public void printS(){
 System.out.println(s);
 System.out.println(super.s);
 }
}

 What is the output of the following program?

public class Ex12_4run
{
 public static void main(String[] args)
 { Ex12_4a a = new Ex12_4a("What?");
 System.out.println(a.s);
 a.printS();
 }
}

5. Draw a class inheritance diagram describing the relationship
among the following items.

Webpage, Mouse, Monitor, Word Processor, Router, Input Device,
Operating System, Ink-jet Printer, USB Mouse, Computer System
Component, Output Device, Web Browser, Hardware, Flat-panel
Display, Joystick, CRT Monitor, Laser Printer, Software, Network
Peripheral, Data, Application, System Software, Printer

6. The following class inheritance diagram defines the
relationship among A, B, C, and D.

 361

Which ones of the following statements can be compiled
successfully?

a. Statement: A a1 = new B();
b. Statement: B b1 = new C();
c. Statement: B b2 = new D();
d. Statement: C c1 = new D();
e. Statement: C c2 = new A();
f. Statement: A a2 = new D();

7. How many (immediate) base classes can a class have?

A

B C

D

 363

What are the Next Steps?

What you have learned in this textbook should get you started in
creating computer programs using Java programming language in
order to solve some problems in the form of Java console applications.
What are more important than the syntaxes on Java are the basic
concepts required for writing computer programs in other high-level
languages as well as scripting some special-purpose application
software packages.

Still, if ones would want to further their study of computer
programming in order to develop more complex software applications
according to modern programming methodologies, here are some
useful topics with suggested readings given in the trailing parentheses.

 Additional object-oriented programming concepts including
abstraction and interfaces ([Wei2008]).

 Error and exception handling framework (Coh2004)

 Software testing ([Mcc2009])

 Framework-based programming such as Graphical User
Interface (GUI) framework, Collection framework, and
Input/Output framework ([Jia2002])

 Design patterns ([Fre2004], [Gam1994])

 Program development in other platforms including web-
based programming ([Seb2010], [Bei2008], [Nix2009],
[Wel2008]), programming for embedded systems ([Sim1999],
[Bar1999]), programming for mobile devices and smart
phones ([All2010],[Bur2010]).

 365

References

[All2010] Allan, A., Learning iPhone Programming: From Xcode to
App Store, O'Reilly Media, 2010

[Bar1999] Barr, M., Programming Embedded Systems in C and C ++,
O'Reilly Media, 1999

[Bei2008] Beighley, L., and Morrison, M., Head First PHP & MySQL,
O'Reilly, 2008

[Bur2005] Burnette, E., Eclipse IDE Pocket Guide, O'Reilly Media, 2005

[Bur2010] Burnette, E., Hello, Android: Introducing Google's Mobile
Development Platform, Pragmatic Bookshelf, 2010

[Coh2004] Cohoon, J., and Davisdon, J., Java Program Design, McGraw-
Hill, 2004

[Dan2004] D'Anjou, J., Fairbrother, S., Kehn, D., Kellerman, J., and
McCarthy, P., The Java Developer's Guide to Eclipse,
Addison-Wesley Professional, 2004

[Fow2003] Fowler, M., UML Distilled: A Brief Guide to the Standard
Object Modeling Language, Addison-Wesley Professional,
2003

[Fre2004] Freeman, E., Freeman, E., Bates, B., and Sierra, K. , Head
First Design Patterns, O'Reilly, 2004

[Gam1994] Gamma, E., Helm R., Johnson, R., and Vlissides M., Design
Patterns: Elements of Reusable Object-Oriented Software,
Addison-Wesley Professional, 1994

[Jia2002] Jia, X., Object Oriented Software Development Using Java ,
Addison Wesley, 2002

[Mcc2009] McCaffrey, J., Software Testing: Fundamental Principles and
Essential Knowledge, BookSurge Publishing, 2009

[Mil2006] Miles, R., and Hamilton, K., Learning UML 2.0, O'Reilly
Media, 2006

366

[Mya2008] Myatt, A., Pro Netbeans IDE 6 Rich Client Platform Edition,
Apress, 2008

[Nag2008] Nagal, C., Evjen, B., Glynn, J., Skinner, M., and Watson, K.,
Wrox Professional C# 2008, Wiley Publishing, 2008

[Nix2009] Nixon, R., Learning PHP, MySQL, and JavaScript: A Step-
By-Step Guide to Creating Dynamic Websites, O'Reilly
Media, 2009

[Pil2005] Pilone, T., and Pitman, N., UML 2.0 in a Nutshell, O'Reilly
Media, 2005

[Pre2010] Pressman, R., Software Engineering: A Practitioner's
Approach, McGraw-Hill, 2010

[Ros2007] Rosen, K., Discrete Mathematics and its Applications,
McGraw-Hill, 2007

[Seb2009] Sebesta, R., Concepts of Programming Languages, Addison
Wesley, 2009

[Seb2010] Sebesta, R., Programming the World Wide Web, Addison
Wesley, 2010

[Sim1999] Simon, D., An Embedded Software Primer, Addison-Wesley
Professional, 1999

[Wei2008] Weisfeld, M., The Object-Oriented Thought Process,
Addison-Wesley Professional, 2008

[Wel2008] Welling, L., and Thomson, L. , PHP and MySQL Web
Development, Addison-Wesley Professional, 2008

 367

Index

Access level modifier, 301
 private, 301, 345
 protect, 345
 public, 301, 345
Algorithm, 42
Array, 234
 accessing element of, 237
 declaration of, 235
 initializing, 235
 length of, 237
 multi-dimensional, 260
 one-dimensional, 235
Attribute, 295
Automated calculation, 2
Base case, 278
Behavior, 295
Binary prefix, 13
 giga, 13
 kilo, 13
 mega, 13
 tera, 13
Binary representation, 11
Bit, 11
Byte, 11
Central Processing Unit (CPU), 6
Class definition, 295
 component of, 297
 diagram for, 299
Class diagram, see Diagram for class
definition
Class inheritance diagram, 339
Class inheritance hierarchy, 341
Command-line argument, 250
Comments, 32
 block, 32
 single line, 32
Compiler, 22
Compound assignment, 94
Conditional construct, 137
 if, 139
 if-else, 142
 if-else-if, 148
 switch, 160
Constructor, 317

 copy, 318
 detailed, 318
 no-argument, 318
 overloading, 318
Data encapsulation, 304
Data member, 298
 class, 105, 306
 instance, 105, 306
 non-static, see Instance data member
 static, see Class data member
Data type, 56
 class, see Non-primitive data type
 base, see Superclass
 derived, see Subclass
 conversion of, 80
 automatic, 82
 explicit, 82
 narrowing, 83
 widening, 83
 String to number, 118
 non-primitive, 56
 Arrays, 243
 BufferedReader, 116
 Double, 119
 Integer, 119
 Math, 68
 Scanner, 127
 String, 35, 59
 method for, 107
 primitive, 56
 boolean, 59
 byte, 56
 char, 58
 double, 57
 float, 57
 int, 56
 long, 56
 short, 56
 specifying numeric, 79
Debugging, 23
Dynamic binding, 352
Environment variable path, 26
Equality testing, 153
 floating point value, 155

368

 non-primitive data type, 157
 primitive data type, 153
String, see String class
Escape sequence, 36
Expression, 40
 data type of, 84
File extension,
 .class, 23
 .java, 23
Floating point computation, 85
Flowchart, 42
 connector in, 51
 database in, 51
 decision in, 45
 manual input in, 44
 manual loop in, 51
 printed document in, 51
 report in, 51
 starting point in, 43
 subroutine in, 49
 terminating point in, 43
Hardware, 6
Identifier, 32
 naming rule and style for, 38
Inheritance, 337
Initializer list, 240
 nested, 261
Input/Output (I/O), 8
Iterative construct, 173
 do-while, 173
 for, 182
 while, 174
Java bytecode, 22
Java program,
 compiling, 27
 running, 22, 27
 structure of, 29
Java Run-time Environment (JRE), see
Java Virtual Machine
Java Virtual Machine (JVM), 22
java.exe, 23
javac.exe, 25
Keyword, 31
 -Infinity, 87
 break, 188
 class, 31, 101
 continue, 189
 Infinity, 87

 NaN, 91
 super, 346
 this, 309
Late binding, see Dynamic binding
Local variable, 214
Machine language, 21
Memory, 7
 main, 7
Method, 203
 accessor, 310
 body of, 207
 class, 308
 header of, 206
 defining, 206
 equal(), 157
 instance, 308
 invocation mechanism of, 216
 main(), 30
 mathematic, 68
 mutator, 310
 non-static, see Instance method
 overloading, 222
 overriding, 350
 print(), 33
 println(), 33
 return type of, 207
 recursive, 278
 static, see Class method
 toString(), 310
 this(), 323
Method body, see body of method
Method definition, see defining method
Method header, see header of method
Nested loop, 191
Object, 101
 composition of, 305
 instantiation mechanism of, 356
Object code, see Machine language
Operating System (OS), 11
Operator, 65
 arithmatic, 41
 assignment, 38, 60
 associativity rule of, 70
 binary, 66
 casting, 80
 comparison, 66
 decrement, 94
 postfix, 95

 369

 prefix, 95
 equality, 66
 grouping, 66
 increment, 94
 postfix, 95
 prefix, 95
 logic, 65
 precedence of, 70
 unary, 66
Overflow, 87
Passing by reference, 222
Passing by value, 222
Pointer, 59
Polymorphism, 349
Programmability, 2
Programming cycle, 23
Programming language, 21
 high-level, 21
Recursive case, 278
Recursion, 275
 cost of, 282
 infinite, 278
 problem solving using, 275
Relationship,
 has-a (has-an), 305

 has-some, 305
 is-a (is-an), 341
Secondary storage, 7
Selection sort, 254
Sequential search, 251
Software, 9
 application, 10
 system, 10
Source code, 22
Statement, 40
Strong data typing, 55
Subclass, 337
Superclass, 337
Syntax, 31
Target code, 22
Underflow, 87
Unicode encoding, 58
Value comparison, see Equality testing
Variable, 37
 assigning data to, 60
 declaration of, 60
 final, 63
 instance, 301
 scope of, 194
 uninitialized, 64

	cover
	InnerCover-20110722
	JavaBook-20110713-submit-for-draft

