

Learning Core
Audio

Learning Core
Audio

A Hands-On Guide to Audio
Programming for Mac and iOS

Chris Adamson
Kevin Avila

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco
New York • Toronto • Montreal • London • Munich • Paris • Madrid

Cape Town • Sydney • Tokyo • Singapore • Mexico City

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and the publish-
er was aware of a trademark claim, the designations have been printed with initial capital
letters or in all capitals.

The authors and publisher have taken care in the preparation of this book, but make no
expressed or implied warranty of any kind and assume no responsibility for errors or omis-
sions. No liability is assumed for incidental or consequential damages in connection with or
arising out of the use of the information or programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk pur-
chases or special sales, which may include electronic versions and/or custom covers and
content particular to your business, training goals, marketing focus, and branding interests.
For more information, please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the United States, please contact:

International Sales
international@pearsoned.com

Visit us on the Web: informit.com/aw

Library of Congress Cataloging-in-Publication Data

Adamson, Chris, 1967-
Learning Core audio : a hands-on guide to audio programming for Mac and iOS / Chris
Adamson, Kevin Avila.

p. cm.
ISBN 978-0-321-63684-3 (pbk. : alk. paper) — ISBN 0-321-63684-8 (pbk. : alk. paper)

1. Computer sound processing—Computer programs. 2. Core audio. 3. Apple computer—
Programming. I. Avila, Kevin, 1980- II. Title.

TK7881.4.A244 2012
006.4'5—dc23

2012000862

Copyright © 2012 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by
copyright, and permission must be obtained from the publisher prior to any prohibited repro-
duction, storage in a retrieval system, or transmission in any form or by any means, elec-
tronic, mechanical, photocopying, recording, or likewise. To obtain permission to use materi-
al from this work, please submit a written request to Pearson Education, Inc., Permissions
Department, One Lake Street, Upper Saddle River, New Jersey 07458, or you may fax your
request to (201) 236-3290.

ISBN-13: 978-0-32-163684-3
ISBN-10: 0-32-163684-8

Text printed in the United States on recycled paper at R.R. Donnelley in Crawfordsville,
Indiana.

Second printing, June 2012

Editor-in-Chief

Mark Taub

Senior Acquisitions
Editor

Trina MacDonald

Development
Editor

Chris Zahn

Managing Editor

Kristy Hart

Senior Project
Editor

Lori Lyons

Copy Editor

Krista Hansing
Editorial Services,
Inc.

Senior Indexer

Cheryl Lenser

Proofreader

Kathy Ruiz

Technical
Reviewers

Mark Dalrymple
Mark Granoff
Michael James
Chris Liscio
Robert Strogan
Alex Wiltschko

Publishing
Coordinator

Olivia Basegio

Multimedia
Developer

Dan Scherf

Cover Designer

Chuti Prasertsith

Compositor

Nonie Ratcliff

Contents

About the Authors xiii

Foreword xv

Introduction 1
Audience for This Book 2
What You Need to Know 3
Looking Up Documentation 3
How This Book Is Organized 5
About the Sample Code 9

I: Understanding Core Audio

1 Overview of Core Audio 13
The Core Audio Frameworks 14

Core Audio Conventions 15

Your First Core Audio Application 16

Running the Example 19

Core Audio Properties 22

Summary 23

2 The Story of Sound 25
Making Waves 25

Digital Audio 27

DIY Samples 32

Buffers 40

Audio Formats 40

Summary 41

vi Contents

3 Audio Processing with Core Audio 43

Audio Data Formats 43

Example: Figuring Out Formats 46

Canonical Formats 51

Processing Audio with Audio Units 53

The Pull Model 55

Summary 55

II: Basic Audio

4 Recording 59

All About Audio Queues 59

Building a Recorder 60

A CheckError() Function 63

Creating and Using the Audio Queue 64

Utility Functions for the Audio Queue 71

The Recording Audio Queue Callback 75

Summary 78

5 Playback 81

Defining the Playback Application 81

Setting Up a File-Playing Audio Queue 83

Setting Up the Playback Buffers 85

Starting the Playback Queue 88

Playback Utility Functions 89

Handling the Magic Cookie 89

Calculating Buffer Size and Expected Packet Count 90

The Playback Audio Queue Callback 91

Features and Limits of Queue-Based Playback 94

Summary 95

6 Conversion 97

The afconvert Utility 97

Using Audio Converter Services 100

Setting Up Files for Conversion 102

Calling Audio Converter Services 105

Implementing the Converter Callback 109

viiContents

Converting with Extended Audio File Services 112

Reading and Converting with Extended
Audio Files 116

Summary 118

III: Advanced Audio

7 Audio Units: Generators, Effects, and Rendering 123

Where the Magic Happens 123

How Audio Units Work 124

Sizing Up the Audio Units 126

Your First Audio Units 129

Building the main() Function 131

Creating an Audio Unit Graph 133

Setting Up the File Player Audio Unit 137

Speech and Effects with Audio Units 141

Building Blocks of the Speech Synthesis Graph 142

Creating a Speech Synthesis AUGraph 144

Setting Up a Speech Synthesizer 146

Adding Effects 147

Adding Your Code to the Audio Rendering Process 150

The Audio Unit Render Cycle 150

A Custom Rendering Example 151

Creating and Connecting Audio Units 154

The Render Callback Function 155

Summary 160

8 Audio Units: Input and Mixing 161

Working with I/O Input 161

Connecting Input and Output Units 164

Creating an AUHAL Unit for Input 168

Writing the Input Callback 176

Building an AUGraph to Play Samples from a
CARingBuffer 178

Writing the Play-Through App’s Render Callback 181

Running the Play-Through Example 182

Mixing 183

Summary 189

viii Contents

9 Positional Sound 191

Sound in Space 191

The OpenAL API 193

Putting a Sound in Space 196

Setting Up the Example 197

Using OpenAL Objects 200

Animating the Source’s Position 205

Loading Samples for an OpenAL Buffer 206

Streaming Audio in OpenAL 210

Setting Up the OpenAL Streaming Example 210

Setting Up an ExtAudioFile for Streaming 215

Refilling the OpenAL Buffers 217

Summary 220

IV: Additional Topics

10 Core Audio on iOS 223

Is That Core Audio in Your Pocket? 223

Playing Nicely with Others: Audio Session Services 224

An Audio Session Example 227

Setting Up the App 227

Initializing the Audio Session and Audio Queue 231

The Tone Generator Method 234

Handling iOS Interruptions 236

Audio Units on iOS 238

Building an Audio Pass-Through App with
the iOS RemoteIO Unit 239

Setting Up the Pass-Through Example 241

Setting Up the RemoteIO Audio Unit for
Capture and Play-Out 244

The RemoteIO Render Callback 249

Other iOS Audio Tricks 253

Remote Control on iOS 253

iOS Hardware Hazards 254

Summary 254

ixContents

11 Core MIDI 257

MIDI Concepts 257

Core MIDI 258

Core MIDI Architecture 258

Core MIDI Terminology 258

Core MIDI Properties 260

MIDI Messages 260

Instrument Units 261

Building a Simple MIDI Synthesizer 262

Connecting to MIDI 265

Handling MIDI Notifications and Events 267

Playing Your AUGraph 269

Creating MIDI Events 269

Setting Up the MIDIWifiSource Example 269

Setting Up MIDI over Wi-Fi 271

Sending MIDI Messages 273

Setting Up Your Mac to Receive Wi-Fi MIDI Data 275

Summary: MIDI Mastery … but Mobility? 277

12 Coda 279

Still More Core Audio 279

Next Steps 280

Digital Signal Processing 280

Lion and iOS 5 281

AUSampler 281

Core Audio on iOS 5 285

The Core Audio Community 286

Summary: Sounds Good 287

Index 289

This page intentionally left blank

Acknowledgments

From Chris Adamson
This book wouldn’t exist without Kevin Avila and Mike Lee, who found a publisher
who not only wasn’t scared off by the thought of a difficult niche Mac and iOS title, but
actually relished the challenge of bringing this beast to market.They knew there was a
crowd out there that has been aching for years to get Core Audio presented in a practi-
cal form that lets normal programmers draw out its ferocious power. Behind the scenes,
Chuck Toporek championed this book, pulled me in when it got stuck, and saw it
through to the finish. More than anyone else, he’s the one to thank for finally getting a
Core Audio book published.

We wouldn’t have been able to get it all done without the generous support of the
Core Audio developer community, particularly the membership of the coreaudio-api
mailing list. Core Audio founder William Stewart and Apple’s Doug Wyatt have long
been generous with their time and attention to questions posted to the list and got us
unstuck on a number of occasions.

We’re also grateful to our many tech reviewers and readers of the “Rough Cuts” edi-
tion who reported errors and provided feedback as this book worked through its long
road to completion.

At home, thanks to my wife, Kelly, and our kids, Keagan and Quinn, for cutting me
enough slack to get this thing done and not completely freaking out when the example
code went wrong and horrible buzzes blasted forth from Dad’s office in the basement.

Obligatory end-of-book tune check:This time it was We Are The City, … And You
Will Know Us by the Trail of Dead, Daft Punk, Dr. Dog, Fun, and (fittingly) Hatsune
Miku.1

From Kevin Avila
I would like to acknowledge the Big Bang, gravity, and the eventual copulation between
my parents for making this possible.

Chuck Toporek (@chuckdude), Chris Adamson (@invalidname), Mike Lee (@bmf):
There truly are no words that express my gratitude for all the blood, sweat, and grammar
you’ve contributed, not only to this book, but to the entire developer community.
Thank you.

1 Find up-to-date listening stats at www.last.fm/user/invalidname.

www.last.fm/user/invalidname

Bill Stewart, Jeff Moore, Doug Wyatt, Michael Hopkins, Bob Aron, James McCartney,
Mehul Trivedi, Cynthia Maxwell,Torrey Walker, Nick Thompson, Matthew Mora, Brad
Ford, Murray Jason, and Edward Agabeg:Thanks for sharing with me your passion and
knowledge of audio.

Special thanks to David Avila, Daniel Kaufman,Andre LaBranche, Quentin Carnicelli,
Ed Wynne, and Steve Jobs.

What’s on my iPod:AC/DC, Rush, Beach Boys, Sublime, Primus, KRS-One, Beastie
Boys, Mac Dre,Vokab Kompany, and the insanely great George Carlin.

xii Acknowledgments

About the Authors

Chris Adamson is an independent writer, editor, and developer who lives in Grand
Rapids, Michigan. Now focusing on iOS and Mac development, he is the coauthor of
iOS SDK Development (Pragmatic Programmers, 2012). He is also the author of
QuickTime for Java:A Developer’s Notebook (O’Reilly Media, 2005) and coauthor of Swing
Hacks (O’Reilly Media, 2005). He was formerly the editor of java.net and ONJava.com.
He consults and publishes through his corporate identity, Subsequently and Furthermore,
Inc., with a focus on user-facing and digital media development for Mac and iOS. He
blogs on digital media software development at www.subfurther.com/blog. In a previous
career, he was a writer/associate producer at CNN Headline News, and over the years, he
has managed to own 11 1/2 Macs.

Kevin Avila (a.k.a. dogbert) is a smooth blend of carbon compounds, oxygen, hydrogen,
and nitrogen, with some impurities for added flavor.Additionally, he has more than 15 years’
experience developing for the Mac and, since its release, the iPhone. Kevin has been
involved in every corner of the audio market, from being an engineer at Apple to con-
figuring professional recording studios. He currently is a code mercenary for various
clients while he sits in his underwear at home, sipping coffee.

www.subfurther.com/blog

We’d Like to Hear from You
You can visit our website and register this book at:

www.informit.com/title/9780321636843
Be sure to visit the book’s website for convenient access to any updates, to download

the book’s sample code, or for errata that might be available for this book.
As the reader of this book, you are our most important critic and commentator.We

value your opinion and want to know what we’re doing right, what we could do better,
what areas you’d like to see us publish in, and any other words of wisdom you’re willing
to pass our way.

When you write, please be sure to include this book’s title and the name of the
author, as well as your name, phone, and/or e-mail address. I will carefully review your
comments and share them with the author and others who have worked on this book.

E-mail: trina.macdonald@pearson.com
Mail: Trina MacDonald

Senior Acquisitions Editor,Addison-Wesley
Pearson Education, Inc.
1249 8th Street
Berkeley, CA 94710 USA

For more information about our books or conferences, see our website at:
www.informit.com

www.informit.com/title/9780321636843
www.informit.com

Foreword

Reflect for a minute on your craft.Think of those in ages past who shared the same
experiences.Think of the painters who drove themselves mad trying to gather the forces
within to produce something of meaning.Think of the industrialists, who believed they
were standing at the dawn of a new age, one that they themselves were capable of
building.

Think of the ancient acolytes of magic, seeking to unlock the power in arcane
knowledge.Then think of that moment when, having learned street magic tricks such as
flow control and data structures, you finally gained access to the API libraries.Think of
that sorcerer’s apprentice staring glassy-eyed at the universe of possibilities in a room of
musty books.

It’s one of those key moments in any programmer’s career, cresting that foothill only
to see the mountain beyond. It is the daunting realization that programming is a lifelong
journey of learning. Many would-be magicians simply turn around and head back out
the door, leaving that world behind to pursue a more normal life of sane pursuits.

That you have found your way here suggests you are part of the other group, a select
few blessed with some genetic predisposition to solving hard problems.They are the
ones who cross that threshold and enter that world, losing themselves to learning new
spells and exploring new kinds of magic.

For what is programming but magic? Wielding secret words to command powerful
forces you just barely understand, calling forth the spirits of bygone spell casters to ease
your burdens, simplify your workflows, and grant you the ability to surprise and delight
the masses.

As you pore over each tome, practicing new forms of magic, you start combining
them with the things you learned before creating new spells, thus unlocking new possi-
bilities. Everything you learn leads to new tricks to learn, new roads forking into other
new roads, until one day you run into a dead end.

Many of the ancient texts refer to such dark arts as audio programming but do not
deal with them directly.As vital as Core Audio is, there seem to be no books on the sub-
ject, no scrolls of spells or sample code to practice.There are plenty of use cases for audio
programming, but as black magic, the only materials you can find to read about it are
terse and confusing.

Chris Adamson tracked down a practitioner of the audio arts named Kevin Avila, a
graying wizard well versed in C.Through a combination of bribery and honest inquiry,
he established himself as a protégé.The rabbit hole he entered goes on forever, and as his

xvi Foreword

ears led him through its many dark twists and turns, he learned a new language to
describe sound—and, with it, a new way of looking at the universe.

An eternity later, he himself a graying wizard, he thought back on that library to the
missing volumes and realized it was his destiny to shed light on the dark art of Core
Audio. It is the definition of mastery that we must teach what we have learned.This is
the truth that fuels the cycle of master and protégé.This is the engine that drives genera-
tions forward, each propelling the next further ahead as we move toward that grand inef-
fable vanishing point we call the future.

As with all rites of passage, it was a herculean task, requiring a whole new sets of skills
and a different type of discipline.We must tear apart our knowledge, and ourselves, to
find not just truth, but the beauty that underlies the truth and allows it to resonate across
the ages and to be understood.

All such that at some unknowable time in the future, where once there was a dead
end and a blank space between Core Animation and Core Data, some young acolyte
might find wisdom and guidance.They might combine this new knowledge with what
they already know so that, when they find their own dead end and their own dark arts,
they, too, will be ready.

That moment, dear reader, is now.That acolyte is you, and the grimoire that you hold
in your hand has all the wisdom and more than enough spells to take your magic to the
next level.This book is your key to wielding unspeakable power, the power of sound and
nature, the power of Core Audio.

Does all that seem a bit much for a book about audio programming? Rest assured
that, if anything, I have undersold it. Sound is an incredibly powerful force that affects
the human brain in ways we only barely understand. Consider the impact of music on
your life. Now consider that all of music is maybe 10% of the story of sound.

The power of audio programming goes so far beyond anything you can experience
with your ears. Swiping a credit card used to require an expensive machine. Now you
can do the same trick with a cheap plastic dongle plugged into the headphone jack of
your iPhone.You don’t have to make music to make magic with sound.

With this book, you dig into your first Core Audio code in Chapter 1,“Overview of
Core Audio,” even as you are learning what exactly Core Audio is and when you should
(and should not) attempt to use its power.

Core Audio, like all black arts, has roots in the inherent properties of nature. Chapter
2,“The Story of Sound,” takes to heart the story of sound, not as ineffable natural phe-
nomena, but as simple science.You’ll learn the language and techniques of converting
vibrating air molecules into the mathematical language of computers, and vice versa.

You’ll also learn the human language of audio and the real meanings of technical
terms you’ve heard, and perhaps even used, for years: sample rate, frame rate, buffer, and
compression.You’ll see these ideas carried through Chapter 3,“Audio Processing with
Core Audio,” as you peel back the wrapper on audio formats and learn about the canon-
ical formats Core Audio uses internally.

When you know the basics of Core Audio, you’ll want to apply your skills by learn-
ing the parlor tricks of recording and playback with Chapters 4,“Recording,” and 5,
“Playback,” using the high-level Audio Queue architecture.

Of course,“high-level” can be a misnomer, especially if you’re coming from an
object-oriented background such as Cocoa. Setting aside the comforting warmth of
Objective-C to take the reins of C can certainly be scary, but with a little understanding,
you’ll come to see how much like Cocoa a C framework can be, as familiar friends, like
key-value pairs, emerge in unfamiliar clothes.

When you understand Audio Queues, you’ll be a master of audio formats—almost.
First you must complete your quest by learning to convert between formats and come to
understand the relevance of canonical formats.

Then it’s time to say goodbye to high-level shores as you strap on your diving suit
and descend into the depths of Core Audio, the modular Audio Units that implement
the magic. Chapters 7,“Audio Units: Generators, Effects, and Rendering,” and 8,“Audio
Units: Input and Mixing,” will make or break you as an audio programmer, for here you
can craft end-to-end sonic solutions that are not possible “the easy way.”

Once time is your plaything, it’s time to tackle space. In Chapter 9,“Positional
Sound,” you enter another dimension as you learn to change sounds by positioning
audio in space using OpenAL, the 3D audio framework.

Core Audio has its roots in the Mac but has evolved with Apple’s fortunes. In Chapter
10,“Core Audio on iOS,” you focus on iOS and the challenges and changes brought by
the post-PC world of ultraportable hardware running ultra-efficient software.

Mobile hardware is not the only way to take audio beyond the computer. In Chapter
11,“Core MIDI,” you gain the means to connect the computer to musical instruments
and other hardware using Core Audio’s implementation of the industry-standard Musical
Instrument Digital Interface, Core MIDI.

With that, you’ll be at the end of your quest, but your journey will have just begun.
In Chapter 12,“Coda,” you look to the future, to the once inexplicable advanced con-
cepts you are now equipped to tackle, such as digital signal processing and sampling.

If you want to be a master of the arcane arts, you have a long road ahead of you.
There’s no sense sugarcoating it:This is going to be hard. But don’t worry—you’re in
good hands.Your authors have used plain language and plenty of sample code to banish
the demons and show you the way to the underlying logic that will make these concepts
yours.

Core Audio is the most powerful system for audio programming man has yet to cre-
ate, but its power has largely remained out of the hands of most app makers and locked
in the brains of audio nerds like Kevin. Chris has done what nobody else has managed
to do and may never manage to do again: Explain Core Audio in a way other people can
understand.

This book has been years in the making, and it took an incredible amount of work
and the best tech editor in the industry, the legendary Chuck Toporek, and his talented
colleagues at Pearson to finally bring it into existence.The people into whose waiting

xviiForeword

hands this enchanted volume has been given will be the people who deliver the coming
wave of incredible audio apps.

Imagine the possibilities of connecting to people in new ways with the magic of
sound.That incredible future is yours to invent. It is the dawning of the age of magic in
computing, and you are a magician. Mastering the Core Audio frameworks will change
the way you think about the world.

Mike Lee,Amsterdam

xviii Foreword

Introduction

Macs are great media computers, and the iPhone is the best iPod ever made—but
how did they get that way? How did some of the first iOS applications turn the iPhone
into a virtual instrument, yet developers on other mobile platforms remain happy
enough to just to reskin another simple MP3 player? Why is the Mac the choice of so
many digital media professionals, and what secret makes applications such as Bias Peak,
Logic, and Soundtrack Pro possible?

Core Audio, that’s what.
Core Audio is the low-level API that Apple provides for working with digital audio

on Mac OS X and iOS. It provides APIs for simultaneously processing many streams of
multichannel digital audio and interfaces to the audio hardware for capture (micro-
phones) and output (speakers and headphones). Core Audio lets you write applications
that work directly with the uncompressed audio data captured from a microphone, per-
form effects on it, mix it with other audio, and either play the result out to the speakers
or convert it into a compressed format that you can then write to the file system or send
over the network. If you’re not developing full applications, Core Audio lets you write
just the custom effect and wrap it in a plug-in called an audio unit, which lets users add
your effect to their Core Audio-based applications.

Apple debuted Core Audio in Mac OS X 10.0, where it eventually displaced the
SoundManager that was part of the Classic Mac OS. Because Core Audio is a C-based
API, it can be used with Cocoa applications written in Objective-C and Carbon appli-
cations written in C++.You can even skip these application frameworks and call into
Core Audio from a plain-C POSIX command-line executable (in fact, most of this
book’s examples are written this way). Since it is written in and called with C, Core
Audio is extremely high-performance, which is crucially important when you’re dealing
with processing hundreds of thousands of audio samples every second.

Core Audio is based on the idea of “streams” of audio, meaning a continuous series of
data that represents an audio signal. Because the sound changes over time, so does the
data.Throughout Core Audio, your primary means of interacting with the audio is by
working with these streams: getting them from files or input devices, mixing them, con-
verting them to different formats, sending them to output devices, and so on. In doing
this, your code makes calls to Core Audio or gets callbacks from Core Audio every time
a stream has more data to process.This is a different metaphor than you might have seen
in other media APIs. Simple media players such as the HTML5 <audio> tag or the iOS
AVAudioPlayer treat an audio source (such as a file or URL) as an opaque box of

audio: You can usually play, pause, and stop it, and maybe skip ahead or back to different
parts of the audio, but you can’t really inspect the contents of the box or do anything
with the data.What makes Core Audio cool is that it’s all about doing stuff with the data.

If only it were that easy.
Core Audio has a well-earned reputation as one of the hardest frameworks to deal

with on Mac OS X and iPhone.This is because choosing to operate at this level means
dealing with a lot of challenges: working with streams of samples in their native form,
working with Core Audio’s highly asynchronous programming models, and keeping
things running fast enough that you don’t starve Core Audio when it needs data to send
to the speakers or headphones. It didn’t help that, in iPhone OS 2.0, the first to support
third-party applications, Core Audio was the only media framework; developers who sim-
ply wanted to play a file had to go all the way down to the stream level to process sam-
ples by hand, in C. It’s great if you want or need to work with that level, but developers
who needed a simpler, higher-level abstraction did a lot of public complaining.

Core Audio is not arbitrarily cruel or obtuse. It’s complex because the nature of the
problem domain is. In our opinion, storing a web app purchase in a database is trivial
compared to modeling sound waves in a stream of samples, performing effects on them
through mathematical manipulations, and delivering the results to the hardware hundreds
or thousands of times a second—and doing it fast enough that the user perceives the
result as instantaneous. Doing something really hard, really fast is inherently challenging:
By the time you get to the end of this book, we think you’ll have an appreciation for
just how much Core Audio does for you.

And by that point, we think you’ll be ready to do some cool things of your own.

Audience for This Book
One book can’t be everything to everyone, so it’s best to set the terms right at the start:
This book is going to kick your butt. But like Nietzche said,“That which does not kill
you only makes you stronger.”When you’ve mastered this material, you’ll be ready to do
some serious butt-kicking of your own.

Who Should Read this Book
The primary audience for this book is experienced programmers who are familiar with
Mac or iOS but have not yet explored Core Audio. Familiarity with C is assumed, but
no prerequisite knowledge of digital audio is required; we cover that in Chapter 2.We
assume that, to be interested in an audio programming book at all, you’ve used enough
media applications to have a sense of what’s possible: audio capture, real-time effects,
MP3 playback, virtual instruments, web radio, voice over IP, and so on. If the thought of
this stuff doesn’t get your programmer parts all tingly, there’s probably a nice book on
Ruby on Rails two racks over.

2 Introduction

Who Shouldn’t Read This Book
As self-declared “world’s toughest programmer” Mike Lee once said,“Core Audio is
some serious black arts shit.”You’ll find yourself digging around low-level APIs, and if
you’re not comfortable with getting your hands dirty, this book might not be where you
should start (but keep it in mind as something to come back to when you’re skilled
enough).

You need to know Xcode, C, and Objective-C, and you need to be comfortable read-
ing and interpreting header files.You never know when you’ll need to dive deeper into
something, and having those skills under your belt will definitely make reading this book
a better experience for you.

What You Need to Know
This book assumes a working knowledge of C, including pointers, malloc(), and the
usual hazards of low-level memory management. If you don’t have experience with C or
any C-like language (C++, Java, and C#), stop right now and read a good book on C
before you attempt to tackle this book.

The book also assumes that you’re familiar and comfortable with Xcode and pro-
gramming in Objective-C.You won’t find any primers on how to create a project in
Xcode or how to debug; you can find plenty of entry-level books for newbies and con-
verts from other platforms and programming environments. If you’re messing around
with Core Audio and low-level C APIs, we can assume that you’ve already got that
grounding.

Because the book covers use of Core Audio on the Mac and iOS, we also assume that
you have an Apple developer account; if not, you should (they’re cheap these days!). Go
to developer.apple.com/mac or developer.apple.com/ios to sign up today—$198
gets you access to all the relevant updates for both Mac OS X and iOS, as well as Xcode,
Apple’s developer documentation, sample code, and even the session videos from
WWDC.

Looking Up Documentation
Every Core Audio developer is constantly flipping over to Core Audio’s online docu-
mentation to look up function names, parameter lists, and semantic information (such as
what you’re allowed to pass in a parameter or what to expect a function to do). It’s all
available on Apple’s website, but Apple’s online documentation has a habit of moving
around, which makes it hard for us to provide URLs that won’t break six months after
we publish.

Instead, we encourage you to get familiar with Xcode’s documentation browser, if
you aren’t already. In Xcode 4.2, you access it with the Help > Documentation and
API Reference menu item, which takes you to the Organizer window and opens the
Documentation tab.When you first visit this documentation, you’ll see a Quick Start

3Looking Up Documentation

screen that lists some introductory resources for using Xcode.The right pane of this
view has buttons for browsing, searching, and managing bookmarks in the documenta-
tion.Via Browse, you can select the top-level docsets to work with. Figure I.1 shows the
home page for the Mac OS X 10.7 Core Library.

4 Introduction

Figure I.1 Xcode documentation viewer showing home page of
Mac OS X 10.7 Core Library documentation

The column on the left side of the content pane arranges documentation by type,
topic, and then level of the Mac OS X or iOS architecture. If you scroll down to the
Media Layer level, you’ll find Core Audio, Core Audio Kit, and Audio Toolbox, which is
where Core Audio exposes most of its functionality to applications. Click on one of
these to see a list of reference guides, technical Q&A documents, and sample code. For
example, you could click on Audio Toolbox Framework Reference and then use the
Bookmarks toolbar button to find your way back here easily.

Actually, we rarely browse the documentation.The second toolbar button in the left
pane exposes a search interface, which is what we use most of the time.Type in a term
here to get a list of matching API references (methods, functions, types, structs, and so
on), as well as occurrences of the term in other documentation, such as sample code or
programming guides, all of which is readable within the documentation viewer.We
mentioned the term audio unit earlier in the Introduction; Figure I.2 shows what hap-
pens when we search for “AudioUnit” with the documentation viewer.As you can see,
the term shows up in function names, typedefs, #defines and more in the API section, as
well as programming guides, Q&A documents, and sample code in the full-text section.

5How This Book Is Organized

Figure I.2 Searching for “AudioUnit” in Xcode documentation viewer

You can also search for a term directly from your source; just option-double-click on
a term in your source to pop up a brief overview of its documentation (see Figure I.3);
full documentation is available if you click the book icon at the top of the pop-up win-
dow.There’s also a button with a .h document icon that takes you to the term’s defini-
tion. Both of these functions are available by Control-clicking (or right-clicking) the
term in the text: Look for the menu items Find Text in Documentation and Jump to
Definition.

Throughout the book, we count on the fact that you can look up information
through this interface. For example, when we introduce a new function, we trust you
can type its name into the search field and find its API documentation if you want the
official word on how it works.When a function uses custom types, these are typically
hyperlinked within the documentation so you can follow those links to find related doc-
umentation.

How This Book Is Organized
Before you start your journey, let’s talk about what’s at stake.The path will be treacher-
ous, and you must always remind yourself of the great bounty that awaits you at the end
of this book.

We start by giving a high-level overview of what Core Audio does.We briefly
describe and provide use cases for the input and output of audio data,“transcoding”
between formats, audio effects, playback and recording, and MIDI.

6 Introduction

Figure I.3 Looking up documentation from the Xcode source editor

Then we give an overview of the API itself.We describe its procedural, property-
driven nature and then give a quick tour of each of its architectural units, starting from
high-level API‚ Audio Queue, OpenAL, Extended Audio File; moving through the mid-
and low-level APIs (Audio Units,Audio File,Audio Converter); and finally heading into
related topics such as Core MIDI, OpenAL, and how Core Audio works on iOS.

Part I: Understanding Core Audio
This section lays the foundation on which the rest of the book is built.That it seems like
a lot of material to get through before writing any code is indicative of the subject.
Understanding the problem of digital audio and the solutions Core Audio offers is an
absolute must if subsequent sections and their sample code are to make any sense.

n Chapter 1: Overview of Core Audio
We start our journey with a nuts-and-bolts investigation of Core Audio as a Mac
or iOS framework: where the files are, how to integrate it into your projects, and
where to go for help.

We start with an overview of the API itself.We describe its procedural, property-
driven nature.Then we take a quick tour of each of its architectural units, starting
from high-level API (Audio Queue, OpenAL, Extended Audio File), moving

through the midlevel API (Audio Units,Audio File,Audio Converter), and work-
ing into the low-level API (IOKit/IOAudio, HAL, and, on iOS, Remote I/O).We
also work through a simple application to use Core Audio to fetch metadata from
a sound file, to give you a taste of writing Core Audio code.

n Chapter 2:The Story of Sound
The central problem of digital audio lies in representing the analog waveform of a
sound on a digital computer.We talk about how sampling converts the sounds you
hear into the 1s and 0s of a binary computer.We cover bit rates and the trade-offs
of quality, performance, and file size.To get a hands-on understanding of sampling,
you’ll write your own sound waves directly to a file, sample by sample, and see
(well, hear, actually) how different wave forms sound different to the human ear.

When you have the raw stream of bits, you need to quantize them into frames and
packets.We talk about the difference between constant and variable bit rates and
frame rates.

n Chapter 3: Audio Processing with Core Audio
When you understand the concepts of audio in English, it’s time to express them
in C.We talk about the implementation details here—how Core Audio represents
audio streams and provides functionality to work with those streams.We talk about
file formats and stream formats and highlight the difference between them.Then
we’ll write an example that inspects what kinds of audio format/file format com-
binations Core Audio supports.

Following our description of formats, we switch to Core Audio’s processing model
and look at how Core Audio encapsulates its functionality as Audio Units, how
these are combined in interesting ways, and why they use a pull model to move
audio data through the system.

Part II: Basic Audio
This section begins the hands-on use of the API and concepts from the previous chapter.
We start by discussing the flow of data between files and the audio systems, first by
recording and then by playing file-based audio data.Then we discuss transcoding API for
moving data between formats and explain the important behind-the-scenes function that
serves.

n Chapter 4: Recording
Why address recording before playback? Because it’s easier and it generates sample
files to play with later.This chapter introduces the high-level API for getting data
in and out of files and explores the Audio Queue API for making use of that data.
We’ll develop a complete example that captures audio from the default input
device and writes it to a file. In the process, we’ll deal with some of the tricky
parts of compressed formats, such as working with format-specific magic cookies
and figuring out how big buffers need to be to write data for arbitrary formats.

7How This Book Is Organized

n Chapter 5: Playback
From a programming perspective, recording and playback are two sides of the same
coin. Playback moves data from a file to a series of buffers; recording moves data
from a series of buffers into a file.

This chapter provides a full example of reading audio from a file and playing it to
the default output.Again, we look at techniques for dealing with variable-bit-rate
formats.We also take a look at some of the neat things you can do with an audio
queue’s properties and parameters and dig into the latency implications of working
with so many buffers.

n Chapter 6: Conversion
For people used to object-oriented programming, Core Audio’s high-level API
seems pretty low level.This chapter demonstrates the complexity behind the
scenes, diving into the nitty-gritty details of modern audio codecs and the com-
plexity necessary to convert them into canonical data.We work through an exam-
ple that directly uses Audio Converter Services to convert a compressed file to an
uncompressed version and then simplify this through the use of Extended Audio
File Services, which combine I/O and data conversion into a single step.

Part III: Advanced Audio
Now that you understand how to move audio data back and forth, it’s time to get fancy.
We start by adding effects to audio data, move into 3D positional audio, and then talk
about performance and low-level architecture.

n Chapter 7: Audio Units: Generators, Effects, and Rendering
Core Audio provides an elegant architecture for digital signal processing plug-ins,
called Audio Units. However, audio units are the lowest commonly used level of
the Core Audio API and introduce new challenges for the programmer.This chap-
ter introduces audio units to play sounds from files and the Mac OS X speech syn-
thesizer and to perform effects on the sound, all coordinated via the AUGraph
API.We also look at how to provide your own programmatically generated audio
data as input to audio units.

n Chapter 8: Audio Units: Input and Mixing
To help you further flex our muscles with the Audio Units API, we look at how
to use the IO unit to perform audio capture and jump through some rather tricky
threading hoops to get the captured data to run through an AUGraph of effects
and other sources.To combine it all, we make use of the powerful multichannel
mixer unit.

n Chapter 9: Positional Sound
Up to now, the discussion has focused on sound itself, but the human experience
of sound adds an entirely new dimension to the problem.This section discusses
OpenAL, the 3D positional sound API, which enables you to associate sounds with

8 Introduction

locations in a 3D space.We start with loops, but by the end of the chapter, you
will be able to play arbitrarily long streams of sound from 3D sources.

Part IV: Additional Topics
By this point, we’ve covered most of Core Audio, but not all of it.This section explores
some of the miscellany that doesn’t fit into the rest of book.We start with a chapter ded-
icated to iOS, then talk about handling MIDI data, and end with a chapter on extending
Core Audio.

n Chapter 10: Core Audio on iOS
Conceptually, there’s little difference between sound on an iPhone and sound on a
Macintosh, but the devil is in the details.This chapter addresses the differences,
with a particular concentration on the limitations and exceptions that come with
limited hardware resources.

We also discuss the Audio Session API, which is vital to making sure your applica-
tion behaves properly in the preemptive, multisource, multidestination iPhone
environment.

n Chapter 11: Core MIDI
Musicians love the MIDI standard, which is a lynchpin of connecting musical
instruments and processing digital music data. In this chapter, we look at how
Core MIDI processes music events between the Mac or iOS device and instru-
ments connected either physically or wirelessly.You’ll also see how MIDI data can
be delivered into an Audio Unit, enabling you to convert note and timing data
into sound.

n Chapter 12: Coda
In the final chapter, we look at what we’ve covered and what’s left to discover.We
also point out the newest and shiniest audio bits unveiled in Mac OS X 10.7
(Lion) and iOS 5.

This book doesn’t use every function Core Audio defines or conceptually cover every-
thing you can do with it, but it does dig deeply into the most used and most important
topics.After you make it through the book, you’ll have the hang of how Core Audio
does things, and we think you’ll be well equipped to explore any remaining functionality
you need for your applications.

About the Sample Code
The source code for the projects in this book is available on the Resources tab on the
book’s catalog page:

www.informit.com/title/9780321636843
The downloads contain a README file and folders with the projects for each

chapter.

9About the Sample Code

www.informit.com/title/9780321636843

This book contains a lot of sample code, and Core Audio can be pretty verbose to the
modern eye.To keep the code size manageable, most of the examples in this book are
written as OS X command-line executables, not full-fledged Cocoa (Mac OS X) GUI
applications.You’ll be able to run these directly in Xcode or from the command line (in
Terminal or xterm).The iOS examples in Chapter 10 and thereafter are genuine iOS
apps—the iPhone doesn’t have a command line, after all—but we don’t bother with a
GUI unless absolutely necessary.

Core Audio is mostly the same between Mac OS X and iOS, so iOS developers can
use the concepts from these examples in iPhone, iPod Touch, and iPad apps. In most
cases, the code works exactly the same; we’ve pointed out any differences between Mac
and iOS, either in the APIs themselves or in how they work on the different platforms.
For the parts of Core Audio that are unique to iOS, see Chapter 10.

Our baseline SDK for this book is Xcode 4.2, which includes the SDKs for Mac OS
X 10.7 (Lion) and iOS 5. For Core Audio development on a Mac, you don’t need any-
thing else:All the libraries, headers, and documentation are included with the Xcode
tools.1 Our sample code is written to support versions 10.6 and 10.7 on the Mac, and
iOS 4 and 5. Because of changes and deprecations over the years, some of the Mac
examples won’t run as is on version 10.5 (Leopard) or earlier, although, in many cases,
the difference is only a changed constant here or there (for example, the
kAudioFileReadPermission constant introduced in version 10.6 replaces the
fsRdPerm found in earlier versions of Mac OS X).

10 Introduction

1 Core Audio used to be a separate download, which has confused a few developers when they’ve

seen it listed separately on Apple’s Development Kits page. That download is needed only if

you’re developing on Tiger (Mac OS X 10.4.x).

This page intentionally left blank

1
Overview of Core Audio

Core Audio is the engine behind any sound played on a Mac or iPhone OS. Its proce-
dural API is exposed in C, which makes it directly available in Objective-C and C++,
and usable from any other language that can call C functions, such as Java with the Java
Native Interface, or Ruby via RubyInline. From an audio standpoint, Core Audio is high
level because it is highly agnostic. It abstracts away both the implementation details of
the hardware and the details of individual audio formats.

To an application developer, Core Audio is suspiciously low level. If you’re coding in
C, you’re doing something wrong, or so the saying goes.The problem is, very little sits
above Core Audio.Audio turns out to be a difficult problem, and all but the most trivial
use cases require more decision making than even the gnarliest Objective-C framework.
The good news is, the times you don’t need Core Audio are easy enough to spot, and
the tasks you can do without Core Audio are pretty simple (see sidebar “When Not to
Use Core Audio”).

When you use Core Audio, you’ll likely find it a far different experience from nearly
anything else you’ve used in your Cocoa programming career. Even if you’ve called into
other C-based Apple frameworks, such as Quartz or Core Foundation, you’ll likely be
surprised by Core Audio’s style and conventions.

This chapter looks at what’s in Core Audio and where to find it.Then it broadly sur-
veys some of its most distinctive conventions, which you’ll get a taste for by writing a
simple application to exercise Core Audio’s capability to work with audio metadata in
files.This will give you your first taste of properties, which enable you to do a lot of the
work throughout the book.

When Not to Use Core Audio
The primary scenario for not using Core Audio is when simply playing back from a file: On a
Mac, you can use AppKit’s NSSound, and on iOS, you can use the AVAudioPlayer from
the AV Foundation framework. iOS also provides the AVAudioRecorder for recording to a
file. The Mac has no equivalent Objective-C API for recording, although it does have
QuickTime and QTKit; you could treat your audio as QTMovie objects and pick up some
playback, recording, and mixing functionality. However, QuickTime’s video orientation and its

philosophy of being an editing API for multimedia documents makes it a poor fit for purely
audio tasks. The same can be said of AV Foundation’s AVPlayer and
AVCaptureSession classes, which debuted in iOS 4 and became the heir apparent to
QuickTime on Mac in 10.7 (Lion).

Beyond the simplest playback and recording cases—and, in particular, if you want to do
anything with the audio, such as mixing, changing formats, applying effects, or working
directly with the audio data—you’ll want to adopt Core Audio.

The Core Audio Frameworks
Core Audio is a collection of frameworks for working with digital audio. Broadly speak-
ing, you can split these frameworks into two groups: audio engines, which process
streams of audio, and helper APIs, which facilitate getting audio data into or out of these
engines or working with them in other ways.

Both the Mac and the iPhone have three audio engine APIs:
n Audio Units. Core Audio does most of its work in this low-level API. Each unit

receives a buffer of audio data from somewhere (the input hardware, another audio
unit, a callback to your code, and so on), performs some work on it (such as apply-
ing an effect), and passes it on to another unit.A unit can potentially have many
inputs and outputs, which makes it possible to mix multiple audio streams into one
output. Chapter 7,“Audio Units: Generators, Effects, and Rendering,” talks more
about Audio Units.

n Audio Queues. This is an abstraction atop audio units that make it easier to play
or record audio without having to worry about some of the threading challenges
that arise when working directly with the time-constrained I/O audio unit.With
an audio queue, you record by setting up a callback function to repeatedly receive
buffers of new data from the input device every time new data is available; you
play back by filling buffers with audio data and handing them to the audio queue.
You will do both of these in Chapter 4,“Recording.”

n OpenAL. This API is an industry standard for creating positional, 3D audio (in
other words, surround sound) and is designed to resemble the OpenGL graphics
standard.As a result, it’s ideally suited for game development. On the Mac and the
iPhone, its actual implementation sits atop audio units, but working exclusively
with the OpenAL API gets you surprisingly far. Chapter 9,“Positional Sound,”
covers this in more detail.

To get data into and out of these engines, Core Audio provides various helper APIs,
which are used throughout the book:

n Audio File Services. This framework abstracts away the details of various con-
tainer formats for audio files.As a result, you don’t have to write code that specifi-
cally addresses the idiosyncrasies of AIFFs,WAVs, MP3s, or any other format. It
enables your program to open an audio file, get or set the format of the audio data
it contains, and start reading or writing.

14 Chapter 1 Overview of Core Audio

n Audio File Stream Services. If your audio is coming from the network, this
framework can help you figure out the format of the audio in the network stream.
This enables you to provide it to one of the playback engines or process it in other
interesting ways.

n Audio Converter Services. Audio can exist in many formats. By the time it
reaches the audio engines, it needs to be in an uncompressed playable format
(LPCM, discussed in Chapter 2,“The Story of Sound”).Audio Converter Services
helps you convert between encoded formats such as AAC or MP3 and the
uncompressed raw samples that actually go through the audio units.

n Extended Audio File Services. A combination of Audio Converter Services
and Audio File Stream Services, the Extended Audio File APIs enables you to read
from or write to audio files and do a conversion at the same time. For example,
instead of reading AAC data from a file and then converting to uncompressed
PCM in memory, you can do both in one call by using Extended Audio File
Services.

n Core MIDI. Most of the Core Audio frameworks are involved with processing
sampled audio that you’ve received from other sources or captured from an input
device.With the Mac-only Core MIDI framework, you synthesize audio on the fly
by describing musical notes and how they are to be played out—for example,
whether they should sound like they’re coming from a grand piano or a ukulele.
You’ll try out MIDI in Chapter 11,“Core MIDI.”

A few Core Audio frameworks are platform specific:
n Audio Session Services. This iOS-only framework enables your app to coordi-

nate its use of audio resources with the rest of the system. For example, you use
this API to declare an audio “category,” which determines whether iPod audio can
continue to play while your app plays and whether the ring/silent switch should
silence your app.You’ll use this more in Chapter 10,“Core Audio on iOS.”

As you develop your application, you’ll combine these APIs in interesting ways. For
example, you could use Audio File Stream Services to get the audio data from a net
radio stream and then use OpenAL to put that audio in a specific location in a 3D envi-
ronment.

Core Audio Conventions
The Core Audio frameworks are exposed as C function calls.This makes them broadly
available to Cocoa, Cocoa Touch, and Carbon apps, but you have to be ready to deal
with all the usual issues of procedural C, such as pointers, manual memory management,
structs, and enums. Most modern developers have cut their teeth on object-oriented
languages such as Objective-C, C++, and Python, so it’s no longer a given that profes-
sional programmers are comfortable with procedural C.

15Core Audio Conventions

In C, you don’t have classes, object orientation, implementation hiding, or many of
the other important language traits that most developers have depended on for years. But
Core Audio, like Apple’s other C-based frameworks, does provide a measure of these
modern traits, even within the C idiom.

Apple’s model C framework is Core Foundation, which underlies Foundation, the
essential Objective-C framework that nearly all Mac and iPhone applications use.You’ll
recognize Foundation by classes such as NSString, NSURL, NSDate, and NSObject. In
many cases, the Objective-C classes assemble their functionality by calling Core
Foundation, which provides opaque types (pointers to data structures whose actual
members are hidden) and functions that work on these objects. For example, an
NSString is literally the same as a CFStringRef (you can freely cast between the two),
and its length method is equivalent to the function CFStringGetLength(), which
takes a CFStringRef as its object. By combining these opaque types with consistent
naming conventions for functions, Core Foundation provides a highly manageable C API
with a clarity similar to what you’re used to in Cocoa.

Core Audio is highly similar in its design. Many of its most important objects (such as
audio queues and audio files) are treated as opaque objects that you hand to predictably
named functions, such as AudioQueueStart() or AudioFileOpenURL(). It’s not
explicitly built atop Core Foundation—an AudioQueueRef is not technically a CF
opaque type; however, it does make use of CF’s most important objects, such as
CFStringRef and CFURLRef, which can be trivially cast to and from NSStrings and
NSURLs in your Cocoa code.

Your First Core Audio Application
Now let’s get a feel for Core Audio code by actually writing some.The audio engine
APIs have a lot of moving parts and are, therefore, more complex, so we’ll make trivial
use of one of the helper APIs. In this first example, we’ll get some metadata (information
about the audio) from an audio file.

Note
In this book, most of the examples are command-line utilities instead of full-blown AppKit
or UIKit applications. This helps keep the focus on the audio code, without bringing in GUI
considerations.

Launch Xcode, go to File > New Project, select the Mac OS X Application tem-
plates, and choose the Command Line Tool template; select the Foundation type in the
pop-up menu below the template icon.When prompted, call the project CAMetadata.
The resulting project has one user-editable source file, main.m, and produces an exe-
cutable called CAMetadata, which you can run from Xcode or in the Terminal.

Select the CAMetadata.m file.You’ll see that it has a single main() function that sets
up an NSAutoReleasePool, prints a “Hello,World!” log message, and drains the pool

16 Chapter 1 Overview of Core Audio

before terminating. Replace the comment and the printf so that main() looks like
Listing 1.1.We’ve added numbered comments to the ends of some of the statements as
callouts so that we can explain what this code does, line by line.

Listing 1.1 Your First Core Audio Application

int main (int argc, const char * argv[]) {

NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];

if (argc < 2) {

printf ("Usage: CAMetadata /full/path/to/audiofile\n");

return -1;

} // 1

NSString *audioFilePath = [[NSString stringWithUTF8String:argv[1]]

stringByExpandingTildeInPath]; // 2

NSURL *audioURL = [NSURL fileURLWithPath:audioFilePath]; // 3

AudioFileID audioFile; // 4

OSStatus theErr = noErr; // 5

theErr = AudioFileOpenURL((CFURLRef)audioURL,

kAudioFileReadPermission,

0,

&audioFile); // 6

assert (theErr == noErr); // 7

UInt32 dictionarySize = 0; // 8

theErr = AudioFileGetPropertyInfo (audioFile,

kAudioFilePropertyInfoDictionary,

&dictionarySize,

0); // 9

assert (theErr == noErr); // 10

CFDictionaryRef dictionary; // 11

theErr = AudioFileGetProperty (audioFile,

kAudioFilePropertyInfoDictionary,

&dictionarySize,

&dictionary); // 12

assert (theErr == noErr); // 13

NSLog (@"dictionary: %@", dictionary); // 14

CFRelease (dictionary); // 15

theErr = AudioFileClose (audioFile); // 16

assert (theErr == noErr); // 17

[pool drain];

return 0;

}

17Your First Core Audio Application

Now let’s walk through the code from Listing 1.1:

1. As in any C program, the main() method accepts a count of arguments (argc)
and an array of plain C-string arguments.The first string is the executable name, so
you must look to see if there’s a second argument that provides the path to an
audio file. If there isn’t, you print a message and terminate.

2. If there’s a path, you need to convert it from a plain C string to the NSString/
CFStringRef representation that Apple’s various frameworks use. Specifying the
UTF-8 encoding for this conversion lets you pass in paths that use non-Western
characters, in case (like us) you listen to music from all over the world. By using
stringByExpandingTildeInPath, you accept the tilde character as a shortcut to
the user’s home directory, as in ~/Music/....

3. The Audio File APIs work with URL representations of file paths, so you must
convert the file path to an NSURL.

4. Core Audio uses the AudioFileID type to refer to audio file objects, so you
declare a reference as a local variable.

5. Most Core Audio functions signal success or failure through their return value,
which is of type OSStatus.Any status other than noErr (which is 0) signals an
error.You need to check this return value on every Core Audio call because an
error early on usually makes subsequent calls meaningless. For example, if you can’t
create the AudioFileID object, trying to get properties from the file that object
was supposed to represent will always fail. In this example, we’ve used an
assert() to terminate the program instantly if we ever get an error, in callouts 7,
10, 13, and 17. Of course, your application will probably want to handle errors
with somewhat less brutality.

6. Here’s the first Core Audio function call: AudioFileOpenURL. It takes four param-
eters, a CFURLRef, a file permissions flag, a file type hint, and a pointer to receive
the created AudioFileID object.You do a toll-free cast of the NSURL to a
CFURLRef to match the first parameter’s defined type. For the file permissions, you
pass a constant to indicate read permission.You don’t have a hint to provide, so
you pass 0 to make Core Audio figure it out for itself. Finally, you use the &
(“address of ”) operator to provide a pointer to receive the AudioFileID object
that gets created.

7. If AudioFileOpenURL returned an error, die.

18 Chapter 1 Overview of Core Audio

8. To get the file’s metadata, you will be asking for a metadata property,
kAudioFilePropertyInfoDictionary. But that call requires allocating memory
for the returned metadata in advance. So here, we declare a local variable to
receive the size we’ll need to allocate.

9. To get the needed size, call AudioFileGetPropertyInfo, passing in the
AudioFileID, the property you want information about, a pointer to receive the
result, and a pointer to a flag variable that indicates whether the property is write-
able (because we don’t care, we pass in 0).

10. If AudioFileGetPropertyInfo failed, terminate.

11. The call to get a property from an audio file populates different types, based on
the property itself. Some properties are numeric; some are strings.The documenta-
tion and the Core Audio header files describe these values.Asking for
kAudioFilePropertyInfoDictionary results in a dictionary, so we set up a
local variable instance of type CFDictionaryRef (which can be cast to an
NSDictionary if needed).

12. You’re finally ready to request the property. Call AudioFileGetProperty, passing
in the AudioFileID, the property constant, a pointer to the size you’re prepared
to accept (set up in callouts 8–10 with the AudioFileGetPropertyInfo call) and
a pointer to receive the value (set up on the previous line).

13. Again, check the return value and fail if it’s anything other than noErr.

14. Let’s see what you got.As in any Core Foundation or Cocoa object, you can use
"%@" in a format string to get a string representation of the dictionary.

15. Core Foundation doesn’t offer autorelease, so the CFDictionaryRef received in
callout 12 has a retain count of 1. CFRelease() releases your interest in the
object.

16. The AudioFileID also needs to be cleaned up but isn’t a Core Foundation
object, per se; therefore, it doesn’t get CFRelease()’d. Instead, it has its own end-
of-life function: AudioFileClose().

17. AudioFileClose() is another Core Audio call, so you should continue to check
return codes, though it’s arguably meaningless here because you’re two lines away
from terminating anyway.

So that’s about 30 lines of code, but functionally, it’s all about setting up three calls:
opening a file, allocating a buffer for the metadata, and getting the metadata.

Running the Example
That was probably more code than you’re used to writing for simple functionality, but
it’s done now. Let’s try it out. Click build; you get compile errors. Upon inspection, you
should see that all the Core Audio functions and constants aren’t being found.

19Your First Core Audio Application

This is because Core Audio isn’t included by default in Xcode’s command-line
executable project, which imports only the Foundation framework.Add a second
#import line:

#import <AudioToolbox/AudioToolbox.h>

Audio Toolbox is an “umbrella” header file that includes most of the Core Audio func-
tionality you’ll use in your apps, which means you’ll be importing it into pretty much all
the examples.You also need to add the framework to your project. Click the project icon
in Xcode’s file navigator, select the CAMetadata target, and click the Build Phases tab.
Expand the Link Binaries with Libraries section and click the + button to add a new
library to be linked at build time. In the sheet that slides out, select the
AudioToolbox.framework, as shown in Figure 1.1.

20 Chapter 1 Overview of Core Audio

Figure 1.1 Adding the AudioToolbox.framework to an Xcode project

Now you should be able to build the application without any errors.To run it, you
need to provide a path as a command-line argument.You can either open the Terminal
and navigate to the project’s build directory or supply an argument with Xcode. Let’s do
the latter:

n From the Scheme pop-up menu, select Edit Scheme.
n Select the Run CAMetadata item and click the Arguments tab.
n Press + to add an argument and supply the path to an audio file on your hard

drive.

n If your path has spaces in it, use quotation marks. For example, we’re using an
MP3 bought online, located at ~/Music/iTunes/iTunes Music/Amazon
MP3/Metric/Fantasies/05 - Gold Guns Girls.mp3. Click OK to dismiss the Scheme
Editor sheet.

n Bring up Xcode’s Console pane with Shift-„-C and click Run.

Assuming that your path is valid, your output will look something like this:

2010-02-18 09:43:17.623 CAMetadata[17104:a0f] dictionary: {

album = Fantasies;

"approximate duration in seconds" = "245.368";

artist = Metric;

comments = "Amazon.com Song ID: 210266948";

copyright = "2009 Metric Productions";

genre = "Alternative Rock";

title = "Gold Guns Girls";

"track number" = "5/10";

year = 2009;

}

Well, that’s pretty cool:You’ve got a nice dump of a lot of the same metadata that
you’d see in an application such as iTunes. Now let’s check it out with an AAC song
from the iTunes Store. Changing the command-line argument to something like
~/Music/iTunes/iTunes Music/Arcade Fire/Funeral/07 Wake Up.m4a gets you the following
on Snow Leopard:

2010-02-18 09:48:15.421 CAMetadata[17665:a0f] dictionary: {

"approximate duration in seconds" = "335.333";

}

Whoa! What happened to the metadata call?
Nothing, really: Nothing in the documentation promises what you can expect in the

info dictionary.As it turns out, Core Audio offers richer support for ID3 tags in .mp3
files than the iTunes tagging found in .m4a files.

No Need for Promises

Speaking from experience, you’ll want to prepare yourself for unpredictable results, such as
different levels of metadata support for MP3 and AAC files. Mastering Core Audio isn’t just
about understanding the APIs; it’s also about developing a sense of the implementation,
how the library actually works, and what it does well and where it comes up short.

Core Audio isn’t just about the syntax of your calls; it’s about the semantics, too. In some
cases, code that’s syntactically correct will fail in practice because it violates implicit con-
tracts, acts differently on different hardware, or even just it uses too much CPU time in a
time-constrained callback. The successful Core Audio programmer doesn’t march off in a
huff when things don’t work as expected or don’t work well enough the first time. Instead,
you must try to figure out what’s really going on and come up with a better approach.

21Your First Core Audio Application

Core Audio Properties
The Core Audio calls in this example were all about getting properties from the audio
file object.The routine of preparing for and executing property-setter and property-
getter calls is essential in Core Audio.

That’s because Core Audio is a property-driven API. Properties are key-value pairs, with
the keys being enumerated integers.The values can be of whatever type the API defines.
Each API in Core Audio communicates its capabilities and state via its list of properties.
For example, if you look up the AudioFileGetProperty() function in this example,
you’ll find a link to a list of Audio File Properties in the documentation.The list, which
you can also find by looking in Core Audio’s AudioFile.h header, looks like this:

kAudioFilePropertyFileFormat = 'ffmt',

kAudioFilePropertyDataFormat = 'dfmt',

kAudioFilePropertyIsOptimized = 'optm',

kAudioFilePropertyMagicCookieData = 'mgic',

kAudioFilePropertyAudioDataByteCount = 'bcnt',

...

These keys are 32-bit integer values that you can read in the documentation and
header file as four character codes.As you can see from this list, the four-character codes
take advantage of the fact that you can use single quotes to represent char literals in C
and spell out clever mnemonics.Assume that fmt is short for “format,” and you can fig-
ure out that ffmt is the code for “file format” and dfmt means “data format.” Codes
like these are used throughout Core Audio, as property keys and sometimes as error sta-
tuses. If you attempt to write to a file format Core Audio doesn’t understand, you’ll get
the response fmt?, which is kAudioFileUnsupportedDataFormatError.

Because Core Audio makes so much use of properties, you’ll see common patterns
throughout its API for setting and getting properties.You’ve already seen
AudioFileGetPropertyInfo() and AudioFileGetProperty(), so it probably won’t
surprise you later to encounter AudioQueueGetProperty(), AudioUnitGet
Property(), AudioConverterGetProperty(), and so on. Some APIs provide property
listeners that you can register to receive a callback when a property changes. Using call-
back functions to respond to asynchronous events is a common pattern in Core Audio.

The values that you get or set with these APIs depend on the property being set.You
retrieved the kAudioFilePropertyInfoDictionary property, which returned a
pointer to a CFDictionaryRef, but if you had asked for a kAudioFileProperty
EstimatedDuration, you’d need to be prepared to accept a pointer to an
NSTimeInterval (which is really just a double).This is tremendously powerful
because a small number of functions can support a potentially infinite set of properties.
However, setting up such calls does involve extra work because you typically have to use
the “get property info” call to allocate some memory to receive the property value or to
inspect whether the property is writable.

22 Chapter 1 Overview of Core Audio

Another point to notice with the property functions is the Core Audio naming con-
ventions for function parameters. Let’s look at the definition of
AudioFileGetProperty() from the docs (or the AudioFile.h header):

OSStatus AudioFileGetProperty (

AudioFileID inAudioFile,

AudioFilePropertyID inPropertyID,

UInt32 *ioDataSize,

void *outPropertyData

);

Notice the names of the parameters:The use of in, out, or io indicates whether a
parameter is used only for input to the function (as with the first two, which indicate the
file to use and the property you want), only for output from the function (as with the
fourth, outPropertyData, which fills a pointer with the property value), or for input
and output (as with the third, ioDataSize, which accepts the size of buffer you allo-
cated for outPropertyData and then writes back the number of bytes actually written
into that buffer).You’ll see this naming pattern throughout Core Audio, particularly any
time a parameter works with a pointer to populate a value.

Summary
This chapter provided an overview of the many different parts of Core Audio and gave
you a taste of programming by using Audio File Services to get the metadata properties
of audio files on the local drive.You saw how Core Audio uses properties as a crucial
idiom for working with its various APIs.You also saw how Core Audio uses four charac-
ter codes to specify property keys, and to signal errors.

Of course, you haven’t really dealt with audio itself yet.To do that, you first need to
understand how sound is represented and handled in a digital form.Then you’ll be ready
to dig into Core Audio’s APIs for working with audio data.

23Summary

This page intentionally left blank

Index

Numbers
3D Cartesian coordinate space, 192

3D Mixer Audio Unit, 239

A
AAC formats, file formats and, 50-51

accounts, obtaining Apple developer
accounts, 3

adopting hardware input sample rate, 172

afconvert utility, 97-99

AIFF file format, PCM formats and, 49

alBufferData() function, 201, 206-207, 218

alcCloseDevice() function, 205

alcCreateContext() function, 201

alcDestroyContext() function, 205

alcOpenDevice() function, 201

alDeleteBuffers() function, 205

alDeleteSource() function, 205

alGenBuffers() function, 201

alGenSources() function, 202

alGetBuffer3f(function, 193

alGetError() function, 199, 201

alListener3f() function, 204

alSourcef() function, 202

alSourcei() function, 193, 202

alSourcePause() function, 204

alSourcePlay() function, 204

alSourcePlayv() function, 204

alSourceQueueBuffers() function, 210,
213, 219

alSourceStop() function, 204

alSourceUnqueueBuffers() function, 219

alSourcev() function, 206

alut.h, 196

amplitude

defined, 25
in samples, 29

analog recording, defined, 27

Apple developer accounts, obtaining, 3

Apple Developer Forums, 286

apps, pass-through app (iOS), 241-243

building, 239-240
capture and play-out, 244-249
header file, 241
render callback, 249-252

architecture of Core MIDI, 258

ASBD. See AudioStreamBasicDescription
structure

audio. See also digital audio

playing back, 81-83
buffer setup, 85-87
calculating buffer size and packet

count, 90-91
callback function, 91-94
copying magic cookie, 89-90
creating audio queues, 83-85
features and limits of queues, 94-95
starting playback queue, 88-89
utility functions, 89-91

recording, 60-63
callback function, 75-78
CheckError() function, 63-64
creating audio queues, 64-71
utility functions, 71-75

Audio Component Manager, getting
RemoteIO Audio Unit from, 245-246

Audio Converter Services API, 15, 100-102

calling, 105-108
file setup, 102-105
implementing callback function,

109-112
audio data formats, 43-46

audio engine APIs, 14

Audio File Services API, 14

Audio File Stream Services API, 15

audio files

copying magic cookie from, 89-90
finding for playback, 84
metadata, retrieving, 16-21
opening, 131
reading packets from, 91-94
writing data to, 75-78

audio formats, 40-41

canonical formats, 51, 53
conversion between, 97

afconvert utility, 97-99
Audio Converter Services, 100, 102
calling Audio Converter Services,

105-108
Extended Audio File Services,

112-118
file setup, 102-105
implementing callback function,

109-112
relationship between data and file

formats, 46-51
audio hardware devices, 170

Audio Hardware Services, 71

audio processing graph, 53

Audio Processing Graph Services, 129

290 alSourceQueueBuffers() function

Audio Queue Services, 59-60

audio queues

creating on iOS, 233-234
defined, 59
playback sample application, 81-83

buffer setup, 85-87
calculating buffer size and packet

count, 90-91
callback function, 91-94
copying magic cookie, 89-90
creating audio queues, 83-85
features and limits, 94-95
starting playback queue, 88-89
utility functions, 89-91

priming on iOS, 233
recorder sample application, 60-63

callback function, 75-78
CheckError() function, 63-64
creating audio queues, 64-71
utility functions, 71-75

starting on iOS, 234
threading, 157

Audio Queues API, 14

Audio Session Services API, 15, 224

app setup, 227-230
audio queue initialization, 233-234
audio session initialization, 231-232
buffer refills, 234-236
iOS interruptions, handling, 236-238
properties, 225-227

Audio Stream File Services, 279

audio streams, 1, 44

Audio Toolbox, importing, 20

audio unit graphs. See AUGraph

Audio Unit Programming Guide (Apple), 280

audio units, 1

3D Mixer, 239
AUHAL

definition of, 162
input AUHAL unit, 168-176

creating, 279
defined, 124
explained, 53-55
file player program, 129-141

creating AUGraph, 133-137
main() function, 131-133
setting up file player audio unit,

137-141
Format Converter, 239
Generic, 238
hardware analogy, 124
on iOS, 238-239
iPodEQ, 238
mixer units, 183-189
Multichannel Mixer, 239
pull model, 55
Remote I/O, 238

capture and play-out, 244-249
pass-through app example, 239-243
render callback, 249-252

rendering process, 150
audio unit render cycle, 150-151
creating and connecting audio

units, 154-155
render callback function, 155-159
sine wave player example, 151-153

ring buffers with, 166-168
speech synthesis program, 141-150

adding audio effects, 147-150
creating speech synthesis AUGraph,

144-146
Speech Synthesis Manager,

146-147

291audio units

system-provided subtypes, 126-129
third-party audio units, 280
types of, 53-54, 124-125
uses for, 123-124
Voice Processing, 238

Audio Units API, 14. See also audio units

AudioBuffer struct, 150

AudioBufferList struct, 150, 156, 173

AudioComponentFindNext() function,
154, 246

AudioComponentInstanceNew() function,
154, 246

AudioConverterComplexInputDataProc
class, 100

AudioConverterConvertBuffer() function, 100

AudioConverterDispose() function, 100

AudioConverterFillComplexBuffer() function,
100, 105, 107-108

AudioConverterNew() function, 100, 105

AudioConverterRef class, 100

AudioConverterReset() function, 100

AudioFileClose() function, 19, 35

AudioFileCreateWithURL() function, 35,
67, 104

AudioFileGetGlobalInfo function, 46, 48

AudioFileGetGlobalInfoSize function, 48

AudioFileGetProperty() function, 19, 22-23,
103, 131

AudioFileGetPropertyInfo function, 19

AudioFileID, scheduling with
AUFilePlayer, 139

AudioFileOpen() function, 84

AudioFileOpenURL() function, 18, 131

AudioFileReadPackets() function,
92-93, 110

AudioFileSetProperty() function, 73

AudioFileStream.h file, 279

AudioFileTypeAndFormatID structure, 48

AudioFileWritePackets() function, 35, 76,
105, 108-109, 116

AudioFormatGetProperty() function, 66, 254

AudioHardwareServiceGetPropertyData()
function, 71

AudioObjectPropertyAddress class, 72

AudioOutputUnitStart() function, 153

AudioOutputUnitStop() function, 153

AudioQueueAllocateBuffer() function,
87, 234

AudioQueueEnqueueBuffer() function,
93, 234

AudioQueueGetProperty() function, 73

AudioQueueGetPropertySize() function, 73

AudioQueueNewInput() function, 61, 66

AudioQueueNewOutput() function, 81,
85, 233

AudioQueueOutputCallback class, 82

AudioQueuePause() function, 253

AudioQueueStart() function, 69

AudioQueueStop() function, 70, 93

AudioSampleType class, 52

AudioSessionAddPropertyListener()
function, 245

AudioSessionInitialize() function, 231-232

AudioSessionSetProperty() function, 253

AudioStreamBasicDescription structure, 34,
43-45

for audio queues, 65-68
creating on iOS, 232
getting from input AUHAL, 171
from input audio file, 103
retrieving from audio file, 84

AudioStreamPacketDescription structure,
45-46

AudioTimeStamp structure, 140, 156

292 audio units

AudioUnitRender() function, 150-151, 173

AudioUnitSampleType class, 52

AudioUnitSetProperty() function, 139,
149, 186

AudioUnitUnitialize() function, 153

AUFilePlayer

scheduled start time, 140-141
scheduling AudioFileID with, 139
setting ScheduledFileRegion with,

139-140
AUGraph, 129, 254

creating, 133-137
creating speech synthesis AUGraph,

144-146
initializing, 137
opening, 135
starting, 133
stopping, 133

AUGraph-based play-through program

input AUHAL unit, 168
adopting hardware input sample

rate, 172
calculating capture buffer size for

I/O unit, 173
creating, 168
creating AudioBufferList, 173
creating CARingBuffer, 174
enabling I/O on, 169
getting

AudioStreamBasicDescription
from, 171

getting default audio input
device, 170

initializing, 175-176
setting current device property, 171
setting up input callback, 175

input callback, writing, 176-177
main() function, 164

play-through AUGraph, creating,
178, 180

render callback, writing, 181
ring buffers

with Audio Units, 166-168
explained, 165

running, 182
skeleton, 162, 164
stereo mixer unit in, 184-189
user data struct, 168

AUGraphAddNode() function, 135, 154, 185

AUGraphConnectNodeInput() function, 151

AUGraphInitialize() function, 137

AUGraphNodeInfo() function, 136, 149

AUGraphOpen() function, 180

AUGraphStart() function, 132

AUHAL

definition of, 162
input AUHAL unit, 168-175

AUMatrixMixer, 183

AUMatrixReverb, 147-149

AUMixer, 183

AUMixer3D, 183

AUPlugIn.h, 280

.aupreset file

CFURLRef for, 283
loading into CFDataRef, 284

AURenderCallback, 155

AUSampler, 281-285

AUSpeechSynthesis, 148

AUSplitter, 184

AVAudioPlayer class, 13

AVAudioRecorder class, 13

AVCaptureSession class, 14

AVPlayer class, 14

293AVPlayer class

B
backgrounding, handling on iOS, 237

big-endian

converting from little-endian, 35
defined, 34

bit depth, defined, 29

bit rate

constant versus variable, 31
defined, 29

browsing documentation, 3-4

buffers

for audio queues, 68-69
calculating size, 90-91
explained, 40
figuring size of, 73-75
OpenAL buffers

attaching audio sample buffers to,
201-202

creating, 201
creating for streaming, 213
definition of, 193
freeing, 202
queueing for streaming, 213
refilling, 217-219

for playback audio queues, 85-87
re-enqueuing, 77
refilling, 234-236
ring buffers

with Audio Units, 166-168
explained, 165

BuildMyAUGraph() function, 184

bus field (file player audio unit), 139

buses, 136

C
C API in Core Foundation, 16

CAF (Core Audio Format), 41, 50

CalculateBytesForTime() function, 92

callback functions

in audio queues, 65
defined, 55
implementing in Audio Converter

Services API, 109-112
input callback, 175-178
playing back audio, 91-94
recording audio, 75-78
render callback, 155-159

with RemoteIO Audio Unit,
249-252

writing, 181-182
calling Audio Converter Services, 105-108

canonical audio formats, 51-53

capture with RemoteIO Audio Unit, 244-249

checking for audio input availability,
244-245

enabling I/O, 246-247
getting hardware sampling rate,

245-246
handling interruptions, 249
setting render callback, 248
setting stream format, 247
setting up audio session, 244

capture buffer size, calculating for
I/O unit, 173-174

CARingBuffer, 166

building play-through AUGraph for,
178-180

creating, 174
fetching samples from, 181-182
storing captured samples to, 178

294 backgrounding, handling on iOS

CAShow() function, 149

CBR (constant bit rate), 31

CD-quality audio, sampling rate, 27, 29

CFDataRef, 284

CFPropertyListRef, 284

CFRelease() function, 19

CFStringRef class, converting paths to, 18

CFSwapInt16HostToBig() function, 35

CFURLRef for .aupreset file, 283

channels, defined, 31

CheckALError() function, 199, 201

CheckError() function, 200, 231

cleaning up OpenAl resources, 205

CloseComponent() function, 153

codecs, support for, 254

Component Manager, 134

compression wave, defined, 25

connecting

audio units, 154-155
MIDI ports, 265-266
nodes, 136, 148

connectToHost method, 272

constant bit rate (CBR), 31

conventions in Core Audio, 15-16

converter units, 54, 125, 128

converting

little-endian to big-endian, 35
paths to NSString/CFStringRef, 18
sawtooth waves to sine waves, 38-39
square waves to sawtooth waves, 37-38

converting between formats, 51-53, 97

afconvert utility, 97-99
Audio Converter Services, 100-102

calling, 105-108

file setup, 102-105
implementing callback function,

109-112
Extended Audio File Services,

112-118
cookies. See magic cookies

coraudio-api mailing list, 286

Core Audio

capabilities of, 1-2
complexity of, 2
conventions, 15-16
example application, retrieving audio

file metadata, 16-21
frameworks, 14-15
importing, 20
properties, explained, 22-23
when not to use, 13

Core Audio community, 286

Core Audio Format (CAF), 41, 50

Core Foundation, 16

Core MIDI API, 15, 258

architecture, 258
device hierarchy, 258-259
instrument units, 261
MIDI messages, 260-261
MIDI synthesizer application, 262

event handling, 267-269
main() function, 263
MIDIClientRef, 265
MIDIPortRef, 265
notification handling, 267-269
playing, 269
port connection, 265-266
setupAUGraph() function,

263-264
skeleton, 262
state struct, 262

295Core MIDI API

MIDIWifiSource application
sending MIDI messages, 273-275
setting up, 269-271
setting up Mac to receive Wi-Fi

MIDI data, 275-277
setting up MIDI over Wi-Fi,

271-273
on mobile devices, 277
properties, 260
terminology, 258-260

#coreaudio channel, 286

CreateAndConnectOutputUnit()
function, 154

CreateInputUnit() function, 175-176

CreateMyAUGraph() function, 178

Creative Technologies, Ltd., 191

cycle, defined, 25

D
data formats

for audio, 40-41
AudioStreamBasicDescription

structure, 43-45
AudioStreamPacketDescription

structure, 45-46
canonical formats, 51, 53

file formats versus, 41, 46-51
default audio input device, returning,

169-170

DefaultOutputUnit, 148

developer accounts, obtaining, 3

digital audio, explained, 27-31

digital photography, sampling in, 30

digital signal processing (DSP), 53, 280-281

Digital Signal Processing, 4th Edition
(Proakis and Manolakis), 280

Digital Signal Processing: Practical Recipes
for Design, Analysis and Implementation
(Rorabaugh), 281

Discrete-Time Signal Processing (Oppenheim
and Schafer), 280

documentation

for file player audio unit, 137
finding, 3-6

downloading sample code, 9

DSP (digital signal processing), 53, 280-281

E
effect units, 53, 125-128

effects, adding to speech synthesis program,
147-150

enabling I/O on input AUHAL, 169

encoded formats in audio queue, 65-66

enqueuing, 69, 93

error handling, 18

CheckError() function, 63-64
in OpenAL looping program, 199-200

events, handling MIDI events, 267-269

ExtAudioFile class, 113

creating, 207
setting up for streaming, 215-217

ExtAudioFileDispose() function, 115

ExtAudioFileOpenURL() function, 114

ExtAudioFileRead() function, 116-117, 207,
209, 217

ExtAudioFileRef class, 113

Extended Audio File Services API, 15,
112-118

F
Fetch() function, 181-182

file conversion. See converting between
formats

296 Core MIDI API

file formats

for audio, 40-41
data formats versus, 41, 46-51

file permissions, 18

file player program (audio units), 129-141

creating AUGraph, 133-137
main() function, 131-133
setting up file player audio unit,

137-141
files

AudioFileStream.h, 279
AUPlugIn.h, 280
.aupreset file

CFURLRef for, 283
loading into CFDataRef, 284

writing raw samples to, 32-39
fillALBuffer() function, 217, 219

fillBuffer: method, 234-235

finding

audio files for playback, 84
documentation, 3-6

foregrounding, handling on iOS, 237

format conversion. See converting between
formats

Format Converter Audio Unit, 239

formats. See audio formats; data formats;
file formats

frame rate, variable, 31

frames, defined, 31

frameworks of Core Audio, 14-15

freeing buffers in OpenAL, 202

frequency

defined, 25
range of human hearing, 39

function parameters, naming
conventions, 23

functions

input callback functions, 166, 176-177
OpenAL functions

getter/setter functions, 193
property constants for, 193-195

render callback functions, writing,
181-182

G–H
generator units, 53, 124

in file player program, 129
subtypes of, 126

Generic Audio Unit, 238

GraphRenderProc() function, 180

graphs. See AUGraph

HAL (Hardware Abstraction Layer), 53, 162

handling

iOS interruptions, 236-238
MIDI events, 267-269
MIDI notifications, 267-269

hardware

audio hardware devices, 170
Audio Hardware Services, 71
audio units compared to, 124

Hardware Abstraction Layer (HAL), 53, 162

hardware hazards on iOS, 254

header files for iOS Tone-Player app,
227-228

human hearing, frequency range of, 39

I
I/O (input/output), 161

AUGraph-based play-through
program

input AUHAL unit, 168-175
input callback, writing, 176-177

297I/O (input/output)

main() function, 164
play-through AUGraph, creating,

178-180
render callback, writing, 181-182
ring buffers, 165-168
running, 182
skeleton, 162, 164
stereo mixer unit in, 184-189
user data struct, 167-168

AUHAL, definition of, 162
I/O units, 53, 137

IBActions in MIDIWifiSource application, 270

importing Core Audio, 20

initializing

audio queues for iOS apps, 233-234
audio sessions for iOS apps, 231-232
AUGraph, 137
file player audio unit, 138
input AUHAL, 175-176

input AUHAL unit, 168

adopting hardware input sample
rate, 172

calculating capture buffer size for I/O
unit, 173

creating, 168
AudioBufferList, 173
CARingBuffer, 174

enabling I/O on, 169
getting AudioStreamBasicDescription

from, 171
getting default audio input device, 170
initializing, 175-176
setting current device property, 171
setting up input callback, 175

input callback functions, 166, 176-177

input devices

information from, 71
sample rate, 72

input scope, 53

input/output. See I/O

InputModulatingRenderCallback()
function, 249

InputRenderProc() function, 176

instrument units, 53, 124, 126, 261

interleaved audio, defined, 31

interruptions, handling iOS interruptions,
236-238

iOS

Audio Session Services API, 15
Core MIDI on, 277

iOS, Core Audio on, 223

3D Mixer Unit, 239
Audio Session Services, 224

app setup, 227-230
audio queue initialization, 233-234
audio session initialization, 231-232
buffer refills, 234-236
iOS interruptions, handling,

236-238
properties, 225-227

Audio Units, 238-239
compared to Core Audio on

Mac OS X, 223-224
Format Converter Unit, 239
Generic Unit, 238
hardware hazards, 254
iOS 5, 285-286
iOS Tone-Player app, 227

audio queue initialization, 233-234
audio session initialization, 231-232
buffer refills, 234-236

298 I/O (input/output)

header files, 227-228
implementation file, 228-230
iOS interruptions, handling,

236-238
property synthesis, 230

iPodEQ Unit, 238
Multichannel Mixer Unit, 239
remote control, 253
Remote I/O Unit, 238

capture and play-out, 244-249
pass-through app example, 239-243
render callback, 249-252

Voice Processing Unit, 238
iPodEQ Audio Unit, 238

iterating over MIDIPacketList, 268

J–K–L
key-value pairs, 22

latency

of audio queues, 95
defined, 40

Lee, Mike, xv-xviii

libraries, OpenAL. See OpenAL

linear pulse code modulation, 27

Lion (Mac OS X 10.7)

AUSampler, 281-285
hardware encoding and decoding, 281

listeners, OpenAL

creating, 214
definition of, 193
setting listener position, 203-204

little-endian, converting to big-endian, 35

loading .aupreset file into CFDataRef, 284

loadLoopIntoBuffer() function, 201-202

loadWAVFile() function, 196

Loki Software, 191

looping program (OpenAL), 196-197

animating source position, 205-206
attaching audio sample buffers to

OpenAL buffers, 201-202
attaching buffer to source, 203
cleaning up OpenAL resources, 205
creating OpenAL buffers, 201
creating OpenAL source, 202
error handling, 199-200
freeing buffers, 202
initial main setup, 200
loading samples for OpenAL buffer,

206-210
looping to animate source position,

204-205
MyLoopPlayer struct, 200
opening default OpenAL device, 201
playing sources, 204
setting listener position, 203-204
setting source position, 203
setting source properties, 203
skeleton, 198-199

M
Mac OS X 10.7 (Lion)

AUSampler, 281-285
hardware encoding and decoding, 281

magic cookies, 46

in audio queues, 68-72
copying from audio file to audio

queue, 89-90
for playback audio queues, 86

mailing lists, coreaudio-api, 286

main() function, 18

audio unit sine wave player, 153
audio units file player program,

131-133

299main() function

AUGraph play-through program, 164
for Core MIDI synthesizer

program, 263
MyStreamPlayer program, 212-213
speech synthesis audio unit program,

143-144
mBitsPerChannel struct member, 45

mBytesPerFrame struct member, 45

mBytesPerPacket struct member, 45

mChannelsPerFrame struct member, 45

mDataByteSize struct member, 46

medium, defined, 25

messages, MIDI, 260-261

sending, 273-275
metadata in audio files, retrieving, 16-21

mFormatFlags struct member, 44

mFormatID struct member, 44

mFramesPerPacket struct member, 45

MIDI (Musical Instrument Digital Interface)

Core MIDI, 258
architecture, 258
device hierarchy, 258-259
instrument units, 261
MIDI messages, 260-261
properties, 260
terminology, 258-260

explained, 257-258
messages, sending, 273-275
MIDI synthesizer application, 262

event handling, 267-269
main() function, 263
MIDIClientRef, 265
MIDIPortRef, 265
notification handling, 267-269
playing, 269
port connection, 265-266

setupAUGraph() function,
263-264

skeleton, 262
state struct, 262

MIDIWifiSource application
sending MIDI messages, 273-275
setting up, 269-271
setting up Mac to receive Wi-Fi

MIDI data, 275-277
setting up MIDI over Wi-Fi,

271-273
on mobile devices, 277

MIDIClientRef, creating, 265

MIDIGetNumberOfSources() function, 266

MIDIGetSource() function, 266

MIDIInputPortCreate() function, 265, 267

MIDINetworkConnection class, 272

MIDINetworkHost, creating, 272

MIDINetworkSession, 272

MIDINotifyProc, 267

MIDIPacketList

creating, 273-274
iterating over, 268
sending, 273-274

MIDIPacketNext() function, 269

MIDIPortConnectSource() function, 266-267

MIDIPortRef, creating, 265

MIDIReadProc, 267

MIDISend() function, 273-275

MIDIWifiSource application

sending MIDI messages, 273-275
setting up, 269-271
setting up Mac to receive Wi-Fi MIDI

data, 275-277
setting up MIDI over Wi-Fi, 271-273

mixer units, 54, 125-126, 183-189

300 main() function

monaural sound waves, 31

mReserved struct member, 45

mSampleRate struct member, 44

mStartOffset struct member, 45

Multichannel Mixer Audio Unit, 239

Multimedia Programming Guide (Apple), 255

Musical Instrument Digital Interface.
See MIDI

MusicDeviceMIDIEvent() function, 268, 281

mVariableFramesInPacket struct
member, 46

MyAQOutputCallback function, 235-236

MyAUGraphPlayer struct, speech
synthesis, 184

MyInterruptionListener() function, 236

MyLoopPlayer program, 196-197

animating source position, 205-206
attaching audio sample buffers to

OpenAL buffers, 201-202
attaching buffer to source, 203
cleaning up OpenAL resources, 205
creating OpenAL buffers, 201
creating OpenAL source, 202
error handling, 199-200
freeing buffers, 202
initial main setup, 200
loading samples for OpenAL buffer,

206-210
looping to animate source position,

204-205
MyLoopPlayer struct, 200
opening default OpenAL device, 201
playing sources, 204
setting listener position, 203-204
setting source position, 203
setting source properties, 203
skeleton, 198-199

MyLoopPlayer struct, 200

MyMIDINotifyProc() function, 267

MyMIDIReadProc() function, 267

MyStreamPlayer program (OpenAL)

creating buffers for streaming, 213
creating listener, 214
creating sources for streaming, 213
infinite loop to update source position

and refill buffers, 214-215
main() function, 212-213
MyStreamPlayer struct, 212
queueing buffers, 213
refilling OpenAL buffers, 217-219
setting up ExtAudioFile, 215, 217
skeleton, 211-212

MyStreamPlayer struct, 212

N
naming conventions for function

parameters, 23

nodes

connecting, 136, 148
purpose of, 135

NOTE OFF events

parsing, 268
sending, 274

NOTE ON events

parsing, 268
sending, 274

notifications, handling MIDI notifications,
267-269

NSSound class, 13

NSString class, converting paths to, 18

NSURL class, converting paths to, 18

Nyquist-Shannon Sampling Theorem, 27

301Nyquist-Shannon Sampling Theorem

O
objects, releasing, 19

offline effect units, 54

online documentation, finding, 3-6

opaque types, 16

OpenAL API, 14

3D Cartesian coordinate space, 192
advantages of, 191-193
audio streaming, 210

creating buffers for streaming, 213
creating listener, 214
creating sources for streaming, 213
infinite loop to update source

position and refill buffers,
214-215

main() function, 212-213
MyStreamPlayer struct, 212
program skeleton, 211-212
queueing buffers, 213
refilling OpenAL buffers, 217-219
setting up ExtAudioFile, 215, 217

buffers
attaching audio sample buffers to,

201-202
creating, 201
creating for streaming, 213
definition of, 193
freeing, 202
queueing for streaming, 213
refilling, 217-219

functions, 196
getter/setter functions, 193
property constants for, 193-195

listeners
creating, 214
definition of, 193
setting listener position, 203-204

looping program, 196-197
animating source position, 205-206
attaching audio sample buffers to

OpenAL buffers, 201-202
attaching buffer to source, 203
cleaning up OpenAL

resources, 205
creating OpenAL buffers, 201
creating OpenAL source, 202
error handling, 199-200
freeing buffers, 202
initial main setup, 200
loading samples for OpenAL

buffer, 206-210
looping to animate source position,

204-205
MyLoopPlayer struct, 200
opening default OpenAL

device, 201
playing sources, 204
setting listener position, 203
setting source position, 203
setting source properties, 203
skeleton, 198-199

origin and development, 191
property constants, 194-195
resources, cleaning up, 205
sources

attaching buffers to, 203
creating, 202
creating for streaming, 213
definition of, 193
looping to animate source position,

204-205
playing, 204
setting properties on, 203
setting source position, 203

302 objects, releasing

opening

audio files, 131
AUGraph, 135

OSStatus class, error handling, 18

output scope, 53

output units, 125

in file player program, 129
subtypes of, 129

P
packets

in audio source file, 103-104
AudioStreamBasicDescription

structure, 43-45
AudioStreamPacketDescription

structure, 45-46
calculating count, 90-91
defined, 31, 85
reading from audio file, 91-94
variable packet rate, 31

panner units, 54, 127

parameters

naming conventions, 23
properties versus, 94

parsing NOTE ON and NOTE OFF events, 268

pass-through app (iOS), 241-243

building, 239-240
capture and play-out, 244-249

checking for audio input
availability, 244-245

enabling I/O, 246-247
getting hardware sampling rate,

245-246
handling interruptions, 249
setting stream format, 247
setting up audio session, 244
setting up render callback, 248

header file, 241
render callback, 249-252

paths, converting to
NSString/CFStringRef, 18

PCM (pulse code modulation), 27

PCM formats

AIFF file format and, 49
Core Audio Format (CAF) and, 50
WAV file format and, 49

period, defined, 25

permissions, 18

photography, sampling in, 30

playback, audio, 81-83

buffer setup, 85-87
calculating buffer size and packet

count, 90-91
callback function, 91-94
copying magic cookie, 89-90
creating audio queues, 83-85
features and limits of queues, 94-95
starting playback queue, 88-89
utility functions, 89-91

play-out with RemoteIO Audio Unit, 244-249

checking for audio input availability,
244-245

enabling I/O, 246-247
getting hardware sampling rate,

245-246
handling interruptions, 249
setting render callback, 248
setting stream format, 247
setting up audio session, 244

play-through AUGraph. See AUGraph-based
play-through program

playing

MIDI synthesizer application, 269
OpenAL sources, 204
sound, 26

303playing

ports, MIDI

connecting, 265-266
setting up, 273

positional sound. See OpenAL API

PrepareSpeechAU() function, 188-189

priming audio queues on iOS apps, 233

procs, defined, 55. See also callback
functions

properties

of Core MIDI, 260
explained, 22-23
for iOS Audio Session Services,

225-227
parameters versus, 94
synthesizing for iOS apps, 230

property constants (OpenAL), 194-195

pull model for audio units, 55, 125

pulse code modulation (PCM), 27

Q–R
QTMovie class, 13

queueing OpenAL buffers, 213

queues. See audio queues

radix point, defined, 52

read procs, defined, 55

reading packets from audio file, 91-94

recording audio, 26-27, 60-63

callback function, 75-78
CheckError() function, 63-64
creating audio queues, 64-71
utility functions, 71-75

refillALBuffers() function, 214, 218

refilling OpenAL buffers, 217-219

releasing objects, 19

remote control on iOS, 253

Remote I/O Audio Unit, 238

capture and play-out, 244-249
checking for audio input

availability, 244-245
enabling I/O, 246-247
getting hardware sampling rate,

245-246
handling interruptions, 249
setting stream format, 247
setting up audio session, 244
setting up render callback, 248

pass-through app example, 239-243
render callback, 249-252

render callback functions, 155-159

defined, 55
with RemoteIO Audio Unit, 249-252
writing, 181-182

rendering process, 150

audio unit render cycle, 150-151
creating and connecting audio units,

154-155
render callback function, 155-159
sine wave player example, 151-153

requirements for sample code, 10

retrieving audio file metadata, 16-21

ring buffers

with Audio Units, 166-168
explained, 165

ring modulator, creating, 249-252

running AUGraph-based play-through
program, 182

S
sample code

downloading, 9
requirements for, 10

304 ports, MIDI

sample rates

defining in audio queues, 66
of input devices, getting, 72

sampling

buffers, explained, 40
CD-quality audio sampling rate,

27, 29
in digital photography, 30
explained, 27, 29-31
writing raw samples, 32-39

sawtooth waves, 36

converting square waves to, 37-38
converting to sine waves, 38-39

ScheduledAudioFileRegion structure,
139-140

ScheduledFileRegion structure, 139-140

scope field (file player audio unit), 139

searching documentation, 4-6

sending

MIDI messages, 273-275
NOTE ON and NOTE OFF

events, 274
setupAUGraph() function, 263-264

setUpExtAudioFile() function, 215, 217

signals, digital signal processing (DSP),
280-281

sine wave player example (audio rendering),
151-153

sine waves, 36

converting sawtooth waves to, 38-39
sound. See also audio

playing, 26
recording, 26-27

sound waves

digital audio, 27, 29-31
physics of, 25-27
shapes of, 36
writing to files, 32-39

sources (OpenAL)

attaching buffers to, 203
creating, 202
creating for streaming, 213
definition of, 193
looping to animate source position,

204-205
playing, 204
setting properties on, 203
setting source position, 203

SpeakCFString() function, 147, 188

Speech Synthesis Manager, setting up,
146-147

speech synthesis program (audio units),
141-150

adding audio effects, 147-150
creating speech synthesis AUGraph,

144-146
Speech Synthesis Manager, 146-147

SpeechChannel structure, 146

speed of render callback function, 156

square waves, 35-36

converting to sawtooth waves, 37-38
Stack Overflow, 286

starting

audio queues, 70, 234
AUGraph, 133
playback queue, 88-89

state struct for Core MIDI synthesizer
program, 262

stereo mixer unit, 184-189

stereo sound channels, 31

stopping

audio queues, 70, 93
AUGraph, 133

stream format, setting on RemoteIO Audio
Unit, 247

305stream format, setting on RemoteIO Audio Unit

streamFormat, setting for mixer units,
186-187

streaming in OpenAL, 210

creating
buffers for streaming, 213
listener, 214
sources for streaming, 213

infinite loop to update source position
and refill buffers, 214-215

main() function, 212-213
MyStreamPlayer struct, 212
program skeleton, 211-212
queueing buffers, 213
refilling OpenAL buffers, 217-219
setting up ExtAudioFile, 215, 217

streaming audio, 44. See also audio queues

streams, 1, 44

surround sound, 31, 192. See also
OpenAL API

synthesizer application (MIDI), 262

event handling, 267-269
main() function, 263
MIDIClientRef, 265
MIDIPortRef, 265
notification handling, 267-269
playing, 269
port connection, 265-266
setupAUGraph() function, 263-264
skeleton, 262
state struct, 262

synthesizing speech. See speech synthesis
program (audio units)

T
third-party audio units, 280

threading

in audio queues, 94
explained, 157

timbre, 36

timestamp offsets, adjusting in render
callbacks, 181-182

Tone-Player app (iOS), 227

audio queue initialization, 233-234
audio session initialization, 231-232
buffer refills, 234-236
header files, 227-228
implementation file, 228-230
iOS interruptions, handling, 236-238
property synthesis, 230

U–Z
updateSourceLocation() function, 203-204,

214-215

user data struct for AUGraph play-through
program, 167-168

UTF-8 encoding for path conversion, 18

utility functions, 71

variable bit rate (VBR), 31

variable frame rate, 31

variable packet rate, 31

Voice Processing Audio Unit, 238

WAV file format, PCM formats and, 49

waves (sound)

digital audio, 27-31
physics of, 25-27
shapes of, 36
writing to files, 32-39

306 streamFormat, setting for mixer units

write procs, defined, 55

writing

to audio file, 75-78
to audio queue, 91-94
input callback functions, 176-177
raw samples, 32-39
render callback functions, 181-182

Xcode documentation browser, 3-6

307Xcode documentation browser

	Contents
	About the Authors
	Foreword
	Introduction
	Audience for This Book
	What You Need to Know
	Looking Up Documentation
	How This Book Is Organized
	About the Sample Code

	1 Overview of Core Audio
	Core Audio Conventions
	The Core Audio Frameworks
	Your First Core Audio Application
	Core Audio Properties
	Summary

	Index
	A
	B
	C
	D
	E
	F
	G-H
	I
	J-K-L
	M
	N
	O
	P
	Q-R
	S
	T
	U-Z

