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Abstract: Recent results suggest that it is possible to grasp a variety of singu-
lated objects with high precision using Convolutional Neural Networks (CNNs)
trained on synthetic data. This paper considers the task of bin picking, where
multiple objects are randomly arranged in a heap and the objective is to sequen-
tially grasp and transport each into a packing box. We model bin picking with a
discrete-time Partially Observable Markov Decision Process that specifies states
of the heap, point cloud observations, and rewards. We collect synthetic demon-
strations of bin picking from an algorithmic supervisor uses full state information
to optimize for the most robust collision-free grasp in a forward simulator based
on pybullet to model dynamic object-object interactions and robust wrench space
analysis from the Dexterity Network (Dex-Net) to model quasi-static contact be-
tween the gripper and object. We learn a policy by fine-tuning a Grasp Quality
CNN on Dex-Net 2.1 to classify the supervisor’s actions from a dataset of 10,000
rollouts of the supervisor in the simulator with noise injection. In 2,192 physical
trials of bin picking with an ABB YuMi on a dataset of 50 novel objects, we find
that the resulting policies can achieve 94% success rate and 96% average preci-
sion (very few false positives) on heaps of 5-10 objects and can clear heaps of 10
objects in under three minutes. Datasets, experiments, and supplemental material
are available at http://berkeleyautomation.github.io/dex—-net.
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1 Introduction

Robots with parallel-jaw grippers can lift and transport a wide variety of rigid objects using deep
learning when objects are singulated (sufficiently clear from obstacles) [1, 2, 3, 4]. However, objects
are often in disorganized heaps in applications such as industrial bin picking, which is challenging
due to sensor noise, obstructions, and occlusions that make it difficult to infer object shapes and
poses from point clouds [5]. Furthermore, a robot must consider collisions with adjacent objects
and cannot assume a finite set of stable resting poses for each object [6].

Recent research suggests that it is possible to grasp a diverse set of objects from clutter using deep
Convolutional Neural Networks (CNNs) trained on large datasets of grasp attempts on a physical
robot [7, 8]. However, the time cost of collecting physical data makes it difficult to collect clean
and sufficiently large datasets to train different robots in different environments. An alternative is to
train on synthetic datasets of grasps and point clouds labeled using geometric conditions related to
grasp stability such as antipodality [9], but these methods typically require multiple viewpoints of
the scene to be robust to sensor noise [10, 11].

In this paper, we consider explicitly modeling uncertainty during dataset generation in order to learn
a robust policy for rapid bin picking from a single viewpoint. We formulate a discrete-time Partially
Observed Markov Decision Process (POMDP) modeling bin picking as a sequence of 3D object
poses in a heap with noisy point cloud observations and rewards for removing objects. Due to
the difficulty of training POMDPs with continuous states and observations [12], we use imitation
learning based on an algorithmic supervisor that synthesizes robust collision-free grasps using robust
wrench space analysis and full knowledge of object shapes and poses in the environment [13].
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This paper makes four contributions:

1. Formulating bin picking as a Partially Observable Markov Decision Process (POMDP)
modeling the process of iteratively grasping and removing objects from a heap based on
point clouds. This extends the single-object nonsequential robust grasping model from
Dex-Net 2.0.

2. Dex-Net 2.1: A dataset of 10,000 rollouts in an implementation of the POMDP collected
using noise injection on an algorithmic robust grasping supervisor that plans robust grasps
with full state knowledge.

3. A study of transfer learning to learn a bin picking policy from pre-trained weights of a
GQ-CNN policy for grasping singulated objects.

4. Experiments evaluating performance of the bin picking policies on heaps of up to 20 novel
objects on an ABB YuMi robot.

Experiments suggest that a bin picking policy trained synthetic data from Dex-Net 2.1 can achieve
up to 416 successful picks per hour with 96% average precision (very few false positives).

2 Related Work

Bin picking is a common task in material transfer automation [14]. The goal is to clear a pile of ob-
jects from an area by iteratively grasping objects and placing them in containers. A key subproblem
is grasp synthesis, which considers the problem of finding a configuration of a robot gripper that can
generate desired wrenches (forces and torques) and resist disturbing wrenches on an object through
contact [15].

Many industrial bin picking robots pre-plan a set of grasps for known object CAD models and
use a perception system to accurately estimate the shape and pose of objects to look up a grasp to
execute [14, 16]. However, instance recognition and pose estimation in clutter is difficult due to
sensor noise and occlusions. Research has focused on detecting 2D features and matching them
to known 3D object geometries using methods such as Chamfer matching [17]. Approaches for
unknown objects include finding antipodal grasps on object segementation masks [18] and using
filter banks based on 2D projections of the gripper geometry to find collision-free grasps [5].

The difficulty of state estimation motivates methods the use of machine learning to plan grasps for
cluttered environments directly from observations. One approach is to learn a classifier for success-
ful grasps from 2D image features [19] and plan the grasp with the highest predicted probability
of success. Recent research suggests that deep neural networks trained on large datasets of human
labels [20, 2] or physical trials [8, 4] can be used to to predict grasp success directly from images or
point clouds. However, data collection for these methods may take up to several months.

Recent research has proposed hybrid methods that use machine learning to classify grasps that sat-
isfy geometric conditions such as antipodality from point clouds [9]. Gualtieri et al. [10] and Viereck
et al. [11] used CNNs trained to predict antipodal grasps on dense 3D point clouds of a scene from
synthetic datasets. These methods typically require multiple viewpoints of the scene to be robust to
sensor noise, as antipodality has been observed to be sensitive to sensor noise [15, 21]. We learn a
single-viewpoint bin-picking policy by explicity modeling sensor noise following the robust single-
object grasping model of Mabhler et al. [3] and extending it to model sequential grasping of objects
from heaps.

3 Definitions and Problem Statement

We consider the problem of bin picking: clearing a heap of objects on a table by iteratively grasping a
single object from the heap with a parallel-jaw gripper and transporting each object to a receptacle.
Our goal is to learn a policy that takes as input point clouds from an overhead depth camera and
outputs a robust grasp, or gripper pose to remove an object from the heap, along with a confidence
value for the grasp.
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Figure 1: Overview of our POMDP model and simulator. We sample from the initial state distribution po
by uniformly sampling m 3D CAD object models from a dataset and dropping them in random poses in the
pybullet dynamic simulator [23] to form a heap. The state x; includes object shapes and poses in the heap.
We generate demonstrations of robot grasping using an algorithmic supervisor 7" from Dex-Net 2.0 [3] that
indexes the most robust collision-free parallel-jaw grasp u; from a pre-planned grasp database using knowledge
of the full state. We aggregate synthetic point cloud observations y; and collected rewards I; to form a labeled
dataset for training a policy that classifies the supversiors actions on the partial observations using imitation
learning. We preprocess training data by transforming the point clouds to align the grasp center and axis with
the center pixel and middle row to improve GQ-CNN classification performance [2, 3].

3.1 Assumptions

Our model assumes quasi-static physics, where inertial effects are negligible, to compute grasp
robustness. Our model also assumes a parallel-jaw gripper, rigid objects, a depth sensor with bounds
on the camera intrinsic parameters and pose relative to the robot, and bounds on friction across
objects and their surfaces. These assumptions are common in industrial robotics [14]. We make the
additional simplifying assumption that only one object is be grasped at a time. Our model also does
not consider object identity when grasping.

3.2 POMDP Model

Due to the cost of learning a policy directly from data on a physical robot, we learn a policy in sim-
ulation using a model of iteratively grasping objects from a heap on an infinite planar worksurface
based on models of quasi-static contact, image formation, and sensor noise. Specifically, we model
the task of bin picking as a Partially Observable Markov Decision Process (POMDP) (see Fig. 1)
specifed as a tuple (X,U, Y, R, po, p,q) consisting of a set of states X (object shapes and poses),
a set of actions U (gripper poses), a set of observations ) (point clouds), a reward function R, an
initial state distribution pg (object heaps), a next state distribution p, and a sensor noise distribution
q [22]. Our POMDP uses a fixed maximum time horizon T'. See the supplementary file ! for numeric
values of parameters for each distribution.

Initial State Distribution (pg). The initial state distribution py models the position and shape of
objects in a heap as well as the parameters of the camera and friction which stay constant over an
episode. We model pg as the product of independent distributions on:

1. Object Count (m): Poisson distribution with mean .

2. Object Heap (O): Uniform distribution over a discrete set of m 3D triangular meshes
{My, ...M,,_1} and the pose from which each mesh is dropped into the heap.
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3. Depth Camera (C): Uniform distribution over the camera pose and intrinsic parameters.

4. Coulomb Friction («): Truncated Gaussian constrained to [0, 1].

The initial state is sampled by (1) sampling an object count m and a set of m 3D CAD models,
(2) sampling a planar pose for the heap center and planar pose offsets from the pile center for each
of the objects, and (3) dropping the objects one by one from a fixed height h( above the table and
running dynamic simulation until all objects come to rest (all velocities are zero). Any objects that
roll beyond a distance W from the world center are removed.

States (X'). The state x; at time ¢ consists of the current set of 3D object meshes O; and their poses.

Actions (I/). The robot can attempt to grasp and remove an object from the environment by execut-
ing an action uy specified as a 4-DOF gripper pose (p, 6, d) where p is the grasp center pixel, § is
the orientation of the gripper in image space, and d is the grasp depth, or distance of the 3D grasp
center from the image plane [3]. The action is related to a grasp center in 3D space ¢ by the formula
c = (1/d)K~1(ps, Py, 1)T [24]. The robot executes an action by moving to the target 3D gripper
pose along a linear approach trajectory, closing the jaws with constant force, and lifting upwards.

Observations ()). The robot observes a point cloud y, specified as real-valued H x W x 3 matrix
representing a set of 3D points imaged with a depth camera with H x W resolution.

Rewards (R). Binary rewards occur on transitions that remove a single object from the heap. Let
ms = |O¢| be the number of objects remaining in the heap. Then R(x;, ut, X¢41) = 1if meyq <
me.

Next State Distribution (p). We use mechanical wrench space analysis to determine whether or not
an object can be lifted from the heap under quasi-static conditions [13, 9], and we use multibody dy-
namic simulation with a velocity-based complementarity formulation implemented in pybullet [23]
to determine the next state of the objects after an object is lifted.

Let M, € x; be the first object to be contacted by the gripper jaws when executing action u;. Then
we measure grasp sucesss with a binary-valued metric S(x;,u;) € {0,1} that measures whether
or not u; is collision-free and can resist external wrenches on object M; under state perturbations
using point contact models [21]. Specifically, S = 1 if the robust epsilon metric is greater than
a threshold 6 = 0.002 [3] and the gripper does not collide with the table or object along a linear
approach trajectory [25, 21]. If S(x¢,u;) = 1, then x¢11 = f(x¢, us, i) where f returns the set
of object meshes and poses resulting from a dynamic simulation of object heap O as object M, is
lifted until the remaining objects come to rest. Otherwise the state remains unchanged. If an object
rolls beyond a distance W from the world center then it is re-dropped in the pile.

Observation Distribution (¢). We model depth-proportional noise with a Gamma distribution mod-
eling depth-proportional noise due to errors in disparity computation and a Gaussian Process to
model correlated zero-mean noise in pixel space [3, 26].

3.3 Policy

A policy maps point cloud observations to actions 7y (y:) = u;, where policies are parametrized by a
vector of neural network weights 6. We consider policies of the form 7y (y) = argmax ,,c-Qg(u,y)
where C specifies constraints on the set of available grasps such as collisions and Qg (u,y) € [0, 1]
is a scoring function for actions given observations [1, 8, 3, 4]. A policy induces a distribution over
trajectories given the initial state, next state, and perceptual distributions of the POMDP: p(7 | ) =
00 HtT;()l p(Xe+1 | X¢, mo(y+))q(ye | X¢), where 7 is a trajectory of length T + 1 defined as a vector
of states, actions, and observations: 7 = (xg, Ug, o, ---X7, U, YT ).

3.4 Objective
The objective is to learn a policy my that maximizes the sum of undiscounted rewards:

T—1
0" = argmax E,(;|9) Z R(x¢, mo(yt), Xt+1)
6€6 =

In our POMDP, this corresponds to maximizing the number of objects removed from the heap.



4 Imitation Learning from an Algorithmic Supervisor

Optimal solutions to POMDPs are known to be computationally intractable [27]. Many approxi-
mate solution methods exist, however many assume closed-form dynamics [28], discrete or low-
dimensional state spaces [12], or Gaussian distributions [29].

We explore the use of imitation learning (IL) [30] to learn the actions of an algorithmic supervi-
sor that computes actions based on full state knowledge from the simulator. IL has been used to
approximately solve POMDPs when there exists an algorithmic supervisor with access to full state
information [31]. We first compute an algorithmic supervisor using the singulated object robust
grasp planner from Dex-Net 2.0 [3] which computes grasps using mechanical wrench space anal-
ysis given known object shape and pose. We then collect a dataset of point clouds, actions, and
rewards by rolling out the algorithmic supervisor with noise injection [32] to balance the distribu-
tion of positive and negative examples. Finally, we learn a CNN to classify the supervisor’s actions
and use the trained CNN as action scoring function [33, 34].

4.1 Algorithmic Robust Grasping Supervisor

The algorithmic supervisor m* precomputes a set of robust grasps for each 3D object in a dataset
using full state knowledge. For computational efficiency, the supervisor is implemented by pre-
computing a database of robust grasps (such as Dex-Net) for each 3D object by evaluating the grasp
success metric S(u, x) using Monte-Carlo sampling [3]. Given a state x;, 7* plans a robust grasp by
pruning the set of possible actions for every object in the heap using collision checking and returning
an action uniformly at random from the remaining set of robust grasps, if one exists. We note that
7* maximizes reward for the only current timestep and may not be optimal for the full time horizon.

4.2 Learning a Bin Picking Policy

We learn a bin picking policy by learning a classifier for the supervisor’s actions [33, 34] on rollouts
of 7* with noise injection [32]. Noise injection balances the distribution of positive and negative
examples for the classifier, as rolling out the algorithmic supervisor results in all positive examples.

Our policy learning algorithm consists of two steps: (1) collect demonstrations by executing 7*
with probabliity € and a random action from the grasp database with probability 1 — ¢, and (2) use
supervised learning to classify actions taken by the supervisor with a Grasp Quality CNN (GQ-
CNN). Specifically, given K demonstrations from the noise-injected supervisor we optimize:

K T
6 = argmin Z Z L(Qo(wje,¥j.1)s Rje)

0€0 j—1t=1

where R;; = 1 if the supervisor agrees with the action on timestep ¢ in rollout j and £ is the cross
entropy classification loss. Given a point cloud, we use the robust grasping policy of Dex-Net 2.0 [3]
that samples and ranks a set of antipodal grasp candidates according to () using the Cross Entropy
Method.

4.2.1 Transfer Learning

Research in computer vision suggests that features from deep CNNs performs well as generic fea-
tures when classifying images in new domains [35]. Since simulating object heaps is slower than
simulating singulated objects due to object interactions [23], we explore optimizing the neural net-
work weights of the bin picking policy by transfer learning from features of a GQ-CNN trained to
grasp singulated objects on millions of examples from Dex-Net 2.0 [3]. Specifically, we fine-tune
features from the Dex-Net 2.0 GQ-CNN by using the weights as an initialization for optimization
with SGD and only updating the fully connected layers, leaving the conv layers fixed. We update
the network for 10 epochs using SGD with momentum of 0.9, a base learning rate of 0.01, and a
staircase exponential learning rate decay with a decrease of 5% on each epoch.



5 Experiments

We evaluated classification performance on synthetic data from the simulator and performed ex-
tensive physical evaluations on an ABB YuMi with a Primesense Carmine 1.08 depth sensor and
custom silicone gripper tips designed by Guo et al. [36]. All experiments ran on a Desktop running
Ubuntu 14.04 with a 2.7 GHz Intel Core i5-6400 Quad-Core CPU and an NVIDIA GeForce 980,
and we used an NVIDIA GeForce GTX 1080 for training large models.

5.1 Synthetic Training

We generated three versions of the Dex-Net 2.1 training dataset with noise levels e = {0.1,0.5,0.9}
using 10,000 rollouts of the noisy supervisor policy in our POMDP with an average of A = 5
objects per heap sampled from the 1,500 object models of Dex-Net 2.0 [3]. Each dataset contained
approximately 100k datapoints. The mean number of objects in the initial state distribution was
A =5.

We trained the following models with a 80-20 image-wise split on each dataset:

* SVM. A bagging classifier composed of 50 SVMs trained on the first 100 principal com-
ponents of the GQ-CNN fc4 feature space [3].

* Random Forest (RF). A set of 50 trees of max depth 10 trained on the first 100 principal
components of the GQ-CNN fc4 feature space [3].

e Dex-Net 2.1 (Scratch). A GQ-CNN [3] trained only on Dex-Net 2.1 for 25 epochs.

e Dex-Net 2.1 (Fine-tuned). A GQ-CNN [3] initialized with pretrained weights from Dex-
Net 2.0 and fine-tuned on Dex-Net 2.1 for 10 epochs with fixed conv layers.

The parameters of each model were set based on performance on a randomized validation set. We
swept over model parameters and data featurizations for the SVM and RF. For the GQ-CNN models
we swept over learning rate, dropout, fully connected reinitializations, and fully connected layer
sizes. More details can be found in the supplemental file.

Table 1 details classification performance on .

the Dex-Net 2.1 dataset with € = 0.9. The Dex- Néci;il\e/} | Slflf)?:l;lxlllizgd | AC901 (Zb ) | OA 5P6
Net 2.0 GQ-CNN mode?l fine-tuned on Dex— RF | Supervised 92:0 0:59
Net 2.1 performed best in terms of classifica- GQ-CNN | Supervised 913 0.58
tion accuracy and average precision (AP). This GQ-CNN Transfer 9.4 0.64
suggests that GQ-CNN weights pretrained on
Dex-Net may be useful as generic features for

Table 1: Classification performance on the Dex-Net 2.1

parallel-jaw grasping from point clouds. dataset with 90% noise. The GQ-CNN trained with
transfer learning from a set of network weights pre-
5.2 Bin Picking on an ABB YuMi trained on Dex-Net 2.0 performs better than the models

trained using standard supervised learning on Dex-Net
To Study performance on a physical robot’ we 21, suggesting that there is shared structure between
designed a bin picking benchmark where the the datasets.
robot was presented a subset of objects from a
dataset of 50 test objects in a bin and the goal
was to iteratively move objects from the bin to
a receptacle as illustrated in Fig. 2. First, we sampled N objects from the validation set sampled
uniformly at random. Then, each of the NV objects was placed in a box and the box was shaken
and placed upside-down in the center of the bin to randomize object poses. On each timestep the
grasping policy received as input a depth image, bounding box containing the object, and camera
intrinsics, and output a target pose of the gripper in the robot’s coordinate frame. The robot then
approached the target grasp along a linear approach trajectory and closed the jaws. Grasp success
was defined by whether or not the grasp transported the target object to the receptacle. The system
iterated until either (a) no objects remain or (b) the robot has 5 consecutive failed grasps on the same
object.

5.2.1 Performance Metrics

We compared performance on this benchmark with the following metrics:
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Figure 2: (Let) For each experiment, a subset of IV validation objects are randomly dropped into a bin (green
rim, center), at which point the YuMi iteratively plans grasps from point clouds and attempts to lift and transport
the objects to a packing box (blue rim, right side).(Middle) A set of 50 test objects with various shapes, sizes,
and material properties. A subset of 25 are rigid and opaque, and 25 others have transparency (e.g. goggles),
moving parts (e.g. can opener), or deformable material (e.g. cloth). (Right) Example color and depth images
from the physical setup with example grasp planned with the Dex-Net 2.1 ¢ = 0.9 policy.

1. Success Rate: The percentage of grasp attempts that moved an object to the packing box.

2. Average Precision (AP): The area under the precision-recall curve. In some applications
a robot can decide whether or not to execute grasps based on a threshold for the classifier
confidence. AP measure the average success rate over all possible thresholds for these
scenarios.

3. Percent Cleared: The fraction of objects that were moved to the receptacle.

4. Picks per Hour (PPH): The estimated number of bin picks per hour of runtime computed
by multiplying the average number of grasp attempts per hour by the success rate. Human
performance is approximately 600 PPH.

5.2.2 Datasets

Fig. 2 illustrates the test set of physical objects used in the benchmark, which includes 50 objects
of various sizes, shapes, and materials. The objects all satisfy three criteria to be graspable by the
YuMi: (1) the jaws can fit around the object in at least one configuration, (2) the object weighs less
than 0.25kg due to the YuMi payload, (3) some part of the object is opaque and non-specular (can
be sensed with a depth camera), and (4) the min diameter of the object is greater than 1cm.

We break the test set up into two partitions:
» Basic. A subset of 25 test objects that are rigid, weigh less than 0.25kg (the payload of

the YuMi), and are fully visible with a depth camera, which tests generalization to novel
shapes when assumptions of the simulator are satisfied.

» Typical. The entire 50 object dataset, which additionally tests generalization to novel ob-
ject properties (e.g. transparency, deformation, moving parts).

5.2.3 Model Performance

Table 2 compares the performance of five policies on the bin picking benchmark with N = {5, 10}
test objects from the Basic subset for 20 and 10 trials, respectively. This measures performance on a
heap size and set of objects that match the assumptions of the simulator. We compared the following
policies:

1. Image-Based Force Closure. Executes a random planar force grasp with friction coeffi-
cient u = 0.8 computed from edge detection in depth images inspired by [10, 9].
2. Dex-Net 2.0. Ranks grasps using the GQ-CNN model of [3] trained on Dex-Net-Large.

3. Dex-Net 2.1 (e = 0.1,e = 0.5, ¢ = 0.9). Ranks grasps using the Dex-Net 2.1 (Fine-tuned)
classifier for varying levels of noise injection in the training dataset.



5 Objects 10 Objects
Policy Success (%) | AP (%) | % Cleared | PPH Success (%) | AP (%) | % Cleared | PPH
Force Closure 54 N/A 97 271 55 N/A 92 276
Dex-Net 2.0 92 96 100 407 83 84 98 367
Dex-Net 2.1 (e = 0.1) 91 91 100 402 86 89 99 380
Dex-Net 2.1 (¢ = 0.5) 85 89 98 376 66 69 96 292
Dex-Net 2.1 (¢ = 0.9) 94 97 100 416 89 93 100 394

Table 2: Performance of grasping policies on the Basic dataset containing 25 opaque and rigid test objects with
heaps of size N = {5, 10} averaged over 20 and 10 independent trials, repsectively. Human performance is
approximately 600 PPH.

10 Objects 20 Objects
Policy Success (%) | AP (%) | % Cleared PPH Success (%) | AP (%) | % Cleared PPH
Force Closure 64 N/A 98 321 50 N/A 77 251
Dex-Net 2.0 81 88 98 358 70 79 97 310
Dex-Net 2.1 (¢ = 0.9) 85 93 100 376 78 86 97 345

Table 3: Generalization performance of grasping policies on the Typical dataset containing 50 test objects with
hinged parts, deformability, and some material transparency on heaps of size 10 and 20 with 5 independent
trials of each.

The Dex-Net 2.1 (¢ = 0.9) variant performed best across all metrics. The increase in perfromance
over the other noise levels may be because the training dataset was heavily skewed toward negative
examples, encouraging the learned policy to predict grasp failure when uncertain.

5.2.4 Generalization

We also evaluated the Dex-Net 2.1 e = 0.9 policy on larger heaps of size N = {10, 20} with all 50
test objects for 5 independent trials each to evaluate generalization to large piles and different object
properties that were not encountered in the simulator. The results are detailed in Table 3. While
performance decreases across all categories, the ¢ = 0.9 policy outperforms the Dex-Net 2.0 and
antipodal baseline across all metrics. The performance appears to be more sigificantly affected by
the heap size than the addition of deformable objects. Qualitative failure modes of the Dex-Net 2.1
policy included collisions where the gripper pressed into another object in the heap and an inability
to find robust grasps on thin, curved objects such as the measuring spoon and scissors.

6 Discussion and Future Work

We formulate bin picking as a POMDP and train a GQ-CNN to predict grasps with high reward
using a simulator of robust grasping and dynamic object interactions in a heap. We used the model
to sample the Dex-Net 2.1 dataset of tens of thousands of demonstrations across 1,500 3D object
models from an algorithmic supervisor with noise injection that used full state information to index
precomputed robust grasps for 3D models in the simulation.

We find that a policy trained using behavior cloning with high levels of noise injection (90% proba-
bility of selecting a random action) has the highest performance across all metrics when transferred
to a physical robot, suggesting that conservative policies which favor false negatives over false posi-
tives may transfer better from simulation to reality. Furthermore, the high average precision score of
GQ-CNNs from Dex-Net 2.1 suggest that performance could be improved by introducing alternative
actions, such as probing or using a suction cup [37], when the model does not have high confidence.
In future work, we will develop hierarchical policies for bin picking.
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