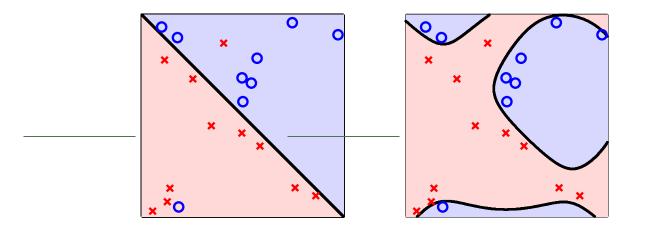
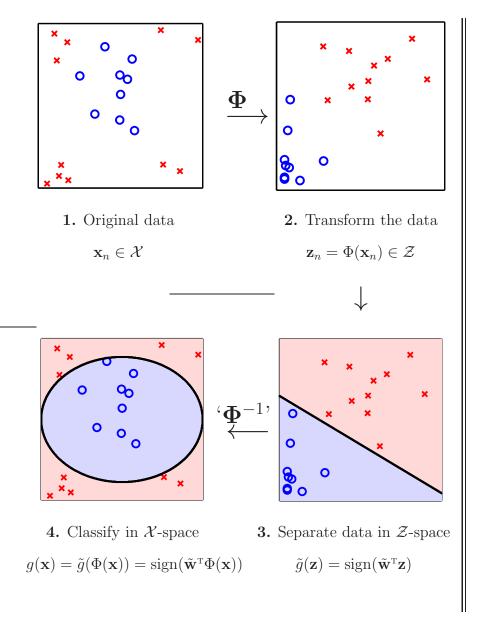
Learning From Data Lecture 11 Overfitting

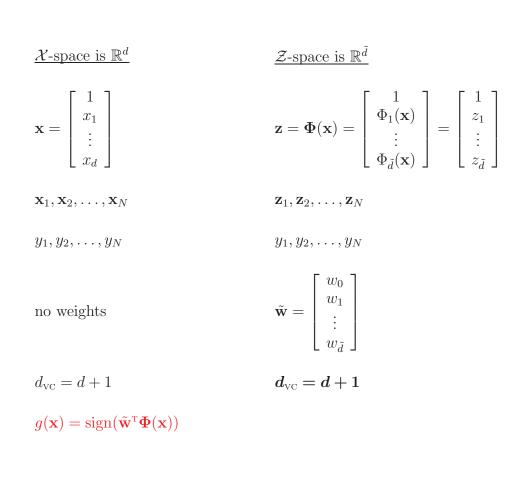
What is Overfitting When does Overfitting Occur Stochastic and Deterministic Noise



M. Magdon-Ismail CSCI 4100/6100

RECAP: Nonlinear Transforms

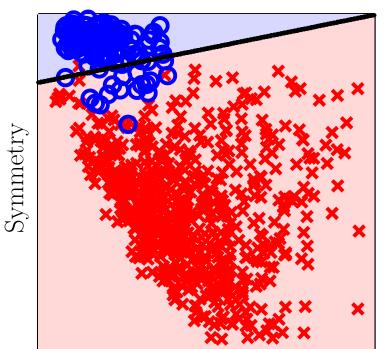




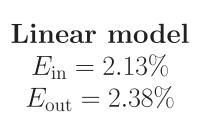
RECAP: Digits Data "1" Versus "All"

Symmetry

0.35



Average Intensity



Average Intensity 3rd order polynomial model $E_{\rm in} = 1.75\%$ $E_{\rm out} = 1.87\%$

X

Superstitions – Myth or Reality?

- Paraskevedekatriaphobia fear of Friday the 13th.
 - Are *future* Friday the 13ths really more dangerous?
- OCD [medical journal, citation lost, can you find it?]

the subjects performs an action which leads to a good outcome and thereby generalizes it as cause and effect: the action will always give good results. Having *overfit* the data, the subject compulsively engages in that activity.

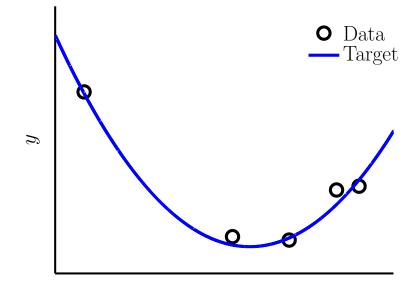
Humans are **overfitting machines**, very good at "finding coincidences".

An Illustration of Overfitting on a Simple Example

Quadratic f

5 data points

- A *little* noise (measurement error)
- 5 data points \rightarrow 4th order polynomial fit



x

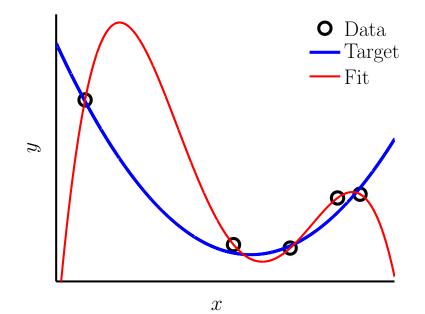
An Illustration of Overfitting on a Simple Example

Quadratic f

5 data points

A *little* noise (measurement error)

5 data points \rightarrow 4th order polynomial fit



Classic overfitting: simple target with excessively complex \mathcal{H} .

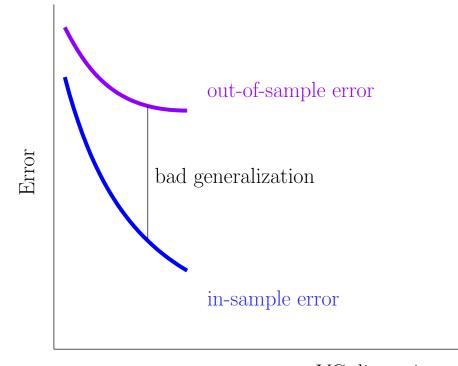
 $E_{\rm in} \approx 0; E_{\rm out} \gg 0$

The noise did us in. (why?)

What is Overfitting?

Fitting the data more than is warranted

Overfitting is Not Just Bad Generalization

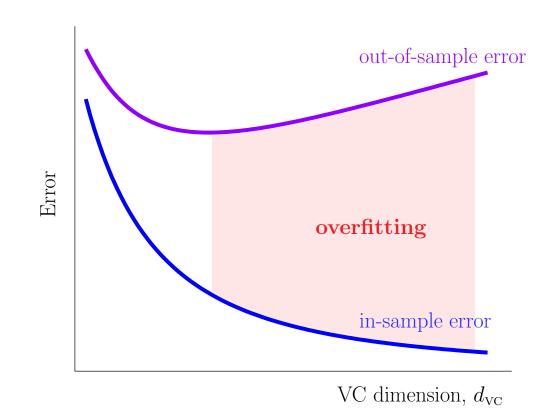


VC dimension, $d_{\rm vc}$

VC Analysis:

Covers bad generalization but with lots of slack – the VC bound is loose

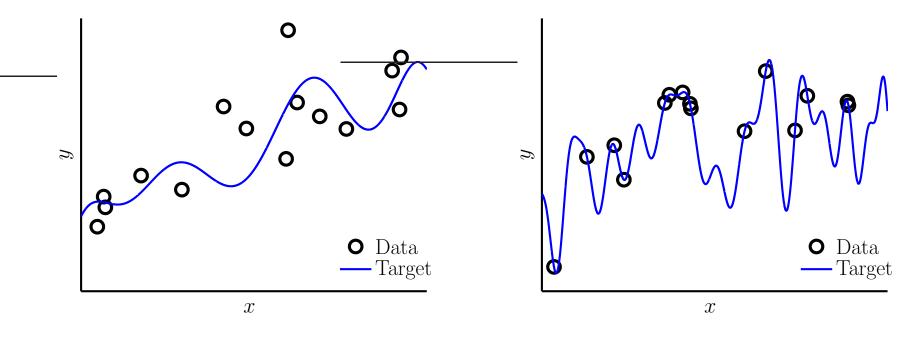
Overfitting is Not Just Bad Generalization



Overfitting:

Going for lower and lower E_{in} results in higher and higher E_{out}

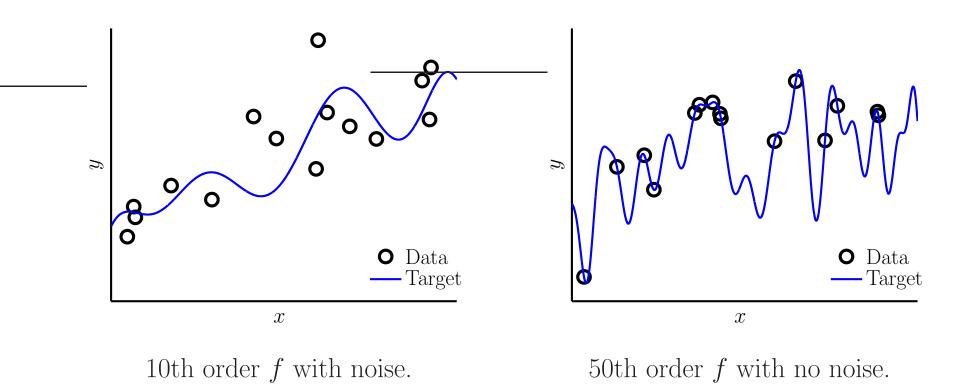
Case Study: 2nd vs 10th Order Polynomial Fit



10th order f with noise.

50th order f with no noise.

Case Study: 2nd vs 10th Order Polynomial Fit

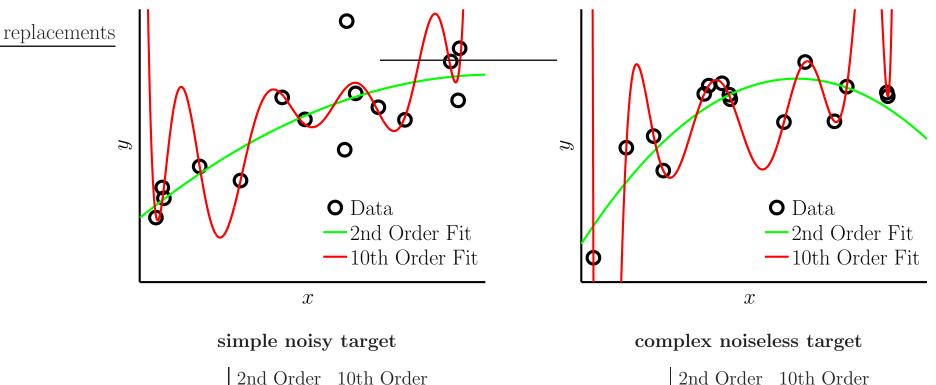


 \mathcal{H}_2 : 2nd order polynomial fit \mathcal{H}_{10} : 10th order polynomial fit

 \leftarrow special case of linear models with feature transform $x \mapsto (1, x, x^2, \cdots)$.

Which model do you pick for which problem and why?

Case Study: 2nd vs 10th Order Polynomial Fit



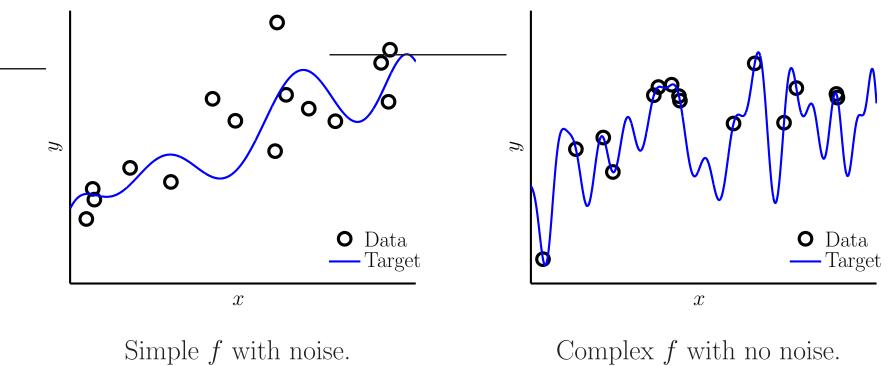
	Zha Order	10th Order
$E_{\rm in}$	0.050	0.034
$E_{\rm out}$	0.127	9.00

	2nd Order	10th Order
$E_{\rm in}$	0.029	10^{-5}
$E_{\rm out}$	0.120	7680

Go figure:

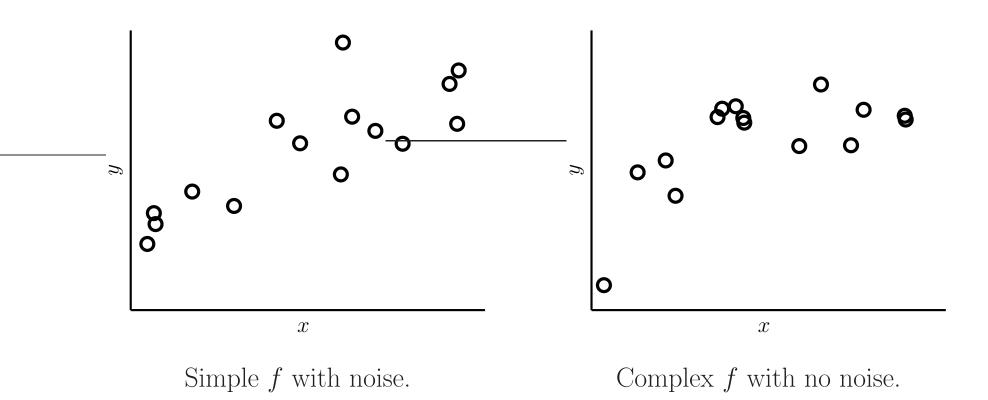
Simpler ${\mathcal H}$ is better even for the more complex target with no noise.

Is there Really "No Noise" with the Complex f?



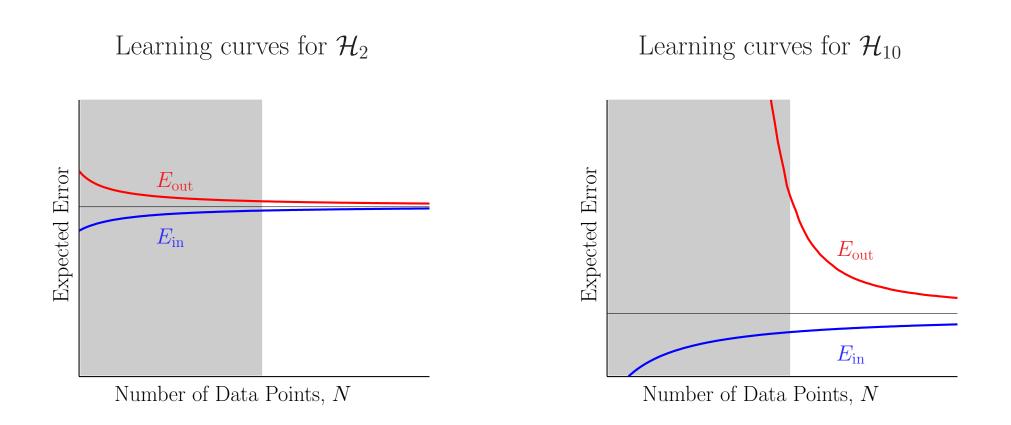
Complex f with no noise.

Is there Really "No Noise" with the Complex f?



\mathcal{H} should match quantity and quality of data, not f

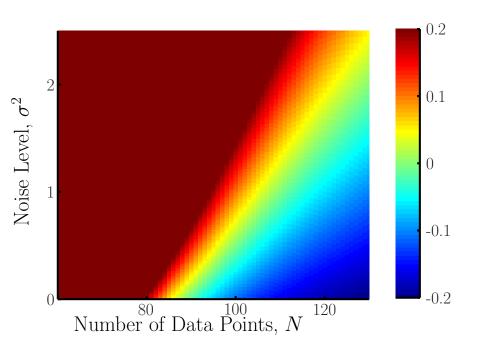
When is \mathcal{H}_2 Better than \mathcal{H}_{10} ?



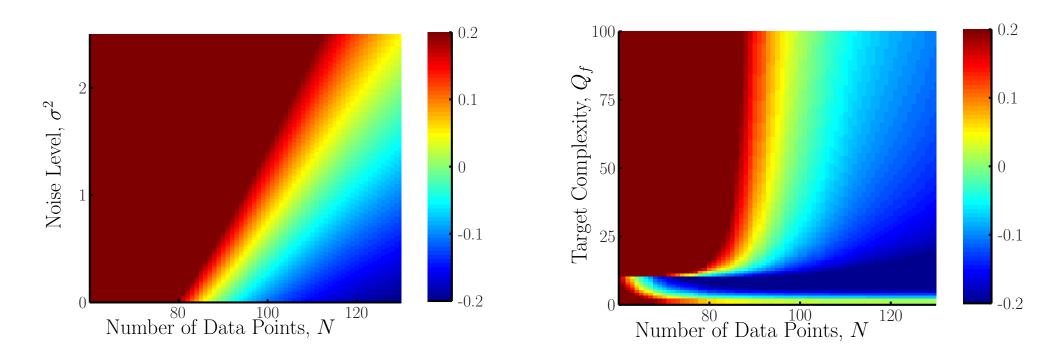
Overfitting:

$$E_{\text{out}}(\mathcal{H}_{10}) > E_{\text{out}}(\mathcal{H}_2)$$

Overfit Measure: $E_{out}(\mathcal{H}_{10}) - E_{out}(\mathcal{H}_{2})$



Overfit Measure: $E_{out}(\mathcal{H}_{10}) - E_{out}(\mathcal{H}_{2})$



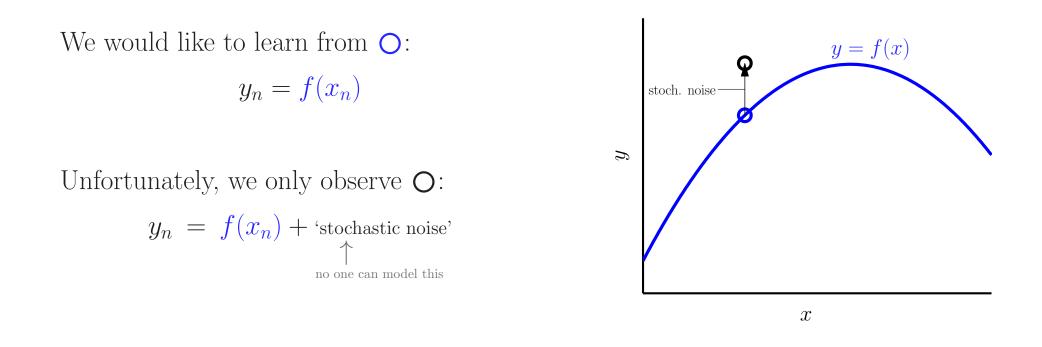
Number of data points \uparrow	Overfitting \downarrow
Noise ↑	Overfitting \uparrow
Target complexity \uparrow	Overfitting \uparrow

Noise

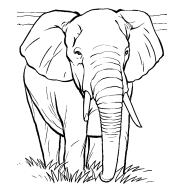
That part of y we *cannot* model

it has two sources ...

$Stochastic \ Noise \ - {\tt Data \ Error}$



Stochastic Noise: fluctuations/measurement errors we cannot model.



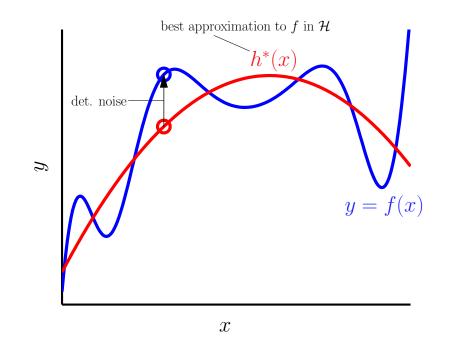
$Deterministic \ Noise \ - {\scriptstyle Model \ Error}$

We would like to learn from \bigcirc :

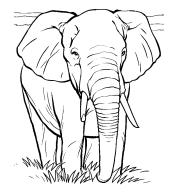
 $y_n = h^*(x_n)$

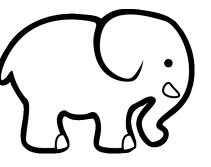
Unfortunately, we only observe \bigcirc :

 $y_n = f(x_n)$ = $h^*(x_n)$ + 'deterministic noise' \uparrow \mathcal{H} cannot model this

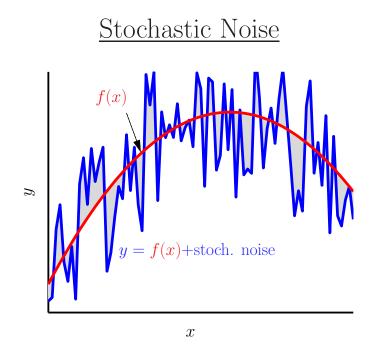


Deterministic Noise: the part of f we cannot model.

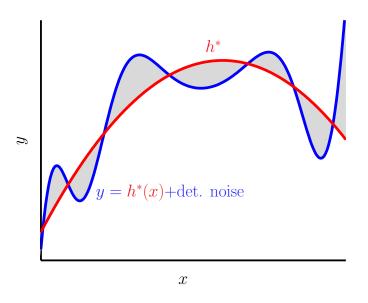




Stochastic & Deterministic Noise Hurt Learning



<u>Deterministic Noise</u>

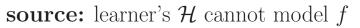


source: random measurement errors

re-measure y_n

stochastic noise changes.

change \mathcal{H} stochastic noise the same.



re-measure y_n deterministic noise the same.

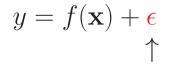
 $\begin{array}{l} {\rm change} \ {\cal H} \\ {\rm deterministic \ noise \ changes.} \end{array}$

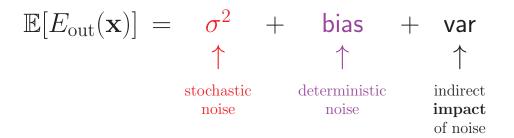
We have single ${\mathcal D}$ and fixed ${\mathcal H}$ so we cannot distinguish

Noise and the Bias-Variance Decomposition

$$y = f(\mathbf{x}) + \boldsymbol{\epsilon}$$

Noise and the Bias-Variance Decomposition





Noise is the Culprit

Overfitting is the disease

Noise is the cause

Learning is led astray by fitting the noise more than the signal

Cures

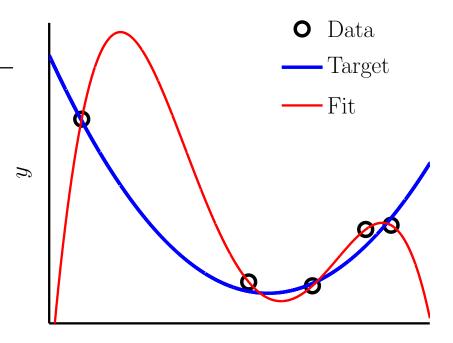
Regularization: Putting on the brakes.

Validation: A reality check from peeking at E_{out} (the bottom line).

Regularization

no regularization

regularization!



x

Regularization

