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recap: Nonlinear Transforms

Φ
−→

1. Original data

xn ∈ X

2. Transform the data

zn = Φ(xn) ∈ Z

↓

‘Φ−1’
←−

4. Classify in X -space

g(x) = g̃(Φ(x)) = sign(w̃tΦ(x))

3. Separate data in Z-space

g̃(z) = sign(w̃tz)

X -space is Rd Z-space is Rd̃
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dvc = d+ 1 dvc = d+ 1

g(x) = sign(w̃tΦ(x))
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recap: Digits Data “1” Versus “All”
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Linear model
Ein = 2.13%
Eout = 2.38%

3rd order polynomial model
Ein = 1.75%
Eout = 1.87%
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Superstitions – Myth or Reality?

• Paraskevedekatriaphobia – fear of Friday the 13th.

– Are future Friday the 13ths really more dangerous?

• OCD [medical journal, citation lost, can you find it?]

the subjects performs an action which leads to a good outcome and thereby generalizes it as

cause and effect: the action will always give good results. Having overfit the data, the subject

compulsively engages in that activity.

Humans are overfitting machines, very good at “finding coincidences”.
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An Illustration of Overfitting on a Simple Example

Quadratic f

5 data points

A little noise (measurement error)

5 data points→ 4th order polynomial fit

x

y

Data
Target

Classic overfitting: simple target with excessively complex H.

The noise did us in. (why?)
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An Illustration of Overfitting on a Simple Example

Quadratic f

5 data points

A little noise (measurement error)

5 data points→ 4th order polynomial fit

x

y

Data
Target
Fit

Classic overfitting: simple target with excessively complex H.

Ein ≈ 0; Eout ≫ 0

The noise did us in. (why?)
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What is Overfitting?

Fitting the data more than is warranted
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Overfitting is Not Just Bad Generalization

in-sample error

out-of-sample error

bad generalization

VC dimension, dvc

E
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or

VC Analysis:

Covers bad generalization but with lots of slack – the VC bound is loose
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Overfitting is Not Just Bad Generalization

in-sample error

out-of-sample error

overfitting

VC dimension, dvc

E
rr
or

Overfitting:

Going for lower and lower Ein results in higher and higher Eout
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Case Study: 2nd vs 10th Order Polynomial Fit

x

y

Data
Target

x

y

Data
Target

10th order f with noise. 50th order f with no noise.

H2: 2nd order polynomial fit

H10: 10th order polynomial fit
←− special case of linear models with feature transform x 7→ (1, x, x2, · · · ).

Which model do you pick for which problem and why?
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Case Study: 2nd vs 10th Order Polynomial Fit

x

y

Data
Target

x

y

Data
Target

10th order f with noise. 50th order f with no noise.

H2: 2nd order polynomial fit

H10: 10th order polynomial fit
←− special case of linear models with feature transform x 7→ (1, x, x2, · · · ).

Which model do you pick for which problem and why?
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Case Study: 2nd vs 10th Order Polynomial Fit

replacements
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Data
2nd Order Fit
10th Order Fit
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Data
2nd Order Fit
10th Order Fit

simple noisy target

2nd Order 10th Order

Ein 0.050 0.034
Eout 0.127 9.00

complex noiseless target

2nd Order 10th Order

Ein 0.029 10−5

Eout 0.120 7680

Go figure:

Simpler H is better even for the more complex target with no noise.
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Is there Really “No Noise” with the Complex f?

x

y

Data
Target

x

y

Data
Target

Simple f with noise. Complex f with no noise.

H should match quantity and quality of data, not f
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Is there Really “No Noise” with the Complex f?

x

y

x

y

Simple f with noise. Complex f with no noise.

H should match quantity and quality of data, not f
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When is H2 Better than H10?

Learning curves for H2 Learning curves for H10

Number of Data Points, N
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Overfitting:
Eout(H10) > Eout(H2)
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Overfit Measure: Eout(H10)− Eout(H2)
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Overfit Measure: Eout(H10)− Eout(H2)
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Number of data points ↑ Overfitting ↓
Noise ↑ Overfitting ↑

Target complexity ↑ Overfitting ↑
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Noise

That part of y we cannot model

it has two sources . . .
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Stochastic Noise — Data Error

We would like to learn from ◦:
yn = f(xn)

Unfortunately, we only observe ◦:
yn = f(xn) + ‘stochastic noise’

↑
no one can model this

x

y

y = f(x)

stoch. noise

Stochastic Noise: fluctuations/measurement errors we cannot model.
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Deterministic Noise — Model Error

We would like to learn from ◦:
yn = h∗(xn)

Unfortunately, we only observe ◦:
yn = f(xn)

= h∗(xn) + ‘deterministic noise’

↑
H cannot model this

x

y

best approximation to f in H

h∗(x)

y = f(x)

det. noise

Deterministic Noise: the part of f we cannot model.
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Stochastic & Deterministic Noise Hurt Learning

Stochastic Noise

x

y

f(x)

y = f(x)+stoch. noise

source: random measurement errors

re-measure yn
stochastic noise changes.

change H

stochastic noise the same.

Deterministic Noise

x

y

h∗

y = h∗(x)+det. noise

source: learner’s H cannot model f

re-measure yn
deterministic noise the same.

change H

deterministic noise changes.

We have single D and fixed H so we cannot distinguish
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Noise and the Bias-Variance Decomposition

y = f(x) + ǫ

↑
measurement error

E[Eout(x)] = ED,ǫ[(g(x)− f(x)− ǫ)2]

= ED,ǫ[(g(x)− f(x))2 + 2(g(x)− f(x))ǫ + ǫ2]

↓ ↓ ↓

bias + var 0 σ2
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Noise and the Bias-Variance Decomposition

y = f(x) + ǫ

↑
measurement error

E[Eout(x)] = σ2 + bias + var

↑ ↑ ↑
stochastic deterministic indirect

noise noise impact
of noise
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Noise is the Culprit

Overfitting is the disease

Noise is the cause
Learning is led astray by fitting the noise more than the signal

Cures

Regularization: Putting on the brakes.

Validation: A reality check from peeking at Eout (the bottom line).
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Regularization

no regularization regularization!

x

y

Data

Target

Fit
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Regularization

no regularization regularization!
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Fit
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