
Learning Haskell

1 Using ghci. Interactivity, directives.

2 Expressions for each of the basic data types: Integer, Float, Bool,
Char, () — unit.

3 Tuples. Lists: arithmetic sequences, list comprehensions.

4 Bindings. The let expression.

5 Simple functions. Anonymous functions, functions as data, special
declaration syntax, patterns, cases, guards.

6 Using ghc. Writing, compiling, and running a main program,
interact.

Erik Meijer, OSCON ’09 [14min]
Simon Peyton Jones, POP 2003, “Retrospective” [ppt]
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Learning Haskell

All things Haskell: haskell.org

Tutorial: Learn You a Haskell for Great Good! by Miran Lipovača

Searching for functions: Hoogle
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Learning Haskell

Higher-order functions

Data structures

Type inference
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GHCI directives
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GHCI directives

<statement> evaluate/run <statement>

: repeat last command

:{\n ..lines.. \n:}\n multiline command

:add [*]<module> ... add module(s) to the current target set

:browse[!] [[*]<mod>] display the names defined by module <mod>

(!: more details; *: all top-level names)

:cd <dir> change directory to <dir>

:complete <dom> [<rng>] <s> list completions for partial input string

:help, :? display this list of commands

:info[<name> ...] display information about the given names

:kind <type> show the kind of <type>

:load [*]<module> ... load module(s) and their dependents

:main [<arguments> ...] run the main function with the given arguments

:module [+/-] [*]<mod> ... set the context for expression evaluation

:quit exit GHCi

:reload reload the current module set

:type <expr> show the type of <expr>

:type +d <expr> show the type of <expr>, defaulting type variables
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Interactive development

load — edit — reload – test; and repeat
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Overview to skim quickly, or
Summary for later
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Data

Integers

〈integer〉 ::= 〈digit〉+

Tuples

〈tuple〉 ::= (〈expr〉,〈expr〉)

::= (〈expr〉,〈expr〉,〈expr〉)

::= (〈expr〉,〈expr〉,〈expr〉,〈expr〉)

Lists

〈list〉 ::= []

::= 〈expr〉:〈list〉

Functions

〈function〉 ::= \〈name〉->〈expr〉
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Integers

〈integer〉 ::= 〈digit〉+
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Some Integers

7

0

3

567

42

5429723947
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The Type of Integers

Integer

Integer

Integer

Integer

Integer

Integer
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Tuples

〈tuple〉 ::= (〈expr〉,〈expr〉)

::= (〈expr〉,〈expr〉,〈expr〉)

::= (〈expr〉,〈expr〉,〈expr〉,〈expr〉)
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(’a’,True)

(5,3+4)

(True,2,False,3)

(2+3,2*3,2-3)

(’z’,1,1,1)

(4*7,(’a’,True),’p’)
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(Char,Bool)

(Integer,Integer)

(Bool,Integer,Bool,Integer)

(Integer,Integer,Integer)

(Char,Integer,Integer,Integer)

(Integer,(Char,Bool),Char)
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Lists

〈list〉 ::= []

::= 〈expr〉:〈list〉
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3:5:(3+6):7:[]

1:1:[]

():():[]

True:False:True:[]

’a’:’b’:’c’:[]

False:False:True:[]
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[Integer]

[Integer]

[()]

[Bool]

[Char] = String

[Bool]
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Lists Have Special Syntax

[3,5,3+6,7]

[1,1]

[(),()]

[True,False,True]

[’a’,’b’,’c’] = "abc"

[False,False,True]
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Functions

〈function〉 ::= \〈name〉->〈expr〉

lambda
formal parameter
body
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\i ->i+2

\xs ->2:xs

\s ->s++", "++s

\c ->ord c

\i ->max i 0

\x ->sin (x+pi)
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Integer->Integer

[Integer]->[Integer]

String->String

Char->Integer

Integer->Integer

Double->Double
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Data, all data exists apart from names. Data

meaningOfLive = 42

myVerySpecialPair = (’a’, 0)

myShortList = [True ,False ,True]

add2 = \ i -> i+2

cons2 = \ xs -> 2:xs

double = \ s -> s ++ ", " ++ s
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Function Declarations Have Special Syntax

add2 i = i+2

cons2 xs = 2:xs

doubleWord s = s ++ ", " ++ s

toOrd c = ord c

cutOff i = max i 0

f x = sin (x+pi)
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Complex Canonical Values

(2,(’a’,5), "abc", True) :: (Integer , (Char ,Integer), [Char], Bool)
([1],(’a’,5), "abc", True , "xyz") :: ([ Integer], (Char ,Integer), [Char], Bool , [Char])
( \i->i+2 , \x->sind(x+pi) ) :: (Integer ->Integer , Double ->Double)

[(1,True ,"abc"), (2,True ,"mno"), (3,True ,"xyz")] :: [(Integer , Book , [Char ])]

\ i -> (i,i) :: Integer -> (Integer ,Integer)
\ p -> (fst p + snd p, fst p * snd p, fst p - snd p) :: (Integer ,Integer) -> (Integer ,Integer , Integer)
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End of the quick overview
(proceed to basics), or

End of summary
(proceed to writing a program with GHC)
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The Basics

1 Primitive: Integer, floating-point, character, boolean, unit

2 Structures: Tuple, lists, functions

3 Text: list of character
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Integer

143
succ 34
3+4
5*7
9-4
negate 8

---- watch out: 3 * -8 NO!
3 * (-8)
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Integer

min 17 34
max 17 34

div 24 7
24 ‘div ‘ 7
24 ‘rem ‘ 7
mod 36 5

---> 1

quot 36 5
---> 7

div 36 5
---> 7

quot 36 (-5)
---> -7

div 36 (-5)
---> -8

rem 36 5
---> 1

mod 36 5
---> 1

rem 36 (-5)
---> 1

mod 36 (-5)
---> -4
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Integer

quotRem 36 (-5)
---> (-7,1)

divMod 36 -5
---> (-8,-4)
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Floating-Point

--- pi,exp ,sqrt ,log ,(**),sin ,tan ,cos ,
--- truncate , ceiling , round , truncate , floor
3.2 + 43.1
5.2 * 43.2345236
9.9 - 2.3
2345.2345 / 34.34
34.4 ^ 34
4254 ** 4.345
sqrt (4.59)
sin (1.7172)
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Char

’a’

--- :browse Data.Char
ord :: Char -> Int
chr :: Int -> Char
digitToInt :: Char -> Int
intToDigit :: Int -> Char
toLower :: Char -> Char
toUpper :: Char -> Char
isAlphaNum :: Char -> Bool
isDigit :: Char -> Bool
isAlpha :: Char -> Bool
isLower :: Char -> Bool
isUpper :: Char -> Bool
isSpace :: Char -> Bool
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Bool

False
True
False && True
False || True
not True
-- otherwise is defined to be the value True
-- for the purposes of making guards more readable
otherwise

if True then 4 else 5

-- important predicates
-- (==), (/=), (<), (>=), (>), (<=), compare
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Tuples

(2’a’)
(4.34 , ’a’, 456)
(True , (), 1)
(2, "ab", 2*2, 5.0)
( 2 ) -- not a tuple
((())) -- unit

fst (2,’b’)
snd (1,’a’)

(2,(’a’,3,4),"abcd")
((2,3,4), (True , 3.3))
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What is a List?
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How do you make a List in Haskell?

Two constructors “nil” and “cons”

[]

1:[]

1 : (2 : [])

1 : (2 : (3 : []))

1 : (2 : (3 : 4 : []))
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How do you make a List in Haskell?

“Cons” is right associative; and, anyway, lists have special syntax.

[]

1:[]

1 : (2 : [])

1 : (2 : (3 : []))

1 : (2 : (3 : 4 : []))

[]

1:[]

1:2:[]

1:2:3:[]

1:2:3:4:[]

[]

[1]

[1,2]

[1,2,3]

[1,2,3,4]
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What can you do with a list?

head [1,2,3,4]

tail [1,2,3,4]

null [1,2,3,4]
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Lists are polymorphic but homogeneous.

[1,2,3,4]

[’a’, ’b’, ’c’]

[(1,’a’), (2,’b’), (3,’c’)]

[ [], [1], [1,2,3,4], [2 ,3]]
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There are no mutable arrays in Haskell, so lists are the “go to” data
structure for collections.

Every list function one can think up has been pre-defined in Haskell. See
lists at Wiki Haskell.

length
(++) -- append
elem -- member
(!!) -- get element
concat -- flatten
last init
splitAt
take drop
sort nub
reverse
sum product
minimum maximum
and or
all any
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List and Arithmetic Sequences

[-1,-1 .. 0]
[3,2 .. 8]
[0,2 .. 1]
[1,1 .. 1]
[3,3 .. (-4)]
[2,1 .. (-4)]
[3,3 ..( -12)]
[-1,-1 .. 8]
[-6,-6 ..12]
[1 ,2..( -12)]
[-6,-5 .. (-4)]
[1,0 .. 5]
[-6,-6 .. 8]
[-1,-2 .. ( -4)]
[1,2 .. 5]
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List Comprehension

Video; 31 minutes
Presenter: E Meijer

based on Hutton’s book, chapter 5
Channel 9 lectures at YouTube
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List Comprehension

Defining sets by their properties is sometimes known as set comprehension
and found often in mathematical texts. For example,

{x ∈ R | x > 0}

In mathematical notation we write

{ x2 | x ∈ {1, 2, . . . , 5} }

to mean the set {1, 4, 9, 16, 25}.
In Haskell a similar syntax is used for lists. The special square brackets
syntax is expanded to include generators and filters.
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Haskell List Comprehension
A list comprehension has the form:

[ expr | qual1 , . . . , qualn ]

where 1 ≥ n

There are three types qualifiers

generators of the form pat<-expr, where p is a pattern (see Section
3.17) of type t and e is an expression of type [t]

local bindings that provide new definitions for use in the generated
expression expr or subsequent boolean guards and generators

boolean guards, which are arbitrary expressions of type Bool.

See the section on List Comprehensions in the Haskell 2010 Language
Report .
Also, there are intriguing language extensions:

ParallelListComp. Syntax: [ expr | qualifier, ... |

qualifier, ... ]

TransformListComp. Three new keywords: group, by, and using.

See a paper by Simon Peyton Jones.
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Upcoming script

[ n | n <- [1..5] ]
[ (n+2,5*n) | n <-[1..3] ] -- list of pairs
:mod + Data.Char
[ toUpper c | c <- "one fish" ]
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List Comprehension
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List Comprehension
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List Comprehension (Multiple Generators)
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List Comprehension (Infinite Lists, Nested)
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List Comprehension and Functions
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List Comprehension, Pythagorean Triples
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Before continuing on the last and most important data value: functions,
we consider the problem of giving data values names.

It is important psychologically to give the programmer a means of refering
to data and not just creating data.
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Every object of computation/value gets a name in the same way:

theMeaningOfLife = 42

NB. Not assignment!

Control of scope using let expression.

let <declaration > in <expression >

[We don’t need any examples now.]
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Syntax of Names

Names consist of either letters and digits, or of all symbols. All symbolic
names are treated as infix operators by the parser. All non-symbolic names
are treated as prefix functions by the parser.

:
!!
++
*

div
quotRem
Integer
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Syntax of Names
Enclosing a name with () tells the parser to drop the infix assumption.
Enclosing a name with backquotes tells the parser to assume infix
assumption.

prefix infix

alphabetic elem ‘elem‘

symbolc (+) +

div 24 7
24 ‘div ‘ 7

elem 5 [1,2,3,4,5,6]
5 ‘elem ‘ [1,2,3,4,5,6]

(+) 2 3
2 + 3
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Declarations

A name is given a value by a declaration of the simple form:

name = value

In haskell this declaration is actually a specific case of a more general
declartion of the form:

pattern "=" value

Patterns (section 3.17.1 of the reference 2010 manual) are more naturally
discussed later in the context of functions.

There are declarations for data types and classes. These will be discussed
later.
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Declarations

Many languages have declarations for many kinds of things: constants,
variables, procedures, and functions.

Haskell does not talk about memory locations (however, see boxed versus
unboxed), hence no need for variable declarations.

Fundamentally, given a datum a name in Haskell is the same for any
value—functions included.
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Overview of Simple Functions

1 syntax (lambda)

2 Two Haskell quirks

3 anonymous (functions as regular data)

4 special syntax

5 patterns (generalization of formal parameters)

6 definition by cases

7 guards [omit]
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Syntax of Functions

\ x -> 2 * x
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Syntax of Functions

backslash; pronounced “lambda”

identifier: name of formal parameter (but generalized to patterns
later!)

arrow separates teh body of the fucntion from the parameter
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Using GHCi with Functions

Before we can begin illustrating functions we must deal with two quirks in
Haskell which totally distract and even obscure the main issues.

1 Haskell does not print anything reasonable to represent a function by
default.

2 The types of many function contain class constraints, and there is no
need to discuss classes in a simple introduction to Haskell. (Use
:type +d directive.)
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Using GHCi with Functions
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Using GHCi with Functions

Haskell magical show function will show/print anything, but not functions.

In Haskell’s defense, what is the printable representation of a function? Is
the Intel assembly code? The abstract syntax tree of the code? Should it
just parrot back out the input source code?

One can get the Haskell interactive system to print the word <function>

which seems like a really better idea than one of its inscrutable error
messages.
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Upcoming script

:type ’A’
:type 3
:type \ b -> not b
:type \ x -> not x
:set +t
\ x -> x + 1
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Using GHCi with Functions
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Functions Are Data

Upcoming script

:mod + Text.Show.Functions Data.Char

\ x -> x + 1

\ i -> max i 0

\ x -> sin (x+pi)

\ c -> prd c

\ s -> s ++ ", " ++ s

\ xs -> 2:xs
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Functions Definitions
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Functions Definitions

Ryan Stansifer (CS, Florida Tech) Haskell Lists March 28, 2019 67 / 76



What Can You Do With a Function?

Integer: get the next integer

Tuple: get the first and the second part

List: get the rest of the lsit

Function: use/apply it to an argument
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Functions Application

We ask what is the type of the function, and then we apply it to some
element of the domain.

Ryan Stansifer (CS, Florida Tech) Haskell Lists March 28, 2019 69 / 76



Function Application
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Function Application
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How do functions get names?
The same way anything gets a name!

add1 = \ x -> x + 1

cutOff = \ i -> max i 0

g = \ x -> sin (x+pi)

f = \ c -> ord c

double = \ s -> s ++ ", " ++ s

cons2 = \ xs -> 2:xs
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Naming Functions
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Naming Functions
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Function Declaration Has Special Syntax

add1 = \ x -> x + 1

cutOff = \ i -> max i 0

g = \ x -> sin (x+pi)

f = \ c -> ord c

double =\s->s++", "++ s

cons2 = \ xs -> 2:xs

add1 x = x + 1

cutOff i = max i 0

g x = sin (x+pi)

f c = ord c

double s = s++", "++s

cons2 xs = 2:xs
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Functions

f x = if null x then "Empty!" else "Not Empty!"

factorial n = if n<2 then 1 else n * factorial (n-1)
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Patterns

Think of a formal argmument as a name that matches any value in the
domain of the function.

Patterns as formal arguments use constructors to match against the value
given to the function as the actual argument.

If the value does not match, you are out of luck.
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Patterns

p3 (x,y,z) = z -- definition of function p3

p3 (1,2,3) -- evaluates to 3

tr = (1,2,3)

p3 tr -- evaluates to 3

f (x:2:y:rest) = x+y -- defintion of f

f (1:2:3:9:[]) -- evaluates to 4

f [1,2,3,9] -- evaluates to 4

l = [12,3,9]

f l -- evaluates to 4
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Wildcard Patterns

p3 (_,_,z) = z -- definition of function p3

f (_:2:_:_) = x+y -- definition of f
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Definition by cases

f [] = "empty"
f (x:[]) = "single"
f (x:y:[]) = "small"
f (x:y:z:[]) = "medium"
f (_) = "large"
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Overview

Everything is digital (all files are binary)

Unix streams and pipes (function composition is important)

What is a program?

GHC
I writing a program
I compiling a program (also -Wall)
I running a program (also +RTS -RTS)

interact: boilerplate to turn a function into a working program
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Everything is Digital
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Streams and Pipes

Along the Stream by Sharon France
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We know what a function is: it maps an element
in the domain to an element in the range.

When we think of a program as a function we
generally think of something like the factorial
function from numbers to numbers.

But this is not a “real” program. A real program reads input and writes
output.

Limiting ourselves to the important case of programs from US-ASCII text
to US-ASCII text, a real program is really a function from a
stream/file/string of text to a stream/file/string of text.
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Input and Output Stream

e
c

b
h
j
f

g
d

a
j

J
I

H
G

F
E
D
C
B

A
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Using the Glasgow Haskell Compiler

In Haskell, just like numerous other programming languages, one creates a
source program in a text file, one invokes the compiler to create an
executable file, and then one commands the computer to run the
executable file on some text input and observe or collect the text output.

$ ghc -Wall -o main Main.hs

$ main < input.txt > output.txt
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Warning!

Ask the compiler to help you write a more beautiful program by turning on
all warnnigs.

$ ghc -Wall -o main Main.hs

Don’t turn in a program with warnings.
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How do do we create a Haskell program that reads the input and writes
the output?
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Some programming languages have elaborate IO mechanisms which one
must learn to simple process the the input and produce the output.
In Haskell the simplest approach is to use the function interact to
transform the conceptually pure program (a function from the input stream
to the output stream) to an actual, working program on the computer.
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Examples On-Line

README
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