
Learning Haskell

1 Using ghci. Interactivity, directives.

2 Expressions for each of the basic data types: Integer, Float, Bool,
Char, () — unit.

3 Tuples. Lists: arithmetic sequences, list comprehensions.

4 Bindings. The let expression.

5 Simple functions. Anonymous functions, functions as data, special
declaration syntax, patterns, cases, guards.

6 Using ghc. Writing, compiling, and running a main program,
interact.

Erik Meijer, OSCON ’09 [14min]
Simon Peyton Jones, POP 2003, “Retrospective” [ppt]

Ryan Stansifer (CS, Florida Tech) Learning Haskell 28 March 2019 1 / 3

https://www.youtube.com/watch?v=UuamC0T3hv8

Learning Haskell

All things Haskell: haskell.org

Tutorial: Learn You a Haskell for Great Good! by Miran Lipovača

Searching for functions: Hoogle

Ryan Stansifer (CS, Florida Tech) Learning Haskell 28 March 2019 2 / 3

http://haskell.org
http://learnyouahaskell.com/
http://haskell.org/hoogle/

Learning Haskell

Higher-order functions

Data structures

Type inference

Ryan Stansifer (CS, Florida Tech) Learning Haskell 28 March 2019 3 / 3

Using GHCi

Ryan Stansifer (CS, Florida Tech) Haskell Lists March 28, 2019 1 / 76

Using GHCi

Ryan Stansifer (CS, Florida Tech) Haskell Lists March 28, 2019 1 / 76

Using GHCi

Ryan Stansifer (CS, Florida Tech) Haskell Lists March 28, 2019 1 / 76

Using GHCi

Ryan Stansifer (CS, Florida Tech) Haskell Lists March 28, 2019 1 / 76

GHCI directives

Ryan Stansifer (CS, Florida Tech) Haskell Lists March 28, 2019 2 / 76

GHCI directives

<statement> evaluate/run <statement>

: repeat last command

:{\n ..lines.. \n:}\n multiline command

:add [*]<module> ... add module(s) to the current target set

:browse[!] [[*]<mod>] display the names defined by module <mod>

(!: more details; *: all top-level names)

:cd <dir> change directory to <dir>

:complete <dom> [<rng>] <s> list completions for partial input string

:help, :? display this list of commands

:info[<name> ...] display information about the given names

:kind <type> show the kind of <type>

:load [*]<module> ... load module(s) and their dependents

:main [<arguments> ...] run the main function with the given arguments

:module [+/-] [*]<mod> ... set the context for expression evaluation

:quit exit GHCi

:reload reload the current module set

:type <expr> show the type of <expr>

:type +d <expr> show the type of <expr>, defaulting type variables

Ryan Stansifer (CS, Florida Tech) Haskell Lists March 28, 2019 3 / 76

Interactive development

load — edit — reload – test; and repeat

Ryan Stansifer (CS, Florida Tech) Haskell Lists March 28, 2019 4 / 76

Overview to skim quickly, or
Summary for later

Ryan Stansifer (CS, Florida Tech) Haskell Lists March 28, 2019 5 / 76

Data

Integers

〈integer〉 ::= 〈digit〉+

Tuples

〈tuple〉 ::= (〈expr〉,〈expr〉)

::= (〈expr〉,〈expr〉,〈expr〉)

::= (〈expr〉,〈expr〉,〈expr〉,〈expr〉)

Lists

〈list〉 ::= []

::= 〈expr〉:〈list〉

Functions

〈function〉 ::= \〈name〉->〈expr〉

Ryan Stansifer (CS, Florida Tech) Haskell Lists March 28, 2019 6 / 76

Integers

〈integer〉 ::= 〈digit〉+

Ryan Stansifer (CS, Florida Tech) Haskell Lists March 28, 2019 7 / 76

Some Integers

7

0

3

567

42

5429723947

Ryan Stansifer (CS, Florida Tech) Haskell Lists March 28, 2019 8 / 76

The Type of Integers

Integer

Integer

Integer

Integer

Integer

Integer

Ryan Stansifer (CS, Florida Tech) Haskell Lists March 28, 2019 9 / 76

Tuples

〈tuple〉 ::= (〈expr〉,〈expr〉)

::= (〈expr〉,〈expr〉,〈expr〉)

::= (〈expr〉,〈expr〉,〈expr〉,〈expr〉)

Ryan Stansifer (CS, Florida Tech) Haskell Lists March 28, 2019 10 / 76

(’a’,True)

(5,3+4)

(True,2,False,3)

(2+3,2*3,2-3)

(’z’,1,1,1)

(4*7,(’a’,True),’p’)

Ryan Stansifer (CS, Florida Tech) Haskell Lists March 28, 2019 11 / 76

(Char,Bool)

(Integer,Integer)

(Bool,Integer,Bool,Integer)

(Integer,Integer,Integer)

(Char,Integer,Integer,Integer)

(Integer,(Char,Bool),Char)

Ryan Stansifer (CS, Florida Tech) Haskell Lists March 28, 2019 12 / 76

Lists

〈list〉 ::= []

::= 〈expr〉:〈list〉

Ryan Stansifer (CS, Florida Tech) Haskell Lists March 28, 2019 13 / 76

3:5:(3+6):7:[]

1:1:[]

():():[]

True:False:True:[]

’a’:’b’:’c’:[]

False:False:True:[]

Ryan Stansifer (CS, Florida Tech) Haskell Lists March 28, 2019 14 / 76

[Integer]

[Integer]

[()]

[Bool]

[Char] = String

[Bool]

Ryan Stansifer (CS, Florida Tech) Haskell Lists March 28, 2019 15 / 76

Lists Have Special Syntax

[3,5,3+6,7]

[1,1]

[(),()]

[True,False,True]

[’a’,’b’,’c’] = "abc"

[False,False,True]

Ryan Stansifer (CS, Florida Tech) Haskell Lists March 28, 2019 16 / 76

Functions

〈function〉 ::= \〈name〉->〈expr〉

lambda
formal parameter
body

Ryan Stansifer (CS, Florida Tech) Haskell Lists March 28, 2019 17 / 76

\i ->i+2

\xs ->2:xs

\s ->s++", "++s

\c ->ord c

\i ->max i 0

\x ->sin (x+pi)

Ryan Stansifer (CS, Florida Tech) Haskell Lists March 28, 2019 18 / 76

Integer->Integer

[Integer]->[Integer]

String->String

Char->Integer

Integer->Integer

Double->Double

Ryan Stansifer (CS, Florida Tech) Haskell Lists March 28, 2019 19 / 76

Data, all data exists apart from names. Data

meaningOfLive = 42

myVerySpecialPair = (’a’, 0)

myShortList = [True ,False ,True]

add2 = \ i -> i+2

cons2 = \ xs -> 2:xs

double = \ s -> s ++ ", " ++ s

Ryan Stansifer (CS, Florida Tech) Haskell Lists March 28, 2019 20 / 76

Function Declarations Have Special Syntax

add2 i = i+2

cons2 xs = 2:xs

doubleWord s = s ++ ", " ++ s

toOrd c = ord c

cutOff i = max i 0

f x = sin (x+pi)

Ryan Stansifer (CS, Florida Tech) Haskell Lists March 28, 2019 21 / 76

Complex Canonical Values

(2,(’a’,5), "abc", True) :: (Integer , (Char ,Integer), [Char], Bool)
([1],(’a’,5), "abc", True , "xyz") :: ([Integer], (Char ,Integer), [Char], Bool , [Char])
(\i->i+2 , \x->sind(x+pi)) :: (Integer ->Integer , Double ->Double)

[(1,True ,"abc"), (2,True ,"mno"), (3,True ,"xyz")] :: [(Integer , Book , [Char])]

\ i -> (i,i) :: Integer -> (Integer ,Integer)
\ p -> (fst p + snd p, fst p * snd p, fst p - snd p) :: (Integer ,Integer) -> (Integer ,Integer , Integer)

Ryan Stansifer (CS, Florida Tech) Haskell Lists March 28, 2019 22 / 76

End of the quick overview
(proceed to basics), or

End of summary
(proceed to writing a program with GHC)

Ryan Stansifer (CS, Florida Tech) Haskell Lists March 28, 2019 23 / 76

The Basics

1 Primitive: Integer, floating-point, character, boolean, unit

2 Structures: Tuple, lists, functions

3 Text: list of character

Ryan Stansifer (CS, Florida Tech) Haskell Lists March 28, 2019 24 / 76

Integer

143
succ 34
3+4
5*7
9-4
negate 8

---- watch out: 3 * -8 NO!
3 * (-8)

Ryan Stansifer (CS, Florida Tech) Haskell Lists March 28, 2019 25 / 76

Integer

min 17 34
max 17 34

div 24 7
24 ‘div ‘ 7
24 ‘rem ‘ 7
mod 36 5

---> 1

quot 36 5
---> 7

div 36 5
---> 7

quot 36 (-5)
---> -7

div 36 (-5)
---> -8

rem 36 5
---> 1

mod 36 5
---> 1

rem 36 (-5)
---> 1

mod 36 (-5)
---> -4

Ryan Stansifer (CS, Florida Tech) Haskell Lists March 28, 2019 26 / 76

Integer

quotRem 36 (-5)
---> (-7,1)

divMod 36 -5
---> (-8,-4)

Ryan Stansifer (CS, Florida Tech) Haskell Lists March 28, 2019 27 / 76

Floating-Point

--- pi,exp ,sqrt ,log ,(**),sin ,tan ,cos ,
--- truncate , ceiling , round , truncate , floor
3.2 + 43.1
5.2 * 43.2345236
9.9 - 2.3
2345.2345 / 34.34
34.4 ^ 34
4254 ** 4.345
sqrt (4.59)
sin (1.7172)

Ryan Stansifer (CS, Florida Tech) Haskell Lists March 28, 2019 28 / 76

Char

’a’

--- :browse Data.Char
ord :: Char -> Int
chr :: Int -> Char
digitToInt :: Char -> Int
intToDigit :: Int -> Char
toLower :: Char -> Char
toUpper :: Char -> Char
isAlphaNum :: Char -> Bool
isDigit :: Char -> Bool
isAlpha :: Char -> Bool
isLower :: Char -> Bool
isUpper :: Char -> Bool
isSpace :: Char -> Bool

Ryan Stansifer (CS, Florida Tech) Haskell Lists March 28, 2019 29 / 76

Bool

False
True
False && True
False || True
not True
-- otherwise is defined to be the value True
-- for the purposes of making guards more readable
otherwise

if True then 4 else 5

-- important predicates
-- (==), (/=), (<), (>=), (>), (<=), compare

Ryan Stansifer (CS, Florida Tech) Haskell Lists March 28, 2019 30 / 76

Tuples

(2’a’)
(4.34 , ’a’, 456)
(True , (), 1)
(2, "ab", 2*2, 5.0)
(2) -- not a tuple
((())) -- unit

fst (2,’b’)
snd (1,’a’)

(2,(’a’,3,4),"abcd")
((2,3,4), (True , 3.3))

Ryan Stansifer (CS, Florida Tech) Haskell Lists March 28, 2019 31 / 76

What is a List?

Ryan Stansifer (CS, Florida Tech) Haskell Lists March 28, 2019 32 / 76

How do you make a List in Haskell?

Two constructors “nil” and “cons”

[]

1:[]

1 : (2 : [])

1 : (2 : (3 : []))

1 : (2 : (3 : 4 : []))

Ryan Stansifer (CS, Florida Tech) Haskell Lists March 28, 2019 33 / 76

How do you make a List in Haskell?

“Cons” is right associative; and, anyway, lists have special syntax.

[]

1:[]

1 : (2 : [])

1 : (2 : (3 : []))

1 : (2 : (3 : 4 : []))

[]

1:[]

1:2:[]

1:2:3:[]

1:2:3:4:[]

[]

[1]

[1,2]

[1,2,3]

[1,2,3,4]

Ryan Stansifer (CS, Florida Tech) Haskell Lists March 28, 2019 34 / 76

Ryan Stansifer (CS, Florida Tech) Haskell Lists March 28, 2019 35 / 76

Ryan Stansifer (CS, Florida Tech) Haskell Lists March 28, 2019 36 / 76

What can you do with a list?

head [1,2,3,4]

tail [1,2,3,4]

null [1,2,3,4]

Ryan Stansifer (CS, Florida Tech) Haskell Lists March 28, 2019 37 / 76

Lists are polymorphic but homogeneous.

[1,2,3,4]

[’a’, ’b’, ’c’]

[(1,’a’), (2,’b’), (3,’c’)]

[[], [1], [1,2,3,4], [2 ,3]]

Ryan Stansifer (CS, Florida Tech) Haskell Lists March 28, 2019 38 / 76

There are no mutable arrays in Haskell, so lists are the “go to” data
structure for collections.

Every list function one can think up has been pre-defined in Haskell. See
lists at Wiki Haskell.

length
(++) -- append
elem -- member
(!!) -- get element
concat -- flatten
last init
splitAt
take drop
sort nub
reverse
sum product
minimum maximum
and or
all any

Ryan Stansifer (CS, Florida Tech) Haskell Lists March 28, 2019 39 / 76

https://wiki.haskell.org/How_to_work_on_lists

List and Arithmetic Sequences

[-1,-1 .. 0]
[3,2 .. 8]
[0,2 .. 1]
[1,1 .. 1]
[3,3 .. (-4)]
[2,1 .. (-4)]
[3,3 ..(-12)]
[-1,-1 .. 8]
[-6,-6 ..12]
[1 ,2..(-12)]
[-6,-5 .. (-4)]
[1,0 .. 5]
[-6,-6 .. 8]
[-1,-2 .. (-4)]
[1,2 .. 5]

Ryan Stansifer (CS, Florida Tech) Haskell Lists March 28, 2019 40 / 76

List Comprehension

Video; 31 minutes
Presenter: E Meijer

based on Hutton’s book, chapter 5
Channel 9 lectures at YouTube

Ryan Stansifer (CS, Florida Tech) Haskell Lists March 28, 2019 41 / 76

List Comprehension

Defining sets by their properties is sometimes known as set comprehension
and found often in mathematical texts. For example,

{x ∈ R | x > 0}

In mathematical notation we write

{ x2 | x ∈ {1, 2, . . . , 5} }

to mean the set {1, 4, 9, 16, 25}.
In Haskell a similar syntax is used for lists. The special square brackets
syntax is expanded to include generators and filters.

Ryan Stansifer (CS, Florida Tech) Haskell Lists March 28, 2019 42 / 76

Haskell List Comprehension
A list comprehension has the form:

[expr | qual1 , . . . , qualn]

where 1 ≥ n

There are three types qualifiers

generators of the form pat<-expr, where p is a pattern (see Section
3.17) of type t and e is an expression of type [t]

local bindings that provide new definitions for use in the generated
expression expr or subsequent boolean guards and generators

boolean guards, which are arbitrary expressions of type Bool.

See the section on List Comprehensions in the Haskell 2010 Language
Report .
Also, there are intriguing language extensions:

ParallelListComp. Syntax: [expr | qualifier, ... |

qualifier, ...]

TransformListComp. Three new keywords: group, by, and using.

See a paper by Simon Peyton Jones.
Ryan Stansifer (CS, Florida Tech) Haskell Lists March 28, 2019 43 / 76

https://www.haskell.org/onlinereport/haskell2010/haskellch3.html#x8-420003.11
https://www.haskell.org/onlinereport/haskell2010/
https://www.haskell.org/onlinereport/haskell2010/
http://research.microsoft.com/en-us/um/people/simonpj/papers/list-comp/list-comp.pdf

Upcoming script

[n | n <- [1..5]]
[(n+2,5*n) | n <-[1..3]] -- list of pairs
:mod + Data.Char
[toUpper c | c <- "one fish"]

Ryan Stansifer (CS, Florida Tech) Haskell Lists March 28, 2019 44 / 76

List Comprehension

Ryan Stansifer (CS, Florida Tech) Haskell Lists March 28, 2019 45 / 76

List Comprehension

Ryan Stansifer (CS, Florida Tech) Haskell Lists March 28, 2019 45 / 76

List Comprehension

Ryan Stansifer (CS, Florida Tech) Haskell Lists March 28, 2019 45 / 76

List Comprehension

Ryan Stansifer (CS, Florida Tech) Haskell Lists March 28, 2019 45 / 76

List Comprehension

Ryan Stansifer (CS, Florida Tech) Haskell Lists March 28, 2019 45 / 76

List Comprehension

Ryan Stansifer (CS, Florida Tech) Haskell Lists March 28, 2019 45 / 76

List Comprehension

Ryan Stansifer (CS, Florida Tech) Haskell Lists March 28, 2019 45 / 76

List Comprehension

Ryan Stansifer (CS, Florida Tech) Haskell Lists March 28, 2019 45 / 76

List Comprehension

Ryan Stansifer (CS, Florida Tech) Haskell Lists March 28, 2019 45 / 76

List Comprehension

Ryan Stansifer (CS, Florida Tech) Haskell Lists March 28, 2019 45 / 76

List Comprehension

Ryan Stansifer (CS, Florida Tech) Haskell Lists March 28, 2019 45 / 76

List Comprehension (Multiple Generators)

Ryan Stansifer (CS, Florida Tech) Haskell Lists March 28, 2019 46 / 76

List Comprehension (Multiple Generators)

Ryan Stansifer (CS, Florida Tech) Haskell Lists March 28, 2019 46 / 76

List Comprehension (Multiple Generators)

Ryan Stansifer (CS, Florida Tech) Haskell Lists March 28, 2019 46 / 76

List Comprehension (Multiple Generators)

Ryan Stansifer (CS, Florida Tech) Haskell Lists March 28, 2019 46 / 76

List Comprehension (Multiple Generators)

Ryan Stansifer (CS, Florida Tech) Haskell Lists March 28, 2019 46 / 76

List Comprehension (Multiple Generators)

Ryan Stansifer (CS, Florida Tech) Haskell Lists March 28, 2019 46 / 76

List Comprehension (Multiple Generators)

Ryan Stansifer (CS, Florida Tech) Haskell Lists March 28, 2019 46 / 76

List Comprehension (Multiple Generators)

Ryan Stansifer (CS, Florida Tech) Haskell Lists March 28, 2019 46 / 76

List Comprehension (Multiple Generators)

Ryan Stansifer (CS, Florida Tech) Haskell Lists March 28, 2019 47 / 76

List Comprehension (Multiple Generators)

Ryan Stansifer (CS, Florida Tech) Haskell Lists March 28, 2019 47 / 76

List Comprehension (Multiple Generators)

Ryan Stansifer (CS, Florida Tech) Haskell Lists March 28, 2019 47 / 76

List Comprehension (Multiple Generators)

Ryan Stansifer (CS, Florida Tech) Haskell Lists March 28, 2019 47 / 76

List Comprehension (Infinite Lists, Nested)

Ryan Stansifer (CS, Florida Tech) Haskell Lists March 28, 2019 48 / 76

List Comprehension (Infinite Lists, Nested)

Ryan Stansifer (CS, Florida Tech) Haskell Lists March 28, 2019 48 / 76

List Comprehension (Infinite Lists, Nested)

Ryan Stansifer (CS, Florida Tech) Haskell Lists March 28, 2019 48 / 76

List Comprehension (Infinite Lists, Nested)

Ryan Stansifer (CS, Florida Tech) Haskell Lists March 28, 2019 48 / 76

List Comprehension (Infinite Lists, Nested)

Ryan Stansifer (CS, Florida Tech) Haskell Lists March 28, 2019 48 / 76

List Comprehension (Infinite Lists, Nested)

Ryan Stansifer (CS, Florida Tech) Haskell Lists March 28, 2019 48 / 76

List Comprehension (Infinite Lists, Nested)

Ryan Stansifer (CS, Florida Tech) Haskell Lists March 28, 2019 48 / 76

List Comprehension (Infinite Lists, Nested)

Ryan Stansifer (CS, Florida Tech) Haskell Lists March 28, 2019 48 / 76

List Comprehension (Infinite Lists, Nested)

Ryan Stansifer (CS, Florida Tech) Haskell Lists March 28, 2019 48 / 76

List Comprehension (Guards aka Filters)

Ryan Stansifer (CS, Florida Tech) Haskell Lists March 28, 2019 49 / 76

List Comprehension (Guards aka Filters)

Ryan Stansifer (CS, Florida Tech) Haskell Lists March 28, 2019 49 / 76

List Comprehension (Guards aka Filters)

Ryan Stansifer (CS, Florida Tech) Haskell Lists March 28, 2019 49 / 76

List Comprehension (Guards aka Filters)

Ryan Stansifer (CS, Florida Tech) Haskell Lists March 28, 2019 49 / 76

List Comprehension (Guards aka Filters)

Ryan Stansifer (CS, Florida Tech) Haskell Lists March 28, 2019 49 / 76

List Comprehension (Guards aka Filters)

Ryan Stansifer (CS, Florida Tech) Haskell Lists March 28, 2019 49 / 76

List Comprehension (Guards aka Filters)

Ryan Stansifer (CS, Florida Tech) Haskell Lists March 28, 2019 49 / 76

List Comprehension (Guards aka Filters)

Ryan Stansifer (CS, Florida Tech) Haskell Lists March 28, 2019 49 / 76

List Comprehension (Guards aka Filters)

Ryan Stansifer (CS, Florida Tech) Haskell Lists March 28, 2019 49 / 76

List Comprehension (Guards aka Filters)

Ryan Stansifer (CS, Florida Tech) Haskell Lists March 28, 2019 49 / 76

List Comprehension (Guards aka Filters)

Ryan Stansifer (CS, Florida Tech) Haskell Lists March 28, 2019 49 / 76

List Comprehension (Guards aka Filters)

Ryan Stansifer (CS, Florida Tech) Haskell Lists March 28, 2019 49 / 76

List Comprehension (Guards aka Filters)

Ryan Stansifer (CS, Florida Tech) Haskell Lists March 28, 2019 49 / 76

List Comprehension (Guards aka Filters)

Ryan Stansifer (CS, Florida Tech) Haskell Lists March 28, 2019 49 / 76

List Comprehension (Guards aka Filters)

Ryan Stansifer (CS, Florida Tech) Haskell Lists March 28, 2019 49 / 76

List Comprehension and Functions

Ryan Stansifer (CS, Florida Tech) Haskell Lists March 28, 2019 50 / 76

List Comprehension and Functions

Ryan Stansifer (CS, Florida Tech) Haskell Lists March 28, 2019 50 / 76

List Comprehension and Functions

Ryan Stansifer (CS, Florida Tech) Haskell Lists March 28, 2019 50 / 76

List Comprehension and Functions

Ryan Stansifer (CS, Florida Tech) Haskell Lists March 28, 2019 50 / 76

List Comprehension and Functions

Ryan Stansifer (CS, Florida Tech) Haskell Lists March 28, 2019 50 / 76

List Comprehension and Functions

Ryan Stansifer (CS, Florida Tech) Haskell Lists March 28, 2019 50 / 76

List Comprehension and Functions

Ryan Stansifer (CS, Florida Tech) Haskell Lists March 28, 2019 50 / 76

List Comprehension and Functions

Ryan Stansifer (CS, Florida Tech) Haskell Lists March 28, 2019 50 / 76

List Comprehension and Functions

Ryan Stansifer (CS, Florida Tech) Haskell Lists March 28, 2019 50 / 76

List Comprehension and Functions

Ryan Stansifer (CS, Florida Tech) Haskell Lists March 28, 2019 50 / 76

List Comprehension and Functions

Ryan Stansifer (CS, Florida Tech) Haskell Lists March 28, 2019 50 / 76

List Comprehension and Functions

Ryan Stansifer (CS, Florida Tech) Haskell Lists March 28, 2019 50 / 76

List Comprehension and Functions

Ryan Stansifer (CS, Florida Tech) Haskell Lists March 28, 2019 50 / 76

List Comprehension and Functions

Ryan Stansifer (CS, Florida Tech) Haskell Lists March 28, 2019 50 / 76

List Comprehension and Functions

Ryan Stansifer (CS, Florida Tech) Haskell Lists March 28, 2019 50 / 76

List Comprehension and Functions

Ryan Stansifer (CS, Florida Tech) Haskell Lists March 28, 2019 50 / 76

List Comprehension and Functions

Ryan Stansifer (CS, Florida Tech) Haskell Lists March 28, 2019 50 / 76

List Comprehension and Functions

Ryan Stansifer (CS, Florida Tech) Haskell Lists March 28, 2019 50 / 76

List Comprehension and Functions

Ryan Stansifer (CS, Florida Tech) Haskell Lists March 28, 2019 50 / 76

List Comprehension and Functions

Ryan Stansifer (CS, Florida Tech) Haskell Lists March 28, 2019 50 / 76

List Comprehension and Functions

Ryan Stansifer (CS, Florida Tech) Haskell Lists March 28, 2019 50 / 76

List Comprehension and Functions

Ryan Stansifer (CS, Florida Tech) Haskell Lists March 28, 2019 50 / 76

List Comprehension and Functions

Ryan Stansifer (CS, Florida Tech) Haskell Lists March 28, 2019 50 / 76

List Comprehension and Functions

Ryan Stansifer (CS, Florida Tech) Haskell Lists March 28, 2019 50 / 76

List Comprehension and Functions

Ryan Stansifer (CS, Florida Tech) Haskell Lists March 28, 2019 50 / 76

List Comprehension and Functions

Ryan Stansifer (CS, Florida Tech) Haskell Lists March 28, 2019 50 / 76

List Comprehension and Functions

Ryan Stansifer (CS, Florida Tech) Haskell Lists March 28, 2019 50 / 76

List Comprehension and Functions

Ryan Stansifer (CS, Florida Tech) Haskell Lists March 28, 2019 50 / 76

List Comprehension and Functions

Ryan Stansifer (CS, Florida Tech) Haskell Lists March 28, 2019 50 / 76

List Comprehension and Functions

Ryan Stansifer (CS, Florida Tech) Haskell Lists March 28, 2019 50 / 76

List Comprehension and Functions

Ryan Stansifer (CS, Florida Tech) Haskell Lists March 28, 2019 50 / 76

List Comprehension and Functions

Ryan Stansifer (CS, Florida Tech) Haskell Lists March 28, 2019 50 / 76

List Comprehension and Functions

Ryan Stansifer (CS, Florida Tech) Haskell Lists March 28, 2019 50 / 76

List Comprehension and Functions

Ryan Stansifer (CS, Florida Tech) Haskell Lists March 28, 2019 50 / 76

List Comprehension and Functions

Ryan Stansifer (CS, Florida Tech) Haskell Lists March 28, 2019 50 / 76

List Comprehension and Functions

Ryan Stansifer (CS, Florida Tech) Haskell Lists March 28, 2019 50 / 76

List Comprehension, Pythagorean Triples

Ryan Stansifer (CS, Florida Tech) Haskell Lists March 28, 2019 51 / 76

List Comprehension, Pythagorean Triples

Ryan Stansifer (CS, Florida Tech) Haskell Lists March 28, 2019 51 / 76

List Comprehension, Pythagorean Triples

Ryan Stansifer (CS, Florida Tech) Haskell Lists March 28, 2019 51 / 76

List Comprehension, Pythagorean Triples

Ryan Stansifer (CS, Florida Tech) Haskell Lists March 28, 2019 51 / 76

List Comprehension, Pythagorean Triples

Ryan Stansifer (CS, Florida Tech) Haskell Lists March 28, 2019 51 / 76

List Comprehension, Pythagorean Triples

Ryan Stansifer (CS, Florida Tech) Haskell Lists March 28, 2019 51 / 76

List Comprehension, Pythagorean Triples

Ryan Stansifer (CS, Florida Tech) Haskell Lists March 28, 2019 51 / 76

List Comprehension, Pythagorean Triples

Ryan Stansifer (CS, Florida Tech) Haskell Lists March 28, 2019 51 / 76

Before continuing on the last and most important data value: functions,
we consider the problem of giving data values names.

It is important psychologically to give the programmer a means of refering
to data and not just creating data.

Ryan Stansifer (CS, Florida Tech) Haskell Lists March 28, 2019 52 / 76

Every object of computation/value gets a name in the same way:

theMeaningOfLife = 42

NB. Not assignment!

Control of scope using let expression.

let <declaration > in <expression >

[We don’t need any examples now.]

Ryan Stansifer (CS, Florida Tech) Haskell Lists March 28, 2019 53 / 76

Syntax of Names

Names consist of either letters and digits, or of all symbols. All symbolic
names are treated as infix operators by the parser. All non-symbolic names
are treated as prefix functions by the parser.

:
!!
++
*

div
quotRem
Integer

Ryan Stansifer (CS, Florida Tech) Haskell Lists March 28, 2019 54 / 76

Syntax of Names
Enclosing a name with () tells the parser to drop the infix assumption.
Enclosing a name with backquotes tells the parser to assume infix
assumption.

prefix infix

alphabetic elem ‘elem‘

symbolc (+) +

div 24 7
24 ‘div ‘ 7

elem 5 [1,2,3,4,5,6]
5 ‘elem ‘ [1,2,3,4,5,6]

(+) 2 3
2 + 3

Ryan Stansifer (CS, Florida Tech) Haskell Lists March 28, 2019 55 / 76

Declarations

A name is given a value by a declaration of the simple form:

name = value

In haskell this declaration is actually a specific case of a more general
declartion of the form:

pattern "=" value

Patterns (section 3.17.1 of the reference 2010 manual) are more naturally
discussed later in the context of functions.

There are declarations for data types and classes. These will be discussed
later.

Ryan Stansifer (CS, Florida Tech) Haskell Lists March 28, 2019 56 / 76

Declarations

Many languages have declarations for many kinds of things: constants,
variables, procedures, and functions.

Haskell does not talk about memory locations (however, see boxed versus
unboxed), hence no need for variable declarations.

Fundamentally, given a datum a name in Haskell is the same for any
value—functions included.

Ryan Stansifer (CS, Florida Tech) Haskell Lists March 28, 2019 57 / 76

Overview of Simple Functions

1 syntax (lambda)

2 Two Haskell quirks

3 anonymous (functions as regular data)

4 special syntax

5 patterns (generalization of formal parameters)

6 definition by cases

7 guards [omit]

Ryan Stansifer (CS, Florida Tech) Haskell Lists March 28, 2019 58 / 76

Syntax of Functions

\ x -> 2 * x

Ryan Stansifer (CS, Florida Tech) Haskell Lists March 28, 2019 59 / 76

Syntax of Functions

backslash; pronounced “lambda”

identifier: name of formal parameter (but generalized to patterns
later!)

arrow separates teh body of the fucntion from the parameter

Ryan Stansifer (CS, Florida Tech) Haskell Lists March 28, 2019 60 / 76

Using GHCi with Functions

Before we can begin illustrating functions we must deal with two quirks in
Haskell which totally distract and even obscure the main issues.

1 Haskell does not print anything reasonable to represent a function by
default.

2 The types of many function contain class constraints, and there is no
need to discuss classes in a simple introduction to Haskell. (Use
:type +d directive.)

Ryan Stansifer (CS, Florida Tech) Haskell Lists March 28, 2019 61 / 76

Using GHCi with Functions

Ryan Stansifer (CS, Florida Tech) Haskell Lists March 28, 2019 62 / 76

Using GHCi with Functions

Ryan Stansifer (CS, Florida Tech) Haskell Lists March 28, 2019 62 / 76

Using GHCi with Functions

Ryan Stansifer (CS, Florida Tech) Haskell Lists March 28, 2019 62 / 76

Using GHCi with Functions

Ryan Stansifer (CS, Florida Tech) Haskell Lists March 28, 2019 62 / 76

Using GHCi with Functions

Ryan Stansifer (CS, Florida Tech) Haskell Lists March 28, 2019 62 / 76

Using GHCi with Functions

Haskell magical show function will show/print anything, but not functions.

In Haskell’s defense, what is the printable representation of a function? Is
the Intel assembly code? The abstract syntax tree of the code? Should it
just parrot back out the input source code?

One can get the Haskell interactive system to print the word <function>

which seems like a really better idea than one of its inscrutable error
messages.

Ryan Stansifer (CS, Florida Tech) Haskell Lists March 28, 2019 63 / 76

Upcoming script

:type ’A’
:type 3
:type \ b -> not b
:type \ x -> not x
:set +t
\ x -> x + 1

Ryan Stansifer (CS, Florida Tech) Haskell Lists March 28, 2019 64 / 76

Using GHCi with Functions

Ryan Stansifer (CS, Florida Tech) Haskell Lists March 28, 2019 65 / 76

Using GHCi with Functions

Ryan Stansifer (CS, Florida Tech) Haskell Lists March 28, 2019 65 / 76

Using GHCi with Functions

Ryan Stansifer (CS, Florida Tech) Haskell Lists March 28, 2019 65 / 76

Using GHCi with Functions

Ryan Stansifer (CS, Florida Tech) Haskell Lists March 28, 2019 65 / 76

Using GHCi with Functions

Ryan Stansifer (CS, Florida Tech) Haskell Lists March 28, 2019 65 / 76

Using GHCi with Functions

Ryan Stansifer (CS, Florida Tech) Haskell Lists March 28, 2019 65 / 76

Using GHCi with Functions

Ryan Stansifer (CS, Florida Tech) Haskell Lists March 28, 2019 65 / 76

Using GHCi with Functions

Ryan Stansifer (CS, Florida Tech) Haskell Lists March 28, 2019 65 / 76

Using GHCi with Functions

Ryan Stansifer (CS, Florida Tech) Haskell Lists March 28, 2019 65 / 76

Functions Are Data

Upcoming script

:mod + Text.Show.Functions Data.Char

\ x -> x + 1

\ i -> max i 0

\ x -> sin (x+pi)

\ c -> prd c

\ s -> s ++ ", " ++ s

\ xs -> 2:xs

Ryan Stansifer (CS, Florida Tech) Haskell Lists March 28, 2019 66 / 76

Functions Definitions

Ryan Stansifer (CS, Florida Tech) Haskell Lists March 28, 2019 67 / 76

Functions Definitions

Ryan Stansifer (CS, Florida Tech) Haskell Lists March 28, 2019 67 / 76

Functions Definitions

Ryan Stansifer (CS, Florida Tech) Haskell Lists March 28, 2019 67 / 76

Functions Definitions

Ryan Stansifer (CS, Florida Tech) Haskell Lists March 28, 2019 67 / 76

Functions Definitions

Ryan Stansifer (CS, Florida Tech) Haskell Lists March 28, 2019 67 / 76

Functions Definitions

Ryan Stansifer (CS, Florida Tech) Haskell Lists March 28, 2019 67 / 76

Functions Definitions

Ryan Stansifer (CS, Florida Tech) Haskell Lists March 28, 2019 67 / 76

Functions Definitions

Ryan Stansifer (CS, Florida Tech) Haskell Lists March 28, 2019 67 / 76

Functions Definitions

Ryan Stansifer (CS, Florida Tech) Haskell Lists March 28, 2019 67 / 76

Functions Definitions

Ryan Stansifer (CS, Florida Tech) Haskell Lists March 28, 2019 67 / 76

Functions Definitions

Ryan Stansifer (CS, Florida Tech) Haskell Lists March 28, 2019 67 / 76

Functions Definitions

Ryan Stansifer (CS, Florida Tech) Haskell Lists March 28, 2019 67 / 76

What Can You Do With a Function?

Integer: get the next integer

Tuple: get the first and the second part

List: get the rest of the lsit

Function: use/apply it to an argument

Ryan Stansifer (CS, Florida Tech) Haskell Lists March 28, 2019 68 / 76

Functions Application

We ask what is the type of the function, and then we apply it to some
element of the domain.

Ryan Stansifer (CS, Florida Tech) Haskell Lists March 28, 2019 69 / 76

Function Application

Ryan Stansifer (CS, Florida Tech) Haskell Lists March 28, 2019 70 / 76

Function Application

Ryan Stansifer (CS, Florida Tech) Haskell Lists March 28, 2019 70 / 76

Function Application

Ryan Stansifer (CS, Florida Tech) Haskell Lists March 28, 2019 70 / 76

Function Application

Ryan Stansifer (CS, Florida Tech) Haskell Lists March 28, 2019 70 / 76

Function Application

Ryan Stansifer (CS, Florida Tech) Haskell Lists March 28, 2019 70 / 76

Function Application

Ryan Stansifer (CS, Florida Tech) Haskell Lists March 28, 2019 70 / 76

Function Application

Ryan Stansifer (CS, Florida Tech) Haskell Lists March 28, 2019 70 / 76

Function Application

Ryan Stansifer (CS, Florida Tech) Haskell Lists March 28, 2019 70 / 76

Function Application

Ryan Stansifer (CS, Florida Tech) Haskell Lists March 28, 2019 70 / 76

Function Application

Ryan Stansifer (CS, Florida Tech) Haskell Lists March 28, 2019 70 / 76

Function Application

Ryan Stansifer (CS, Florida Tech) Haskell Lists March 28, 2019 70 / 76

Function Application

Ryan Stansifer (CS, Florida Tech) Haskell Lists March 28, 2019 70 / 76

Function Application

Ryan Stansifer (CS, Florida Tech) Haskell Lists March 28, 2019 70 / 76

Function Application

Ryan Stansifer (CS, Florida Tech) Haskell Lists March 28, 2019 70 / 76

Function Application

Ryan Stansifer (CS, Florida Tech) Haskell Lists March 28, 2019 70 / 76

Function Application

Ryan Stansifer (CS, Florida Tech) Haskell Lists March 28, 2019 70 / 76

Function Application

Ryan Stansifer (CS, Florida Tech) Haskell Lists March 28, 2019 70 / 76

Function Application

Ryan Stansifer (CS, Florida Tech) Haskell Lists March 28, 2019 70 / 76

How do functions get names?
The same way anything gets a name!

add1 = \ x -> x + 1

cutOff = \ i -> max i 0

g = \ x -> sin (x+pi)

f = \ c -> ord c

double = \ s -> s ++ ", " ++ s

cons2 = \ xs -> 2:xs

Ryan Stansifer (CS, Florida Tech) Haskell Lists March 28, 2019 71 / 76

Naming Functions

Ryan Stansifer (CS, Florida Tech) Haskell Lists March 28, 2019 72 / 76

Naming Functions

Ryan Stansifer (CS, Florida Tech) Haskell Lists March 28, 2019 72 / 76

Naming Functions

Ryan Stansifer (CS, Florida Tech) Haskell Lists March 28, 2019 72 / 76

Naming Functions

Ryan Stansifer (CS, Florida Tech) Haskell Lists March 28, 2019 72 / 76

Naming Functions

Ryan Stansifer (CS, Florida Tech) Haskell Lists March 28, 2019 72 / 76

Naming Functions

Ryan Stansifer (CS, Florida Tech) Haskell Lists March 28, 2019 72 / 76

Naming Functions

Ryan Stansifer (CS, Florida Tech) Haskell Lists March 28, 2019 72 / 76

Naming Functions

Ryan Stansifer (CS, Florida Tech) Haskell Lists March 28, 2019 72 / 76

Naming Functions

Ryan Stansifer (CS, Florida Tech) Haskell Lists March 28, 2019 72 / 76

Function Declaration Has Special Syntax

add1 = \ x -> x + 1

cutOff = \ i -> max i 0

g = \ x -> sin (x+pi)

f = \ c -> ord c

double =\s->s++", "++ s

cons2 = \ xs -> 2:xs

add1 x = x + 1

cutOff i = max i 0

g x = sin (x+pi)

f c = ord c

double s = s++", "++s

cons2 xs = 2:xs

Ryan Stansifer (CS, Florida Tech) Haskell Lists March 28, 2019 73 / 76

Functions

f x = if null x then "Empty!" else "Not Empty!"

factorial n = if n<2 then 1 else n * factorial (n-1)

Ryan Stansifer (CS, Florida Tech) Haskell Lists March 28, 2019 74 / 76

Patterns

Think of a formal argmument as a name that matches any value in the
domain of the function.

Patterns as formal arguments use constructors to match against the value
given to the function as the actual argument.

If the value does not match, you are out of luck.

Ryan Stansifer (CS, Florida Tech) Haskell Lists March 28, 2019 75 / 76

Patterns

p3 (x,y,z) = z -- definition of function p3

p3 (1,2,3) -- evaluates to 3

tr = (1,2,3)

p3 tr -- evaluates to 3

f (x:2:y:rest) = x+y -- defintion of f

f (1:2:3:9:[]) -- evaluates to 4

f [1,2,3,9] -- evaluates to 4

l = [12,3,9]

f l -- evaluates to 4

Ryan Stansifer (CS, Florida Tech) Haskell Lists March 28, 2019 76 / 76

Wildcard Patterns

p3 (_,_,z) = z -- definition of function p3

f (_:2:_:_) = x+y -- definition of f

Ryan Stansifer (CS, Florida Tech) Haskell Lists March 28, 2019 77 / 76

Definition by cases

f [] = "empty"
f (x:[]) = "single"
f (x:y:[]) = "small"
f (x:y:z:[]) = "medium"
f (_) = "large"

Ryan Stansifer (CS, Florida Tech) Haskell Lists March 28, 2019 78 / 76

Overview

Everything is digital (all files are binary)

Unix streams and pipes (function composition is important)

What is a program?

GHC
I writing a program
I compiling a program (also -Wall)
I running a program (also +RTS -RTS)

interact: boilerplate to turn a function into a working program

Ryan Stansifer (CS, Florida Tech) Main Program With GHC 28 March 2019 1 / 10

Everything is Digital

Ryan Stansifer (CS, Florida Tech) Main Program With GHC 28 March 2019 2 / 10

http://cs.fit.edu/~ryan/digital/

Streams and Pipes

Along the Stream by Sharon France

Ryan Stansifer (CS, Florida Tech) Main Program With GHC 28 March 2019 3 / 10

We know what a function is: it maps an element
in the domain to an element in the range.

When we think of a program as a function we
generally think of something like the factorial
function from numbers to numbers.

But this is not a “real” program. A real program reads input and writes
output.

Limiting ourselves to the important case of programs from US-ASCII text
to US-ASCII text, a real program is really a function from a
stream/file/string of text to a stream/file/string of text.

Ryan Stansifer (CS, Florida Tech) Main Program With GHC 28 March 2019 4 / 10

Input and Output Stream

e
c

b
h
j
f

g
d

a
j

J
I

H
G

F
E
D
C
B

A

Ryan Stansifer (CS, Florida Tech) Main Program With GHC 28 March 2019 5 / 10

Using the Glasgow Haskell Compiler

In Haskell, just like numerous other programming languages, one creates a
source program in a text file, one invokes the compiler to create an
executable file, and then one commands the computer to run the
executable file on some text input and observe or collect the text output.

$ ghc -Wall -o main Main.hs

$ main < input.txt > output.txt

Ryan Stansifer (CS, Florida Tech) Main Program With GHC 28 March 2019 6 / 10

Warning!

Ask the compiler to help you write a more beautiful program by turning on
all warnnigs.

$ ghc -Wall -o main Main.hs

Don’t turn in a program with warnings.

Ryan Stansifer (CS, Florida Tech) Main Program With GHC 28 March 2019 7 / 10

How do do we create a Haskell program that reads the input and writes
the output?

Ryan Stansifer (CS, Florida Tech) Main Program With GHC 28 March 2019 8 / 10

Some programming languages have elaborate IO mechanisms which one
must learn to simple process the the input and produce the output.
In Haskell the simplest approach is to use the function interact to
transform the conceptually pure program (a function from the input stream
to the output stream) to an actual, working program on the computer.

Ryan Stansifer (CS, Florida Tech) Main Program With GHC 28 March 2019 9 / 10

Ryan Stansifer (CS, Florida Tech) Main Program With GHC 28 March 2019 10 / 10

Examples On-Line

README

Ryan Stansifer (CS, Florida Tech) Main Program With GHC 28 March 2019 11 / 10

http://cs.fit.edu/~ryan/haskell/programs/main/README

	over
	master2
	Using GHCi

	interact
	What is a Program?

