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Abstract

Embedded systems have changed dramatically in recent decades. At their start in the 1970's and
growth in the 1980's, embedded systems consisted of relatively simple microcontroller hardware,
often programmed in low-level assembly language, to configure a few peripherals and interact
with a few input/output pins. Today, improvements in speed, memory size, and power have
changed the emphasis from hardware to software, with microcontrollers supporting tens of
thousands of lines of code, perhaps programmed in C, often with concurrent tasks, interacting
with dozens of peripherals and potentially hundreds of input/output pins in time-multiplexed
manner, and dynamically changing among numerous power states. Yet, many university
embedded systems courses and textbooks still look similar to those in the 1980's, emphasizing
low-level programming of hardware. Little guidance is provided to teach students in a first
course how to program using higher-level disciplined methods. The result is an improper
foundation and perspective, leading to ad hoc unstructured code, or over-reliance and inefficient
use of real-time operating systems. To remedy the situation, we describe a model-based
discipline for introductory embedded systems courses, developed over the past decade at the
University of California, Riverside and University of California, Irvine. The discipline has
students describing desired behavior using synchronous state machines, and capturing those state
machines using standard C templates. As such, students develop software paying strict attention
to timing issues, and create their own C-based task scheduler, leading to a solid understanding of
concurrency and real-time operating system functionality. This paper highlights that discipline,
and describes new web-based interactive learning material emphasizing the discipline, which is
best used for the lecture portion of a course having an accompanying microcontroller lab. The

paper also introduces web-based tools that support the discipline.



Introduction

The embedded systems field is a relatively new engineering field and is thus evolving rapidly. In
the 1980s, most embedded systems were primarily low-complexity devices like telephone
answering machines or simple factory automation equipment. Embedded systems courses and
textbooks began to appear in universities, originally using names like microprocessor-based
system design. Emphasis was placed on configuring and/or interfacing with the peripherals like
serial communication hardware, pulse width modulators, keypads, and displays. Programming
originally focused on the assembly language of a particular microprocessor or microcontroller,

evolving to C or other high-level languages in the 1990's/2000's.

Today, even relatively-simple embedded systems in practice may consist of tens of thousands of
C code. However, introductory courses and textbooks mainly still focus on configuring and
interfacing with peripherals, with little guidance provided to students on how to write programs
that are elegant, robust, and scalable. The result is that much embedded systems code, including
much commercial code, follows no particular programming discipline, is prone to bugs, and is
hard to maintain. Many commercial embedded systems projects fail to become products, or
experience failures in the field, as a result'. Some universities have intermediate or advanced
courses that introduce real-time systems programming including multi-task programming, but
many embedded systems students do not have access to such courses, or have already developed
bad programming habits. In any case, such courses still may not teach a discipline for how to

program each task.

Beginning about 10 years ago, researchers at the University of California, at Riverside and at
Irvine, with support by the National Science Foundation, began developing new materials and
accompanying simulators intended to bring model-based discipline (well known by the research
community) into first courses on embedded systems*®. The materials introduce model-based
design just weeks into a semester of a first embedded systems course, using state machines. The
researchers developed a special form of state machines intended to be easy to understand by
beginners yet sufficiently powerful for commercial use, utilizing C-based semantics. Students
think in terms of state machines, and then translate to C via a simple process. Initial emphasis is
on capturing desired behavior correctly, then choosing periods to sample inputs and generate

outputs appropriately. As desired behavior becomes more complex, students learn to use multiple



concurrent state machines (tasks) to keep distinct behaviors distinct, and to communicate and
synchronize among tasks. Students learn to manually translate such multiple tasks to C, and to
write a simple task scheduler in C as well, serving well for many commercial systems, as well as
providing an excellent foundation for subsequent introduction to real-time operating systems
(providing a solid understanding of what is "under the hood"). The material aims to help make
introductory embedded systems a serious engineering discipline, with lecture material covering
the "theory" of model-based programming (making use of the new material and simulator), and
labs covering the '"practice" of configuring, interfacing, and programming an actual

microcontroller on a breadboard.

The material has been in active use at the University of California at Riverside and the
University of California at Irvine for over 7 years, used by several thousand students there so far.
The material was published in 2014 as a zyBook'®, and since then has also been used at about 20
other universities, and that number is growing. Contrary to fears that students in a first embedded
systems course would not be able to handle model-based design, the result has instead been that
students have excelled, and are able to build larger and more complex systems in just one
semester, and with fewer bugs. Senior design projects have also become more sophisticated.

Student evaluations of the courses have also been very high.

Synchronous state machines

Embedded researchers have long known that the sequential program computation model alone is
insufficient for serious embedded systems design. Researchers have developed a variety of
computation models for embedded systems, such as synchronous dataflow, statecharts, Kahn
process networks, codesign finite-state machines, SpecCharts, SpecC, and many more?, with
many such models having explicit timing constructs. While used in high-end embedded systems,
most mainstream embedded systems designers do not use, and often are unaware of, such
models. Designers instead program directly in C (or even assembly), using ad hoc timer
techniques for dealing with time. When requiring concurrent tasks or time tasks, some designers
use a real-time operating system (RTOS), but often do so haphazardly or inefficiently, due in

part to a lack of understanding of a real-time scheduler's underlying functionality.



One reason long-existing models haven't been incorporated into mainstream design is that such
models are sometimes too complex to understand by a novice. Furthermore, the models were
developed without care to ensure a straightforward translation to C exists, so resulting C code to

capture those models is complex and hard to read or maintain.

For control-dominated systems that primarily respond to and generate events, we developed the
synchronous state machine (synchSM) model. The model uses C syntax and semantics for
variables, actions, and conditions. A synchSM has a period. A tick occurs at the end of each
period, and is defined as:
e Examining the transitions from the synchSM's current state and transitioning to the
appropriate next state (and execution any actions on that transition), and

e Executing the actions of that next state, after which the tick is complete.

Figure 1 provides three examples. Figure 1(a) shows a simple system that lights one of three
LEDs in a sequence, one at a time. Fig 1(b) shows a similar system, but for eight LEDs, and
instead using C's bit-shifting capability to set 1 bit in 8-bit output B. Fig 1(c) shows a system that

computes the speed of a car passing over two input sensors A0 and then A1 separated by 10 feet.

Figure 1: Synchronous state machines naturally capture behavior of various embedded systems.
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A synchSM is captured in C using a standard template for a synchSM's tick function, as shown
in Figure 2. Any transition conditions would simply become if-statements within each case of the

top switch statement. In main(), the C code configures a microcontroller's hardware timer to the

#Finclude "RIMS.h"

Figurﬁ 2. A Sy‘F‘Ith‘OHOUS State I’T'IBChIr'Ie volatile unsigmed char Tmﬂr?la.g':[:: f/f I8BR raises, main({} lowers
is straightforwardly implemented in C on veld Tinertsa() |

. N . imesFlag = 1
a microcontroller having a timer. b L

emuR BL_States | BL_SMSvart, BL_Led0ff, BL_Led0n } BL_State;
woid TickFect Blink() {

switch [ BL_State } { /fTransitions
cas®s BL SHMStart:
BL State = BL _Ledoff; //Initial atate
bBroak;

BlinkingLed ease BL_Lodort: ;
Period: 2000 ms; :;:;?“ = BL_LedOn;

cass 5L Ledn:
BL State = BL_Ledoff;

broak;
default:
LedOff LedOn BL_State = BL_SMStart;
braak;

¢
BO =0; BO = 1; _
switch [BL State } { f/State actions
cafe BL Ledoff:
Bl = 03
broak;
cnAd GLLendOm
B = 1;
break;
default:
break;
L}

}

wvold main(} {
B = 0; //Init ontputs
TimerSet [ 2000] 2
TimezOn{ )z
BL_State = HL SMStartp 7/ Indicates initial oall to tick-fot

while (L) {
TicKFot BLink()j ff Executa one synchSH tick
whila i !TimerFlagi{} // Wale for BL's pariod
TimerFlag = 0; /f Loser flag

synchSM's period. In main's while(1) loop, the C code calls the tick function, then waits until the
timer interrupt service routine is called, as detected by a flag, which main then resets. The key
here is that the timer is used in a standard manner. No delay loops or other timing is allowed; all
timing is via ticking states. If a period is 2000 ms and a designer wants to wait 10,000 ms, the
designer's state machine must wait five states (either five distinct states, or using a variable,

actions, and transitions to repeat the same state five times).



To support the above implementation in C, actions in every synchSM state must be
run-to-completion; no looping that waits on external values is allowed within a state's actions.
Any such waiting must be done using the state and transition capabilities of a synchSM (as in

Figure 1(c)), and not using loops within a state's actions.

Concurrent synchSMs Figure 3: Concurrency is naturally captured as concurrent
synchronous state machines.
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main code uses variables to call each synchSM tick function at the appropriate multiple of timer

ticks, as in Figure 5.

Figure 5: Differing synchSM periods is handled by simple counting.

In fact, a task structure can be created as in Figure 6. Note that one of the structure's fields is a
function pointer to a synchSM's tick function.

Figure 6: A task structure created in C helps manage synchSMs.




With such a structure, a Figure 7: With a task structure and an array of such tasks, a simple

simple for loop can iterate for loop carries out task scheduling.

thI'OU.gh ataSkS array, and call !/ Por each task, call task tick function if task's period is up
for (i=0; i < tasksMum; i++) {

the tick function of any ready if (tasks[i].elapsedTime >= tasks|i].period){
X . f/ Task is ready to tick, so call its tick function
tasks, as shown in Figure 7. tasks[i].state = tasks[i].TickFet(tasks[i].state);

tagka[i].elapaedTime = 0; // Reset the elapsed time

Such code essentially }
tesks[1l).elapsedTime += tasksPeriodGCD;

represents a non-preemptive }

task scheduler that underlies a

typical RTOS, but written fully in C and requiring only a few lines of code beyond the designer's
main functionality. Several versions of such a scheduler (including a preemptive version), known
as RIOS’, are freely available at http://www.riosscheduler.org/, and have been downloaded

thousands of times by students and engineers.

Low-power software is then almost trivially achieved by moving the scheduler code into the
timer's ISR, and having main's while(1) loop merely go to sleep, as in Figure 8. The while(1)
loop will put the microcontroller into a low-power sleep mode. The timer will wake the
microcontroller and jump to the timer ISR, causing the task scheduler to call any ready tasks,

after which control returns to the while(1) loop which immediately goes back to sleep.

Figure 8: Low power is achieved straightforwardly by moving the scheduler
code into an ISR, and having main() repeatedly call sleep().

void Timerism() {
unsigned char i;
for (L = 0; 1 < tasksMum; ++i) { // Heart of the scheduler code
if | tasks[i)].elapsedTima >= tasks[i].peried ) { // Ready
tasks[i].state = tasks[i].TickFot tasks[i].state);
tasks(l).elapsedTime = 0;
}
tasks[i].elapsedTime += tasksPeriodGCD;
}
¥

int main() {
unsigned char i=0;
tasks[i].state = TL _SMStart;
tagka[i].period = 500;
tasks([1l].elapsedTime = tasks|[i].peried;
tasksa[i].TickFet = &TickFet_ThreelED; //function TickFect ThreeLED not shown

TimerSet|tasksPeriodGCD);
Timeron():

while{1l) {
Sleep();
}

roturn 0;



A designer is thus taught to use the largest possible periods for each synchSM while achieving

sufficient reactivity to input events, in order to maximize sleep time and thus minimize power.

Other topics

The above model-based discipline is central to the material, but the material covers additional
topics, including:
e Bit-level manipulation in C
e Input/output topics, such as sampling rates, glitching, expandable I/O, and latency.
e Peripherals: Pulse-width modulation, UARTS, and analog-digital conversion
e Embedded programming issues: Lookup tables versus functions, fixed-point
programming.
e Utilization and scheduling: Worst-case execution time, utilization computations, jitter,
preemptive scheduling.
e FPGAs: Converting synchSMs to hardware desciption languages for synthesis to FPGAs.
e Domains: The material includes one chapter introductions to each of three key embedded
system domains: Control (in particular, PID control), digital signal processing, and

pattern recognition.

RI tools for lecture component

Too often, the lecture portion of embedded systems intro courses focuses on microcontroller
details. Such focus fails to teach students that embedded systems is a serious software discipline.
While such details obviously are important, we believe they should either be relegated to the lab
portion of a class, or taught in clearly denoted "lab details" segments within lecture time. Lecture
time instead can focus on the above topics. To support those lecture topics, we have developed
several web-based tools (initially released in 2009 as Windows-based tools, but we have
migrated much of the functionality to the web now). The Riverside-Irvine Microcontroller

Simulator, or RIMS, is a virtual microcontroller having a simple 8-input 8-output structure, with



each input accessed via C global variables A0, Al, ..., A7, and outputs as B0, B1, ... B7. All
eight inputs can be accessed as A, and all eight outputs as B. Ex: AO =1, A7 =0, or A = OxFF.

The simulator (which includes a C compiler) actually runs remotely on Amazon Web Services

(AWS);

the student interacts with a light web-client window (see Figure 9) to that simulator. The

simulator supports standard stop and step behavior, and can be run faster or slower than real time

(with the slowest speed useful when explaining concepts during lecture).

Figure 9: The Rl simulator allows students to program a virtual microcontroller directly in a web-browser,
enabling focus on concepts rather than non-essential microcontroller details and application installation.
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We also provide a state machine capture and simulation tool, known as R/BS (Riverside-Irvine

Builder of State machines), depicted in Figure 10. Presently, a subset of C is supported for the

actions and conditions in the web-based RIBS (the Windows version supported most of C; work

is ongoing to expand the subset for the web-based version).



Figure 10: RIBS supports capturing and simulating state machines in a web browser.
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A third tool is a timing diagram viewer, shown in Figure 11.

Figure 11: A web-based timing diagram viewer shows results of simulations of RIBS (state machines) or RIMS
(C on the virtual microcontraller).
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Using the above tools, students can be assigned homework problems initially involving writing C
on RIMS, and then evolving towards describing synchSMs. With the Windows version, students
can export synchSM files and submit for grading, including timing diagrams and auto-generated

C. Such functionality is being developed for the web-based version during the coming year.

Experiences

The model-oriented discipline has been used by thousands of students at University of
California, Riverside (UCR) and University of California, Irvine (UCI), and dozens of other
universities. Students' majors include computer science, computer engineering, and electrical
engineering. While early evaluators of the research worried that students would not grasp state
machines in an intro course, the opposite has proven to be the case: Students find state machines
highly intuitive (and state machines seem to be less intimidating to electrical engineering
students). The UCR and UCI courses each have a programming course as a prerequisite. Student
evaluations have been very strong. Feedback from instructors has been outstanding; one
professor from a Florida university indicated "You made this class fun for the students, and they

are learning more than before too."

At UCR, student completion rates of the online activities have been over 95% for several
quarters. Each student completes about 500 activities in the material during a quarter. If such
activities had been submitted as homework, grading time would have varied between 1 minute to
5 minutes per activity per student; we estimate about 2 minutes on average. As each class
offering has about 100 students, grading time would have been about 100 * 500 * 2 = 100,000
minutes, or about 1666 hours. Clearly, such an amount of homework could not have been
assigned, and thus in the past far less homework was assigned, averaging about 100 hours of
grading for a quarter, or about 1/3rd of each teaching assistant's time. Since switching to this
material, the TA's have time freed up to instead spend time with students in the lab / office hours

/ discussion forum, or improving the course itself (developing labs, creating test questions, etc.).

In previous papers, we have reported on randomized controlled studies showing students learn
more from such interactive content’ (16% improvements, with 64% improvement among the
initially weakest students), on a cross-semester analysis of four courses at three universities

showing that students perform better overall in classes that switch to such material® (about a



1/3rd letter grade improvement), and via post-class analysis’ we found that students spend about

90 minutes/week in the material (averaging 4.5 sessions/week and 20 minutes/session).

At UCR and UCI, end-of-course projects have more functionality than before, and nearly all
students have fully functioning multi-task projects (whereas previously, when students would
write C code however they chose, non-functioning code was commonplace, especially due to
tricky timing issues). At UCR, a second embedded systems course continues the approach, as
well as teaching students to use an RTOS (which students firmly understand, having written their
own scheduler). Students commonly follow the synchSM model-based discipline in their senior

design projects.

Conclusions

The synchSM model-based discipline is suitable for introductory embedded systems courses.
The supporting RI web-based tools (RIMS and RIBS) empower instructors to provide
homeworks that are clearly distinct from the more-detailed lab activities that often accompany
such a class, or allow instructors without such lab setups to still introduce students to embedded
systems using the virtual RIM simulator. The RIOS scheduler code, fully in C, is freely available
for various uses. The above discipline and the web-based RI tools are published by zyBooks’,
using extensive animations and integrated learning questions throughout. The material is
configurable by instructors, and commonly combined with other material on programming in C,

digital design, or other subjects.
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