

Learning PHP, MySQL, and JavaScript

Learning PHP, MySQL, and
JavaScript

Robin Nixon

Beijing • Cambridge • Farnham • Köln • Sebastopol • Taipei • Tokyo

Learning PHP, MySQL, and JavaScript
by Robin Nixon

Copyright © 2009 Robin Nixon. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (http://my.safaribooksonline.com). For more information, contact our
corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editor: Andy Oram
Production Editor: Sumita Mukherji
Copyeditor: Nancy Kotary
Proofreader: Kiel Van Horn

Indexer: Ellen Troutman Zaig
Cover Designer: Karen Montgomery
Interior Designer: David Futato
Illustrator: Robert Romano

Printing History:
July 2009: First Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of
O’Reilly Media, Inc. Learning PHP, MySQL, and JavaScript, the image of sugar gliders, and related trade
dress are trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc., was aware of a
trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and author assume
no responsibility for errors or omissions, or for damages resulting from the use of the information con-
tained herein.

TM

This book uses RepKover™, a durable and flexible lay-flat binding.

ISBN: 978-0-596-15713-5

[M] [2/10]

1265393701

http://my.safaribooksonline.com/?portal=oreilly
mailto:corporate@oreilly.com

Table of Contents

Preface . xv

1. Introduction to Dynamic Web Content . 1
HTTP and HTML: Berners-Lee’s Basics 2

The Request/Response Procedure 2
The Benefits of PHP, MySQL, and JavaScript 5

Using PHP 5
Using MySQL 6
Using JavaScript 7

The Apache Web Server 8
About Open Source 9
Bringing It All Together 9
Test Your Knowledge: Questions 11

2. Setting Up a Development Server . 13
What Is a WAMP, MAMP, or LAMP? 13
Installing a WAMP on Windows 14

Overcoming Installation Problems 14
Testing the Installation 16
Alternative WAMPs 18

Installing a MAMP on Mac OS X 19
Some Final Tweaking 24
Other Alternatives 25

Installing a LAMP on Linux 25
Working Remotely 26

Logging In 27
Using FTP 27

Using a Program Editor 28
Using an IDE 30
Test Your Knowledge: Questions 32

v

3. Introduction to PHP . 33
Incorporating PHP Within HTML 33

Calling the PHP Parser 34
This Book’s Examples 35
The Structure of PHP 36

Using Comments 36
Basic Syntax 37
Understanding Variables 38
Operators 42
Variable Assignment 45
Multiple-Line Commands 47
Variable Typing 49
Constants 50
The Difference Between the echo and print Commands 51
Functions 52
Variable Scope 53

Test Your Knowledge: Questions 58

4. Expressions and Control Flow in PHP . 61
Expressions 61

Literals and Variables 62
Operators 63

Operator Precedence 64
Associativity 66
Relational Operators 67

Conditionals 70
The if Statement 71
The else Statement 72
The elseif Statement 73
The switch Statement 74
The ? Operator 77

Looping 78
while Loops 78
do...while Loops 80
for Loops 81
Breaking Out of a Loop 83
The continue Statement 84

Implicit and Explicit Casting 84
PHP Dynamic Linking 85

Dynamic Linking in Action 86
Test Your Knowledge: Questions 87

vi | Table of Contents

5. PHP Functions and Objects . 89
PHP Functions 90

Defining a Function 91
Returning a Value 92
Returning an Array 93
Passing by Reference 94
Returning Global Variables 95
Recap of Variable Scope 96

Including and Requiring Files 96
The include Statement 96
Using include_once 97
Using require and require_once 97

PHP Version Compatibility 98
PHP Objects 98

Terminology 99
Declaring a Class 100
Creating an Object 101
Accessing Objects 101
Constructors 104
Writing Methods 105
Declaring Properties 106
Declaring Constants 107
Property and Method Scope in PHP 5 107
Inheritance 109

Test Your Knowledge: Questions 113

6. PHP Arrays . 115
Basic Access 115

Numerically Indexed Arrays 115
Associative Arrays 117
Assignment Using the array Keyword 118

The foreach...as Loop 119
Multidimensional Arrays 121
Using Array Functions 123

is_array() 123
count() 124
sort() 124
shuffle() 124
explode() 125
extract() 125
compact() 126
reset() 127
end() 128

Table of Contents | vii

Test Your Knowledge: Questions 128

7. Practical PHP . 129
Using printf 129

Precision Setting 131
String Padding 132
Using sprintf 133

Date and Time Functions 133
Date Constants 136
Using checkdate 136

File Handling 137
Checking Whether a File Exists 137
Creating a File 137
Reading from Files 139
Copying Files 139
Moving a File 140
Deleting a File 140
Updating Files 141
Locking Files for Multiple Accesses 142
Reading an Entire File 143
Uploading Files 144

System Calls 149
XHTML 151

The Benefits of XHTML 151
XHTML Versions 151
What’s Different? 152
HTML 4.01 Document Types 153
XHTML 1.0 Document Types 153
XHTML Validation 154

Test Your Knowledge: Questions 155

8. Introduction to MySQL . 157
MySQL Basics 157
Summary of Database Terms 158
Accessing MySQL via the Command Line 158

Starting the Command-Line Interface 159
Using the Command-Line Interface 163
MySQL Commands 164
Data Types 168

Indexes 177
Creating an Index 178
Querying a MySQL Database 183
Joining Tables Together 192

viii | Table of Contents

Using Logical Operators 194
MySQL Functions 194
Accessing MySQL via phpMyAdmin 195

Windows Users 195
Mac OS X Users 195
Linux Users 195
Using phpMyAdmin 197

Test Your Knowledge: Questions 198

9. Mastering MySQL . 201
Database Design 201

Primary Keys: The Keys to Relational Databases 202
Normalization 203

First Normal Form 204
Second Normal Form 206
Third Normal Form 208
When Not to Use Normalization 210

Relationships 211
One-to-One 211
One-to-Many 212
Many-to-Many 212
Databases and Anonymity 214

Transactions 214
Transaction Storage Engines 215
Using BEGIN 216
Using COMMIT 216
Using ROLLBACK 216

Using EXPLAIN 217
Backing Up and Restoring 218

Using mysqldump 219
Creating a Backup File 220
Restoring from a Backup File 222
Dumping Data in CSV Format 222
Planning Your Backups 223

Test Your Knowledge: Questions 223

10. Accessing MySQL Using PHP . 225
Querying a MySQL Database with PHP 225

The Process 225
Creating a Login File 226
Connecting to MySQL 227

A Practical Example 232
The $_POST Array 234

Table of Contents | ix

Deleting a Record 235
Displaying the Form 236
Querying the Database 236
Running the Program 237

Practical MySQL 238
Creating a Table 238
Describing a Table 239
Dropping a Table 240
Adding Data 240
Retrieving Data 241
Updating Data 242
Deleting Data 242
Using AUTO_INCREMENT 243
Performing Additional Queries 244
Preventing SQL Injection 245
Preventing HTML Injection 248

Test Your Knowledge: Questions 250

11. Form Handling . 251
Building Forms 251
Retrieving Submitted Data 253

register_globals: An Old Solution Hangs On 254
Default Values 254
Input Types 256
Text Boxes 256
Text Areas 256
Checkboxes 257
Radio Buttons 259
Hidden Fields 260
Select 260
Labels 262
Sanitizing Input 262

An Example Program 264
Test Your Knowledge: Questions 266

12. Templating with Smarty . 269
Why Smarty? 270
Installation 270
Creating Scripts 271
Creating Templates 272
A Practical Example 272
Test Your Knowledge: Questions 277

x | Table of Contents

13. Cookies, Sessions, and Authentication . 279
Using Cookies in PHP 279

Setting a Cookie 281
Accessing a Cookie 281
Destroying a Cookie 282

HTTP Authentication 282
Storing Usernames and Passwords 285
Salting 285

Using Sessions 289
Starting a Session 289
Ending a Session 292
Session Security 293

Test Your Knowledge: Questions 296

14. Exploring JavaScript . 299
JavaScript and HTML Text 299

Using Scripts Within a Document Head 301
Older and Nonstandard Browsers 301
Including JavaScript Files 302
Debugging JavaScript Errors 303

Using Comments 305
Semicolons 305
Variables 306

String Variables 306
Numeric Variables 307
Arrays 307

Operators 308
Arithmetic Operators 308
Assignment Operators 308
Comparison Operators 309
Logical Operators 309
Variable Incrementing and Decrementing 310
String Concatenation 310
Escaping Characters 310

Variable Typing 311
Functions 312
Global Variables 312

Local Variables 312
The Document Object Model 314

Browser Incompatibilities 316
Using the DOM 317

Test Your Knowledge: Questions 318

Table of Contents | xi

15. Expressions and Control Flow in JavaScript . 319
Expressions 319

Literals and Variables 320
Operators 321

Operator Precedence 321
Associativity 322
Relational Operators 323

The with Statement 325
Using onError 326
Using try...catch 327
Conditionals 328

The if Statement 328
The switch Statement 329
The ? Operator 331

Looping 331
while Loops 331
do...while Loops 332
for Loops 332
Breaking Out of a Loop 333
The continue Statement 334

Explicit Casting 334
Test Your Knowledge: Questions 335

16. JavaScript Functions, Objects, and Arrays . 337
JavaScript Functions 337

Defining a Function 337
Returning a Value 339
Returning an Array 341

JavaScript Objects 341
Declaring a Class 341
Creating an Object 343
Accessing Objects 343
The prototype Keyword 344

JavaScript Arrays 346
Numeric Arrays 346
Associative Arrays 347
Multidimensional Arrays 348
Using Array Methods 349

Test Your Knowledge: Questions 353

17. JavaScript and PHP Validation and Error Handling . 355
Validating User Input with JavaScript 355

The validate.html Document (Part One) 356

xii | Table of Contents

The validate.html Document (Part Two) 358
Regular Expressions 361

Matching Through Metacharacters 361
Fuzzy Character Matching 362
Grouping Through Parentheses 363
Character Classes 363
Indicating a Range 364
Negation 364
Some More Complicated Examples 364
Summary of Metacharacters 367
General Modifiers 369
Using Regular Expressions in JavaScript 369
Using Regular Expressions in PHP 369

Redisplaying a Form After PHP Validation 370
Test Your Knowledge: Questions 375

18. Using Ajax . 377
What Is Ajax? 378
Using XMLHttpRequest 378

Your First Ajax Program 380
Using GET Instead of POST 385
Sending XML Requests 387

Test Your Knowledge: Questions 391

19. Using YUI for Ajax and More . 393
Choosing a Framework 393
Using YUI 394

Compressed Versions 396
Using YUI for Ajax 396

Other Uses for YUI 400
A Simple YUI Calendar 401

Test Your Knowledge: Questions 403

20. Bringing It All Together . 405
Designing a Social Networking Site 405

About Third-Party Add-Ons 406
On the Website 406
rnfunctions.php 406

The Functions 407
rnheader.php 409
rnsetup.php 410
index.php 411
rnsignup.php 412

Table of Contents | xiii

Checking for Username Availability 412
rnsignup.php (YUI version) 415
rncheckuser.php 417
rnlogin.php 417
rnprofile.php 419

Adding the “About Me” Text 420
Adding a Profile Image 420
Processing the Image 420
Displaying the Current Profile 421

rnmembers.php 424
Viewing a User’s Profile 424
Adding and Dropping Friends 424
Listing All Members 424

rnfriends.php 427
rnmessages.php 430
rnlogout.php 432

A. Solutions to the Chapter Questions . 435

B. Online Resources . 453

C. MySQL’s FULLTEXT Stopwords . 457

D. MySQL Functions . 461

E. Using PEAR and PHPUnit . 473

Index . 485

xiv | Table of Contents

Preface

The combination of PHP and MySQL is the most convenient approach to dynamic,
database-driven web design, holding its own in the face of challenges from integrated
frameworks—such as Ruby on Rails—that are harder to learn. Due to its open source
roots (unlike the competing Microsoft .NET framework), it is free to implement and is
therefore an extremely popular option for web development.

Any would-be developer on a Unix/Linux or even a Windows/Apache platform will
need to master these technologies. At the same time, the JavaScript is important, as it
provides the hidden communication with the web server to create seamless interfaces.

Audience
This book is for people who wish to learn how to create effective and dynamic websites.
This may include webmasters or graphic designers who are already creating static web-
sites but wish to take their skills to the next level as well as high school and college
students, recent graduates, and self-taught individuals.

In fact, anyone ready to learn the fundamentals behind the Web 2.0 technology known
as Ajax will obtain a thorough grounding in all three of the core technologies: PHP,
MySQL, and JavaScript.

Assumptions This Book Makes
This book assumes that you have a basic understanding of HTML and can at least put
together a simple, static website, but does not assume that you have any prior knowl-
edge of PHP, MySQL, or JavaScript—although if you do, your progress through the
book will be even quicker.

xv

Organization of This Book
The chapters in this book are written in a specific order, first introducing all three of
the core technologies it covers and then walking you through their installation on a
web development server, so that you will be ready to work through the examples.

In the following section, you will gain a grounding in the PHP programming language,
covering the basics of syntax, arrays, functions, and object-oriented programming.

Then, with PHP under your belt, you will move on to an introduction to the MySQL
database system, where you will learn everything from how MySQL databases are
structured up to generating complex queries.

After that, you will learn how you can combine PHP and MySQL to start creating your
own dynamic web pages by integrating forms and other HTML features. You will then
spend some time looking at ways to speed up your web development using Smarty
templates.

In the next three chapters, you will get down to the nitty-gritty practical aspects of PHP
and MySQL development by learning a variety of useful functions and how to manage
cookies and sessions, as well as how to maintain a high level of security.

In the following four chapters, you will gain a thorough grounding in JavaScript, from
simple functions and event handling to accessing the Document Object Model and in-
browser validation and error handling.

With an understanding of all three of these core technologies, you will then learn how
to make behind-the-scenes Ajax calls and turn your websites into highly dynamic
environments.

Finally, you’ll put together everything you’ve learned in a complete set of PHP programs
that together constitute a fully working social networking website.

Along the way, you’ll also find plenty of pointers and advice on good programming
practices and tips that could help you find and solve hard-to-detect programming er-
rors. There are also plenty of links to websites containing further details on the topics
covered.

Supporting Books
Once you have learned to develop using PHP, MySQL, and JavaScript you will be ready
to take your skills to the next level using the following reference books:

• Dynamic HTML: The Definitive Reference by Danny Goodman (O’Reilly)

• PHP in a Nutshell by Paul Hudson (O’Reilly)

• MySQL in a Nutshell by Russell Dyer (O’Reilly)

• JavaScript: The Definitive Guide by David Flanagan (O’Reilly)

xvi | Preface

http://oreilly.com/catalog/9780596527402/
http://oreilly.com/catalog/9780596100674/
http://oreilly.com/catalog/9780596514334/
http://oreilly.com/catalog/9780596101992/

Conventions Used in This Book
The following typographical conventions are used in this book:

Plain text
Indicates menu titles, options, and buttons.

Italic
Indicates new terms, URLs, email addresses, filenames, file extensions, pathnames,
directories, and Unix utilities.

Constant width
Indicates command-line options, variables and other code elements, HTML tags,
macros, the contents of files, and the output from commands.

Constant width bold
Shows commands or other text that should be typed literally by the user; also
occasionally used for emphasis.

Constant width italic
Shows text that should be replaced with user-supplied values.

This icon signifies a tip, suggestion, or general note.

This icon indicates a warning or caution.

Using Code Examples
This book is here to help you get your job done. In general, you may use the code in
this book in your programs and documentation. You do not need to contact us for
permission unless you’re reproducing a significant portion of the code. For example,
writing a program that uses several chunks of code from this book does not require
permission. Selling or distributing a CD-ROM of examples from O’Reilly books does
require permission. Answering a question by citing this book and quoting example
code does not require permission. Incorporating a significant amount of example code
from this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: “Learning PHP, MySQL, and JavaScript, by
Robin Nixon. Copyright 2009 Robin Nixon, 978-0-596-15713-5.”

If you feel your use of code examples falls outside fair use or the permission given here,
feel free to contact us at permissions@oreilly.com.

Preface | xvii

mailto:permissions@oreilly.com

We’d Like to Hear from You
Every example in this book has been tested on various platforms, but occasionally you
may encounter problems; for example, if you have a nonstandard installation or a dif-
ferent version of PHP, and so on. The information in this book has also been verified
at each step of the production process. However, mistakes and oversights can occur
and we will gratefully receive details of any you find, as well as any suggestions you
would like to make for future editions. You can contact the author and editors at:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
(800) 998-9938 (in the United States or Canada)
(707) 829-0515 (international or local)
(707) 829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at:

http://www.oreilly.com/catalog/9780596157135

There is also a companion website to this book available online at:

http://lpmj.net

where you can see all the examples with color-highlighted syntax. To comment or ask
technical questions about this book, send email to the following address, mentioning
its ISBN number (9780596157135):

bookquestions@oreilly.com

For more information about our books, conferences, Resource Centers, and the
O’Reilly Network, see our website at:

http://www.oreilly.com

Safari® Books Online
When you see a Safari® Books Online icon on the cover of your favorite
technology book, that means the book is available online through the
O’Reilly Network Safari Bookshelf.

Safari offers a solution that’s better than e-books. It’s a virtual library that lets you easily
search thousands of top tech books, cut and paste code samples, download chapters,
and find quick answers when you need the most accurate, current information. Try it
for free at http://my.safaribooksonline.com.

xviii | Preface

http://www.oreilly.com/catalog/9780596157135
http://lpmj.net
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://my.safaribooksonline.com/?portal=oreilly

Acknowledgments
A huge thank you goes to my editor, Andy Oram, and all the folks at O’Reilly who
worked so hard on this book, and without whom it could never have been written.

In particular I must thank my technical reviewers, Derek DeHart, Christoph Dorn,
Tomislav Dugandzic, Becka Morgan, Harry Nixon, Alan Solis, and Demian Turner, for
their help in ensuring the accuracy of this book.

I wish to also thank my wife, Julie, for her constant encouragement, and also Rachel,
Hannah, Laura, Matthew, Harry, and Naomi, wonderful children who all helped with
this project—each in their own way.

Preface | xix

CHAPTER 1

Introduction to Dynamic Web Content

The World Wide Web is a constantly evolving network that has already traveled far
beyond its conception in the early 1990s, when it was created to solve a specific prob-
lem. State-of-the-art experiments at CERN (the European Laboratory for Particle Phys-
ics—now best known as the operator of the Large Hadron Collider) were producing
incredible amounts of data—so much that the data was proving unwieldy to distribute
to the participating scientists who were spread out across the world.

At this time, the Internet was already in place, with several hundred thousand com-
puters connected to it, so Tim Berners-Lee (a CERN fellow) devised a method of nav-
igating between them using a hyperlinking framework, which came to be known as
Hyper Text Transfer Protocol, or HTTP. He also created a markup language called
HTML, or Hyper Text Markup Language. To bring these together, he wrote the first
web browser and web server, tools that we now take for granted.

But back then, the concept was revolutionary. The most connectivity so far experienced
by at-home modem users was dialing up and connecting to a bulletin board that was
hosted by a single computer, where you could communicate and swap data only with
other users of that service. Consequently, you needed to be a member of many bulletin
board systems in order to effectively communicate electronically with your colleagues
and friends.

But Berners-Lee changed all that with one fell swoop, and by the mid 1990s, there were
three major graphical web browsers competing for the attention of five million users.
It soon became obvious, though, that something was missing. Yes, pages of text and
graphics with hyperlinks to take you to other pages was a brilliant concept, but the
results didn’t reflect the instantaneous potential of computers and the Internet to meet
the particular needs of each user with dynamically changing content. Using the Web
was a very dry and plain experience, even if we did now have scrolling text and animated
GIFs!

Shopping carts, search engines, and social networks have clearly altered how we use
the Web. In this chapter, we’ll take a brief look at the various components that make
up the Web, and the software that helps make it a rich and dynamic experience.

1

It is necessary to start using some acronyms more or less right away. I
have tried to clearly explain them before proceeding. But don’t worry
too much about what they stand for or what these names mean, because
the details will all become clear as you read on.

HTTP and HTML: Berners-Lee’s Basics
HTTP is a communication standard governing the requests and responses that take
place between the browser running on the end user’s computer and the web server.
The server’s job is to accept a request from the client and attempt to reply to it in a
meaningful way, usually by serving up a requested web page—that’s why the term
server is used. The natural counterpart to a server is a client, so that term is applied
both to the web browser and the computer on which it’s running.

Between the client and the server there can be several other devices, such as routers,
proxies, gateways, and so on. They serve different roles in ensuring that the requests
and responses are correctly transferred between the client and server. Typically, they
use the Internet to send this information.

A web server can usually handle multiple simultaneous connections and—when not
communicating with a client—spends its time listening for an incoming connection.
When one arrives, the server sends back a response to confirm its receipt.

The Request/Response Procedure
At its most basic level, the request/response process consists of a web browser asking
the web server to send it a web page and the server sending back the page. The browser
then takes care of displaying the page (see Figure 1-1).

Each step in the request and response sequence is as follows:

1. You enter http://server.com into your browser’s address bar.

2. Your browser looks up the IP address for server.com.

3. Your browser issues a request for the home page at server.com.

4. The request crosses the Internet and arrives at the server.com web server.

5. The web server, having received the request, looks for the web page on its hard disk.

6. The web page is retrieved by the server and returned to the browser.

7. Your browser displays the web page.

For an average web page, this process takes place once for each object within the page:
a graphic, an embedded video or Flash file, and even a CSS template.

In step 2, notice that the browser looked up the IP address of server.com. Every machine
attached to the Internet has an IP address—your computer included. But we generally
access web servers by name, such as google.com. As you probably know, the browser

2 | Chapter 1: Introduction to Dynamic Web Content

consults an additional Internet service called the Domain Name Service (DNS) to find
its associated IP address and then uses it to communicate with the computer.

For dynamic web pages, the procedure is a little more involved, because it may bring
both PHP and MySQL into the mix (see Figure 1-2).

1. You enter http://server.com into your browser’s address bar.

2. Your browser looks up the IP address for server.com.

3. Your browser issues a request to that address for the web server’s home page.

4. The request crosses the Internet and arrives at the server.com web server.

5. The web server, having received the request, fetches the home page from its hard
disk.

6. With the home page now in memory, the web server notices that it is a file incor-
porating PHP scripting and passes the page to the PHP interpreter.

7. The PHP interpreter executes the PHP code.

8. Some of the PHP contains MySQL statements, which the PHP interpreter now
passes to the MySQL database engine.

9. The MySQL database returns the results of the statements back to the PHP
interpreter.

Figure 1-1. The basic client/server request/response sequence

HTTP and HTML: Berners-Lee’s Basics | 3

10. The PHP interpreter returns the results of the executed PHP code, along with the
results from the MySQL database, to the web server.

11. The web server returns the page to the requesting client, which displays it.

Although it’s helpful to be aware of this process so that you know how the three ele-
ments work together, in practice you don’t really need to concern yourself with these
details, because they all happen automatically.

HTML pages returned to the browser in each example may well contain JavaScript,
which will be interpreted locally by the client, and which could initiate another
request—the same way embedded objects such as images would.

Figure 1-2. A dynamic client/server request/response sequence

4 | Chapter 1: Introduction to Dynamic Web Content

The Benefits of PHP, MySQL, and JavaScript
At the start of this chapter, I introduced the world of Web 1.0, but it wasn’t long before
the rush was on to create Web 1.1, with the development of such browser enhance-
ments as Java, JavaScript, JScript (Microsoft’s slight variant of JavaScript) and ActiveX.
On the server side, progress was being made on the Common Gateway Interface (CGI)
using scripting languages such as Perl (an alternative to the PHP language) and server-
side scripting—inserting the contents of one file (or the output of a system call) into
another one dynamically.

Once the dust had settled, three main technologies stood head and shoulders above
the others. Although Perl was still a popular scripting language with a strong following,
PHP’s simplicity and built-in links to the MySQL database program had earned it more
than double the number of users. And JavaScript, which had become an essential part
of the equation for dynamically manipulating CSS (Cascading Style Sheets) now took
on the even more muscular task of handling the client side of the Ajax process. Under
Ajax, web pages perform data handling and send requests to web servers in the back-
ground—without the web user being aware that this is going on.

No doubt the symbiotic nature of PHP and MySQL helped propel them both forward,
but what attracted developers to them in the first place? The simple answer has to be
the ease with which you can use them to quickly create dynamic elements on websites.
MySQL is a fast and powerful yet easy-to-use database system that offers just about
anything a website would need in order to find and serve up data to browsers. When
PHP allies with MySQL to store and retrieve this data, you have the fundamental parts
required for the development of social networking sites and the beginnings of Web 2.0.

Using PHP
With PHP, it’s a simple matter to embed dynamic activity in web pages. When you give
pages the .php extension, they have instant access to the scripting language. From a
developer’s point of view, all you have to do is write code such as the following:

<?php
echo "Hello World. Today is ".date("l").". ";
?>

How are you?

The opening <?php tells the web server to allow the PHP program to interpret all the
following code up to the ?> command. Outside of this construct, everything is sent to
the client as direct HTML. So the text “How are you?” is simply output to the browser;
within the PHP tags, the built-in date function displays the current day of the week
according to the server’s system time.

The final output of the two parts looks like this:

Hello World. Today is Wednesday. How are you?

The Benefits of PHP, MySQL, and JavaScript | 5

PHP is a flexible language, and some people prefer to place the PHP construct directly
next to PHP code, like this:

Hello World. Today is <?php echo date("l"); ?>. How are you?

There are also other ways of formatting and outputting information, which I’ll explain
in the chapters on PHP. The point is that with PHP, web developers have a scripting
language that although not as fast as compiling your code in C or a similar language,
is incredibly speedy and that also integrates seamlessly with HTML code.

If you intend to type in the PHP examples in this book to work along
with me, you must remember to add <?php in front and ?> after them to
ensure that the PHP interpreter processes them. To facilitate this, you
may wish to prepare a file called example.php with those tags in place.

Using PHP, you have unlimited control over your web server. Whether you need to
modify HTML on the fly, process a credit card, add user details to a database, or fetch
information from a third-party website, you can do it all from within the same PHP
files in which the HTML itself resides.

Using MySQL
Of course, there’s not a lot of point to being able to change HTML output dynamically
unless you also have a means to track the changes that users make as they use your
website. In the early days of the Web, many sites used “flat” text files to store data such
as usernames and passwords. But this approach could cause problems if the file wasn’t
correctly locked against corruption from multiple simultaneous accesses. Also, a flat
file can get only so big before it becomes unwieldy to manage—not to mention the
difficulty of trying to merge files and perform complex searches in any kind of reason-
able time.

That’s where relational databases with structured querying become essential. And
MySQL, being free to use and installed on vast numbers of Internet web servers, rises
superbly to the occasion. It is a robust and exceptionally fast database management
system that uses English-like commands.

The highest level of MySQL structure is a database, within which you can have one or
more tables that contain your data. For example, let’s suppose you are working on a
table called users, within which you have created columns for surname, firstname, and
email, and you now wish to add another user. One command that you might use to do
this is:

INSERT INTO users VALUES('Smith', 'John', 'jsmith@mysite.com');

Of course, as mentioned earlier, you will have issued other commands to create the
database and table and to set up all the correct fields, but the INSERT command here
shows how simple it can be to add new data to a database. The INSERT command is an

6 | Chapter 1: Introduction to Dynamic Web Content

example of SQL (which stands for “Structured Query Language”), a language designed
in the early 1970s and reminiscent of one of the oldest programming languages,
COBOL. It is well suited, however, to database queries, which is why it is still in use
after all this time.

It’s equally easy to look up data. Let’s assume that you have an email address for a user
and need to look up that person’s name. To do this, you could issue a MySQL query
such as:

SELECT surname,firstname FROM users WHERE email='jsmith@mysite.com';

MySQL will then return Smith, John and any other pairs of names that may be associated
with that email address in the database.

As you’d expect, there’s quite a bit more that you can do with MySQL than just simple
INSERT and SELECT commands. For example, you can join multiple tables according to
various criteria, ask for results in a variety of different orders, make partial matches
when you know only part of the string that you are searching for, return only the nth
result, and a lot more.

Using PHP, you can make all these calls directly to MySQL without having to run the
MySQL program yourself or use its command-line interface. This means you can save
the results in arrays for processing and perform multiple lookups, each dependent on
the results returned from earlier ones, to drill right down to the item of data you need.

For even more power, as you’ll see later, there are additional functions built right in to
MySQL that you can call up for common operations and extra speed.

Using JavaScript
The oldest of the three core technologies in this book, JavaScript, was created to enable
scripting access to all the elements of an HTML document. In other words, it provides
a means for dynamic user interaction such as checking email address validity in input
forms, displaying prompts such as “Did you really mean that?”, and so on (although it
cannot be relied upon for security) which should always be performed on the web
server.

Combined with CSS, JavaScript is the power behind dynamic web pages that change
in front of your eyes rather than when a new page is returned by the server.

However, JavaScript can also be tricky to use, due to some major differences among
the ways different browser designers have chosen to implement it. This mainly came
about when some manufacturers tried to put additional functionality into their brows-
ers at the expense of compatibility with their rivals.

Thankfully, the manufacturers have mostly now come to their senses and have realized
the need for full compatibility between each other, so web developers don’t have to
write multiexception code. But there remain millions of legacy browsers that will be in
use for a good many years to come. Luckily, there are solutions for the incompatibility

The Benefits of PHP, MySQL, and JavaScript | 7

problems, and later in this book we’ll look at libraries and techniques that enable you
to safely ignore these differences.

For now, let’s take a quick look at how you can use basic JavaScript, accepted by all
browsers:

<script type="text/javascript">
document.write("Hello World. Today is " + Date());
</script>

This code snippet tells the web browser to interpret everything within the script tags
as JavaScript, which the browser then does by writing the text “Hello World. Today
is ” to the current document, along with the date, by using the JavaScript function
Date. The result will look something like this:

Hello World. Today is Sun Jan 01 2012 14:14:00

It’s worth knowing that unless you need to specify an exact version of
JavaScript, you can normally omit the type="text/javascript" and just
use <script> to start the interpretation of the JavaScript.

As previously mentioned, JavaScript was originally developed to offer dynamic control
over the various elements within an HTML document, and that is still its main use. But
more and more, JavaScript is being used for Ajax. This is a term for the process of
accessing the web server in the background. (It originally meant “Asynchronous Java-
Script and XML,” but that phrase is already a bit outdated.)

Ajax is the main process behind what is now known as Web 2.0 (a term coined by Tim
O’Reilly, the founder and CEO of this book’s publishing company), in which web pages
have started to resemble standalone programs, because they don’t have to be reloaded
in their entirety. Instead, a quick Ajax call can pull in and update a single element on
a web page, such as changing your photograph on a social networking site or replacing
a button that you click with the answer to a question. This subject is fully covered in
Chapter 18.

The Apache Web Server
There’s actually a fourth hero in the dynamic Web, in addition to our triumvirate of
PHP, MySQL, and JavaScript: the web server. In the case of this book, that means the
Apache web server. We’ve discussed a little of what a web server does during the HTTP
server/client exchange, but it actually does much more behind the scenes.

For example, Apache doesn’t serve up just HTML files—it handles a wide range of
files, from images and Flash files to MP3 audio files, RSS (Really Simple Syndication)
feeds, and so on. To do this, each element a web client encounters in an HTML page
is also requested from the server, which then serves it up.

8 | Chapter 1: Introduction to Dynamic Web Content

But these objects don’t have to be static files such as GIF images. They can all be
generated by programs such as PHP scripts. That’s right: PHP can even create images
and other files for you, either on the fly or in advance to serve up later.

To do this, you normally have modules either precompiled into Apache or PHP or called
up at runtime. One such module is the GD library (short for Graphics Draw), which
PHP uses to create and handle graphics.

Apache also supports a huge range of modules of its own. In addition to the PHP
module, the most important for your purposes as a web programmer are the modules
that handle security. Other examples are the Rewrite module, which enables the web
server to handle a varying range of URL types and rewrite them to its own internal
requirements, and the Proxy module, which you can use to serve up often-requested
pages from a cache to ease the load on the server.

Later in the book, you’ll see how to actually use some of these modules to enhance the
features provided by the three core technologies.

About Open Source
Whether or not being open source is the reason these technologies are so popular has
often been debated, but PHP, MySQL, and Apache are the three most commonly used
tools in their categories (web scripting languages, databases, and web servers).

What can be said, though, is that being open source means that they have been devel-
oped in the community by teams of programmers writing the features they themselves
want and need, with the original code available for all to see and change. Bugs can be
found and security breaches can be prevented before they happen.

There’s another benefit: all these programs are free to use. There’s no worrying about
having to purchase additional licenses if you have to scale up your website and add
more servers. And you don’t need to check the budget before deciding whether to
upgrade to the latest versions of these products.

In fact, we’ll cover a few other add-on products in this book that you’ll find invaluable
in getting the best out of your websites. They, too, are all open source. Of course,
professional support is available to purchase for all these products, should you need
it—but that shouldn’t be the case for you once you’ve read this book.

Bringing It All Together
The real beauty of PHP, MySQL, and JavaScript is the wonderful way in which they all
work together to produce dynamic web content: PHP handles all the main work on the
web server, MySQL manages all the data, and JavaScript looks after web page presen-
tation. JavaScript can also talk with your PHP code on the web server whenever it needs
to update something (either on the server or on the web page).

Bringing It All Together | 9

Without using program code, it’s a good idea at this point to summarize the contents
of this chapter by looking at the process of combining all three technologies into an
everyday Ajax feature that many websites use: checking whether a desired username
already exists on the site when a user is signing up for a new account. A good example
of this can be seen with Google Mail (see Figure 1-3).

The steps involved in this Ajax process would be similar to the following:

1. The server outputs the HTML to create the web form, which asks for the necessary
details, such as username, first name, last name, and email address.

2. At the same time, the server attaches some JavaScript to the HTML to monitor the
username input box and check for two things: (a) whether some text has been typed
into it, and (b) whether the input has been deselected because the user has clicked
on another input box.

3. Once the text has been entered and the field deselected, in the background the
JavaScript code passes the username that was typed in back to a PHP script on the
web server and awaits a response.

4. The web server looks up the username and replies back to the JavaScript regarding
whether that name has already been taken.

Figure 1-3. Gmail uses Ajax to check the availability of usernames

10 | Chapter 1: Introduction to Dynamic Web Content

5. The JavaScript then places an indication next to the username input box to show
whether the name is one available to the user—perhaps a green checkmark or a
red cross graphic, along with some text.

6. If the username is not available and the user still submits the form, the JavaScript
interrupts the submission and reemphasizes (perhaps with a larger graphic and/or
an alert box) that the user needs to choose another username.

7. Optionally, an improved version of this process could even look at the username
requested by the user and suggest an alternative that is currently available.

All of this takes place quietly in the background and makes for a comfortable and
seamless user experience. Without using Ajax, the entire form would have to be sub-
mitted to the server, which would then send back HTML, highlighting any mistakes.
It would be a workable solution, but nowhere near as tidy or pleasurable as on-the-fly
form field processing.

Ajax can be used for a lot more than simple input verification and processing, though;
we’ll explore many additional things that you can do with it in the Ajax chapters later
in this book.

In this chapter, you have read a good introduction to the core technologies of PHP,
MySQL, and JavaScript (as well as Apache), and have learned how they work together
with each other. In Chapter 2, we’ll look at how you can install your own web devel-
opment server on which to practice everything that you will be learning.

Test Your Knowledge: Questions
Question 1-1

What four components are needed to create a fully dynamic web page?

Question 1-2
What does HTML stand for?

Question 1-3
Why does the name MySQL contain the letters SQL?

Question 1-4
PHP and JavaScript are both programming languages that generate dynamic results
for web pages. What is their main difference, and why would you use both of them?

Question 1-5
If you encounter a bug (which is rare) in one of the open source tools, how do you
think you could get it fixed?

See the section “Chapter 1 Answers” on page 435 in Appendix A for the answers to
these questions.

Test Your Knowledge: Questions | 11

CHAPTER 2

Setting Up a Development Server

If you wish to develop Internet applications but don’t have your own development
server, you will have to upload every modification you make to a server somewhere else
on the Web before you can test it.

Even on a fast broadband connection, this can still represent a significant slowdown in
development time. On a local computer, however, testing can be as easy as saving an
update (usually just a matter of clicking once on an icon) and then hitting the Refresh
button in your browser.

Another advantage of a development server is that you don’t have to worry about em-
barrassing errors or security problems while you’re writing and testing, whereas you
need to be aware of what people may see or do with your application when it’s on a
public website. It’s best to iron everything out while you’re still on a home or small
office system, presumably protected by firewalls and other safeguards.

Once you have your own development server, you’ll wonder how you ever managed
without one, and it’s easy to set one up. Just follow the steps in the following sections,
using the appropriate instructions for a PC, a Mac, or a Linux system.

In this chapter, we cover just the server side of the web experience, as described in
Chapter 1. But to test the results of your work—particularly when we start using Java-
Script later in this book—you should also have an instance of every major web browser
running on some system convenient to you. Whenever possible, the list of browsers
should include at least Internet Explorer, Mozilla Firefox, Opera, Safari, and Google
Chrome.

What Is a WAMP, MAMP, or LAMP?
WAMP, MAMP, and LAMP are abbreviations for “Windows, Apache, MySQL, and
PHP,” “Mac, Apache, MySQL, and PHP,” and “Linux, Apache, MySQL, and PHP.”
These abbreviations describe a fully functioning setup used for developing dynamic
Internet web pages.

13

WAMPs, MAMPs, and LAMPs come in the form of a package that binds the bundled
programs together so that you don’t have to install and set them up separately. This
means you can simply download and install a single program, and follow a few easy
prompts, to get your web development server up and running in the quickest time with
minimum hassle.

During installation, several default settings are created for you. The security configu-
rations of such an installation will not be as tight as on a production web server, because
it is optimized for local use. For these reasons, you should never install such a setup as
a production server.

But for developing and testing websites and applications, one of these installations
should be entirely sufficient.

If you choose not to go the W/L/MAMP route for building your own
development system, you should know that downloading and integrat-
ing the various parts yourself can be very time-consuming and may re-
quire a lot of research in order to configure everything fully. But if you
already have all the components installed and integrated with each
other, they should work with the examples in this book.

Installing a WAMP on Windows
There are several available WAMP servers, each offering slightly different configura-
tions, but the easiest of these is the appropriately named EasyPHP. You can download
it from a link toward the top of its website at http://easyphp.org (see Figure 2-1).

Follow the download link and you’ll be taken to the SourceForge download area. The
version used in this book is EasyPHP-3.0-setup.exe, which is about 15.6 MB in size.

Once you’ve downloaded the file, run the installer and follow the prompts, accepting
the defaults you are given. Upon completion, EasyPHP will load and an icon will be
added to your System Tray, at the bottom right of your screen (see Figure 2-2).

Double-click the System Tray icon and the control window will pop up. From here,
you can start, stop, and restart both Apache and MySQL. Sometimes you may find that
the initial installation will not correctly start one or the other program, so if you don’t
see a green traffic light next to one, select Restart to get it going (see Figure 2-3).

Overcoming Installation Problems
Should EasyPHP pop up any errors about either Apache or MySQL being unable to
run because a port is blocked, this means that either a firewall you have running is
preventing access, or another program is conflicting with EasyPHP.

14 | Chapter 2: Setting Up a Development Server

http://easyphp.org

Figure 2-1. You can download EasyPHP via the site’s main page

Figure 2-2. Accessing EasyPHP’s controls from the System Tray

Figure 2-3. The EasyPHP control window with both Apache and MySQL running

Installing a WAMP on Windows | 15

Antivirus programs can sometimes block these ports, as can programs like Skype, which
may try to grab port 80 for itself. The solution in such cases is to investigate the setup
options for all such programs and ensure that port 80 for Apache and 3306 for MySQL
are not blocked or otherwise taken up.

Also, if you are using Windows Vista and find that either Apache or MySQL stop soon
after starting, odds are that the correct permissions have not been set for the EasyPHP
folders. To correct this, navigate to your Program Files folder, right-click on the
EasyPHP 3.0 folder, and select Properties. Then from here click the Security tab fol-
lowed by Edit to change the permissions for this folder and its subfolders, ensuring that
all users have write access. This problem has been known to occur only after a Windows
restart.

Testing the Installation
The first thing to do at this point is verify that everything is working correctly. To do
this, you are going to try to display the default web page, which will have been saved
in the server’s root folder (see Figure 2-4). Enter either of the following two URLs into
the address bar of your browser:

http://127.0.0.1/home
http://localhost/home

The first is the IP address that all computers use to refer to themselves. The second is
an alias, which refers to exactly the same thing and is available for ease of use.

If all is well, you will see the default EasyPHP home screen. Assuming that you have
been successful so far, you now need to perform one more task in order to have your
development server fully operational. So create a folder on your hard disk called

Figure 2-4. How the home page should look

16 | Chapter 2: Setting Up a Development Server

c:\web and then click Add underneath the Apache section. Now type web as the alias
requested in section 2, and enter c:\web for the directory in section 3. Then click OK,
leaving the settings displayed in section 4 as they are (see Figure 2-5).

If you will be maintaining several projects, at some point you may wish to create all the
directories you will need and the aliases Apache will recognize. An alias is a shortened,
easily recognizable string used to refer to a longer path name, and it doesn’t have to be
the same as a directory name. So, if you wish to save on typing, you can have a directory
several levels deep aliased to a single word. For example the alias “photos” could refer
to a folder called c:\myfiles\family\photos.

To ensure that you have everything correctly configured, you should now run the
obligatory “Hello World” program. So create a small HTML file along these lines using
Windows Notepad—not a rich word processor such as Word (unless you save as Plain
Text)—by selecting Start→Run, typing notepad and pressing Return:

<html><head><title>A quick test</title></head>
<body>A quick test</body></html>

Once you have done this, save it using the full filename c:\web\index.html, making sure
that the “Save as type” box is changed from “Text Documents (*.txt)” to “All Files (*.*),”

Figure 2-5. Creating a directory for your project files

Installing a WAMP on Windows | 17

and you’ll be able to call this page up in your browser by entering the following URL
in its address bar (see Figure 2-6):

http://localhost/web

You should now have had a trouble-free installation, resulting in a fully working
WAMP. But if you encountered any difficulties, check out the comprehensive EasyPHP
FAQ at http://easyphp.org/faq.php, which should sort out your problem.

Alternative WAMPs
When software is updated, it sometimes works differently than you’d expect, and bugs
can even be introduced. So if you encounter difficulties with EasyPHP that you cannot
resolve, you may prefer to choose one of the various other solutions available on the
Web instead.

You will still be able to make use of all the examples in this book, but you’ll have to
follow the instructions supplied with each WAMP, which may not be as easy to follow
as the EasyPHP guide.

Here’s a selection of the best in my opinion:

• XAMPP: http://apachefriends.org/en/xampp.html

• WAMPServer: http://wampserver.com/en/

• Glossword WAMP: http://glossword.biz/glosswordwamp/

Figure 2-6. Our first web page

18 | Chapter 2: Setting Up a Development Server

http://easyphp.org/faq.php
http://apachefriends.org/en/xampp.html
http://wampserver.com/en/
http://glossword.biz/glosswordwamp/

Installing a MAMP on Mac OS X
At the time of writing, probably the best MAMP solution is called simply MAMP. You
can download it from http://mamp.info/en/download.html. The program comes in two
flavors: regular and pro. The pro version is a commercial product that you might want
to look at in the future, especially as it comes bundled with the regular version.

If you have trouble accessing the http://mamp.info website, you may wish to download
the installer from http://sourceforge.net/project/showfiles.php?group_id=121134. The
latest version (currently 1.7.2) will show by default, but for previous ones (such as
1.4.1), just click on the link entitled “mamp” under the “Package” Heading to see them
all.

If you have OS X 10.4 or greater, you can download the latest version of MAMP, which
will be 1.7.2 or higher. For Mac OS X 10.3, you’ll need to download the correct version
for that OS, which is likely to be 1.4.1 or similar (see Figure 2-7).

The downloaded file will have a filename such as MAMP_1.7.2.dmg.zip for version
1.7.2 or MAMP_1.4.1_universal.dmg.zip for the universal installer, and so on. You need
to unzip the file using StuffIt Expander (or a similar product) to create a disk image

Figure 2-7. Select the correct MAMP version and download it

Installing a MAMP on Mac OS X | 19

http://mamp.info/en/download.html
http://mamp.info
http://sourceforge.net/project/showfiles.php?group_id=121134

with a name similar to MAMP_1.7.2.dmg or MAMP_1.4.1_universal.dmg, and double-
click that image to mount it as a drive on your desktop.

You are now ready to double-click the new virtual drive, which will be called MAMP
1.7.2 (or simply MAMP for version 1.4.1). When you do, the installer will appear,
asking you to drag and drop the MAMP folder at the top left of the window down into
the Applications folder alias at the bottom left. So go ahead and drop it in there (see
Figure 2-8).

Open up your Applications folder, where you will find a new folder called MAMP. Open
this up, and you’ll be presented with several subfolders. The main three that should
concern you for now are htdocs, which is where you will be saving your HTML and
PHP files; README.rtf, which contains the latest release notes for the program; and
MAMP, which is the program you will use to start and stop your web server and
database.

To make things easier for yourself in the future, I recommend that you make an alias
to the MAMP folder and place the alias on your desktop. That way, you’ll find it a
simple matter to click on that when you need to make any changes or run MAMP (see
Figure 2-9).

Figure 2-8. Installing MAMP takes a few simple mouse actions

20 | Chapter 2: Setting Up a Development Server

You are now ready to run the MAMP for the first time. Double-click the MAMP program
and you’ll see the main control window appear, along with the welcome page, which
will display in your default web browser.

The Apache and MySQL servers should start automatically and display their status in
the control window. If they don’t, you can click on the Start Servers button to get them
going. Then you’ll see the welcome page in your browser (see Figure 2-10).

Now that you have your MAMP fully installed and running, it’s time to test it with a
quick HTML file. So, using an editor such as TextEdit, create a file called index.html
as follows and save it in the htdocs folder of your MAMP installation (you may need to
ensure that you have your TextEdit preferences set to “ignore rich text commands in
HTML files” in order to use it as an HTML editor):

<html><head><title>A quick test</title></head>
<body>A quick test</body></html>

And now you can test your setup by entering the following into your browser’s address
bar:

http://localhost:8888

Figure 2-9. The MAMP application in your Applications folder and after copying to your desktop

Installing a MAMP on Mac OS X | 21

This tells your browser to serve up the default page stored locally in the MAMP
htdocs folder, which, in this case, is your index.html file. All being well, you will see the
simple test page displayed (see the browser window in the upper-left corner of Fig-
ure 2-11).

To get back to the main welcome page at any time, you can click on the “Open start
page” button in the control window. Click it now and then click on the “phpinfo”
button near the top of the web page, just to the right of the Start button.

If everything is working correctly, you will now be presented with a very long page of
information all about your installation of PHP (see Figure 2-12). You should also ensure
that MySQL is correctly installed: click on the “phpMyAdmin” button and you’ll be
presented with a control page.

At this point, there’s no need to explain what this new page does. As long as you see
similar screens to those in the figures, you can be confident that you now have a fully
working MAMP installation.

Figure 2-10. The MAMP—up and running and displaying a page

22 | Chapter 2: Setting Up a Development Server

Figure 2-11. The MAMP—working and displaying the test page

Figure 2-12. PHP, properly installed and running

Installing a MAMP on Mac OS X | 23

Some Final Tweaking
When you visit a site such as google.com, you are really visiting port 80 of the server
hosting the website. Likewise, port 3306 is the one most commonly used for MySQL.

But by default, MAMP uses ports 8888 and 8889 for Apache and MySQL, respectively.
This means that you will need to append the port number whenever you request a web
page from your development server or access MySQL.

As you’ll recall, instead of typing the URL localhost into your web browser, you had to
type localhost:8888, which is rather annoying. So the last thing you need to do to set
up your MAMP is click the Preferences button in the MAMP control window and then
click Ports. Now click “Set to default Apache and MySQL ports,” then click OK (see
Figure 2-13).

You can now call up your test HTML page with either of the following shorter URLs
(the latter being the IP address that all computers use for referring to themselves):

http://localhost
http://127.0.0.1

Figure 2-13. MAMP is easier to use with regular port settings

24 | Chapter 2: Setting Up a Development Server

http://www.google.com

Other Alternatives
You may already be familiar with the XAMPP system, which you can download from
http://apachefriends.org/en/xampp.html. If you have at least OS X 10.4, feel free to use
it if you prefer, but make sure to carefully follow the instructions supplied with the
package. You may also be interested in the new Zend Server CE (Community Edition)
available at http://zend.com/en/community/zend-server-ce. This is another free
W/M/LAMP and, as I write, it’s available as a release candidate—but the final release
should be ready by the time you read this.

If you are a beginner to PHP and MySQL web development, I wouldn’t recommend
that you try to set up Apache and MySQL on their own without following the MAMP
route, as configuration can be tricky.

Users of versions of OS X prior to 10.3 (pre-2003) cannot use either of the current
versions of MAMP described here (or the current releases of XAMPP or Zend Server
CE). So I recommend that you upgrade your operating system, if you can, in order to
make use of the simple installation processes available.

Installing a LAMP on Linux
If you know much about Linux, you may have already set up and installed PHP and
MySQL. If not, your best bet is probably to look at XAMPP for Linux, which is available
at http://apachefriends.org/en/xampp-linux.html.

The process is relatively simple. After downloading, go to a Linux shell and log in as
the system administrator (root) by typing:

su

Enter your system administration password. Many desktop Linux systems allow you
to use your personal account’s password for the administration password. Some sys-
tems, including the popular Ubuntu, encourage you not to use su to log in as root, but
to precede each system administration command with sudo instead. You’ll know what
to do if you’ve performed any administrative tasks on your system. Now extract the
downloaded archive file to /opt with the following command (inserting the appropriate
filename if the version you downloaded is a later version):

tar xvfz xampp-linux-1.6.8a.tar.gz -C /opt

Any XAMPP version that was already installed will be overwritten by this command.

Once the command finishes, XAMPP will be installed below the /opt/lampp directory.
To start it, enter the following:

/opt/lampp/lampp start

You should now see something like this on your screen:

Starting XAMPP 1.6.8a...
LAMPP: Starting Apache...

Installing a LAMP on Linux | 25

http://apachefriends.org/en/xampp.html
http://zend.com/en/community/zend-server-ce
http://apachefriends.org/en/xampp-linux.html

LAMPP: Starting MySQL...
LAMPP started.

Ready. Apache and MySQL are running.

Now you are ready to test the setup. Type the following URL into your web browser’s
address bar:

http://localhost

You should now see the start page of XAMPP, containing some links to check the status
of the installed software and some small programming examples (see Figure 2-14).

Figure 2-14. XAMPP for Linux, installed and running

Working Remotely
If you have access to a web server already configured with PHP and MySQL, you can
always use that for your web development. But unless you have a high-speed connec-
tion, it is not always your best option. Developing locally allows you to test modifica-
tions with little or no upload delay.

26 | Chapter 2: Setting Up a Development Server

Accessing MySQL remotely may not be easy either. You may have to Telnet or SSH
into your server to manually create databases and set permissions from the command
line. Your web hosting company will advise you on how best to do this and provide
you with any password they have set for your MySQL access (as well as, of course, for
getting into the server in the first place).

Logging In
I recommend that, at minimum, Windows users should install a program such as
PuTTY, available at http://putty.org, for Telnet and SSH access (remember that SSH is
much more secure than Telnet).

On a Mac, you already have SSH available. Just select the Applications folder, followed
by Utilities, and then launch Terminal. In the terminal window, log in to a server using
SSH as follows:

ssh mylogin @ server.com

where server.com is the name of the server you wish to log in to and mylogin is the
username you will log in under. You will then be prompted for the correct password
for that username and, if you enter it correctly, you will be logged in.

Using FTP
To transfer files to and from your web server, you will need an FTP program. If you go
searching the Web for a good one, you’ll find so many that it could take you quite a
while to come across one with all the right features for you.

Nowadays I always recommend FireFTP, because of these advantages:

• It is an add-on for the Firefox 3 web browser, and will therefore work on any
platform on which Firefox 3 runs.

• Calling it up can be as simple as selecting a bookmark.

• It is one of the fastest and easiest to use FTP programs that I have encountered.

You may say “But I use only Microsoft Internet Explorer and FireFTP
is not available for it,” but I would counter that if you are going to de-
velop web pages, you need a copy of each of the main browsers installed
on your PC anyway, as suggested at the start of this chapter.

To install FireFTP, visit http://fireftp.mozdev.org using Firefox and click on the Down-
load FireFTP link. It’s about half a megabyte in size and installs very quickly. Once it’s
installed, restart Firefox; you can then access FireFTP from the Tools menu (see Fig-
ure 2-15).

Working Remotely | 27

http://putty.org
http://fireftp.mozdev.org

Unfortunately, at the time of writing, Firefox 3 would not run on any versions of OS X
prior to 10.4. If that is the case for you, I recommend that you install the excellent
Classic FTP program available at http://nchsoftware.com/ftp. Unlike most other FTP
programs for the Mac, it’s free and it runs on OS X 10.2 and later (see Figure 2-16).

If you have an OS earlier than 10.2, you may wish to try a shareware program such as
Hefty, available at http://blackdiamond.co.za/bdhefty.html. You can try it 50 times be-
fore having to register it for $20.

Another excellent FTP program is the open source FileZilla, available from http://file
zilla-project.org, for Windows, Linux and Mac OS X 10.5 or newer.

Of course, if you already have an FTP program, all the better—stick with what you
know.

Using a Program Editor
Although a plain-text editor works for editing HTML, PHP, and JavaScript, there have
been some tremendous improvements in dedicated program editors, which now

Figure 2-15. FireFTP offers full FTP access from within Firefox 3

28 | Chapter 2: Setting Up a Development Server

http://nchsoftware.com/ftp
http://blackdiamond.co.za/bdhefty.html
http://filezilla-project.org
http://filezilla-project.org

incorporate very handy features such as colored syntax highlighting. Today’s program
editors are smart and can show you where you have syntax errors before you even run
a program. Once you’ve used a modern editor, you’ll wonder how you ever managed
without one.

There are a number of good programs available, but I have settled on Editra, because
it’s free and available through a simple installer for both the Mac and the PC, and in
source code form for Linux/Unix. You can download a copy by visiting http://editra
.org and selecting the Download link toward the top left of the page, where you can
also find the documentation for it.

As you can see from Figure 2-17, Editra understands HTML and highlights the syntax
appropriately. It also notices when it encounters PHP code and correctly highlights
that, too, using colors different from the HTML color tones to help clarify what’s going
on.

What’s more, you can place the cursor next to brackets or braces and Editra will high-
light the matching pair so that you can check whether you have too many or too few.
In fact, Editra does a lot more in addition, which you will discover and enjoy as you
use it.

Figure 2-16. Classic FTP for the Mac, which runs on OS X 10.2 and is free

Using a Program Editor | 29

http://editra.org
http://editra.org

Again, if you have a different preferred program editor, use that—it’s always a good
idea to use programs you’re already familiar with.

Using an IDE
As good as dedicated program editors can be for your programming productivity, their
utility pales into insignificance when compared to Integrated Development Environ-
ments (IDEs), which offer many additional features such as in-editor debugging and
program testing, as well as function descriptions and much more.

Figure 2-18 shows the popular phpDesigner IDE with a PHP program loaded into the
main frame, and the righthand Code Explorer listing the various classes, functions, and
variables that it uses.

When developing with an IDE, you can set breakpoints and then run all (or portions)
of your code, which will then stop at the breakpoints and provide you with information
about the program’s current state.

As an aid to learning programming, the examples in this book can be entered into an
IDE and run there and then, without the need to call up your web browser.

Figure 2-17. Program editors are superior to plain-text editors

30 | Chapter 2: Setting Up a Development Server

There are several IDEs available for different platforms, most of which are commercial,
but there are some free ones, too. Table 2-1 lists some of the most popular PHP IDEs,
along with their download URLs.

Table 2-1. A selection of PHP IDEs

IDE Download URL Price Win Mac Linux

Eclipse PDT http://eclipse.org/pdt/downloads/ Free ✓ ✓ ✓
Komodo IDE http://activestate.com/Products/komodo_ide $295 ✓ ✓ ✓
NetBeans http://www.netbeans.org Free ✓ ✓ ✓
phpDesigner http://mpsoftware.dk $86 ✓
PHPEclipse http://phpeclipse.de Free ✓ ✓ ✓
PhpED http://nusphere.com $119 ✓ ✓
PHPEdit http://phpedit.com $130 ✓

Zend Studio http://zend.com/en/downloads $500 ✓ ✓ ✓

Figure 2-18. When using an IDE such as phpDesigner, PHP development becomes much quicker and
easier

Using an IDE | 31

http://eclipse.org/pdt/downloads/
http://activestate.com/Products/komodo_ide
http://www.netbeans.org
http://mpsoftware.dk
http://phpeclipse.de
http://nusphere.com
http://phpedit.com
http://zend.com/en/downloads

Choosing an IDE can be a very personal thing, so if you intend to use one, I advise you
to download a couple or more to try them out first—they all either have trial versions
or are free to use, so it won’t cost you anything.

You should take the time to install a program editor or IDE you are comfortable with
and you’ll then be ready to type in and try out the examples in the coming chapters.
Armed with these tools, you are now ready to move on to Chapter 3, where we’ll start
exploring PHP in further depth and find out how to get HTML and PHP to work
together, as well as how the PHP language itself is structured. But before moving on, I
suggest you test your new knowledge with the following questions.

Test Your Knowledge: Questions
Question 2-1

What is the difference between a WAMP and a MAMP?

Question 2-2
What do the IP address 127.0.0.1 and the URL http://localhost have in common?

Question 2-3
What is the purpose of an FTP program?

Question 2-4
Name the main disadvantage of working on a remote web server.

Question 2-5
Why is it better to use a program editor instead of a plain-text editor?

See the section “Chapter 2 Answers” on page 436 in Appendix A for the answers to
these questions.

32 | Chapter 2: Setting Up a Development Server

CHAPTER 3

Introduction to PHP

In Chapter 1, I explained that PHP is the language that you use to make the server
generate dynamic output—output that is potentially different each time a browser re-
quests a page. In this chapter, you’ll start learning this simple but powerful language;
it will be the topic of the following chapters up through Chapter 6.

I encourage you to develop your PHP code in one of the IDEs listed in Chapter 2. It
will help you catch typos and speed up learning tremendously in comparison to less
feature-rich editors.

Many of these development environments let you run the PHP code and see the output
discussed in this chapter. I’ll also show you how to embed the PHP in an HTML file
so that you can see what the output looks like in a web page (the way your users will
ultimately see it). But that step, as thrilling as it may be at first, isn’t really important
at this stage.

In production, your web pages will be a combination of PHP, HTML, and JavaScript,
and some MySQL statements. Furthermore, each page can lead to other pages to pro-
vide users with ways to click through links and fill out forms. We can avoid all that
complexity while learning each language, though. Focus for now on just writing PHP
code and making sure that you get the output you expect—or at least that you under-
stand the output you actually get!

Incorporating PHP Within HTML
By default, PHP documents end with the extension .php. When a web server encounters
this extension in a requested file, it automatically passes it to the PHP processor. Of
course, web servers are highly configurable, and some web developers choose to force
files ending with .htm or .html to also get parsed by the PHP processor, usually because
developers want to hide the fact that they are using PHP.

33

Your PHP program is responsible for passing back a clean file suitable for display in a
web browser. At its very simplest, a PHP document will output only HTML. To prove
this, you can take any normal HTML document such as an index.html file, save it as
index.php, and it will display identically to the original.

Calling the PHP Parser
To trigger the PHP commands, you need to learn a new tag. The first part is:

<?php

The first thing you may notice is that the tag has not been closed. This is because entire
sections of PHP can be placed inside this tag and they finish only when the closing part
is encountered, which looks like this:

?>

A small PHP “Hello World” program might look like Example 3-1.

Example 3-1. Invoking PHP

<?php
echo "Hello world";
?>

The way you use this tag is quite flexible. Some programmers open the tag at the start
of a document and close it right at the end, outputting any HTML directly from PHP
commands.

Others, however, choose to insert only the smallest possible fragments of PHP within
these tags wherever dynamic scripting is required, leaving the rest of the document in
standard HTML.

The latter type of programmer generally argues that their style of coding results in faster
code, while the former say that the speed increase is so minimal that it doesn’t justify
the additional complexity of dropping in and out of PHP many times in a single
document.

As you learn more, you will surely discover your preferred style of PHP development,
but for the sake of making the examples in this book easier to follow, I have adopted
the approach of keeping the number of transfers between PHP and HTML to a mini-
mum—generally only once or twice in a document.

By the way, a slight variation to the PHP syntax exists. If you browse the Internet for
PHP examples, you may also encounter code where the opening and closing syntax
used is like this:

<?
echo "Hello world";
?>

34 | Chapter 3: Introduction to PHP

Although it’s not as obvious that the PHP parser is being called, this is a valid alternative
syntax that also usually works (although not with the EasyPHP WAMP package), but
should be discouraged, as it is incompatible with XML and its use is now deprecated
(meaning that it is no longer recommended and could be removed in future versions).

If you have only PHP code in a file, you may omit the closing ?>. This
is actually good practice, as it will ensure you have no excess whitespace
leaking from your PHP files (especially important when writing object-
oriented code).

This Book’s Examples
To save you the time it would take to type them in, all the examples from this book
have been archived onto a specially created companion website at http://lpmj.net, where
you can view each one individually—with color highlighting of syntax—and download
them onto your computer (see Figure 3-1).

As well as having all the examples saved by chapter and example number (such as
example3-1.php), the provided examples.zip archive also contains an extra folder called
named_examples, in which you’ll find all the examples, which I suggest saving using a
specific filename, such as Example 3-4 (shown later; this file should be saved as
test1.php).

Figure 3-1. Viewing examples from this book at http://lpmj.net

This Book’s Examples | 35

http://lpmj.net
http://lpmj.net

If you read this book in front of a computer (and hopefully you will, so that you can
try out what you learn), using the website you’ll also be able to view any examples on-
screen with a maximum of two clicks, making them easy to reference as you read.

The Structure of PHP
We’re going to cover quite a lot of ground in this section. It’s not too difficult, but I
recommend that you work your way through it carefully, as it sets the foundation for
everything else in this book. As always, there are some useful questions at the end of
the chapter that you can use to test how much you’ve learned.

Using Comments
There are two ways in which you can add comments to your PHP code. The first turns
a single line into a comment by preceding it with a pair of forward slashes, like this:

// This is a comment

This version of the comment feature is a great way to temporarily remove a line of code
from a program that is giving you errors. For example, you could use such a comment
to hide a debugging line of code until you need it, like this:

// echo "X equals $x";

You can also use this type of comment directly after a line of code to describe its action,
like this:

$x += 10; // Increment $x by 10

When you need multiple-line comments, there’s a second type of comment, which
looks like Example 3-2.

Example 3-2. A multiline comment

<?php
/* This is a section
 of multiline comments
 which will not be
 interpreted */
?>

You can use the /* and */ pairs of characters to open and close comments almost
anywhere you like inside your code. Most, if not all, programmers use this construct
to temporarily comment out entire sections of code that do not work or that, for one
reason or another, they do not wish to be interpreted.

36 | Chapter 3: Introduction to PHP

A common error is to use /* and */ to comment out a large section of
code that already contains a commented-out section that uses those
characters. You can’t nest comments this way; the PHP interpreter
won’t know where a comment ends and will display an error message.
However, if you use a program editor or IDE with syntax highlighting,
this type of error is easier to spot.

Basic Syntax
PHP is quite a simple language with roots in C and Perl, yet looks more like Java. It is
also very flexible, but there are a few rules that you need to learn about its syntax and
structure.

Semicolons

You may have noticed in the previous examples that the PHP commands ended with
a semicolon, like this:

$x += 10;

Probably the most common cause of errors you will encounter with PHP is to forget
this semicolon, which causes PHP to treat multiple statements like one statement, find
itself unable to understand it, and produce a “Parse error” message.

The $ symbol

The $ symbol has come to be used in many different ways by different programming
languages. For example, if you have ever written in the BASIC language, you will have
used the $ to terminate variable names to denote them as strings.

In PHP, however, you must place a $ in front of all variables. This is required to make
the PHP parser faster, as it instantly knows whenever it comes across a variable.
Whether your variables are numbers, strings, or arrays, they should all look something
like those in Example 3-3.

Example 3-3. Three different types of variable assignment

<?php
$mycounter = 1;
$mystring = "Hello";
$myarray = array("One", "Two", "Three");
?>

And really that’s pretty much all the syntax that you have to remember. Unlike lan-
guages such as Python, which are very strict about how you indent and lay out code,
PHP leaves you completely free to use (or not use) all the indenting and spacing you
like. In fact, sensible use of what is called whitespace is generally encouraged (along
with comprehensive commenting) to help you understand your code when you come
back to it. It also helps other programmers when they have to maintain your code.

The Structure of PHP | 37

Understanding Variables
There’s a simple metaphor that will help you understand what PHP variables are all
about. Just think of them as little (or big) matchboxes! That’s right, matchboxes that
you’ve painted white and written names on.

String variables

Imagine you have a matchbox on which you have written the word username. You then
write Fred Smith on a piece of paper and place it into the box (see Figure 3-2). Well,
that’s the same process as assigning a string value to a variable, like this:

$username = "Fred Smith";

The quotation marks indicate that “Fred Smith” is a string of characters. You must
enclose each string in either quotation marks or apostrophes (single quotes), although
there is a subtle difference between the two types of quote, which is explained later.
When you want to see what’s in the box, you open it, take the piece of paper out, and
read it. In PHP, doing so looks like this:

echo $username;

Or you can assign it to another variable (photocopy the paper and place the copy in
another matchbox), like this:

$current_user = $username;

If you are keen to start trying out PHP for yourself, you could try entering the examples
in this chapter into an IDE (as recommended at the end of Chapter 2), to see instant
results, or you could enter the code in Example 3-4 into a program editor and save it
to your web development directory (also discussed in Chapter 2) as test1.php.

Figure 3-2. You can think of variables as matchboxes containing items

38 | Chapter 3: Introduction to PHP

Example 3-4. Your first PHP program

<?php // test1.php
$username = "Fred Smith";
echo $username;
echo "
";
$current_user = $username;
echo $current_user;
?>

Now you can call it up by entering the URL of your web development directory and
the filename test1.php into the address bar of your browser. For example, if you are
using a PC and the alias to your development directory is called web, you would enter
the following into your browser:

http://localhost/web/test1.php

The result of running this code should be two occurrences of the name “Fred Smith”,
the first of which is the result of the echo $username command and the second is from
the echo $current_user command.

Numeric variables

Variables don’t contain just strings—they can contain numbers, too. Using the match-
box analogy, to store the number 17 in the variable $count, the equivalent would be
placing, say, 17 beads in a matchbox on which you have written the word count:

$count = 17;

You could also use a floating-point number (containing a decimal point); the syntax is
the same:

$count = 17.5;

To read the contents of the matchbox, you would simply open it and count the beads.
In PHP, you would assign the value of $count to another variable or perhaps just echo
it to the web browser.

Arrays

So what are arrays? Well, you can think of them as several matchboxes glued together.
For example, let’s say we want to store the player names for a five-person soccer team
in an array called $team. To do this, we could glue five matchboxes side by side and
write down the names of all the players on separate pieces of paper, placing one in each
matchbox.

Across the whole top of the matchbox assembly we would write the word team (see
Figure 3-3). The equivalent of this in PHP would be:

$team = array('Bill', 'Joe', 'Mike', 'Chris', 'Jim');

The Structure of PHP | 39

This syntax is more complicated than the ones I’ve explained so far. The array-building
code consists of the following construct:

array();

with five strings inside. Each string is enclosed in apostrophes.

If we then wanted to know who player 4 is, we could use this command:

echo $team[3]; // Displays the name Chris

Figure 3-3. An array is like several matchboxes glued together

The reason the previous statement has the number 3 and not a 4 is because the first
element of a PHP array is actually the zeroth element, so the player numbers will there-
fore be 0 through 4.

Two-dimensional arrays

There’s a lot more you can do with arrays. For example, instead of being single-
dimensional lines of matchboxes, they can be two-dimensional matrixes or can even
have three or more dimensions.

As an example of a two-dimensional array, let’s say we want to keep track of a game
of tic-tac-toe, which requires a data structure of nine cells arranged in a 3×3 square. To
represent this with matchboxes, imagine nine of them glued to each other in a matrix
of three rows by three columns (see Figure 3-4).

You can now place a piece of paper with either an “x” or an “o” in the correct matchbox
for each move played. To do this in PHP code, you have to set up an array containing

40 | Chapter 3: Introduction to PHP

three more arrays, as in Example 3-5, in which the array is set up with a game already
in progress.

Example 3-5. Defining a two-dimensional array

<?php
$oxo = array(array('x', '', 'o'),
 array('o', 'o', 'x'),
 array('x', 'o', ''));
?>

Once again, we’ve moved up a step in complexity, but it’s easy to understand if you
grasp the basic array syntax. There are three array() constructs nested inside the outer
array() construct.

To then return the third element in the second row of this array, you would use the
following PHP command, which will display an “x”:

echo $oxo[1][2];

Remember that array indexes (pointers at elements within an array) start
from zero, not one, so the [1] in the previous command refers to the
second of the three arrays, and the [2] references the third position
within that array. It will return the contents of the matchbox three along
and two down.

As mentioned, arrays with even more dimensions are supported by simply creating
more arrays within arrays. However, we will not be covering arrays of more than two
dimensions in this book.

Figure 3-4. A multidimensional array simulated with matchboxes

The Structure of PHP | 41

And don’t worry if you’re still having difficulty getting to grips with using arrays, as the
subject is explained in detail in Chapter 6.

Variable naming rules

When creating PHP variables, you must follow these four rules:

• Variable names must start with a letter of the alphabet or the _ (underscore)
character.

• Variable names can contain only the characters: a-z, A-Z, 0-9, and _ (underscore).

• Variable names may not contain spaces. If a variable must comprise more than one
word it should be separated with the _ (underscore) character. (e.g., $user_name).

• Variable names are case-sensitive. The variable $High_Score is not the same as the
variable $high_score.

Operators
Operators are the mathematical, string, comparison, and logical commands such as
plus, minus, times, and divide. PHP looks a lot like plain arithmetic; for instance, the
following statement outputs 8:

echo 6 + 2;

Before moving on to learn what PHP can do for you, take a moment to learn about the
various operators it provides.

Arithmetic operators

Arithmetic operators do what you would expect. They are used to perform mathemat-
ics. You can use them for the main four operations (plus, minus, times, and divide) as
well as to find a modulus (the remainder after a division) and to increment or decrement
a value (see Table 3-1).

Table 3-1. Arithmetic operators

Operator Description Example

+ Addition $j + 1

- Subtraction $j - 6

* Multiplication $j * 11

/ Division $j / 4

% Modulus (division remainder) $j % 9

++ Increment ++$j

-- Decrement --$j

42 | Chapter 3: Introduction to PHP

Assignment operators

These operators are used to assign values to variables. They start with the very simple
= and move on to +=, -=, and so on (see Table 3-2). The operator += adds the value on
the right side to the variable on the left, instead of totally replacing the value on the
left. Thus, if $count starts with the value 5, the statement:

$count += 1;

sets $count to 6, just like the more familiar assignment statement:

$count = $count + 1;

Strings have their own operator, the period (.), detailed in the section “String concat-
enation” on page 46.

Table 3-2. Assignment operators

Operator Example Equivalent to

= $j = 15 $j = 15

+= $j += 5 $j = $j + 5

-= $j -= 3 $j = $j - 3

*= $j *= 8 $j = $j * 8

/= $j /= 16 $j = $j / 16

.= $j .= $k $j = $j . $k

%= $j %= 4 $j = $j % 4

Comparison operators

Comparison operators are generally used inside a construct such as an if statement in
which you need to compare two items. For example, you may wish to know whether
a variable you have been incrementing has reached a specific value, or whether another
variable is less than a set value, and so on (see Table 3-3).

Note the difference between = and ==. The first is an assignment operator, and the
second is a comparison operator. Even more advanced programmers can sometimes
transpose the two when coding hurriedly, so be careful.

Table 3-3. Comparison operators

Operator Description Example

== Is equal to $j == 4

!= Is not equal to $j != 21

> Is greater than $j > 3

< Is less than $j < 100

>= Is greater than or equal to $j >= 15

<= Is less than or equal to $j <= 8

The Structure of PHP | 43

Logical operators

If you haven’t used them before, logical operators may at first seem a little daunting.
But just think of them the way you would use logic in English. For example, you might
say to yourself “If the time is later than 12pm and earlier than 2pm, then have lunch.”
In PHP, the code for this might look something like the following (using military
timing):

if ($hour > 12 && $hour < 14) dolunch();

Here we have moved the set of instructions for actually going to lunch into a function
that we will have to create later called dolunch. The then of the statement is left out,
because it is implied and therefore unnecessary.

As the previous example shows, you generally use a logical operator to combine the
results of two of the comparison operators shown in the previous section. A logical
operator can also be input to another logical operator (“If the time is later than 12pm
and earlier than 2pm, or if the smell of a roast is permeating the hallway and there are
plates on the table”). As a rule, if something has a TRUE or FALSE value, it can be input
to a logical operator. A logical operator takes two true-or-false inputs and produces a
true-or-false result.

Table 3-4 shows the logical operators.

Table 3-4. Logical operators

Operator Description Example

&& And $j == 3 && $k == 2

and Low-precedence and $j == 3 and $k == 2

|| Or $j < 5 || $j > 10

or Low-precedence or $j < 5 or $j > 10

! Not ! ($j == $k)

xor Exclusive or $j xor $k

Note that && is usually interchangeable with and; the same is true for || and or. But
and and or have a lower precedence, so in some cases, you may need extra parentheses
to force the required precedence. On the other hand, there are times when only and or
or are acceptable, as in the following statement, which uses an or operator (to be ex-
plained in Chapter 10):

mysql_select_db($database) or die("Unable to select database");

The most unusual of these operators is xor, which stands for exclusive or and returns
a true value if either value is true, but a false value if both inputs are true or both
inputs are FALSE. To understand this, imagine that you want to concoct your own
cleaner for household items. Ammonia makes a good cleaner, and so does bleach, so

44 | Chapter 3: Introduction to PHP

you want your cleaner to have one of these. But the cleaner must not have both, because
the combination is hazardous. In PHP, you could represent this as:

$ingredient = $ammonia xor $bleach;

In the example snippet, if either $ammonia or $bleach is true, $ingredient will also be
set to true. But if both are true or both are false, $ingredient will be set to false.

Variable Assignment
The syntax to assign a value to a variable is always variable = value. Or, to reassign the
value to another variable, it is other variable = variable.

There are also a couple of other assignment operators that you will find useful. For
example, we’ve already seen:

$x += 10;

which tells the PHP parser to add the value on the right (in this instance, the value 10)
to the variable $x. Likewise, we could subtract as follows:

$y -= 10;

Variable incrementing and decrementing

Adding or subtracting 1 is such a common operation that PHP provides special oper-
ators for it. You can use one of the following in place of the += and -= operators:

++$x;
--$y;

In conjunction with a test (an if statement), you could use the following code:

if (++$x == 10) echo $x;

This tells PHP to first increment the value of $x and then test whether it has the value
10; if it does, output its value. But you can also require PHP to increment (or, in the
following example, decrement) a variable after it has tested the value, like this:

if ($y-- == 0) echo $y;

which gives a subtly different result. Suppose $y starts out as 0 before the statement is
executed. The comparison will return a true result, but $y will be set to −1 after the
comparison is made. So what will the echo statement display: 0 or −1? Try to guess,
and then try out the statement in a PHP processor to confirm. Because this combination
of statements is confusing, it should be taken as just an educational example and not
as a guide to good programming style.

In short, whether a variable is incremented or decremented before or after testing de-
pends on whether the increment or decrement operator is placed before or after the
variable.

The Structure of PHP | 45

By the way, the correct answer to the previous question is that the echo statement will
display the result −1, because $y was decremented right after it was accessed in the if
statement, and before the echo statement.

String concatenation

String concatenation uses the period (.) to append one string of characters to another.
The simplest way to do this is as follows:

echo "You have " . $msgs . " messages.";

Assuming that the variable $msgs is set to the value 5, the output from this line of code
will be:

You have 5 messages.

Just as you can add a value to a numeric variable with the += operator, you can append
one string to another using .= like this:

$bulletin .= $newsflash;

In this case, if $bulletin contains a news bulletin and $newsflash has a news flash, the
command appends the news flash to the news bulletin so that $bulletin now comprises
both strings of text.

String types

PHP supports two types of strings that are denoted by the type of quotation mark that
you use. If you wish to assign a literal string, preserving the exact contents, you should
use the single quotation mark (apostrophe) like this:

$info = 'Preface variables with a $ like this: $variable';

In this case, every character within the single-quoted string is assigned to $info. If you
had used double quotes, PHP would have attempted to evaluate $variable as a variable.

On the other hand, when you want to include the value of a variable inside a string,
you do so by using double-quoted strings:

echo "There have been $count presidents of the US";

As you will realize, this syntax also offers a simpler form of concatenation in which you
don’t need to use a period, or close and reopen quotes, to append one string to another.
This is called variable substitution and you will notice some applications using it ex-
tensively and others not using it at all.

Escaping characters

Sometimes a string needs to contain characters with special meanings that might be
interpreted incorrectly. For example, the following line of code will not work, because
the second quotation mark encountered in the word sister’s will tell the PHP parser that

46 | Chapter 3: Introduction to PHP

the string end has been reached. Consequently, the rest of the line will be rejected as
an error:

$text = 'My sister's car is a Ford'; // Erroneous syntax

To correct this, you can add a backslash directly before the offending quotation mark
to tell PHP to treat the character literally and not to interpret it:

$text = 'My sister\'s car is a Ford';

And you can perform this trick in almost all situations in which PHP would otherwise
return an error by trying to interpret a character. For example, the following double-
quoted string will be correctly assigned:

$text = "My Mother always said \"Eat your greens\".";

Additionally you can use escape characters to insert various special characters into
strings such as tabs, new lines, and carriage returns. These are represented, as you might
guess, by \t, \n, and \r. Here is an example using tabs to lay out a heading; it is included
here merely to illustrate escapes, because in web pages there are always better ways to
do layout:

$heading = "Date\tName\tPayment";

These special backslash-preceded characters work only in double-quoted strings. In
single-quoted strings, the preceding string would be displayed with the ugly \t se-
quences instead of tabs. Within single-quoted strings, only the escaped apostrophe
(\') and escaped backslash itself (\\) are recognized as escaped characters.

Multiple-Line Commands
There are times when you need to output quite a lot of text from PHP and using several
echo (or print) statements would be time-consuming and messy. To overcome this,
PHP offers two conveniences. The first is just to put multiple lines between quotes, as
in Example 3-6. Variables can also be assigned, as in Example 3-7.

Example 3-6. A multiline string echo statement

<?php
$author = "Alfred E Newman";

echo "This is a Headline

This is the first line.
This is the second.
Written by $author.";
?>

Example 3-7. A multiline string assignment

<?php
$author = "Alfred E Newman";

The Structure of PHP | 47

$text = "This is a Headline

This is the first line.
This is the second.
Written by $author.";
?>

PHP also offers a multiline sequence using the <<< operator, commonly referred to as
here-document or heredoc for short, and is a way of specifying a string literal, preserving
the line breaks and other whitespace (including indentation) in the text. Its use can be
seen in Example 3-8.

Example 3-8. Alternative multiline echo statement

<?php
$author = "Alfred E Newman";

echo <<<_END
This is a Headline

This is the first line.
This is the second.
- Written by $author.
_END;
?>

What this code does is tell PHP to output everything between the two _END tags as if it
were a double-quoted string. This means it’s possible, for example, for a developer to
write entire sections of HTML directly into PHP code and then just replace specific
dynamic parts with PHP variables.

It is important to remember that the closing _END; tag must appear right at the start of
a new line and it must be the only thing on that line—not even a comment is allowed
to be added after it (nor even a single space). Once you have closed a multiline block,
you are free to use the same tag name again.

Remember: using the <<<_END..._END; heredoc construct, you don’t
have to add \n linefeed characters to send a linefeed—just press Return
and start a new line. Also, unlike either a double-quote- or single-quote-
delimited string, you are free to use all the single and double quotes you
like within a heredoc, without escaping them by preceding them with a
slash (\).

Example 3-9 shows how to use the same syntax to assign multiple lines to a variable.

Example 3-9. A multiline string variable assignment

<?php
$author = "Alfred E Newman";

$out = <<<_END

48 | Chapter 3: Introduction to PHP

This is a Headline

This is the first line.
This is the second.
- Written by $author.
_END;
?>

The variable $out will then be populated with the contents between the two tags. If you
were appending, rather than assigning, you could also have used .= in place of = to
append the string to $out.

Be careful not to place a semicolon directly after the first occurrence of _END as that
would terminate the multiline block before it had even started and cause a “Parse error”
message. The only place for the semicolon is after the terminating _END tag, although
it is safe to use semicolons within the block as normal text characters.

By the way, the _END tag is simply one I chose for these examples because it is unlikely
to be used anywhere else in PHP code and is therefore unique. But you can use any tag
you like such as _SECTION1 or _OUTPUT and so on. Also, to help differentiate tags such
as this from variables or functions, the general practice is to preface them with an
underscore, but you don’t have to use one if you choose not to.

Laying out text over multiple lines is usually just a convenience to make your PHP code
easier to read, because once it is displayed in a web page, HTML formatting rules take
over and whitespace is suppressed, but $author is still replaced with the variable’s value.

Variable Typing
PHP is a very loosely typed language. This means that variables do not have to be
declared before they are used, and that PHP always converts variables to the type re-
quired by their context when they are accessed.

For example, you can create a multiple-digit number and extract the nth digit from it
simply by assuming it to be a string. In the following snippet of code, the numbers
12345 and 67890 are multiplied together, returning a result of 838102050, which is
then placed in the variable $number, as shown in Example 3-10.

Example 3-10. Automatic conversion from a number to a string

<?php
$number = 12345 * 67890;
echo substr($number, 3, 1);
?>

At the point of the assignment, $number is a numeric variable. But on the second line,
a call is placed to the PHP function substr, which asks for one character to be returned
from $number, starting at the fourth position (remembering that PHP offsets start from
zero). To do this, PHP turns $number into a nine-character string, so that substr can
access it and return the character, which in this case is 1.

The Structure of PHP | 49

The same goes for turning a string into a number and so on. In Example 3-11, the
variable $pi is set to a string value, which is then automatically turned into a floating-
point number in the third line by the equation for calculating a circle’s area, which
outputs the value 78.5398175.

Example 3-11. Automatically converting a string to a number

<?php
$pi = "3.1415927";
$radius = 5;
echo $pi * ($radius * $radius);
?>

In practice, what this all means is that you don’t have to worry too much about your
variable types. Just assign them values that make sense to you and PHP will convert
them if necessary. Then, when you want to retrieve values, just ask for them—for ex-
ample, with an echo statement.

Constants
Constants are similar to variables, holding information to be accessed later, except that
they are what they sound like—constant. In other words, once you have defined one,
its value is set for the remainder of the program and cannot be altered.

One example of a use for a constant might be to hold the location of your server root
(the folder with the main files of your website). You would define such a constant like
this:

define("ROOT_LOCATION", "/usr/local/www/");

Then, to read the contents of the variable you just refer to it like a regular variable (but
it isn’t preceded by a dollar sign):

$directory = ROOT_LOCATION;

Now, whenever you need to run your PHP code on a different server with a different
folder configuration, you have only a single line of code to change.

The main two things you have to remember about constants are that
they must not be prefaced with a $ sign (as with regular variables), and
that you can define them only using the define function.

It is generally agreed to be good practice to use only uppercase for constant variable
names, especially if other people will also read your code.

50 | Chapter 3: Introduction to PHP

Predefined constants

PHP comes ready-made with dozens of predefined constants that you generally will be
unlikely to use as a beginner to PHP. However, there are a few—known as the magic
constants—that you will find useful. The names of the magic constants always have
two underscores at the beginning and two at the end, so that you won’t accidentally
try to name one of your own constants with a name that is already taken. They are
detailed in Table 3-5. The concepts referred to in the table will be introduced in future
chapters.

Table 3-5. PHP’s magic constants

Magic constant Description

__LINE__ The current line number of the file.

__FILE__ The full path and filename of the file. If used inside an include, the name of the included file is
returned. In versions of PHP since 4.0.2, __FILE__ always contains an absolute path with symbolic
links resolved, whereas in older versions it might contain a relative path under some circumstances.

__DIR__ The directory of the file. If used inside an include, the directory of the included file is returned. This
is equivalent to dirname(__FILE__). This directory name does not have a trailing slash unless
it is the root directory. (Added in PHP 5.3.0.)

__FUNCTION__ The function name. (Added in PHP 4.3.0.) As of PHP 5, returns the function name as it was declared
(case-sensitive). In PHP 4, its value is always lowercase.

__CLASS__ The class name. (Added in PHP 4.3.0.) As of PHP 5, returns the class name as it was declared (case-
sensitive). In PHP 4, its value is always lowercased.

__METHOD__ The class method name. (Added in PHP 5.0.0.) The method name is returned as it was declared
(case-sensitive).

__NAMESPACE__ The name of the current namespace (case-sensitive). This constant is defined at compile time.
(Added in PHP 5.3.0.)

One handy use of these variables is for debugging purposes, when you need to insert a
line of code to see whether the program flow reaches it:

echo "This is line " . __LINE__ . " of file " . __FILE__;

This causes the current program line in the current file (including the path) being exe-
cuted to be output to the web browser.

The Difference Between the echo and print Commands
So far, you have seen the echo command used in a number of different ways to output
text from the server to your browser. In some cases, a string literal has been output. In
others, strings have first been concatenated or variables have been evaluated. I’ve also
shown output spread over multiple lines.

The Structure of PHP | 51

But there is also an alternative to echo that you can use: print. The two commands are
quite similar to each other, but print is an actual function that takes a single parameter,
whereas echo is a PHP language construct.

By and large, the echo command will be a tad faster than print in general text output,
because, not being a function, it doesn’t set a return value.

On the other hand, because it isn’t a function, echo cannot be used as part of a more
complex expression, whereas print can. Here’s an example to output whether the value
of a variable is TRUE or FALSE using print, something you could not perform in the same
manner with echo, because it would display a “Parse error” message:

$b ? print "TRUE" : print "FALSE";

The question mark is simply a way of interrogating whether variable $b is true or
false. Whichever command is on the left of the following colon is executed if $b is
true, whereas the command to the right is executed if $b is false.

Generally, though, the examples in this book use echo and I recommend that you do
so as well, until you reach such a point in your PHP development that you discover the
need for using print.

Functions
Functions are used to separate out sections of code that perform a particular task. For
example, maybe you often need to look up a date and return it in a certain format. That
would be a good example to turn into a function. The code doing it might be only three
lines long, but if you have to paste it into your program a dozen times, you’re making
your program unnecessarily large and complex, unless you use a function. And if you
decide to change the data format later, putting it in a function means having to change
it in only one place.

Placing it into a function not only shortens your source code and makes it more read-
able, it also adds extra functionality (pun intended), because functions can be passed
parameters to make them perform differently. They can also return values to the calling
code.

To create a function, declare it in the manner shown in Example 3-12.

Example 3-12. A simple function declaration

<?php
function longdate($timestamp)
{
 return date("l F jS Y", $timestamp);
}
?>

52 | Chapter 3: Introduction to PHP

This function takes a Unix timestamp (an integer number representing a date and time
based on the number of seconds since 00:00 AM on January 1, 1970) as its input and
then calls the PHP date function with the correct format string to return a date in the
format Wednesday August 1st 2012. Any number of parameters can be passed between
the initial parentheses; we have chosen to accept just one. The curly braces enclose all
the code that is executed when you later call the function.

To output today’s date using this function, place the following call in your code:

echo longdate(time());

This call uses the built-in PHP time function to fetch the current Unix timestamp and
passes it to the new longdate function, which then returns the appropriate string to the
echo command for display. If you need to print out the date 17 days ago, you now just
have to issue the following call:

echo longdate(time() - 17 * 24 * 60 * 60);

which passes to longdate the current Unix timestamp less the number of seconds since
17 days ago (17 days × 24 hours × 60 minutes × 60 seconds).

Functions can also accept multiple parameters and return multiple results, using tech-
niques that I’ll develop over the following chapters.

Variable Scope
If you have a very long program, it’s quite possible that you could start to run out of
good variable names, but with PHP you can decide the scope of a variable. In other
words, you can, for example, tell it that you want the variable $temp to be used only
inside a particular function and to forget it was ever used when the function returns.
In fact, this is the default scope for PHP variables.

Alternatively, you could inform PHP that a variable is global in scope and thus can be
accessed by every other part of your program.

Local variables

Local variables are variables that are created within and can be accessed only by a
function. They are generally temporary variables that are used to store partially pro-
cessed results prior to the function’s return.

One set of local variables is the list of arguments to a function. In the previous section,
we defined a function that accepted a parameter named $timestamp. This is meaningful
only in the body of the function; you can’t get or set its value outside the function.

For another example of a local variable, take another look at the longdate function,
which is modified slightly in Example 3-13.

The Structure of PHP | 53

Example 3-13. An expanded version of the longdate function

<?php
function longdate($timestamp)
{
 $temp = date("l F jS Y", $timestamp);
 return "The date is $temp";
}
?>

Here we have assigned the value returned by the date function to the temporary variable
$temp, which is then inserted into the string returned by the function. As soon as the
function returns, the value of $temp is cleared, as if it had never been used at all.

Now, to see the effects of variable scope, let’s look at some similar code in Exam-
ple 3-14. Here $temp has been created before calling the longdate function.

Example 3-14. This attempt to access $temp in function longdate will fail

<?php
$temp = "The date is ";
echo longdate(time());

function longdate($timestamp)
{
 return $temp . date("l F jS Y", $timestamp);
}
?>

However, because $temp was neither created within the longdate function nor passed
to it as a parameter, longdate cannot access it. Therefore, this code snippet only outputs
the date and not the preceding text. In fact it will first display the error message “Notice:
Undefined variable: temp.”

The reason for this is that, by default, variables created within a function are local to
that function and variables created outside of any functions can be accessed only by
nonfunction code.

Some ways to repair Example 3-14 appear in Examples 3-15 and 3-16.

Example 3-15. Rewriting to refer to $temp within its local scope fixes the problem

<?php
$temp = "The date is ";
echo $temp . longdate(time());

function longdate($timestamp)
{
 return date("l F jS Y", $timestamp);
}
?>

Example 3-15 moves the reference to $temp out of the function. The reference appears
in the same scope where the variable was defined.

54 | Chapter 3: Introduction to PHP

Example 3-16. An alternative solution: passing $temp as an argument

<?php
$temp = "The date is ";
echo longdate($temp, time());

function longdate($text, $timestamp)
{
 return $text . date("l F jS Y", $timestamp);
}
?>

The solution in Example 3-16 passes $temp to the longdate function as an extra argu-
ment. longdate reads it into a temporary variable that it creates called $text and outputs
the desired result.

Forgetting the scope of a variable is a common programming error, so
remembering how variable scope works will help you debug some quite
obscure problems. Unless you have declared a variable otherwise, its
scope is limited to being local: either to the current function, or to the
code outside of any functions, depending on whether it was first created
or accessed inside or outside a function.

Global variables

There are cases when you need a variable to have global scope, because you want all
your code to be able to access it. Also, some data may be large and complex, and you
don’t want to keep passing it as arguments to functions.

To declare a variable as having global scope, use the keyword global. Let’s assume that
you have a way of logging your users into your website and want all your code to know
whether it is interacting with a logged-in user or a guest. One way to do this is to create
a global variable such as $is_logged_in:

global $is_logged_in;

Now your login function simply has to set that variable to 1 upon success of a login
attempt, or 0 upon its failure. Because the scope of the variable is global, every line of
code in your program can access it.

You should use global variables with caution, though. I recommend that you create
them only when you absolutely cannot find another way of achieving the result you
desire. In general, programs that are broken into small parts and segregated data are
less buggy and easier to maintain. If you have a thousand-line program (and some day
you will) in which you discover that a global variable has the wrong value at some point,
how long will it take you to find the code that set it incorrectly?

Also, if you have too many global variables, you run the risk of using one of those names
again locally, or at least thinking you have used it locally, when in fact it has already
been declared as global. All manner of strange bugs can arise from such situations.

The Structure of PHP | 55

Static variables

In the section “Local variables” on page 53, I mentioned that the value of the variable
is wiped out when the function ends. If a function runs many times, it starts with a
fresh copy of the variable and the previous setting has no effect.

Here’s an interesting case. What if you have a local variable inside a function that you
don’t want any other parts of your code to have access to, but that you would also like
to keep its value for the next time the function is called? Why? Perhaps because you
want a counter to track how many times a function is called. The solution is to declare
a static variable, as shown in Example 3-17.

Example 3-17. A function using a static variable

<?php
function test()
{
 static $count = 0;
 echo $count;
 $count++;
}
?>

Here the very first line of function test creates a static variable called $count and initi-
alizes it to a value of zero. The next line outputs the variable’s value; the final one
increments it.

The next time the function is called, because $count has already been declared, the first
line of the function is skipped. Then the previously incremented value of $count is
displayed before the variable is again incremented.

If you plan to use static variables, you should note that you cannot assign the result of
an expression in their definitions. They can be initialized only with predetermined
values (see Example 3-18).

Example 3-18. Allowed and disallowed static variable declarations

<?php
static $int = 0; // Allowed
static $int = 1+2; // Disallowed (will produce a Parse error)
static $int = sqrt(144); // Disallowed
?>

Superglobal variables

Starting with PHP 4.1.0, several predefined variables are available. These are known as
superglobal variables, which means that they are provided by the PHP environment but
are global within the program, accessible absolutely everywhere.

These superglobals contain lots of useful information about the currently running pro-
gram and its environment (see Table 3-6). They are structured as associative arrays, a
topic discussed in Chapter 6.

56 | Chapter 3: Introduction to PHP

Table 3-6. PHP’s superglobal variables

Superglobal name Contents

$GLOBALS All variables that are currently defined in the global scope of the script. The variable names are the keys
of the array.

$_SERVER Information such as headers, paths, and script locations. The entries in this array are created by the web
server and there is no guarantee that every web server will provide any or all of these.

$_GET Variables passed to the current script via the HTTP GET method.

$_POST Variables passed to the current script via the HTTP POST method.

$_FILES Items uploaded to the current script via the HTTP POST method.

$_COOKIE Variables passed to the current script via HTTP cookies.

$_SESSION Session variables available to the current script.

$_REQUEST Contents of information passed from the browser; by default, $_GET, $_POST and $_COOKIE.

$_ENV Variables passed to the current script via the environment method.

All of the superglobals are named with a single initial underscore and only capital let-
ters; therefore, you should avoid naming your own variables in this manner to avoid
potential confusion.

To illustrate how you use them, let’s look at a bit of information that many sites employ.
Among the many nuggets of information supplied by superglobal variables is the URL
of the page that referred the user to the current web page. This referring page infor-
mation can be accessed like this:

$came_from = $_SERVER['HTTP_REFERRER'];

It’s that simple. Oh, and if the user came straight to your web page, such as by typing
its URL directly into a browser, $came_from will be set to an empty string.

Superglobals and security

A word of caution is in order before you start using superglobal variables, because they
are often used by hackers trying to find exploits to break in to your website. What they
do is load up $_POST, $_GET, or other superglobals with malicious code, such as Unix
or MySQL commands that can damage or display sensitive data if you naïvely access
them.

Therefore, you should always sanitize superglobals before using them. One way to do
this is via the PHP htmlentities function. It converts all characters into HTML entities.
For example, less-than and greater-than characters (< and >) are transformed into the
strings < and > so that they are rendered harmless, as are all quotes and back-
slashes, and so on.

Therefore, a much better way to access $_SERVER (and other superglobals) is:

$came_from = htmlentities($_SERVER['HTTP_REFERRER']);

The Structure of PHP | 57

This chapter has provided you with a solid background in using PHP. In Chapter 4,
we’ll start using what’s you’ve learned to build expressions and control program flow.
In other words, some actual programming.

But before moving on, I recommend that you test yourself with some (if not all) of the
following questions to ensure that you have fully digested the contents of this chapter.

Test Your Knowledge: Questions
Question 3-1

What tag is used to cause PHP to start interpreting program code? And what is the
short form of the tag?

Question 3-2
What are the two types of comment tags?

Question 3-3
Which character must be placed at the end of every PHP statement?

Question 3-4
Which symbol is used to preface all PHP variables?

Question 3-5
What can a variable store?

Question 3-6
What is the difference between $variable = 1 and $variable == 1?

Question 3-7
Why do you suppose that an underscore is allowed in variable names
($current_user) whereas hyphens are not ($current-user) ?

Question 3-8
Are variable names case-sensitive?

Question 3-9
Can you use spaces in variable names?

Question 3-10
How do you convert one variable type to another (say, a string to a number)?

Question 3-11
What is the difference between ++$j and $j++?

Question 3-12
Are the operators && and and interchangeable?

Question 3-13
How can you create a multiline echo or assignment?

Question 3-14
Can you redefine a constant?

58 | Chapter 3: Introduction to PHP

Question 3-15
How do you escape a quotation mark?

Question 3-16
What is the difference between the echo and print commands?

Question 3-17
What is the purpose of functions?

Question 3-18
How can you make a variable accessible to all parts of a PHP program?

Question 3-19
If you generate data within a function, provide a couple of ways to convey the data
to the rest of the program.

Question 3-20
What is the result of combining a string with a number?

See the section “Chapter 3 Answers” on page 436 in Appendix A for the answers to
these questions.

Test Your Knowledge: Questions | 59

CHAPTER 4

Expressions and Control Flow in PHP

The previous chapter introduced several topics in passing that this chapter covers more
fully, such as making choices (branching) and creating complex expressions. In the
previous chapter, I wanted to focus on the most basic syntax and operations in PHP,
but I couldn’t avoid touching on more advanced topics. Now I can fill in the background
that you need to use these powerful PHP features properly.

In this chapter, you will get a thorough grounding in how PHP programming works in
practice and how to control the flow of the program.

Expressions
Let’s start with the most fundamental part of any programming language: expressions.

An expression is a combination of values, variables, operators, and functions that re-
sults in a value. It’s familiar to anyone who has taken elementary-school algebra:

y = 3(abs(2x) + 4)

which in PHP would be:

$y = 3 * (abs(2*$x) + 4);

The value returned (y or $y in this case) can be a number, a string, or a Boolean value
(named after George Boole, a nineteenth-century English mathematician and philoso-
pher). By now, you should be familiar with the first two value types, but I’ll explain the
third.

A basic Boolean value can be either TRUE or FALSE. For example, the expression “20 >
9” (20 is greater than 9) is TRUE, and the expression “5 == 6” (5 is equal to 6) is FALSE.
(Boolean operations can be combined using operators such as AND, OR, and XOR, which
are covered later in this chapter.)

Note that I am using uppercase letters for the names TRUE and FALSE. This is because
they are predefined constants in PHP. You can also use the lowercase versions, if you
prefer, as they are also predefined. In fact, the lowercase versions are more stable,

61

because PHP does not allow you to redefine them; the uppercase ones may be
redefined—something you should bear in mind if you import third-party code.

Example 4-1 shows some simple expressions: the two I just mentioned, plus a couple
more. For each line, it prints out a letter between a and d, followed by a colon and the
result of the expressions (the
 tag is there to create a line break and thus separate
the output into four lines in HTML).

Example 4-1. Four simple Boolean expressions

<?php
echo "a: [" . (20 > 9) . "]
";
echo "b: [" . (5 == 6) . "]
";
echo "c: [" . (1 == 0) . "]
";
echo "d: [" . (1 == 1) . "]
";
?>

The output from this code is as follows:

a: [1]
b: []
c: []
d: [1]

Notice that both expressions a: and d: evaluate to TRUE, which has a value of 1. But
b: and c:, which evaluate to FALSE, do not show any value, because in PHP the constant
FALSE is defined as NULL, or nothing. To verify this for yourself, you could enter the code
in Example 4-2.

Example 4-2. Outputting the values of TRUE and FALSE

<?php // test2.php
echo "a: [" . TRUE . "]
";
echo "b: [" . FALSE . "]
";
?>

which outputs the following:

a: [1]
b: []

By the way, in some languages FALSE may be defined as 0 or even −1, so it’s worth
checking on its definition in each language.

Literals and Variables
The simplest form of an expression is a literal, which simply means something that
evaluates to itself, such as the number 73 or the string “Hello”. An expression could
also simply be a variable, which evaluates to the value that has been assigned to it. They
are both types of expressions, because they return a value.

Example 4-3 shows five different literals, all of which return values, albeit of different
types.

62 | Chapter 4: Expressions and Control Flow in PHP

Example 4-3. Five types of literals

<?php
$myname = "Brian";
$myage = 37;
echo "a: " . 73 . "
"; // Numeric literal
echo "b: " . "Hello" . "
"; // String literal
echo "c: " . FALSE . "
"; // Constant literal
echo "d: " . $myname . "
"; // Variable string literal
echo "e: " . $myage . "
"; // Variable numeric literal
?>

And, as you’d expect, you see a return value from all of these with the exception of
c:, which evaluates to FALSE, returning nothing in the following output:

a: 73
b: Hello
c:
d: Brian
e: 37

In conjunction with operators, it’s possible to create more complex expressions that
evaluate to useful results.

When you combine assignment or control-flow constructs with expressions, the result
is a statement. Example 4-4 shows one of each. The first assigns the result of the ex-
pression 366 - $day_number to the variable $days_to_new_year, and the second outputs
a friendly message only if the expression $days_to_new_year < 30 evaluates to TRUE.

Example 4-4. An expression and a statement

<?php
$days_to_new_year = 366 - $day_number; // Expression
if ($days_to_new_year < 30)
{
 echo "Not long now till new year"; // Statement
}
?>

Operators
PHP offers a lot of powerful operators that range from arithmetic, string, and logical
operators to assignment, comparison, and more (see Table 4-1).

Table 4-1. PHP operator types

Operator Description Example

Arithmetic Basic mathematics $a + $b

Array Array union $a + $b

Assignment Assign values $a = $b + 23

Bitwise Manipulate bits within bytes 12 ^ 9

Operators | 63

Operator Description Example

Comparison Compare two values $a < $b

Execution Executes contents of backticks `ls -al`

Increment/Decrement Add or subtract 1 $a++

Logical Boolean $a and $b

String Concatenation $a . $b

Each operator takes a different number of operands:

• Unary operators, such as incrementing ($a++) or negation (-$a), which take a single
operand.

• Binary operators, which represent the bulk of PHP operators, including addition,
subtraction, multiplication, and division.

• One ternary operator, which takes the form ? x : y. It’s a terse, single-line if
statement that chooses between two expressions, depending on the result of a third
one.

Operator Precedence
If all operators had the same precedence, they would be processed in the order in which
they are encountered. In fact, many operators do have the same precedence, so let’s
look at a few in Example 4-5.

Example 4-5. Three equivalent expressions

1 + 2 + 3 - 4 + 5
2 - 4 + 5 + 3 + 1
5 + 2 - 4 + 1 + 3

Here you will see that although the numbers (and their preceding operators) have been
moved, the result of each expression is the value 7, because the plus and minus oper-
ators have the same precedence. We can try the same thing with multiplication and
division (see Example 4-6).

Example 4-6. Three expressions that are also equivalent

1 * 2 * 3 / 4 * 5
2 / 4 * 5 * 3 * 1
5 * 2 / 4 * 1 * 3

Here the resulting value is always 7.5. But things change when we mix operators with
different precedences in an expression, as in Example 4-7.

64 | Chapter 4: Expressions and Control Flow in PHP

Example 4-7. Three expressions using operators of mixed precedence

1 + 2 * 3 - 4 * 5
2 - 4 * 5 * 3 + 1
5 + 2 - 4 + 1 * 3

If there were no operator precedence, these three expressions would evaluate to 25,
−29, and 12, respectively. But because multiplication and division take precedence over
addition and subtraction, there are implied parentheses around these parts of the ex-
pressions, which would look like Example 4-8 if they were visible.

Example 4-8. Three expressions showing implied parentheses

1 + (2 * 3) - (4 * 5)
2 - (4 * 5 * 3) + 1
5 + 2 - 4 + (1 * 3)

Clearly, PHP must evaluate the subexpressions within parentheses first to derive the
semicompleted expressions in Example 4-9.

Example 4-9. After evaluating the subexpressions in parentheses

1 + (6) - (20)
2 - (60) + 1
5 + 2 - 4 + (3)

The final results of these expressions are −13, −57, and 6, respectively (quite different
from the results of 25, −29, and 12 that we would have seen had there been no operator
precedence).

Of course, you can override the default operator precedence by inserting your own
parentheses and force the original results that we would have seen, had there been no
operator precedence (see Example 4-10).

Example 4-10. Forcing left-to-right evaluation

((1 + 2) * 3 - 4) * 5
(2 - 4) * 5 * 3 + 1
(5 + 2 - 4 + 1) * 3

With parentheses correctly inserted, we now see the values 25, −29, and 12,
respectively.

Table 4-2 lists PHP’s operators in order of precedence from high to low.

Table 4-2. The precedence of PHP operators (high to low)

Operator(s) Type

() Parentheses

++ -- Increment/Decrement

! Logical

* / % Arithmetic

Operators | 65

Operator(s) Type

+ - . Arithmetic and String

<< >> Bitwise

< <= > >= <> Comparison

== != === !== Comparison

& Bitwise (and references)

^ Bitwise

| Bitwise

&& Logical

|| Logical

? : Ternary

= += -= *= /= .= %= &= != ^= <<= >>= Assignment

and Logical

xor Logical

or Logical

Associativity
We’ve been looking at processing expressions from left to right, except where operator
precedence is in effect. But some operators can also require processing from right to
left. The direction of processing is called the operator’s associativity.

This associativity becomes important in cases in which you do not explicitly force
precedence. Table 4-3 lists all the operators that have right-to-left associativity.

Table 4-3. Operators with right-to-left associativity

Operator Description

NEW Create a new object

! Logical NOT

~ Bitwise NOT

++ -- Increment and decrement

+ - Unary plus and negation

(int) Cast to an integer

(double) Cast to a float

(string) Cast to a string

(array) Cast to an array

(object) Cast to an object

@ Inhibit error reporting

66 | Chapter 4: Expressions and Control Flow in PHP

Operator Description

? : Conditional

= Assignment

For example, let’s take a look at the assignment operator in Example 4-11, where three
variables are all set to the value 0.

Example 4-11. A multiple-assignment statement

<?php
$level = $score = $time = 0;
?>

This multiple assignment is possible only if the rightmost part of the expression is
evaluated first and then processing continues in a right-to-left direction.

As a beginner to PHP, you should learn to avoid the potential pitfalls of
operator associativity by always nesting your subexpressions within pa-
rentheses to force the order of evaluation. This will also help other pro-
grammers who may have to maintain your code to understand what is
happening.

Relational Operators
Relational operators test two operands and return a Boolean result of either TRUE or
FALSE. There are three types of relational operators: equality, comparison, and logical.

Equality

As already encountered a few times in this chapter, the equality operator is == (two
equals signs). It is important not to confuse it with the = (single equals sign) assignment
operator. In Example 4-12, the first statement assigns a value and the second tests it
for equality.

Example 4-12. Assigning a value and testing for equality

<?php
$month = "March";
if ($month == "March") echo "It's springtime";
?>

As you see, returning either TRUE or FALSE, the equality operator enables you to test for
conditions using, for example, an if statement. But that’s not the whole story, because
PHP is a loosely typed language. If the two operands of an equality expression are of
different types, PHP will convert them to whatever type makes best sense to it.

Operators | 67

For example, any strings composed entirely of numbers will be converted to numbers
whenever compared with a number. In Example 4-13, $a and $b are two different strings
and we would therefore expect neither of the if statements to output a result.

Example 4-13. The equality and identity operators

<?php
$a = "1000";
$b = "+1000";
if ($a == $b) echo "1";
if ($a === $b) echo "2";
?>

However, if you run the example, you will see that it outputs the number 1, which
means that the first if statement evaluated to TRUE. This is because both strings were
first converted to numbers, and 1000 is the same numerical value as +1000.

In contrast, the second if statement uses the identity operator—three equals signs in
a row—which prevents PHP from automatically converting types. $a and $b are there-
fore compared as strings and are now found to be different, so nothing is output.

As with forcing operator precedence, whenever you feel there may be doubt about how
PHP will convert operand types, you can use the identity operator to turn this behavior
off.

In the same way that you can use the equality operator to test for operands being equal,
you can test for them not being equal using !=, the inequality operator. Take a look at
Example 4-14, which is a rewrite of Example 4-13 in which the equality and identity
operators have been replaced with their inverses.

Example 4-14. The inequality and not identical operators

<?php
$a = "1000";
$b = "+1000";
if ($a != $b) echo "1";
if ($a !== $b) echo "2";
?>

And, as you might expect, the first if statement does not output the number 1, because
the code is asking whether $a and $b are not equal to each other numerically.

Instead, it outputs the number 2, because the second if statement is asking whether
$a and $b are not identical to each other in their present operand types, and the answer
is TRUE; they are not the same.

Comparison operators

Using comparison operators, you can test for more than just equality and inequality.
PHP also gives you > (is greater than), < (is less than), >= (is greater than or equal to),
and <= (is less than or equal to) to play with. Example 4-15 shows these operators in use.

68 | Chapter 4: Expressions and Control Flow in PHP

Example 4-15. The four comparison operators

<?php
$a = 2; $b = 3;
if ($a > $b) echo "$a is greater than $b
";
if ($a < $b) echo "$a is less than $b
";
if ($a >= $b) echo "$a is greater than or equal to $b
";
if ($a <= $b) echo "$a is less than or equal to $b
";
?>

In this example, where $a is 2 and $b is 3, the following is output:

2 is less than 3
2 is less than or equal to 3

Try this example yourself, altering the values of $a and $b, to see the results. Try setting
them to the same value and see what happens.

Logical operators

Logical operators produce true-or-false results, and therefore are also known as Boolean
operators. There are four of them (see Table 4-4).

Table 4-4. The logical operators

Logical operator Description

AND TRUE if both operands are TRUE

OR TRUE if either operand is TRUE

XOR TRUE if one of the two operands is TRUE

NOT TRUE if the operand is FALSE or FALSE if the operand is TRUE

You can see these operators used in Example 4-16. Note that the ! symbol is required
by PHP in place of the word NOT. Furthermore, the operators can be lower- or uppercase.

Example 4-16. The logical operators in use

<?php
$a = 1; $b = 0;
echo ($a AND $b) . "
";
echo ($a or $b) . "
";
echo ($a XOR $b) . "
";
echo !$a . "
";
?>

This example outputs NULL, 1, 1, NULL, meaning that only the second and third echo
statements evaluate as TRUE. (Remember that NULL—or nothing—represents a value of
FALSE.) This is because the AND statement requires both operands to be TRUE if it is going
to return a value of TRUE, while the fourth statement performs a NOT on the value of
$a, turning it from TRUE (a value of 1) to FALSE. If you wish to experiment with this, try
out the code, giving $a and $b varying values of 1 and 0.

Operators | 69

When coding, remember to bear in mind that AND and OR have lower
precedence than the other versions of the operators, && and ||. In com-
plex expressions, it may be safer to use && and || for this reason.

The OR operator can cause unintentional problems in if statements, because the second
operand will not be evaluated if the first is evaluated as TRUE. In Example 4-17, the
function getnext will never be called if $finished has a value of 1.

Example 4-17. A statement using the OR operator

<?php
if ($finished == 1 OR getnext() == 1) exit;
?>

If you need getnext to be called at each if statement, you should rewrite the code as
has been done in Example 4-18.

Example 4-18. The “if ... OR” statement modified to ensure calling of getnext

<?php
$gn = getnext();
if ($finished == 1 OR $gn == 1) exit;
?>

In this case, the code in function getnext will be executed and the value returned stored
in $gn before the if statement.

Table 4-5 shows all the possible variations of using the logical operators. You should
also note that !TRUE equals FALSE and !FALSE equals TRUE.

Table 4-5. All possible PHP logical expressions

Inputs Operators and results

a b AND OR XOR

TRUE TRUE TRUE TRUE FALSE

TRUE FALSE FALSE TRUE TRUE

FALSE TRUE FALSE TRUE TRUE

FALSE FALSE FALSE FALSE FALSE

Conditionals
Conditionals alter program flow. They enable you to ask questions about certain things
and respond to the answers you get in different ways. Conditionals are central to dy-
namic web pages—the goal of using PHP in the first place—because they make it easy
to create different output each time a page is viewed.

70 | Chapter 4: Expressions and Control Flow in PHP

There are three types of nonlooping conditionals: the if statement, the switch state-
ment, and the ? operator. By nonlooping, I mean that the actions initiated by the state-
ment take place and program flow then moves on, whereas looping conditionals (which
we’ll come to shortly) execute code over and over until a condition has been met.

The if Statement
One way of thinking about program flow is to imagine it as a single-lane highway that
you are driving along. It’s pretty much a straight line, but now and then you encounter
various signs telling you where to go.

In the case of an if statement, you could imagine coming across a detour sign that you
have to follow if a certain condition is TRUE. If so, you drive off and follow the detour
until you return to where it started and then continue on your way in your original
direction. Or, if the condition isn’t TRUE, you ignore the detour and carry on driving
(see Figure 4-1).

The contents of the if condition can be any valid PHP expression, including equality,
comparison, tests for zero and NULL, and even the values returned by functions (either
built-in functions or ones that you write).

The action to take when an if condition is TRUE are generally placed inside curly braces,
{ }. However, you can ignore the braces if you have only a single statement to execute.
But if you always use curly braces, you’ll avoid having to hunt down difficult-to-trace
bugs, such as when you add an extra line to a condition and it doesn’t get evaluated
due to lack of braces. (Note that for space and clarity, many of the examples in this
book ignore this suggestion and omit the braces for single statements.)

In Example 4-19, imagine that it is the end of the month and all your bills have been
paid, so you are performing some bank account maintenance.

Figure 4-1. Program flow is like a single-lane highway

Conditionals | 71

Example 4-19. An if statement with curly braces

<?php
if ($bank_balance < 100)
{
 $money += 1000;
 $bank_balance += $money;
}
?>

In this example, you are checking your balance to see whether it is less than 100 dollars
(or whatever your currency is). If so, you pay yourself 1,000 dollars and then add it to
the balance. (If only making money were that simple!)

If the bank balance is 100 dollars or greater, the conditional statements are ignored and
program flow skips to the next line (not shown).

In this book, opening curly braces generally start on a new line. Some people like to
place the first curly brace to the right of the conditional expression; others start a new
line with it. Either of these is fine, because PHP allows you to set out your whitespace
characters (spaces, newlines, and tabs) any way you choose. However, you will find
your code easier to read and debug if you indent each level of conditionals with a tab.

The else Statement
Sometimes when a conditional is not TRUE, you may not want to continue on to the
main program code immediately but might wish to do something else instead. This is
where the else statement comes in. With it, you can set up a second detour on your
highway, as in Figure 4-2.

What happens with an if...else statement is that the first conditional statement is
executed if the condition is TRUE. But if it’s FALSE, the second one is executed. One of
the two choices must be executed. Under no circumstance can both (or neither) be
executed. Example 4-20 shows the use of the if...else structure.

Example 4-20. An if...else statement with curly braces

<?php
if ($bank_balance < 100)
{
 $money += 1000;
 $bank_balance += $money;
}
else
{
 $savings += 50;
 $bank_balance -= 50;
}
?>

72 | Chapter 4: Expressions and Control Flow in PHP

In this example, having ascertained that you have over $100 in the bank, the else
statement is executed, by which you place some of this money into your savings
account.

As with if statements, if your else has only one conditional statement, you can opt to
leave out the curly braces. (Curly braces are always recommended, though. First, they
make the code easier to understand. Second, they let you easily add more statements
to the branch later.)

The elseif Statement
There are also times when you want a number of different possibilities to occur, based
upon a sequence of conditions. You can achieve this using the elseif statement. As
you might imagine, it is like an else statement, except that you place a further condi-
tional expression prior to the conditional code. In Example 4-21, you can see a complete
if...elseif...else construct.

Figure 4-2. The highway now has an if detour and an else detour

Conditionals | 73

Example 4-21. An if...elseif...else statement with curly braces

<?php
if ($bank_balance < 100)
{
 $money += 1000;
 $bank_balance += $money;
}
elseif ($bank_balance > 200)
{
 $savings += 100;
 $bank_balance -= 100;
}
else
{
 $savings += 50;
 $bank_balance -= 50;
}
?>

In the example, an elseif statement has been inserted between the if and else state-
ments. It checks whether your bank balance exceeds $200 and, if so, decides that you
can afford to save $100 of it this month.

Although I’m starting to stretch the metaphor a bit too far, you can imagine this as a
multiway set of detours (see Figure 4-3).

An else statement closes either an if...else or an
if...elseif...else statement. You can leave out a final else if it is not
required, but you cannot have one before an elseif; neither can you
have an elseif before an if statement.

You may have as many elseif statements as you like. But as the number of elseif
statements increase, you would probably be better advised to consider a switch state-
ment if it fits your needs. We’ll look at that next.

The switch Statement
The switch statement is useful in cases in which one variable or the result of an ex-
pression can have multiple values, which should each trigger a different function.

For example, consider a PHP-driven menu system that passes a single string to the main
menu code according to what the user requests. Let’s say the options are Home, About,
News, Login, and Links, and we set the variable $page to one of these, according to the
user’s input.

The code for this written using if...elseif...else might look like Example 4-22.

74 | Chapter 4: Expressions and Control Flow in PHP

Example 4-22. A multiple-line if...elseif... statement

<?php
if ($page == "Home") echo "You selected Home";
elseif ($page == "About") echo "You selected About";
elseif ($page == "News") echo "You selected News";
elseif ($page == "Login") echo "You selected Login";
elseif ($page == "Links") echo "You selected Links";
?>

Using a switch statement, the code might look like Example 4-23.

Example 4-23. A switch statement

<?php
switch ($page)
{
 case "Home": echo "You selected Home";
 break;
 case "About": echo "You selected About";
 break;
 case "News": echo "You selected News";
 break;

Figure 4-3. The highway with if, elseif, and else detours

Conditionals | 75

 case "Login": echo "You selected Login";
 break;
 case "Links": echo "You selected Links";
 break;
}
?>

As you can see, $page is mentioned only once at the start of the switch statement.
Thereafter, the case command checks for matches. When one occurs, the matching
conditional statement is executed. Of course, in a real program you would have code
here to display or jump to a page, rather than simply telling the user what was selected.

One thing to note about switch statements is that you do not use curly
braces inside case commands. Instead, they commence with a colon and
end with the break statement. The entire list of cases in the switch state-
ment is enclosed in a set of curly braces, though.

Breaking out

If you wish to break out of the switch statement because a condition has been fulfilled,
use the break command. This command tells PHP to break out of the switch and jump
to the following statement.

If you were to leave out the break commands in Example 4-23 and the case of “Home”
evaluated to be TRUE, all five cases would then be executed. Or if $page had the value
“News,” then all the case commands from then on would execute. This is deliberate
and allows for some advanced programming, but generally you should always remem-
ber to issue a break command every time a set of case conditionals has finished exe-
cuting. In fact, leaving out the break statement is a common error.

Default action

A typical requirement in switch statements is to fall back on a default action if none of
the case conditions are met. For example, in the case of the menu code in Exam-
ple 4-23, you could add the code in Example 4-24 immediately before the final curly
brace.

Example 4-24. A default statement to add to Example 4-23

default: echo "Unrecognized selection";
 break;

Although a break command is not required here because the default is the final sub-
statement, and program flow will automatically continue to the closing curly brace,
should you decide to place the default statement higher up it would definitely need a
break command to prevent program flow from dropping into the following statements.
Generally the safest practice is to always include the break command.

76 | Chapter 4: Expressions and Control Flow in PHP

Alternative syntax

If you prefer, you may replace the first curly brace in a switch statement with a single
colon, and the final curly brace with an endswitch command, as in Example 4-25.
However this approach is not commonly used and is mentioned here only in case you
encounter it in third-party code.

Example 4-25. Alternate switch statement syntax

<?php
switch ($page):
 case "Home":
 echo "You selected Home";
 break;

 // etc...

 case "Links":
 echo "You selected Links";
 break;
endswitch;
?>

The ? Operator
One way of avoiding the verbosity of if and else statements is to use the more compact
ternary operator, ?, which is unusual in that it takes three operands rather than the
more usual two.

We briefly came across this in Chapter 3 in the discussion about the difference between
the print and echo statements as an example of an operator type that works well with
print but not echo.

The ? operator is passed an expression that it must evaluate, along with two statements
to execute: one for when the expression evaluates to TRUE, the other for when it is FALSE.
Example 4-26 shows code we might use for writing a warning about the fuel level of a
car to its digital dashboard.

Example 4-26. Using the ? operator

<?php
echo $fuel <= 1 ? "Fill tank now" : "There's enough fuel";
?>

In this statement, if there is one gallon or less of fuel (in other words $fuel is set to 1
or less), the string “Fill tank now” is returned to the preceding echo statement. Other-
wise, the string “There’s enough fuel” is returned. You can also assign the value re-
turned in a ? statement to a variable (see Example 4-27).

Conditionals | 77

Example 4-27. Assigning a ? conditional result to a variable

<?php
$enough = $fuel <= 1 ? FALSE : TRUE;
?>

Here $enough will be assigned the value TRUE only when there is more than a gallon of
fuel; otherwise, it is assigned the value FALSE.

If you find the ? operator confusing, you are free to stick to if statements, but you
should be familiar with it, because you’ll see it in other people’s code. It can be hard
to read, because it often mixes multiple occurrences of the same variable. For instance,
code such as the following is quite popular:

$saved = $saved >= $new ? $saved : $new;

If you take it apart carefully, you can figure out what this code does:

$saved = // Set the value of $saved
 $saved >= $new // Check $saved against $new
 ? // Yes, comparison is true ...
 $saved // ... so assign the current value of $saved
 : // No, comparison is false ...
 $new; // ... so assign the value of $new

It’s a concise way to keep track of the largest value that you’ve seen as a program
progresses. You save the largest value in $saved and compare it to $new each time you
get a new value. Programmers familiar with the ? operator find it more convenient than
if statements for such short comparisons. When not used for writing compact code,
it is typically used to make some decision inline, such as when testing whether a variable
is set before passing it to a function.

Looping
One of the great things about computers is that they can repeat calculating tasks quickly
and tirelessly. Often you may want a program to repeat the same sequence of code
again and again until something happens, such as a user inputting a value or the pro-
gram reaching a natural end. PHP’s various loop structures provide the perfect way to
do this.

To picture how this works, take a look at Figure 4-4. It is much the same as the highway
metaphor used to illustrate if statements, except that the detour also has a loop section
that, once a vehicle has entered, can be exited only under the right program
conditions.

while Loops
Let’s turn the digital car dashboard in Example 4-26 into a loop that continuously
checks the fuel level as you drive using a while loop (Example 4-28).

78 | Chapter 4: Expressions and Control Flow in PHP

Example 4-28. A while loop

<?php
$fuel = 10;

while ($fuel > 1)
{
 // Keep driving ...
 echo "There's enough fuel";
}
?>

Actually, you might prefer to keep a green light lit rather than output text, but the point
is that whatever positive indication you wish to make about the level of fuel is placed
inside the while loop. By the way, if you try this example for yourself, note that it will
keep printing the string until you click the Stop button in your browser.

As with if statements, you will notice that curly braces are required to
hold the statements inside the while statements, unless there’s only one.

For another example of a while loop that displays the 12 times table, see Example 4-29.

Example 4-29. A while loop to print the multiplication table for 12

<?php
$count = 1;

while ($count <= 12)
{
 echo "$count times 12 is " . $count * 12 . "
";
 ++$count;

Figure 4-4. Imagining a loop as part of a program highway layout

Looping | 79

}
?>

Here the variable $count is initialized to a value of 1, then a while loop is started with
the comparative expression $count <= 12. This loop will continue executing until the
variable is greater than 12. The output from this code is as follows:

1 times 12 is 12
2 times 12 is 24
3 times 12 is 36
and so on...

Inside the loop, a string is printed along with the value of $count multiplied by 12. For
neatness, this is also followed with a
 tag to force a new line. Then $count is
incremented, ready for the final curly brace that tells PHP to return to the start of the
loop.

At this point, $count is again tested to see whether it is greater than 12. It isn’t, but it
now has the value 2, and after another 11 times around the loop, it will have the value
13. When that happens, the code within the while loop is skipped and execution passes
on to the code following the loop which, in this case, is the end of the program.

If the ++$count statement (which could equally have been $count++) had not been there,
this loop would be like the first one in this section. It would never end and only the
result of 1 * 12 would be printed over and over.

But there is a much neater way this loop can be written, which I think you will like.
Take a look at Example 4-30.

Example 4-30. A shortened version of Example 4-29

<?php
$count = 0;
while (++$count <= 12)
 echo "$count times 12 is " . $count * 12 . "
";
?>

In this example, it was possible to remove the ++$count statement from inside the
while loop and place it directly into the conditional expression of the loop. What now
happens is that PHP encounters the variable $count at the start of each iteration of the
loop and, noticing that it is prefaced with the increment operator, first increments the
variable and only then compares it to the value 12. You can therefore see that $count
now has to be initialized to 0, and not 1, because it is incremented as soon as the loop
is entered. If you keep the initialization at 1, only results between 2 and 12 will be
output.

do...while Loops
A slight variation to the while loop is the do...while loop, used when you want a
block of code to be executed at least once and made conditional only after that.

80 | Chapter 4: Expressions and Control Flow in PHP

Example 4-31 shows a modified version of the multiplication table for 12 code using
such a loop.

Example 4-31. A do...while loop for printing the times table for 12

<?php
$count = 1;
do
 echo "$count times 12 is " . $count * 12 . "
";
while (++$count <= 12);
?>

Notice how we are back to initializing $count to 1 (rather than 0), because the code is
being executed immediately, without an opportunity to increment the variable. Other
than that, though, the code looks pretty similar.

Of course, if you have more than a single statement inside a do...while loop, remember
to use curly braces, as in Example 4-32.

Example 4-32. Expanding Example 4-31 to use curly braces

<?php
$count = 1;
do {
 echo "$count times 12 is " . $count * 12;
 echo "
";
} while (++$count <= 12);
?>

for Loops
The final kind of loop statement, the for loop, is also the most powerful, as it combines
the abilities to set up variables as you enter the loop, test for conditions while iterating
loops, and modify variables after each iteration.

Example 4-33 shows how you could write the multiplication table program with a
for loop.

Example 4-33. Outputting the times table for 12 from a for loop

<?php
for ($count = 1 ; $count <= 12 ; ++$count)
 echo "$count times 12 is " . $count * 12 . "
";
?>

See how the entire code has been reduced to a single for statement containing a single
conditional statement? Here’s what is going on. Each for statement takes three
parameters:

• An initialization expression

• A condition expression

Looping | 81

• A modification expression

These are separated by semicolons like this: for (expr1 ; expr2 ; expr3). At the start
of the first iteration of the loop, the initialization expression is executed. In the case of
the times table code, $count is initialized to the value 1. Then, each time round the loop,
the condition expression (in this case, $count <= 12) is tested, and the loop is entered
only if the condition is TRUE. Finally, at the end of each iteration, the modification
expression is executed. In the case of the times table code, the variable $count is
incremented.

All this structure neatly removes any requirement to place the controls for a loop within
its body, freeing it up just for the statements you want the loop to perform.

Remember to use curly braces with a for loop if it will contain more than one statement,
as in Example 4-34.

Example 4-34. The for loop from Example 4-33 with added curly braces

<?php
for ($count = 1 ; $count <= 12 ; ++$count)
{
 echo "$count times 12 is " . $count * 12;
 echo "
";
}
?>

Let’s compare when to use for and while loops. The for loop is explicitly designed
around a single value that changes on a regular basis. Usually you have a value that
increments, as when you are passed a list of user choices and want to process each
choice in turn. But you can transform the variable any way you like. A more complex
form of the for statement even lets you perform multiple operations in each of the three
parameters:

for ($i = 1, $j = 1 ; $i + $j < 10 ; $i++ , $j++)
{
 // ...
}

That’s complicated and not recommended for first-time users. The key is to distinguish
commas from semicolons. The three parameters must be separated by semicolons.
Within each parameter, multiple statements can be separated by commas. Thus, in the
previous example, the first and third parameters each contain two statements:

$i = 1, $j = 1 // Initialize $i and $j
$i + $j < 1 // Terminating condition
$i++ , $j++ // Modify $i and $j at the end of each iteration

The main thing to take from this example is that you must separate the three parameter
sections with semicolons, not commas (which should be used only to separate state-
ments within a parameter section).

82 | Chapter 4: Expressions and Control Flow in PHP

So, when is a while statement more appropriate than a for statement? When your
condition doesn’t depend on a simple, regular change to a variable. For instance, if you
want to check for some special input or error and end the loop when it occurs, use a
while statement.

Breaking Out of a Loop
Just as you saw how to break out of a switch statement, you can also break out from a
for loop using the same break command. This step can be necessary when, for example,
one of your statements returns an error and the loop cannot continue executing safely.

One case in which this might occur might be when writing a file returns an error,
possibly because the disk is full (see Example 4-35).

Example 4-35. Writing a file using a for loop with error trapping

<?php
$fp = fopen("text.txt", 'wb');

for ($j = 0 ; $j < 100 ; ++$j)
{
 $written = fwrite($fp, "data");
 if ($written == FALSE) break;
}

fclose($fp);
?>

This is the most complicated piece of code that you have seen so far, but you’re ready
for it. We’ll look into the file handling commands in a later chapter, but for now all
you need to know is that the first line opens the file text.txt for writing in binary mode,
and then returns a pointer to the file in the variable $fp, which is used later to refer to
the open file.

The loop then iterates 100 times (from 0 to 99) writing the string data to the file. After
each write, the variable $written is assigned a value by the fwrite function representing
the number of characters correctly written. But if there is an error, the fwrite function
assigns the value FALSE.

The behavior of fwrite makes it easy for the code to check the variable $written to see
whether it is set to FALSE and, if so, to break out of the loop to the following statement
closing the file.

If you are looking to improve the code, the line:

if ($written == FALSE) break;

can be simplified using the NOT operator, like this:

if (!$written) break;

Looping | 83

In fact, the pair of inner loop statements can be shortened to the following single
statement:

if (!fwrite($fp, "data")) break;

The break command is even more powerful than you might think, because if you have
code nested more than one layer deep that you need to break out of, you can follow
the break command with a number to indicate how many levels to break out of, like this:

break 2;

The continue Statement
The continue statement is a little like a break statement, except that it instructs PHP to
stop processing the current loop and to move right to its next iteration. So, instead of
breaking out of the whole loop, only the current iteration is exited.

This approach can be useful in cases where you know there is no point continuing
execution within the current loop and you want to save processor cycles, or prevent an
error from occurring, by moving right along to the next iteration of the loop. In Ex-
ample 4-36, a continue statement is used to prevent a division-by-zero error from being
issued when the variable $j has a value of 0.

Example 4-36. Trapping division-by-zero errors using continue

<?php
$j = 10;

while ($j > −10)
{
 $j--;
 if ($j == 0) continue;
 echo (10 / $j) . "
";
}
>

For all values of $j between 10 and −10, with the exception of 0, the result of calculating
10 divided by $j is displayed. But for the particular case of $j being 0, the continue
statement is issued and execution skips immediately to the next iteration of the loop.

Implicit and Explicit Casting
PHP is a loosely typed language that allows you to declare a variable and its type simply
by using it. It also automatically converts values from one type to another whenever
required. This is called implicit casting.

However, there may be times when PHP’s implicit casting is not what you want. In
Example 4-37, note that the inputs to the division are integers. By default, PHP converts
the output to floating-point so it can give the most precise value—4.66 recurring.

84 | Chapter 4: Expressions and Control Flow in PHP

Example 4-37. This expression returns a floating-point number

<?php
$a = 56;
$b = 12;
$c = $a / $b;
echo $c;
?>

But what if we had wanted $c to be an integer instead? There are various ways in which
this could be achieved; one way is to force the result of $a/$b to be cast to an integer
value using the integer cast type (int), like this:

$c = (int) ($a / $b);

This is called explicit casting. Note that in order to ensure that the value of the entire
expression is cast to an integer, the expression is placed within parentheses. Otherwise,
only the variable $a would have been cast to an integer—a pointless exercise, as the
division by $b would still have returned a floating-point number.

You can explicitly cast to the types shown in Table 4-6, but you can
usually avoid having to use a cast by calling one of PHP’s built-in func-
tions. For example, to obtain an integer value, you could use the
intval function. As with some other sections in this book, this one is
mainly here to help you understand third-party code that you may
encounter.

Table 4-6. PHP’s cast types

Cast type Description

(int) (integer) Cast to an integer by dropping the decimal portion

(bool) (boolean) Cast to a Boolean

(float) (double) (real) Cast to a floating-point number

(string) Cast to a string

(array) Cast to an array

(object) Cast to an object

PHP Dynamic Linking
Because PHP is a programming language, and the output from it can be completely
different for each user, it’s possible for an entire website to run from a single PHP web
page. Each time the user clicks on something, the details can be sent back to the same
web page, which decides what to do next according to the various cookies and/or other
session details it may have stored.

PHP Dynamic Linking | 85

But although it is possible to build an entire website this way, it’s not recommended,
because your source code will grow and grow and start to become unwieldy, as it has
to take account of every possible action a user could take.

Instead, it’s much more sensible to split your website development into different parts.
For example, one distinct process is signing up for a website, along with all the checking
this entails to validate an email address, checking whether a username is already taken,
and so on.

A second module might well be one for logging users in before handing them off to the
main part of your website. Then you might have a messaging module with the facility
for users to leave comments, a module containing links and useful information, another
to allow uploading of images, and so on.

As long as you have created a means of tracking your user through your website by
means of cookies or session variables (both of which we’ll look at more closely in later
chapters), you can split your website up into sensible sections of PHP code, each one
self-contained, and therefore treat yourself to a much easier future developing each new
feature and maintaining old ones.

Dynamic Linking in Action
One of the more popular PHP-driven applications on the web today is the blogging
platform WordPress (see Figure 4-5). As a blogger or a blog reader, you might not realize
it, but every major section has been given its own main PHP file, and a whole raft of
generic, shared functions have been placed in separate files that are included by the
main PHP pages as necessary.

Figure 4-5. The WordPress blogging platform is written in PHP

86 | Chapter 4: Expressions and Control Flow in PHP

The whole platform is held together with behind-the-scenes session tracking, so that
you hardly know when you are transitioning from one subsection to another. So, as a
web developer, if you want to tweak WordPress, it’s easy to find the particular file you
need, make a modification, and test and debug it without messing around with un-
connected parts of the program.

Next time you use WordPress, keep an eye on your browser’s address bar, particularly
if you are managing a blog, and you’ll notice some of the different PHP files that it uses.

This chapter has covered quite a lot of ground, and by now you should be able to put
together your own small PHP programs. But before you do, and before proceeding with
the following chapter on functions and objects, you may wish to test your new knowl-
edge on the following questions.

Test Your Knowledge: Questions
Question 4-1

What actual underlying values are represented by TRUE and FALSE?

Question 4-2
What are the simplest two forms of expressions?

Question 4-3
What is the difference between unary, binary, and ternary operators?

Question 4-4
What is the best way to force your own operator precedence?

Question 4-5
What is meant by “operator associativity”?

Question 4-6
When would you use the === (identity) operator?

Question 4-7
Name the three conditional statement types.

Question 4-8
What command can you use to skip the current iteration of a loop and move on
to the next one?

Question 4-9
Why is a for loop more powerful than a while loop?

Question 4-10
How do if and while statements interpret conditional expressions of different data
types?

See the section “Chapter 4 Answers” on page 438 in Appendix A for the answers to
these questions.

Test Your Knowledge: Questions | 87

CHAPTER 5

PHP Functions and Objects

The basic requirements of any programming language include somewhere to store data,
a means of directing program flow, and a few bits and pieces such as expression eval-
uation, file management, and text output. PHP has all these, plus tools like else and
elseif to make life easier. But even with all these in our toolkit, programming can be
clumsy and tedious, especially if you have to rewrite portions of very similar code each
time you need them.

That’s where functions and objects come in. As you might guess, a function is a set of
statements that performs a particular function and—optionally—returns a value. You
can pull out a section of code that you have used more than once, place it into a function,
and call the function by name when you want the code.

Functions have many advantages over contiguous, inline code:

• Less typing is involved.

• Functions reduce syntax and other programming errors.

• They decrease the loading time of program files.

• They also decrease execution time, because each function is compiled only once,
no matter how often you call it.

• Functions accept arguments and can therefore be used for general as well as specific
cases.

Objects take this concept a step further. An object incorporates one or more functions,
and the data they use, into a single structure called a class.

In this chapter, you’ll learn all about using functions, from defining and calling them
to passing arguments back and forth. With that knowledge under your belt, you’ll start
creating functions and using them in your own objects (where they will be referred to
as methods).

89

PHP Functions
PHP comes with hundreds of ready-made, built-in functions, making it a very rich
language. To use a function, call it by name. For example, you can see the print function
in action here:

print("print is a function");

The parentheses tell PHP that you’re referring to a function. Otherwise, it thinks you’re
referring to a constant. You may see a warning such as this:

Notice: Use of undefined constant fname - assumed 'fname'

followed by the text string fname, under the assumption that you must have wanted to
put a literal string in your code. (Things are even more confusing if there is actually a
constant named fname, in which case PHP uses its value.)

Strictly speaking, print is a pseudofunction, commonly called a con-
struct. The difference is that you can omit the parentheses, as follows:

print "print doesn't require parentheses";

You do have to put parentheses after any other function you call, even
if they’re empty (that is, if you’re not passing any argument to the
function).

Functions can take any number of arguments, including zero. For example, phpinfo,
as shown here, displays lots of information about the current installation of PHP and
requires no argument. The result of calling this function can be seen in Figure 5-1.

phpinfo();

The phpinfo function is extremely useful for obtaining information
about your current PHP installation, but that information could also be
very useful to potential hackers. Therefore, never leave a call to this
function in any web-ready code.

Some of the built-in functions that use one or more arguments appear in Example 5-1.

Example 5-1. Three string functions

<?php
echo strrev(" .dlrow olleH"); // Reverse string
echo str_repeat("Hip ", 2); // Repeat string
echo strtoupper("hooray!"); // String to uppercase
?>

This example uses three string functions to output the following text:

Hello world. Hip Hip HOORAY!

90 | Chapter 5: PHP Functions and Objects

As you can see, the strrev function reversed the order of characters in the string,
str_repeat repeated the string “Hip ” twice (as required by a second argument), and
strtoupper converted “hooray!” to uppercase.

Defining a Function
The general syntax for a function is:

function function_name([parameter [, ...]])
{
 // Statements
}

I’ll explain all the square brackets, in case you find them confusing. The first line of the
syntax indicates that:

• A definition starts with the word function.

• A name follows, which must start with a letter or underscore, followed by any
number of letters, numbers, or underscores.

• The parentheses are required.

• One or more parameters, separated by commas, are optional.

Figure 5-1. The output of PHP’s built-in phpinfo function

PHP Functions | 91

Function names are case-insensitive, so all of the following strings can refer to the
print function: PRINT, Print, and PrInT.

The opening curly brace starts the statements that will execute when you call the func-
tion; a matching curly brace must close it. These statements may include one or more
return statements, which force the function to cease execution and return to the calling
code. If a value is attached to the return statement, the calling code can retrieve it, as
we’ll see next.

Returning a Value
Let’s take a look at a simple function to convert a person’s full name to lowercase and
then capitalize the first letter of each name.

We’ve already seen an example of PHP’s built-in strtoupper function in Example 5-1.
For our current function, we’ll use its counterpart: strtolower:

$lowered = strtolower("aNY # of Letters and Punctuation you WANT");

echo $lowered;

The output of this experiment is:

any # of letters and punctuation you want

We don’t want names all lowercase, though; we want the first letter of each name
capitalized. (We’re not going to deal with subtle cases such as Mary-Ann or Jo-En-Lai,
for this example.) Luckily, PHP also provides a ucfirst function that sets the first char-
acter of a string to uppercase:

$ucfixed = ucfirst("any # of letters and punctuation you want");

echo $ucfixed;

The output is:

Any # of letters and punctuation you want

Now we can do our first bit of program design: to get a word with its initial letter
capitalized, we call strtolower on a string first, and then ucfirst. The way to do this
is to nest a call to strtolower within ucfirst. Let’s see why, because it’s important to
understand the order in which code is evaluated.

If you make a simple call to the print function:

print(5-8);

The expression 5-8 is evaluated first, and the output is −3. (As you saw in the previous
chapter, PHP converts the result to a string in order to display it.) If the expression
contains a function, that function is evaluated first as well:

print(abs(5-8));

92 | Chapter 5: PHP Functions and Objects

PHP is doing several things in executing that short statement:

1. Evaluate 5-8 to produce −3.

2. Use the abs function to turn −3 into 3.

3. Convert the result to a string and output it using the print function.

It all works because PHP evaluates each element from the inside out. The same proce-
dure is in operation when we call the following:

ucfirst(strtolower("aNY # of Letters and Punctuation you WANT"))

PHP passes our string to strtolower and then to ucfirst, producing (as we’ve already
seen when we played with the functions separately):

Any # of letters and punctuation you want

Now let’s define a function (shown in Example 5-2) that takes three names and makes
each one lowercased with an initial capital letter.

Example 5-2. Cleaning up a full name

<?php
echo fix_names("WILLIAM", "henry", "gatES");

function fix_names($n1, $n2, $n3)
{
 $n1 = ucfirst(strtolower($n1));
 $n2 = ucfirst(strtolower($n2));
 $n3 = ucfirst(strtolower($n3));
 return $n1 . " " . $n2 . " " . $n3;
}
?>

You may well find yourself writing this type of code, because users often leave their
Caps Lock key on, accidentally insert capital letters in the wrong places, and even forget
capitals altogether. The output from this example is:

William Henry Gates

Returning an Array
We just saw a function returning a single value. There are also ways of getting multiple
values from a function.

The first method is to return them within an array. As you saw in Chapter 3, an array
is like a bunch of variables stuck together in a row. Example 5-3 shows how you can
use an array to return function values.

Example 5-3. Returning multiple values in an array

<?php
$names = fix_names("WILLIAM", "henry", "gatES");
echo $names[0] . " " . $names[1] . " " . $names[2];

PHP Functions | 93

function fix_names($n1, $n2, $n3)
{
 $n1 = ucfirst(strtolower($n1));
 $n2 = ucfirst(strtolower($n2));
 $n3 = ucfirst(strtolower($n3));
 return array($n1, $n2, $n3);
}
?>

This method has the benefit of keeping all three names separate, rather than concate-
nating them into a single string, so you can refer to any user simply by their first or last
name, without having to extract either name from the returned string.

Figure 5-2. Imagining a reference as a thread attached to a variable

Passing by Reference
In PHP, the & symbol, when prefaced to a variable, tells the parser to pass a reference
to the variable’s value, not the value itself. This concept can be hard to get your head
around, so let’s go back to the matchbox metaphor from Chapter 3.

Imagine that, instead of taking a piece of paper out of a matchbox, reading it, copying
it to another piece of paper, putting the original back, and passing the copy to a function
(phew!), you simply attach a piece of thread to the original piece of paper and pass one
end of it to the function (see Figure 5-2).

Now the function can follow the thread to find the data to be accessed. This avoids all
the overhead of creating a copy of the variable just for the function’s use. What’s more,
the function can now modify the variable’s value.

This means you can rewrite Example 5-3 to pass references to all the parameters, and
then the function can modify these directly (see Example 5-4).

94 | Chapter 5: PHP Functions and Objects

Example 5-4. Returning values from a function by reference

<?php
$a1 = "WILLIAM";
$a2 = "henry";
$a3 = "gatES";

echo $a1 . " " . $a2 . " " . $a3 . "
";
fix_names($a1, $a2, $a3);
echo $a1 . " " . $a2 . " " . $a3;

function fix_names(&$n1, &$n2, &$n3)
{
 $n1 = ucfirst(strtolower($n1));
 $n2 = ucfirst(strtolower($n2));
 $n3 = ucfirst(strtolower($n3));
}
?>

Rather than passing strings directly to the function, you first assign them to variables
and print them out to see their “before” values. Then you call the function as before,
but put a & symbol in front of each parameter, which tells PHP to pass the variables’
references only.

Now the variables $n1, $n2, and $n3 are attached to “threads” that lead to the values of
$a1, $a2, and $a3. In other words, there is one group of values, but two sets of variable
names are allowed to access them.

Therefore, the function fix_names only has to assign new values to $n1, $n2, and $n3 to
update the values of $a1, $a2, and $a3. The output from this code is:

WILLIAM henry gatES
William Henry Gates

As you see, both of the echo statements use only the values of $a1, $a2, and $a3.

Be careful when passing values by reference. If you need to keep the
original values, make copies of your variables and then pass the copies
by reference.

Returning Global Variables
You can also give a function access to an externally created variable by declaring it a
global variable from within the function. The global keyword followed by the variable
name gives every part of your code full access to it (see Example 5-5).

Example 5-5. Returning values in global variables

<?php
$a1 = "WILLIAM";
$a2 = "henry";
$a3 = "gatES";

PHP Functions | 95

echo $a1 . " " . $a2 . " " . $a3 . "
";
fix_names();
echo $a1 . " " . $a2 . " " . $a3;

function fix_names()
{
 global $a1; $a1 = ucfirst(strtolower($a1));
 global $a2; $a2 = ucfirst(strtolower($a2));
 global $a3; $a3 = ucfirst(strtolower($a3));
}
?>

Now you don’t have to pass parameters to the function, and it doesn’t have to accept
them. Once declared, these variables remain global and available to the rest of your
program, including its functions.

If at all possible, in order to retain as much local scope as possible, you should try
returning arrays or using variables by association. Otherwise, you will begin to lose
some of the benefits of functions.

Recap of Variable Scope
A quick reminder of what you know from Chapter 3:

• Local variables are accessible just from the part of code where you define them. If
they’re outside of a function, they can be accessed by all code outside of functions,
classes, and so on. If a variable is inside a function, only that function can access
the variable, and its value is lost when the function returns.

• Global variables are accessible from all parts of your code.

• Static variables are accessible only within the function that declared them but retain
their value over multiple calls.

Including and Requiring Files
As you progress in your use of PHP programming, you are likely to start building a
library of functions that you think you will need again. You’ll also probably start using
libraries created by other programmers.

There’s no need to copy and paste these functions into your code. You can save them
in separate files and use commands to pull them in. There are two types of commands
to perform this action: include and require.

The include Statement
Using include, you can tell PHP to fetch a particular file and load all its contents. It’s
as if you pasted the included file into the current file at the insertion point. Exam-
ple 5-6 shows how you would include a file called library.php.

96 | Chapter 5: PHP Functions and Objects

Example 5-6. Including a PHP file

<?php
include "library.php";

// Your code goes here
?>

Using include_once
Each time you issue the include directive, it includes the requested file again, even if
you’ve already inserted it. For instance, suppose that library.php contains a lot of useful
functions, so you include it in your file, but also include another library that includes
library.php. Through nesting, you’ve inadvertently included library.php twice. This will
produce error messages, because you’re trying to define the same constant or function
multiple times. So you should use include_once instead (see Example 5-7).

Example 5-7. Including a PHP file only once

<?php
include_once "library.php";

// Your code goes here
?>

Then, whenever another include or include_once is encountered, if it has already been
executed, it will be completely ignored. To determine whether the file has already been
executed, the absolute file path is matched after all relative paths are resolved and the
file is found in your include path.

In general, it’s probably best to stick with include_once and ignore the
basic include statement. That way you will never have the problem of
files being included multiple times.

Using require and require_once
A potential problem with include and include_once is that PHP will only attempt to
include the requested file. Program execution continues even if the file is not found.

When it is absolutely essential to include a file, require it. For the same reasons I gave
for using include_once, I recommend that you generally stick with require_once when-
ever you need to require a file (see Example 5-8).

Example 5-8. Requiring a PHP file only once

<?php
require_once "library.php";

Including and Requiring Files | 97

// Your code goes here
?>

PHP Version Compatibility
PHP is in an ongoing process of development, and there are multiple versions. If you
need to check whether a particular function is available to your code, you can use the
function_exists function, which checks all predefined and user-created functions.

Example 5-9 checks for the function array_combine, which is specific to PHP version 5.

Example 5-9. Checking for a function’s existence

<?php
if (function_exists("array_combine"))
{
 echo "Function exists";
}
else
{
 echo "Function does not exist - better write our own";
}
?>

Using code such as this, you can take advantage of features in newer versions of PHP
and yet still have your code run on earlier versions, as long as you replicate any features
that are missing. Your functions may be slower than the built-in ones, but at least your
code will be much more portable.

You can also use the phpversion function to determine which version of PHP your code
is running on. The returned result will be similar to the following, depending on version:

5.2.8

PHP Objects
In much the same way that functions represent a huge increase in programming power
over early days of computing, where sometimes the best program navigation available
was a very basic GOTO or GOSUB statement, object-oriented programming (OOP) takes
the use of functions to a whole new level.

Once you get the hang of condensing reusable bits of code into functions, it’s not that
great a leap to consider bundling the functions and their data into objects.

Let’s take a social networking site that has many parts. One handles all user functions:
code to enable new users to sign up and to enable existing users to modify their details.
In standard PHP, you might create a few functions to handle this and embed some calls
to the MySQL database to keep track of all the users.

98 | Chapter 5: PHP Functions and Objects

Imagine how much easier it would be to create an object to represent the current user.
To do this you could create a class, perhaps called User, which would contain all the
code required for handling users and all the variables needed for manipulating the data
within the class. Then, whenever you need to manipulate a user’s data, you could
simply create a new object with the User class.

You could treat this new object as if it were the actual user. For example, you could
pass the object a name, password, and email address, ask it whether such a user already
exists and, if not, have it create a new user with those attributes. You could even have
an instant messaging object, or one for managing whether two users are friends.

Terminology
When creating a program to use objects, you need to design a composite of data and
code called a class. Each new object based on this class is called an instance (or occur-
rence) of that class.

The data associated with an object are called its properties; the functions it uses are
called methods. In defining a class, you supply the names of its properties and the code
for its methods. See Figure 5-3 for a jukebox metaphor for an object. Think of the CDs
that it holds in the carousel as its properties; the method of playing them is to press
buttons on the front panel. There is also the slot for inserting coins (the method used
to activate the object), and the laser disc reader (the method used to retrieve the music,
or properties, from the CDs).

Figure 5-3. A jukebox: a great example of a self-contained object

PHP Objects | 99

When creating objects, it is best to use encapsulation, or writing a class in such a way
that only its methods can be used to manipulate its properties. In other words, you
deny outside code direct access to its data. The methods you supply are known as the
object’s interface.

This approach makes debugging easy: you have to fix faulty code only within a class.
Additionally, when you want to upgrade a program, if you have used proper encapsu-
lation and maintained the same interface, you can simply develop new replacement
classes, debug them fully, and then swap them in for the old ones. If they don’t work,
you can swap the old ones back in to immediately fix the problem before further de-
bugging the new classes.

Once you have created a class, you may find that you need another class that is similar
to it but not quite the same. The quick and easy thing to do is to define a new class
using inheritance. When you do this, your new class has all the properties of the one it
has inherited from. The original class is now called the superclass, and the new one is
the subclass (or derived class).

In our jukebox example, if you invent a new jukebox that can play a video along with
the music, you can inherit all the properties and methods from the original jukebox
superclass and add some new properties (videos) and new methods (a movie player).

An excellent benefit of this system is that if you improve the speed or any other aspect
of the superclass, its subclasses will receive the same benefit.

Declaring a Class
Before you can use an object, you must define a class with the class keyword. Class
definitions contain the class name (which is case-sensitive), its properties, and its
methods. Example 5-10 defines the class User with two properties: $name and
$password (indicated by the public keyword—see “Property and Method Scope in PHP
5” on page 107. It also creates a new instance (called $object) of this class.

Example 5-10. Declaring a class and examining an object

<?php
$object = new User;
print_r($object);

class User
{
 public $name, $password;

 function save_user()
 {
 echo "Save User code goes here";
 }
}
?>

100 | Chapter 5: PHP Functions and Objects

Here I have also used an invaluable function called print_r. It asks PHP to display
information about a variable in human readable form. The _r stands for “in human
readable format.” In the case of the new object $object, it prints the following:

User Object
(
 [name] =>
 [password] =>
)

However, a browser compresses all the whitespace, so the output in a browser is slightly
harder to read:

User Object ([name] => [password] =>)

In any case, the output says that $object is a user-defined object that has the properties
name and password.

Creating an Object
To create an object with a specified class, use the new keyword, like this: object = new
Class. Here are a couple of ways in which we could do this:

$object = new User;
$temp = new User('name', 'password');

On the first line, we simply assign an object to the User class. In the second, we pass
parameters to the call.

A class may require or prohibit arguments; it may also allow arguments, but not require
them.

Accessing Objects
Let’s add a few lines more to Example 5-10 and check the results. Example 5-11 extends
the previous code by setting object properties and calling a method.

Example 5-11. Creating and interacting with an object

<?php
$object = new User;
print_r($object); echo "
";

$object->name = "Joe";
$object->password = "mypass";
print_r($object); echo "
";

$object->save_user();

class User
{
 public $name, $password;

PHP Objects | 101

 function save_user()
 {
 echo "Save User code goes here";
 }
}
?>

As you can see, the syntax for accessing an object’s property is $object->property.
Likewise, you call a method like this: $object->method().

You should note that the example property and method do not have $ signs in front of
them. If you were to preface them with $ signs, the code would not work, as it
would try to reference the value inside a variable. For example, the expression
$object->$property would attempt to look up the value assigned to a variable named
$property (let’s say that value is the string “brown”) and then attempt to reference
the property $object->brown. If $property is undefined, an attempt to reference
$object->NULL would occur and cause an error.

When looked at using a browser’s View Source facility, the output from Exam-
ple 5-11 is:

User Object
(
 [name] =>
 [password] =>
)
User Object
(
 [name] => Joe
 [password] => mypass
)
Save User code goes here

Again, print_r shows its utility by providing the contents of $object before and after
property assignment. From now on I’ll omit print_r statements, but if you are working
along with this book on your development server, you can put some in to see exactly
what is happening.

You can also see that the code in the method save_user was executed via the call to
that method. It printed the string reminding us to create some code.

You can place functions and class definitions anywhere in your code,
before or after statements that use them. Generally, though, it is con-
sidered good practice to place them toward the end of a file.

Cloning objects

Once you have created an object, it is passed by reference when you pass it as a pa-
rameter. In the matchbox metaphor, this is like keeping several threads attached to an
object stored in a matchbox, so that you can follow any attached thread to access it.

102 | Chapter 5: PHP Functions and Objects

In other words, making object assignments does not copy objects in their entirety.
You’ll see how this works in Example 5-12, where we define a very simple User class
with no methods and only the property name.

Example 5-12. Copying an object

<?php
$object1 = new User();
$object1->name = "Alice";
$object2 = $object1;
$object2->name = "Amy";
echo "object1 name = " . $object1->name . "
";
echo "object2 name = " . $object2->name;

class User
{
 public $name;
}
?>

We’ve created the object $object1 and assigned the value “Alice” to the name property.
Then we create $object2, assigning it the value of $object1, and assign the value “Amy”
just to the name property of $object2—or so we might think. But this code outputs the
following:

object1 name = Amy
object2 name = Amy

What has happened? Both $object1 and $object2 refer to the same object, so changing
the name property of $object2 to “Amy” also sets that property for $object1.

To avoid this confusion, you can use the clone operator, which creates a new instance
of the class and copies the property values from the original class to the new instance.
Example 5-13 illustrates this usage.

Example 5-13. Cloning an object

<?php
$object1 = new User();
$object1->name = "Alice";
$object2 = clone $object1;
$object2->name = "Amy";
echo "object1 name = " . $object1->name . "
";
echo "object2 name = " . $object2->name;

class User
{
 public $name;
}
?>

Voilà! The output from this code is what we initially wanted:

PHP Objects | 103

object1 name = Alice
object2 name = Amy

Constructors
When creating a new object, you can pass a list of arguments to the class being called.
These are passed to a special method within the class, called the constructor, which
initializes various properties.

In the past, you would normally give this method the same name as the class, as in
Example 5-14.

Example 5-14. Creating a constructor method

<?php
class User
{
 function User($param1, $param2)
 {
 // Constructor statements go here
 }
}
?>

However, PHP 5 provides a more logical approach to naming the constructor, which
is to use the function name __construct (that is, construct preceded by two underscore
characters), as in Example 5-15.

Example 5-15. Creating a constructor method in PHP 5

<?php
class User
{
 function __construct($param1, $param2)
 {
 // Constructor statements go here
 }
}
?>

PHP 5 destructors

Also new in PHP 5 is the ability to create destructor methods. This ability is useful when
code has made the last reference to an object or when a script reaches the end. Exam-
ple 5-16 shows how to create a destructor method.

Example 5-16. Creating a destructor method in PHP 5

<?php
class User
{
 function __destruct()
 {

104 | Chapter 5: PHP Functions and Objects

 // Destructor code goes here
 }
}
?>

Writing Methods
As you have seen, declaring a method is similar to declaring a function, but there are a
few differences. For example, method names beginning with a double underscore
(__) are reserved and you should not create any of this form.

You also have access to a special variable called $this, which can be used to access the
current object’s properties. To see how this works, take a look at Example 5-17, which
contains a different method from the User class definition called get_password.

Example 5-17. Using the variable $this in a method

<?php
class User
{
 public $name, $password;

 function get_password()
 {
 return $this->password;
 }
}
?>

What get_password does is use the $this variable to access the current object and then
return the value of that object’s password property. Note how the preceding $ of the
property $password is omitted when using the -> operator. Leaving the $ in place is a
typical error you may run into, particularly when you first use this feature.

Here’s how you would use the class defined in Example 5-17:

$object = new User;
$object->password = "secret";
echo $object->get_password();

This code prints the password “secret”.

Static methods in PHP 5

If you are using PHP 5, you can also define a method as static, which means that it is
called on a class and not on an object. A static method has no access to any object
properties and is created and accessed as in Example 5-18.

Example 5-18. Creating and accessing a static method

<?php
User::pwd_string();

PHP Objects | 105

class User
{
 static function pwd_string()
 {
 echo "Please enter your password";
 }
}
?>

Note how the class itself is called, along with the static method, using a double colon
(also known as the scope resolution operator) and not ->. Static functions are useful for
performing actions relating to the class itself, but not to specific instances of the class.
You can see another example of a static method in Example 5-21.

If you try to access $this->property, or other object properties from
within a static class, you will receive an error message.

Declaring Properties
It is not necessary to explicitly declare properties within classes, as they can be implicitly
defined when first used. To illustrate this, in Example 5-19 the class User has no prop-
erties and no methods but is legal code.

Example 5-19. Defining a property implicitly

<?php
$object1 = new User();
$object1->name = "Alice";
echo $object1->name;

class User {}
?>

This code correctly outputs the string “Alice” without a problem, because PHP im-
plicitly declares the variable $object1->name for you. But this kind of programming can
lead to bugs that are infuriatingly difficult to discover, because name was declared from
outside the class.

To help yourself and anyone else who will maintain your code, I advise that you get
into the habit of always declaring your properties explicitly within classes. You’ll be
glad you did.

Also, when you declare a property within a class, you may assign a default value to it.
The value you use must be a constant and not the result of a function or expression.
Example 5-20 shows a few valid and invalid assignments.

106 | Chapter 5: PHP Functions and Objects

Example 5-20. Valid and invalid property declarations

<?php
class Test
{
 public $name = "Paul Smith"; // Valid
 public $age = 42; // Valid
 public $time = time(); // Invalid - calls a function
 public $score = $level * 2; // Invalid - uses an expression
}
?>

Declaring Constants
In the same way that you can create a global constant with the define function, you
can define constants inside classes. The generally accepted practice is to use uppercase
letters to make them stand out, as in Example 5-21.

Example 5-21. Defining constants within a class

<?php
Translate::lookup();

class Translate
{
 const ENGLISH = 0;
 const SPANISH = 1;
 const FRENCH = 2;
 const GERMAN = 3;
 // ...

 function lookup()
 {
 echo self::SPANISH;
 }
}
?>

Constants can be referenced directly, using the self keyword and double colon oper-
ator. Note that this code calls the class directly, using the double colon operator at line
one, without creating an instance of it first. As you would expect, the value printed
when you run this code is 1.

Remember that once you define a constant, you can’t change it.

Property and Method Scope in PHP 5
PHP 5 provides three keywords for controlling the scope of properties and methods:

public
These properties are the default when declaring a variable using the var or
public keywords, or when a variable is implicitly declared the first time it is used.

PHP Objects | 107

The keywords var and public are interchangeable, because, although deprecated,
var is retained for compatibility with previous versions of PHP. Methods are as-
sumed to be public by default.

protected
These properties and methods (members) can be referenced only by the object’s
class methods and those of any subclasses.

private
These members can be referenced only by methods within the same class—not by
subclasses.

Here’s how to decide which you need to use:

• Use public when outside code should access this member and extending classes
should also inherit it.

• Use protected when outside code should not access this member but extending
classes should inherit it.

• Use private when outside code should not access this member and extending
classes also should not inherit it.

Example 5-22 illustrates the use of these keywords.

Example 5-22. Changing property and method scope

<?php
class Example
{
 var $name = "Michael"; // Same as public but deprecated
 public $age = 23; // Public property
 protected $usercount; // Protected property

 private function admin() // Private method
 {
 // Admin code goes here
 }
}
?>

Static properties and methods

Most data and methods apply to instances of a class. For example, in a User class, you
want to do such things as set a particular user’s password or check when the user has
been registered. These facts and operations apply separately to each user and therefore
use instance-specific properties and methods.

But occasionally you’ll want to maintain data about a whole class. For instance, to
report how many users are registered, you will store a variable that applies to the whole
User class. PHP provides static properties and methods for such data.

108 | Chapter 5: PHP Functions and Objects

As shown briefly in Example 5-18, declaring members of a class static makes them
accessible without an instantiation of the class. A property declared static cannot be
directly accessed within an instance of a class, but a static method can.

Example 5-23 defines a class called Test with a static property and a public method.

Example 5-23. Defining a class with a static property

<?php
$temp = new Test();
echo "Test A: " . Test::$static_property . "
";
echo "Test B: " . $temp->get_sp() . "
";
echo "Test C: " . $temp->static_property . "
";

class Test
{
 static $static_property = "I'm static";

 function get_sp()
 {
 return self::$static_property;
 }
}
?>

When you run this code, it returns the following output:

Test A: I'm static
Test B: I'm static

Notice: Undefined property: Test::$static_property
Test C:

This example shows that the property $static_property could be directly referenced
from the class itself using the double colon operator in Test A. Also, Test B could obtain
its value by calling the get_sp method of the object $temp, created from class Test. But
Test C failed, because the static property $static_property was not accessible to the
object $temp.

Note how the method get_sp accesses $static_property using the keyword self. This
is the way in which a static property or constant can be directly accessed within a class.

Inheritance
Once you have written a class, you can derive subclasses from it. This can save lots of
painstaking code rewriting: you can take a class similar to the one you need to write,
extend it to a subclass, and just modify the parts that are different. This is achieved
using the extends operator.

In Example 5-24, the class Subscriber is declared a subclass of User by means of the
extends operator.

PHP Objects | 109

Example 5-24. Inheriting and extending a class

<?php
$object = new Subscriber;
$object->name = "Fred";
$object->password = "pword";
$object->phone = "012 345 6789";
$object->email = "fred@bloggs.com";
$object->display();

class User
{
 public $name, $password;

 function save_user()
 {
 echo "Save User code goes here";
 }
}

class Subscriber extends User
{
 public $phone, $email;

 function display()
 {
 echo "Name: " . $this->name . "
";
 echo "Pass: " . $this->password . "
";
 echo "Phone: " . $this->phone . "
";
 echo "Email: " . $this->email;
 }
}
?>

The original User class has two properties, $name and $password, and a method to save
the current user to the database. Subscriber extends this class by adding an additional
two properties, $phone and $email, and includes a method of displaying the properties
of the current object using the variable $this, which refers to the current values of the
object being accessed. The output from this code is:

Name: Fred
Pass: pword
Phone: 012 345 6789
Email: fred@bloggs.com

The parent operator

If you write a method in a subclass with the same name of one in its parent class, its
statements will override those of the parent class. Sometimes this is not the behavior
you want and you need to access the parent’s method. To do this, you can use the
parent operator, as in Example 5-25.

110 | Chapter 5: PHP Functions and Objects

Example 5-25. Overriding a method and using the parent operator

<?php
$object = new Son;
$object->test();
$object->test2();

class Dad
{
 function test()
 {
 echo "[Class Dad] I am your Father
";
 }
}

class Son extends Dad
{
 function test()
 {
 echo "[Class Son] I am Luke
";
 }

 function test2()
 {
 parent::test();
 }
}
?>

This code creates a class called Dad and then a subclass called Son that inherits its prop-
erties and methods, then overrides the method test. Therefore, when line 2 calls the
method test, the new method is executed. The only way to execute the overridden
test method in the Dad class is to use the parent operator, as shown in function test2
of class Son. The code outputs the following:

[Class Son] I am Luke
[Class Dad] I am your Father

If you wish to ensure that your code calls a method from the current class, you can use
the self keyword, like this:

self::method();

Subclass constructors

When you extend a class and declare your own constructor, you should be aware that
PHP will not automatically call the constructor method of the parent class. To be certain
that all initialization code is executed, subclasses should always call the parent con-
structors, as in Example 5-26.

PHP Objects | 111

Example 5-26. Calling the parent class constructor

<?php
$object = new Tiger();
echo "Tigers have...
";
echo "Fur: " . $object->fur . "
";
echo "Stripes: " . $object->stripes;

class Wildcat
{
 public $fur; // Wildcats have fur

 function __construct()
 {
 $this->fur = "TRUE";
 }
}

class Tiger extends Wildcat
{
 public $stripes; // Tigers have stripes

 function __construct()
 {
 parent::__construct(); // Call parent constructor first
 $this->stripes = "TRUE";
 }
}
?>

This example takes advantage of inheritance in the typical manner. The Wildcat class
has created the property $fur, which we’d like to reuse, so we create the Tiger class to
inherit $fur and additionally create another property, $stripes. To verify that both
constructors have been called, the program outputs the following:

Tigers have...
Fur: TRUE
Stripes: TRUE

Final methods

In cases in which you wish to prevent a subclass from overriding a superclass method,
you can use the final keyword. Example 5-27 shows how.

Example 5-27. Creating a final method

<?php
class User
{
 final function copyright()
 {
 echo "This class was written by Joe Smith";
 }
}
?>

112 | Chapter 5: PHP Functions and Objects

Once you have digested the contents of this chapter, you should have a strong feel for
what PHP can do for you. You should be able to use functions with ease and, if you
wish, write object-oriented code. In Chapter 6, we’ll finish off our initial exploration
of PHP by looking at the workings of PHP arrays.

Test Your Knowledge: Questions
Question 5-1

What is the main benefit of using a function?

Question 5-2
How many values can a function return?

Question 5-3
What is the difference between accessing a variable by name and by reference?

Question 5-4
What is the meaning of “scope” in PHP?

Question 5-5
How can you incorporate one PHP file within another?

Question 5-6
How is an object different from a function?

Question 5-7
How do you create a new object in PHP?

Question 5-8
What syntax would you use to create a subclass from an existing one?

Question 5-9
How can you call an initializing piece of code when an object is created?

Question 5-10
Why is it a good idea to explicitly declare properties within a class?

See the section “Chapter 5 Answers” on page 439 in Appendix A for the answers to
these questions.

Test Your Knowledge: Questions | 113

CHAPTER 6

PHP Arrays

In Chapter 3, I gave a very brief introduction to PHP’s arrays—just enough for a little
taste of their power. In this chapter, I’ll show you many more things that you can do
with arrays, some of which—if you are have ever used a strongly typed language such
as C—may surprise you with their elegance and simplicity.

Arrays are an example of what has made PHP so popular. Not only do they remove the
tedium of writing code to deal with complicated data structures, but they also provide
numerous ways to access data while remaining amazingly fast.

Basic Access
We’ve already looked at arrays as if they were clusters of matchboxes glued together.
Another way to think of an array is like a string of beads, with the beads representing
variables that can be numeric, string, or even other arrays. They are like bead strings,
because each element has its own location and (with the exception of the first and last
ones) each has other elements on either side.

Some arrays are referenced by numeric indexes; others allow alphanumeric identifiers.
Built-in functions let you sort them, add or remove sections, and walk through them
to handle each item through a special kind of loop. And by placing one or more arrays
inside another, you can create arrays of two, three, or any number of dimensions.

Numerically Indexed Arrays
Let’s assume that you’ve been tasked with creating a simple website for a local office
supplies company and you’re currently working on the section devoted to paper. One
way to manage the various items of stock in this category would be to place them in a
numeric array. You can see the simplest way of doing so in Example 6-1.

115

Example 6-1. Adding items to an array

<?php
$paper[] = "Copier";
$paper[] = "Inkjet";
$paper[] = "Laser";
$paper[] = "Photo";

print_r($paper);
?>

In this example, each time you assign a value to the array $paper, the first empty location
within that array is used to store the value and a pointer internal to PHP is incremented
to point to the next free location, ready for future insertions. The familiar print_r
function (which prints out the contents of a variable, array, or object) is used to verify
that the array has been correctly populated. It prints out the following:

Array
(
 [0] => Copier
 [1] => Inkjet
 [2] => Laser
 [3] => Photo
)

The previous code could equally have been written as in Example 6-2, where the exact
location of each item within the array is specified. But, as you can see, that approach
requires extra typing and makes your code harder to maintain if you want to insert or
remove supplies from the array. So unless you wish to specify a different order, it’s
usually better to simply let PHP handle the actual location numbers.

Example 6-2. Adding items to an array using explicit locations

<?php
$paper[0] = "Copier";
$paper[1] = "Inkjet";
$paper[2] = "Laser";
$paper[3] = "Photo";

print_r($paper);
?>

The output from these examples is identical, but you are not likely to use print_r in a
developed website, so Example 6-3 shows how you might print out the various types
of paper the website offers using a for loop.

Example 6-3. Adding items to an array and retrieving them

<?php
$paper[] = "Copier";
$paper[] = "Inkjet";
$paper[] = "Laser";
$paper[] = "Photo";

116 | Chapter 6: PHP Arrays

for ($j = 0 ; $j < 4 ; ++$j)
 echo "$j: $paper[$j]
";
?>

This example prints out the following:

0: Copier
1: Inkjet
2: Laser
3: Photo

So far, you’ve seen a couple of ways in which you can add items to an array and one
way of referencing them, but PHP offers many more—which I’ll get to shortly. But first,
we’ll look at another type of array.

Associative Arrays
Keeping track of array elements by index works just fine, but can require extra work
in terms of remembering which number refers to which product. It can also make code
hard for other programmers to follow.

This is where associative arrays come into their own. Using them, you can reference
the items in an array by name rather than by number. Example 6-4 expands on the
previous code by giving each element in the array an identifying name and a longer,
more explanatory string value.

Example 6-4. Adding items to an associative array and retrieving them

<?php
$paper['copier'] = "Copier & Multipurpose";
$paper['inkjet'] = "Inkjet Printer";
$paper['laser'] = "Laser Printer";
$paper['photo'] = "Photographic Paper";

echo $paper['laser'];
?>

In place of a number (which doesn’t convey any useful information, aside from the
position of the item in the array), each item now has a unique name that you can use
to reference it elsewhere, as with the echo statement—which simply prints out Laser
Printer. The names (copier, inkjet, and so on) are called indexes or keys and the items
assigned to them (such as “Laser Printer”) are called values.

This very powerful feature of PHP is often used when extracting information from XML
and HTML. For example, an HTML parser such as those used by a search engine could
place all the elements of a web page into an associative array whose names reflect the
page’s structure:

$html['title'] = "My web page";
$html['body'] = "... body of web page ...";

Basic Access | 117

The program would also probably break down all the links found within a page into
another array, and all the headings and subheadings into another. When you use as-
sociative rather than numeric arrays, the code to refer to all of these items is easy to
write and debug.

Assignment Using the array Keyword
So far, you’ve seen how to assign values to arrays by just adding new items one at a
time. Whether you specify keys, specify numeric identifiers, or let PHP assign numeric
identifiers implicitly, this is a long-winded approach. A more compact and faster as-
signment method uses the array keyword. Example 6-5 shows both a numeric and an
associative array assigned using this method.

Example 6-5. Adding items to an array using the array keyword

<?php
$p1 = array("Copier", "Inkjet", "Laser", "Photo");

echo "p1 element: " . $p1[2] . "
";

$p2 = array('copier' => "Copier & Multipurpose",
 'inkjet' => "Inkjet Printer",
 'laser' => "Laser Printer",
 'photo' => "Photographic Paper");

echo "p2 element: " . $p2['inkjet'] . "
";
?>

The first half of this snippet assigns the old, shortened product descriptions to the array
$p1. There are four items, so they will occupy slots 0 through 3. Therefore the echo
statement prints out the following:

p1 element: Laser

The second half assigns associative identifiers and accompanying longer product de-
scriptions to the array $p2 using the format index => value. The use of => is similar to
the regular = assignment operator, except that you are assigning a value to an index and
not to a variable. The index is then inextricably linked with that value, unless it is
reassigned a new value. The echo command therefore prints out:

p2 element: Inkjet Printer

You can verify that $p1 and $p2 are different types of array, because both of the following
commands, when appended to the code, will cause an “undefined index” or “undefined
offset” error, as the array identifier for each is incorrect:

echo $p1['inkjet']; // Undefined index
echo $p2['3']; // Undefined offset

118 | Chapter 6: PHP Arrays

The foreach...as Loop
The creators of PHP have gone to great lengths to make the language easy to use. So,
not content with the loop structures already provided, they added another one espe-
cially for arrays: the foreach...as loop. Using it, you can step through all the items in
an array, one at a time, and do something with them.

The process starts with the first item and ends with the last one, so you don’t even have
to know how many items there are in an array. Example 6-6 shows how foreach can
be used to rewrite Example 6-3.

Example 6-6. Walking through a numeric array using foreach...as

<?php
$paper = array("Copier", "Inkjet", "Laser", "Photo");
$j = 0;

foreach ($paper as $item)
{
 echo "$j: $item
";
 ++$j;
}
?>

When PHP encounters a foreach statement, it takes the first item of the array and places
it in the variable following the as keyword, and each time control flow returns to the
foreach, the next array element is placed in the as keyword. In this case, the variable
$item is set to each of the four values in turn in the array $paper. Once all values have
been used, execution of the loop ends. The output from this code is exactly the same
as Example 6-3.

Now let’s see how foreach works with an associative array by taking a look at Exam-
ple 6-7, which is a rewrite of the second half of Example 6-5.

Example 6-7. Walking through an associative array using foreach...as

<?php
$paper = array('copier' => "Copier & Multipurpose",
 'inkjet' => "Inkjet Printer",
 'laser' => "Laser Printer",
 'photo' => "Photographic Paper");

foreach ($paper as $item => $description)
 echo "$item: $description
";
?>

Remember that associative arrays do not require numeric indexes, so the variable $j is
not used in this example. Instead, each item of the array $paper is fed into the key and
value pair of variables $item and $description, from where they are printed out. The
result of this code is as follows:

The foreach...as Loop | 119

copier: Copier & Multipurpose
inkjet: Inkjet Printer
laser: Laser Printer
photo: Photographic Paper

As an alternative syntax to foreach...as, you can use the list function in conjunction
with the each function, as in Example 6-8.

Example 6-8. Walking through an associative array using each and list

<?php
$paper = array('copier' => "Copier & Multipurpose",
 'inkjet' => "Inkjet Printer",
 'laser' => "Laser Printer",
 'photo' => "Photographic Paper");

while (list($item, $description) = each($paper))
 echo "$item: $description
";
?>

In this example, a while loop is set up and will continue looping until the each function
returns a value of FALSE. The each function acts like foreach: it returns an array con-
taining a key and value pair from the array $paper and then moves its built-in pointer
to the next pair in that array. When there are no more pairs to return, each returns FALSE.

The list function takes an array as its argument (in this case the key and value pair
returned by function each) and then assigns the values of the array to the variables listed
within parentheses.

You can see how list works a little more clearly in Example 6-9, where an array is
created out of the two strings “Alice” and “Bob” and then passed to the list function,
which assigns those strings as values to the variables $a and $b.

Example 6-9. Using the list function

<?php
list($a, $b) = array('Alice', 'Bob');
echo "a=$a b=$b";
?>

The output from this code is:

a=Alice b=Bob

So you can take your pick when walking through arrays. Use foreach...as to create a
loop that extracts values to the variable following the as, or use the each function and
create your own looping system.

120 | Chapter 6: PHP Arrays

Multidimensional Arrays
A simple design feature in PHP’s array syntax makes it possible to create arrays of more
than one dimension. In fact, they can be as many dimensions as you like (although it’s
a rare application that goes further than three).

And that feature is the ability to include an entire array as a part of another one, and
to be able to keep on doing so, just like the old rhyme: “Big fleas have little fleas upon
their backs to bite ’em. Little fleas have lesser fleas, add flea, ad infinitum.”

Let’s look at how this works by taking the associative array in the previous example
and extending it—see Example 6-10.

Example 6-10. Creating a multidimensional associative array

<?php
$products = array(
 'paper' => array(
 'copier' => "Copier & Multipurpose",
 'inkjet' => "Inkjet Printer",
 'laser' => "Laser Printer",
 'photo' => "Photographic Paper"),

 'pens' => array(
 'ball' => "Ball Point",
 'hilite' => "Highlighters",
 'marker' => "Markers"),

 'misc' => array(
 'tape' => "Sticky Tape",
 'glue' => "Adhesives",
 'clips' => "Paperclips"));

echo "<pre>";
foreach ($products as $section => $items)
 foreach ($items as $key => $value)
 echo "$section:\t$key\t($value)
";
echo "</pre>";
?>

To make things clearer now that the code is starting to grow, I’ve renamed some of the
elements. For example, seeing as the previous array $paper is now just a subsection of
a larger array, the main array is now called $products. Within this array there are three
items: paper, pens, and misc, and each of these contains another array with key/value
pairs.

If necessary, these subarrays could have contained even further arrays. For example,
under ball there might be many different types and colors of ballpoint pens available
in the online store. But for now I’ve restricted the code to just a depth of two.

Multidimensional Arrays | 121

Once the array data has been assigned, I use a pair of nested foreach...as loops to print
out the various values. The outer loop extracts the main sections from the top level of
the array, and the inner loop extracts the key/value pairs for the categories within each
section.

As long as you remember that each level of the array works the same way (it’s a key/
value pair), you can easily write code to access any element at any level.

The echo statement makes use of the PHP escape character \t, which outputs a tab.
Although tabs are not normally significant to the web browser, I let them be used for
layout by using the <pre>...</pre> tags, which tell the web browser to format the text
as preformatted and monospaced, and not to ignore whitespace characters such as tabs
and line feeds. The output from this code looks like the following:

paper: copier (Copier & Multipurpose)
paper: inkjet (Inkjet Printer)
paper: laser (Laser Printer)
paper: photo (Photographic Paper)
pens: ball (Ball Point)
pens: hilite (Highlighters)
pens: marker (Markers)
misc: tape (Sticky Tape)
misc: glue (Adhesives)
misc: clips (Paperclips)

You can directly access a particular element of the array using square brackets, like this:

echo $products['misc']['glue'];

which outputs the value “Adhesives”.

You can also create numeric multidimensional arrays that are accessed directly by in-
dexes rather than by alphanumeric identifiers. Example 6-11 creates the board for a
chess game with the pieces in their starting positions.

Example 6-11. Creating a multidimensional numeric array

<?php
$chessboard = array(
 array('r', 'n', 'b', 'k', 'q', 'b', 'n', 'r'),
 array('p', 'p', 'p', 'p', 'p', 'p', 'p', 'p'),
 array(' ', ' ', ' ', ' ', ' ', ' ', ' ', ' '),
 array(' ', ' ', ' ', ' ', ' ', ' ', ' ', ' '),
 array(' ', ' ', ' ', ' ', ' ', ' ', ' ', ' '),
 array(' ', ' ', ' ', ' ', ' ', ' ', ' ', ' '),
 array(' ', ' ', ' ', ' ', ' ', ' ', ' ', ' '),
 array(' ', ' ', ' ', ' ', ' ', ' ', ' ', ' '),
 array('P', 'P', 'P', 'P', 'P', 'P', 'P', 'P'),
 array('R', 'N', 'B', 'K', 'Q', 'B', 'N', 'R'));

echo "<pre>";
foreach ($chessboard as $row)
{
 foreach ($row as $piece)

122 | Chapter 6: PHP Arrays

 echo "$piece ";
 echo "
";
}
echo "</pre>";
?>

In this example, the lowercase letters represent black pieces and the uppercase white.
The key is r=rook, n=knight, b=bishop, k=king, q=queen, and p=pawn. Again, a pair of
nested foreach...as loops walk through the array and display its contents. The outer
loop processes each row into the variable $row, which itself is an array, because the
$chessboard array uses a subarray for each row. This loop has two statements within
it, so curly braces enclose them.

The inner loop then processes each square in a row, outputting the character ($piece)
stored in it, followed by a space (to square up the printout). This loop has a single
statement, so curly braces are not required to enclose it. The <pre> and </pre> tags
ensure that the output displays correctly, like this:

r n b k q b n r
p p p p p p p p

P P P P P P P P
R N B K Q B N R

You can also directly access any element within this array using square brackets, like
this:

echo $chessboard[7][4];

This statement outputs the uppercase letter Q, the eighth element down and the fifth
along (remembering that array indexes start at 0, not 1).

Using Array Functions
You’ve already seen the list and each functions, but PHP comes with numerous other
functions for handling arrays. The full list is at http://php.net/manual/en/ref.array.php.
However, some of these functions are so fundamental that it’s worth taking the time
to look at them here.

is_array()
Arrays and variables share the same namespace. This means that you cannot have a
string variable called $fred and an array also called $fred. If you’re in doubt and your
code needs to check whether a variable is an array, you can use the is_array function
like this:

echo (is_array($fred)) ? "Is an array" : "Is not an array";

Using Array Functions | 123

http://php.net/manual/en/ref.array.php

Note that if $fred has not yet been assigned a value, an “Undefined variable” message
will be generated.

count()
Although the each function and foreach...as loop structure are excellent ways to walk
through an array’s contents, sometimes you need to know exactly how many elements
there are in your array, particularly if you will be referencing them directly. To count
all the elements in the top level of an array, use a command such as the following:

echo count($fred);

Should you wish to know how many elements there are altogether in a multidimen-
sional array, you can use a statement such as:

echo count($fred, 1);

The second parameter is optional and sets the mode to use. It should be either a 0 to
limit counting to only the top level, or 1 to force recursive counting of all subarray
elements, too.

sort()
Sorting is so common that PHP provides a built-in function. In its simplest form, you
would use it like this:

sort($fred);

Unlike some other functions, sort will act directly on the supplied array rather than
returning a new array of sorted elements. Instead it returns TRUE on success and FALSE
on error and also supports a few flags, but the main two that you might wish to use
force sorting to be made either numerically or as strings, like this:

sort($fred, SORT_NUMERIC);
sort($fred, SORT_STRING);

You can also sort an array in reverse order using the rsort function, like this:

rsort($fred, SORT_NUMERIC);
rsort($fred, SORT_STRING);

shuffle()
There may be times when you need the elements of an array to be put in random order,
such as when creating a game of playing cards:

shuffle($cards);

Like sort, shuffle acts directly on the supplied array and returns TRUE on success or
FALSE on error.

124 | Chapter 6: PHP Arrays

explode()
This is a very useful function with which you can take a string containing several items
separated by a single character (or string of characters) and then place each of these
items into an array. One handy example is to split a sentence up into an array containing
all its words, as in Example 6-12.

Example 6-12. Exploding a string into an array using spaces

<?php
$temp = explode(' ', "This is a sentence with seven words");
print_r($temp);
?>

This example prints out the following (on a single line when viewed in a browser):

Array
(
 [0] => This
 [1] => is
 [2] => a
 [3] => sentence
 [4] => with
 [5] => seven
 [6] => words
)

The first parameter, the delimiter, need not be a space or even a single character.
Example 6-13 shows a slight variation.

Example 6-13. Exploding a string delimited with *** into an array

<?php
$temp = explode('***', "A***sentence***with***asterisks");
print_r($temp);
?>

The code in Example 6-13 prints out the following:

Array
(
 [0] => A
 [1] => sentence
 [2] => with
 [3] => asterisks
)

extract()
Sometimes it can be convenient to turn the key/value pairs from an array into PHP
variables. One such time might be when processing the $_GET or $_POST variables as
sent to a PHP script by a form.

Using Array Functions | 125

When a form is submitted over the Web, the web server unpacks the variables into a
global array for the PHP script. If the variables were sent using the GET method, they
will be placed in an associative array called $_GET, and if they were sent using POST, they
will be placed in an associative array called $_POST.

You could, of course, walk through such associative arrays in the manner shown in the
examples so far. However, sometimes you just want to store the values sent into vari-
ables for later use. In this case, you can have PHP do the job automatically for you:

extract($_GET);

So, for example, if the query string parameter q is sent to a PHP script along with the
associated value “Hi there”, a new variable called $q will be created and assigned that
value.

Be careful with this approach, though, because if any extracted variables conflict with
ones that you have already defined, your existing values will be overwritten. To avoid
this possibility, you can use one of the many additional parameters available to this
function, like this:

extract($_GET, EXTR_PREFIX_ALL, 'fromget');

In this case, all the new variables will begin with the given prefix string followed by an
underscore, so $q will become $fromget_q. I strongly recommend that you use this
version of the function when handling the $_GET and $_POST arrays, or any other array
whose keys could be controlled by the user, because malicious users could submit keys
chosen deliberately to overwrite commonly used variable names and compromise your
website.

compact()
There are also times when you want to use compact, the inverse of extract, to create an
array from variables and their values. Example 6-14 shows how you might use this
function.

Example 6-14. Using the compact function

<?php
$fname = "Elizabeth";
$sname = "Windsor";
$address = "Buckingham Palace";
$city = "London";
$country = "United Kingdom";

$contact = compact('fname', 'sname', 'address', 'city', 'country');
print_r($contact);
?>

The result of running Example 6-14 is:

Array
(

126 | Chapter 6: PHP Arrays

 [fname] => Elizabeth
 [sname] => Windsor
 [address] => Buckingham Palace
 [city] => London
 [country] => United Kingdom
)

Note how compact requires the variable names to be supplied in quotes and not as
variables preceded with a $ symbol. This is because compact is looking for an array of
variable names.

Another use of this function is for debugging, when you wish to quickly view several
variables and their values, as in Example 6-15.

Example 6-15. Using compact to help with debugging

<?php
$j = 23;
$temp = "Hello";
$address = "1 Old Street";
$age = 61;

print_r (compact (explode (' ','j temp address age')));
?>

This works by using the explode function to extract all the words from the string into
an array, which is then passed to the compact function, which returns an array to
print_r, which shows its contents.

If you copy and paste the print_r line of code, you only need to alter the variables
named there for a quick print out of a group of variables’ values. In this example, the
output is:

Array
(
 [j] => 23
 [temp] => Hello
 [address] => 1 Old Street
 [age] => 61
)

reset()
When the foreach...as construct or the each function walk through an array, they keep
an internal PHP pointer that makes a note of which element of the array they should
return next. If your code ever needs to return to the start of an array, you can issue
reset, which also returns the value of that element. Examples of how to use this function
are:

reset($fred); // Throw away return value
$item = reset($fred); // Keep first element of the array in $item

Using Array Functions | 127

end()
As with reset, you can move PHP’s internal array pointer to the final element in an
array using the end function, which also returns the value of the element, and can be
used as in these examples:

end($fred);
$item = end($fred);

This chapter concludes your basic introduction to PHP, and you should now be able
to write quite complex programs using the skills you have learned. In the next chapter,
we’ll look at using PHP for common, practical tasks.

Test Your Knowledge: Questions
Question 6-1

What is the difference between a numeric and an associative array?

Question 6-2
What is the main benefit of the array keyword?

Question 6-3
What is the difference between foreach and each?

Question 6-4
How can you create a multidimensional array?

Question 6-5
How can you determine the number of elements there are in an array?

Question 6-6
What is the purpose of the explode function?

Question 6-7
How can you set PHP’s internal pointer into an array back to the first element of
the array?

See the section “Chapter 6 Answers” on page 440 in Appendix A for the answers to
these questions.

128 | Chapter 6: PHP Arrays

CHAPTER 7

Practical PHP

Previous chapters went over the elements of the PHP language. This chapter builds on
your new programming skills to teach you some common but important practical tasks.
You will learn the best ways to manage string handling to achieve clear and concise
code that displays in web browsers exactly how you want it to, including advanced date
and time management. You’ll also find out how to create and otherwise modify files,
including those uploaded by users.

There’s also a comprehensive introduction to XHTML, a markup language similar to
HTML (and which conforms to the XML syntax used to store data such as RSS feeds),
and intended to supersede HTML. Together these topics will extend your understand-
ing of both practical PHP programming and developing international web standards.

Using printf
You’ve already seen the print and echo functions, which simply output text to the
browser. But a much more powerful function, printf, controls the format of the output
by letting you put special formatting characters in a string.

For each formatting character, printf expects you to pass an argument that it will
display using that format. For instance, the following example uses the %d conversion
specifier to display the value 3 in decimal:

printf("There are %d items in your basket", 3);

If you replace the %d with %b, the value 3 would be displayed in binary (11). Table 7-1
shows the conversion specifiers supported.

129

Table 7-1. The printf conversion specifiers

Specifier Conversion action on argument arg Example (for an arg of 123)

% Display a % character (no arg is required) %

b Display arg as a binary integer 1111011

c Display ASCII character for the arg {

d Display arg as a signed decimal integer 123

e Display arg using scientific notation 1.23000e+2

f Display arg as floating point 123.000000

o Display arg as an octal integer 173

s Display arg as a string 123

u Display arg as an unsigned decimal 123

x Display arg in lowercase hexadecimal 7b

X Display arg in uppercase hexadecimal 7B

You can have as many specifiers as you like in a printf function, as long as you pass a
matching number of arguments, and as long as each specifier is prefaced by a % symbol.
Therefore the following code is valid, and will output “My name is Simon. I’m 33 years
old, which is 21 in hexadecimal”:

printf("My name is %s. I'm %d years old, which is %X in hexadecimal",
 'Simon', 33, 33);

If you leave out any arguments, you will receive a parse error informing you that a right
bracket,), was unexpectedly encountered.

A more practical example of printf sets colors in HTML using decimal. For example,
suppose you know you want a color that has a triplet value of 65 red, 127 green, and
245 blue, but don’t want to convert this to hexadecimal yourself. An easy solution is:

printf("Hello", 65, 127, 245);

Check the format of the color specification between the apostrophes ('') carefully. First
comes the pound sign (#) expected by the color specification. Then come three %X
format specifiers, one for each of your numbers. The resulting output from this com-
mand is:

Hello

Usually, you’ll find it convenient to use variables or expressions as arguments to
printf. For instance, if you stored values for your colors in the three variables $r, $g,
and $b, you could create a darker color with:

printf("Hello", $r-20, $g-20, $b-20);

130 | Chapter 7: Practical PHP

Precision Setting
Not only can you specify a conversion type, you can also set the precision of the dis-
played result. For example, amounts of currency are usually displayed with only two
digits of precision. However, after a calculation, a value may have a greater precision
than this, such as 123.42/12, which results in 10.285. To ensure that such values are
correctly stored internally, but displayed with only two digits of precision, you can
insert the string “.2” between the % symbol and the conversion specifier:

printf("The result is: $%.2f", 123.42 / 12);

The output from this command is:

The result is $10.29

But you actually have even more control than that, because you can also specify whether
to pad output with either zeros or spaces by prefacing the specifier with certain values.
Example 7-1 shows five possible combinations.

Example 7-1. Precision setting

<?php
echo "<pre>"; // Enables viewing of the spaces

// Pad to 15 spaces
 printf("The result is $%15f\n", 123.42 / 12);

// Pad to 15 spaces, fill with zeros
 printf("The result is $%015f\n", 123.42 / 12);

// Pad to 15 spaces, 2 decimal places precision
 printf("The result is $%15.2f\n", 123.42 / 12);

// Pad to 15 spaces, 2 decimal places precision, fill with zeros
 printf("The result is $%015.2f\n", 123.42 / 12);

// Pad to 15 spaces, 2 decimal places precision, fill with # symbol
 printf("The result is $%'#15.2f\n", 123.42 / 12);
?>

The output from this example looks like this:

The result is $ 10.285000
The result is $00000010.285000
The result is $ 10.29
The result is $000000000010.29
The result is $##########10.29

The way it works is simple if you go from right to left (see Table 7-2). Notice that:

• The rightmost character is the conversion specifier. In this case, it is f for floating
point.

• Just before the conversion specifier, if there is a period and a number together, then
the precision of the output is specified as the value of the number.

Using printf | 131

• Regardless of whether there’s a precision specifier, if there is a number, then that
represents the amount of characters to which the output should be padded. In the
previous example, this is 15 characters. If the output is already equal to or greater
than the padding length, then this argument is ignored.

• The leftmost parameter allowed before the % symbol is a 0, which is ignored unless
a padding value has been set, in which case the output is padded with zeros instead
of spaces. If a pad character other than zero or a space is required, you can use any
one of your choice as long as you preface it with a single quotation mark, like this:
'#.

• On the left is the % symbol, which starts the conversion.

Table 7-2. Conversion specifier components

Start conversion Pad character Number of pad
characters

Display
precision

Conversion
specifier

Examples

% 15 f 10.285000

% 0 15 .2 f 000000000010.29

% '# 15 .4 f ########10.2850

String Padding
You can also pad strings to required lengths as you can with numbers, select different
padding characters, and even choose between left and right justification. Exam-
ple 7-2 shows various examples.

Example 7-2. String padding

<?php
echo "<pre>"; // Enables viewing of the spaces

$h = 'House';

printf("[%s]\n", $h); // Standard string output
printf("[%10s]\n", $h); // Right justify with spaces
printf("[%-10s]\n", $h); // Left justify with spaces
printf("[%010s]\n", $h); // Zero padding
printf("[%'#10s]\n\n", $h); // Use the custom padding character '#'

$d = 'Doctor House';

printf("[%10.8s]\n", $d); // Right justify, cutoff of 8 characters
printf("[%-10.6s]\n", $d); // Left justify, cutoff of 6 characters
printf("[%-'@10.6s]\n", $d); // Left justify, pad '@', cutoff 6 chars
?>

Note how for purposes of layout in a web page, I’ve used the <pre> HTML tag to
preserve all the spaces and the \n newline character after each of the lines to be dis-
played. The output from this example is as follows:

132 | Chapter 7: Practical PHP

[House]
[House]
[House]
[00000House]
[#####House]

[Doctor H]
[Doctor]
[Doctor@@@@]

When specifying a padding value, if a string is already of equal or greater length than
that value it will be ignored, unless a cutoff value is given that shortens the string back
to less than the padding value.

Table 7-3 shows a breakdown of the components available to string conversion
specifiers.

Table 7-3. String conversion specifier components

Start
conversion

Left or right
justify

Padding
character

Number of pad
characters

Cutoff Conversion
specifier

Examples

% s [House]

% - 10 s [House]

% '# 8 .4 s [####Hous]

Using sprintf
Often you don’t want to output the result of a conversion but need to use it elsewhere
in your code. This is where the sprintf function comes in. With it, you can send the
output to another variable rather than to the browser.

You might use it simply to make a conversion, as in the following example, which
returns the hexadecimal string value for the RGB color group 65, 127, 245 in
$hexstring:

$hexstring = sprintf("%X%X%X", 65, 127, 245);

Or you may wish to store output ready to display later on:

$out = sprintf("The result is: $%.2f", 123.42 / 12);
echo $out;

Date and Time Functions
To keep track of the date and time, PHP uses standard Unix timestamps, which are
simply the number of seconds since the start of January 1, 1970. To determine the
current timestamp, you can use the time function:

echo time();

Date and Time Functions | 133

Because the value is stored as seconds, to obtain the timestamp for this time next week,
you would use the following, which adds 7 days × 24 hours × 60 minutes × 60 seconds
to the returned value:

echo time() + 7 * 24 * 60 * 60;

If you wish to create a timestamp for a given date, you can use the mktime function. Its
output is the timestamp 946684800 for the first second of the first minute of the first
hour of the first day of the year 2000:

echo mktime(0, 0, 0, 1, 1, 2000);

The parameters to pass are, in order from left to right:

• The number of the hour (0–23)

• The number of the minute (0–59)

• The number of seconds (0–59)

• The number of the month (1–12)

• The number of the day (1–31)

• The year (1970–2038, or 1901–2038 with PHP 5.1.0+ on 32-bit signed systems)

You may ask why you are limited to the years 1970 through 2038. Well,
it’s because the original developers of Unix chose the start of the year
1970 as the base date that no programmer should need to go before!
Luckily, because as of version 5.1.0, PHP supports systems using a
signed 32-bit integer for the timestamp, dates 1901 to 2038 are allowed
on them. However, a problem even worse than the first comes about
because the Unix designers also decided that nobody would be using
Unix after about 70 years or so, and therefore believed they could get
away with storing the timestamp as a 32-bit value—which will run out
on January 19, 2038! This will create what has come to be known as the
Y2K38 bug (much like the millennium bug, which was caused by storing
years as two-digit values, and which also had to be fixed). We have to
hope it will all be solved well before we get too close to that date.

To display the date, use the date function, which supports a plethora of formatting
options, enabling you to display the date any way you could wish. The format is as
follows:

date($format, $timestamp);

The parameter $format should be a string containing formatting specifiers as detailed
in Table 7-4 and $timestamp should be a Unix timestamp. For the complete list of
specifiers, please see http://php.net/manual/en/function.date.php. The following com-
mand will output the current date and time in the format “Thursday April 15th, 2010
- 1:38pm”:

echo date("l F jS, Y - g:ia", time());

134 | Chapter 7: Practical PHP

http://php.net/manual/en/function.date.php

Table 7-4. The major date function format specifiers

Format Description Returned value

Day specifiers

d Day of month, 2 digits, with leading zeros 01 to 31

D Day of the week, three letters Mon to Sun

j Day of the month, no leading zeros 1 to 31

l Day of week, full names Sunday to Saturday

N Day of week, numeric, Monday to Sunday 1 to 7

S Suffix for day of month (useful with specifier j) st, nd, rd, or th

w Day of week, numeric, Sunday to Saturday 0 to 6

z Day of year 0 to 365

Week specifier

W Week number of year 1 to 52

Month specifiers

F Month name January to December

m Month number with leading zeros 01 to 12

M Month name, three letters Jan to Dec

n Month number, no leading zeros 1 to 12

t Number of days in given month 28, 29, 30 or 31

Year specifiers

L Leap year 1 = Yes, 0 = No

Y Year, 4 digits 0000 to 9999

y Year, 2 digits 00 to 99

Time specifiers

a Before or after midday, lowercase am or pm

A Before or after midday, uppercase AM or PM

g Hour of day, 12-hour format, no leading zeros 1 to 12

G Hour of day, 24-hour format, no leading zeros 1 to 24

h Hour of day, 12-hour format, with leading zeros 01 to 12

H Hour of day, 24-hour format, with leading zeros 01 to 24

i Minutes, with leading zeros 00 to 59

s Seconds, with leading zeros 00 to 59

Date and Time Functions | 135

Date Constants
There are a number of useful constants that you can use with the date command to
return the date in specific formats. For example, date(DATE_RSS) returns the current
date and time in the valid format for an RSS feed. Some of the more commonly used
constants are:

DATE_ATOM
This is the format for Atom feeds. The PHP format is “Y-m-d\TH:i:sP” and example
output is “2012-08-16T12:00:00+0000”.

DATE_COOKIE
This is the format for cookies set from a web server or JavaScript. The PHP format
is “l, d-M-y H:i:s T” and example output is “Thu, 16 Aug 2012 12:00:00 UTC”.

DATE_RSS
This is the format for RSS feeds. The PHP format is “D, d M Y H:i:s T” and example
output is “Thu, 16 Aug 2012 12:00:00 UTC”.

DATE_W3C
This is the format for “World Wide Web Consortium.” The PHP format is “Y-m-
d\TH:i:sP” and example output is “2012-08-16T12:00:00+0000”.

The complete list can be found at http://php.net/manual/en/class.datetime.php.

Using checkdate
You’ve seen how to display a valid date in a variety of formats. But how can you check
whether a user has submitted a valid date to your program? The answer is to pass the
month, day and year to the checkdate function, which returns a value of TRUE if the date
is valid, or FALSE if it is not.

For example, if February 30 of any year is input, it will always be an invalid date.
Example 7-3 shows code that you could use for this. As it stands, it will find the given
date invalid.

Example 7-3. Checking for the validity of a date

<?php
$month = 9; // September (only has 30 days)
$day = 31; // 31st
$year = 2012; // 2012

if (checkdate($month, $day, $year)) echo "Date is valid";
else echo "Date is invalid";
?>

136 | Chapter 7: Practical PHP

http://php.net/manual/en/class.datetime.php

File Handling
Powerful as it is, MySQL is not the only (or necessarily the best) way to store all data
on a web server. Sometimes it can be quicker and more convenient to directly access
files on the hard disk. Cases in which you might need to do this are modifying images
such as uploaded user avatars, or log files that you wish to process.

First, though, a note about file naming. If you are writing code that may be used on
various PHP installations, there is no way of knowing whether these systems are case-
sensitive. For example, Windows and Mac OS X filenames are not case-sensitive, but
Linux and Unix ones are. Therefore you should always assume that the system is case-
sensitive and stick to a convention such as all lowercase filenames.

Checking Whether a File Exists
To determine whether a file already exists, you can use the file_exists function, which
returns either TRUE or FALSE, and is used like this:

if (file_exists("testfile.txt")) echo "File exists";

Creating a File
At this point testfile.txt doesn’t exist, so let’s create it and write a few lines to it. Type
in Example 7-4 and save it as testfile.php.

Example 7-4. Creating a simple text file

<?php // testfile.php
$fh = fopen("testfile.txt", 'w') or die("Failed to create file");
$text = <<<_END
Line 1
Line 2
Line 3

_END;
fwrite($fh, $text) or die("Could not write to file");
fclose($fh);
echo "File 'testfile.txt' written successfully";
?>

When you run this in a browser, all being well, you will receive the message “File
‘testfile.txt’ written successfully”. If you receive an error message, your hard disk may
be full or, more likely, you may not have permission to create or write to the file, in
which case you should modify the attributes of the destination folder according to your
operating system. Otherwise, the file testfile.txt should now be residing in the same
folder in which you saved the testfile.php program. Try opening the file in a text or
program editor—the contents will look like this:

File Handling | 137

Line 1
Line 2
Line 3

This simple example shows the sequence that all file handling takes:

1. Always start by opening the file. This is done through a call to fopen.

2. Then you can call other functions; here we write to the file (fwrite), but you can
also read from an existing file (fread or fgets) and do other things.

3. Finish by closing the file (fclose). Although the program does this for you when it
ends, you should clean up yourself by closing the file when you’re finished.

Every open file requires a file resource so that PHP can access and manage it. The
preceding example sets the variable $fh (which I chose to stand for file handle) to the
value returned by the fopen function. Thereafter, each file handling function that ac-
cesses the opened file, such as fwrite or fclose, must be passed $fh as a parameter to
identify the file being accessed. Don’t worry about the content of the $fh variable; it’s
a number PHP uses to refer to internal information about the file—you just pass the
variable to other functions.

Upon failure, FALSE will be returned by fopen. The previous example shows a simple
way to capture and respond to the failure: it calls the die function to end the program
and gives the user an error message. A web application would never abort in this crude
way (you would create a web page with an error message instead), but this is fine for
our testing purposes.

Notice the second parameter to the fopen call. It is simply the character w, which tells
the function to open the file for writing. The function creates the file if it doesn’t already
exist. Be careful when playing around with these functions: if the file already exists, the
w mode parameter causes the fopen call to delete the old contents (even if you don’t
write anything new!).

There are several different mode parameters that can be used here, as detailed in Ta-
ble 7-5.

Table 7-5. The supported fopen modes

Mode Action Description

'r' Read from file start Open for reading only; place the file pointer at the beginning of the file. Return
FALSE if the file doesn’t already exist.

'r+' Read from file start and al-
low writing

Open for reading and writing; place the file pointer at the beginning of the file. Return
FALSE if the file doesn’t already exist.

'w' Write from file start and
truncate file

Open for writing only; place the file pointer at the beginning of the file and truncate the
file to zero length. If the file doesn’t exist, attempt to create it.

'w+' Write from file start, trun-
cate file and allow reading

Open for reading and writing; place the file pointer at the beginning of the file and
truncate the file to zero length. If the file doesn’t exist, attempt to create it.

138 | Chapter 7: Practical PHP

Mode Action Description

'a' Append to file end Open for writing only; place the file pointer at the end of the file. If the file doesn’t exist,
attempt to create it.

'a+' Append to file end and al-
low reading

Open for reading and writing; place the file pointer at the end of the file. If the file doesn’t
exist, attempt to create it.

Reading from Files
The easiest way to read from a text file is to grab a whole line through fgets (think of
the final s as standing for “string”), as in Example 7-5.

Example 7-5. Reading a file with fgets

<?php
$fh = fopen("testfile.txt", 'r') or
 die("File does not exist or you lack permission to open it");
$line = fgets($fh);
fclose($fh);
echo $line;
?>

If you created the file as shown in Example 7-4, you’ll get the first line:

Line 1

Or you can retrieve multiple lines or portions of lines through the fread function, as in
Example 7-6.

Example 7-6. Reading a file with fread

<?php
$fh = fopen("testfile.txt", 'r') or
 die("File does not exist or you lack permission to open it");
$text = fread($fh, 3);
fclose($fh);
echo $text;
?>

I’ve requested three characters in the fread call, so the program displays the following:

Lin

The fread function is commonly used with binary data. But if you use it on text data
that spans more than one line, remember to count newline characters.

Copying Files
Let’s try out the PHP copy function to create a clone of testfile.txt. Type in Exam-
ple 7-7 and save it as copyfile.php, then call the program up in your browser.

File Handling | 139

Example 7-7. Copying a file

<?php // copyfile.php
copy('testfile.txt', 'testfile2.txt') or die("Could not copy file");
echo "File successfully copied to 'testfile2.txt'";
?>

If you check your folder again, you’ll see that you now have the new file testfile2.txt in
it. By the way, if you don’t want your programs to exit on a failed copy attempt, you
could try the alternate syntax in Example 7-8.

Example 7-8. Alternate syntax for copying a file

<?php // copyfile2.php
if (!copy('testfile.txt', 'testfile2.txt')) echo "Could not copy file";
else echo "File successfully copied to 'testfile2.txt'";
?>

Moving a File
To move a file, rename it with the rename function, as in Example 7-9.

Example 7-9. Moving a file

<?php // movefile.php
if (!rename('testfile2.txt', 'testfile2.new'))
 echo "Could not rename file";
else echo "File successfully renamed to 'testfile2.new'";
?>

You can use the rename function on directories, too. To avoid any warning messages,
if the original file doesn’t exist, you can call the file_exists function first to check.

Deleting a File
Deleting a file is just a matter of using the unlink function to remove it from the file
system, as in Example 7-10.

Example 7-10. Deleting a file

<?php // deletefile.php
if (!unlink('testfile2.new')) echo "Could not delete file";
else echo "File 'testfile2.new' successfully deleted";
?>

Whenever you access files on your hard disk directly, you must also
always ensure that it is impossible for your filesystem to be compro-
mised. For example, if you are deleting a file based on user input, you
must make absolutely certain it is a file that can be safely deleted and
that the user is allowed to delete it.

140 | Chapter 7: Practical PHP

As with moving a file, a warning message will be displayed if the file doesn’t exist, which
you can avoid by using file_exists to first check for its existence before calling unlink.

Updating Files
Often you will want to add more data to a saved file, which you can do in many ways.
You can use one of the append write modes (see Table 7-5), or you can simply open a
file for reading and writing with one of the other modes that supports writing, and
move the file pointer to the correct place within the file that you wish to write to or
read from.

The file pointer is the position within a file at which the next file access will take place,
whether it’s a read or a write. It is not the same as the file handle (as stored in the
variable $fh in Example 7-4), which contains details about the file being accessed.

You can see this in action by typing in Example 7-11 and saving it as update.php. Then
call it up in your browser.

Example 7-11. Updating a file

<?php // update.php
$fh = fopen("testfile.txt", 'r+') or die("Failed to open file");
$text = fgets($fh);
fseek($fh, 0, SEEK_END);
fwrite($fh, "$text") or die("Could not write to file");
fclose($fh);
echo "File 'testfile.txt' successfully updated";
?>

What this program does is open testfile.txt for both reading and writing by setting the
mode with '+r', which puts the file pointer right at the start. It then uses the fgets
function to read in a single line from the file (up to the first line feed). After that, the
fseek function is called to move the file pointer right to the file end, at which point the
line of text that was extracted from the start of the file (stored in $text) is then appended
to file’s end and the file is closed. The resulting file now looks like this:

Line 1
Line 2
Line 3
Line 1

The first line has successfully been copied and then appended to the file’s end.

As used here, in addition to the $fh file handle, the fseek function was passed two other
parameters, 0 and SEEK_END. The SEEK_END tells the function to move the file pointer to
the end of the file and the 0 parameter tells it how many positions it should then be
moved backward from that point. In the case of Example 7-11, a value of 0 is used,
because the pointer is required to remain at the file’s end.

File Handling | 141

There are two other seek options available to the fseek function: SEEK_SET and
SEEK_CUR. The SEEK_SET option tells the function to set the file pointer to the exact
position given by the preceding parameter. Thus, the following example moves the file
pointer to position 18:

fseek($fh, 18, SEEK_SET);

SEEK_CUR sets the file pointer to the current position plus the value of the given offset.
Therefore, if the file pointer is currently at position 18, the following call will move it
to position 23:

fseek($fh, 5, SEEK_CUR);

Although this is not recommended unless you have very specific reasons for it, it is even
possible to use text files such as this (but with fixed line lengths) as simple flat-file
databases. Your program can then use fseek to move back and forth within such a file
to retrieve, update, and add new records. Records can also be deleted by overwriting
them with zero characters, and so on.

Locking Files for Multiple Accesses
Web programs are often called by many users at the same time. If more than one person
tries to write to a file simultaneously, it can become corrupted. And if one person writes
to it while another is reading from it, the file is all right but the person reading it can
get odd results. To handle simultaneous users, it’s necessary to use the file locking
flock function. This function queues up all other requests to access a file until your
program releases the lock. So, whenever your programs use write access on files that
may be accessed concurrently by multiple users, you should also add file locking to
them, as in Example 7-12, which is an updated version of Example 7-11.

Example 7-12. Updating a file with file locking

<?php
$fh = fopen("testfile.txt", 'r+') or die("Failed to open file");
$text = fgets($fh);

if (flock($fh, LOCK_EX))
{
 fseek($fh, 0, SEEK_END);
 fwrite($fh, "$text") or die("Could not write to file");
 flock($fh, LOCK_UN);
}
fclose($fh);
echo "File 'testfile.txt' successfully updated";
?>

There is a trick to file locking to preserve the best possible response time for your
website visitors: perform it directly before you make a change to a file, and then unlock
it immediately afterward. Having a file locked for any longer than this will slow your

142 | Chapter 7: Practical PHP

application down unnecessarily. This is why the calls to flock in Example 7-12 are
directly before and after the fwrite call.

The first call to flock sets an exclusive file lock on the file referred to by $fh using the
LOCK_EX parameter:

flock($fh, LOCK_EX);

From this point onward, no other processes can write to (or even read from) the file
until the lock is released by using the LOCK_UN parameter, like this:

flock($fh, LOCK_UN);

As soon as the lock is released, other processes are allowed access again to the file. This
is one reason why you should reseek to the point you wish to access in a file each time
you need to read or write data, because another process could have changed the file
since the last access.

However, did you notice that the call to request an exclusive lock is nested as part of
an if statement? This is because flock is not supported on all systems and therefore it
is wise to check whether you successfully secured a lock, just in case one could not be
obtained.

Something else you must consider is that flock is what is known as an advisory lock.
This means that it locks out only other processes that call the function. If you have any
code that goes right in and modifies files without implementing flock file locking, it
will always override the locking and could wreak havoc on your files.

By the way, implementing file locking and then accidentally leaving it out in one section
of code can lead to an extremely hard-to-locate bug.

flock will not work on NFS (Network File System) and many other
networked filesystems. Also, when using a multithreaded server like
ISAPI, you may not be able to rely on flock to protect files against other
PHP scripts running in parallel threads of the same server instance. Ad-
ditionally, flock is not supported on the FAT filesystem and its deri-
vates, and will therefore always return FALSE under this environment
(this is especially true for Windows 98 users).

Reading an Entire File
A handy function for reading in an entire file without having to use file handles is
file_get_contents. It’s very easy to use, as you can see in Example 7-13.

Example 7-13. Using file_get_contents

<?php
echo "<pre>"; // Enables display of line feeds
echo file_get_contents("testfile.txt");
echo "</pre>"; // Terminates pre tag
?>

File Handling | 143

But the function is actually a lot more useful than that, because you can also use it to
fetch a file from a server across the Internet, as in Example 7-14, which requests the
HTML from the O’Reilly home page, and then displays it as if the page itself had been
surfed to. The result will be similar to the screenshot in Figure 7-1.

Example 7-14. Grabbing the O’Reilly home page

<?php
echo file_get_contents("http://oreilly.com");
?>

Uploading Files
Uploading files to a web server is a subject area that seems daunting to many people,
but it actually couldn’t be much easier. All you need to do to upload a file from a form
is choose a special type of encoding called multipart/form-data and your browser will
handle the rest. To see how this works, type in the program in Example 7-15 and save
it as upload.php. When you run it, you’ll see a form in your browser that lets you upload
a file of your choice.

Figure 7-1. The O’Reilly home page grabbed with file_get_contents

144 | Chapter 7: Practical PHP

Example 7-15. Image uploader upload.php

<?php // upload.php
echo <<<_END
<html><head><title>PHP Form Upload</title></head><body>
<form method='post' action='upload.php' enctype='multipart/form-data'>
Select File: <input type='file' name='filename' size='10' />
<input type='submit' value='Upload' />
</form>
_END;

if ($_FILES)
{
 $name = $_FILES['filename']['name'];
 move_uploaded_file($_FILES['filename']['tmp_name'], $name);
 echo "Uploaded image '$name'
";
}

echo "</body></html>";
?>

Let’s examine this program a section at a time. The first line of the multiline echo
statement starts an HTML document, displays the title, and then starts the document’s
body.

Next we come to the form that selects the POST method of form submission, sets the
target for posted data to the program upload.php (the program itself), and tells the web
browser that the data posted should be encoded using the content type of multipart/
form-data.

With the form set up, the next lines display the prompt “Select File:” and then request
two inputs. The first input being asked for is a file, which is done by using an input
type of file and a name of filename, and the input field has a width of 10 characters.

The second requested input is just a Submit button that is given the label “Upload”
(replacing the default button text of “Submit Query”). And then the form is closed.

This short program shows a common technique in web programming in which a single
program is called twice: once when the user first visits a page, and again when the user
presses the Submit button.

The PHP code to receive the uploaded data is fairly simple, because all uploaded files
are placed into the associative system array $_FILES. Therefore a quick check to see
whether $_FILES has anything in it is sufficient to determine whether the user has up-
loaded a file. This is done with the statement if ($_FILES).

The first time the user visits the page, before uploading a file, $_FILES is empty, so the
program skips this block of code. When the user uploads a file, the program runs again
and discovers an element in the $_FILES array.

File Handling | 145

Once the program realizes that a file was uploaded, the actual name, as read from the
uploading computer, is retrieved and placed into the variable $name. Now all that’s
necessary is to move the file from the temporary location in which PHP stored the
uploaded file to a more permanent one. This is done using the move_uploaded_file
function, passing it the original name of the file, with which it is saved to the current
directory.

Finally, the uploaded image is displayed within an IMG tag, and the result should look
like the screenshot in Figure 7-2.

If you run this program and receive warning messages such as “Permis-
sion denied” for the move_uploaded_file function call, then you may not
have the correct permissions set for the folder in which the program is
running.

Using $_FILES

Five things are stored in the $_FILES array when a file is uploaded, as shown by Ta-
ble 7-6 (where file is the file upload field name supplied by the submitting form).

Table 7-6. The contents of the $_FILES array

Array Element Contents

$_FILES['file']['name'] The name of the uploaded file (e.g., smiley.jpg)

$_FILES['file']['type'] The content type of the file (e.g., image/jpeg)

Figure 7-2. Uploading an image as form data

146 | Chapter 7: Practical PHP

Array Element Contents

$_FILES['file']['size'] The file’s size in bytes

$_FILES['file']['tmp_name'] The name of the temporary file stored on the server

$_FILES['file']['error'] The error code resulting from the file upload

Content types used to be known as MIME (Multipurpose Internet Mail Extension)
types, but because their use later expanded to the whole Internet, they are nowadays
often called Internet media types. Table 7-7 shows some of the more frequently used
types that turn up in $_FILES['file']['type'].

Table 7-7. Some common Internet media content types

application/pdf image/gif multipart/form-data text/xml

application/zip image/jpeg text/css video/mpeg

audio/mpeg image/png text/html video/mp4

audio/x-wav image/tiff text/plain video/quicktime

Validation

Hopefully it now goes without saying (although I’ll do so anyway) that form-data val-
idation is of the utmost importance, due to the possibility of users attempting to hack
into your server.

In addition to maliciously formed input data, some of the things you also have to check
are whether a file was actually received and, if so, whether the right type of data was sent.

Taking all these things into account, Example 7-16, upload2.php, is a rewrite of
upload.php.

Example 7-16. A more secure version of upload.php

<?php // upload2.php
echo <<<_END
<html><head><title>PHP Form Upload</title></head><body>
<form method='post' action='upload2.php' enctype='multipart/form-data'>
Select a JPG, GIF, PNG or TIF File:
<input type='file' name='filename' size='10' />
<input type='submit' value='Upload' /></form>
_END;

if ($_FILES)
{
 $name = $_FILES['filename']['name'];

 switch($_FILES['filename']['type'])
 {
 case 'image/jpeg': $ext = 'jpg'; break;
 case 'image/gif': $ext = 'gif'; break;
 case 'image/png': $ext = 'png'; break;

File Handling | 147

 case 'image/tiff': $ext = 'tif'; break;
 default: $ext = ''; break;
 }
 if ($ext)
 {
 $n = "image.$ext";
 move_uploaded_file($_FILES['filename']['tmp_name'], $n);
 echo "Uploaded image '$name' as '$n':
";
 echo "";
 }
 else echo "'$name' is not an accepted image file";
}
else echo "No image has been uploaded";

echo "</body></html>";
?>

The non-HTML section of code has been expanded from the half-dozen lines of Ex-
ample 7-15 to more than 20 lines, starting at: if ($_FILES).

As with the previous version, this if line checks whether any data was actually posted,
but there is now a matching else near the bottom of the program that echoes a message
to screen when nothing has been uploaded.

Within the if statement, the variable $name is assigned the value of the filename as
retrieved from the uploading computer (just as before), but this time we won’t rely on
the user having sent us valid data. Instead a switch statement is used to check the
uploaded content type against the four types of image this program supports. If a match
is made, the variable $ext is set to the three-letter file extension for that type. Should
no match be found, the file uploaded was not of an accepted type and the variable
$ext is set to the empty string "".

The next section of code then checks the variable $ext to see whether it contains a string
and, if so, creates a new filename called $n with the base name image and the extension
stored in $ext. This means that the program is in full control over the name of the file
to be created, as it can be only one of image.jpg, image.gif, image.png, or image.tif.

Safe in the knowledge that the program has not been compromised, the rest of the PHP
code is much the same as in the previous version. It moves the uploaded temporary
image to its new location and then displays it, while also displaying the old and new
image names.

Don’t worry about having to delete the temporary file that PHP creates
during the upload process, because if the file has not been moved or
renamed, it will be automatically removed when the program exits.

After the if statement there is a matching else, which is executed only if an unsup-
ported image type was uploaded, in which case it displays an appropriate error message.

148 | Chapter 7: Practical PHP

When you write your own file uploading routines, I strongly advise you to use a similar
approach and have prechosen names and locations for uploaded files. That way no
attempts to add path names and other malicious data to the variables you use can get
through. If this means that more than one user could end up having a file uploaded
with the same name, you could prefix such files with their usernames, or save them to
individually created folders for each user.

But if you must use a supplied filename, you should sanitize it by allowing only alpha-
numeric characters and the period, which you can do with the following command,
using a regular expression (see Chapter 17) to perform a search and replace on $name:

$name = ereg_replace("[^A-Za-z0-9.]", "", $name);

This leaves only the characters A–Z, a–z, 0–9 and periods in the string $name, and strips
out everything else.

Even better, to ensure that your program will work on all systems, regardless of whether
they are case-sensitive or case-insensitive, you should probably use the following com-
mand instead, which changes all uppercase characters to lowercase at the same time:

$name = strtolower(ereg_replace("[^A-Za-z0-9.]", "", $name));

Sometimes you may encounter the media type of image/pjpeg, which
indicates a progressive jpeg, but you can safely add this to your code as
an alias of image/jpeg, like this:

case 'image/pjpeg':
case 'image/jpeg': $ext = 'jpg'; break;

System Calls
Sometimes PHP will not have the function you need to perform a certain action, but
the operating system it is running on may. In such cases, you can use the exec system
call to do the job.

For example, to quickly view the contents of the current directory, you can use a pro-
gram such as Example 7-17. If you are on a Windows system, it will run as-is using the
Windows dir command. On Linux, Unix, or Mac OS X, comment out or remove the
first line and uncomment the second to use the ls system command. You may wish to
type this program in, save it as exec.php and call it up in your browser.

Example 7-17. Executing a system command

<?php // exec.php
$cmd = "dir"; // Windows
// $cmd = "ls"; // Linux, Unix & Mac

exec(escapeshellcmd($cmd), $output, $status);

if ($status) echo "Exec command failed";
else

System Calls | 149

{
 echo "<pre>";
 foreach($output as $line) echo "$line\n";
}
?>

Depending on the system you are using, the result of running this program will look
something like this (from a Windows dir command):

Volume in drive C is HP
Volume Serial Number is E67F-EE11

Directory of C:\web

20/01/2011 10:34
 .
 20/01/2011 10:34
 ..
 19/01/2011 16:26 236 maketest.php
 20/01/2011 10:47 198 exec.php
 20/01/2011 08:04 13,741 smiley.jpg
 19/01/2011 18:01 54 test.php
 19/01/2011 16:59 35 testfile.txt
 20/01/2011 09:35 886 upload.php
 6 File(s) 15,150 bytes
 2 Dir(s) 382,907,748,352 bytes free

exec takes three arguments:

1. The command itself (in the previous case, $cmd)

2. An array in which the system will put the output from the command (in the pre-
vious case, $output)

3. A variable to contain the returned status of the call (in the previous case, $status)

If you wish, you can omit the $output and $status parameters, but you will not know
the output created by the call or even whether it completed successfully.

You should also note the use of the escapeshellcmd function. It is a good habit to always
use this when issuing an exec call, because it sanitizes the command string, preventing
the execution of arbitrary commands, should you supply user input to the call.

The system calling functions are typically disabled on shared web hosts
as they pose a security risk. You should always try to solve your prob-
lems within PHP if you can, and go to the system directly only if it is
really necessary. Also, going to the system is relatively slow and you
need to code two implementations if your application is expected to run
on both Windows and Linux/Unix systems.

150 | Chapter 7: Practical PHP

XHTML
I’ve used some elements of XHTML (eXtensible Hypertext Markup Language) already
in this book, although you may not have realized it. For example, instead of the simple
HTML tag
, I’ve been using the XHTML
 version. But what’s the difference
between the two markup languages?

Well, not a lot at first glance, but XHTML improves on HTML by clearing up a lot of
little inconsistencies that make it hard to process. HTML requires quite a complex and
very lenient parser, whereas XHTML, which uses standard syntax more like XML (eX-
tensible Markup Language), is very easily processed with quite a simple parser—a
parser being a piece of code that processes tags and commands and works out what
they mean.

The Benefits of XHTML
XHTML documents can be quickly processed by any program that can handle XML
files. As more and more devices such as iPhones and BlackBerries become web-enabled,
it is increasingly important to ensure that web content looks good on them as well as
on a computer’s web browser. The tighter syntax required by XHTML is a big factor
in helping this cross-platform compatibility.

So what is happening right now is that browser developers, in order to be able to provide
faster and more powerful programs, are trying to push web developers over to using
XHTML, and the time may eventually come when HTML is superseded by XHTML—
so it’s a good idea to start using it now.

XHTML Versions
The XHTML standard is constantly evolving, and there are a few versions in use:

XHTML 1.0
This incorporates the contents from the HTML 4.01 standard but requires the use
of XML syntax.

XHTML 1.1
This version has not been widely adopted, although it is largely compatible with
XHTML 1.0 and HTML 4. A major feature of this version is that CSS is used to
control browser presentation.

XHTML 1.2
This version is only in the proposal stage and is not currently implemented.

XHTML 2.0
This version of XHTML makes a totally clean break from previous versions and
also from HTML 4. Unsurprisingly, there are a tremendous number of changes.

XHTML | 151

Luckily for us, for now XHTML 1.0 is the main version that you need to understand.
And that holds true even if you will be writing to XHTML 2.0 specifications, because
XHTML 1.0 introduces the XML aspects used by all versions.

What’s Different?
The following XHTML rules differentiate it from HTML:

• All tags must be closed by another tag. In cases in which there is no matching
closing tag, the tag must close itself using a space followed by the symbols / and
>. So, for example, a tag such as <input type='submit'> needs to be changed into
<input type='submit' />. In addition, all opening <p> tags now require a closing
</p> tag, too. And no, you can’t replace them with <p />.

• All tags must be correctly nested. Therefore the string My first name is
<i>Robin</i> is not allowed, because the opening has been closed before
the <i>. The corrected version is My first name is <i>Robin</i>.

• All tag attributes must be enclosed in quotation marks. Instead of using tags
such as <form method=post action=post.php> you should instead use
<form method='post' action='post.php'>. You can also use double quotes:
<form method="post" action="post.php">.

• The ampersand (&) character cannot be used on its own. For example, the string
“Batman & Robin” must be replaced with “Batman & Robin”. This means
that URLs require modification, too. So the HTML syntax <a href="index.php?
page=12&item=15"> should be replaced with <a href="index.php?
page=12&item=15">.

• XHTML tags are case-sensitive and must be all in lowercase. Therefore HTML
such as <BODY><DIV ID="heading"> must be changed to the following syntax:
<body><div id="heading">.

• Attributes cannot be minimized any more, so tags such as <option name="bill"
selected> now must be replaced with an assigned value: <option name="bill"
selected="selected">. All other attributes such as checked and disabled also need
to be changed to checked="checked", disabled="disabled", and so on.

• XHTML documents must start with a new XML declaration on the very first line,
like this: <?xml version="1.0" encoding="UTF-8"?>.

• The DOCTYPE declaration has been changed.

• The <html> tag now requires an xmlns attribute.

So let’s take a look at the XHTML 1.0 conforming document in Example 7-18.

Example 7-18. An example XML document

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

152 | Chapter 7: Practical PHP

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
 <head>
 <meta http-equiv="Content-Type"
 content="text/html; charset=utf-8" />
 <title>XHTML 1.0 Document</title>
 </head>
 <body>
 <p>This is an example XHTML 1.0 document</p>
 <h1>This is a heading</h1>
 <p>This is some text</p>
 </body>
</html>

As previously discussed, the document begins with an XML declaration, followed by
the DOCTYPE declaration, and the <html> tag with an xmlns attribute. From there on, it
all looks like straightforward HTML, except that the meta tag is closed properly
with />.

HTML 4.01 Document Types
To tell the browser precisely how to handle a document, use the DOCTYPE declaration,
which defines the syntax that is allowed. HTML 4.01 supports three DTDs (Document
Type Declarations), as can be seen in the following examples.

The strict DTD in Example 7-19 requires complete adherence to HTML 4.01 syntax.

Example 7-19. The HTML 4.01 Strict DTD

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
 "http://www.w3.org/TR/html4/strict.dtd">

The loose DTD in Example 7-20 allows some older elements and deprecated attributes.
(The standards at http://w3.org/TR/xhtml1 explain which items are deprecated.)

Example 7-20. The HTML 4.01 Transitional DTD

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
 "http://www.w3.org/TR/html4/loose.dtd">

Finally, Example 7-21 signifies an HTML 4.01 document containing a frameset.

Example 7-21. The HTML 4.01 Frameset DTD

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Frameset//EN"
 "http://www.w3.org/TR/html4/frameset.dtd">

XHTML 1.0 Document Types
You may well have come across one or more of the HTML document types before.
However, the syntax is slightly changed when it comes to XHTML 1.0, as shown in the
following examples.

XHTML | 153

http://w3.org/TR/xhtml1

The strict DTD in Example 7-22 rules out the use of deprecated attributes and requires
code that is completely correct.

Example 7-22. The XHTML 1.0 Strict DTD

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

The transitional XHTML 1.0 DTD in Example 7-23 allows deprecated attributes and
is the most commonly used DTD.

Example 7-23. The XHTML 1.0 Transitional DTD

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

Example 7-24 shows the only XHTML 1.0 DTD that supports framesets.

Example 7-24. The XHTML 1.0 Frameset DTD

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Frameset//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-frameset.dtd">

XHTML Validation
To validate your XHTML, visit the W3C validation site at http://validator.w3.org,
where you can validate a document by URL, form upload, or by typing it in or copying
and pasting it into a web form. Before you code some PHP to create a web page, submit
a sample of the output that you want to create to the validation site. No matter how
carefully you code your XHTML, you will be surprised how many errors you left in.

Whenever a document is not fully compatible with XHTML, you will be given helpful
messages explaining how you can correct it. Figure 7-3 shows that the document in
Example 7-18 successfully passes the XHTML 1.0 Strict validation test.

You will find that your XHTML 1.0 documents are so close to HTML
that even if they are called up on a browser that is unaware of XHTML,
they should display correctly. The only potential problem is
with the <script> tag. To ensure compatibility, avoid using the
<script src="script.src" /> syntax and replace it with
<script src="script.src"></script>.

This chapter represented another long journey in your task to master PHP. Now that
you have formatting, file handling, XHTML, and a lot of other important concepts
under your belt, the next chapter will introduce you to another major topic, MySQL.

154 | Chapter 7: Practical PHP

http://validator.w3.org

Figure 7-3. The document in Example 7-18, having passed validation

Test Your Knowledge: Questions
Question 7-1

Which printf conversion specifier would you use to display a floating-point
number?

Question 7-2
What printf statement could be used to take the input string “Happy Birthday”
and output the string “**Happy”?

Question 7-3
To send the output from printf to a variable instead of to a browser, what alter-
native function would you use?

Question 7-4
How would you create a Unix timestamp for 7:11am on May 2nd, 2016?

Question 7-5
Which file access mode would you use with fopen to open a file in write and read
mode, with the file truncated and the file pointer at the start?

Test Your Knowledge: Questions | 155

Question 7-6
What is the PHP command for deleting the file file.txt?

Question 7-7
Which PHP function is used to read in an entire file in one go, even from across
the Web?

Question 7-8
Which PHP system variable holds the details on uploaded files?

Question 7-9
Which PHP function enables the running of system commands?

Question 7-10
What is wrong with the following XHTML 1.0 tag: <input type=file name=file
size=10>?

See the section “Chapter 7 Answers” on page 440 in Appendix A for the answers to
these questions.

156 | Chapter 7: Practical PHP

CHAPTER 8

Introduction to MySQL

With well over ten million installations, MySQL is probably the most popular database
management system for web servers. Developed in the mid 1990s, it’s now a mature
technology that powers many of today’s most-visited Internet destinations.

One reason for its success must be the fact that, like PHP, it’s free to use. But it’s also
extremely powerful and exceptionally fast—it can run on even the most basic of hard-
ware, and it hardly puts a dent in system resources.

MySQL is also highly scalable, which means that it can grow with your website. In fact,
in a comparison of several databases by eWEEK, MySQL and Oracle tied for both best
performance and for greatest scalability (http://mysql.com/why-mysql/benchmarks).

MySQL Basics
A database is a structured collection of records or data stored in a computer system
and organized in such a way that it can be quickly searched and information can be
rapidly retrieved.

The SQL in MySQL stands for Structured Query Language. This language is loosely
based on English and is also used on other databases such as Oracle and Microsoft SQL
Server. It is designed to allow simple requests from a database via commands such as:

SELECT title FROM publications WHERE author = 'Charles Dickens';

A MySQL database contains one or more tables, each of which contain records or
rows. Within these rows are various columns or fields that contain the data itself. Ta-
ble 8-1 shows the contents of an example database of five publications detailing the
author, title, type, and year of publication.

157

http://mysql.com/why-mysql/benchmarks

Table 8-1. Example of a simple database

Author Title Type Year

Mark Twain The Adventures of Tom Sawyer Fiction 1876

Jane Austen Pride and Prejudice Fiction 1811

Charles Darwin The Origin of Species Non-fiction 1856

Charles Dickens The Old Curiosity Shop Fiction 1841

William Shakespeare Romeo and Juliet Play 1594

Each row in the table is the same as a row in a MySQL table, and each element within
a row is the same as a MySQL field.

To uniquely identify this database, I’ll refer to it as the publications database in the
examples that follow. And, as you will have observed, all these publications are con-
sidered to be classics of literature, so I’ll call the table within the database that holds
the details classics.

Summary of Database Terms
The main terms you need to acquaint yourself with for now are:

Database
The overall container for a collection of MySQL data.

Table
A subcontainer within a database that stores the actual data.

Row
A single record within a table, which may contain several fields.

Column
The name of a field within a row.

I should note that I’m not trying to reproduce the precise terminology used in academic
literature about relational databases, but just to provide simple, everyday terms to help
you quickly grasp basic concepts and get started with a database.

Accessing MySQL via the Command Line
There are three main ways in which you can interact with MySQL: using a command
line, via a web interface such as phpMyAdmin, and through a programming language
like PHP. We’ll start doing the third of these in Chapter 10, but for now, let’s look at
the first two.

158 | Chapter 8: Introduction to MySQL

Starting the Command-Line Interface
The following sections describe relevant instructions for Windows, Mac OS X, and
Linux.

Windows users

If you installed the EasyPHP WAMP as explained in Chapter 2, you will be able to
access the MySQL executable from the following directory:

\Program Files\EasyPHP 3.0\mysql\bin

If you installed EasyPHP in a place other than \Program Files, you will
need to use that directory instead. Also, if the version of EasyPHP is not
3.0, you will need to change that, too.

By default, the initial MySQL user will be root and will not have had a password set.
Seeing as this is a development server that only you should be able to access, we won’t
worry about creating one yet.

So, to enter MySQL’s command-line interface, select Start→Run and enter CMD into the
Run box, then press Return. This will call up a Windows Command prompt. From
there, enter the following (making any appropriate changes as discussed previously):

"\Program Files\EasyPHP 3.0\mysql\bin\mysql" -u root

Note the quotation marks surrounding the main path and filename.
These are present because the name contains spaces, which the Com-
mand prompt doesn’t correctly interpret, and the quotation marks
group the parts of the filename into a single string for the Command
program to understand.

This command tells MySQL to log you in as user root, without a password. You will
now be logged into MySQL and can start entering commands. So, to be sure everything
is working as it should be, enter the following—the results should be similar to Fig-
ure 8-1:

SHOW databases;

If this has not worked and you get an error such as “Can’t connect to MySQL server
on ‘localhost,’” make sure that you have EasyPHP running in your System Tray and
that MySQL is enabled. Otherwise, you are ready to move on to the next section,
“Using the Command-Line Interface” on page 163.

Accessing MySQL via the Command Line | 159

Mac OS X users

To proceed with this chapter, you should have installed MAMP as detailed in Chap-
ter 2. You should also have MAMP already running with the MySQL server started, as
shown previously in Figure 2-10.

To enter the MySQL command-line interface, start the Terminal program (which
should be available in Finder→Utilities). Then call up the MySQL program, which will
have been installed in the directory /Applications/MAMP/Library/bin.

By default, the initial MySQL user is root and it will have a password of root, too. So,
to start the program, type the following:

/Applications/MAMP/Library/bin/mysql -u root -p

This command tells MySQL to log you in as user root and to request your password.
When prompted, type root, press Return, and you should be set to go. To verify that
all is well, type in the following—Figure 8-2 should be the result:

SHOW databases;

If you receive an error such as “Can’t connect to local MySQL server through socket,”
you haven’t started up MAMP, so locate it in your Applications folder, run it, redo the
commands in Terminal, and everything should be fine.

You should now be ready to move on to the next section, “Using the Command-Line
Interface” on page 163.

Linux users

On a system running a Unix-like operating system such as Linux, you will almost cer-
tainly already have PHP and MySQL installed and running, and you will be able to

Figure 8-1. Accessing MySQL from a Windows Command prompt

160 | Chapter 8: Introduction to MySQL

enter the examples in the next section. But first you should type the following to log in
to your MySQL system:

mysql -u root -p

This tells MySQL to log you in as the user root and to request your password. If you
have a password, enter it; otherwise, just press Return.

Once you are logged in, type the following to test the program—you should see some-
thing like Figure 8-3 in response:

SHOW databases;

If this procedure fails at any point, please refer to the section “Installing a LAMP on
Linux” on page 25 in Chapter 2 to ensure that you have MySQL properly installed.
Otherwise, you should now be ready to move on to the next section, “Using the Com-
mand-Line Interface” on page 163.

MySQL on a remote server

If you are accessing MySQL on a remote server, you should Telnet (or preferably, for
security, use SSH) into the remote machine, which will probably be a Linux/FreeBSD/
Unix type of box. Once in there, things may be a little different for you, depending on
how the system administrator has set the server up, especially if it’s a shared hosting
server. Therefore, you need to ensure that you have been given access to MySQL and

Figure 8-2. Accessing MySQL from the Mac OS X Terminal program

Accessing MySQL via the Command Line | 161

that you have your username and password. Armed with these you can then type the
following, where username is the name supplied:

mysql -u username -p

Enter your password when prompted. You can then try the following command, which
should result in something like the screenshot in Figure 8-3:

SHOW databases;

There may be other databases already created and the test database may not be there.

Bear in mind also that system administrators have ultimate control over everything and
that you can encounter some unexpected setups. For example, you may find that you
are required to preface all database names that you create with a unique identifying
string to ensure that you do not conflict with databases created by other users.

Therefore, if you have any problems, have a word with your sysadmin and he or she
will get you sorted out. Just let the sysadmin know that you need a username and
password. You should also ask for the ability to create new databases or, at a minimum,
to have at least one database created for you ready to use. You can then create all the
tables you require within that database.

Figure 8-3. Accessing MySQL using Linux

162 | Chapter 8: Introduction to MySQL

Using the Command-Line Interface
From here on out, it makes no difference whether you are using Windows, Mac OS X,
or Linux to access MySQL directly, as all the commands used (and errors you may
receive) are identical.

The semicolon

Let’s start with the basics. Did you notice the semicolon (;) at the end of the SHOW
databases; command that you typed? The semicolon is used by MySQL to separate or
end commands. If you forget to enter it, MySQL will issue a prompt and wait for you
to do so. The required semicolon was made part of the syntax to let you enter multiple-
line commands, which can be convenient, because some commands get quite long. It
also allows you to issue more than one command at a time by placing a semicolon after
each one. The interpreter gets them all in a batch when you press the Return key and
executes them in order.

It’s very common to receive a MySQL prompt instead of the results of
your command; it means that you forgot the final semicolon. Just enter
the semicolon, press the Return key, and you’ll get what you want.

There are six different prompts that MySQL may present you with (see Table 8-2), so
you will always know where you are during a multiline input.

Table 8-2. MySQL’s six command prompts

MySQL prompt Meaning

mysql> MySQL is ready and waiting for a command

-> Waiting for the next line of a command

'> Waiting for the next line of a string started with a single quote

"> Waiting for the next line of a string started with a double quote

`> Waiting for the next line of a string started with a back tick

/*> Waiting for the next line of a comment started with /*

Canceling a command

If you are partway through entering a command and decide you don’t wish to execute
it after all, whatever you do don’t press Ctrl-C! That will close the program. Instead,
you can enter \c and press Return. Example 8-1 shows how to use it.

Example 8-1. Canceling a line of input

meaningless gibberish to mysql \c

Accessing MySQL via the Command Line | 163

When you type that line in, MySQL will ignore everything you typed and issue a new
prompt. Without the \c, it would have displayed an error message. Be careful, though:
if you have opened a string or comment, close it first before using the \c or MySQL will
think the \c is just part of the string. Example 8-2 shows the right way to do this.

Example 8-2. Canceling input from inside a string

this is "meaningless gibberish to mysql" \c

Also note that using \c after a semicolon will not work, as it is then a new statement.

MySQL Commands
You’ve already seen the SHOW command, which lists tables, databases, and many other
items. The commands you’ll use most often are listed in Table 8-3.

Table 8-3. A selection of common MySQL commands (and/or shorthand forms where available)

Command Parameter(s) Meaning

ALTER DATABASE, TABLE Alter DATABASE or TABLE

BACKUP TABLE Back up TABLE

\c Cancel input

CREATE DATABASE, TABLE, Create DATABASE or TABLE

DELETE (expression with TABLE & ROW) Delete ROW from TABLE

DESCRIBE TABLE Describe the TABLE'S columns

DROP DATABASE,TABLE Delete DATABASE or TABLE

EXIT (CTRL-C) Exit

GRANT (user details) Change user privileges

HELP (\h, \?) item Display help on item

INSERT (expression with data) Insert data

LOCK TABLE(s) Lock TABLE(s)

QUIT (\q) Same as EXIT

RENAME TABLE Rename TABLE

SHOW (too many items to list) List item’s details

SOURCE filename Execute commands from filename

STATUS (\s) Display current status

TRUNCATE TABLE Empty TABLE

UNLOCK table(s) Unlock TABLE(s)

UPDATE (expression with data) Update an existing record

USE database Use database

164 | Chapter 8: Introduction to MySQL

I’ll cover most of these as we proceed, but first, you need to remember a couple of
points about MySQL commands:

• SQL commands and keywords are case-insensitive. CREATE, create, and CrEaTe all
mean the same thing. However, for the sake of clarity, the recommended style is
to use uppercase.

• Table names are case-sensitive on Linux and Mac OS X, but case-insensitive on
Windows. So for portability purposes, you should always choose a case and stick
to it. The recommended style is to use lowercase for tables.

Creating a database

If you are working on a remote server and have only a single user account and access
to a single database that was created for you, move on to the section “Creating a ta-
ble” on page 166. Otherwise, get the ball rolling by issuing the following command to
create a new database called publications:

CREATE DATABASE publications;

A successful command will return a message that doesn’t mean much yet—“Query
OK, 1 row affected (0.00 sec)”—but will make sense soon. Now that you’ve created
the database, you want to work with it, so issue:

USE publications;

You should now see the message Database changed and will then be set to proceed with
the following examples.

Creating users

Now that you’ve seen how easy it is to use MySQL, and created your first database, it’s
time to look at how you create users, as you probably won’t want to grant your PHP
scripts root access to MySQL—it could cause a real headache should you get hacked.

To create a user, issue the GRANT command, which takes the following form (don’t type
this in—it’s not an actual working command):

GRANT PRIVILEGES ON database.object TO 'username@hostname'
 IDENTIFIED BY 'password';

This should be pretty straightforward, with the possible exception of the
database.object part. What this refers to is the database itself and the objects it con-
tains, such as tables (see Table 8-4).

Table 8-4. Example parameters for the GRANT command

Arguments Meaning

. All databases and all their objects

database.* Only the database called database and all its objects

database.object Only the database called database and its object called object

Accessing MySQL via the Command Line | 165

So let’s create a user who can access just the new publications database and all its
objects, by entering the following (replacing the username jim and the password
mypasswd with ones of your choosing):

GRANT ALL ON publications.* TO 'jim' IDENTIFIED BY 'mypasswd';

What this does is allow the user jim@localhost full access to the publications database
using the password mypasswd. You can test whether this step has worked by entering
quit to exit and then rerunning MySQL the way you did before, but instead of entering -
u root -p, type -u jim -p, or whatever the username is that you created. See Ta-
ble 8-5 for the correct command for your operating system. Modify it as necessary if
the mysql client is installed in a different directory on your system.

Table 8-5. Starting MySQL and logging in as jim@localhost

OS Example command

Windows "\Program Files\EasyPHP 3.0\mysql\bin\mysql" -u jim -p

Mac OS X /Applications/MAMP/Library/bin/mysql -u jim -p

Linux mysql -u jim -p

All you now have to do is enter your password when prompted and you will be logged
in. By the way, if you prefer, you can place your password immediately following the
-p (without any spaces) to avoid having to enter it when prompted. But this is consid-
ered a poor practice, because if other people are logged in to your system, there may
be ways for them to look at the command you entered and find out your password.

You can grant only privileges that you already have, and you must also
have the privilege to issue GRANT commands. There are a whole range of
privileges you can choose to grant if you are not granting all privileges.
For further details, please visit the following site, which also covers the
REVOKE command, which can remove privileges once granted: http://dev
.mysql.com/doc/refman/5.0/en/grant.html.

You also need to be aware that if you create a new user but do not specify
an IDENTIFIED BY clause, the user will have no password, a situation that
is very insecure and should be avoided.

Creating a table

At this point, you should now be logged into MySQL with ALL privileges granted for
the database publications (or a database that was created for you)—you’re ready to
create your first table. So make sure that database is in use by typing the following
(replacing publications with the name of your database if it is different):

USE publications;

166 | Chapter 8: Introduction to MySQL

http://dev.mysql.com/doc/refman/5.0/en/grant.html
http://dev.mysql.com/doc/refman/5.0/en/grant.html

Now enter the commands in Example 8-3 one line at a time:

Example 8-3. Creating a table called classics

CREATE TABLE classics (
 author VARCHAR(128),
 title VARCHAR(128),
 type VARCHAR(16),
 year CHAR(4)) ENGINE MyISAM;

You could also issue this command on a single line like this:

CREATE TABLE classics (author VARCHAR(128), title
 VARCHAR(128), type VARCHAR(16), year CHAR(4)) ENGINE MyISAM;

but MySQL commands can be long and complicated, so I recommend
a single line at a time until you are comfortable with longer ones.

MySQL should then issue the response “Query OK, 0 rows affected,” along with how
long it took to execute the command. If you see an error message instead, check your
syntax carefully. Every parenthesis and comma counts, and typing errors are easy to
make. In case you are wondering, the ENGINE MyISAM tells MySQL the type of database
engine to use for this table.

To check whether your new table has been created, type:

DESCRIBE classics;

All being well, you will see the sequence of commands and responses shown in Exam-
ple 8-4, where you should particularly note the table format displayed.

Example 8-4. A MySQL session: Creating and checking a new table

mysql> USE publications;
Database changed
mysql> CREATE TABLE classics (
 -> author VARCHAR(128),
 -> title VARCHAR(128),
 -> type VARCHAR(16),
 -> year CHAR(4)) ENGINE MyISAM;
Query OK, 0 rows affected (0.03 sec)

mysql> DESCRIBE classics;
+--------+--------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+--------+--------------+------+-----+---------+-------+
author	varchar(128)	YES		NULL	
title	varchar(128)	YES		NULL	
type	varchar(16)	YES		NULL	
year	char(4)	YES		NULL	
+--------+--------------+------+-----+---------+-------+
4 rows in set (0.00 sec)

Accessing MySQL via the Command Line | 167

The DESCRIBE command is an invaluable debugging aid when you need to ensure that
you have correctly created a MySQL table. You can also use it to remind yourself about
a table’s field or column names and the types of data in each one. Let’s look at each of
the headings in detail:

Field
The name of each field or column within a table.

Type
The type of data being stored in the field.

Null
Whether a field is allowed to contain a value of NULL.

Key
MySQL supports keys or indexes, which are quick ways to look up and search for
data. The Key heading shows what type of key (if any) has been applied.

Default
The default value that will be assigned to the field if no value is specified when a
new row is created.

Extra
Additional information, such as whether a field is set to auto-increment.

Data Types
In Example 8-3, you may have noticed that three of the table’s fields were given the
data type of VARCHAR, and one was given the type CHAR. The term VARCHAR stands for
VARiable length CHARacter string and the command takes a numeric value that tells
MySQL the maximum length allowed to a string stored in this field.

This data type is very useful, as MySQL can then plan the size of databases and perform
lookups and searches more easily. The downside is that if you ever attempt to assign a
string value longer than the length allowed, it will be truncated to the maximum length
declared in the table definition.

The year field, however, has more predictable values, so instead of VARCHAR we use the
more efficient CHAR(4) data type. The parameter of 4 allows for four bytes of data,
supporting all years from −999 to 9999. You could, of course, just store two-digit values
for the year, but if your data is going to still be needed in the following century, or may
otherwise wrap around, it will have to be sanitized first—much like the “millennium
bug” that would have caused dates beginning on January 1, 2000, to be treated as 1900
on many of the world’s biggest computer installations.

168 | Chapter 8: Introduction to MySQL

The reason I didn’t use the YEAR data type in the classics table is because
it supports only the years 0000 and 1901 through 2155. This is because
MySQL stores the year in a single byte for reasons of efficiency, but it
also means that only 256 years are available, and the publication years
of the titles in the classics table are well before this.

Both CHAR and VARCHAR accept text strings and impose a limit on the size of the field.
The difference is that every string in a CHAR field has the specified size. If you put in a
smaller string, it is padded with spaces. A VARCHAR field does not pad the text; it lets the
size of the field vary to fit the text that is inserted. But VARCHAR requires a small amount
of overhead to keep track of the size of each value. So CHAR is slightly more efficient if
the sizes are similar in all records, whereas VARCHAR is more efficient if sizes can vary a
lot and get large. In addition, the overhead causes access to VARCHAR data to be slightly
slower than to CHAR data.

The CHAR data type

Table 8-6 lists the CHAR data types. All these types offer a parameter that sets the max-
imum (or exact) length of the string allowed in the field. As the table shows, each type
also has a built-in maximum.

Table 8-6. MySQL’s CHAR data types

Data type Bytes used Examples

CHAR(n) Exactly n (<= 255) CHAR(5) “Hello” uses 5 bytes

CHAR(57) “New York” uses 57 bytes

VARCHAR(n) Up to n (<= 65535) VARCHAR(100) “Greetings” uses 9 bytes

VARCHAR(7) “Morning” uses 7 bytes

The BINARY data type

The BINARY data type is used for storing strings of full bytes that do not have an asso-
ciated character set. For example, you might use the BINARY data type to store a GIF
image (see Table 8-7).

Table 8-7. MySQL’s BINARY data types

Data type Bytes used Examples

BINARY(n) or BYTE(n) Exactly n (<= 255) As CHAR but contains binary data

VARBINARY(n) Up to n (<= 65535) As VARCHAR but contains binary data

Accessing MySQL via the Command Line | 169

The TEXT and VARCHAR data types

The differences between TEXT and VARCHAR are small:

• Prior to version 5.0.3, MySQL would remove leading and trailing spaces from
VARCHAR fields.

• TEXT fields cannot have default values.

• MySQL indexes only the first n characters of a TEXT column (you specify n when
you create the index).

What this means is that VARCHAR is the better and faster data type to use if you need to
search the entire contents of a field. If you will never search more than a certain number
of leading characters in a field, you should probably use a TEXT data type (see Table 8-8).

Table 8-8. MySQL’s TEXT data types

Data type Bytes used Attributes

TINYTEXT(n) Up to n (<= 255) Treated as a string with a character set

TEXT(n) Up to n (<= 65535) Treated as a string with a character set

MEDIUMTEXT(n) Up to n (<= 16777215) Treated as a string with a character set

LONGTEXT(n) Up to n (<= 4294967295) Treated as a string with a character set

The BLOB data type

The term BLOB stands for Binary Large OBject and therefore, as you would think, the
BLOB data type is most useful for binary data in excess of 65,536 bytes in size. The main
other difference between the BLOB and BINARY data types is that BLOBs cannot have default
values (see Table 8-9).

Table 8-9. MySQL’s BLOB data types

Data type Bytes used Attributes

TINYBLOB(n) Up to n (<= 255) Treated as binary data—no character set

BLOB(n) Up to n (<= 65535) Treated as binary data—no character set

MEDIUMBLOB(n) Up to n (<= 16777215) Treated as binary data—no character set

LONGBLOB(n) Up to n (<= 4294967295) Treated as binary data—no character set

Numeric data types

MySQL supports various numeric data types from a single byte up to double-precision
floating-point numbers. Although the most memory that a numeric field can use up is
eight bytes, you are well advised to choose the smallest data type that will adequately
handle the largest value you expect. Your databases will be small and quickly accessible.

Table 8-10 lists the numeric data types supported by MySQL and the ranges of values
they can contain. In case you are not acquainted with the terms, a signed number is

170 | Chapter 8: Introduction to MySQL

one with a possible range from a negative value, through zero, to a positive one, and
an unsigned one has a value ranging from zero to a positive one. They can both hold
the same number of values—just picture a signed number as being shifted halfway to
the left so that half its values are negative and half are positive. Note that floating-point
values (of any precision) may only be signed.

Table 8-10. MySQL’s numeric data types

Data type Bytes used Minimum value (Signed/Unsigned) Maximum value (Signed/Unsigned)

TINYINT 1 −128

0

127

255

SMALLINT 2 −32768

0

32767

65535

MEDIUMINT 3 −8388608

0

8388607

16777215

INT or INTEGER 4 −2147483648

0

2147483647

4294967295

BIGINT 8 −9223372036854775808

0

9223372036854775807

18446744073709551615

FLOAT 4 −3.402823466E+38

(no unsigned)

3.402823466E+38

(no unsigned)

DOUBLE or REAL 8 −1.7976931348623157E+308

(no unsigned)

1.7976931348623157E+308

(no unsigned)

To specify whether a data type is signed or unsigned, use the UNSIGNED qualifier. The
following example creates a table called tablename with a field in it called fieldname of
the data type UNSIGNED INTEGER:

CREATE TABLE tablename (fieldname INT UNSIGNED);

When creating a numeric field, you can also pass an optional number as a parameter,
like this:

CREATE TABLE tablename (fieldname INT(4));

But you must remember that, unlike BINARY and CHAR data types, this parameter does
not indicate the number of bytes of storage to use. It may seem counterintuitive, but
what the number actually represents is the display width of the data in the field when
it is retrieved. It is commonly used with the ZEROFILL qualifier like this:

CREATE TABLE tablename (fieldname INT(4) ZEROFILL);

What this does is cause any numbers with a width of less than four characters to be
padded with one or more zeros, sufficient to make the display width of the field four

Accessing MySQL via the Command Line | 171

characters long. When a field is already of the specified width or greater no padding
takes place.

DATE and TIME

The main remaining data types supported by MySQL relate to the date and time and
can be seen in Table 8-11.

Table 8-11. MySQL’s DATE and TIME data types

Data type Time/date format

DATETIME '0000-00-00 00:00:00'

DATE '0000-00-00'

TIMESTAMP '0000-00-00 00:00:00'

TIME '00:00:00'

YEAR 0000 (Only years 0000 and 1901–2155)

The DATETIME and TIMESTAMP data types display the same way. The main difference is
that TIMESTAMP has a very narrow range (from the years 1970 through 2037), whereas
DATETIME will hold just about any date you’re likely to specify, unless you’re interested
in ancient history or science fiction.

TIMESTAMP is useful, however, because you can let MySQL set the value for you. If you
don’t specify the value when adding a row, the current time is automatically inserted.
You can also have MySQL update a TIMESTAMP column each time you change a row.

The AUTO_INCREMENT data type

Sometimes you need to ensure that every row in your database is guaranteed to be
unique. You could do this in your program by carefully checking the data you enter
and making sure that there is at least one value that differs in any two rows, but this
approach is error-prone and works only in certain circumstances. In the classics table,
for instance, an author may appear multiple times. Likewise, the year of publication
will also be frequently duplicated, and so on. It would be hard to guarantee that you
have no duplicate rows.

The general solution is to use an extra column just for this purpose. In a while, we’ll
look at using a publication’s ISBN (International Standard Book Number), but first I’d
like to introduce the AUTO_INCREMENT data type.

As its name implies, a column given this data type will set the value of its contents to
that of the column entry in the previously inserted row, plus 1. Example 8-5 shows how
to add a new column called id to the table classics with auto-incrementing:

Example 8-5. Adding the auto-incrementing column id

ALTER TABLE classics ADD id INT UNSIGNED NOT NULL AUTO_INCREMENT KEY;

172 | Chapter 8: Introduction to MySQL

This is your introduction to the ALTER command, which is very similar to CREATE.
ALTER operates on an existing table, and can add, change, or delete columns. Our ex-
ample adds a column named id with the following characteristics:

INT UNSIGNED
Makes the column take an integer large enough for you to store more than 4 billion
records in the table.

NOT NULL
Ensures that every column has a value. Many programmers use NULL in a field to
indicate that the field doesn’t have any value. But that would allow duplicates,
which would violate the whole reason for this column’s existence. So we disallow
NULL values.

AUTO_INCREMENT
Causes MySQL to set a unique value for this column in every row, as described
earlier. We don’t really have control over the value that this column will take in
each row, but we don’t care: all we care about is that we are guaranteed a unique
value.

KEY
An auto-increment column is useful as a key, because you will tend to search
for rows based on this column. This will be explained in the section “In-
dexes” on page 177.

Each entry in the column id will now have a unique number, with the first starting at
1 and the others counting upward from there. And whenever a new row is inserted, its
id column will automatically be given the next number in sequence.

Rather than applying the column retroactively, you could have included it by issuing
the CREATE command in slightly different format. In that case, the command in Exam-
ple 8-3 would be replaced with Example 8-6. Check the final line in particular.

Example 8-6. Adding the auto-incrementing id column at table creation

CREATE TABLE classics (
 author VARCHAR(128),
 title VARCHAR(128),
 type VARCHAR(16),
 year CHAR(4),
 id INT UNSIGNED NOT NULL AUTO_INCREMENT KEY) ENGINE MyISAM;

If you wish to check whether the column has been added, use the following command
to view the table’s columns and data types:

DESCRIBE classics;

Now that we’ve finished with it, the id column is no longer needed, so if you created it
using Example 8-5, you should now remove the column using the command in Exam-
ple 8-7.

Accessing MySQL via the Command Line | 173

Example 8-7. Removing id column

ALTER TABLE classics DROP id;

Adding data to a table

To add data to a table, use the INSERT command. Let’s see this in action by populating
the table classics with the data from Table 8-1, using one form of the INSERT command
repeatedly (Example 8-8).

Example 8-8. Populating the classics table

INSERT INTO classics(author, title, type, year)
 VALUES('Mark Twain','The Adventures of Tom Sawyer','Fiction','1876');
INSERT INTO classics(author, title, type, year)
 VALUES('Jane Austen','Pride and Prejudice','Fiction','1811');
INSERT INTO classics(author, title, type, year)
 VALUES('Charles Darwin','The Origin of Species','Non-Fiction','1856');
INSERT INTO classics(author, title, type, year)
 VALUES('Charles Dickens','The Old Curiosity Shop','Fiction','1841');
INSERT INTO classics(author, title, type, year)
 VALUES('William Shakespeare','Romeo and Juliet','Play','1594');

After every second line, you should see a “Query OK” message. Once all lines have
been entered, type the following command, which will display the table’s contents. The
result should look like Figure 8-4:

SELECT * FROM classics;

Don’t worry about the SELECT command for now—we’ll come to it in the upcoming
section “Querying a MySQL Database” on page 183. Suffice it to say that as typed, it
will display all the data you just entered.

Figure 8-4. Populating the classics table and viewing its contents

174 | Chapter 8: Introduction to MySQL

Let’s go back and look at how we used the INSERT command. The first part, INSERT INTO
classics, tells MySQL where to insert the following data. Then, within parentheses,
the four column names are listed—author, title, type, and year—all separated by com-
mas. This tells MySQL that these are the fields into which the data is to be inserted.

The second line of each INSERT command contains the keyword VALUES followed by
four strings within parentheses, and separated by commas. This supplies MySQL with
the four values to be inserted into the four columns previously specified. (As always,
my choice of where to break the lines was arbitrary.)

Each item of data will be inserted into the corresponding column, in a one-to-one
correspondence. If you accidentally listed the columns in a different order from the
data, the data would go into the wrong columns. And the number of columns must
match the number of data items.

Renaming a table

Renaming a table, like any other change to the structure or meta-information about a
table, is achieved via the ALTER command. So, for example, to change the name of table
classics to pre1900, use the following command:

ALTER TABLE classics RENAME pre1900;

If you tried that command, you should rename the table back again by entering the
following, so that later examples in this chapter will work as printed:

ALTER TABLE pre1900 RENAME classics;

Changing the data type of a column

Changing a column’s data type also makes use of the ALTER command, this time in
conjunction with the MODIFY keyword. So to change the data type of column year from
CHAR(4) to SMALLINT (which requires only two bytes of storage and so will save disk
space), enter the following:

ALTER TABLE classics MODIFY year SMALLINT;

When you do this, if the conversion of data type makes sense to MySQL, it will auto-
matically change the data while keeping the meaning. In this case, it will change each
string to a comparable integer, and so on, as the string is recognizable as referring to
an integer.

Adding a new column

Let’s suppose that you have created a table and populated it with plenty of data, only
to discover you need an additional column. Not to worry. Here’s how to add the new
column pages, which will be used to store the number of pages in a publication:

ALTER TABLE classics ADD pages SMALLINT UNSIGNED;

Accessing MySQL via the Command Line | 175

This adds the new column with the name pages using the UNSIGNED SMALLINT data type,
sufficient to hold a value of up to 65,535—hopefully that’s more than enough for any
book ever published!

And, if you ask MySQL to describe the updated table using the DESCRIBE command, as
follows, you will see the change has been made (see Figure 8-5):

DESCRIBE classics;

Renaming a column

Looking again at Figure 8-5, you may decide that having a column named type can be
confusing, because that is the name used by MySQL to identify data types. Again, no
problem—let’s change its name to category, like this:

ALTER TABLE classics CHANGE type category VARCHAR(16);

Note the addition of VARCHAR(16) on the end of this command. That’s because the
CHANGE keyword requires the data type to be specified, even if you don’t intend to change
it, and VARCHAR(16) was the data type specified when that column was initially created
as type.

Removing a column

Actually, upon reflection, maybe the page count column pages isn’t actually all that
useful for this particular database, so here’s how to remove that column using the
DROP keyword:

ALTER TABLE classics DROP pages;

Figure 8-5. Adding the new pages column and viewing the table

176 | Chapter 8: Introduction to MySQL

Remember that DROP is irreversible and you should always use it with
caution, because you could delete entire tables (and even databases)
with it if you are not careful!

Deleting a table

Deleting a table is very easy indeed. But, because I don’t want you to have to reenter
all the data for the classics table, let’s quickly create a new table, verify its existence,
and then delete it by typing in the commands in Example 8-9. The result of these four
commands should look like Figure 8-6.

Example 8-9. Creating, viewing, and deleting a table

CREATE TABLE disposable(trash INT);
DESCRIBE disposable;
DROP TABLE disposable;
SHOW tables;

Indexes
As things stand, the table classics works and can be searched without problem by
MySQL—until it grows to more than a couple hundred rows, that is. At that point,
database accesses will get slower and slower with every new row added, because
MySQL has to search through every row whenever a query is issued. This is like search-
ing through every book in a library whenever you need to look something up.

Of course, you don’t have to search libraries that way, because they have either a card
index system or, most likely, a database of their own. And the same goes for MySQL,

Figure 8-6. Creating, viewing, and deleting a table

Indexes | 177

because at the expense of a slight overhead in memory and disk space, you can create
a “card index” for a table that MySQL will use to conduct lightning-fast searches.

Creating an Index
The way to achieve fast searches is to add an index, either when creating a table or at
any time afterward. But the decision is not so simple. For example, there are different
index types, such as INDEX, PRIMARY KEY, and FULLTEXT. Also you must decide which
columns require an index, a judgment that requires you to predict whether you will be
searching any of the data in that column. Indexes can also get complicated, because
you can combine multiple columns in one index. And even when you’ve decided that,
you still have the option of reducing index size by limiting the amount of each column
to be indexed.

If we imagine the searches that may be made on the classics table, it becomes apparent
that all of the columns may need to be searched. However, if the pages column created
in the earlier section (“Adding a new column” on page 175) had not been deleted, it
would probably not have needed an index, as most people would be unlikely to search
for books by the number of pages they have. Anyway, go ahead and add an index to
each of the columns, using the commands in Example 8-10.

Example 8-10. Adding indexes to the classics table

ALTER TABLE classics ADD INDEX(author(20));
ALTER TABLE classics ADD INDEX(title(20));
ALTER TABLE classics ADD INDEX(category(4));
ALTER TABLE classics ADD INDEX(year);
DESCRIBE classics;

The first two commands create indexes on both the author and title columns, limiting
each index to only the first 20 characters. For instance, when MySQL indexes the fol-
lowing title:

The Adventures of Tom Sawyer

It will actually store in the index only the first 20 characters:

The Adventures of To

This is done to minimize the size of the index, and to optimize database access speed.
I chose 20 because it’s likely to be sufficient to ensure uniqueness for most strings in
these columns. If MySQL finds two indexes with the same contents, it will have to
waste time going to the table itself and checking the column that was indexed to find
out which rows really matched.

With the category column, currently only the first character is required to identify a
string as unique (F for Fiction, N for Non-Fiction, and P for Play), but I chose an index
of four characters to allow for future category types that may be unique only after four
characters. You can also reindex this column later, when you have a more complete set

178 | Chapter 8: Introduction to MySQL

of categories. And finally, I set no limit to the year column’s index, because it’s an
integer, not a string.

The results of issuing these commands (and a DESCRIBE command to confirm that they
worked) can be seen in Figure 8-7, which shows the key MUL for each column. This
key means that multiple occurrences of a value may occur within that column, which
is exactly what we want, as authors may appear many times, the same book title could
be used by multiple authors, and so on.

Using CREATE INDEX

An alternative to using ALTER TABLE to add an index is to use the CREATE INDEX command.
They are equivalent, except that CREATE INDEX cannot be used to create a PRIMARY KEY
(see the section “Primary keys” on page 180). The format of this command can be seen
in the second line of Example 8-11.

Example 8-11. These two commands are equivalent

ALTER TABLE classics ADD INDEX(author(20));
CREATE INDEX author ON classics (author(20));

Adding indexes when creating tables

You don’t have to wait until after creating a table to add indexes. In fact, doing so can
be time-consuming, as adding an index to a large table can take a very long time.
Therefore, let’s look at a command that creates the table classics with indexes already
in place.

Figure 8-7. Adding indexes to the classics table

Indexes | 179

Example 8-12 is a reworking of Example 8-3 in which the indexes are created at the
same time as the table. Note that to incorporate the modifications made in this chapter,
this version uses the new column name category instead of type and sets the data type
of year to SMALLINT instead of CHAR(4). If you want to try it out without first deleting
your current classics table, change the word classics in line one to something else like
classics1, then drop classics1 after you have finished with it.

Example 8-12. Creating the table classics with indexes

CREATE TABLE classics (
 author VARCHAR(128),
 title VARCHAR(128),
 category VARCHAR(16),
 year SMALLINT,
 INDEX(author(20)),
 INDEX(title(20)),
 INDEX(category(4)),
 INDEX(year)) ENGINE MyISAM;

Primary keys

So far you’ve created the table classics and ensured that MySQL can search it quickly
by adding indexes, but there’s still something missing. All the publications in the table
can be searched, but there is no single unique key for each publication to enable instant
accessing of a row. The importance of having a key with a unique value for each row
will come up when we start to combine data from different tables.

The earlier section “The AUTO_INCREMENT data type” on page 172 briefly intro-
duced the idea of a primary key when creating the auto incrementing column id, which
could have been used as a primary key for this table. However, I wanted to reserve that
task for a more appropriate column: the internationally recognized ISBN number.

So let’s go ahead and create a new column for this key. Now, bearing in mind that ISBN
numbers are 13 characters long, you might think that the following command would
do the job:

ALTER TABLE classics ADD isbn CHAR(13) PRIMARY KEY;

But it doesn’t. If you try it, you’ll get the error “Duplicate entry” for key 1. The reason
is that the table is already populated with some data and this command is trying to add
a column with the value NULL to each row, which is not allowed, as all columns using
a primary key index must be unique. However, if there were no data already in the
table, this command would work just fine, as would adding the primary key index upon
table creation.

In our current situation, we have to be a bit sneaky and create the new column without
an index, populate it with data, and then add the index retrospectively using the com-
mands in Example 8-13. Luckily, each of the years is unique in the current set of data,
so we can use the year column to identify each row for updating. Note that this example

180 | Chapter 8: Introduction to MySQL

uses the UPDATE and WHERE keywords, which are explained in more detail in the upcoming
section “Querying a MySQL Database” on page 183.

Example 8-13. Populating the isbn column with data and using a primary key

ALTER TABLE classics ADD isbn CHAR(13);
UPDATE classics SET isbn='9781598184891' WHERE year='1876';
UPDATE classics SET isbn='9780582506206' WHERE year='1811';
UPDATE classics SET isbn='9780517123201' WHERE year='1856';
UPDATE classics SET isbn='9780099533474' WHERE year='1841';
UPDATE classics SET isbn='9780192814968' WHERE year='1594';
ALTER TABLE classics ADD PRIMARY KEY(isbn);
DESCRIBE classics;

Once you have typed in these commands, the results should look like the screenshot
in Figure 8-8. Note that the keywords PRIMARY KEY replace the keyword INDEX in the
ALTER TABLE syntax (compare Examples 8-10 and 8-13).

To have created a primary key when the table classics was created, you could have used
the commands in Example 8-14. Again, rename classics in line 1 to something else if
you wish to try this example for yourself, and then delete the test table afterward.

Example 8-14. Creating the classics table with indexes

CREATE TABLE classics (
 author VARCHAR(128),
 title VARCHAR(128),
 category VARCHAR(16),
 year SMALLINT,
 isbn CHAR(13),
 INDEX(author(20)),
 INDEX(title(20)),
 INDEX(category(4)),

Figure 8-8. Retrospectively adding a primary key to the classics table

Indexes | 181

 INDEX(year),
 PRIMARY KEY (isbn)) ENGINE MyISAM;

Creating a FULLTEXT index

Unlike a regular index, MySQL’s FULLTEXT allows super-fast searches of entire columns
of text. What it does is it stores every word in every data string in a special index that
you can search using “natural language,” in a similar manner to using a search engine.

Actually, it’s not strictly true that MySQL stores all the words in a
FULLTEXT index, because it has a built-in list of more than 500 words that
it chooses to ignore because they are so common that they aren’t very
helpful when searching anyway. This list, called stopwords, includes the,
as, is, of, and so on. The list helps MySQL run much more quickly when
performing a FULLTEXT search and keeps database sizes down. Appen-
dix C contains the full list of stopwords.

Here are some things that you should know about FULLTEXT indexes:

• FULLTEXT indexes can be used only with MyISAM tables, the type used by MySQL’s
default storage engine (MySQL supports at least 10 different storage engines). If
you need to convert a table to MyISAM, you can usually use the MySQL command:
ALTER TABLE tablename ENGINE = MyISAM;.

• FULLTEXT indexes can be created for CHAR, VARCHAR, and TEXT columns only.

• A FULLTEXT index definition can be given in the CREATE TABLE statement when a
table is created, or added later using ALTER TABLE (or CREATE INDEX).

• For large data sets, it is much faster to load your data into a table that has no
FULLTEXT index and then create the index than to load data into a table that has an
existing FULLTEXT index.

To create a FULLTEXT index, apply it to one or more records as in Example 8-15, which
adds a FULLTEXT index to the pair of columns author and title in the table classics (this
index is in addition to the ones already created and does not affect them).

Example 8-15. Adding a FULLTEXT index to the classics table

ALTER TABLE classics ADD FULLTEXT(author,title);

You can now perform FULLTEXT searches across this pair of columns. This feature could
really come into its own if you could now add the entire text of these publications to
the database (particularly as they’re out of copyright protection) and they would be
fully searchable. See the section “MATCH...AGAINST” on page 188 for a description
of searches using FULLTEXT.

182 | Chapter 8: Introduction to MySQL

If you find that MySQL is running slower than you think it should be
when accessing your database, the problem is usually related to your
indexes. Either you don’t have an index where you need one, or the
indexes are not optimally designed. Tweaking a table’s indexes will of-
ten solve such a problem. Performance is beyond the scope of this book,
but in Chapter 9 I’ll give you a few tips so you know what to look for.

Querying a MySQL Database
So far we’ve created a MySQL database and tables, populated them with data, and
added indexes to make them fast to search. Now it’s time to look at how these searches
are performed, and the various commands and qualifiers available.

SELECT

As you saw in Figure 8-4, the SELECT command is used to extract data from a table. In
that section, I used its simplest form to select all data and display it—something you
will never want to do on anything but the smallest tables, because all the data will scroll
by at an unreadable pace. Let’s now examine SELECT in more detail.

The basic syntax is:

SELECT something FROM tablename;

The something can be an * (asterisk) as you saw before, which means “every column,”
or you can choose to select only certain columns. For instance, Example 8-16 shows
how to select just the author and title and just the title and isbn. The result of typing
these commands can be seen in Figure 8-9.

Example 8-16. Two different SELECT statements

SELECT author,title FROM classics;
SELECT title,isbn FROM classics;

SELECT COUNT

Another replacement for the something parameter is COUNT, which can be used in many
ways. In Example 8-17, it displays the number of rows in the table by passing * as a
parameter, which means “all rows.” As you’d expect, the result returned is 5, as there
are five publications in the table.

Example 8-17. Counting rows

SELECT COUNT(*) FROM classics;

Indexes | 183

SELECT DISTINCT

This qualifier (and its synonym DISTINCTROW) allows you to weed out multiple entries
when they contain the same data. For instance, suppose that you want a list of all
authors in the table. If you select just the author column from a table containing mul-
tiple books by the same author, you’ll normally see a long list with the same author
names over and over. But by adding the DISTINCT keyword, you can show each author
just once. So let’s test that out by adding another row that repeats one of our existing
authors (Example 8-18).

Example 8-18. Duplicating data

INSERT INTO classics(author, title, category, year, isbn)
VALUES('Charles Dickens','Little Dorrit','Fiction','1857','9780141439969');

Now that Charles Dickens appears twice in the table, we can compare the results of
using SELECT with and without the DISTINCT qualifier. Example 8-19 and Figure 8-10
show that the simple SELECT lists Dickens twice, and the command with the DISTINCT
qualifier shows him only once.

Example 8-19. With and without the DISTINCT qualifier

SELECT author FROM classics;
SELECT DISTINCT author FROM classics;

DELETE

When you need to remove a row from a table, use the DELETE command. Its syntax is
similar to the SELECT command and allows you to narrow down the exact row or rows
to delete using qualifiers such as WHERE and LIMIT.

Figure 8-9. The output from two different SELECT statements

184 | Chapter 8: Introduction to MySQL

Now that you’ve seen the effects of the DISTINCT qualifier, if you typed in Exam-
ple 8-18, you should remove Little Dorrit by entering the commands in Example 8-20.

Example 8-20. Removing the new entry

DELETE FROM classics WHERE title='Little Dorrit';

This example issues a DELETE command for all rows whose title column contains the
string ‘Little Dorrit’.

The WHERE keyword is very powerful, and important to enter correctly; an error could
lead a command to the wrong rows (or have no effect in cases where nothing matches
the WHERE clause). So now we’ll spend some time on that clause, which is the heart and
soul of SQL.

WHERE

The WHERE keyword enables you to narrow down queries by returning only those
where a certain expression is true. Example 8-20 returns only the rows where the col-
umn exactly matches the string ‘Little Dorrit’, using the equality operator =. Exam-
ple 8-21 shows a couple more examples of using WHERE with =.

Example 8-21. Using the WHERE keyword

SELECT author,title FROM classics WHERE author="Mark Twain";
SELECT author,title FROM classics WHERE isbn="9781598184891 ";

Given our current table, the two commands in Example 8-21 display the same results.
But we could easily add more books by Mark Twain, in which case the first line would
display all titles he wrote and the second line would continue (because we know the

Figure 8-10. Selecting data with and without DISTINCT

Indexes | 185

ISBN is unique) to display The Adventures of Tom Sawyer. In other words, searches
using a unique key are more predictable, and you’ll see further evidence later of the
value of unique and primary keys.

You can also do pattern matching for your searches using the LIKE qualifier, which
allows searches on parts of strings. This qualifier should be used with a % character
before or after some text. When placed before a keyword, % means “anything before”
and after a keyword it means “anything after.” Example 8-22 performs three different
queries, one for the start of a string, one for the end, and one for anywhere in a string.
You can see the results of these commands in Figure 8-11.

Example 8-22. Using the LIKE qualifier

SELECT author,title FROM classics WHERE author LIKE "Charles%";
SELECT author,title FROM classics WHERE title LIKE "%Species";
SELECT author,title FROM classics WHERE title LIKE "%and%";

The first command outputs the publications by both Charles Darwin and Charles
Dickens because the LIKE qualifier was set to return anything matching the string
Charles followed by any other text. Then just The Origin of Species is returned, because
it’s the only row whose column ends with the string Species. Lastly both Pride and
Prejudice and Romeo and Juliet are returned, because they both matched the string
and anywhere in the column.

The % will also match if there is nothing in the position it occupies; in other words, it
can match an empty string.

Figure 8-11. Using WHERE with the LIKE qualifier

186 | Chapter 8: Introduction to MySQL

LIMIT

The LIMIT qualifier enables you to choose how many rows to return in a query, and
where in the table to start returning them. When passed a single parameter, it tells
MySQL to start at the beginning of the results and just return the number of rows given
in that parameter. If you pass it two parameters, the first indicates the offset from the
start of the results where MySQL should start the display, and the second indicates
how many to return. You can think of the first parameter as saying, “Skip this number
of results at the start.”

Example 8-23 includes three commands. The first returns the first three rows from the
table. The second returns two rows starting at position 1 (skipping the first row). The
last command returns a single row starting at position 3 (skipping the first three rows).
Figure 8-12 shows the results of issuing these three commands.

Example 8-23. Limiting the number of results returned

SELECT author,title FROM classics LIMIT 3;
SELECT author,title FROM classics LIMIT 1,2;
SELECT author,title FROM classics LIMIT 3,1;

Be careful with the LIMIT keyword, because offsets start at zero, but the
number of rows to return starts at 1. So LIMIT 1,3 means return three
rows starting from the second row.

Figure 8-12. Restricting the rows returned with LIMIT

Indexes | 187

MATCH...AGAINST

The MATCH...AGAINST construct can be used on columns that have been given a
FULLTEXT index (see the earlier section “Creating a FULLTEXT index” on page 182).
With it, you can make natural language searches as you would in an Internet search
engine. Unlike the use of WHERE...= or WHERE...LIKE, MATCH...AGAINST lets you enter
multiple words in a search query and checks them against all words in the FULLTEXT
columns. FULLTEXT indexes are case-insensitive, so it makes no difference what case is
used in your queries.

Assuming that you have added a FULLTEXT index to the author and title columns, enter
the three queries shown in Example 8-24. The first asks for any of these columns that
contain the word and to be returned. Because and is a stopword, MySQL will ignore it
and the query will always produce an empty set—no matter what is stored in the col-
umns. The second query asks for any rows that contain both of the words old and
shop anywhere in them, in any order, to be returned. And the last query applies the
same kind of search for the words tom and sawyer. The screenshot in Figure 8-13 shows
the results of these queries.

Example 8-24. Using MATCH... AGAINST on FULLTEXT indexes

SELECT author,title FROM classics
 WHERE MATCH(author,title) AGAINST('and');
SELECT author,title FROM classics
 WHERE MATCH(author,title) AGAINST('old shop');
SELECT author,title FROM classics
 WHERE MATCH(author,title) AGAINST('tom sawyer');

Figure 8-13. Using MATCH...AGAINST on a FULLTEXT index

188 | Chapter 8: Introduction to MySQL

MATCH...AGAINST...IN BOOLEAN MODE

If you wish to give your MATCH...AGAINST queries even more power, use Boolean mode.
This changes the effect of the standard FULLTEXT query so that it searches for any com-
bination of search words, instead of requiring all search words to be in the text. The
presence of a single word in a column causes the search to return the row.

Boolean mode also allows you to preface search words with a + or - sign to indicate
whether they must be included or excluded. If normal Boolean mode says, “Any of
these words will do,” a plus sign means, “This word must be present; otherwise, don’t
return the row.” A minus sign means, “This word must not be present; its presence
disqualifies the row from being returned.”

Example 8-25 illustrates Boolean mode through two queries. The first asks for all rows
containing the word charles and not the word species to be returned. The second uses
double quotes to request that all rows containing the exact phrase “origin of” be re-
turned. Figure 8-14 shows the results of these queries.

As you would expect, the first request only returns The Old Curiosity Shop by Charles
Dickens, because any rows containing the word species have been excluded, so Charles
Darwin’s publication is ignored.

There is something of interest to note in the second query: the stopword
of is part of the search string, but is still used by the search because the
double quotation marks override stopwords.

Figure 8-14. Using MATCH...AGAINST...IN BOOLEAN MODE

Indexes | 189

Example 8-25. Using MATCH...AGAINST...IN BOOLEAN MODE

SELECT author,title FROM classics
 WHERE MATCH(author,title)
 AGAINST('+charles -species' IN BOOLEAN MODE);
SELECT author,title FROM classics
 WHERE MATCH(author,title)
 AGAINST('"origin of"' IN BOOLEAN MODE);

UPDATE...SET

This construct allows you to update the contents of a field. If you wish to change the
contents of one or more fields, you need to first narrow in on just the field or fields to
be changed, in much the same way you use the SELECT command. Example 8-26 shows
the use of UPDATE...SET in two different ways. You can see a screenshot of the results
in Figure 8-15.

Example 8-26. Using UPDATE...SET

UPDATE classics SET author='Mark Twain (Samuel Langhorne Clemens)'
 WHERE author='Mark Twain';
UPDATE classics SET category='Classic Fiction'
 WHERE category='Fiction';

In the first query Mark Twain’s real name of Samuel Langhorne Clemens was appended
to his pen name in brackets, which affected only one row. The second query, however,
affected three rows, because it changed all occurrences of the word Fiction in the cat-
egory column to the term Classic Fiction.

When performing an update you can also make use of the qualifiers you have already
seen, such as LIMIT, and the following ORDER BY and GROUP BY keywords.

Figure 8-15. Updating columns in the classics table

190 | Chapter 8: Introduction to MySQL

ORDER BY

ORDER BY sorts returned results by one or more columns in ascending or descending
order. Example 8-27 shows two such queries, the results of which can be seen in
Figure 8-16.

Example 8-27. Using ORDER BY

SELECT author,title FROM classics ORDER BY author;
SELECT author,title FROM classics ORDER BY title DESC;

As you can see, the first query returns the publications by author in ascending alpha-
betical order (the default), and the second returns them by title in descending order.

If you wanted to sort all the rows by author and then by descending year of publication
(to view the most recent first), you would issue the following query:

SELECT author,title,year FROM classics ORDER BY author,year DESC;

This shows that each ascending and descending qualifier applies to a single column.
The DESC keyword applies only to the preceding column, year. Because you allow
author to use the default sort order, it is sorted in ascending order. You could also have
explicitly specified ascending order for that column, with the same results:

SELECT author,title,year FROM classics ORDER BY author ASC,year DESC;

GROUP BY

In a similar fashion to ORDER BY, you can group results returned from queries using
GROUP BY, which is good for retrieving information about a group of data. For example,
if you want to know how many publications there are of each category in the classics
table, you can issue the following query:

Figure 8-16. Sorting the results of requests

Indexes | 191

SELECT category,COUNT(author) FROM classics GROUP BY category;

which returns the following output:

+-----------------+---------------+
| category | COUNT(author) |
+-----------------+---------------+
Classic Fiction	3
Non-Fiction	1
Play	1
+-----------------+---------------+
3 rows in set (0.00 sec)

Joining Tables Together
It is quite normal to maintain multiple tables within a database, each holding a different
type of information. For example, consider the case of a customers table that needs to
be able to be cross-referenced with publications purchased from the classics table. Enter
the commands in Example 8-28 to create this new table and populate it with three
customers and their purchases. Figure 8-17 shows the result.

Example 8-28. Creating and populating the customers table

CREATE TABLE customers (
 name VARCHAR(128),
 isbn VARCHAR(128),
 PRIMARY KEY (isbn)) ENGINE MyISAM;
INSERT INTO customers(name,isbn)
 VALUES('Joe Bloggs','9780099533474');
INSERT INTO customers(name,isbn)
 VALUES('Mary Smith','9780582506206');
INSERT INTO customers(name,isbn)
 VALUES('Jack Wilson','9780517123201');
SELECT * FROM customers;

There’s also a shortcut for inserting multiple rows of data, as in Exam-
ple 8-28, in which you can replace the three separate INSERT INTO queries
with a single one listing the data to be inserted, separated by commas,
like this:

INSERT INTO customers(name,isbn) VALUES
('Joe Bloggs','9780099533474'),
('Mary Smith','9780582506206'),
('Jack Wilson','9780517123201');

Of course, in a proper table containing customers’ details there would also be addresses,
phone numbers, email addresses, and so on, but they aren’t necessary for this explan-
ation. While creating the new table, you should have noticed that it has something in
common with the classics table: a column called isbn. Because it has the same meaning

192 | Chapter 8: Introduction to MySQL

in both tables (an ISBN refers to a book, and always the same book), we can use this
column to tie the two tables together into a single query, as in Example 8-29.

Example 8-29. Joining two tables into a single SELECT

SELECT name,author,title from customers,classics
 WHERE customers.isbn=classics.isbn;

The result of this operation is the following:

+-------------+-----------------+------------------------+
| name | author | title |
+-------------+-----------------+------------------------+
Joe Bloggs	Charles Dickens	The Old Curiosity Shop
Mary Smith	Jane Austen	Pride and Prejudice
Jack Wilson	Charles Darwin	The Origin of Species
+-------------+-----------------+------------------------+
3 rows in set (0.00 sec)

See how this query has neatly tied both tables together to show the publications pur-
chased from the classics table by the people in the customers table?

NATURAL JOIN

Using NATURAL JOIN, you can save yourself some typing and make queries a little clearer.
This kind of join takes two tables and automatically joins columns that have the same
name. So, to achieve the same results as from Example 8-29, you would enter:

SELECT name,author,title FROM customers NATURAL JOIN classics;

Figure 8-17. Creating the table customers

Indexes | 193

JOIN...ON

If you wish to specify the column on which to join two tables, use the JOIN...ON con-
struct, as follows, to achieve results identical to those of Example 8-29:

SELECT name,author,title FROM customers
 JOIN classics ON customers.isbn=classics.isbn;

Using AS

You can also save yourself some typing and improve query readability by creating aliases
using the AS keyword. Follow a table name with AS and the alias to use. The following
code, therefore, is also identical in action to Example 8-29. Aliases can be particularly
useful when you have long queries that reference the same table names many times.

SELECT name,author,title from
 customers AS cust, classics AS class WHERE cust.isbn=class.isbn;

Using Logical Operators
You can also use the logical operators AND, OR, and NOT in your MySQL WHERE queries to
further narrow down your selections. Example 8-30 shows one instance of each, but
you can mix and match them in any way you need.

Example 8-30. Using logical operators

SELECT author,title FROM classics WHERE
 author LIKE "Charles%" AND author LIKE "%Darwin";
SELECT author,title FROM classics WHERE
 author LIKE "%Mark Twain%" OR author LIKE "%Samuel Langhorne Clemens%";
SELECT author,title FROM classics WHERE
 author LIKE "Charles%" AND author NOT LIKE "%Darwin";

I’ve chosen the first query, because Charles Darwin might be listed in some rows by
his full name, Charles Robert Darwin. Thus, the query returns publications as long as
the author column starts with Charles and ends with Darwin. The second query
searches for publications written using either Mark Twain’s pen name or his real name,
Samuel Langhorne Clemens. The third query returns publications written by authors
with the first name Charles but not the surname Darwin.

MySQL Functions
You might wonder why anyone would want to use MySQL functions when PHP comes
with a whole bunch of powerful functions of its own. The answer is very simple: the
MySQL functions work on the data right there in the database. If you were to use PHP,
you would first have to extract raw data from MySQL, manipulate it, and then perform
the database query you first wanted.

194 | Chapter 8: Introduction to MySQL

By having functions built into MySQL, the time needed for performing complex queries
is substantially reduced, as is their complexity. If you wish to learn more about the
available functions, you can visit the following URLs:

• String functions: http://dev.mysql.com/doc/refman/5.0/en/string-functions.html

• Date and time: http://dev.mysql.com/doc/refman/5.0/en/date-and-time-functions
.html

However, to get you started, Appendix D describes a subset containing the most useful
of these functions.

Accessing MySQL via phpMyAdmin
Although to use MySQL it is essential to learn these main commands and how they
work, once you have learned them, it can be much quicker and simpler to use a program
such as phpMyAdmin to manage your databases and tables.

The following explanation assumes you have worked through the previous examples
in this chapter and have created the tables classics and customers in the database pub-
lications. Please choose the section relevant to your operating system.

Windows Users
Ensure that you have EasyPHP up and running so that the MySQL database is ready,
then type the following into the address bar of your browser:

http://localhost/home/mysql/

Your browser should now look like Figure 8-18, and you are now ready to proceed to
the section “Using phpMyAdmin” on page 197.

Mac OS X Users
Ensure that MAMP is running and that the Apache and MySQL servers are started,
then type the following into your browser:

http://localhost/MAMP/

Now click on the link titled phpMyAdmin—your browser should look like
Figure 8-19. You will now be ready to proceed to the section “Using phpMyAd-
min” on page 197.

Linux Users
Ensure that you have installed XAMPP, then type the following into your browser:

http://localhost

Accessing MySQL via phpMyAdmin | 195

http://dev.mysql.com/doc/refman/5.0/en/string-functions.html
http://dev.mysql.com/doc/refman/5.0/en/date-and-time-functions.html
http://dev.mysql.com/doc/refman/5.0/en/date-and-time-functions.html

Figure 8-18. The Windows phpMyAdmin main screen

Figure 8-19. The Mac OS X phpMyAdmin main screen

196 | Chapter 8: Introduction to MySQL

Your browser should now look like Figure 8-20. Click on the phpMyAdmin link in the
Tools section of the lefthand pane and you will be ready to proceed with the next
section.

Using phpMyAdmin
In the lefthand pane of the main phpMyAdmin screen, which should now be in your
browser, click on the drop-down menu that says “Databases” and select the database
publications, which will open the database and display its two tables just below. Then
click on the classics table, and you’ll see a host of information about it appear in the
righthand frame (see Figure 8-21).

From here you can perform all the main operations for your databases, such as creating
databases, adding tables, creating indexes, and much more. To read the supporting
documentation for phpMyAdmin, visit http://www.phpmyadmin.net/documentation/.

If you worked with me through the examples in this chapter, congratulations—it’s been
quite a long journey. You’ve come all the way from learning how to create a MySQL
database through issuing complex queries that combine multiple tables, use Boolean
operators, and leverage MySQL’s various qualifiers.

Figure 8-20. The Linux XAMPP main screen

Accessing MySQL via phpMyAdmin | 197

http://www.phpmyadmin.net/documentation/

In the next chapter, we’ll start looking at how to approach efficient database design,
advanced SQL techniques, and MySQL functions and transactions.

Test Your Knowledge: Questions
Question 8-1

What is the purpose of the semicolon in MySQL queries?

Question 8-2
Which command would you use to view the available databases or tables?

Question 8-3
How would you create a new MySQL user on the local host called newuser with a
password of newpass and access to everything in the database newdatabase?

Question 8-4
How can you view the structure of a table?

Question 8-5
What is the purpose of a MySQL index?

Figure 8-21. The classics table as viewed in phpMyAdmin

198 | Chapter 8: Introduction to MySQL

Question 8-6
What benefit does a FULLTEXT index provide?

Question 8-7
What is a stopword?

Question 8-8
Both SELECT DISTINCT and GROUP BY cause the display to show only one output row
for each value in a column, even if multiple rows contain that value. What are the
main differences between SELECT DISTINCT and GROUP BY?

Question 8-9
Using the SELECT...WHERE construct, how would you return only rows containing
the word Langhorne somewhere in the author column of the classics table used in
this chapter?

Question 8-10
What needs to be defined in two tables to make it possible for you to join them
together?

Question 8-11
Observant readers may have noticed that three book publication dates are incorrect
in this chapter. Pride and Prejudice was actually published in 1813, The Origin of
Species in 1859 and Romeo and Juliet in 1597. How could you correct these entries?

See the section “Chapter 8 Answers” on page 441 in Appendix A for the answers to
these questions.

Test Your Knowledge: Questions | 199

CHAPTER 9

Mastering MySQL

Chapter 8 provided you with a good grounding in the practice of using relational da-
tabases with structured query language. You’ve learned about creating databases and
the tables that comprise them, as well as inserting, looking up, changing, and deleting
data.

With that knowledge under your belt, we now need to look at how to design databases
for maximum speed and efficiency. For example, how do you decide what data to place
in which table? Well, over the years, a number of guidelines have been developed that—
if you follow them—ensure that your databases will be efficient and capable of growing
as you feed them more and more data.

Database Design
It’s very important that you design a database correctly before you start to create it;
otherwise, you are almost certainly going to have to go back and change it by splitting
up some tables, merging others, and moving various columns about in order to achieve
sensible relationships that MySQL can easily use.

Sitting down with a sheet of paper and a pencil and writing down a selection of the
queries that you think you and your users are likely to ask is an excellent starting point.
In the case of an online bookstore’s database, some of the questions you write down
could be:

• How many authors, books, and customers are in the database?

• Which author wrote a certain book?

• Which books were written by a certain author?

• What is the most expensive book?

201

• What is the best-selling book?

• Which books have not sold this year?

• Which books did a certain customer buy?

• Which books have been purchased along with the same other books?

Of course, there are many more queries that could be made on such a database, but
even this small sample will begin to give you insights into how to lay out your tables.
For example, books and ISBNs can probably be combined into one table, because they
are closely linked (we’ll examine some of the subtleties later). In contrast, books and
customers should be in separate tables, because their connection is very loose. A cus-
tomer can buy any book, and even multiple copies of a book, yet a book can be bought
by many customers and be ignored by still more potential customers.

When you plan to do a lot of searches on something, it can often benefit by having its
own table. And when couplings between things are loose, it’s best to put them in sep-
arate tables.

Taking into account those simple rules of thumb, we can guess we’ll need at least three
tables to accommodate all these queries:

Authors
There will be lots of searches for authors, many of whom have collaborated on
titles, and many of whom will be featured in collections. Listing all the information
about each author together, linked to that author, will produce optimal results for
searches—hence an authors table.

Books
Many books appear in different editions. Sometimes they change publisher and
sometimes they have the same titles as other, unrelated books. So the links between
books and authors are complicated enough to call for a separate table.

Customers
It’s even more clear why customers should get their own table, as they are free to
purchase any book by any author.

Primary Keys: The Keys to Relational Databases
Using the power of relational databases, we can define information for each author,
book, and customer in just one place. Obviously, what interests us are the links between
them, such as who wrote each book and who purchased it—but we can store that
information just by making links between the three tables. I’ll show you the basic prin-
ciples, and then it just takes practice for it to feel natural.

The magic involves giving every author a unique identifier. Do the same for every book
and for every customer. We saw the means of doing that in the previous chapter: the
primary key. For a book, it makes sense to use the ISBN, although you then have to
deal with multiple editions that have different ISBNs. For authors and customers, you

202 | Chapter 9: Mastering MySQL

can just assign arbitrary keys, which the AUTO_INCREMENT feature that you saw in the last
chapter makes easy.

In short, every table will be designed around some object that you’re likely to search
for a lot—an author, book, or customer, in this case—and that object will have a pri-
mary key. Don’t choose a key that could possibly have the same value for different
objects. The ISBN is a rare case for which an industry has provided a primary key that
you can rely on to be unique for each product. Most of the time, you’ll create an arbitrary
key for this purpose, using AUTO_INCREMENT.

Normalization
The process of separating your data into tables and creating primary keys is called
normalization. Its main goal is to make sure each piece of information appears in the
database only once. Duplicating data is very inefficient, because it makes databases
larger than they need to be and therefore slows down access.

But, more importantly, the presence of duplicates creates a strong risk that you’ll update
only one row of duplicated data, creating inconsistencies in a database and potentially
causing serious errors.

Thus, if you list the titles of books in the authors table as well as the books table, and
you have to correct a typographic error in a title, you’ll have to search through both
tables and make sure you make the same change every place the title is listed. It’s better
to keep the title in one place and use the ISBN in other places.

But in the process of splitting a database into multiple tables, it’s important not to go
too far and create more tables than is necessary, which would also lead to inefficient
design and slower access.

Luckily, E. F. Codd, the inventor of the relational model, analyzed the concept of nor-
malization and split it into three separate schemas called First, Second, and Third Nor-
mal Form. If you modify a database to satisfy each of these forms in order, you will
ensure that your database is optimally balanced for fast access, and minimum memory
and disk space usage.

To see how the normalization process works, let’s start with the rather monstrous
database in Table 9-1, which shows a single table containing all of the author names,
book titles, and (fictional) customer details. You could consider it a first attempt at a
table intended to keep track of which customers have ordered books.

Obviously, this is inefficient design, because data is duplicated all over the place (du-
plications are highlighted), but it represents a starting point.

Normalization | 203

Table 9-1. A highly inefficient design for a database table

Author 1 Author 2 Title ISBN Price U.S. Cust. name Cust. address Purch. date

David
Sklar

Adam
Trachtenberg

PHP
Cookbook

0596101015 44.99 Emma
Brown

1565 Rain-
bow Road,
Los Angeles,
CA 90014

Mar 03 2009

Danny
Goodman

 Dynamic
HTML

0596
527403

59.99 Darren
Ryder

4758 Emily
Drive, Rich-
mond, VA
23219

Dec 19
2008

Hugh E.
Williams

David Lane PHP and
MySQL

0596005436 44.95 Earl B.
Thurston

862 Gregory
Lane, Frank-
fort, KY 40601

Jun 22 2009

David
Sklar

Adam
Trachtenberg

PHP
Cookbook

0596101015 44.99 Darren
Ryder

4758 Emily
Drive, Rich-
mond, VA
23219

Dec 19
2008

Rasmus
Lerdorf

Kevin Tatroe
& Peter
MacIntyre

Programming
PHP

0596006815 39.99 David
Miller

3647 Cedar
Lane, Wal-
tham, MA
02154

Jan 16 2009

In the following three sections, we will examine this database design and you’ll see how
it can be improved by removing the various duplicate entries and splitting the single
table into sensible tables, each containing one type of data.

First Normal Form
For a database to satisfy the First Normal Form, it must fulfill three requirements:

1. There should be no repeating columns containing the same kind of data.

2. All columns should contain a single value.

3. There should be a primary key to uniquely identify each row.

Looking at these requirements in order, you should notice straight away that the Author
1 and Author 2 columns constitute repeating data types. So we already have a target
column for pulling into a separate table, as the repeated Author columns violate Rule 1.

Second, there are three authors listed for the final book, Programming PHP. I’ve han-
dled that by making Kevin Tatroe and Peter MacIntyre share the Author 2 column,
which violates Rule 2. Yet another reason to transfer the Author details to a separate
table.

However, Rule 3 is satisfied, because the primary key of ISBN has already been created.

204 | Chapter 9: Mastering MySQL

Table 9-2 shows the result of removing the Authors columns from Table 9-1. Already
it looks a lot less cluttered, although there remain duplications that are highlighted.

Table 9-2. The result of stripping the Authors column from Table 9-1

Title ISBN Price Cust. name Cust. address Purch. date

PHP Cookbook 0596101015 44.99 Emma Brown 1565 Rainbow Road, Los Angeles, CA
90014

Mar 03 2009

Dynamic HTML 0596527403 59.99 Darren Ryder 4758 Emily Drive, Richmond, VA
23219

Dec 19 2008

PHP and MySQL 0596005436 44.95 Earl B. Thurston 862 Gregory Lane, Frankfort, KY 40601 Jun 22 2009

PHP Cookbook 0596101015 44.99 Darren Ryder 4758 Emily Drive, Richmond, VA
23219

Dec 19 2008

Programming
PHP

0596006815 39.99 David Miller 3647 Cedar Lane, Waltham, MA 02154 Jan 16 2009

The new Authors table shown in Table 9-3 is small and simple. It just lists the ISBN of
a title along with an author. If a title has more than one author, additional authors get
their own rows. At first you may feel ill at ease with this table, because you can’t tell
which author wrote which book. But don’t worry: MySQL can quickly tell you. All you
have to do is tell it which book you want information for, and MySQL will use its ISBN
to search the Authors table in a matter of milliseconds.

Table 9-3. The new Authors table

ISBN Author

0596101015 David Sklar

0596101015 Adam Trachtenberg

0596527403 Danny Goodman

0596005436 Hugh E Williams

0596005436 David Lane

0596006815 Rasmus Lerdorf

0596006815 Kevin Tatroe

0596006815 Peter MacIntyre

As I mentioned earlier, the ISBN will be the primary key for the Books table, when we
get around to creating that table. I mention that here in order to emphasize that the
ISBN is not, however, the primary key for the Authors table. In the real world, the
Authors table would deserve a primary key, too, so that each author would have a key
to uniquely identify him or her.

So, in the Authors table, the ISBN is just a column for which—for the purposes of
speeding up searches—we’ll probably make a key, but not the primary key. In fact, it

Normalization | 205

cannot be the primary key in this table, because it’s not unique: the same ISBN appears
multiple times whenever two or more authors have collaborated on a book.

Because we’ll use it to link authors to books in another table, this column is called a
foreign key.

Keys (also called indexes) have several purposes in MySQL. The funda-
mental reason for defining a key is to make searches faster. You’ve seen
examples in Chapter 8 in which keys are used in WHERE clauses for
searching. But a key can also be useful to uniquely identify an item.
Thus, a unique key is often used as a primary key in one table, and as a
foreign key to link rows in that table to rows in another table.

Second Normal Form
The First Normal Form deals with duplicate data (or redundancy) across multiple col-
umns. The Second Normal Form is all about redundancy across multiple rows. In order
to achieve Second Normal Form, your tables must already be in First Normal Form.
Once this has been done, Second Normal Form is achieved by identifying columns
whose data repeats in different places and then removing them to their own tables.

So let’s look again at Table 9-2. Notice how Darren Ryder bought two books and
therefore his details are duplicated. This tells us that the Customer columns need to be
pulled into their own tables. Table 9-4 shows the result of removing the Customer
columns from Table 9-2.

Table 9-4. The new Titles table

ISBN Title Price

0596101015 PHP Cookbook 44.99

0596527403 Dynamic HTML 59.99

0596005436 PHP and MySQL 44.95

0596006815 Programming PHP 39.99

As you can see, all that’s left in Table 9-4 are the ISBN, Title, and Price columns for
four unique books, so this now constitutes an efficient and self-contained table that
satisfies the requirements of both the First and Second Normal Forms. Along the way,
we’ve managed to reduce the information to data closely related to book titles. This
table could also include years of publication, page counts, numbers of reprints, and so
on, as these details are also closely related. The only rule is that we can’t put in any
column that could have multiple values for a single book, because then we’d have to
list the same book in multiple rows and would thus violate Second Normal Form.
Restoring an Author column, for instance, would violate this normalization.

206 | Chapter 9: Mastering MySQL

However, looking at the extracted Customer columns, now in Table 9-5, we can see
that there’s still more normalization work to do, because Darren Ryder’s details are still
duplicated. And it could also be argued that First Normal Form Rule 2 (all columns
should contain a single value) has not been properly complied with, because the
addresses really need to be broken into separate columns for Address, City, State, and
Zip code.

Table 9-5. The Customer details from Table 9-2

ISBN Cust. name Cust. address Purch. date

0596101015 Emma Brown 1565 Rainbow Road, Los Angeles, CA 90014 Mar 03 2009

0596527403 Darren Ryder 4758 Emily Drive, Richmond, VA 23219 Dec 19 2008

0596005436 Earl B. Thurston 862 Gregory Lane, Frankfort, KY 40601 Jun 22 2009

0596101015 Darren Ryder 4758 Emily Drive, Richmond, VA 23219 Dec 19 2008

0596006815 David Miller 3647 Cedar Lane, Waltham, MA 02154 Jan 16 2009

What we have to do is split this table further to ensure that each customer’s details are
entered only once. Because the ISBN is not and cannot be used as a primary key to
identify customers (or authors), a new key must be created.

Table 9-6 is the result of normalizing the Customers table into both First and Second
Normal Forms. Each customer now has a unique customer number called CustNo that
is the table’s primary key, and that will most likely have been created using
AUTO_INCREMENT. All the parts of their addresses have also been separated into distinct
columns to make them easily searchable and updateable.

Table 9-6. The new Customers table

CustNo Name Address City State Zip

1 Emma Brown 1565 Rainbow Road Los Angeles CA 90014

2 Darren Ryder 4758 Emily Drive Richmond VA 23219

3 Earl B. Thurston 862 Gregory Lane Frankfort KY 40601

4 David Miller 3647 Cedar Lane Waltham MA 02154

At the same time, in order to normalize Table 9-6, it was necessary to remove the
information on customer purchases, because otherwise there would be multiple in-
stances of customer details for each book purchased. Instead, the purchase data is now
placed in a new table called Purchases (see Table 9-7).

Table 9-7. The new Purchases table

CustNo ISBN Date

1 0596101015 Mar 03 2009

2 0596527403 Dec 19 2008

Normalization | 207

CustNo ISBN Date

2 0596101015 Dec 19 2008

3 0596005436 Jun 22 2009

4 0596006815 Jan 16 2009

Here the CustNo column from Table 9-6 is reused as a key to tie both the Customers
and the Purchases tables together. Because the ISBN column is also repeated here, this
table can be linked with either of the Authors or the Titles tables, too.

The CustNo column can be a useful key in the Purchases table, but it’s not a primary
key. A single customer can buy multiple books (and even multiple copies of one book),
so the CustNo column is not a primary key. In fact, the Purchases table has no primary
key. That’s all right, because we don’t expect to need to keep track of unique purchases.
If one customer buys two copies of the same book on the same day, we’ll just allow
two rows with the same information. For easy searching, we can define both CustNo
and ISBN as keys—just not as primary keys.

There are now four tables, one more than the three we had initially
assumed would be needed. We arrived at this decision through the nor-
malization processes, by methodically following the First and Second
Normal Form rules, which made it plain that a fourth table called Pur-
chases would also be required.

The tables we now have are: Authors (Table 9-3), Titles (Table 9-4), Customers (Ta-
ble 9-6), and Purchases (Table 9-7), and each table can be linked to any other using
either the CustNo or the ISBN keys.

For example, to see which books Darren Ryder has purchased, you can look him up in
Table 9-6, the Customers table, where you will see his CustNo is 2. Armed with this
number, you can now go to Table 9-7, the Purchases table; looking at the ISBN column
here, you will see that he purchased titles 0596527403 and 0596101015 on December
19, 2008. This looks like a lot of trouble for a human, but it’s not so hard for MySQL.

To determine what these titles were, you can then refer to Table 9-4, the Titles table,
and see that the books he bought were Dynamic HTML and PHP Cookbook. Should
you wish to know the authors of these books, you could also use the ISBN numbers
you just looked up on Table 9-3, the Authors table, and you would see that ISBN
0596527403, Dynamic HTML, was written by Danny Goodman, and that ISBN
0596101015, PHP Cookbook, was written by David Sklar and Adam Trachtenberg.

Third Normal Form
Once you have a database that complies to both the First and Second Normal Forms,
it is in pretty good shape and you might not have to modify it any further. However, if

208 | Chapter 9: Mastering MySQL

you wish to be very strict with your database, you can ensure that it adheres to the
Third Normal Form, which requires data that is not directly dependent on the primary
key but that is dependent on another value in the table should also be moved into
separate tables, according to the dependence.

For example, in Table 9-6, the Customers table, it could be argued that the State, City,
and Zip code keys are not directly related to each customer, because many other people
will have the same details in their addresses, too. However, they are directly related to
each other, in that the street Address relies on the City, and the City relies on the State.

Therefore, to satisfy Third Normal Form for Table 9-6, you would need to split it into
Tables 9-8, 9-9, 9-10, and 9-11.

Table 9-8. Third Normal Form Customers table

CustNo Name Address Zip

1 Emma Brown 1565 Rainbow Road 90014

2 Darren Ryder 4758 Emily Drive 23219

3 Earl B. Thurston 862 Gregory Lane 40601

4 David Miller 3647 Cedar Lane 02154

Table 9-9. Third Normal Form Zip codes table

Zip CityID

90014 1234

23219 5678

40601 4321

02154 8765

Table 9-10. Third Normal Form Cities table

CityID Name StateID

1234 Los Angeles 5

5678 Richmond 46

4321 Frankfort 17

8765 Waltham 21

Table 9-11. Third Normal Form States table

StateID Name Abbreviation

5 California CA

46 Virginia VA

17 Kentucky KY

21 Massachusetts MA

Normalization | 209

So, how would you use this set of four tables instead of the single Table 9-6? Well, you
would look up the Zip code in Table 9-8, then find the matching CityID in Table 9-9.
Given this information, you could then look up the city Name in Table 9-10 and then
also find the StateID, which you could use in Table 9-11 to look up the State’s Name.

Although using the Third Normal Form in this way may seem like overkill, it can have
advantages. For example, take a look at Table 9-11, where it has been possible to in-
clude both a state’s name and its two-letter abbreviation. It could also contain popu-
lation details and other demographics, if you desired.

Table 9-10 could also contain even more localized demographics that
could be useful to you and/or your customers. By splitting these pieces
of data up, you can make it easier to maintain your database in the
future, should it be necessary to add additional columns.

Deciding whether to use the Third Normal Form can be tricky. Your evaluation should
rest on what additional data you may need to add at a later date. If you are absolutely
certain that the name and address of a customer is all that you will ever require, you
probably will want to leave out this final normalization stage.

On the other hand, suppose you are writing a database for a large organization such as
the U.S. Postal Service. What would you do if a city were to be renamed? With a table
such as Table 9-6, you would need to perform a global search and replace on every
instance of that city. But if you have your database set up according to the Third Normal
Form, you would have to change only a single entry in Table 9-10 for the change to be
reflected throughout the entire database.

Therefore, I suggest that you ask yourself two questions to help you decide whether to
perform a Third Normal Form normalization on any table:

1. Is it likely that many new columns will need to be added to this table?

2. Could any of this table’s fields require a global update at any point?

If either of the answers is yes, you should probably consider performing this final stage
of normalization.

When Not to Use Normalization
Now that you know all about normalization, I’m going to tell you why you should
throw these rules out of the window on high-traffic sites. That’s right—you should
never fully normalize your tables on sites that will cause MySQL to thrash.

Normalization requires spreading data across multiple tables, and this means making
multiple calls to MySQL for each query. On a very popular site, if you have normalized
tables, your database access will slow down considerably once you get above a few
dozen concurrent users, because they will be creating hundreds of database accesses

210 | Chapter 9: Mastering MySQL

between them. In fact I would go so far as to say you should denormalize any commonly
looked-up data as much as you can.

You see, if you have data duplicated across your tables, you can substantially reduce
the number of additional requests that need to be made, because most of the data you
want is available in each table. This means that you can simply add an extra column
to a query and that field will be available for all matching results.

Of course, you have to deal with the downsides previously mentioned, such as using
up large amounts of disk space, and ensuring that you update every single duplicate
copy of data when one of them needs modifying.

Multiple updates can be computerized, though. MySQL provides a feature called trig-
gers that make automatic changes to the database in response to changes you make.
(Triggers are, however, beyond the scope of this book.) Another way to propagate
redundant data is to set up a PHP program to run regularly and keep all copies in sync.
The program reads changes from a “master” table and updates all the others. (You’ll
see how to access MySQL from PHP in the next chapter.)

However, until you are very experienced with MySQL, I recommend you fully nor-
malize all your tables, as this will instill the habit and put you in good stead. Only when
you actually start to see MySQL logjams should you consider looking at
denormalization.

Relationships
MySQL is called a relational database management system because its tables store
not only data but the relationships among the data. There are three categories of
relationships.

One-to-One
A one-to-one relationship is like a (traditional) marriage: each item has a relationship
to only one item of the other type. This is surprisingly rare. For instance, an author can
write multiple books, a book can have multiple authors, and even an address can be
associated with multiple customers. Perhaps the best example in this chapter so far of
a one-to-one relationship is the relationship between the name of a state and its two-
character abbreviation.

However, for the sake of argument, let’s assume that there can ever be only one cus-
tomer at any address. In such a case, the Customers-Addresses relationship in Fig-
ure 9-1 is a one-to-one relationship: only one customer lives at each address and each
address can have only one customer.

Relationships | 211

Usually, when two items have a one-to-one relationship, you just include them as col-
umns in the same table. There are two reasons for splitting them into separate tables:

• You want to be prepared in case the relationship changes later.

• The table has a lot of columns and you think that performance or maintenance
would be improved by splitting it.

Figure 9-1. The Customers table, Table 9-8, split into two tables

Of course, when you come to build your own databases in the real world, you will have
to create one-to-many Customer-Address relationships (one address, many customers).

One-to-Many
One-to-many (or many-to-one) relationships occur when one row in one table is linked
to many rows in another table. You have already seen how Table 9-8 would take on a
one-to-many relationship if multiple customers were allowed at the same address,
which is why it would have to be split up if that were the case.

So, looking at Table 9-8a within Figure 9-1, you can see that it shares a one-to-many
relationship with Table 9-7 because there is only one of each customer in Table 9-8a.
However Table 9-7, the Purchases table, can (and does) contain more than one purchase
from customers. Therefore one customer has a relationship with many purchases.

You can see these two tables alongside each other in Figure 9-2, where the dashed lines
joining rows in each table start from a single row in the lefthand table but can connect
to more than one row on the right-hand table. This one-to-many relationship is also
the preferred scheme to use when describing a many-to-one relationship, in which case
you would normally swap the left and right tables to view them as a one-to-many
relationship.

Many-to-Many
In a many-to-many relationship, many rows in one table are linked to many rows in
another table. To create this relationship, add a third table containing the same key

212 | Chapter 9: Mastering MySQL

column from each of the other tables. This third table contains nothing else, as its sole
purpose is to link up the other tables.

Table 9-12 is just such a table. It was extracted from Table 9-7, the Purchases table, but
omitting the purchase date information. What it now contains is a copy of the ISBN
number of every title sold, along with the customer number of the purchaser.

Table 9-12. An intermediary table

Customer ISBN

1 0596101015

2 0596527403

2 0596101015

3 0596005436

4 0596006815

With this intermediary table in place, you can traverse all the information in the data-
base through a series of relations. You can take an address as a starting point and find
out the authors of any books purchased by the customer living at that address.

For example, let’s suppose that you want to find out about purchases in the 23219 zip
code. Look that zip code up in Table 9-8b within Figure 9-2 and you’ll find that cus-
tomer number 2 has bought at least one item from the database. At this point, you can
use Table 9-8a within Figure 9-1 to find out his or her name, or use the new intermediary
Table 9-12 to see the book(s) purchased.

From here, you will find that two titles were purchased and can follow them back to
Table 9-4 to find the titles and prices of these books, or to Table 9-3 to see who the
authors were.

If it seems to you that this is really combining multiple one-to-many relationships, then
you are absolutely correct. To illustrate, Figure 9-3 brings three tables together.

Figure 9-2. Illustrating the relationship between two tables

Relationships | 213

Follow any zip code in the left table to associated customer IDs. From there, you can
link to the middle table, which joins the left and right tables by linking customer IDs
and ISBN numbers. Now all you have to do is follow an ISBN over to the right table to
see which book it relates to.

You can also use the intermediary table to work your way backward from book titles
to zip codes. The Titles table can tell you the ISBN, which you can use in the middle
table to find ID numbers of customers who bought the books, and finally, the Cus-
tomers table matches the customer ID numbers to the customers’ zip codes.

Databases and Anonymity
An interesting aspect of using relations is that you can accumulate a lot of information
about some item—such as a customer—without actually knowing who that customer
is. Note that we went from customers’ zip codes to customers’ purchases, and back
again, in the previous example, without finding out the name of a customer. Databases
can be used to track people, but they can also be used to help preserve people’s privacy
while still finding useful information.

Transactions
In some applications, it is vitally important that a sequence of queries runs in the correct
order and that every single query successfully completes. For example, suppose that
you are creating a sequence of queries to transfer funds from one bank account to
another. You would not want either of the following events to occur:

• You add the funds to the second account, but when you try to subtract them from
the first account the update fails, and now both accounts have the funds.

• You subtract the funds from the first bank account, but the update request to add
them to the second account fails, and the funds have now disappeared into thin air.

Figure 9-3. Creating a many-to-many relationship via a third table

214 | Chapter 9: Mastering MySQL

As you can see, not only is the order of queries important in this type of transaction,
but it is also vital that all parts of the transaction complete successfully. But how can
you ensure this happens, because surely after a query has occurred, it cannot be un-
done? Do you have to keep track of all parts of a transaction and then undo them all
one at a time if any one fails? The answer is absolutely not, because MySQL comes with
powerful transaction handling features to cover just these types of eventualities.

In addition, transactions allow concurrent access to a database by many users or pro-
grams at the same time, by ensuring all transactions are queued up and each user or
program takes their turn, and doesn’t tread on each others’ toes—all handled seam-
lessly by MySQL.

Transaction Storage Engines
In order to be able to use MySQL’s transaction facility, you have to be using MySQL’s
InnoDB storage engine. This is easy to do, as it’s simply another parameter that you
use when creating a table. So go ahead and create a table of bank accounts by typing
in the commands in Example 9-1. (Remember that to do this you will need access to
the MySQL command line, and must also have already selected a suitable database in
which to create this table.)

Example 9-1. Creating a transaction-ready table

CREATE TABLE accounts (
number INT, balance FLOAT, PRIMARY KEY(number)
) ENGINE InnoDB;
DESCRIBE accounts;

The final line of this example displays the contents of the new table so you can ensure
that it was correctly created. The output from it should look like this:

+---------+---------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+---------+---------+------+-----+---------+-------+
| number | int(11) | NO | PRI | 0 | |
| balance | float | YES | | NULL | |
+---------+---------+------+-----+---------+-------+
2 rows in set (0.00 sec)

Now let’s create two rows within the table so that you can practice using transactions.
Type in the commands in Example 9-2.

Example 9-2. Populating the accounts table

INSERT INTO accounts(number, balance) VALUES(12345, 1025.50);
INSERT INTO accounts(number, balance) VALUES(67890, 140.00);
SELECT * FROM accounts;

The third line displays the contents of the table to confirm that the rows were correctly
inserted. The output should look like this:

Transactions | 215

+--------+---------+
| number | balance |
+--------+---------+
| 12345 | 1025.5 |
| 67890 | 140 |
+--------+---------+
2 rows in set (0.00 sec)

With this table created and prepopulated, you are now ready to start using transactions.

Using BEGIN
Transactions in MySQL start with either a BEGIN or a START TRANSACTION statement.
Type in the commands in Example 9-3 to send a transaction to MySQL.

Example 9-3. A MySQL transaction

BEGIN;
UPDATE accounts SET balance=balance+25.11 WHERE number=12345;
COMMIT;
SELECT * FROM accounts;

The result of this transaction is displayed by the final line, and should look like this:

+--------+---------+
| number | balance |
+--------+---------+
| 12345 | 1050.61 |
| 67890 | 140 |
+--------+---------+
2 rows in set (0.00 sec)

As you can see, the balance of account number 12345 was increased by 25.11 and is
now 1050.61. You may also have noticed the COMMIT command in Example 9-3, which
is explained next.

Using COMMIT
When you are satisfied that a series of queries in a transaction has successfully com-
pleted, issue a COMMIT command to commit all the changes to the database. Until a
COMMIT is received, all the changes you make are considered to be merely temporary by
MySQL. This feature gives you the opportunity to cancel a transaction by not sending
a COMMIT but by issuing a ROLLBACK command instead.

Using ROLLBACK
Using the ROLLBACK command, you can tell MySQL to forget all the queries made since
the start of a transaction and to end the transaction. Check this out in action by entering
the funds transfer transaction in Example 9-4.

216 | Chapter 9: Mastering MySQL

Example 9-4. A funds transfer transaction

BEGIN;
UPDATE accounts SET balance=balance-250 WHERE number=12345;
UPDATE accounts SET balance=balance+250 WHERE number=67890;
SELECT * FROM accounts;

Once you have entered these lines, you should see the following result:

+--------+---------+
| number | balance |
+--------+---------+
| 12345 | 800.61 |
| 67890 | 390 |
+--------+---------+
2 rows in set (0.00 sec)

The first bank account now has a value that is 250 less than before, and the second has
been incremented by 250—you have transferred a value of 250 between them. But let’s
assume that something went wrong and you wish to undo this transaction. All you have
to do is issue the commands in Example 9-5.

Example 9-5. Cancelling a transaction using ROLLBACK

ROLLBACK;
SELECT * FROM accounts;

You should now see the following output, showing that the two accounts have had
their previous balances restored, due to the entire transaction being cancelled using the
ROLLBACK command:

+--------+---------+
| number | balance |
+--------+---------+
| 12345 | 1050.61 |
| 67890 | 140 |
+--------+---------+
2 rows in set (0.00 sec)

Using EXPLAIN
MySQL comes with a powerful tool for investigating how the queries you issue to it
are interpreted. Using EXPLAIN, you can get a snapshot of any query to find out whether
you could issue it in a better or more efficient way. Example 9-6 shows how to use it
with the accounts table you created earlier.

Example 9-6. Using the EXPLAIN command

EXPLAIN SELECT * FROM accounts WHERE number='12345';

The results of this EXPLAIN command should look like the following:

Using EXPLAIN | 217

+--+-----------+--------+-----+-------------+-------+-------+-----+----+-----+
|id|select_type|table |type |possible_keys|key |key_len|ref |rows|Extra|
+--+-----------+--------+-----+-------------+-------+-------+-----+----+-----+
| 1|SIMPLE |accounts|const|PRIMARY |PRIMARY|4 |const| 1| |
+--+-----------+--------+-----+-------------+-------+-------+-----+----+-----+
1 row in set (0.00 sec)

The information that MySQL is giving you here is as follows:

select_type
The selection type is SIMPLE. If you were joining tables together, this would show
the join type.

table
The current table being queried is accounts.

type
The query type is const. From worst to best, the possible values can be: ALL, index,
range, ref, eq_ref, const, system, and NULL.

possible_keys
There is a possible PRIMARY key, which means that accessing should be fast.

key
The key actually used is PRIMARY. This is good.

key_len
The key length is 4. This is the number of bytes of the index that MySQL will use.

ref
The ref column displays which columns or constants are used with the key. In this
case, a constant key is being used.

rows
The number of rows that need to be searched by this query is 1. This is good.

Whenever you have a query that seems to be taking longer than you think it should to
execute, try using EXPLAIN to see where you can optimize it. You will discover which
keys, if any, are being used, their lengths, and so on, and will be able to adjust your
query or the design of your table(s) accordingly.

When you have finished experimenting with the temporary accounts
table, you may wish to remove it by entering the following command:

DROP TABLE accounts;

Backing Up and Restoring
Whatever kind of data you are storing in your database it must have some value to you,
even if it’s only the cost of the time required for reentering it should the hard disk fail.
Therefore it’s important that you keep backups to protect your investment. Also there

218 | Chapter 9: Mastering MySQL

will be times when you have to migrate your database over to a new server; the best
way to do this is usually to back it up first. It is also important that you test your backups
from time to time to ensure that they are valid and will work if they need to be used.

Thankfully, backing up and restoring MySQL data is easy using the mysqldump
command.

Using mysqldump
With mysqldump, you can dump a database or collection of databases into one or more
files containing all the instructions necessary to recreate all your tables and repopulate
them with your data. It can also generate files in CSV (Comma-Separated Values) and
other delimited text formats, or even in XML format. Its main drawback is that you
must make sure that no one writes to a table while you’re backing it up. There are
various ways to do this, but the easiest is to shut down the MySQL server before
mysqldump and start up the server again after mysqldump finishes.

Or you can lock the tables you are backing up before running mysqldump. To lock tables
for reading (as we want to read the data), from the MySQL command line issue the
command:

LOCK TABLES tablename1 READ, tablename2 READ, ...;

Then, to release the lock(s), enter:

UNLOCK TABLES;

By default, the output from mysqldump is simply printed out, but you can capture it in
a file through the > redirect symbol.

The basic format of the mysqldump command is:

mysqldump -u user -ppassword database

However, before you can dump the contents of a database, you must make sure that
mysqldump is in your path, or that you specify its location as part of your command.
Table 9-13 shows the likely locations of the program for the different installations and
operating systems covered in Chapter 2. If you have a different installation, it may be
in a slightly different location.

Table 9-13. Likely locations of mysqldump for different installations

Operating system & program Likely folder location

Windows EasyPHP WAMP \Program Files\EasyPHP 3.0\mysql\bin\

Mac MAMP /Applications/MAMP/Library/bin/

Linux LAMP /usr/local/bin/

Backing Up and Restoring | 219

So, to dump the contents of the publications database that you created in Chapter 8 to
the screen, enter mysqldump (or the full path if necessary) and the command in Exam-
ple 9-7.

Example 9-7. Dumping the publications database to screen

mysqldump -u user -ppassword publications

Make sure that you replace user and password with the correct details for your instal-
lation of MySQL. If there is no password set for the user, you can omit that part of the
command, but the -u user part is mandatory—unless you have root access without a
password and are executing as root (not recommended). The result of issuing this
command will look something like the screenshot in Figure 9-4.

Creating a Backup File
Now that you have mysqldump working, and have verified it outputs correctly to the
screen, you can send the backup data directly to a file using the > redirect symbol.
Assuming that you wish to call the backup file publications.sql, type in the command
in Example 9-8 (remembering to replace user and password with the correct details).

Example 9-8. Dumping the publications database to screen

mysqldump -u user -ppassword publications > publications.sql

Figure 9-4. Dumping the publications database to screen

220 | Chapter 9: Mastering MySQL

The command in Example 9-8 stores the backup file into the current
directory. If you need it to be saved elsewhere, you should insert a file
path before the filename. You must also ensure that the directory you
are backing up to has the right permissions set to allow the file to be
written.

If you echo the backup file to screen or load it into a text editor, you will see that it
comprises sequences of SQL commands such as the following:

DROP TABLE IF EXISTS `classics`;
CREATE TABLE `classics` (
 `author` varchar(128) default NULL,
 `title` varchar(128) default NULL,
 `category` varchar(16) default NULL,
 `year` smallint(6) default NULL,
 `isbn` char(13) NOT NULL default '',
 PRIMARY KEY (`isbn`),
 KEY `author` (`author`(20)),
 KEY `title` (`title`(20)),
 KEY `category` (`category`(4)),
 KEY `year` (`year`),
 FULLTEXT KEY `author_2` (`author`,`title`)
) ENGINE=MyISAM DEFAULT CHARSET=latin1;

This is smart code that can be used to restore a database from a backup, even if it
currently exists, because it will first drop any tables that need to be recreated, thus
avoiding potential MySQL errors.

To back up only a single table from a database (such as the classics table from the
publications database), you should first lock the table from within the MySQL com-
mand line, by issuing a command such as the following:

LOCK TABLES publications.classics READ

This ensures that MySQL remains running for read purposes, but writes cannot be
made. Then, while keeping the MySQL command line open, use another terminal
window to issue the following command from the operating system command line:

mysqldump -u user -ppassword publications classics > classics.sql

You must now release the table lock by entering the following command from the
MySQL command line, which unlocks all tables that have been locked during the cur-
rent session:

UNLOCK TABLES

Example 9-9. Dumping just the classics table from publications

$ mysql -u user -ppassword
mysql> LOCK TABLES classics READ
mysql> QUIT
$ mysqldump -u user -ppassword publications classics > classics.sql
$ mysql -u user -ppassword

Backing Up and Restoring | 221

mysql> UNLOCK TABLES
mysql> QUIT

Or, if you want to back up all your MySQL databases at once (including the system
databases such as mysql), you can use a command such as the one in Example 9-10,
which would make it possible to restore an entire MySQL database installation—
remembering to use locking where required.

Example 9-10. Dumping all the MySQL databases to file

mysqldump -u user -ppassword --all-databases > all_databases.sql

Of course, there’s a lot more than just a few lines of SQL code in backed-
up database files. I recommend that you take a few minutes to examine
a couple in order to familiarize yourself with the types of commands
that appear in backup files and how they work.

Restoring from a Backup File
To perform a restore from a file, call the mysql executable, passing it the file to restore
from using the < symbol. So, to recover an entire database that you dumped using the
--all-databases option, use a command such as that in Example 9-11.

Example 9-11. Restoring an entire set of databases

mysql -u user -ppassword < all_databases.sql

To restore a single database, use the -D option followed by the name of the database,
as in Example 9-12, where the publications database is being restored from the backup
made in Example 9-8.

Example 9-12. Restoring the publications database

mysql -u user -ppassword -D publications < publications.sql

To restore a single table to a database, use a command such as that in Example 9-13,
where just the classics table, backed up in Example 9-9, is being restored to the publi-
cations database.

Example 9-13. Restoring the classics table to the publications database

mysql -u user -ppassword -D publications < classics.sql

Dumping Data in CSV Format
As previously mentioned, the mysqldump program is very flexible and supports various
types of output, such as the CSV format. Example 9-14 shows how you can dump the
data from the classics and customers tables in the publications database to the files
classics.txt and customers.txt in the folder c:/web. By default, on an EasyPHP 3.0 in-

222 | Chapter 9: Mastering MySQL

stallation, the user should be root and no password is used. On OS X or Linux systems,
you should modify the destination path to an existing folder.

Example 9-14. Dumping data to CSV format files

mysqldump -u user -ppassword --no-create-info --tab=c:/web
 --fields-terminated-by=',' publications

This command is quite long and is shown here wrapped over two lines, but you must
type it all in as a single line, ensuring there is a space between web and --fields. The
result is the following:

Mark Twain (Samuel Langhorne Clemens)','The Adventures
 of Tom Sawyer','Classic Fiction','1876','9781598184891
Jane Austen','Pride and Prejudice','Classic Fiction','1811','9780582506206
Charles Darwin','The Origin of Species','Non-Fiction','1856','9780517123201
Charles Dickens','The Old Curiosity Shop','Classic Fiction','1841','9780099533474
William Shakespeare','Romeo and Juliet','Play','1594','9780192814968

Mary Smith','9780582506206
Jack Wilson','9780517123201

Planning Your Backups
The golden rule to backing up is to do so as often as you find practical. The more
valuable the data, the more often you should back it up, and the more copies you should
make. If your database gets updated at least once a day, you should really back it up
on a daily basis. If, on the other hand, it is not updated very often, you could probably
get by with backups less often.

You should also consider making multiple backups and storing them in
different locations. If you have several servers, it is a simple matter to
copy your backups between them. You would also be well advised to
make physical backups of removable hard disks, thumb drives, CDs or
DVDs, and so on, and to keep these in separate locations—preferably
somewhere like a fireproof safe.

Once you’ve digested the contents of this chapter, you will be proficient in using both
PHP and MySQL; the next chapter will show you to bring these two technologies
together.

Test Your Knowledge: Questions
Question 9-1

What does the word relationship mean in reference to a relational database?

Test Your Knowledge: Questions | 223

Question 9-2
What is the term for the process of removing duplicate data and optimizing tables?

Question 9-3
What are the three rules of First Normal Form?

Question 9-4
How can you make a table satisfy Second Normal Form?

Question 9-5
What do you put in a column to tie together two tables that contain items having
a one-to-many relationship?

Question 9-6
How can you create a database with a many-to-many relationship?

Question 9-7
What commands initiate and end a MySQL transaction?

Question 9-8
What feature does MySQL provide to enable you to examine how a query will work
in detail?

Question 9-9
What command would you use to back up the database publications to a file called
publications.sql?

See the section “Chapter 9 Answers” on page 442 in Appendix A for the answers to
these questions.

224 | Chapter 9: Mastering MySQL

CHAPTER 10

Accessing MySQL Using PHP

If you worked through the previous chapters, you’re proficient in using both MySQL
and PHP. In this chapter, you will learn how to integrate the two by using PHP’s built-
in functions to access MySQL.

Querying a MySQL Database with PHP
The reason for using PHP as an interface to MySQL is to format the results of SQL
queries in a form visible in a web page. As long as you can log into your MySQL in-
stallation using your username and password, you can also do so from PHP. However,
instead of using MySQL’s command line to enter instructions and view output, you
will create query strings that are passed to MySQL. When MySQL returns its response,
it will come as a data structure that PHP can recognize instead of the formatted output
you see when you work on the command line. Further PHP commands can retrieve the
data and format it for the web page.

The Process
The process of using MySQL with PHP is:

1. Connect to MySQL.

2. Select the database to use.

3. Build a query string.

4. Perform the query.

5. Retrieve the results and output it to a web page.

6. Repeat Steps 3 to 5 until all desired data have been retrieved.

7. Disconnect from MySQL.

We’ll work through these sections in turn, but first it’s important to set up your login
details in a secure manner so people snooping around on your system have trouble
getting access to your database.

225

Creating a Login File
Most websites developed with PHP contain multiple program files that will require
access to MySQL and will therefore need the login and password details. Therefore,
it’s sensible to create a single file to store these and then include that file wherever it’s
needed. Example 10-1 shows such a file, which I’ve called login.php. Type it in, re-
placing values (such as username) with the actual values you use for your MySQL da-
tabase, and save it to the web development directory you set up in Chapter 2. We’ll be
making use of the file shortly. The hostname localhost should work as long as you’re
using a MySQL database on your local system, and the database publications should
work if you’re typing in the examples I’ve used so far.

Example 10-1. The login.php file

<?php // login.php
$db_hostname = 'localhost';
$db_database = 'publications';
$db_username = 'username';
$db_password = 'password';
?>

The enclosing <?php and ?> tags are especially important for the login.php file in Ex-
ample 10-1, because they mean that the lines between can be interpreted only as PHP
code. If you were to leave them out and someone were to call up the file directly from
your website, it would display as text and reveal your secrets. But, with the tags in place,
all they will see is a blank page. The file will correctly include in your other PHP files.

The $db_hostname variable will tell PHP which computer to use when connecting to a
database. This is required, because you can access MySQL databases on any computer
connected to your PHP installation, and that potentially includes any host anywhere
on the Web. However, the examples in this chapter will be working on the local server.
So in place of specifying a domain such as mysql.myserver.com, the word localhost (or
the IP address 127.0.0.1) will correctly refer to it.

The database we’ll be using, $db_database, is the one called publications, which you
probably created in Chapter 8, or the one you were provided with by your server ad-
ministrator (in which case you have to modify login.php accordingly).

The variables $db_username and $db_password should be set to the username and pass-
word that you have been using with MySQL.

Another benefit of keeping these login details in a single place is that
you can change your password as frequently as you like and there will
be only one file to update when you do, no matter how many PHP files
access MySQL.

226 | Chapter 10: Accessing MySQL Using PHP

Connecting to MySQL
Now that you have the login.php file saved, you can include it in any PHP files that will
need to access the database by using the require_once statement. This has been chosen
in preference to an include statement, as it will generate a fatal error if the file is not
found. And believe me, not finding the file containing the login details to your database
is a fatal error.

Also, using require_once instead of require means that the file will be read in only when
it has not previously been included, which prevents wasteful duplicate disk accesses.
Example 10-2 shows the code to use.

Example 10-2. Connecting to a MySQL database

<?php
require_once 'login.php';
$db_server = mysql_connect($db_hostname, $db_username, $db_password);

if (!$db_server) die("Unable to connect to MySQL: " . mysql_error());
?>

This example runs PHP’s mysql_connect function, which requires three parameters, the
hostname, username, and password of a MySQL server. Upon success it returns an
identifier to the server; otherwise, FALSE is returned. Notice that the second line uses an
if statement with the die function, which does what it sounds like and quits from PHP
with an error message if $db_server is not TRUE.

The die message explains that it was not possible to connect to the MySQL database,
and—to help identify why this happened—includes a call to the mysql_error function.
This function outputs the error text from the last called MySQL function.

The database server pointer $db_server will be used in some of the following examples
to identify the MySQL server to be queried. Using identifiers this way, it is possible to
connect to and access multiple MySQL servers from a single PHP program.

The die function is great for when you are developing PHP code, but of
course you will want more user-friendly error messages on a production
server. In this case you won’t abort your PHP program, but format a
message that will be displayed when the program exits normally, such
as:

function mysql_fatal_error($msg)
 {
 $msg2 = mysql_error();
 echo <<< _END
 We are sorry, but it was not possible to complete
 the requested task. The error message we got was:

 <p>$msg: $msg2</p>

 Please click the back button on your browser
 and try again. If you are still having problems,

Querying a MySQL Database with PHP | 227

 please email
 our administrator. Thank you.
 _END;
 }

Selecting a database

Having successfully connected to MySQL, you are now ready to select the database
that you will be using. Example 10-3 shows how to do this.

Example 10-3. Selecting a database

<?php
mysql_select_db($db_database)
 or die("Unable to select database: " . mysql_error());
?>

The command to select the database is mysql_select_db. Pass it the name of the data-
base you want and the server to which you connected. As with the previous example,
a die statement has been included to provide an error message and explanation, should
the selection fail—the only difference being that there has been no need to retain the
return value from the mysql_select_db function, as it simply returns either TRUE or
FALSE. Therefore the PHP or statement was used, which means “if the previous com-
mand failed, do the following.” Note that for the or to work, there must be no semicolon
at the end of the first line of code.

Building and executing a query

Sending a query to MySQL from PHP is as simple as issuing it using the mysql_query
function. Example 10-4 shows you how to use it.

Example 10-4. Querying a database

<?php
$query = "SELECT * FROM classics";
$result = mysql_query($query);

if (!$result) die ("Database access failed: " . mysql_error());
?>

First, the variable $query is set to the query to be made. In this case it is asking to see
all rows in the table classics. Note that, unlike using MySQL’s command line, no
semicolon is required at the tail of the query, because the mysql_query function is used
to issue a complete query, and cannot be used to query by sending multiple parts, one
at a time. Therefore, MySQL knows the query is complete and doesn’t look for a
semicolon.

This function returns a result that we place in the variable $result. Having used MySQL
at the command line, you might think that the contents of $result will be the same as
the result returned from a command-line query, with horizontal and vertical lines, and

228 | Chapter 10: Accessing MySQL Using PHP

so on. However, this is not the case with the result returned to PHP. Instead, upon
success, $result will contain a resource that can be used to extract the results of the
query. You’ll see how to extract the data in the next section. Upon failure, $result
contains FALSE. So the example finishes by checking $result. If it’s FALSE, it means that
there was an error and the die command is executed.

Fetching a result

Once you have a resource returned from a mysql_query function, you can use it to
retrieve the data you want. The simplest way to do this is to fetch the cells you want,
one at a time, using the mysql_result function. Example 10-5 combines and extends
the previous examples into a program that you can type in and run yourself to retrieve
the returned results. I suggest that you save it in the same folder as login.php and give
it the name query.php.

Example 10-5. Fetching results one cell at a time

<?php // query.php
require_once 'login.php';
$db_server = mysql_connect($db_hostname, $db_username, $db_password);

if (!$db_server) die("Unable to connect to MySQL: " . mysql_error());

mysql_select_db($db_database)
 or die("Unable to select database: " . mysql_error());

$query = "SELECT * FROM classics";
$result = mysql_query($query);

if (!$result) die ("Database access failed: " . mysql_error());

$rows = mysql_num_rows($result);

for ($j = 0 ; $j < $rows ; ++$j)
{
 echo 'Author: ' . mysql_result($result,$j,'author') . '
';
 echo 'Title: ' . mysql_result($result,$j,'title') . '
';
 echo 'Category: ' . mysql_result($result,$j,'category') . '
';
 echo 'Year: ' . mysql_result($result,$j,'year') . '
';
 echo 'ISBN: ' . mysql_result($result,$j,'isbn') . '

';
}
?>

The final 10 lines of code are the new ones, so let’s look at them. They start by setting
the variable $rows to the value returned by a call to mysql_num_rows. This function re-
ports the number of rows returned by a query.

Armed with the row count, we enter a for loop that extracts each cell of data from each
row using the mysql_result function. The parameters supplied to this function are the
resource $result, which was returned by mysql_query, the row number $j, and the name
of the column from which to extract the data.

Querying a MySQL Database with PHP | 229

The results from each call to mysql_result are then incorporated within echo statements
to display one field per line, with an additional line feed between rows. Figure 10-1
shows the result of running this program.

As you may recall, we populated the classics table with five rows in Chapter 8, and
indeed, five rows of data are returned by query.php. But, as it stands, this code is actually
extremely inefficient and slow, because a total of 25 calls are made to the function
mysql_result in order to retrieve all the data, a single cell at a time. Luckily, there is a
much better way of retrieving the data, which is getting a single row at a time using the
mysql_fetch_row function.

In Chapter 9, I talked about First, Second, and Third Normal Form, so
you may have now noticed that the classics table doesn’t satisfy these,
because both author and book details are included within the same ta-
ble. That’s because we created this table before encountering normali-
zation. However, for the purposes of illustrating access to MySQL from
PHP, reusing this table avoids the hassle of typing in a new set of test
data, so we’ll stick with it for the time being.

Figure 10-1. The output from the query.php program in Example 10-5

230 | Chapter 10: Accessing MySQL Using PHP

Fetching a row

It was important to show how you can fetch a single cell of data from MySQL, but now
let’s look at a much more efficient method. So, replace the for loop of query.php (in
Example 10-5) with the new loop in Example 10-6, and you will find that you get exactly
the same result that was displayed in Figure 10-1.

Example 10-6. Replacement for loop for fetching results one row at a time

<?php
for ($j = 0 ; $j < $rows ; ++$j)
{
 $row = mysql_fetch_row($result);
 echo 'Author: ' . $row[0] . '
';
 echo 'Title: ' . $row[1] . '
';
 echo 'Category: ' . $row[2] . '
';
 echo 'Year: ' . $row[3] . '
';
 echo 'ISBN: ' . $row[4] . '

';
}
?>

In this modified code, only one-fifth of the calls are made to a MySQL-calling function
(a full 80 percent less), because each row is fetched in its entirety using the
mysql_fetch_row function. This returns a single row of data in an array, which is then
assigned to the variable $row.

All that’s necessary then is to reference each element of the array $row in turn (starting
at an offset of zero). Therefore $row[0] contains the Author data, $row[1] the Title, and
so on, because each column is placed in the array in the order in which it appears in
the MySQL table. Also, by using mysql_fetch_row instead of mysql_result, you use
substantially less PHP code and achieve much faster execution time, due to simply
referencing each item of data by offset rather than by name.

Closing a connection

When you have finished using a database, you should close the connection. This is
done by issuing the command in Example 10-7.

Example 10-7. Closing a MySQL database connection

<?php
mysql_close($db_server);
?>

We have to pass the identifier returned by mysql_connect back in Example 10-2, which
we stored in the variable $db_server.

Querying a MySQL Database with PHP | 231

All database connections are automatically closed when PHP exits, so
it doesn’t matter that the connection wasn’t closed in Example 10-5.
But in longer programs, where you may continually open and close da-
tabase connections, you are strongly advised to close each one as soon
as accessing it is complete.

A Practical Example
It’s time to write our first example of inserting data in and deleting it from a MySQL
table using PHP. I recommend that you type in Example 10-8 and save it to your web
development directory using the filename sqltest.php. You can see an example of the
program’s output in Figure 10-2.

Figure 10-2. The output from Example 10-8, sqltest.php

Example 10-8 creates a standard HTML form. The following chapter
explains forms in detail, but in this chapter I take form handling for
granted and just deal with database interaction.

232 | Chapter 10: Accessing MySQL Using PHP

Example 10-8. Inserting and deleting using sqltest.php

<?php // sqltest.php
require_once 'login.php';
$db_server = mysql_connect($db_hostname, $db_username, $db_password);

if (!$db_server) die("Unable to connect to MySQL: " . mysql_error());

mysql_select_db($db_database, $db_server)
 or die("Unable to select database: " . mysql_error());

if (isset($_POST['delete']) && isset($_POST['isbn']))
{
 $isbn = get_post('isbn');
 $query = "DELETE FROM classics WHERE isbn='$isbn'";

 if (!mysql_query($query, $db_server))
 echo "DELETE failed: $query
" .
 mysql_error() . "

";
}

if (isset($_POST['author']) &&
 isset($_POST['title']) &&
 isset($_POST['category']) &&
 isset($_POST['year']) &&
 isset($_POST['isbn']))
{
 $author = get_post('author');
 $title = get_post('title');
 $category = get_post('category');
 $year = get_post('year');
 $isbn = get_post('isbn');

 $query = "INSERT INTO classics VALUES" .
 "('$author', '$title', '$category', '$year', '$isbn')";

 if (!mysql_query($query, $db_server))
 echo "INSERT failed: $query
" .
 mysql_error() . "

";
}

echo <<<_END
<form action="sqltest.php" method="post"><pre>
 Author <input type="text" name="author" />
 Title <input type="text" name="title" />
Category <input type="text" name="category" />
 Year <input type="text" name="year" />
 ISBN <input type="text" name="isbn" />
 <input type="submit" value="ADD RECORD" />
</pre></form>
_END;

$query = "SELECT * FROM classics";
$result = mysql_query($query);

A Practical Example | 233

if (!$result) die ("Database access failed: " . mysql_error());
$rows = mysql_num_rows($result);

for ($j = 0 ; $j < $rows ; ++$j)
{
 $row = mysql_fetch_row($result);
 echo <<<_END
<pre>
 Author $row[0]
 Title $row[1]
Category $row[2]
 Year $row[3]
 ISBN $row[4]
</pre>
<form action="sqltest.php" method="post">
<input type="hidden" name="delete" value="yes" />
<input type="hidden" name="isbn" value="$row[4]" />
<input type="submit" value="DELETE RECORD" /></form>
_END;
}

mysql_close($db_server);

function get_post($var)
{
 return mysql_real_escape_string($_POST[$var]);
}
?>

At over 80 lines of code, this program may appear daunting, but don’t worry—you’ve
already covered many of them in Example 10-5, and what the code does is actually
quite simple.

It first checks for any inputs that may have been made and then either inserts new data
into the classics table of the publications database or deletes a row from it, according
to the input supplied. Regardless of whether there was input, the program then outputs
all rows in the table to the browser. So let’s see how it works.

The first section of new code starts by using the isset function to check whether values
for all the fields have been posted to the program. Upon such confirmation, each of the
first six lines within the if statement call the function get_post, which appears at the
end of the program. This function has one small but critical job: fetching the input from
the browser.

The $_POST Array
I mentioned in an earlier chapter that a browser sends user input through either a GET
request or a POST request. The POST request is usually preferred, and we use it here. The
web server bundles up all the user input (even if the form was filled out with a hundred
fields) and puts it into an array named $_POST.

234 | Chapter 10: Accessing MySQL Using PHP

$_POST is an associative array, which you encountered in Chapter 6. Depending on
whether a form has been set to use the POST or the GET method, either the $_POST or the
$_GET associative array will be populated with the form data. They can both be read in
exactly the same way.

Each field has an element in the array named after that field. So if a form contained a
field named isbn, the $_POST array contains an element keyed by the word isbn. The
PHP program can read that field by referring to either $_POST['isbn'] or
$_POST["isbn"] (single and double quotes have the same effect in this case).

If the $_POST syntax still seems complex to you, rest assured that you can just use the
convention I’ve shown in Example 10-8, copy the user’s input to other variables, and
forget about $_POST after that. This is normal in PHP programs: they retrieve all the
fields from $_POST at the beginning of the program and then ignore it.

There is no reason to write to an element in the $_POST array. Its only
purpose is to communicate information from the browser to the pro-
gram, and you’re better off copying data to your own variables before
altering it.

So, back to the get_post function, which passes each item it retrieves through the
mysql_real_escape_string function to strip out any characters that a hacker may have
inserted in order to break into or alter your database.

Deleting a Record
Having loaded up the various possible variables that could have been posted with
any values that were passed, the program then checks whether the variable
$_POST['delete'] has a value. If so, the user has clicked on a DELETE RECORD button
to erase a record. In this case, the value of $isbn will also have been posted.

As you’ll recall, the ISBN uniquely identifies each record. The HTML form appends
the ISBN to the DELETE FROM query string created in the variable $query, which is then
passed to the mysql_query function to issue it to MySQL. mysql_query returns either
TRUE or FALSE, and FALSE causes an error message to be displayed explaining what went
wrong.

If $delete didn’t contain the word “yes,” then the following else statement is executed.
$query is set to an INSERT INTO command, followed by the five values to be inserted.
The variable is then passed to mysql_query, which upon completion returns either
TRUE or FALSE. If FALSE is returned, an error message is displayed.

A Practical Example | 235

Displaying the Form
Next we get to the part of code that displays the little form at the top of Figure 10-2.
You should recall the echo <<<_END structure from previous chapters, which outputs
everything between the _END tags.

Instead of the echo command, the program could also drop out of PHP
using ?>, issue the HTML, and then reenter PHP processing with
<?php. Whichever style used is a matter of programmer preference, but
I always recommend staying within PHP code for these reasons:

• It makes it very clear when debugging (and also for other users)
that everything within a .php file is PHP code. Therefore, there is
no need to go hunting for dropouts to HTML.

• When you wish to include a PHP variable directly within HTML,
you can just type it in. If you had dropped back to HTML, you
would have had to temporarily reenter PHP processing, output the
variable, and then drop back out again.

The HTML form section simply sets the form’s action to sqltest.php. This means that
when the form is submitted, the contents of the form fields will be sent to the file
sqltest.php, which is the program itself. The form is also set up to send the fields as a
POST rather than a GET request. This is because GET requests are appended to the URL
being submitted and can look messy in your browser. They also allow users to easily
modify submissions and try to hack your server. Therefore, whenever possible, you
should use POST submissions, which also have the benefit of hiding the posted data from
view.

Having output the form fields, the HTML displays a Submit button with the name ADD
RECORD and closes the form. Note the use of the <pre> and </pre> tags here, which
have been used to force a monospaced font and allow all the inputs to line up neatly.
The carriage returns at the end of each line are also output when inside <pre> tags.

Querying the Database
Next, the code returns to the familiar territory of Example 10-5 where, in the following
four lines of code, a query is sent to MySQL asking to see all the records in the clas-
sics table. After that, $rows is set to a value representing the number of rows in the table
and a for loop is entered to display the contents of each row.

I have altered the next bit of code to simplify things. Instead of using the
 tags
for line feeds in Example 10-5, I have chosen to use a <pre> tag to line up the display
of each record in a pleasing manner.

After the display of each record there is a second form that also posts to sqltest.php (the
program itself) but this time contains two hidden fields: delete and isbn. The delete field

236 | Chapter 10: Accessing MySQL Using PHP

is set to “yes” and isbn to the value held in $row[4], which contains the ISBN for the
record. Then a Submit button with the name DELETE RECORD is displayed and the
form is closed. A curly brace then completes the for loop, which will continue until all
records have been displayed.

Finally, you see the definition for the function get_post, which we’ve already looked
at. And that’s it—our first PHP program to manipulate a MySQL database. So, let’s
check out what it can do.

Once you have typed the program in (and corrected any typing errors), try entering the
following data into the various input fields to add a new record for the book Moby
Dick to the database:

Herman Melville
Moby Dick
Fiction
1851
9780199535729

Running the Program
When you have submitted this data using the ADD RECORD button, scroll down to
the bottom of the web page to see the new addition. It should look like Figure 10-3.

Figure 10-3. The result of adding Moby Dick to the database

A Practical Example | 237

Now let’s look at how deleting a record works by creating a dummy record. So try
entering just the number 1 in each of the five fields and click on the ADD RECORD
button. If you now scroll down, you’ll see a new record consisting just of 1s. Obviously
this record isn’t useful in this table, so now click on the DELETE RECORD button and
scroll down again to confirm that the record has been deleted.

Assuming that everything worked, you are now able to add and delete
records at will. Try doing this a few times, but leave the main records
in place (including the new one for Moby Dick), as we’ll be using them
later. You could also try adding the record with all 1s again a couple of
times and note the error message that you receive the second time, in-
dicating that there is already an ISBN with the number 1.

Practical MySQL
You are now ready to look at some practical techniques that you can use in PHP to
access the MySQL database, including tasks such as creating and dropping tables, in-
serting, updating, and deleting data, and protecting your database and website from
malicious users. Note that the following examples assume that you’ve created the
login.php program discussed earlier in this chapter.

Creating a Table
Let’s assume that you are working for a wildlife park and need to create a database to
hold details about all the types of cats it houses. You are told that there are nine
families of cats: Lion, Tiger, Jaguar, Leopard, Cougar, Cheetah, Lynx, Caracal, and
Domestic, so you’ll need a column for that. Then each cat has been given a name, so
that’s another column, and you also want to keep track of their ages, which is another.
Of course, you will probably need more columns later, perhaps to hold dietary re-
quirements, inoculations, and other details, but for now that’s enough to get going. A
unique identifier is also needed for each animal, so you also decide to create a column
for that called id.

Example 10-9 shows the code you might use to create a MySQL table to hold this data,
with the main query assignment in bold text.

Example 10-9. Creating a table called cats

<?php
require_once 'login.php';
$db_server = mysql_connect($db_hostname, $db_username, $db_password);
if (!$db_server) die("Unable to connect to MySQL: " . mysql_error());
mysql_select_db($db_database)
 or die("Unable to select database: " . mysql_error());

$query = "CREATE TABLE cats (
 id SMALLINT NOT NULL AUTO_INCREMENT,

238 | Chapter 10: Accessing MySQL Using PHP

 family VARCHAR(32) NOT NULL,
 name VARCHAR(32) NOT NULL,
 age TINYINT NOT NULL,
 PRIMARY KEY (id)
)";

$result = mysql_query($query);
if (!$result) die ("Database access failed: " . mysql_error());
?>

As you can see, the MySQL query looks pretty similar to how you would type it in
directly to the command line, except that there is no trailing semicolon, as none is
needed when accessing MySQL from PHP.

Describing a Table
When you aren’t logged into the MySQL command line, here’s a handy piece of code
that you can use to verify that a table has been correctly created from inside a browser.
It simply issues the query DESCRIBE cats and then outputs an HTML table with four
headings: Column, Type, Null, and Key, underneath which all columns within the table
are shown. To use it with other tables, simply replace the name “cats” in the query with
that of the new table (see Example 10-10).

Example 10-10. Describing the cats table

<?php
require_once 'login.php';
$db_server = mysql_connect($db_hostname, $db_username, $db_password);
if (!$db_server) die("Unable to connect to MySQL: " . mysql_error());
mysql_select_db($db_database)
 or die("Unable to select database: " . mysql_error());

$query = "DESCRIBE cats";

$result = mysql_query($query);
if (!$result) die ("Database access failed: " . mysql_error());
$rows = mysql_num_rows($result);

echo "<table><tr> <th>Column</th> <th>Type</th>
 <th>Null</th> <th>Key</th> </tr>";

for ($j = 0 ; $j < $rows ; ++$j)
{
 $row = mysql_fetch_row($result);
 echo "<tr>";
 for ($k = 0 ; $k < 4 ; ++$k) echo "<td>$row[$k]</td>";
 echo "</tr>";
}

echo "</table>";
?>

Practical MySQL | 239

The output from the program should look like this:

Column Type Null Key
id smallint(6) NO PRI
family varchar(32) NO
name varchar(32) NO
age tinyint(4) NO

Dropping a Table
Dropping a table is very easy to do and is therefore very dangerous, so be careful.
Example 10-11 shows the code that you need. However, I don’t recommend that you
try it until you have been through the other examples, as it will drop the table cats and
you’ll have to recreate it using Example 10-9.

Example 10-11. Dropping the table cats

<?php
require_once 'login.php';
$db_server = mysql_connect($db_hostname, $db_username, $db_password);
if (!$db_server) die("Unable to connect to MySQL: " . mysql_error());
mysql_select_db($db_database)
 or die("Unable to select database: " . mysql_error());

$query = "DROP TABLE cats";

$result = mysql_query($query);
if (!$result) die ("Database access failed: " . mysql_error());
?>

Adding Data
Let’s add some data to the table using the code in Example 10-12.

Example 10-12. Adding data to table cats

<?php
require_once 'login.php';
$db_server = mysql_connect($db_hostname, $db_username, $db_password);
if (!$db_server) die("Unable to connect to MySQL: " . mysql_error());
mysql_select_db($db_database)
 or die("Unable to select database: " . mysql_error());

$query = "INSERT INTO cats VALUES(NULL, 'Lion', 'Leo', 4)";

$result = mysql_query($query);
if (!$result) die ("Database access failed: " . mysql_error());
?>

You may wish to add a couple more items of data by modifying $query as follows and
calling the program up in your browser again:

240 | Chapter 10: Accessing MySQL Using PHP

$query = "INSERT INTO cats VALUES(NULL, 'Cougar', 'Growler', 2)";
$query = "INSERT INTO cats VALUES(NULL, 'Cheetah', 'Charly', 3)";

By the way, notice the NULL value passed as the first parameter? This is done because
the id column is of the AUTO_INCREMENT type and MySQL will decide what value to assign
according to the next available number in sequence, so we simply pass a NULL value,
which will be ignored.

Of course, the most efficient way to populate MySQL with data is to create an array
and insert the data with a single query.

Retrieving Data
Now that some data has been entered into the cats table, Example 10-13 shows how
you can check that it was correctly inserted.

Example 10-13. Retrieving rows from the cats table

<?php
require_once 'login.php';
$db_server = mysql_connect($db_hostname, $db_username, $db_password);
if (!$db_server) die("Unable to connect to MySQL: " . mysql_error());
mysql_select_db($db_database)
 or die("Unable to select database: " . mysql_error());

$query = "SELECT * FROM cats";

$result = mysql_query($query);
if (!$result) die ("Database access failed: " . mysql_error());
$rows = mysql_num_rows($result);

echo "<table><tr> <th>Id</th> <th>Family</th>
 <th>Name</th><th>Age</th></tr>";

for ($j = 0 ; $j < $rows ; ++$j)
{
 $row = mysql_fetch_row($result);
 echo "<tr>";
 for ($k = 0 ; $k < 4 ; ++$k) echo "<td>$row[$k]</td>";
 echo "</tr>";
}

echo "</table>";
?>

This code simply issues the MySQL query SELECT * FROM cats and then displays all the
rows returned. Its output is as follows:

Id Family Name Age
1 Lion Leo 4
2 Cougar Growler 2
3 Cheetah Charly 3

Here you can see that the id column has correctly auto-incremented.

Practical MySQL | 241

Updating Data
Changing data that you have already inserted is also quite simple. Did you notice the
spelling of Charly for the Cheetah’s name? Let’s correct that to Charlie, as in Exam-
ple 10-14.

Example 10-14. Renaming Charly the Cheetah to Charlie

<?php
require_once 'login.php';
$db_server = mysql_connect($db_hostname, $db_username, $db_password);
if (!$db_server) die("Unable to connect to MySQL: " . mysql_error());
mysql_select_db($db_database)
 or die("Unable to select database: " . mysql_error());

$query = "UPDATE cats SET name='Charlie' WHERE name='Charly'";

$result = mysql_query($query);
if (!$result) die ("Database access failed: " . mysql_error());
?>

If you run Example 10-13 again, you’ll see that it now outputs the following:

Id Family Name Age
1 Lion Leo 4
2 Cougar Growler 2
3 Cheetah Charlie 3

Deleting Data
Growler the Cougar has been transferred to another zoo, so it’s time to remove him
from the database—see Example 10-15.

Example 10-15. Removing Growler the Cougar from the cats table

<?php
require_once 'login.php';
$db_server = mysql_connect($db_hostname, $db_username, $db_password);
if (!$db_server) die("Unable to connect to MySQL: " . mysql_error());
mysql_select_db($db_database)
 or die("Unable to select database: " . mysql_error());

$query = "DELETE FROM cats WHERE name='Growler'";

$result = mysql_query($query);
if (!$result) die ("Database access failed: " . mysql_error());
?>

This uses a standard DELETE FROM query, and when you run Example 10-13, you can
see how the row has been removed by the following output:

Id Family Name Age
1 Lion Leo 4
3 Cheetah Charlie 3

242 | Chapter 10: Accessing MySQL Using PHP

Using AUTO_INCREMENT
When using AUTO_INCREMENT, you cannot know what value has been given to a column
before a row is inserted. Instead, if you need to know it, you must ask MySQL afterward
using the mysql_insert_id function. This need is common: for instance, when you
process a purchase, you might insert a new customer into a Customers table and then
refer to the newly created CustId when inserting a purchase into the purchase table.

Example 10-12 can be rewritten as Example 10-16 to display this value after each insert.

Example 10-16. Adding data to cats table and reporting the insertion id

<?php
require_once 'login.php';
$db_server = mysql_connect($db_hostname, $db_username, $db_password);
if (!$db_server) die("Unable to connect to MySQL: " . mysql_error());
mysql_select_db($db_database)
 or die("Unable to select database: " . mysql_error());

$query = "INSERT INTO cats VALUES(NULL, 'Lynx', 'Stumpy', 5)";

$result = mysql_query($query);
echo "The Insert ID was: " . mysql_insert_id();
if (!$result) die ("Database access failed: " . mysql_error());
?>

The contents of the table should now look like the following (note how the previous
id value of 2 is not reused, as this could cause complications in some instances):

Id Family Name Age
1 Lion Leo 4
3 Cheetah Charlie 3
4 Lynx Stumpy 5

Using insert IDs

It’s very common to insert data in multiple tables: a book followed by its author, or a
customer followed by their purchase, and so on. When doing this with an
auto-increment column, you will need to retain the insert ID returned for storing in the
related table.

For example, let’s assume that these cats can be “adopted” by the public as a means of
raising funds, and that when a new cat is stored in the cats table, we also want to create
a key to tie it to the animal’s adoptive owner. The code to do this is similar to that in
Example 10-16, except that the returned insert ID is stored in the variable $insertID,
and is then used as part of the subsequent query:

$query = "INSERT INTO cats VALUES(NULL, 'Lynx', 'Stumpy', 5)";
$result = mysql_query($query);
$insertID = mysql_insert_id();

$query = "INSERT INTO owners VALUES($insertID, 'Ann', 'Smith')";
$result = mysql_query($query);

Practical MySQL | 243

Now the cat is connected to its “owner” through the cat’s unique ID, which was created
automatically by AUTO_INCREMENT.

But there’s a slight window of opportunity for an error to slip in. Suppose that two
people visit the website at the same time and submit new information, causing the web
server to run your program twice at the same time. (Web servers can run several pro-
grams at the same time to speed up response time.) The second visitor might insert a
new cat just before the first visitor’s program issues mysql_insert_id. This is a rare but
serious problem, because the first person could end up being associated with the second
person’s cat.

So a completely safe procedure for linking tables through the insert ID is to use locks
(or transactions, as described in Chapter 9). It can slow down response time a bit when
there are many people submitting data to the same table, but it can also be worth it.
The sequence is:

1. Lock the first table (e.g., cats).

2. Insert data into the first table.

3. Retrieve the unique ID from the first table through mysql_insert_id.

4. Unlock the first table.

5. Insert data into the second table.

The lock can safely be released before inserting data into the second table, because the
insert ID has been retrieved and is stored in a program variable. A transaction can also
be used instead of locking, but that slows down the MySQL server even more.

Performing Additional Queries
OK: that’s enough feline fun. To explore some slightly more complex queries, we need
to revert to using the customers and classics tables that you should have created in
Chapter 8. There will be two customers in the customers table; the classics table holds
the details of a few books. They also share a common column of ISBN numbers called
isbn that we can use to perform additional queries.

For example, to display each of the customers along with the titles and authors of the
books they have bought, you can use the code in Example 10-17.

Example 10-17. Performing a secondary query

<?php
require_once 'login.php';
$db_server = mysql_connect($db_hostname, $db_username, $db_password);
if (!$db_server) die("Unable to connect to MySQL: " . mysql_error());
mysql_select_db($db_database)
 or die("Unable to select database: " . mysql_error());

$query = "SELECT * FROM customers";

244 | Chapter 10: Accessing MySQL Using PHP

$result = mysql_query($query);
if (!$result) die ("Database access failed: " . mysql_error());
$rows = mysql_num_rows($result);

for ($j = 0 ; $j < $rows ; ++$j)
{
 $row = mysql_fetch_row($result);
 echo "$row[0] purchased ISBN $row[1]:
";

 $subquery = "SELECT * FROM classics WHERE isbn='$row[1]'";

 $subresult = mysql_query($subquery);
 if (!$subresult) die ("Database access failed: " . mysql_error());
 $subrow = mysql_fetch_row($subresult);
 echo " '$subrow[1]' by $subrow[0]
";
}
?>

This program uses an initial query to the customers table to look up all the customers
and then, given the ISBN number of the book each customer purchased, makes a new
query to the classics table to find out the title and author for each. The output from this
code should be as follows:

Mary Smith purchased ISBN 9780582506206:
 'Pride and Prejudice' by Jane Austen
Jack Wilson purchased ISBN 9780517123201:
 'The Origin of Species' by Charles Darwin

Of course, although it wouldn’t illustrate performing additional queries,
in this particular case you could also return the same information using
a NATURAL JOIN query (see Chapter 8), like this:

SELECT name,isbn,title,author FROM customers
 NATURAL JOIN classics;

Preventing SQL Injection
It may be hard to understand just how dangerous it is to pass user input unchecked to
MySQL. For example, suppose you have a simple piece of code to verify a user, and it
looks like this:

$user = $_POST['user'];
$pass = $_POST['pass'];
$query = "SELECT * FROM users WHERE user='$user' AND pass='$pass'";

At first glance, you might think this code is perfectly fine. If the user enters values of
fredsmith and mypass for $user and $pass, then the query string, as passed to MySQL,
will be as follows:

SELECT * FROM users WHERE user='fredsmith' AND pass='mypass'

Practical MySQL | 245

This is all well and good, but what if someone enters the following for $user (and doesn’t
even enter anything for $pass)?

admin' #

Let’s look at the string that would be sent to MySQL:

SELECT * FROM users WHERE user='admin' #' AND pass=''

Do you see the problem there? In MySQL, the # symbol represents the start of a com-
ment. Therefore the user will be logged in as admin (assuming there is a user admin),
without having to enter a password. In the following, the part of the query that will be
executed is shown in bold—the rest will be ignored.

SELECT * FROM users WHERE user='admin' #' AND pass=''

But you should count yourself very lucky if that’s all a malicious user does to you. At
least you might still be able to go into your application and undo any changes the user
makes as admin. But what about the case in which your application code removes a
user from the database? The code might look something like this:

$user = $_POST['user'];
$pass = $_POST['pass'];
$query = "DELETE FROM users WHERE user='$user' AND pass='$pass'";

Again, this looks quite normal at first glance, but what if someone entered the following
for $user?

anything' OR 1=1 #

This would be interpreted by MySQL as:

DELETE FROM users WHERE user='anything' OR 1=1 #' AND pass=''

Ouch—that SQL query will always be true and therefore you’ve lost your whole
users database! So what can you do about this kind of attack?

Well, the first thing is not to rely on PHP’s built-in magic quotes, which automatically
escape any characters such as single and double quotes by prefacing them with a back-
slash (\). Why? Because this feature can be turned off; many programmers do so in
order to put their own security code in place. So there is no guarantee that this hasn’t
happened on the server you are working on. In fact, the feature was deprecated as of
PHP 5.3.0 and has been removed in PHP 6.0.0.

Instead, you should always use the function mysql_real_escape_string for all calls to
MySQL. Example 10-18 is a function you can use that will remove any magic quotes
added to a user-inputted string and then properly sanitize it for you.

Example 10-18. How to properly sanitize user input for MySQL

<?php
function mysql_fix_string($string)
{
 if (get_magic_quotes_gpc()) $string = stripslashes($string);
 return mysql_real_escape_string($string);

246 | Chapter 10: Accessing MySQL Using PHP

}
?>

The get_magic_quotes_gpc function returns TRUE if magic quotes are active. In that case,
any slashes that have been added to a string have to be removed or the function
mysql_real_eascape_string could end up double-escaping some characters, creating
corrupted strings. Example 10-19 illustrates how you would incorporate mysql_fix
within your own code.

Example 10-19. How to safely access MySQL with user input

<?php
$user = mysql_fix_string($_POST['user']);
$pass = mysql_fix_string($_POST['pass']);
$query = "SELECT * FROM users WHERE user='$user' AND pass='$pass'";

function mysql_fix_string($string)
{
 if (get_magic_quotes_gpc()) $string = stripslashes($string);
 return mysql_real_escape_string($string);
}
?>

Remember that you can use mysql_escape_string only when a MySQL
database is actively open; otherwise, an error will occur.

Using placeholders

Another way—this one virtually bulletproof—to prevent SQL injections is to use a
feature called placeholders. The idea is to predefine a query using ? characters where
the data will appear. Then, instead of calling a MySQL query directly, you call the
predefined one, passing the data to it. This has the effect of ensuring that every item of
data entered is inserted directly into the database and cannot be interpreted as SQL
queries. In other words, SQL injections become impossible.

The sequence of queries to execute when using MySQL’s command line would be like
that in Example 10-20.

Example 10-20. Using placeholders

PREPARE statement FROM "INSERT INTO classics VALUES(?,?,?,?,?)";

SET @author = "Emily Brontë",
 @title = "Wuthering Heights",
 @category = "Classic Fiction",
 @year = "1847",
 @isbn = "9780553212587";

EXECUTE statement USING @author,@title,@category,@year,@isbn;

DEALLOCATE PREPARE statement;

Practical MySQL | 247

The first command prepares a statement called statement for inserting data into the
classics table. As you can see, in place of values or variables for the data to insert, the
statement contains a series of ? characters. These are the placeholders.

The next five lines assign values to MySQL variables according to the data to be inserted.
Then the predefined statement is executed, passing these variables as parameters.
Finally, the statement is removed, in order to return the resources it was using.

In PHP, the code for this procedure looks like Example 10-21 (assuming that you have
created login.php with the correct details to access the database).

Example 10-21. Using placeholders with PHP

<?php
require 'login.php';

$db_server = mysql_connect($db_hostname, $db_username, $db_password);
if (!$db_server) die("Unable to connect to MySQL: " . mysql_error());
mysql_select_db($db_database)
 or die("Unable to select database: " . mysql_error());

$query = 'PREPARE statement FROM "INSERT INTO classics
 VALUES(?,?,?,?,?)"';
mysql_query($query);

$query = 'SET @author = "Emily Brontë",' .
 '@title = "Wuthering Heights",' .
 '@category = "Classic Fiction",' .
 '@year = "1847",' .
 '@isbn = "9780553212587"';
mysql_query($query);

$query = 'EXECUTE statement USING @author,@title,@category,@year,@isbn';
mysql_query($query);

$query = 'DEALLOCATE PREPARE statement';
mysql_query($query);
?>

Once you have prepared a statement, until you deallocate it, you can use it as often as
you wish. Such statements are commonly used within a loop to quickly insert data into
a database by assigning values to the MySQL variables and then executing the state-
ment. This approach is more efficient than creating the entire statement from scratch
on each pass through the loop.

Preventing HTML Injection
There’s another type of injection you need to concern yourself about—not for the safety
of your own websites, but for your users’ privacy and protection. That’s Cross Site
Scripting, also referred to as XSS.

248 | Chapter 10: Accessing MySQL Using PHP

This occurs when you allow HTML, or more often JavaScript code, to be input by a
user and then displayed back by your website. One place this is common is in a com-
ment form. What most often happens is that a malicious user will try to write code that
steals cookies from your site’s users, allowing him or her to discover username and
password pairs or other information. Even worse, the malicious user might launch an
attack to download a Trojan onto a user’s computer.

But preventing this is as simple as calling the htmlentities function, which strips out
all HTML markup codes and replaces them with a form that displays the characters,
but does not allow a browser to act on them. For example, consider the following
HTML:

<script src='http://x.com/hack.js'> </script><script>hack();</script>

This code loads in a JavaScript program and then executes malicious functions. But if
it is first passed through htmlentities, it will be turned into the following, totally
harmless string:

<script src='http://x.com/hack.js'>
 </script><script>hack();</script>

Therefore, if you are ever going to display anything that your users enter, either im-
mediately or after first storing it in database, you need to first sanitize it with
htmlentities. To do this, I recommend you create a new function, like the first one in
Example 10-22, which can sanitize for both SQL and XSS injections.

Example 10-22. Functions for preventing both SQL and XSS injection attacks

<?php
function mysql_entities_fix_string($string)
{
 return htmlentities(mysql_fix_string($string));
}

function mysql_fix_string($string)
{
 if (get_magic_quotes_gpc()) $string = stripslashes($string);
 return mysql_real_escape_string($string);
}
?>

The mysql_entities_fix_string function first calls mysql_fix_string and then passes
the result through htmlentities before returning the fully sanitized string. Exam-
ple 10-23 shows your new “ultimate protection” version of Example 10-19.

Example 10-23. How to safely access MySQL and prevent XSS attacks

<?php
$user = mysql_entities_fix_string($_POST['user']);
$pass = mysql_entities_fix_string($_POST['pass']);
$query = "SELECT * FROM users WHERE user='$user' AND pass='$pass'";

function mysql_entities_fix_string($string)

Practical MySQL | 249

{
 return htmlentities(mysql_fix_string($string));
}

function mysql_fix_string($string)
{
 if (get_magic_quotes_gpc()) $string = stripslashes($string);
 return mysql_real_escape_string($string);
}
?>

Now that you have learned how to integrate PHP with MySQL and avoid malicious
user input, the next chapter will further expand on the use of form handling, including
data validation, multiple values, pattern matching, and security.

Test Your Knowledge: Questions
Question 10-1

What is the standard PHP function for connecting to a MySQL database?

Question 10-2
When is the mysql_result function not optimal?

Question 10-3
Give one reason why using the POST form method is usually better than GET.

Question 10-4
How can you determine the last entered value of an AUTO_INCREMENT column?

Question 10-5
Which PHP function escapes a string, making it suitable for use with MySQL?

Question 10-6
Which function can be used to prevent Cross Site Scripting injection attacks?

See the section “Chapter 10 Answers” on page 443 in Appendix A for the answers to
these questions.

250 | Chapter 10: Accessing MySQL Using PHP

CHAPTER 11

Form Handling

The main way that website users interact with PHP and MySQL is through the use of
HTML forms. These were introduced very early on in the development of the World
Wide Web in 1993—even before the advent of e-commerce—and have remained a
mainstay ever since, due to their simplicity and ease of use.

Of course, enhancements have been made over the years to add extra functionality to
HTML form handling, so this chapter will bring you up to speed on state-of-the-art
form handling and show you the best ways to implement forms for good usability and
security.

Building Forms
Handling forms is a multipart process. First, a form is created into which a user can
enter the required details. This data is then sent to the web server, where it is interpreted,
often with some error checking. If the PHP code identifies one or more fields that require
reentering, the form may be redisplayed with an error message. When the code is sat-
isfied with the accuracy of the input, it takes some action that usually involves the
database, such as entering details about a purchase.

To build a form, you must have at least the following elements:

• An opening <form> and closing </form> tag

• A submission type specifying either a get or post method

• One or more input fields

• The destination URL to which the form data is to be submitted

Example 11-1 shows a very simple form created using PHP. Type it in and save it as
formtest.php.

251

Example 11-1. formtest.php—a simple PHP form handler

<?php // formtest.php
echo <<<_END
<html>
 <head>
 <title>Form Test</title>
 </head>
 <body>
 <form method="post" action="formtest.php" />
 What is your name?
 <input type="text" name="name" />
 <input type="submit" />
 </form>
 </body>
</html>
_END;
?>

The first thing to notice about this example is that, as you have already seen in this
book, rather than dropping in and out of PHP code, the echo <<<_END..._END construct
is used whenever multiline HTML must be output.

Inside of this multiline output is some standard code for commencing an HTML docu-
ment, displaying its title, and starting the body of the document. This is followed by
the form, which is set to send its data using the post method to the PHP program
formtest.php, which is the name of the program itself.

The rest of the program just closes all the items it opened: the form, the body of the
HTML document, and the PHP echo <<<_END statement. The result of opening this
program in a web browser can be seen in Figure 11-1.

Figure 11-1. The result of opening formtest.php in a web browser

252 | Chapter 11: Form Handling

Retrieving Submitted Data
Example 11-1 is only one part of the multipart form handling process. If you enter a
name and click on the Submit Query button, absolutely nothing will happen other than
the form being redisplayed. So now it’s time to add some PHP code to process the data
submitted by the form.

Example 11-2 expands on the previous program to include data processing. Type it in,
or modify formtest.php by adding in the new lines, save it as formtest2.php, and try the
program for yourself. The result of running this program and entering a name can be
seen in Figure 11-2.

Figure 11-2. formtest.php with data handling

Example 11-2. Updated version of formtest.php

<?php // formtest2.php
if (isset($_POST['name'])) $name = $_POST['name'];
else $name = "(Not entered)";

echo <<<_END
<html>
 <head>
 <title>Form Test</title>
 </head>
 <body>
 Your name is: $name

 <form method="post" action="formtest2.php">
 What is your name?
 <input type="text" name="name" />
 <input type="submit" />
 </form>
 </body>
</html>
_END;
?>

Retrieving Submitted Data | 253

The only changes are a couple of lines at the start that check the $_POST associative array
for the field name having been submitted. The previous chapter introduced the
$_POST associative array, which contains an element for each field in an HTML form.
In Example 11-2, the input name used was name and the form method was post, so
element name of the $_POST array contains the value in $_POST['name'].

The PHP isset function is used to test whether $_POST['name'] has been assigned a
value. If nothing was posted, the program assigns the value “(Not entered)”; otherwise,
it stores the value that was entered. Then a single line has been added after the
<body> statement to display that value, which is stored in $name.

register_globals: An Old Solution Hangs On
Before security became such a big issue, the default behavior of PHP was to assign the
$_POST and $_GET arrays directly to PHP variables. For example, there would be no need
to use the instruction $name=$_POST['name']; because $name would already be given that
value automatically by PHP at the program start!

Initially (prior to version 4.2.0 of PHP), this seemed a very useful idea that saved a lot
of extra code-writing, but this practice has now been discontinued and the feature is
disabled by default. Should you find register_globals enabled on a production web
server for which you are developing, you should urgently ask your server administrator
to disable it.

So why disable register_globals? It enables anyone to enter a GET input on the tail of
a URL, like this: http://myserver.com?override=1, and if your code were ever to use the
variable $override and you forgot to initialize it (for example, through $override=0;),
the program could be compromised by such an exploit.

In fact, because many installations on the Web remain with this gaping hole, I advise
you to always initialize every variable you use, just in case your code will ever run on
such a system. Initialization is also good programming practice, because you can com-
ment each initialization to remind yourself and other programmers what a variable is
for.

If you ever find yourself maintaining code that seems to assume values
for certain variables for no apparent reason, you can make an educated
guess that the programmer wrote the code using register_globals, and
that these values are intended to be extracted from a POST or GET. If so,
I recommend you rewrite the code to load these variables explicitly from
the correct $_POST or $_GET array.

Default Values
Sometimes it’s convenient to offer your site visitors a default value in a web form. For
example, suppose you put up a loan repayment calculator widget on a real estate

254 | Chapter 11: Form Handling

website. It could make sense to enter default values of, say, 25 years and 6 percent
interest, so that the user can simply type in either the principal sum to borrow or the
amount that he or she can afford to pay each month.

In this case, the HTML for those two values would be something like Example 11-3.

Example 11-3. Setting default values

<form method="post" action="calc.php"><pre>
 Loan Amount <input type="text" name="principle" />
Monthly Repayment <input type="text" name="monthly" />
 Number of Years <input type="text" name="years" value="25" />
 Interest Rate <input type="text" name="rate" value="6" />
 <input type="submit" />
</pre></form>

If you wish to try this (and the other HTML code samples) out, type it
in and save it with a .html file extension, such as test.html, then load that
file into your browser.

Take a look at the third and fourth inputs. By populating the value parameter, you
display a default value in the field, which the users can then change if they wish. With
sensible default values you can often make your web forms more user-friendly by min-
imizing unnecessary typing. The result of the previous code looks like Figure 11-3. Of
course, this was created just to illustrate default values and, because the program
calc.php has not been written, the form will not do anything if submitted.

Default values are also used for hidden fields if you want to pass extra information from
your web page to your program, in addition to what users enter. We’ll look at hidden
fields later in this chapter.

Figure 11-3. Using default values for selected form fields

Retrieving Submitted Data | 255

Input Types
HTML forms are very versatile and allow you to submit a wide range of different types
of inputs ranging from text boxes and text areas to checkboxes, radio buttons, and
more.

Text Boxes
Probably the type of input you will most often use is the text box. It accepts a wide
range of alphanumeric text and other characters in a single-line box. The general format
of a text box input is:

<input type="text" name="name" size="size" maxlength="length" value="value" />

We’ve already covered the name and value parameters, but two more are introduced
here: size and maxlength. The size parameter specifies the width of the box, in characters
of the current font, as it should appear on the screen, and maxlength specifies the max-
imum number of characters that a user is allowed to enter into the field.

The only required parameters are type, which tells the web browser what type of input
is to be expected, and name, for providing a name to the input that is then used to
process the field upon receipt of the submitted form.

Text Areas
When you need to accept input of more than a short line of text, use a text area. This
is similar to a text box but, because it allows multiple lines, it has some different pa-
rameters. Its general format looks like this:

<textarea name="name" cols="width" rows="height" wrap="type">
</textarea>

The first thing to notice is that <textarea> has its own tag and is not a subtype of the
input tag. It therefore requires a closing </textarea> to end input.

Instead of a default parameter, if you have default text to display, you must put it before
the closing </textarea>, and it will then be displayed and be editable by the user, like
this:

<textarea name="name" cols="width" rows="height" wrap="type">
This is some default text.
</textarea>

To control the width and height, use the cols and rows parameters. Both use the char-
acter spacing of the current font to determine the size of the area. If you omit these
values, a default input box will be created that will vary in dimensions depending on
the browser used, so you should always define them to be certain about how your form
will appear.

256 | Chapter 11: Form Handling

Lastly, you can control how the text entered into the box will wrap (and how any such
wrapping will be sent to the server) using the wrap parameter. Table 11-1 shows the
wrap types available. If you leave out the wrap parameter, soft wrapping is used.

Table 11-1. The wrap types available in a textarea input

Type Action

off Text does not wrap and lines appear exactly as the user types them.

soft Text wraps but is sent to the server as one long string without carriage returns and line feeds.

hard Text wraps and is sent to the server in wrapped format with soft returns and line feeds.

Checkboxes
When you want to offer a number of different options to a user, from which he or she
can select one or more items, checkboxes are the way to go. The format to use is:

<input type="checkbox" name="name" value="value" checked="checked" />

If you include the checked parameter, the box is already checked when the browser is
displayed (the string you assign to the parameter doesn’t matter; the parameter just has
to be present). If you don’t include the parameter, the box is shown unchecked. Here
is an example of an unchecked box:

I Agree <input type="checkbox" name="agree" />

If the user doesn’t check the box, no value will be submitted. But if they do, a value of
“on” will be submitted for the field named agree. If you prefer to have your own value
submitted instead of the word “on” (such as the number 1), you could use the following
syntax:

I Agree <input type="checkbox" name="agree" value="1" />

On the other hand, if you wish to offer a newsletter to your readers when submitting
a form, you might want to have the checkbox already checked as the default value:

Subscribe? <input type="checkbox" name="news" checked="checked" />

If you want to allow groups of items to be selected at one time, assign them all the same
name. However, only the last item checked will be submitted, unless you pass an array
as the name. For example, Example 11-4 allows the user to select his favorite ice creams
(see Figure 11-4 for how it displays in a browser).

Example 11-4. Offering multiple checkbox choices

 Vanilla <input type="checkbox" name="ice" value="Vanilla" />
 Chocolate <input type="checkbox" name="ice" value="Chocolate" />
Strawberry <input type="checkbox" name="ice" value="Strawberry" />

If only one of the checkboxes is selected, such as the second one, only that item will be
submitted (the field named ice would be assigned the value “Chocolate”). But if two

Retrieving Submitted Data | 257

or more are selected, only the last value will be submitted, with prior values being
ignored.

If you want exclusive behavior—so that only one item can be submitted—then you
should use radio buttons (see the next section), but to allow multiple submissions, you
have to slightly alter the HTML, as in Example 11-5 (note the addition of the square
brackets, [], following the values of ice):

Example 11-5. Submitting multiple values with an array

 Vanilla <input type="checkbox" name="ice[]" value="Vanilla" />
 Chocolate <input type="checkbox" name="ice[]" value="Chocolate" />
Strawberry <input type="checkbox" name="ice[]" value="Strawberry" />

Now, when the form is submitted, if any of these items have been checked, an array
called ice will be submitted that contains any and all values. In each case, you can extract
either the single submitted value, or the array of values, to a variable like this:

$ice = $_POST['ice'];

If the field ice has been posted as a single value, $ice will be a single string, such as
“Strawberry”. But if ice was defined in the form as an array (like Example 11-5), $ice
will be an array, and its number of elements will be the number of values submitted.
Table 11-2 shows the seven possible sets of values that could be submitted by this
HTML for one, two, or all three selections. In each case, an array of one, two, or three
items is created.

Table 11-2. The seven possible sets of values for the array $ice

One value submitted Two values submitted Three values submitted

$ice[0] => Vanilla

$ice[0] => Chocolate

$ice[0] => Strawberry

$ice[0] => Vanilla

$ice[1] => Chocolate

$ice[0] => Vanilla

$ice[1] => Chocolate

$ice[2] => Strawberry

$ice[0] => Vanilla

$ice[1] => Strawberry

Figure 11-4. Using checkboxes to make quick selections

258 | Chapter 11: Form Handling

One value submitted Two values submitted Three values submitted

$ice[0] => Chocolate

$ice[1] => Strawberry

If $ice is an array, the PHP code to display its contents is quite simple and might look
like this:

foreach($ice as $item) echo "$item
";

This uses the standard PHP foreach construct to iterate through the array $ice and pass
each element’s value into the variable $item, which is then displayed using the echo
command. The
 is just an HTML formatting device, to force a new line after each
flavor in the display.

By default, checkboxes are square.

Radio Buttons
Radio buttons are named after the push-in preset buttons found on many older radios,
where any previously depressed button pops back up when another is pressed. They
are used when you want only a single value to be returned from a selection of two or
more options. All the buttons in a group must use the same name and, because only a
single value is returned, you do not have to pass an array.

For example, if your website offers a choice of delivery times for items purchased from
your store, you might use HTML like that in Example 11-6 (see Figure 11-5 to see how
it displays).

Figure 11-5. Selecting a single value with radio buttons

Example 11-6. Using radio buttons

8am-Noon<input type="radio" name="time" value="1" />|
Noon-4pm<input type="radio" name="time" value="2" checked="checked" />|
 4pm-8pm<input type="radio" name="time" value="3" />

Retrieving Submitted Data | 259

Here the second option of Noon-4pm has been selected by default. This default choice
ensures that at least one delivery time will be chosen by the users, which they can change
to one of the other two options if they prefer. Had one of the items not been already
checked, the user might forget to select an option and no value would be submitted at
all for the delivery time.

By default, radio buttons are round.

Hidden Fields
Sometimes it is convenient to have hidden form fields so that you can keep track of the
state of form entry. For example, you might wish to know whether a form has already
been submitted. You can achieve this by adding some HTML in your PHP code, such
as the following:

echo '<input type="hidden" name="submitted" value="yes" />'

This is a simple PHP echo statement that adds an input field to the HTML form. Let’s
assume the form was created outside the program and displayed to the user. The first
time the PHP program receives the input, this line of code has not run, so there will be
no field named submitted. The PHP program recreates the form, adding the input field.
So when the visitor resubmits the form, the PHP program receives it with the submit-
ted field set to “yes”. The code can simply check whether the field is present:

if (isset($_POST['submitted']))
{...

Hidden fields can also be useful for storing other details, such as a session ID string
that you might create to identify a user, and so on.

Never treat hidden fields as secure—because they are not. The HTML
containing them can easily be viewed using a browser’s View Source
feature.

Select
The select tag lets you create a drop-down list of options, offering either single or
multiple selections. It conforms to the following syntax:

<select name="name" size="size" multiple="multiple">

The parameter size is the number of lines to display. Clicking on the display causes a
list to drop down showing all the options. If you use the multiple parameter, multiple
options can be selected from the list by pressing the Ctrl key when clicking. So to ask
a user for her favorite vegetable from a choice of five, you might use HTML as in
Example 11-7, which offers a single selection.

260 | Chapter 11: Form Handling

Example 11-7. Using ‘select’

Vegetables <select name="veg" size="1">
<option value="Peas">Peas</option>
<option value="Beans">Beans</option>
<option value="Carrots">Carrots</option>
<option value="Cabbage">Cabbage</option>
<option value="Broccoli">Broccoli</option>
</select>

This HTML offers five choices with the first one, Peas, preselected (due to it being the
first item). Figure 11-6 shows the output where the list has been clicked on to drop it
down, and the option Carrots has been highlighted. If you want to have a different
default option offered first (such as Beans), use the selected tag, like this:

<option selected="selected" value="Beans">Beans</option>

You can also allow for the selection of more than one item by users, as in Example 11-8.

Example 11-8. Using select with the multiple parameter

Vegetables <select name="veg" size="5" multiple="multiple">
<option value="Peas">Peas</option>
<option value="Beans">Beans</option>
<option value="Carrots">Carrots</option>
<option value="Cabbage">Cabbage</option>
<option value="Broccoli">Broccoli</option>
</select>

This HTML is not very different; only the size has been changed to “5” and the tag
multiple has been added. But, as you can see from Figure 11-7, it is now possible to
select more than one option by using the Ctrl key when clicking. You can leave out the
size parameter if you wish, and the output will be the same, but with a larger list it
might take up too much screen space, so I recommend that you pick a suitable number
of rows and stick with it. I also recommend against multiple select boxes smaller than
two rows in height—some browsers may not correctly display the scroll bars needed
to access it.

Figure 11-6. Creating a drop-down list with select

Retrieving Submitted Data | 261

You can also use the selected tag within a multiple select and can, in fact, have more
than one option preselected if you wish.

Labels
You can provide an even better user experience by utilizing the label tag. With it, you
can surround a form element, making it selectable by clicking any visible part contained
between the opening and closing label tags.

For instance, going back to the example of choosing a delivery time, you could allow
the user to click on the radio button itself and the associated text, like this:

<label>8am-Noon<input type="radio" name="time" value="1" /></label>

The text will not be underlined like a hyperlink when you do this, but as the mouse
passes over, it will change to an arrow instead of a text cursor, indicating that the whole
item is clickable.

The submit button

To match the type of form being submitted, you can change the text of the submit
button to anything you like by using the value parameter, like this:

<input type="submit" value="Search" />

You can also replace the standard text button with a graphic image of your choice,
using HTML such as this:

<input type="image" name="submit" src="image.gif" />

Sanitizing Input
Now we return to PHP programming. It can never be emphasized enough that handling
user data is a security minefield, and that it is essential to learn to treat all such data

Figure 11-7. Using a select with the multiple parameter

262 | Chapter 11: Form Handling

with utmost caution from the word go. It’s actually not that difficult to sanitize user
input from potential hacking attempts, but it must be done.

The first thing to remember is that regardless of what constraints you have placed in
an HTML form to limit the types and sizes of inputs, it is a trivial matter for a hacker
to use their browser’s View Source feature to extract the form and modify it to provide
malicious input to your website.

Therefore you must never trust any variable that you fetch from either the $_GET or
$_POST arrays until you have processed it. If you don’t, users may try to inject JavaScript
into the data to interfere with your site’s operation, or even attempt to add MySQL
commands to compromise your database.

Therefore, instead of just using code such as the following when reading in user input:

$variable = $_POST['user_input'];

you should also use one or more of the following lines of code. For example, to prevent
escape characters being injected into a string that will be presented to MySQL, you
should use the following (remembering that this function takes into account the current
character set of a MySQL connection, so it can be used only with an open connection):

$variable = mysql_real_escape_string($variable);

To get rid of unwanted slashes, use:

$variable = stripslashes($variable);

And to remove any HTML from a string, use the following:

$variable = htmlentities($variable);

For example, this would change a string of interpretable HTML code like hi
into hi, which displays as text, and won’t be interpreted as HTML
tags.

Finally, if you wish to strip HTML entirely from an input, use the following:

$variable = strip_tags($variable);

In fact, until you know exactly what sanitization you require for a program, Exam-
ple 11-9 shows a pair of functions that bring all these checks together to provide a very
good level of security.

Example 11-9. The sanitizeString and sanitizeMySQL functions

<?php
function sanitizeString($var)
{
 $var = stripslashes($var);
 $var = htmlentities($var);
 $var = strip_tags($var);
 return $var;
}

Retrieving Submitted Data | 263

function sanitizeMySQL($var)
{
 $var = mysql_real_escape_string($var);
 $var = sanitizeString($var);
 return $var;
}
?>

Add this code to the end of your PHP programs and you can then call it for each user
input to sanitize, like this:

$variable = sanitizeString($_POST['user_input']);

Or, when you have an open MySQL connection:

$variable = sanitizeMySQL($_POST['user_input']);

An Example Program
So let’s look at how a real life PHP program integrates with an HTML form by creating
the program convert.php listed in Example 11-10. Type it in as shown and try it for
yourself.

Example 11-10. A program to convert values between Fahrenheit and Celsius

<?php // convert.php
$f = $c = "";

if (isset($_POST['f'])) $f = sanitizeString($_POST['f']);
if (isset($_POST['c'])) $c = sanitizeString($_POST['c']);

if ($f != '')
{
 $c = intval((5 / 9) * ($f - 32));
 $out = "$f °f equals $c °c";
}
elseif($c != '')
{
 $f = intval((9 / 5) * $c + 32);
 $out = "$c °c equals $f °f";
}
else $out = "";

echo <<<_END
<html><head><title>Temperature Converter</title>
</head><body><pre>
Enter either Fahrenheit or Celsius and click on Convert

$out
<form method="post" action="convert.php">
Fahrenheit <input type="text" name="f" size="7" />
 Celsius <input type="text" name="c" size="7" />
 <input type="submit" value="Convert" />
</form></pre></body></html>

264 | Chapter 11: Form Handling

_END;

function sanitizeString($var)
{
 $var = stripslashes($var);
 $var = htmlentities($var);
 $var = strip_tags($var);
 return $var;
}
?>

When you call up convert.php in a browser, the result should look something like the
screenshot in Figure 11-8.

Figure 11-8. The temperature conversion program in action

To break the program down, the first line initializes the variables $c and $f in case they
do not get posted to the program. The next two lines fetch the values of either the field
named f or the one named c, for an input Fahrenheit or Celsius value. If the user inputs
both, the Celsius is simply ignored and the Fahrenheit value is converted. As a security
measure, the new function sanitizeString from Example 11-9 is also used.

So, having either submitted values or empty strings in both $f and $c, the next portion
of code constitutes an if...elseif...else structure that first tests whether $f has a
value. If not, it checks $c; otherwise, the variable $out is set to the empty string (more
on that in a moment).

If $f is found to have a value, the variable $c is assigned a simple mathematical expres-
sion that converts the value of $f from Fahrenheit to Celsius. The formula used is
Celsius = (5 / 9) × (Fahrenheit – 32). The variable $out is then set to a message string
explaining the conversion.

An Example Program | 265

On the other hand, if $c is found to have a value, a complementary operation is per-
formed to convert the value of $c from Celsius to Fahrenheit and assign the result to
$f. The formula used is Fahrenheit = (9 / 5) × (Celsius + 32). As with the previous section,
the string $out is then set to contain a message about the conversion.

In both conversions, the PHP intval function is called to convert the result of the
conversion to an integer value. It’s not necessary, but looks better.

With all the arithmetic done, the program now outputs the HTML, which starts with
the basic head and title and then contains some introductory text before displaying the
value of $out. If no temperature conversion was made, $out will have a value of NULL
and nothing will be displayed, which is exactly what we want when the form hasn’t yet
been submitted. But if a conversion was made, $out contains the result, which is
displayed.

After this, we come to the form, which is set to submit using the POST method to the
file convert.php (the program itself). Within the form, there are two inputs for either a
Fahrenheit or Celsius value to be entered. A submit button with the text “Convert” is
then displayed and the form is closed.

After outputting the HTML to close the document, we come finally to the function
sanitizeString from Example 11-9.

All the examples in this chapter have used the POST method to send form
data. I recommend this, as the neatest and most secure method. How-
ever, the forms can easily be changed to use the GET method, as long as
values are fetched from the $_GET array instead of the $_POST array. Rea-
sons to do this might include making the result of a search bookmark-
able or directly linkable from another page.

The next chapter will show you how you can use the Smarty templating engine to
provide a framework for separating your application code from the way your content
is presented to users.

Test Your Knowledge: Questions
Question 11-1

Form data can be submitted using either the POST or the GET method. Which asso-
ciative arrays are used to pass this data to PHP?

Question 11-2
What is register_globals and why is it a bad idea?

Question 11-3
What is the difference between a text box and a text area?

266 | Chapter 11: Form Handling

Question 11-4
If a form has to offer three choices to a user, each of which is mutually exclusive,
so that only one of the three can be selected, which input type would you use for
this, given a choice between checkboxes and radio buttons?

Question 11-5
How can you submit a group of selections from a web form using a single field
name?

Question 11-6
How can you submit a form field without displaying it in the browser?

Question 11-7
Which HTML tag is used to encapsulate a form element and support text or
graphics, making the entire unit selectable with a mouse-click?

Question 11-8
Which PHP function converts HTML into a format that can be displayed but will
not be interpreted as HTML by a browser?

See the section “Chapter 11 Answers” on page 444 in Appendix A for the answers to
these questions.

Test Your Knowledge: Questions | 267

CHAPTER 12

Templating with Smarty

As your projects grow more complicated, particularly when you start working with web
designers, there’s likely to come a time when the convenience of separating the program
code from the presentation becomes apparent.

Initially PHP itself was developed as a sort of templating system with a few elements
of programming and flow control. But it quickly developed into the powerful pro-
gramming language we know today. Some developers still treat it a little like a tem-
plating system, though, as in the case of the WordPress blogging platform, which uses
a set of template PHP files for each theme.

However, allowing presentation to become intertwined with programming can create
problems, because it means that the layout designers have full access to the source code
and can unwittingly make dangerous changes to it. Additionally, using a separate tem-
plating system frees up designers to modify templates to their hearts’ content, safe in
the knowledge that nothing they do can break your program code; it leads to much
greater flexibility.

It’s also an incredible boon when your boss comes along and demands a whole load of
design changes, because all you have to do is modify the template files. Without a
templating system, you’d very likely have to search through many files of PHP code to
make the necessary modifications.

Some programmers like to stick with just the programming language
when they develop web pages, and don’t use templates. If you’re one of
them, I still recommend that you read this chapter, as you’ll learn all
about templating, in case you’re suddenly required to work on any
projects that use it.

269

Why Smarty?
The Smarty templating system is probably the best known and most used on the In-
ternet. It provides the following benefits:

• Designers can’t break application code. They can modify the templates all they
want, but the code stays intact. Consequently the code is tighter, more secure, and
easier to maintain.

• Errors in the templates are confined to Smarty’s error-handling routines, making
them simple and intuitive to deal with.

• With presentation in its own layer, designers can modify or completely redesign a
web layout from scratch—all without intervention from the programmer.

• Programmers can go about maintaining the application code, changing the way
content is acquired, and so on, without disturbing the presentation layer.

• Templates are a close representation of what the final output will be, which is an
intuitive approach.

• Smarty has many security features built in so that designers won’t breach security
and you won’t open your server to the execution of arbitrary PHP code.

But separating the application code from the presentation layer doesn’t mean that the
logic is also separated, because Smarty offers comprehensive presentation logic fea-
tures, too, as you’ll see later.

Installation
To install Smarty, visit http://www.smarty.net/download.php and download the latest
ZIP archive. Once it’s downloaded, you need to perform the following steps:

1. Extract the contents of the downloaded file into a suitable folder.

2. Determine your web server document’s root by running the following PHP snippet
(if you don’t already know it):

<?php echo $_SERVER['DOCUMENT_ROOT']; ?>

3. Create a new folder called Smarty in this document root.

4. Open the extracted folder, navigate into the libs directory, and copy the entire
contents (including subfolders) into the Smarty directory you just created. You will
end up with the following directory structure in your document root:

Smarty
 internals
 (various files...)
 plugins
 (various files...)
 Config_File.class.php
 debug.tpl

270 | Chapter 12: Templating with Smarty

http://www.smarty.net/download.php

 Smarty.class.php
 Smarty_Compiler.class.php

That gets Smarty installed, but you also need to create four subdirectories for every
application that uses it. So create the new application directory temp just under the
same document root where you just installed Smarty. This will hold the files for a
temporary application that we’ll write to test Smarty.

Inside the temp directory, create another one called smarty to house the folders con-
taining the template files. Finally, create the following subdirectories within the new
smarty directory: cache, config, templates, and templates_c. Your directory structure is
now:

temp
 smarty
 cache
 config
 templates
 templates_c

Creating Scripts
You are now ready to create some Smarty scripts. Type in the code in Example 12-1
and save it as smarty.php.

Example 12-1. The smarty.php program

<?php // smarty.php
$path = $_SERVER['DOCUMENT_ROOT'];
require "$path/Smarty/Smarty.class.php";

$smarty = new Smarty();
$smarty->template_dir = "$path/temp/smarty/templates";
$smarty->compile_dir = "$path/temp/smarty/templates_c";
$smarty->cache_dir = "$path/temp/smarty/cache";
$smarty->config_dir = "$path/temp/smarty/configs";

$smarty->assign('title', 'Test Web Page');
$smarty->display("index.tpl");
?>

This program tells Smarty where it can find the Smarty.class.php file, and where your
Smarty templates are located. Because we will be using both .php and .tpl template files
in this chapter, I have included everything you need in each file.

Example 12-1 looks up the document root and sets the variable $path to that value. It
then uses $path as a prefix for fetching the Smarty class files and the template files from
the temp folder. This saves you the maintenance hassle of hard-wiring full path names
into the code.

Creating Scripts | 271

Note the penultimate $smarty->assign command. This creates a Smarty variable called
title and assigns it the string value “Test Web Page”. You’ll see why shortly.

Once you have typed the program in, save it using the filename smarty.php into the
temp directory you created earlier.

Creating Templates
Now you need to write a simple Smarty template file to test whether everything is
working, so type in Example 12-2 and save it in a file named index.tpl in the temp/
smarty/templates directory you created earlier.

Example 12-2. The index.tpl template file

<html>
 <head>
 <title>{$title}</title>
 </head>
 <body>
 This is a Smarty Test
 </body>
</html>

As you can see, this is simply an HTML file with a .tpl file extension. But note the use
of the Smarty variable {$title} on the third line. This is the same variable that was
defined in Example 12-1. Smarty will substitute the value of the variable instead of the
text in Example 12-2, because of the surrounding curly braces {} (see Figure 12-1).

Figure 12-1. The output from index.tpl in Example 12-2

A Practical Example
Let’s take the program sqltest.php from Example 10-8 in Chapter 10 and rewrite it to
use Smarty. This will be a two-part process: one part for the program code and one for
the Smarty presentation layer. Example 12-3 is the revised program. Once you have
typed it in, save it into the temp directory that you created earlier using the filename
smartytest.php.

272 | Chapter 12: Templating with Smarty

Example 12-3. The sqltest.php program rewritten for Smarty as smartytest.php

<?php // smartytest.php
$path = $_SERVER['DOCUMENT_ROOT'];
require "$path/Smarty/Smarty.class.php";

$smarty = new Smarty();
$smarty->template_dir = "$path/temp/smarty/templates";
$smarty->compile_dir = "$path/temp/smarty/templates_c";
$smarty->cache_dir = "$path/temp/smarty/cache";
$smarty->config_dir = "$path/temp/smarty/configs";

require_once("$path/temp/login.php");
$db_server = mysql_connect($db_hostname, $db_username, $db_password);

if (!$db_server) die("Unable to connect to MySQL: " . mysql_error());

mysql_select_db($db_database)
 or die("Unable to select database: " . mysql_error());

if (isset($_POST['author']) &&
 isset($_POST['title']) &&
 isset($_POST['category']) &&
 isset($_POST['year']) &&
 isset($_POST['isbn']))
{
 $author = get_post('author');
 $title = get_post('title');
 $category = get_post('category');
 $year = get_post('year');
 $isbn = get_post('isbn');

 if (isset($_POST['delete']) && $isbn != "")
 {
 $query = "DELETE FROM classics WHERE isbn='$isbn'";

 if (!mysql_query($query))
 {
 echo "DELETE failed: $query
" .
 mysql_error() . "<p>";
 }
 }
 else
 {
 $query = "INSERT INTO classics VALUES" .
 "('$author', '$title', '$category', '$year', '$isbn')";

 if (!mysql_query($query))
 {
 echo "INSERT failed: $query
" .
 mysql_error() . "<p>";
 }
 }
}

$query = "SELECT * FROM classics";

A Practical Example | 273

$result = mysql_query($query);

if (!$result) die ("Database access failed: " . mysql_error());
$rows = mysql_num_rows($result);

for ($j = 0 ; $j < $rows ; ++$j)
{
 $results[] = mysql_fetch_array($result);
}

mysql_close($db_server);

$smarty->assign('results', $results);
$smarty->display("smartytest.tpl");

function get_post($var)
{
 return mysql_real_escape_string($_POST[$var]);
}
?>

There are a couple of things that you must have done to ensure this program will work:

• You must have worked through the examples in Chapter 8 and have the table
classics ready-populated in the publications database (or another database you may
have used).

• You must have copied the file login.php (created in Chapter 10) to the temp folder
you created earlier, or Example 12-3 will be unable to access MySQL.

The program starts off by loading in both the Smarty class and login.php files from their
correct places. Then it is followed by the program code from the old sqltest.php file,
without the HTML output that it used to have. In place of the HTML, we’ll use the
presentation layer template that I’ll show next.

The main thing remaining to note is the replacement of the mysql_fetch_row function
with the new mysql_fetch_array function, just before the call to mysql_close. The rea-
son for this is to fetch an entire row as an associative array.

The function mysql_fetch_array returns a row from the database with the value in each
column as an element of the array, and the column name as the array element name. The
$results object is an array of arrays. Each execution of $results[] =
mysql_fetch_array($result); adds another array of results to the $results array.

This makes it easy to pass a lot of data directly to the Smarty template. How easy? Just
a single line is used:

$smarty->assign('results', $results);

This passes an entire array of arrays using the name results.

274 | Chapter 12: Templating with Smarty

The following line in Example 12-3 displays the Smarty template, then program exe-
cution ends. So now let’s look at the template, which is in Example 12-4. Type it in
and save it as smartytest.tpl in the temp/smarty/templates folder you created earlier.

Example 12-4. The smartytest.tpl file

<html><head>
<title>Smarty Test</title>
</head><body>

<form action="smartytest.php" method="post"><pre>
 Author <input type="text" name="author">
 Title <input type="text" name="title">
 Category <input type="text" name="category">
 Year <input type="text" name="year">
 ISBN <input type="text" name="isbn">
 <input type="submit" value="ADD RECORD">
</pre></form>

{section name=row loop=$results}
 <form action="smartytest.php" method="post">
 <input type="hidden" name="delete" value="yes">
 <input type="hidden" name="isbn" value="{$results[row].isbn}">
 <pre>
 Author {$results[row].author}
 Title {$results[row].title}
 Category {$results[row].category}
 Year {$results[row].year}
 ISBN {$results[row].isbn}
 <input type="submit" value="DELETE RECORD"></form>
 </pre>
{/section}

</body></html>

In Figure 12-2, you can see the result of using this template file from the
smartytest.php program. The first half of the file simply creates the form used to add
more records to the MySQL database—the interesting stuff begins at the {section
opening tag. A {section} tag is used for looping over arrays of data. Each time through
the loop in this example, the Smarty variable row is assigned a value representing the
iteration of the loop, starting from 0.

In the same {section} tag, the loop keyword indicates the array that must be processed.
In this case, it is the $results array we passed to the template from the previous pro-
gram. Given these parameters, it is possible to pull any data wanted from the result
rows that were returned by MySQL.

For each row, any element can be accessed by its column name. For example, to output
the current row’s year field, use {$results[row].year}, where row refers to the current
iteration of the loop, or the current row being processed, and .year tells Smarty which
column to reference. It can do this because we passed an associative array from

A Practical Example | 275

smartytest.php (now you see why the program was changed from using
mysql_fetch_row to mysql_fetch_array).

The loop ends with a closing {/section} tag that will cause the loop to reiterate if there
are any more rows to process. Otherwise, the HTML below it is displayed.

As you can see, this leaves a tremendous amount of control over layout and design with
whomever edits the template. They can place any items of data in any positions and in
any order. But at no time do they have any access to your program code, and there is
nothing they can do to inject bugs into your program or corrupt the MySQL database.

And as for you the programmer? If you’re handing over the task of layout
to a web designer, you’ll never have to worry what the output is going
to look like. All you need do is give them a very simple Smarty template
showing all the data you are passing to it, and the form input your pro-
gram will accept from it. It’s up to them to then knock it all together
into an award-winning design. Think of the freedom that gives you to
write fast and effective code, without the dilemma of how to present its
output.

Figure 12-2. The result of combining smartytest.php and smartytest.tpl

276 | Chapter 12: Templating with Smarty

You have now seen how to refer to both string and numeric variables, as well as arrays,
within a Smarty template. If you think templating will be useful in your projects, you
can learn what else it can do for you at http://www.smarty.net/crashcourse.php; the full
documentation is available at http://www.smarty.net/manual/en/.

In the next chapter, we’ll look at a range of practical PHP functions and techniques
that you’ll need to create efficient programs.

Test Your Knowledge: Questions
Question 12-1

Name three benefits of using a templating system such as Smarty.

Question 12-2
How does a PHP program pass a variable to a Smarty template?

Question 12-3
How does a Smarty template access a variable that has been passed to it?

Question 12-4
What Smarty programming tag is used to iterate through an array?

Question 12-5
How do you enable Smarty templating in a PHP program?

See the section “Chapter 12 Answers” on page 445 in Appendix A for the answers to
these questions.

Test Your Knowledge: Questions | 277

http://www.smarty.net/crashcourse.php
http://www.smarty.net/manual/en/

CHAPTER 13

Cookies, Sessions, and Authentication

As your web projects grow larger and more complicated, you will find an increasing
need to keep track of your users. Even if you aren’t offering logins and passwords, you
will still often find a need to store details about a user’s current session and possibly
also recognize them when they return to your site.

Several technologies support this kind of interaction, ranging from simple browser
cookies to session handling and HTTP authentication. Between them, they offer the
opportunity for you to configure your site to your users’ preferences and ensure a
smooth and enjoyable transition through it.

Using Cookies in PHP
A cookie is an item of data that a web server saves to your computer’s hard disk via a
web browser. It can contain almost any alphanumeric information (as long as it’s under
4 KB) and can be retrieved from your computer and returned to the server. Common
uses include session tracking, maintaining data across multiple visits, holding shopping
cart contents, storing login details, and more.

Because of their privacy implications, cookies can be read only from the issuing domain.
In other words, if a cookie is issued by, for example, oreilly.com, it can be retrieved only
by a web server using that domain. This prevents other websites from gaining access
to details to which they are not authorized.

Due to the way the Internet works, multiple elements on a web page can be embedded
from multiple domains, each of which can issue its own cookies. When this happens,
they are referred to as third-party cookies. Most commonly, these are created by ad-
vertising companies in order to track users across multiple websites.

Because of this, most browsers allow users to turn cookies off either for the current
server’s domain, third-party servers, or both. Fortunately, most people who disable
cookies do so only for third-party websites.

279

Cookies are exchanged during the transfer of headers, before the actual HTML of a
web page is sent, and it is impossible to send a cookie once any HTML has been
transferred. Therefore careful planning of cookie usage is important. Figure 13-1 illus-
trates a typical request and response dialog between a web browser and web server
passing cookies.

This exchange shows a browser receiving two pages:

1. The browser issues a request to retrieve the main page, index.html, at the website
http://www.webserver.com. The first header specifies the file and the second header
specifies the server.

2. When the web server at webserver.com receives this pair of headers, it returns some
of its own. The second header defines the type of content to be sent (text/html)
and the third one sends a cookie of the name name and with the value value. Only
then are the contents of the web page transferred.

3. Once the browser has received the cookie, it will then return it with every future
request made to the issuing server until the cookie expires or is deleted. So, when
the browser requests the new page /news.html, it also returns the cookie name with
the value value.

4. Because the cookie has already been set, when the server receives the request to
send /news.html, it does not have to resend the cookie, but just returns the reques-
ted page.

Figure 13-1. A browser/server request/response dialog with cookies

280 | Chapter 13: Cookies, Sessions, and Authentication

Setting a Cookie
To set a cookie in PHP is a simple matter. As long as no HTML has yet been transferred,
you can call the setcookie function, which has the following syntax (see Table 13-1):

setcookie(name, value, expire, path, domain, secure, httponly);

Table 13-1. The setcookie parameters

Parameter Description Example

name The name of the cookie. This is the name that your server will use to access
the cookie on subsequent browser requests.

username

value The value of the cookie, or the cookie’s contents. This can contain up to 4
KB of alphanumeric text.

Hannah

expire (optional) Unix timestamp of the expiration date. Generally, you will
probably use time() plus a number of seconds. If not set, the cookie
expires when the browser closes.

time() + 2592000

path (optional) The path of the cookie on the server. If this is a / (forward slash),
the cookie is available over the entire domain, such as www.web-
server.com. If it is a subdirectory, the cookie is available only within that
subdirectory. The default is the current directory that the cookie is being
set in and this is the setting you will normally use.

/

domain (optional) The Internet domain of the cookie. If this is webserver.com, the
cookie is available to all of webserver.com and its subdomains, such as
www.webserver.com and images.webserver.com. If it is images.web-
server.com, the cookie is available only to images.webserver.com and its
subdomains such as sub.images.webserver.com, but not, say, to
www.webserver.com.

.webserver.com

secure (optional) Whether the cookie must use a secure connection (https://). If
this value is TRUE, the cookie can be transferred only across a secure
connection. The default is FALSE.

FALSE

httponly (optional; implemented since PHP version 5.2.0) Whether the cookie must
use the HTTP protocol. If this value is TRUE, scripting languages such as
JavaScript cannot access the cookie. (Not supported in all browsers). The
default is FALSE.

FALSE

So, to create a cookie with the name username and the value “Hannah” that is accessible
across the entire web server on the current domain, and removed from the browser’s
cache in seven days, use the following:

setcookie('username', 'Hannah', time() + 60 * 60 * 24 * 7, '/');

Accessing a Cookie
Reading the value of a cookie is as simple as accessing the $_COOKIE system array. For
example, if you wish to see whether the current browser has the cookie called user-
name already stored and, if so, to read its value, use the following:

Using Cookies in PHP | 281

if (isset($_COOKIE['username'])) $username = $_COOKIE['username'];

Note that you can read a cookie back only after it has been sent to a web browser. This
means that when you issue a cookie, you cannot read it in again until the browser
reloads the page (or another with access to the cookie) from your website and passes
the cookie back to the server in the process.

Destroying a Cookie
To delete a cookie, you must issue it again and set a date in the past. It is important for
all parameters in your new setcookie call except the timestamp to be identical to the
parameters when the cookie was first issued; otherwise, the deletion will fail. Therefore,
to delete the cookie created earlier, you would use the following:

setcookie('username', 'Hannah', time() - 2592000, '/');

As long as the time given is in the past, the cookie should be deleted. However, I have
used a time of 2592000 seconds (one month) in the past in case the client computer’s
date and time are not correctly set.

HTTP Authentication
HTTP authentication uses the web server to manage users and passwords for the ap-
plication. It’s adequate for most applications that ask users to log in, although some
applications have specialized needs or more stringent security requirements that call
for other techniques.

To use HTTP authentication, PHP sends a header request asking to start an authenti-
cation dialog with the browser. The server must have this feature turned on in order
for it to work, but because it’s so common, your server is very likely to offer the feature.

Although it is usually installed with Apache, HTTP authentication may
not necessarily be installed on the server you use. So attempting to run
these examples may generate an error telling you that the feature is not
enabled, in which case you must install the module, change the config-
uration file to load the module, or ask your system administrator to do
these fixes.

From the user’s point of view, when they enter your URL into the browser or visit via
a link, an “Authentication Required” prompt pops up requesting two fields: username
and password (see Figure 13-2 for how this looks in Firefox).

The code to make this happen looks like Example 13-1.

282 | Chapter 13: Cookies, Sessions, and Authentication

Example 13-1. PHP authentication

<?php
if (isset($_SERVER['PHP_AUTH_USER']) &&
 isset($_SERVER['PHP_AUTH_PW']))
{
 echo "Welcome User: " . $_SERVER['PHP_AUTH_USER'] .
 " Password: " . $_SERVER['PHP_AUTH_PW'];
}
else
{
 header('WWW-Authenticate: Basic realm="Restricted Section"');
 header('HTTP/1.0 401 Unauthorized');
 die("Please enter your username and password");
}
?>

The first thing the program does is look for two particular values:
$_SERVER['PHP_AUTH_USER'] and $_SERVER['PHP_AUTH_PW']. If they both exist, they rep-
resent the username and password entered by a user into an authentication prompt.

If either of the values do not exist, the user has not yet been authenticated and the
prompt in Figure 13-2 is displayed by issuing the following header, where “Basic realm”
is the name of the section that is protected and appears as part of the pop-up prompt:

WWW-Authenticate: Basic realm="Restricted Area"

If the user fills out the fields, the PHP program runs again from the top. But if the user
clicks on the Cancel button, the program proceeds to the following two lines, which
send the following header and an error message:

HTTP/1.0 401 Unauthorized

The die statement causes the text “Please enter your username and password” to be
displayed (see Figure 13-3).

Figure 13-2. An HTTP authentication login prompt

HTTP Authentication | 283

Once a user has been authenticated, you will not be able to get the
authentication dialog to pop up again unless the user closes and reopens
all browser windows, as the web browser will keep returning the same
username and password to PHP. You may need to close and reopen your
browser a few times as you work through this section and try different
things out.

Now let’s check for a valid username and password. The code in Example 13-1 doesn’t
require much change to add this check, other than modifying the previous welcome
message code into a test for a correct username and password, followed by issuing a
welcome message. A failed authentication causes an error message to be sent (see
Example 13-2).

Example 13-2. PHP Authentication with input checking

<?php
$username = 'admin';
$password = 'letmein';

if (isset($_SERVER['PHP_AUTH_USER']) &&
 isset($_SERVER['PHP_AUTH_PW']))
{
 if ($_SERVER['PHP_AUTH_USER'] == $username &&
 $_SERVER['PHP_AUTH_PW'] == $password)
 echo "You are now logged in";
 else die("Invalid username / password combination");
}
else
{
 header('WWW-Authenticate: Basic realm="Restricted Section"');
 header('HTTP/1.0 401 Unauthorized');
 die ("Please enter your username and password");
}
?>

Figure 13-3. The result of clicking on the Cancel button

284 | Chapter 13: Cookies, Sessions, and Authentication

Incidentally, take a look at the wording of the error message: “Invalid username / pass-
word combination.” It doesn’t say whether the username or the password or both were
wrong—the less information you can give to a potential hacker, the better.

A mechanism is now in place to authenticate users, but only for a single username and
password. Also, the password appears in clear text within the PHP file, and if someone
managed to hack into your server, they would instantly know it. So let’s look at a better
way to handle usernames and passwords.

Storing Usernames and Passwords
Obviously MySQL is the natural way to store usernames and passwords. But again, we
don’t want to store the passwords as clear text, because our website could be compro-
mised if the database were accessed by a hacker. Instead, we’ll use a neat trick called a
one-way function.

This type of function is easy to use and converts a string of text into a seemingly random
string. Due to their one-way nature, such functions are virtually impossible to reverse,
so their output can be safely stored in a database—and anyone who steals it will be
none the wiser as to the passwords used.

The particular function we’ll use is called md5. You pass it a string to hash and it returns
a 32-character hexadecimal number. Use it like this:

$token = md5('mypassword');

That example happens to give $token the value:

34819d7beeabb9260a5c854bc85b3e44

Also available is the similar sha1 function, which is considered to be more secure, as it
has a better algorithm and also returns a 40-character hexadecimal number.

Salting
Unfortunately, md5 on its own is not enough to protect a database of passwords, because
it could still be susceptible to a brute force attack that uses another database of known
32-character hexadecimal md5 tokens. Such databases do exist, as a quick Google search
will verify.

Thankfully, though, we can put a spanner in the works of any such attempts by salt-
ing all the passwords before they are sent to md5. Salting is simply a matter of adding
some text that only we know about to each parameter to be encrypted, like this:

$token = md5('saltstringmypassword');

In this example, the text “saltstring” has been prepended to the password. Of course,
the more obscure you can make the salt, the better. I like to use salts such as this:

$token = md5('hqb%$tmypasswordcg*l');

HTTP Authentication | 285

Here some random characters have been placed both before and after the password.
Given just the database, and without access to your PHP code, it should now be next
to impossible to work out the stored passwords.

All you have to do when verifying someone’s login password is to add these same
random strings back in before and after it, and then check the resulting token from an
md5 call against the one stored in the database for that user.

Let’s create a MySQL table to hold some user details and add a couple of accounts. So
type in and save the program in Example 13-3 as setupusers.php, then open it in your
browser.

Example 13-3. Creating a users table and adding two accounts

<?php // setupusers.php
require_once 'login.php';
$db_server = mysql_connect($db_hostname, $db_username, $db_password);
if (!$db_server) die("Unable to connect to MySQL: " . mysql_error());
mysql_select_db($db_database)
 or die("Unable to select database: " . mysql_error());

$query = "CREATE TABLE users (
 forename VARCHAR(32) NOT NULL,
 surname VARCHAR(32) NOT NULL,
 username VARCHAR(32) NOT NULL UNIQUE,
 password VARCHAR(32) NOT NULL
)";

$result = mysql_query($query);
if (!$result) die ("Database access failed: " . mysql_error());

$salt1 = "qm&h*";
$salt2 = "pg!@";

$forename = 'Bill';
$surname = 'Smith';
$username = 'bsmith';
$password = 'mysecret';
$token = md5("$salt1$password$salt2");
add_user($forename, $surname, $username, $token);

$forename = 'Pauline';
$surname = 'Jones';
$username = 'pjones';
$password = 'acrobat';
$token = md5("$salt1$password$salt2");
add_user($forename, $surname, $username, $token);

function add_user($fn, $sn, $un, $pw)
{
 $query = "INSERT INTO users VALUES('$fn', '$sn', '$un', '$pw')";
 $result = mysql_query($query);
 if (!$result) die ("Database access failed: " . mysql_error());

286 | Chapter 13: Cookies, Sessions, and Authentication

}
?>

This program will create the table users within your publications database (or which-
ever database you set up for the login.php file in Chapter 10). In this table, it will create
two users: Bill Smith and Pauline Jones. They have the usernames and passwords of
bsmith/mysecret and pjones/acrobat, respectively.

Using the data in this table, we can now modify Example 13-2 to properly authenticate
users, and Example 13-4 shows the code needed to do this. Type it in, save it as
authenticate.php, and call it up in your browser.

Example 13-4. PHP authentication using MySQL

<?php // authenticate.php
require_once 'login.php';
$db_server = mysql_connect($db_hostname, $db_username, $db_password);
if (!$db_server) die("Unable to connect to MySQL: " . mysql_error());
mysql_select_db($db_database)
 or die("Unable to select database: " . mysql_error());

if (isset($_SERVER['PHP_AUTH_USER']) &&
 isset($_SERVER['PHP_AUTH_PW']))
{
 $un_temp = mysql_entities_fix_string($_SERVER['PHP_AUTH_USER']);
 $pw_temp = mysql_entities_fix_string($_SERVER['PHP_AUTH_PW']);

 $query = "SELECT * FROM users WHERE username='$un_temp'";
 $result = mysql_query($query);
 if (!$result) die("Database access failed: " . mysql_error());
 elseif (mysql_num_rows($result))
 {
 $row = mysql_fetch_row($result);
 $salt1 = "qm&h*";
 $salt2 = "pg!@";
 $token = md5("$salt1pw_tempsalt2");

 if ($token == $row[3]) echo "$row[0] $row[1] :
 Hi $row[0], you are now logged in as '$row[2]'";
 else die("Invalid username/password combination");
 }
 else die("Invalid username/password combination");
}
else
{
 header('WWW-Authenticate: Basic realm="Restricted Section"');
 header('HTTP/1.0 401 Unauthorized');
 die ("Please enter your username and password");
}

function mysql_entities_fix_string($string)
{
 return htmlentities(mysql_fix_string($string));
}

HTTP Authentication | 287

function mysql_fix_string($string)
{
 if (get_magic_quotes_gpc()) $string = stripslashes($string);
 return mysql_real_escape_string($string);
}
?>

As you might expect at this point in the book, some of the examples are starting to get
quite a bit longer. But don’t be put off. The final 10 lines are simply Example 10-31
from Chapter 10. They are there to sanitize the user input—very important.

The only lines to really concern yourself with at this point start with the assigning of
two variables $un_temp and $pw_temp using the submitted username and password,
highlighted in bold text. Next, a query is issued to MySQL to look up the user
$un_temp and, if a result is returned, to assign the first row to $row. (Because usernames
are unique, there will be only one row.) Then the two salts are created in $salt1 and
$salt2, which are then added before and after the submitted password $pw_temp. This
string is then passed to the md5 function, which returns a 32-character hexadecimal
value in $token.

Now all that’s necessary is to check $token against the value stored in the database,
which happens to be in the fourth column—which is column 3 when starting from 0.
So $row[3] contains the previous token calculated for the salted password. If the two
match, a friendly welcome string is output, calling the user by his or her first name (see
Figure 13-4). Otherwise, an error message is displayed. As mentioned before, the error
message is the same regardless of whether such a username exists, as this provides
minimal information to potential hackers or password guessers.

Figure 13-4. Bill Smith has now been authenticated

You can try this out for yourself by calling up the program in your browser and entering
a username of “bsmith” and password of “mysecret” (or “pjones” and “acrobat”), the
values that were saved in the database by Example 13-3.

288 | Chapter 13: Cookies, Sessions, and Authentication

Using Sessions
Because your program can’t tell what variables were set in other programs—or even
what values the same program set the previous time it ran—you’ll sometimes want to
track what your users are doing from one web page to another. You can do this by
setting hidden fields in a form, as seen in Chapter 10, and checking the value of the
fields after the form is submitted, but PHP provides a much more powerful and simpler
solution in the form of sessions. These are groups of variables that are stored on the
server but relate only to the current user. To ensure that the right variables are applied
to the right users, a cookie is saved in their web browsers to uniquely identify them.

This cookie has meaning only to the web server and cannot be used to ascertain any
information about a user. You might ask about those users who have their cookies
turned off. Well, that’s not a problem since PHP 4.2.0, because it will identify when
this is the case and place a cookie token in the GET portion of each URL request instead.
Either way, sessions provide a solid way of keeping track of your users.

Starting a Session
Starting a session requires calling the PHP function session_start before any HTML
has been output, similarly to how cookies are sent during header exchanges. Then, to
begin saving session variables, you just assign them as part of the $_SESSION array, like
this:

$_SESSION['variable'] = $value;

They can then be read back just as easily in later program runs, like this:

$variable = $_SESSION['variable'];

Now assume that you have an application that always needs access to the username,
password, forename, and surname of each user, as stored in the table users, which you
should have created a little earlier. So let’s further modify authenticate.php from Ex-
ample 13-4 to set up a session once a user has been authenticated.

Example 13-5 shows the changes needed. The only difference is the contents of the if
($token == $row[3]) section, which now starts by opening a session and saving these
four variables into it. Type this program in (or modify Example 13-4) and save it as
authenticate2.php. But don’t run it in your browser yet, as you will also need to create
a second program in a moment.

Example 13-5. Setting a session after successful authentication

<?php //authenticate2.php
require_once 'login.php';
$db_server = mysql_connect($db_hostname, $db_username, $db_password);
if (!$db_server) die("Unable to connect to MySQL: " . mysql_error());
mysql_select_db($db_database)
 or die("Unable to select database: " . mysql_error());

Using Sessions | 289

if (isset($_SERVER['PHP_AUTH_USER']) &&
 isset($_SERVER['PHP_AUTH_PW']))
{
 $un_temp = mysql_entities_fix_string($_SERVER['PHP_AUTH_USER']);
 $pw_temp = mysql_entities_fix_string($_SERVER['PHP_AUTH_PW']);

 $query = "SELECT * FROM users WHERE username='$un_temp'";
 $result = mysql_query($query);
 if (!$result) die("Database access failed: " . mysql_error());
 elseif (mysql_num_rows($result))
 {
 $row = mysql_fetch_row($result);
 $salt1 = "qm&h*";
 $salt2 = "pg!@";
 $token = md5("$salt1pw_tempsalt2");

 if ($token == $row[3])
 {
 session_start();
 $_SESSION['username'] = $un_temp;
 $_SESSION['password'] = $pw_temp;
 $_SESSION['forename'] = $row[0];
 $_SESSION['surname'] = $row[1];
 echo "$row[0] $row[1] : Hi $row[0],
 you are now logged in as '$row[2]'";
 die ("<p>Click here to continue</p>");
 }
 else die("Invalid username/password combination");
 }
 else die("Invalid username/password combination");
}
else
{
 header('WWW-Authenticate: Basic realm="Restricted Section"');
 header('HTTP/1.0 401 Unauthorized');
 die ("Please enter your username and password");
}

function mysql_entities_fix_string($string)
{
 return htmlentities(mysql_fix_string($string));
}

function mysql_fix_string($string)
{
 if (get_magic_quotes_gpc()) $string = stripslashes($string);
 return mysql_real_escape_string($string);
}
?>

One other addition to the program is the “Click here to continue” link with a destina-
tion URL of continue.php. This will be used to illustrate how the session will transfer
to another program or PHP web page. So create continue.php by typing in the program
in Example 13-6 and saving it.

290 | Chapter 13: Cookies, Sessions, and Authentication

Example 13-6. Retrieving session variables

<?php // continue.php
session_start();

if (isset($_SESSION['username']))
{
 $username = $_SESSION['username'];
 $password = $_SESSION['password'];
 $forename = $_SESSION['forename'];
 $surname = $_SESSION['surname'];

 echo "Welcome back $forename.

 Your full name is $forename $surname.

 Your username is '$username'
 and your password is '$password'.";
}
else echo "Please click here to log in.";
?>

Now you are ready to call up authenticate2.php into your browser, enter a username of
“bsmith” and password of “mysecret”, (or “pjones” and “acrobat”) when prompted,
and click on the link to load in continue.php. When your browser calls it up, the result
should be something like Figure 13-5.

Figure 13-5. Maintaining user data with sessions

Sessions neatly confine to a single program the extensive code required to authenticate
and log in a user. Once a user has been authenticated, and you have created a session,
your program code becomes very simple indeed. You need only to call up
session_start and look up any variables to which you need access from $_SESSION.

In Example 13-6, a quick test of whether $_SESSION['username'] has a value is enough
to let you know that the current user is authenticated, because session variables are
stored on the server (unlike cookies, which are stored on the web browser) and can
therefore be trusted.

If $_SESSION['username'] has not been assigned a value, no session is active, so the last
line of code in Example 13-6 directs users to the login page at authenticate2.php.

Using Sessions | 291

The continue.php program prints back the value of the user’s password
to show you how session variables work. In practice, you already know
that the user is logged in, so it should not be necessary to keep track of
(or display) any passwords, and doing so would be a security risk.

Ending a Session
When the time comes to end a session, usually when a user requests to log out from
your site, you can use the session_destroy function in association with the unset func-
tion, as in Example 13-7. That example provides a useful function for totally destroying
a session, logging a user out, and unsetting all session variables.

Example 13-7. A handy function to destroy a session and its data

<?php
function destroy_session_and_data()
{
 session_start();
 $_SESSION = array();
 if (session_id() != "" || isset($_COOKIE[session_name()]))
 setcookie(session_name(), '', time() - 2592000, '/');
 session_destroy();
}
?>

To see this in action, you could modify continue.php as in Example 13-8.

Example 13-8. Retrieving session variables, then destroying the session

<?php
session_start();

if (isset($_SESSION['username']))
{
 $username = $_SESSION['username'];
 $password = $_SESSION['password'];
 $forename = $_SESSION['forename'];
 $surname = $_SESSION['surname'];

 echo "Welcome back $forename.

 Your full name is $forename $surname.

 Your username is '$username'
 and your password is '$password'.";

 destroy_session_and_data();
}
else echo "Please click here to log in.";

function destroy_session_and_data()
{
 $_SESSION = array();
 if (session_id() != "" || isset($_COOKIE[session_name()]))
 setcookie(session_name(), '', time() - 2592000, '/');

292 | Chapter 13: Cookies, Sessions, and Authentication

 session_destroy();
}
?>

The first time you surf from authenticate2.php to continue.php, it will display all the
session variables. But, because of the call to destroy_session_and_data, if you then click
on your browser’s Reload button, the session will have been destroyed and you’ll be
prompted to return to the login page.

Setting a timeout

There are other times when you might wish to close a user’s session yourself, such as
when the user has forgotten or neglected to log out, and you wish the program to do
it for them for their own security. The way to do this is to set the timeout, after which
a logout will automatically occur if there has been no activity.

To do this, use the ini_set function as follows. This example sets the timeout to exactly
one day:

ini_set('session.gc_maxlifetime', 60 * 60 * 24);

If you wish to know what the current timeout period is, you can display it using the
following:

echo ini_get('session.gc_maxlifetime');

Session Security
Although I mentioned that once you had authenticated a user and set up a session you
could safely assume that the session variables were trustworthy, this isn’t exactly the
case. The reason is that it’s possible to use packet sniffing (sampling of data) to discover
session IDs passing across a network. Additionally, if the session ID is passed in the
GET part of a URL, it might appear in external site server logs. The only truly secure way
of preventing these from being discovered is to implement a Secure Socket Layer (SSL)
and run HTTPS instead of HTTP web pages. That’s beyond the scope of this book,
although you may like to take a look at http://www.apache-ssl.org for details on setting
up a secure web server.

Preventing session hijacking

When SSL is not a possibility, you can further authenticate users by storing their IP
address along with their other details by adding a line such as the following when you
store their session:

$_SESSION['ip'] = $_SERVER['REMOTE_ADDR'];

Then, as an extra check, whenever any page loads and a session is available, perform
the following check. It calls the function different_user if the stored IP address doesn’t
match the current one:

Using Sessions | 293

http://www.apache-ssl.org

if ($_SESSION['ip'] != $_SERVER['REMOTE_ADDR']) different_user();

What code you place in your different_user function is up to you. I recommend that
you simply delete the current session and ask the user to log in again due to a technical
error. Don’t say any more than that or you’re giving away potentially useful
information.

Of course, you need to be aware that users on the same proxy server, or sharing the
same IP address on a home or business network, will have the same IP address. Again,
if this is a problem for you, use SSL. You can also store a copy of the browser user agent
string (a string that developers put in their browsers to identify them by type and ver-
sion), which might also distinguish users due to the wide variety of browser types,
versions, and computer platforms. Use the following to store the user agent:

$_SESSION['ua'] = $_SERVER['HTTP_USER_AGENT'];

And use this to compare the current agent string with the saved one:

if ($_SESSION['ua'] != $_SERVER['HTTP_USER_AGENT']) different_user();

Or, better still, combine the two checks like this and save the combination as an md5
hexadecimal string:

$_SESSION['check'] = md5($_SERVER['REMOTE_ADDR'] .
 $_SERVER['HTTP_USER_AGENT']);

And this to compare the current and stored strings:

if ($_SESSION['check'] != md5($_SERVER['REMOTE_ADDR'] .
 $_SERVER['HTTP_USER_AGENT'])) different_user();

Preventing session fixation

Session fixation happens when a malicious user tries to present a session ID to the server
rather than letting the server create one. It can happen when a user takes advantage of
the ability to pass a session ID in the GET part of a URL, like this:

http://yourserver.com/authenticate.php?PHPSESSID=123456789

In this example, the made-up session ID of 123456789 is being passed to the server.
Now, consider Example 13-9, which is susceptible to session fixation. To see how, type
it in and save it as sessiontest.php.

Example 13-9. A session susceptible to session fixation

<?php // sessiontest.php
session_start();

if (!isset($_SESSION['count'])) $_SESSION['count'] = 0;
else ++$_SESSION['count'];
echo $_SESSION['count'];
?>

294 | Chapter 13: Cookies, Sessions, and Authentication

Once saved, call it up in your browser using the following URL (prefacing it with the
correct pathname, such as http://localhost/web/):

sessiontest.php?PHPSESSID=1234

Press Reload a few times and you’ll see the counter increase. Now try browsing to:

sessiontest.php?PHPSESSID=5678

Press Reload a few times here and you should see it count up again from zero. Leave
the counter on a different number than the first URL and then go back to the first URL
and see how the number changes back. You have created two different sessions of your
own choosing here, and you could easily create as many as you needed.

The reason this approach is so dangerous is that a malicious attacker could try to dis-
tribute these types of URLs to unsuspecting users, and if any of them followed these
links, the attacker would be able to come back and take over any sessions that had not
been deleted or expired!

To prevent this, add a simple additional check to change the session ID using
session_regenerate_id. This function keeps all current session variable values, but re-
places the session ID with a new one that an attacker cannot know. To do this, you can
check for a special session variable’s existence. If it doesn’t exist, you know that this is
a new session, so you simply change the session ID and set the special session variable
to note the change.

Example 13-10 shows what the code might look like using the session variable
initiated.

Example 13-10. Session regeneration

<?php
session_start();
if (!isset($_SESSION['initiated']))
{
 session_regenerate_id();
 $_SESSION['initiated'] = 1;
}

if (!isset($_SESSION['count'])) $_SESSION['count'] = 0;
else ++$_SESSION['count'];
echo $_SESSION['count'];
?>

This way, an attacker can come back to your site using any of the session IDs that he
generated, but none of them will call up another user’s session, as they will all have
been replaced with regenerated IDs. If you want to be ultra-paranoid, you can even
regenerate the session ID on each request.

Using Sessions | 295

Forcing cookie-only sessions

If you are prepared to require your users to enable cookies on your website, you can
use the ini_set function like this:

ini_set('session.use_only_cookies', 1);

With that setting, the ?PHPSESSID= trick will be completely ignored. If you use this
security measure, I also recommend you inform your users that your site requires
cookies, so they know what’s wrong if they don’t get the results they want.

Using a shared server

On a server shared with other accounts, you will not want to have all your session data
saved into the same directory as theirs. Instead, you should choose a directory to which
only your account has access (and that is not web-visible) to store your sessions, by
placing an ini_set call near the start of a program, like this:

ini_set('session.save_path', '/home/user/myaccount/sessions');

The configuration option will keep this new value only during the program’s execution,
and the original configuration will be restored at the program’s ending.

This sessions folder can fill up quickly; you may wish to periodically clear out older
sessions according to how busy your server gets. The more it’s used, the less time you
will want to keep a session stored.

Remember that your websites can and will be subject to hacking at-
tempts. There are automated bots running riot around the Internet try-
ing to find sites vulnerable to exploits. So whatever you do, whenever
you are handling data that is not 100 percent generated within your own
program, you should always treat it with the utmost caution.

At this point, you should now have a very good grasp of both PHP and MySQL, so in
the next chapter it’s time to introduce the third major technology covered by this book,
JavaScript.

Test Your Knowledge: Questions
Question 13-1

Why must a cookie be transferred at the start of a program?

Question 13-2
Which PHP function stores a cookie on a web browser?

Question 13-3
How can you destroy a cookie?

296 | Chapter 13: Cookies, Sessions, and Authentication

Question 13-4
Where are the username and password stored in a PHP program when using HTTP
authentication?

Question 13-5
Why is the md5 function a powerful security measure?

Question 13-6
What is meant by “salting” a string?

Question 13-7
What is a PHP session?

Question 13-8
How do you initiate a PHP session?

Question 13-9
What is session hijacking?

Question 13-10
What is session fixation?

See the section “Chapter 13 Answers” on page 445 in Appendix A for the answers to
these questions.

Test Your Knowledge: Questions | 297

CHAPTER 14

Exploring JavaScript

JavaScript brings a dynamic functionality to your websites. Every time you see some-
thing pop up when you mouse over an item in the browser, or see new text, colors, or
images appear on the page in front of your eyes, or grab an object on the page and drag
it to a new location—all those things are done through JavaScript. It offers effects that
are not otherwise possible, because it runs inside the browser and has direct access to
all the elements in a web document.

JavaScript first appeared in the Netscape Navigator browser in 1995, coinciding with
the addition of support for Java technology in the browser. Because of the initial in-
correct impression that JavaScript was a spin-off of Java, there has been some long-
term confusion over their relationship. However, the naming was just a marketing ploy
to help the new scripting language benefit from the popularity of the Java programming
language.

JavaScript gained new power when the HTML elements of the web page got a more
formal, structured definition in what is called the Document Object Model or DOM.
DOM makes it relatively easy to add a new paragraph or focus on a piece of text and
change it.

Because both JavaScript and PHP support much of the structured programming syntax
used by the C programming language, they look very similar to each other. They are
both fairly high-level languages, too; for instance, they are weakly typed, so it’s easy to
change a variable to a new type just by using it in a new context.

Now that you have learned PHP, you should find JavaScript even easier. And you’ll be
glad you did, because it’s at the heart of the Web 2.0 Ajax technology that provides the
fluid web front-ends that savvy Web users expect these days.

JavaScript and HTML Text
JavaScript is a client-side scripting language that runs entirely inside the web browser.
To call it up, you place it between opening <script> and closing </script> HTML tags.

299

A typical HTML 4.01 “Hello World” document using JavaScript might look like Ex-
ample 14-1.

Example 14-1. “Hello World” displayed using JavaScript

<html>
 <head><title>Hello World</title></head>
 <body>
 <script type="text/javascript">
 document.write("Hello World")
 </script>
 <noscript>
 Your browser doesn't support or has disabled JavaScript
 </noscript>
 </body>
</html>

You may have seen web pages that use the HTML tag
<script language="javascript">, but that usage has now been depre-
cated. This example uses the more recent and preferred
<script type="text/javascript">.

Within the script tags is a single line of JavaScript code that uses its equivalent of the
PHP echo or print commands, document.write. As you’d expect, it simply outputs the
supplied string to the current document, where it is displayed.

You may also have noticed that, unlike PHP, there is no trailing semicolon (;). This is
because a new line acts the same way as a semicolon in JavaScript. However, if you
wish to have more than one statement on a single line, you do need to place a semicolon
after each command except the last one. Of course, if you wish, you can add a semicolon
to the end of every statement and your JavaScript will work fine.

The other thing to note in this example is the <noscript> and </noscript> pair of tags.
These are used when you wish to offer alternative HTML to users whose browser does
not support JavaScript or who have it disabled. The use of these tags is up to you, as
they are not required, but you really ought to use them, because it’s usually not that
difficult to provide static HTML alternatives to the operations you provide using Java-
Script. However the remaining examples in this book will omit <noscript> tags, because
we’re focusing on what you can do with JavaScript, not what you can do without it.

When Example 14-1 is loaded, a web browser with JavaScript enabled will output the
following (see Figure 14-1):

Hello World

One with JavaScript disabled will display this (see Figure 14-2):

Your browser doesn't support or has disabled JavaScript

300 | Chapter 14: Exploring JavaScript

Using Scripts Within a Document Head
In addition to placing a script within the body of a document, you can put it in the
<head> section, which is the ideal place if you wish to execute a script when a page
loads. If you place critical code and functions there, you can also ensure that they are
ready to use immediately by any other script sections in the document that rely on them.

Another reason for placing a script in the head is to enable JavaScript to write things
such as meta tags into the head section, because the location of your script is the part
of the document it writes to by default.

Older and Nonstandard Browsers
If you need to support browsers that do not offer scripting, you will need to use the
HTML comment tags (<!-- and -->) to prevent them from encountering script code
that they should not see. Example 14-2 shows how you add them to your script code.

Example 14-2. The “Hello World” example modified for non-JavaScript browsers

<html>
 <head><title>Hello World</title></head>
 <body>
 <script type="text/javascript"><!--
 document.write("Hello World")

Figure 14-1. JavaScript, enabled and working

Figure 14-2. JavaScript has been disabled

JavaScript and HTML Text | 301

 // --></script>
 </body>
</html>

Here an opening HTML comment tag (<!--) has been added directly after the opening
<script ...> statement and a closing comment tag (// -->) directly before the script
is closed with </script>.

The double forward slash (//) is used by JavaScript to indicate that the rest of the line
is a comment. It is there so that browsers that do support JavaScript will ignore the
following -->, but non-JavaScript browsers will ignore the preceding //, and act on the
--> by closing the HTML comment.

Although the solution is a little convoluted, all you really need to remember is to use
the two following lines to enclose your JavaScript when you wish to support very old
or nonstandard browsers:

<script type="text/javascript"><!--
 (Your JavaScript goes here...)
// --></script>

However, the use of these comments is unnecessary for any browser released over the
past several years.

There are a couple of other scripting languages you should know about.
These include Microsoft’s VBScript, which is based on the Visual Basic
programming language, and Tcl, a rapid prototyping language. They
are called up in a similar way to JavaScript, except they use types of text/
vbscript and text/tcl, respectively. VBScript works only in Internet Ex-
plorer; use of it in other browsers requires a plug-in. Tcl always needs
a plug-in. So both should be considered nonstandard and neither is
covered in this book.

Including JavaScript Files
In addition to writing JavaScript code directly in HTML documents, you can include
files of JavaScript code either from your website or from anywhere on the Internet. The
syntax for this is:

<script type="text/javascript" src="script.js"></script>

Or, to pull a file in from the Internet, use:

<script type="text/javascript" src="http://someserver.com/script.js">
</script>

As for the script files themselves, they must not include any <script> or </script> tags,
because they are unnecessary: the browser already knows that a JavaScript file is being
loaded. Putting them in the JavaScript files will cause an error.

302 | Chapter 14: Exploring JavaScript

Including script files is the preferred way for you to use third-party JavaScript files on
your website.

It is possible to leave out the type="text/javascript" parameters; all
modern browsers default to assuming that the script contains
JavaScript.

Debugging JavaScript Errors
When learning JavaScript, it’s important to be able to track typing or other coding
errors. Unlike PHP, which displays error messages in the browser, JavaScript error
messages are handled differently, and in a way that changes according to the browser
used. Table 14-1 lists how to access JavaScript error messages in each of the five most
commonly used browsers.

Table 14-1. Accessing JavaScript error messages in different browsers

Browser How to access JavaScript error messages

Apple Safari Safari does not have an Error Console enabled by default, so the Firebug Lite JavaScript module will do
what you need. To use it, add the following line of code somewhere before the <body> tag in a document:

<script src='http://tinyurl.com/fblite'></script>

Google Chrome Click the menu icon that looks like a page with a corner turned, then select Developer→JavaScript
Console. You can also use the following shortcut: Ctrl-Shift-J on a PC or Command-Shift-J on a Mac.

Microsoft
Internet Explorer

Select Tools→Internet Options→Advanced, then uncheck the Disable Script Debugging box and check
the Display a Notification about Every Script Error box.

Mozilla Firefox Select Tools→Error Console or use this shortcut: Ctrl-Shift-J on a PC or Command-Shift-J on a Mac.

Opera Select Tools→Advanced→Error Console.

Safari Users: although I have shown a way for you to create an Error
Console for JavaScript, I strongly recommend that you use a different
browser, if at all possible, as this method is little more than a work-
around. On a PC, you could try Google Chrome, which uses the same
WebKit engine as Safari. On a Mac, until Chrome has been ported to
Mac OS (a project that is still underway as I write), I suggest that you
try Firefox for debugging your JavaScript.

To try out whichever Error Console you are using, let’s create a script with a small error.
Example 14-3 is much the same as Example 14-1, but the final double quotation mark
has been left off the end of the string “Hello World”—a common syntax error.

JavaScript and HTML Text | 303

Example 14-3. A JavaScript “Hello World” script with an error

<html>
 <head><title>Hello World</title></head>
 <body>
 <script type="text/javascript">
 document.write("Hello World)
 </script>
 </body>
</html>

Type the example in and save it as test.html, then call it up in your browser. It should
succeed only in displaying the title, not anything in the main browser window. Now
call up the Error Console in your browser and you should see a message such as the
one in Example 14-4 (if using Firefox).

Example 14-4. A Mozilla Firefox Error Console message

unterminated string literal
document.write("Hello World)
---------------^

Note the handy arrow pointing to the start of the incorrect part of code. You will also
be told that the offending code is at line 5.

In Microsoft Internet Explorer, the error message will look like Example 14-5.

Example 14-5. A Microsoft Internet Explorer Error Console message

unterminated string constant

There’s no helpful arrow, but you are told that the problem is in line 5 at position 32.

Google Chrome will give the message in Example 14-6.

Example 14-6. A Google Chrome Error Console message

Uncaught SyntaxError: Unexpected token ILLEGAL

You’ll be told that the error is in line 5, but not the exact location.

Opera will supply the message in Example 14-7.

Example 14-7. An Opera Error Console message

Syntax error while loading line 2 of inline script
expected statement
 document.write("Hello World)
-------------------------------^

Note how Opera differs from the other browsers by reporting the error to be on line 2
of the inline script, rather than referring to the line number of the entire HTML file.
Also Opera tries to point to the start of the problem, but gets only close to the first
double quote.

304 | Chapter 14: Exploring JavaScript

Two browsers do quite well at pinpointing the error, though. Firefox highlights the
opening double quote, which gives a big clue, and Internet Explorer says the error is at
position 32, which is exactly where the closing double quote should be placed—but,
because there’s no arrow pointing to this position, it’s necessary to count along to find
it.

So, as you can see, on the whole Firefox probably provides the easiest to read and most
accurate messages, and for that reason I would recommend it as the best browser for
debugging JavaScript.

However, as you will learn, there are some major compatibility issues with Microsoft
Internet Explorer, the browser of choice for two-thirds of the entire market as I write.
So, as a developer, you’ll need to test your programs with various versions of this
browser before you release them on a production server.

The Firebug plug-in for Firefox (http://getfirebug.com) is very popular among JavaScript
developers, and is also worth a look.

If you will be typing in the following code snippets to try them out, don’t
forget to surround them with <script> and </script> tags.

Using Comments
Due to their shared inheritance from the C programming language, PHP and JavaScript
share many similarities, one of which is commenting. First there’s the single line com-
ment, like this:

// This is a comment

This style uses a pair of forward slash characters (//) to inform JavaScript that every-
thing following is to be ignored. And then you also have multiline comments, like this:

/* This is a section
 of multiline comments
 that will not be
 interpreted */

Here you start a multiline comment with the sequence /* and end it with */. Just
remember that you cannot nest multiline comments, so make sure that you don’t com-
ment out large sections of code that already contain multiline comments.

Semicolons
Unlike PHP, semicolons are not generally required by JavaScript if you have only one
statement on a line. Therefore the following is valid:

x += 10

Semicolons | 305

http://getfirebug.com

However, when you wish to place more than one statement on a line, they must be
separated with semicolons, like this:

x += 10; y -= 5; z = 0

You can normally leave the final semicolon off, because the new line terminates the
final statement.

There are exceptions to the semicolon rule. If you write JavaScript
bookmarklets, or end a statement with a variable or function reference
and the first character of the line below is a left parenthesis or bracket,
you must remember to append a semicolon or the JavaScript will fail.
So, if in doubt, use a semicolon.

Variables
No particular character identifies a variable in JavaScript as the dollar sign does in PHP.
Instead, variables use the following naming rules:

• A variable may include only the letters a-z, A-Z, 0-9, the $ symbol, and the
underscore (_).

• No other characters such as spaces or punctuation are allowed in a variable name.

• The first character of a variable name can be only a-z, A-Z, $, or _ (no numbers).

• Names are case-sensitive. Count, count, and COUNT are all different variables.

• There is no set limit on variable name lengths.

And yes, you’re right, that is the $ sign there in that list. It is allowed by JavaScript and
may be the first character of a variable or function name. Although I don’t recommend
keeping the $ signs, it means that you can port a lot of PHP code more quickly to
JavaScript that way.

String Variables
JavaScript string variables should be enclosed in either single or double quotation
marks, like this:

greeting = "Hello there"
warning = 'Be careful'

You may include a single quote within a double-quoted string or a double quote within
a single-quoted string. But a quote of the same type must be escaped using the backslash
character, like this:

greeting = "\"Hello there\" is a greeting"
warning = '\'Be careful\' is a warning'

To read from a string variable, you can assign it to another one, like this:

newstring = oldstring

306 | Chapter 14: Exploring JavaScript

or you can use it in a function, like this:

status = "All systems are working"
document.write(status)

Numeric Variables
Creating a numeric variable is as simple as assigning a value, like these examples:

count = 42
temperature = 98.4

Like strings, numeric variables can be read from and used in expressions and functions.

Arrays
JavaScript arrays are also very similar to those in PHP, in that an array can contain
string or numeric data, as well as other arrays. To assign values to an array, use the
following syntax (which in this case creates an array of strings):

toys = ['bat', 'ball', 'whistle', 'puzzle', 'doll']

To create a multidimensional array, nest smaller arrays within a larger one. So, to create
a two-dimensional array containing the colors of a single face of a scrambled Rubik’s
Cube (where the colors red, green, orange, yellow, blue, and white are represented by
their capitalized initial letters), you could use the following code.

face =
[
 ['R', 'G', 'Y'],
 ['W', 'R', 'O'],
 ['Y', 'W', 'G']
]

The previous example has been formatted to make it obvious what is going on, but it
could also be written like this:

face = [['R', 'G', 'Y'], ['W', 'R', 'O'], ['Y', 'W', 'G']]

or even like this:

top = ['R', 'G', 'Y']
mid = ['W', 'R', 'O']
bot = ['Y', 'W', 'G']

face = [top, mid, bot]

To access the element two down and three along in this matrix, you would use the
following (because array elements start at position zero):

document.write(face[1][2])

This statement will output the letter O for orange.

Variables | 307

JavaScript arrays are powerful storage structures, so Chapter 16 dis-
cusses them in much greater depth.

Operators
Operators in JavaScript, as in PHP, can involve mathematics, changes to strings, and
comparison and logical operations (and, or, etc.). JavaScript mathematical operators
look a lot like plain arithmetic; for instance, the following statement outputs 16:

document.write(14 + 2)

The following sections teach you about the various operators.

Arithmetic Operators
Arithmetic operators are used to perform mathematics. You can use them for the main
four operations (addition, subtraction, multiplication, and division) as well as to find
the modulus (the remainder after a division) and to increment or decrement a value
(see Table 14-2).

Table 14-2. Arithmetic operators

Operator Description Example

+ Addition j + 12

- Subtraction j - 22

* Multiplication j * 7

/ Division j / 3.14

% Modulus (division remainder) j % 6

++ Increment ++j

-- Decrement --j

Assignment Operators
The assignment operators are used to assign values to variables. They start with the
very simple, =, and move on to +=, -=, and so on. The operator += adds the value on the
right side to the variable on the left, instead of totally replacing the value on the left.
Thus, if count starts with the value 6, the statement:

count += 1

sets count to 7, just like the more familiar assignment statement:

count = count + 1

Table 14-3 lists the various assignment operators available.

308 | Chapter 14: Exploring JavaScript

Table 14-3. Assignment operators

Operator Example Equivalent to

= j = 99 j = 99

+= j += 2 j = j + 2

+= j += 'string' j = j +
'string'

-= j -= 12 j = j - 12

*= j *= 2 j = j * 2

/= j /= 6 j = j / 6

%= j %= 7 j = j % 7

Comparison Operators
Comparison operators are generally used inside a construct such as an if statement
where you need to compare two items. For example, you may wish to know whether
a variable you have been incrementing has reached a specific value, or whether another
variable is less than a set value, and so on (see Table 14-4).

Table 14-4. Comparison operators

Operator Description Example

== Is equal to j == 42

!= Is not equal to j != 17

> Is greater than j > 0

< Is less than j < 100

>= Is greater than or equal to j >= 23

<= Is less than or equal to j <= 13

=== Is equal to (and of the same type) j === 56

!== Is not equal to (and of the same type) j !== '1'

Logical Operators
Unlike PHP, JavaScript’s logical operators do not include and and or equivalents to
&& and ||, and there is no xor operator (see Table 14-5).

Table 14-5. Logical operators

Operator Description Example

&& And j == 1 && k == 2

|| Or j < 100 || j > 0

! Not ! (j == k)

Operators | 309

Variable Incrementing and Decrementing
The following forms of post- and preincrementing and decrementing you learned to
use in PHP are also supported by JavaScript:

++x
--y
x += 22
y -= 3

String Concatenation
JavaScript handles string concatenation slightly differently from PHP. Instead of
the . (period) operator, it uses the plus sign (+), like this:

document.write("You have " + messages + " messages.")

Assuming that the variable messages is set to the value 3, the output from this line of
code will be:

You have 3 messages.

Just as you can add a value to a numeric variable with the += operator, you can also
append one string to another the same way:

name = "James"
name += " Dean"

Escaping Characters
Escape characters, which you’ve seen used to insert quotation marks in strings, can
also insert various special characters such as tabs, new lines, and carriage returns. Here
is an example using tabs to lay out a heading; it is included here merely to illustrate
escapes, because in web pages, there are better ways to do layout:

heading = "Name\tAge\tLocation"

Table 14-6 details the escape characters available.

Table 14-6. JavaScript’s escape characters

Character Meaning

\b Backspace

\f Form feed

\n New line

\r Carriage return

\t Tab

\' Single quote (or apostrophe)

\" Double quote

310 | Chapter 14: Exploring JavaScript

Character Meaning

\\ Backslash

\XXX An octal number between 000 and 377 that represents the Latin-1 character equivalent (such as \251 for the ©
symbol)

\xXX A hexadecimal number between 00 and FF that represents the Latin-1 character equivalent (such as \xA9 for
the © symbol)

\uXXXX A hexadecimal number between 0000 and FFFF that represents the Unicode character equivalent (such as
\u00A9 for the © symbol)

Variable Typing
Like PHP, JavaScript is a very loosely typed language; the type of a variable is determined
only when a value is assigned and can change as the variable appears in different con-
texts. Usually, you don’t have to worry about the type; JavaScript figures out what you
want and just does it.

Take a look at Example 14-8, in which:

1. The variable n is assigned the string value “838102050”, the next line prints out its
value, and the typeof operator is used to look up the type.

2. n is given the value returned when the numbers 12345 and 67890 are multiplied
together. This value is also 838102050, but it is a number, not a string. The type
of variable is then looked up and displayed.

3. Some text is appended to the number n and the result is displayed.

Example 14-8. Setting a variable’s type by assignment

<script>
n = '838102050' // Set 'n' to a string
document.write('n = ' + n + ', and is a ' + typeof n + '
')

n = 12345 * 67890; // Set 'n' to a number
document.write('n = ' + n + ', and is a ' + typeof n + '
')

n += ' plus some text' // Change 'n' from a number to a string
document.write('n = ' + n + ', and is a ' + typeof n + '
')
</script>

The output from this script looks like:

n = 838102050, and is a string
n = 838102050, and is a number
n = 838102050 plus some text, and is a string

If there is ever any doubt about the type of a variable, or you need to ensure a variable
has a particular type, you can force it to that type using statements such as the following
(which respectively turn a string into a number and a number into a string):

Variable Typing | 311

n = "123"
n *= 1 // Convert 'n' into a number

n = 123
n += "" // Convert 'n' into a string

Or, of course, you can always look up a variable’s type using the typeof operator.

Functions
As with PHP, JavaScript functions are used to separate out sections of code that perform
a particular task. To create a function, declare it in the manner shown in Example 14-9.

Example 14-9. A simple function declaration

<script>
function product(a, b)
{
 return a*b
}
</script>

This function takes the two parameters passed, multiplies them together, and returns
the product.

Global Variables
Global variables are ones defined outside of any functions (or within functions, but
defined without the var keyword). They can be defined in the following ways:

 a = 123 // Global scope
var b = 456 // Global scope
if (a == 123) var c = 789 // Global scope

Regardless of whether you are using the var keyword, as long as a variable is defined
outside of a function, it is global in scope. This means that every part of a script can
have access to it.

Local Variables
Parameters passed to a function automatically have local scope. That is, they can be
referenced only from within that function. However, there is one exception. Arrays are
passed to a function by reference, so if you modify any elements in an array parameter,
the elements of the original array will be modified.

To define a local variable that has scope only within the current function, and has not
been passed as a parameter, use the var keyword. Example 14-10 shows a function that
creates one variable with global scope and two with local scope.

312 | Chapter 14: Exploring JavaScript

Example 14-10. A function creating variables with global and local scope

<script>
function test()
{
 a = 123 // Global scope
 var b = 456 // Local scope
 if (a == 123) var c = 789 // Local scope
}
</script>

To test whether scope setting has worked in PHP, we can use the isset function. But
in JavaScript there isn’t one, so let’s make our own—it’s sure to come in handy in the
future—with Example 14-11.

Example 14-11. A version of the isset function for JavaScript

<script>
function isset(varname)
{
 return typeof varname != 'undefined'
}
</script>

This function makes use of the typeof operator, which returns the string “undefined”
when a variable is not defined. So let’s use it to test our isset function in Example 14-12.

Example 14-12. Checking the scope of the variables defined in function test

<script>
test()

if (isset(a)) document.write('a = "' + a + '"
')
if (isset(b)) document.write('b = "' + b + '"
')
if (isset(c)) document.write('c = "' + c + '"
')

function test()
{
 a = 123
 var b = 456
 if (a == 123) var c = 789
}

function isset(varname)
{
 return typeof varname != 'undefined'
}
</script>

The output from this script is the following single line:

a = "123"

Global Variables | 313

This shows that only the variable a was given global scope, which is exactly what we
would expect, given that the variables b and c were given local scope by prefacing them
with the var keyword.

If your browser issues a warning about b being undefined, the warning is correct but
can be ignored.

The Document Object Model
The designers of JavaScript were very smart. Rather than just creating yet another
scripting language (which would have still been a pretty good improvement at the time),
they had the vision to build it around the Document Object Model or DOM. This
breaks down the parts of an HTML document into discrete objects, each with its own
properties and methods, and each subject to JavaScript’s control.

JavaScript separates objects, properties, and methods using a period (one good reason
why + is the string concatenation operator in JavaScript, rather than the period). For
example, let’s consider a business card as an object we’ll call card. This object contains
properties such as a name, address, phone number, and so on. In the syntax of Java-
Script, these properties would look like this:

card.name
card.phone
card.address

Its methods are functions that retrieve, change, and otherwise act on the properties.
For instance, to invoke a method that displays the properties of object card, you might
use syntax such as:

card.display()

Have a look at some of the earlier examples in this chapter and look at where the
statement document.write is used. Now that you understand how JavaScript is based
around objects, you will see that write is actually a method of the document object.

Within JavaScript, there is a hierarchy of parent and child objects. This is what is known
as the Document Object Model (see Figure 14-3).

The figure uses HTML tags that you are already familiar with to illustrate the parent/
child relationship between the various objects in a document. For example, a URL
within a link is part of the body of an HTML document. In JavaScript, it is referenced
like this:

url = document.links.linkname.href

Notice how this follows the central column down. The first part, document, refers to the
<html> and <body> tags, links.linkname to the <a ...> tag and href to the href=...
element.

314 | Chapter 14: Exploring JavaScript

Let’s turn this into some HTML and a script to read a link’s properties. Type in Ex-
ample 14-13 and save it as linktest.html, then call it up in your browser.

If you are using Microsoft Internet Explorer as your main development
browser, please just read through this section, then read the section
titled “Browser Incompatibilities” on page 316 and then come back and
try the example with the getElementById modification discussed there.
Without it, this example will not work for you.

Example 14-13. Reading a link URL with JavaScript

<html>
 <head>
 <title>Link Test</title>
 </head>
 <body>
 Click me

 <script>
 url = document.links.mylink.href
 document.write('The URL is ' + url)
 </script>
 </body>
</html>

Note the short form of the script tags where I have omitted the parameter
type="text/JavaScript" to save you some typing. If you wish, just for the purposes of
testing this (and other examples), you could also omit everything outside of the
<script> and </script> tags. The output from this example is:

Click me
The URL is http://mysite.com

Figure 14-3. Example of DOM object hierarchy

The Document Object Model | 315

The second line of output comes from the document.write method. Notice how the
code follows the document tree down from document to links to mylink (the id given
to the link) to href (the URL destination value).

There is also a short form that works equally well, which starts with the value in the
id attribute: mylink.href. So you can replace this:

url = document.links.mylink.href

with the following:

url = mylink.href

Browser Incompatibilities
If you tried Example 14-13 in Safari, Firefox, Opera, or Chrome, it will have worked
just great. But in Internet Explorer (even version 8) it will fail, because Microsoft’s
implementation of JavaScript, called JScript, has many subtle differences from the rec-
ognized standards. Welcome to the world of advanced web development!

So what can we do about this? Well, in this case, instead of using the links child object
of the parent document object, which Internet Explorer balks at when used this way,
you have to replace it with a method to fetch the element by its id. Therefore, the
following line:

url = document.links.mylink.href

can be replaced with this one:

url = document.getElementById('mylink').href

And now the script will work in all major browsers. Incidentally, when you don’t have
to look the element up by id, the short form that follows will still work in Internet
Explorer, as well as the other browsers:

url = mylink.href

Another use for the $ sign

As mentioned earlier, the $ symbol is allowed in JavaScript variable and function names.
Because of this, you may sometimes encounter some strange-looking code, like this:

url = $('mylink').href

Some enterprising programmers have decided that the getElementById function is so
prevalent in JavaScript that they have written a function to replace it called $, shown
in Example 14-14.

Example 14-14. A replacement function for the getElementById method

<script>
function $(id)
{
 return document.getElementById(id)

316 | Chapter 14: Exploring JavaScript

}
</script>

Therefore, as long as you have included the $ function in your code, syntax such as:

$('mylink').href

can replace code such as:

document.getElementById('mylink').href

Using the DOM
The links object is actually an array of URLs, so the mylink URL in Example 14-13 can
also be safely referred to on all browsers in the following way (because it’s the first, and
only, link):

url = document.links[0].href

If you want to know how many links there are in an entire document, you can query
the length property of the links object like this:

numlinks = document.links.length

You can therefore extract and display all links in a document like this:

for (j=0 ; j < document.links.length ; ++j)
 document.write(document.links[j].href + '
')

The length of something is a property of every array, and many objects as well. For
example, the number of items in your browser’s web history can be queried like this:

document.write(history.length)

However, to stop websites from snooping on your browsing history, the history object
stores only the number of sites in the array: you cannot read from or write to these
values. But you can replace the current page with one from the history, if you know
what position it has within the history. This can be very useful in cases in which you
know that certain pages in the history came from your site, or you simply wish to send
the browser back one or more pages, which is done with the go method of the
history object. For example, to send the browser back three pages, issue the following
command:

history.go(-3)

You can also use the following methods to move back or forward a page at a time:

history.back()
history.forward()

In a similar manner, you can replace the currently loaded URL with one of your choos-
ing, like this:

document.location.href = 'http://google.com'

The Document Object Model | 317

Of course, there’s a whole lot more to the DOM than reading and modifying links. As
you progress through the following chapters on JavaScript, you’ll become quite familiar
with the DOM and how to access it.

Test Your Knowledge: Questions
Question 14-1

Which tags do you use to enclose JavaScript code?

Question 14-2
By default, to which part of a document will JavaScript code output?

Question 14-3
How can you include JavaScript code from another source in your documents?

Question 14-4
Which JavaScript function is the equivalent of echo or print in PHP?

Question 14-5
How can you create a comment in JavaScript?

Question 14-6
What is the JavaScript string concatenation operator?

Question 14-7
Which keyword can you use within a JavaScript function to define a variable that
has local scope?

Question 14-8
Give two cross-browser methods to display the URL assigned to the link with an
id of thislink.

Question 14-9
Which two JavaScript commands will make the browser load the previous page in
its history array?

Question 14-10
What JavaScript command would you use to replace the current document with
the main page at the oreilly.com website?

See the section “Chapter 14 Answers” on page 446 in Appendix A for the answers to
these questions.

318 | Chapter 14: Exploring JavaScript

CHAPTER 15

Expressions and Control Flow in
JavaScript

In the last chapter I introduced the basics of JavaScript and DOM. Now it’s time to
look at how to construct complex expressions in JavaScript and how to control the
program flow of your scripts using conditional statements.

Expressions
JavaScript expressions are very similar to those in PHP. As you learned in Chapter 4,
an expression is a combination of values, variables, operators, and functions that results
in a value; the result can be a number, a string, or a Boolean value (which evaluates to
either true or false).

Example 15-1 shows some simple expressions. For each line, it prints out a letter be-
tween a and d, followed by a colon and the result of the expressions (the
 tag is
there to create a line break and separate the output into four lines).

Example 15-1. Four simple Boolean expressions

<script>
document.write("a: " + (42 > 3) + "
")
document.write("b: " + (91 < 4) + "
")
document.write("c: " + (8 == 2) + "
")
document.write("d: " + (4 < 17) + "
")
</script>

The output from this code is as follows:

a: true
b: false
c: false
d: true

Notice that both expressions a: and d: evaluate to true. But b: and c: evaluate to
false. Unlike PHP (which would print the number 1 and nothing, respectively), actual
strings of “true” and “false” are displayed.

319

In JavaScript, when checking whether a value is true or false, all values evaluate to
true with the exception of the following, which evaluate to false: the string false itself,
0, −0, the empty string, null, undefined, and NaN (Not a Number, a computer engi-
neering concept for an illegal floating-point operation such as division by zero).

Note how I am referring to true and false in lowercase. This is because, unlike in PHP,
these values must be in lowercase in JavaScript. Therefore only the first of the two
following statements will display, printing the lowercase word “true,” because the sec-
ond will cause a “‘TRUE’ is not defined” error:

if (1 == true) document.write('true') // True
if (1 == TRUE) document.write('TRUE') // Will cause an error

Remember that any code snippets you wish to type in and try for yourself
in an HTML file need to be enclosed within <script> and </script> tags.

Literals and Variables
The simplest form of an expression is a literal, which means something that evaluates
to itself, such as the number 22 or the string “Press Enter”. An expression could also
be a variable, which evaluates to the value that has been assigned to it. They are both
types of expressions, because they return a value.

Example 15-2 shows five different literals, all of which return values, albeit of different
types.

Example 15-2. Five types of literals

<script>
myname = "Peter"
myage = 24
document.write("a: " + 42 + "
") // Numeric literal
document.write("b: " + "Hi" + "
") // String literal
document.write("c: " + true + "
") // Constant literal
document.write("d: " + myname + "
") // Variable string literal
document.write("e: " + myage + "
") // Variable numeric literal
</script>

And, as you’d expect, you see a return value from all of these in the following output:

a: 42
b: Hi
c: true
d: Peter
e: 24

Operators let you create more complex expressions that evaluate to useful results.
When you combine assignment or control-flow construct with expressions, the result
is a statement.

320 | Chapter 15: Expressions and Control Flow in JavaScript

Example 15-3 shows one of each. The first assigns the result of the expression 366 -
day_number to the variable days_to_new_year, and the second outputs a friendly message
only if the expression days_to_new_year < 30 evaluates to true.

Example 15-3. Two simple JavaScript statements

<script>
days_to_new_year = 366 - day_number;
if (days_to_new_year < 30) document.write("It's nearly New Year")
</script>

Operators
JavaScript offers a lot of powerful operators that range from arithmetic, string, and
logical operators to assignment, comparison, and more (see Table 15-1).

Table 15-1. JavaScript operator types

Operator Description Example

Arithmetic Basic mathematics a + b

Array Array manipulation a + b

Assignment Assign values a = b + 23

Bitwise Manipulate bits within bytes 12 ^ 9

Comparison Compare two values a < b

Increment/Decrement Add or subtract one a++

Logical Boolean a && b

String Concatenation a + 'string'

Each operator takes a different number of operands:

• Unary operators, such as incrementing (a++) or negation (-a) take a single operand.

• Binary operators, which represent the bulk of JavaScript operators, including ad-
dition, subtraction, multiplication, and division.

• One ternary operator, which takes the form ? x : y. It’s a terse single-line if
statement that chooses between two expressions depending on a third one.

Operator Precedence
As with PHP, JavaScript utilizes operator precedence, in which some operators in an
expression are considered more important than others and are therefore evaluated first.
Table 15-2 lists JavaScript’s operators and their precedences.

Operators | 321

Table 15-2. The precedence of JavaScript operators (high to low)

Operator(s) Type(s)

() [] . Parentheses, call, and member

++ -- Increment/decrement

+ - ~ ! Unary, bitwise, and logical

* / % Arithmetic

+ - Arithmetic and string

<< >> >>> Bitwise

< > <= >= Comparison

== != === !== Comparison

&& Logical

|| Logical

? : Ternary

= += -= *= /= %= <<= >>= >>>= &= ^= |= Assignment

, Sequential evaluation

Associativity
Most JavaScript operators are processed in order from left to right in an equation. But
some operators require processing from right to left instead. The direction of processing
is called the operator’s associativity.

This associativity becomes important in cases where you do not explicitly force prec-
edence. For example, look at the following assignment operators, by which three var-
iables are all set to the value 0:

level = score = time = 0

This multiple assignment is possible only because the rightmost part of the expression
is evaluated first and then processing continues in a right-to-left direction. Table 15-3
lists all the operators that have right-to-left associativity.

Table 15-3. Operators with right-to-left associativity

Operator Description

New Create a new object

++ -- Increment and decrement

+ - ~ ! Unary and bitwise

? : Conditional

= *= /= %= += -= <<= >>= >>>= &= ^= |= Assignment

322 | Chapter 15: Expressions and Control Flow in JavaScript

Relational Operators
Relational operators test two operands and return a Boolean result of either true or
false. There are three types of relational operators: equality, comparison, and logical.

Equality operators

The equality operator is == (which should not be confused with the = assignment op-
erator). In Example 15-4, the first statement assigns a value and the second tests it for
equality. As it stands, nothing will be printed out, because month is assigned the string
value “July” and therefore the check for it having a value of “October” will fail.

Example 15-4. Assigning a value and testing for equality

<script>
month = "July"
if (month == "October") document.write("It's the Fall")
</script>

If the two operands of an equality expression are of different types, JavaScript will
convert them to whatever type makes best sense to it. For example, any strings com-
posed entirely of numbers will be converted to numbers whenever compared with a
number. In Example 15-5, a and b are two different values (one is a number and the
other is a string), and we would therefore normally expect neither of the if statements
to output a result.

Example 15-5. The equality and identity operators

<script>
a = 3.1415927
b = "3.1415927"
if (a == b) document.write("1")
if (a === b) document.write("2")
</script>

However, if you run the example, you will see that it outputs the number 1, which
means that the first if statement evaluated to true. This is because the string value of
b was first temporarily converted to a number, and therefore both halves of the equation
had a numerical value of 3.1415927.

In contrast, the second if statement uses the identity operator, three equals signs in a
row, which prevents JavaScript from automatically converting types. This means that
a and b are therefore found to be different, so nothing is output.

As with forcing operator precedence, whenever you feel there may be doubt about how
JavaScript will convert operand types, you can use the identity operator to turn this
behavior off.

Operators | 323

Comparison operators

Using comparison operators, you can test for more than just equality and inequality.
JavaScript also gives you > (is greater than), < (is less than), >= (is greater than or equal
to), and <= (is less than or equal to) to play with. Example 15-6 shows these operators
in use.

Example 15-6. The four comparison operators

<script>
a = 7; b = 11
if (a > b) document.write("a is greater than b
")
if (a < b) document.write("a is less than b
")
if (a >= b) document.write("a is greater than or equal to b
")
if (a <= b) document.write("a is less than or equal to b
")
</script>

In this example, where a is 7 and b is 11, the following is output:

a is less than b
a is less than or equal to b

Logical operators

Logical operators produce true-or-false results, and are also known as Boolean opera-
tors. There are three of them in JavaScript (see Table 15-4).

Table 15-4. JavaScript’s logical operators

Logical operator Description

&& (and) true if both operands are true

|| (or) true if either operand is true

! (not) true if the operand is false or false if the operand is true

You can see how these can be used in Example 15-7, which outputs 0, 1, and true.

Example 15-7. The logical operators in use

<script>
a = 1; b = 0
document.write((a && b) + "
")
document.write((a || b) + "
")
document.write((!b) + "
")
</script>

The && statement requires both operands to be true if it is going to return a value of
true, the || statement will be true if either value is true, and the third statement per-
forms a NOT on the value of b, turning it from 0 into a value of true.

324 | Chapter 15: Expressions and Control Flow in JavaScript

The || operator can cause unintentional problems, because the second operand will
not be evaluated if the first is evaluated as true. In Example 15-8, the function
getnext will never be called if finished has a value of 1.

Example 15-8. A statement using the || operator

<script>
if (finished == 1 || getnext() == 1) done = 1
</script>

If you need getnext to be called at each if statement, you should rewrite the code as
shown in Example 15-9.

Example 15-9. The if...or statement modified to ensure calling of getnext

<script>
gn = getnext()
if (finished == 1 OR gn == 1) done = 1;
</script>

In this case, the code in function getnext will be executed and its return value stored
in gn before the if statement.

Table 15-5 shows all the possible variations of using the logical operators. You should
also note that !true equals false and !false equals true.

Table 15-5. All possible logical expressions

Inputs Operators & results

a b && ||

true true true true

true false false true

false true false true

false false false false

The with Statement
The with statement is not one that you’ve seen in earlier chapters on PHP, because it’s
exclusive to JavaScript. With it (if you see what I mean), you can simplify some types
of JavaScript statements by reducing many references to an object to just one reference.
References to properties and methods within the with block are assumed to apply to
that object.

For example, take the code in Example 15-10, in which the document.write function
never references the variable string by name.

The with Statement | 325

Example 15-10. Using the with statement

<script>
string = "The quick brown fox jumps over the lazy dog"

with (string)
{
 document.write("The string is " + length + " characters
")
 document.write("In upper case it's: " + toUpperCase())
}
</script>

Even though string is never directly referenced by document.write, this code still man-
ages to output the following:

The string is 43 characters
In upper case it's: THE QUICK BROWN FOX JUMPS OVER THE LAZY DOG

This is how the code works: the JavaScript interpreter recognizes that the length prop-
erty and toUpperCase() method have to be applied to some object. Because they stand
alone, the interpreter assumes they apply to the string object that you specified in the
with statement.

Using onError
Here are more constructs not available in PHP. Using either the onError event, or a
combination of the try and catch keywords, you can catch JavaScript errors and deal
with them yourself.

Events are actions that can be detected by JavaScript. Every element on a web page has
certain events that can trigger JavaScript functions. For example, the onClick event of
a button element can be set to call a function and make it run whenever a user clicks
on the button.

Example 15-11 illustrates how to use the onError event.

Example 15-11. A script employing the onError event

<script>
onerror = errorHandler
document.writ("Welcome to this website") // Deliberate error

function errorHandler(message, url, line)
{
 out = "Sorry, an error was encountered.\n\n";
 out += "Error: " + message + "\n";
 out += "URL: " + url + "\n";
 out += "Line: " + line + "\n\n";
 out += "Click OK to continue.\n\n";
 alert(out);
 return true;
}
</script>

326 | Chapter 15: Expressions and Control Flow in JavaScript

The first line of this script tells the error event to use the new errorHandler function
from now on. This function takes three parameters, a message, a url and a line number,
so it’s a simple matter to display all these in an alert pop up.

Then, to test the new function, a syntax error is deliberately placed in the code with a
call to document.writ instead of document.write (the final e is missing). Figure 15-1
shows the result of running this script in a browser. Using onError this way can also be
quite useful during the debugging process.

Unfortunately, only Firefox and Internet Explorer appear to support this
event so you will not be able to test this particular example in the Opera,
Safari, or Chrome browsers.

Using try...catch
The try and catch keywords are more standard and more flexible than the onError
technique shown in the previous section. These keywords let you trap errors for a
selected section of code, rather than all scripts in a document. However, they do not
catch syntax errors, for which you need onError.

The try...catch construct is supported by all major browsers and is handy when you
want to catch a certain condition that you are aware could occur in a specific part of
your code.

For example, in Chapter 18 we’ll be exploring Ajax techniques that make use of the
XMLHttpRequest object. Unfortunately, this isn’t available in the Internet Explorer

Figure 15-1. Using the onError event with an alert method pop up

Using try...catch | 327

browser (although it is in all other major browsers). Therefore, we can use try and
catch to trap this case and do something else if the function is not available. Exam-
ple 15-12 shows how.

Example 15-12. Trapping an error with try and catch

<script>
try
{
 request = new XMLHTTPRequest()
}
catch(err)
{
 // Use a different method to create an XML HTTP Request object
}
</script>

I won’t go into how we implement the missing object in Internet Explorer here, but
you can see how the system works. There’s also another keyword associated with try
and catch called finally that is always executed, regardless of whether an error occurs
in the try clause. To use it, just add something like the following statements after a
catch statement:

finally
{
 alert("The 'try' clause was encountered")
}

Conditionals
Conditionals alter program flow. They enable you to ask questions about certain things
and respond to the answers you get in different ways. There are three types of non-
looping conditionals: the if statement, the switch statement, and the ? operator.

The if Statement
Several examples in this chapter have already made use of if statements. The code
within such a statement is executed only if the given expression evaluates to true.
Multiline if statements require curly braces around them, but as in PHP, you can omit
the braces for single statements. Therefore, the following statements are valid:

if (a > 100)
{
 b=2
 document.write("a is greater than 100")
}

if (b == 10) document.write("b is equal to 10")

328 | Chapter 15: Expressions and Control Flow in JavaScript

The else statement

When a condition has not been met, you can execute an alternative using an else
statement, like this:

if (a > 100)
{
 document.write("a is greater than 100")
}
else
{
 document.write("a is less than or equal to 100")
}

Unlike, PHP there is no elseif statement, but that’s not a problem, because you can
use an else followed by another if to form the equivalent of an elseif statement, like
this:

if (a > 100)
{
 document.write("a is greater than 100")
}
else if(a < 100)
{
 document.write("a is less than 100")
}
else
{
 document.write("a is equal to 100")
}

As you can see, you can use another else after the new if, which could equally be
followed by another if statement and so on. Although I have shown braces on the
statements, because each is a single line the whole previous example could be written
as follows:

if (a > 100) document.write("a is greater than 100")
else if(a < 100) document.write("a is less than 100")
else document.write("a is equal to 100")

The switch Statement
The switch statement is useful when one variable or the result of an expression can
have multiple values, for each of which you want to perform a different function.

For example, the following code takes the PHP menu system we put together in Chap-
ter 4 and converts it to JavaScript. It works by passing a single string to the main menu
code according to what the user requests. Let’s say the options are Home, About, News,
Login, and Links, and we set the variable page to one of these according to the user’s
input.

The code for this written using if...else if... might look like Example 15-13.

Conditionals | 329

Example 15-13. A multiline if...else if... statement

<script>
if (page == "Home") document.write("You selected Home")
else if (page == "About") document.write("You selected About")
else if (page == "News") document.write("You selected News")
else if (page == "Login") document.write("You selected Login")
else if (page == "Links") document.write("You selected Links")
</script>

But using a switch construct, the code could look like Example 15-14.

Example 15-14. A switch construct

<script>
switch (page)
{
 case "Home": document.write("You selected Home")
 break
 case "About": document.write("You selected About")
 break
 case "News": document.write("You selected News")
 break
 case "Login": document.write("You selected Login")
 break
 case "Links": document.write("You selected Links")
 break
}
</script>

The variable page is mentioned only once at the start of the switch statement. Thereafter
the case command checks for matches. When one occurs, the matching conditional
statement is executed. Of course, a real program would have code here to display or
jump to a page, rather than simply telling the user what was selected.

Breaking out

As you can see in the Example 15-14, just as with PHP, the break command allows your
code to break out of the switch statement once a condition has been satisfied. Remem-
ber to include the break unless you want to continue executing the statements under
the next case.

Default action

When no condition is satisfied, you can specify a default action for a switch statement
using the default keyword. Example 15-15 shows a code snippet that could be inserted
into Example 15-14.

Example 15-15. A default statement to add to Example 15-12

default: document.write("Unrecognized selection")
 break

330 | Chapter 15: Expressions and Control Flow in JavaScript

The ? Operator
The ternary operator (?), combined with the : character, provides a quick way of doing
if...else tests. With it you can write an expression to evaluate, then follow it with
a ? symbol and the code to execute if the expression is true. After that, place a : and
the code to execute if the expression evaluates to false.

Example 15-16 shows a ternary operator being used to print out whether the variable
a is less than or equal to 5, and prints something either way.

Example 15-16. Using the ternary operator

<script>
document.write(
 a <= 5 ?
 "a is less than or equal to 5" :
 "a is greater than 5"
)
</script>

The statement has been broken up into several lines for clarity, but you would be more
likely to use such a statement on a single line, in this manner:

size = a <= 5 ? "short" : "long"

Looping
Again, you will find many close similarities between JavaScript and PHP when it comes
to looping. Both languages support while, do...while, and for loops.

while Loops
A JavaScript while loop first checks the value of an expression and starts executing the
statements within the loop only if that expression is true. If it is false, execution skips
over to the next JavaScript statement (if any).

Upon completing an iteration of the loop, the expression is again tested to see if it is
true and the process continues until such a time as the expression evaluates to false,
or until execution is otherwise halted. Example 15-17 shows such a loop.

Example 15-17. A while loop

<script>
counter=0

while (counter < 5)
{
 document.write("Counter: " + counter + "
")
 ++counter
}
</script>

Looping | 331

This script outputs the following:

Counter: 0
Counter: 1
Counter: 2
Counter: 3
Counter: 4

If the variable counter were not incremented within the loop, it is quite
possible that some browsers could become unresponsive due to a never-
ending loop, and the page may not even be easy to terminate with Escape
or the Stop button. So be careful with your JavaScript loops.

do...while Loops
When you require a loop to iterate at least once before any tests are made, use a
do...while loop, which is similar to a while loop, except that the test expression is
checked only after each iteration of the loop. So, to output the first seven results in the
seven times table, you could use code such as that in Example 15-18.

Example 15-18. A do...while loop

<script>
count = 1
do
{
 document.write(count + " times 7 is " + count * 7 + "
")
} while (++count <= 7)
</script>

As you might expect, this loop outputs the following:

1 times 7 is 7
2 times 7 is 14
3 times 7 is 21
4 times 7 is 28
5 times 7 is 35
6 times 7 is 42
7 times 7 is 49

for Loops
A for loop combines the best of all worlds into a single looping construct that allows
you to pass three parameters for each statement:

• An initialization expression

• A condition expression

• A modification expression

These are separated by semicolons, like this: for (expr1; expr2; expr3). At the start of
the first iteration of the loop, the initialization expression is executed. In the case of the

332 | Chapter 15: Expressions and Control Flow in JavaScript

code for the multiplication table for 7, count would be initialized to the value 1. Then,
each time round the loop, the condition expression (in this case count <= 7) is tested,
and the loop is entered only if the condition is true. Finally, at the end of each iteration,
the modification expression is executed. In the case of the multiplication table for 7,
the variable count is incremented. Example 15-19 shows what the code would look like.

Example 15-19. Using a for loop

<script>
for (count = 1 ; count <= 7 ; ++count)
{
 document.write(count + "times 7 is " + count * 7 + "
");
}
</script>

As in PHP, you can assign multiple variables in the first parameter of a for loop by
separating them with a comma, like this:

for (i = 1, j = 1 ; i < 10 ; i++)

Likewise, you can perform multiple modifications in the last parameter, like this:

for (i = 1 ; i < 10 ; i++, --j)

Or you can do both at the same time:

for (i = 1, j = 1 ; i < 10 ; i++, --j)

Breaking Out of a Loop
The break command, which you saw to be important inside a switch statement, is also
available within for loops. You might need to use this, for example, when searching
for a match of some kind. Once the match is found, you know that continuing to search
will only waste time and make your visitor wait. Example 15-20 shows how to use the
break command.

Example 15-20. Using the break command in a for loop

<script>
haystack = new Array()
haystack[17] = "Needle"

for (j = 0 ; j < 20 ; ++j)
{
 if (haystack[j] == "Needle")
 {
 document.write("
- Found at location " + j)
 break
 }
 else document.write(j + ", ")
}
</script>

Looping | 333

This script outputs the following:

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,
- Found at location 17

The continue Statement
Sometimes you don’t want to entirely exit from a loop, but instead wish to skip the
remaining statements just for this iteration of the loop. In such cases, you can use the
continue command. Example 15-21 shows this in use.

Example 15-21. Using the continue command in a for loop

<script>
haystack = new Array()
haystack[4] = "Needle"
haystack[11] = "Needle"
haystack[17] = "Needle"

for (j = 0 ; j < 20 ; ++j)
{
 if (haystack[j] == "Needle")
 {
 document.write("
- Found at location " + j + "
")
 continue
 }

 document.write(j + ", ")
}
</script>

Notice how the second document.write call does not have to be enclosed in an else
statement (which it did before), because the continue command will skip it if a match
has been found. The output from this script is as follows:

0, 1, 2, 3,
- Found at location 4
5, 6, 7, 8, 9, 10,
- Found at location 11
12, 13, 14, 15, 16,
- Found at location 17
18, 19,

Explicit Casting
Unlike PHP, JavaScript has no explicit casting of types such as (int) or (float). Instead,
when you need a value to be of a certain type, use one of JavaScript’s built-in functions,
shown in Table 15-6.

334 | Chapter 15: Expressions and Control Flow in JavaScript

Table 15-6. JavaScript’s type-changing functions

Change to type Function to use

Int, Integer parseInt()

Bool, Boolean Boolean()

Float, Double, Real parseFloat()

String String()

Array split()

So, for example, to change a floating-point number to an integer, you could use code
such as the following (which displays the value 3):

n = 3.1415927
i = parseInt(n)
document.write(i)

Or you can use the compound form:

document.write(parseInt(3.1415927))

That’s it for control flow and expressions. The next chapter focuses on the use of func-
tions, objects, and arrays in JavaScript.

Test Your Knowledge: Questions
Question 15-1

How are Boolean values handled differently by PHP and JavaScript?

Question 15-2
What character is used to define a JavaScript variable name?

Question 15-3
What is the difference between unary, binary, and ternary operators?

Question 15-4
What is the best way to force your own operator precedence?

Question 15-5
When would you use the === (identity) operator?

Question 15-6
What are the simplest two forms of expressions?

Question 15-7
Name the three conditional statement types.

Question 15-8
How do if and while statements interpret conditional expressions of different data
types?

Test Your Knowledge: Questions | 335

Question 15-9
Why is a for loop more powerful than a while loop?

Question 15-10
What is the purpose of the with statement?

See the section “Chapter 15 Answers” on page 447 in Appendix A for the answers to
these questions.

336 | Chapter 15: Expressions and Control Flow in JavaScript

CHAPTER 16

JavaScript Functions, Objects, and
Arrays

Just like PHP, JavaScript offers access to functions and objects. In fact, JavaScript is
actually based on objects, because—as you’ve seen—it has to access the DOM, which
makes every element of an HTML document available to manipulate as an object.

The usage and syntax are also quite similar to those of PHP, so you should feel right at
home as I take you through using functions and objects in JavaScript, as well as con-
ducting an in-depth exploration of array handling.

JavaScript Functions
In addition to having access to dozens of built-in functions (or methods) such as
write, which you have already seen being used in document.write, you can easily create
your own functions. Whenever you have a more complex piece of code that is likely to
be reused, you have a candidate for a function.

Defining a Function
The general syntax for a function is:

function function_name([parameter [, ...]])
{
 statements
}

The first line of the syntax indicates that:

• A definition starts with the word function.

• A name follows that must start with a letter or underscore, followed by any number
of letters, digits, dollar symbols, or underscores.

337

• The parentheses are required.

• One or more parameters, separated by commas, are optional (indicated by the
square brackets, which are not part of the function syntax).

Function names are case-sensitive, so all of the following strings refer to different func-
tions: getInput, GETINPUT, and getinput.

In JavaScript there is a general naming convention for functions: the first letter of each
word in a name is capitalized except for the very first letter, which is lowercase. There-
fore, of the previous examples, getInput would be the preferred name used by most
programmers. The convention is commonly referred to as bumpyCaps.

The opening curly brace starts the statements that will execute when you call the func-
tion; a matching curly brace must close it. These statements may include one or more
return statements, which force the function to cease execution and return to the calling
code. If a value is attached to the return statement, the calling code can retrieve it.

The arguments array

The arguments array is a member of every function. With it, you can determine the
number of variables passed to a function and what they are. Take the example of a
function called displayItems. Example 16-1 shows one way of writing it.

Example 16-1. Defining a function

<script>
displayItems("Dog", "Cat", "Pony", "Hamster", "Tortoise")

function displayItems(v1, v2, v3, v4, v5)
{
 document.write(v1 + "
")
 document.write(v2 + "
")
 document.write(v3 + "
")
 document.write(v4 + "
")
 document.write(v5 + "
")
}
</script>

When you call this script in your browser, it will display the following:

Dog
Cat
Pony
Hamster
Tortoise

All of this is fine, but what if you wanted to pass more than five items to the function?
Also, reusing the document.write call multiple times instead of employing a loop is
wasteful programming. Luckily, the arguments array gives you the flexibility to handle
a variable number of arguments. Example 16-2 shows how you can use it to rewrite the
example in a much more efficient manner.

338 | Chapter 16: JavaScript Functions, Objects, and Arrays

Example 16-2. Modifying the function to use the arguments array

<script>
function displayItems()
{
 for (j = 0 ; j < displayItems.arguments.length ; ++j)
 document.write(displayItems.arguments[j] + "
")
}
</script>

Note the use of the length property, which you already encountered in the previous
chapter, and also how the array displayItems.arguments is referenced using the variable
j as an offset into it. I also chose to keep the function short and sweet by not surrounding
the contents of the for loop in curly braces, as it contains only a single statement.

Using this technique you now have a function that can take as many (or as few) argu-
ments as you like and act on each argument as you desire.

Returning a Value
Functions are not used just to display things. In fact, they are mostly used to perform
calculations or data manipulation and then return a result. The function fixNames in
Example 16-3 uses the arguments array (discussed in the previous section) to take a
series of strings passed to it and return them as a single string. The “fix” it performs is
to convert every character in the arguments to lowercase except for the first character
of each argument, which is set to a capital letter.

Example 16-3. Cleaning up a full name

<script>
document.write(fixNames("the", "DALLAS", "CowBoys"))

function fixNames()
{
 var s = ""

 for (j = 0 ; j < fixNames.arguments.length ; ++j)
 s += fixNames.arguments[j].charAt(0).toUpperCase() +
 fixNames.arguments[j].substr(1).toLowerCase() + " "

 return s.substr(0, s.length-1)
}
</script>

When called with the parameters “the”, “DALLAS”, and “CowBoys”, for example, the
function returns the string “The Dallas Cowboys”. Let’s walk through the function.

The function first initializes the temporary (and local) variable s to the empty string.
Then a for loop iterates through each of the passed parameters, isolating the parame-
ter’s first character using the charAt method and converting it to uppercase with the

JavaScript Functions | 339

toUpperCase method. The various methods shown in this example are all built-in to
JavaScript and available by default.

Then the substr method is used to fetch the rest of each string, which is converted to
lowercase using the toLowerCase method. A fuller version of the substr method here
would specify how many characters are part of the substring as a second argument:

substr(1, (arguments[j].length) - 1)

In other words, this substr method says, “Start with the character at position 1 (the
second character) and return the rest of the string (the length minus one).” As a nice
touch, though, the substr method assumes that you want the rest of the string if you
omit the second argument.

After the whole argument is converted to our desired case, a space character is added
to the end and the result is appended to the temporary variable s.

Finally, the substr method is used again to return the contents of the variable s, except
for the final space—which is unwanted. This is removed by using substr to return the
string up to, but not including, the final character.

This example is particularly interesting in that it illustrates the use of multiple properties
and methods in a single expression. For example:

fixNames.arguments[j].substr(1).toLowerCase()

You have to interpret the statement by mentally dividing it into parts at the periods.
JavaScript evaluates these elements of the statement from left to right as follows:

1. Start with the name of the function itself: fixNames.

2. Extract element j from the array arguments representing fixNames arguments.

3. Invoke substr with a parameter of 1 to the extracted element. This passes all but
the first character to the next section of the expression.

4. Apply the method toLowerCase to the string that has been passed this far.

This practice is often referred to as method chaining. So, for example, if the string
“mixedCASE” is passed to the example expression, it will go through the following
transformations:

mixedCase
ixedCase
ixedcase

One final reminder: the s variable created inside the function is local, and therefore
cannot be accessed outside the function. By returning s in the return statement, we
made its value available to the caller, which could store or use it any way it wanted.
But s itself disappears at the end of the function. Although we could make a function
operate on global variables (and sometimes that’s necessary), it’s much better to just
return the values you want to preserve and let JavaScript clean up all the other variables
used by the function.

340 | Chapter 16: JavaScript Functions, Objects, and Arrays

Returning an Array
In Example 16-3, the function returned only one parameter, but what if you need to
return multiple parameters? This can be done by returning an array, as in Example 16-4.

Example 16-4. Returning an array of values

<script>
words = fixNames("the", "DALLAS", "CowBoys")

for (j = 0 ; j < words.length ; ++j)
 document.write(words[j] + "
")

function fixNames()
{
 var s = new Array()

 for (j = 0 ; j < fixNames.arguments.length ; ++j)
 s[j] = fixNames.arguments[j].charAt(0).toUpperCase() +
 fixNames.arguments[j].substr(1).toLowerCase()

 return s
}
</script>

Here the variable words is automatically defined as an array and populated with the
returned result of a call to the function fixNames. Then a for loop iterates through the
array and displays each member.

As for the fixNames function, it’s almost identical to Example 16-3, except that the
variable s is now an array, and after each word has been processed it is stored as an
element of this array, which is returned by the return statement.

This function enables the extraction of individual parameters from its returned values,
like the following (the output from which is simply “The Cowboys”):

words = fixNames("the", "DALLAS", "CowBoys")
document.write(words[0] + " " + words[2])

JavaScript Objects
A JavaScript object is a step up from a variable, which can contain only one value at a
time, in that objects can contain multiple values and even functions. An object groups
data together with the functions needed to manipulate it.

Declaring a Class
When creating a script to use objects, you need to design a composite of data and code
called a class. Each new object based on this class is called an instance (or occurrence)

JavaScript Objects | 341

of that class. As you’ve already seen, the data associated with an object are called its
properties, while the functions it uses are called methods.

Let’s look at how to declare the class for an object called User that will contain details
about the current user. To create the class, just write a function named after the class.
This function can accept arguments (I’ll show later how it’s invoked) and can create
properties and methods for the objects in that class. The function is called a constructor.

Example 16-5 shows a constructor for the class User with three properties: forename,
username, and password. The class also defines the method showUser.

Example 16-5. Declaring the User class and its method

<script>
function User(forename, username, password)
{
 this.forename = forename
 this.username = username
 this.password = password

 this.showUser = function()
 {
 document.write("Forename: " + this.forename + "
")
 document.write("Username: " + this.username + "
")
 document.write("Password: " + this.password + "
")
 }
}
</script>

The function is different from other functions we’ve seen so far in two ways:

• It refers to an object named this. When the program creates an instance of User
by running this function, this refers to the instance being created. The same func-
tion can be called over and over with different arguments, and will create a new
User each time with different values for the properties forename, and so on.

• A new function named showUser is created within the function. The syntax shown
here is new and rather complicated, but its purpose is to tie showUser to the User
class. Thus, showUser comes into being as a method of the User class.

The naming convention I have used is to keep all properties in lowercase and to use at
least one uppercase character in method names, following the bumpyCaps convention
mentioned earlier in the chapter.

Example 16-5 follows the recommended way to write a class constructor, which is to
include methods in the constructor function. However, you can also refer to functions
defined outside the constructor, as in Example 16-6.

Example 16-6. Separately defining a class and method

<script>
function User(forename, username, password)
{

342 | Chapter 16: JavaScript Functions, Objects, and Arrays

 this.forename = forename
 this.username = username
 this.password = password
 this.showUser = showUser
}

function showUser()
{
 document.write("Forename: " + this.forename + "
")
 document.write("Username: " + this.username + "
")
 document.write("Password: " + this.password + "
")
}
</script>

I show you this form because you are certain to encounter it when perusing other
programmers’ code.

Creating an Object
To create an instance of the class User, you can use a statement such as the following:

details = new User("Wolfgang", "w.a.mozart", "composer")

Or you can create an empty object, like this:

details = new User()

and then populate it later, like this:

details.forename = "Wolfgang"
details.username = "w.a.mozart"
details.password = "composer"

You can also add new properties to an object, like this:

details.greeting = "Hello"

You can verify that adding such new properties works with the following statement:

document.write(details.greeting)

Accessing Objects
To access an object, you can refer to its properties, as in the following two unrelated
example statements:

name = details.forename
if (details.username == "Admin") loginAsAdmin()

So to access the showUser method of an object of class User, you would use the following
syntax, in which the object details has already been created and populated with data:

details.showUser()

JavaScript Objects | 343

Assuming the data supplied earlier, this code would display:

Forename: Wolfgang
Username: w.a.mozart
Password: composer

The prototype Keyword
The prototype keyword can save you a lot of memory. In the User class, every instance
will contain the three properties and the method. Therefore, if you have 1,000 of these
objects in memory, the method showUser will also be replicated 1,000 times. However,
because the method is identical in every case, you can specify that new objects should
refer to a single instance of the method instead of creating a copy of it. So, instead of
using the following in a class constructor:

this.showUser = function()

you could replace it with this:

User.prototype.showUser = function()

Example 16-7 shows what the new constructor would look like.

Example 16-7. Declaring a class using the prototype keyword for a method

<script>
function User(forename, username, password)
{
 this.forename = forename
 this.username = username
 this.password = password

 User.prototype.showUser = function()
 {
 document.write("Forename: " + this.forename + "
")
 document.write("Username: " + this.username + "
")
 document.write("Password: " + this.password + "
")
 }
}
</script>

This works because all functions have a prototype property, designed to hold properties
and methods that are not replicated in any objects created from a class. Instead, they
are passed to its objects by reference.

This means that you can add a prototype property or method at any time and all objects
(even those already created) will inherit it, as the following statements illustrate:

User.prototype.greeting = "Hello"
document.write(details.greeting)

The first statement adds the prototype property of greeting with a value of “Hello” to
the class User. In the second line, the object details, which has already been created,
correctly displays this new property.

344 | Chapter 16: JavaScript Functions, Objects, and Arrays

You can also add to or modify methods in a class, as the following statements illustrate:

User.prototype.showUser = function() { document.write("Name " +
this.forename + " User " + this.username + " Pass " + this.password) }
details.showUser()

You might add these lines to your script in a conditional statement (such as if), so they
run if user activities cause you to decide you need a different showUser method. After
these lines run, even if the object details has been created already, further calls to
details.showUser will run the new function. The old definition of showUser has been
erased.

Static methods and properties

When reading about PHP objects, you learned that classes can have static properties
and methods as well as properties and methods associated with a particular instance
of a class. JavaScript also supports static properties and methods, which you can con-
veniently store and retrieve from the class’s prototype. Thus, the following statements
set and read a static string from User:

User.prototype.greeting = "Hello"
document.write(User.prototype.greeting)

Extending JavaScript objects

The prototype keyword even lets you add functionality to a built-in object. For example,
suppose that you would like to add the ability to replace all spaces in a string with
nonbreaking spaces in order to prevent it from wrapping around. This can be done by
adding a prototype method to JavaScript’s default String object definition, like this:

String.prototype.nbsp =
 function() { return this.replace(/ /g, ' ') }

Here the replace method is used with a regular expression (see Chapter 17) to find and
replace all single spaces with the string “ ”. If you then enter the following
command:

document.write("The quick brown fox".nbsp())

It will output the string “The quick brown fox”. Or here’s a
method you can add that will trim leading and trailing spaces from a string (once again
using a regular expression):

String.prototype.trim =
 function() { return this.replace(/^\s+|\s+$/g, '') }

If you issue the following statement the output will be the string “Please trim me” (with
the leading and trailing spaces removed).

document.write(" Please trim me ".trim())

JavaScript Objects | 345

JavaScript Arrays
Array handling in JavaScript is very similar to PHP, although the syntax is a little dif-
ferent. Nevertheless, given all you have already learned about arrays, this section should
be relatively straightforward for you.

Numeric Arrays
To create a new array, use the following syntax:

arrayname = new Array()

Or you can use the shorthand form, as follows:

arrayname = []

Assigning element values

In PHP, you could add a new element to an array by simply assigning it without spec-
ifying the element offset, like this:

$arrayname[] = "Element 1";
$arrayname[] = "Element 2";

But in JavaScript you use the push method to achieve the same thing, like this:

arrayname.push("Element 1")
arrayname.push("Element 2")

This allows you to keep adding items to an array without having to keep track of the
number of items. When you need to know how many elements are in an array, you can
use the length property, like this:

document.write(arrayname.length)

Alternatively, if you wish to keep track of the element locations yourself and place them
in specific locations, you can use syntax such as this:

arrayname[0] = "Element 1"
arrayname[1] = "Element 2"

Example 16-8 shows a simple script that creates an array, loads it with some values,
and then displays them.

Example 16-8. Creating, building, and printing an array

<script>
numbers = []
numbers.push("One")
numbers.push("Two")
numbers.push("Three")

for (j = 0 ; j < numbers.length ; ++j)
 document.write("Element " + j + " = " + numbers[j] + "
")
</script>

346 | Chapter 16: JavaScript Functions, Objects, and Arrays

The output from this script is:

Element 0 = One
Element 1 = Two
Element 2 = Three

Assignment using the array keyword

You can also create an array together with some initial elements using the Array key-
word, like this:

numbers = Array("One", "Two", "Three")

There is nothing stopping you from adding more elements afterward as well.

So now you have a couple of ways you can add items to an array, and one way of
referencing them, but JavaScript offers many more, which I’ll get to shortly. But first
we’ll look at another type of array.

Associative Arrays
An associative array is one in which its elements are referenced by name rather than by
numeric offset. To create an associative array, define a block of elements within curly
braces. For each element, place the key on the left and the contents on the right of a
colon (:). Example 16-9 shows how you might create an associative array to hold the
contents of the balls section of an online sports equipment retailer.

Example 16-9. Creating and displaying an associative array

<script>
balls = {"golf": "Golf balls, 6",
 "tennis": "Tennis balls, 3",
 "soccer": "Soccer ball, 1",
 "ping": "Ping Pong balls, 1 doz"}

for (ball in balls)
 document.write(ball + " = " + balls[ball] + "
")
</script>

To verify that the array has been correctly created and populated, I have used another
kind of for loop using the in keyword. This creates a new variable to use only within
the array (ball in this example) and iterates through all elements of the array to the
right of the in keyword (balls in this example). The loop acts on each element of
balls, placing the key value into ball.

Using this key value stored in ball, you can also get the value of the current element of
balls. The result of calling up the example script in a browser is as follows:

golf = Golf balls, 6
tennis = Tennis balls, 3
soccer = Soccer ball, 1
ping = Ping Pong balls, 1 doz

JavaScript Arrays | 347

To get a specific element of an associative array, you can specify a key explicitly, in the
following manner (in this case outputting the value “Soccer ball, 1”):

document.write(balls['soccer'])

Multidimensional Arrays
To create a multidimensional array in JavaScript, just place arrays inside other arrays.
For example, to create an array to hold the details of a two dimensional checkerboard
(8×8 squares), you could use the code in Example 16-10.

Example 16-10. Creating a multidimensional numeric array

<script>
checkerboard = Array(
 Array(' ', 'o', ' ', 'o', ' ', 'o', ' ', 'o'),
 Array('o', ' ', 'o', ' ', 'o', ' ', 'o', ' '),
 Array(' ', 'o', ' ', 'o', ' ', 'o', ' ', 'o'),
 Array(' ', ' ', ' ', ' ', ' ', ' ', ' ', ' '),
 Array(' ', ' ', ' ', ' ', ' ', ' ', ' ', ' '),
 Array('O', ' ', 'O', ' ', 'O', ' ', 'O', ' '),
 Array(' ', 'O', ' ', 'O', ' ', 'O', ' ', 'O'),
 Array('O', ' ', 'O', ' ', 'O', ' ', 'O', ' '))

document.write("<pre>")
for (j = 0 ; j < 8 ; ++j)
{
 for (k = 0 ; k < 8 ; ++k)
 document.write(checkerboard[j][k] + " ")
 document.write("
")
}
document.write("</pre>")
</script>

In this example, the lowercase letters represent black pieces and the uppercase white.
A pair of nested for loops walk through the array and display its contents.

The outer loop contains two statements, so curly braces enclose them. The inner loop
then processes each square in a row, outputting the character at location [j][k], fol-
lowed by a space (to square up the printout). This loop contains a single statement, so
curly braces are not required to enclose it. The <pre> and </pre> tags ensure that the
output displays correctly, like this:

 o o o o
o o o o
 o o o o

O O O O
 O O O O
O O O O

348 | Chapter 16: JavaScript Functions, Objects, and Arrays

You can also directly access any element within this array using square brackets, as
follows:

document.write(checkerboard[7][2])

This statement outputs the uppercase letter O, the eighth element down and the third
along—remember that array indexes start at 0, not 1.

Using Array Methods
Due to the power of arrays, JavaScript comes ready-made with a number of methods
for manipulating them and their data. Here is a selection of the most useful ones.

concat

The concat method concatenates two arrays, or a series of values with an array. For
example, the following code outputs “Banana,Grape,Carrot,Cabbage”:

fruit = ["Banana", "Grape"]
veg = ["Carrot", "Cabbage"]
document.write(fruit.concat(veg))

You can specify multiple arrays as arguments, in which case concat adds all their ele-
ments in the order that the arrays are specified.

Here’s another way to use concat, This time plain values are concatenated with the
array pets, which outputs “Cat,Dog,Fish,Rabbit,Hamster”:

pets = ["Cat", "Dog", "Fish"]
more_pets = pets.concat("Rabbit", "Hamster")
document.write(more_pets)

forEach: For non-IE browsers

The forEach method in JavaScript is another way of achieving functionality similar to
the PHP foreach keyword, but only for browsers other than Internet Explorer. To use it
you pass it the name of a function, which will be called for each element within the
array. Example 16-11 shows how.

Example 16-11. Using the forEach method

<script>
pets = ["Cat", "Dog", "Rabbit", "Hamster"]
pets.forEach(output)

function output(element, index, array)
{
 document.write("Element at index " + index + " has the value " +
 element + "
")
}
</script>

JavaScript Arrays | 349

In this case, the function passed to forEach is called output. It takes three parameters:
the element, its index, and the array. These can be used as required by your function.
In this example, just the element and index values are displayed using the function
document.write.

Once an array has been populated, the method is called up like this:

pets.forEach(output)

The output from which is:

Element 0 has the value Cat
Element 1 has the value Dog
Element 2 has the value Rabbit
Element 3 has the value Hamster

forEach: A cross-browser solution

Of course, as is its way, Microsoft chose not to support the forEach method, so the
previous example will work only on non-Internet Explorer browsers. Therefore until
IE does support it, and to ensure cross-browser compatibility, you should use a state-
ment such as the following instead of pets.forEach(output):

for (j = 0 ; j < pets.length ; ++j) output(pets[j], j)

join

With the join method, you can convert all the values in an array to strings and then
join them together into one large string, placing an optional separator between them.
Example 16-12 shows three ways of using this method.

Example 16-12. Using the join method

<script>
pets = ["Cat", "Dog", "Rabbit", "Hamster"]
document.write(pets.join() + "
")
document.write(pets.join(' ') + "
")
document.write(pets.join(' : ') + "
")
</script>

Without a parameter, join uses a comma to separate the elements; otherwise, the string
passed to join is inserted between each element. The output of Example 16-12 looks
like this:

Cat,Dog,Rabbit,Hamster
Cat Dog Rabbit Hamster
Cat : Dog : Rabbit : Hamster

push and pop

You already saw how the push method can be used to insert a value into an array. The
inverse method is pop. It deletes the most recently inserted element from an array and
returns it. Example 16-13 shows an example of its use.

350 | Chapter 16: JavaScript Functions, Objects, and Arrays

Example 16-13. Using the push and pop methods

<script>
sports = ["Football", "Tennis", "Baseball"]
document.write("Start = " + sports + "
")
sports.push("Hockey")
document.write("After Push = " + sports + "
")
removed = sports.pop()
document.write("After Pop = " + sports + "
")
document.write("Removed = " + removed + "
")
</script>

The three main statements of this script are shown in bold type. First the script creates
an array called sports with three elements and then pushes a fourth element into the
array. After that it pops that element back off. In the process, the various current values
are displayed using document.write. The script outputs the following:

Start = Football,Tennis,Baseball
After Push = Football,Tennis,Baseball,Hockey
After Pop = Football,Tennis,Baseball
Removed = Hockey

The push and pop functions are useful in situations where you need to divert from some
activity to do another, then return, as in Example 16-14.

Example 16-14. Using push and pop inside and outside of a loop

<script>
numbers = []

for (j=0 ; j<3 ; ++j)
{
 numbers.push(j);
 document.write("Pushed " + j + "
")
}

// Perform some other activity here
document.write("
")

document.write("Popped " + numbers.pop() + "
")
document.write("Popped " + numbers.pop() + "
")
document.write("Popped " + numbers.pop() + "
")
</script>

The output from this example is:

Pushed 0
Pushed 1
Pushed 2

Popped 2
Popped 1
Popped 0

JavaScript Arrays | 351

Using reverse

The reverse method simply reverses the order of all elements in an array. Exam-
ple 16-15 shows this in action.

Example 16-15. Using the reverse method

<script>
sports = ["Football", "Tennis", "Baseball", "Hockey"]
sports.reverse()
document.write(sports)
</script>

The original array is modified and the output from this script is:

Hockey,Baseball,Tennis,Football

sort

With the sort method, you can place all the elements of an array in alphabetical or
other order, depending upon the parameters used. Example 16-16 shows four types of
sort.

Example 16-16. Using the sort method

<script>
// Alphabetical sort
sports = ["Football", "Tennis", "Baseball", "Hockey"]
sports.sort()
document.write(sports + "
")

// Reverse alphabetical sort
sports = ["Football", "Tennis", "Baseball", "Hockey"]
sports.sort().reverse()
document.write(sports + "
")

// Ascending numerical sort
numbers = [7, 23, 6, 74]
numbers.sort(function(a,b){return a - b})
document.write(numbers + "
")

// Descending numerical sort
numbers = [7, 23, 6, 74]
numbers.sort(function(a,b){return b - a})
document.write(numbers + "
")
</script>

The first of the four example sections is the default sort method, alphabetical sort, while
the second uses the default sort and then applies the reverse method to get a reverse
alphabetical sort.

352 | Chapter 16: JavaScript Functions, Objects, and Arrays

The third and fourth sections are a little more complicated by using a function to com-
pare the relationships between a and b. The function doesn’t have a name, because it’s
used just in the sort. You have already seen the function named function to create an
anonymous function; we used it to define a method in a class (the showUser method).

Here, function creates an anonymous function meeting the needs of the sort method.
If the function returns a value greater than zero, the sort assumes that a comes before
b. If the function returns a value less than zero, the sort assumes that b comes before
a. The sort runs this function across all the values in the array to determine their order.

By manipulating the value returned (a - b in contrast to b - a), the third and fourth
sections of Example 16-16 choose between an ascending numerical sort and a descending
numerical sort.

And, believe it or not, this represents the end of your introduction to JavaScript. You
should therefore now have a core knowledge of the three main technologies covered in
this book. The next chapter will look at some advanced techniques used across these
technologies, such as pattern matching and input validation.

Test Your Knowledge: Questions
Question 16-1

Are JavaScript functions and variable names case-sensitive or -insensitive?

Question 16-2
How can you write a function that accepts and processes an unlimited number of
parameters?

Question 16-3
Name a way to return multiple values from a function.

Question 16-4
When defining a class, what keyword is used to refer to the current object?

Question 16-5
Do all the methods of a class have to be defined within the class definition?

Question 16-6
What keyword is used to create an object?

Question 16-7
How can a property or method be made available to all objects in a class without
replicating the property or method within the object?

Question 16-8
How can you create a multidimensional array?

Test Your Knowledge: Questions | 353

Question 16-9
What syntax is used to create an associative array?

Question 16-10
Write a statement to sort an array of numbers in descending numerical order.

See the section “Chapter 16 Answers” on page 448 in Appendix A for the answers to
these questions.

354 | Chapter 16: JavaScript Functions, Objects, and Arrays

CHAPTER 17

JavaScript and PHP Validation and
Error Handling

With your solid foundation in both PHP and JavaScript, it’s time to bring these tech-
nologies together to create web forms that are as user-friendly as possible.

We’ll be using PHP to create the forms and JavaScript to perform client-side validation
to ensure that the data is as complete and correct as it can be before it is submitted.
Final validation of the input will then be made by the PHP, which will, if necessary,
present the form again to the user for further modification.

In the process, this chapter will cover validation and regular expressions in both Java-
Script and PHP.

Validating User Input with JavaScript
JavaScript validation should be considered an assistance more to your users than to
your websites because, as I have already stressed many times, you cannot trust any data
submitted to your server, even if it has supposedly been validated with JavaScript. This
is because hackers can quite easily simulate your web forms and submit any data of
their choosing.

Another reason you cannot rely on JavaScript to perform all your input validation is
that some users disable JavaScript, or use browsers that don’t support it.

So the best types of validation to do in JavaScript are checking that fields have content
if they are not to be left empty, ensuring that email addresses conform to the proper
format, and ensuring that values entered are within expected bounds.

355

The validate.html Document (Part One)
So let’s take a general sign-up form, common on most sites that offer memberships or
registered users. The inputs being requested will be forename, surname, username,
password, age, and email address. Example 17-1 provides a good template for such a
form.

Example 17-1. A form with JavaScript validation (part one)

<html><head><title>An Example Form</title>
<style>.signup { border: 1px solid #999999;
 font: normal 14px helvetica; color:#444444; }</style>

<script>
function validate(form) {
 fail = validateForename(form.forename.value)
 fail += validateSurname(form.surname.value)
 fail += validateUsername(form.username.value)
 fail += validatePassword(form.password.value)
 fail += validateAge(form.age.value)
 fail += validateEmail(form.email.value)
 if (fail == "") return true
 else { alert(fail); return false }
}
</script></head><body>

<table class="signup" border="0" cellpadding="2"
 cellspacing="5" bgcolor="#eeeeee">
<th colspan="2" align="center">Signup Form</th>
<form method="post" action="adduser.php"
 onSubmit="return validate(this)">
 <tr><td>Forename</td><td><input type="text" maxlength="32"
 name="forename" /></td>
</tr><tr><td>Surname</td><td><input type="text" maxlength="32"
 name="surname" /></td>
</tr><tr><td>Username</td><td><input type="text" maxlength="16"
 name="username" /></td>
</tr><tr><td>Password</td><td><input type="text" maxlength="12"
 name="password" /></td>
</tr><tr><td>Age</td><td><input type="text" maxlength="3"
 name="age" /></td>
</tr><tr><td>Email</td><td><input type="text" maxlength="64"
 name="email" /></td>
</tr><tr><td colspan="2" align="center">
 <input type="submit" value="Signup" /></td>
</tr></form></table>

As it stands, this form will display correctly but will not self-validate, because the main
validation functions have not yet been added. Even so, if you type it in and save it as
validate.html, when you call it up in your browser, it will look like Figure 17-1.

356 | Chapter 17: JavaScript and PHP Validation and Error Handling

How it works

Let’s look at how this document is made up. The first three lines set up the document
and use a little CSS to make the form look a little less plain. The parts of the document
related to JavaScript come next and are show in bold.

Between the <script ...> and </script> tags lies a single function called validate that
itself calls up six other functions to validate each of the form’s input fields. We’ll get
to these functions shortly. For now I’ll just explain that they return either an empty
string if a field validates, or an error message if it fails. If there are any errors, the final
line of the script pops up an alert box to display them.

Upon passing validation, the validate function returns a value of true; otherwise, it
returns false. The return values from validate are important, because if it returns
false, the form is prevented from being submitted. This allows the user to close the
alert pop up and make changes. If true is returned, no errors were encountered in the
form’s fields and so the form is allowed to be submitted.

The second part of this example features the HTML for the form with each field and
its name placed within its own row of a table. This is pretty straightforward HTML,
with the exception of the onSubmit="return validate(this)" statement within the
opening <form ...> tag. Using onSubmit, you can cause a function of your choice to be
called when a form is submitted. That function can perform some checking and return
a value of either true or false to signify whether the form should be allowed to be
submitted.

Figure 17-1. The output from Example 17-1

Validating User Input with JavaScript | 357

The this parameter is the current object (i.e., this form) and is passed to the validate
function just discussed. The validate function receives this parameter as the object
form.

As you can see, the only JavaScript used within the form’s HTML is the call to return
buried in the onSubmit attribute. Browsers with JavaScript disabled or not available will
simply ignore the onSubmit attribute, and the HTML will display just fine.

The validate.html Document (Part Two)
Now we come to Example 17-2, a set of six functions that do the actual form field
validation. I suggest that you type all of this second part in and append it to the first
half, which you should already have saved as validate.html. It’s fine to include multiple
<script> sections in a single HTML file. If you prefer, you can incorporate the additional
code into the first <script> section from Example 17-1.

Example 17-2. Part two of the JavaScript validation form

<script>
function validateForename(field) {
 if (field == "") return "No Forename was entered.\n"
 return ""
}

function validateSurname(field) {
 if (field == "") return "No Surname was entered.\n"
 return ""
}

function validateUsername(field) {
 if (field == "") return "No Username was entered.\n"
 else if (field.length < 5)
 return "Usernames must be at least 5 characters.\n"
 else if (/[^a-zA-Z0-9_-]/.test(field))
 return "Only a-z, A-Z, 0-9, - and _ allowed in Usernames.\n"
 return ""
}

function validatePassword(field) {
 if (field == "") return "No Password was entered.\n"
 else if (field.length < 6)
 return "Passwords must be at least 6 characters.\n"
 else if (!/[a-z]/.test(field) || ! /[A-Z]/.test(field) ||
 !/[0-9]/.test(field))
 return "Passwords require one each of a-z, A-Z and 0-9.\n"
 return ""
}

function validateAge(field) {
 if (isNaN(field)) return "No Age was entered.\n"
 else if (field < 18 || field > 110)
 return "Age must be between 18 and 110.\n"

358 | Chapter 17: JavaScript and PHP Validation and Error Handling

 return ""
}

function validateEmail(field) {
 if (field == "") return "No Email was entered.\n"
 else if (!((field.indexOf(".") > 0) &&
 (field.indexOf("@") > 0)) ||
 /[^a-zA-Z0-9.@_-]/.test(field))
 return "The Email address is invalid.\n"
 return ""
}
</script></body></html>

We’ll go through each of these functions in turn, starting with validateForename so you
can see how validation works.

Validating the forename

validateForename is quite a short function that accepts the parameter field, which is
the value of the forename passed to it by the validate function.

If this value is an empty string, an error message is returned; otherwise, an empty string
is returned to signify that no error was encountered.

If the user entered spaces in this field, it would be accepted by validateForename, even
though it’s empty for all intents and purposes. You can fix this by adding an extra
statement to trim whitespace from the field before checking whether it’s empty, use a
regular expression to make sure there’s something besides whitespace in the field, or—
as I do here—just let the user make the mistake and allow the PHP program to catch
it on the server.

Validating the surname

The validateSurname function is almost identical to validateForename in that an error
is returned only if the surname supplied was the empty string. I chose not to limit the
characters allowed in either of the name fields to allow for non-English and accented
characters, etc.

Validating the username

The validateUsername function is a little more interesting, because it has a more com-
plicated job. It has to allow only the characters a-z, A-Z, 0-9, _ and -, and ensure that
usernames are at least five characters long.

The if...else statements commence by returning an error if field has not been filled
in. If it’s not the empty string, but is less than five characters in length, another error
message is returned.

Then the JavaScript test function is called, passing a regular expression (which matches
any character that is not one of those allowed) to be matched against field (see the

Validating User Input with JavaScript | 359

section “Regular Expressions” on page 361). If even one character that isn’t one of the
acceptable ones is encountered, the test function returns false and so validateUser
name returns an error string. Otherwise, an empty string is returned to signify that no
error was found.

Validating the password

Similar techniques are used in the validatePassword function. First the function checks
whether field is empty, and an error is returned if it is. Next, an error message is
returned if a password is shorter than six characters.

One of the requirements we’re imposing on passwords is that they must have at least
one each of a lowercase, uppercase, and numerical character, so the test function is
called three times, once for each of these cases. If any one of them returns false, one
of the requirements was not met and so an error message is returned. Otherwise, the
empty string is returned to signify that the password was OK.

Validating the age

validateAge returns an error message if field is not a number (determined by a call to
the isNaN function), or if the age entered is lower than 18 or greater than 110. Your
applications may well have different or no age requirements. Again, upon successful
validation the empty string is returned.

Validating the email

Last, and most complicated, the email address is validated with validateEmail. After
checking whether anything was actually entered, and returning an error message if it
wasn’t, the function calls the JavaScript indexOf function twice. The first time a check
is made to ensure there is a period (.) somewhere from at least the second character of
the field, and the second checks that an @ symbol appear somewhere at or after the
second character.

If those two checks are satisfied, the test function is called to see whether any disal-
lowed characters appear in the field. If any of these tests fail, an error message is re-
turned. The allowed characters in an email address are uppercase and lowercase letters,
numbers, and the _, -, period, and @ characters, as detailed in the regular expression
passed to the test method. If no errors are found the empty string is returned to indicate
successful validation. On the last line, the script and document are closed.

Figure 17-2 shows the result of clicking on the Signup button without having completed
any fields.

Using a separate JavaScript file

Of course, because they are generic in construction and could apply to many types of
validations you might require, these six functions make ideal candidates for moving

360 | Chapter 17: JavaScript and PHP Validation and Error Handling

out into a separate JavaScript file, remembering to remove any <script> or </script>
tags. You could name the file something like validate_functions.js and include it right
after the initial script section in Example 17-1, using the following statement:

<script src="validate_functions.js"></script>

Regular Expressions
Let’s look a little more closely at the pattern matching we have been doing. This has
been achieved using regular expressions, which are supported by both JavaScript and
PHP. They make it possible to construct the most powerful of pattern-matching algo-
rithms within a single expression.

Matching Through Metacharacters
Every regular expression must be enclosed in slashes. Within these slashes, certain
characters have special meanings; there are called metacharacters. For instance, an as-
terisk (*) has a meaning similar to what you have seen if you use a shell or Windows
Command prompt (but not quite the same). An asterisk means, “the text you’re trying
to match may have any number of the preceding character—or none at all.”

For instance, let’s say you’re looking for the name “Le Guin” and know that someone
might spell it with or without a space. Because the text is laid out strangely (for instance,

Figure 17-2. JavaScript form validation in action

Regular Expressions | 361

someone may have inserted extra spaces to right-justify lines), you could have to search
for a line such as:

The difficulty of classifying Le Guin's works

So you need to match “LeGuin,” as well as “Le” and “Guin” separated by any number
of spaces. The solution is to follow a space with an asterisk:

/Le *Guin/

There’s a lot more than the name “Le Guin” in the line, but that’s OK. As long as the
regular expression matches some part of the line, the test function returns a true value.
What if it’s important to make sure the line contains nothing but “Le Guin”? I’ll show
how to ensure that later.

Suppose that you know there is always at least one space. In that case, you could use
the plus sign (+), because it requires at least one of the preceding character to be present:

/Le +Guin/

Fuzzy Character Matching
The dot (.) is particularly useful, because it can match anything except a newline.
Suppose that you are looking for HTML tags, which start with “<” and end with “>”.
A simple way to do so is:

/<.*>/

The dot matches any character and the * expands it to match zero or more characters,
so this is saying, “match anything that lies between < and >, even if there’s nothing.”
You will match <>, ,
 and so on. But if you don’t want to match the empty
case, <>, you should use the + sign instead of *, like this:

/<.+>/

The plus sign expands the dot to match one or more characters, saying, “match any-
thing that lies between < and > as long as there’s at least one character between them.”
You will match and , <h1> and </h1>, and tags with attributes such as:

Unfortunately, the plus sign keeps on matching up to the last > on the line, so you might
end up with:

<h1>Introduction</h1>

A lot more than one tag! I’ll show a better solution later in this section.

If you use the dot on its own between the angle brackets, without fol-
lowing it with either a + or *, then it matches a single character; you will
match and <i> but not or <textarea>.

362 | Chapter 17: JavaScript and PHP Validation and Error Handling

If you want to match the dot character itself (.), you have to escape it by placing a
backslash (\) before it, because otherwise it’s a metacharacter and matches anything.
As an example, suppose you want to match the floating-point number “5.0”. The reg-
ular expression is:

/5\.0/

The backslash can escape any metacharacter, including another backslash (in case
you’re trying to match a backslash in text). However, to make things a bit confusing,
you’ll see later how backslashes sometimes give the following character a special
meaning.

We just matched a floating-point number. But perhaps you want to match “5.” as well
as “5.0”, because both mean the same thing as a floating-point number. You also want
to match “5.00”, “5.000”, and so forth—any number of zeros is allowed. You can do
this by adding an asterisk, as you’ve seen:

/5\.0*/

Grouping Through Parentheses
Suppose you want to match powers of increments of units, such as kilo, mega, giga,
and tera. In other words, you want all the following to match:

1,000
1,000,000
1,000,000,000
1,000,000,000,000
...

The plus sign works here, too, but you need to group the string “,000” so the plus sign
matches the whole thing. The regular expression is:

/1(,000)+ /

The parentheses mean “treat this as a group when you apply something such as a plus
sign.” 1,00,000 and 1,000,00 won’t match because the text must have a 1 followed by
one or more complete groups of a comma followed by three zeros.

The space after the + character indicates that the match must end when a space is
encountered. Without it, 1,000,00 would incorrectly match, because only the first
1,000 would be taken into account, and the remaining 00 would be ignored. Requiring
a space afterward ensures that matching will continue right through to the end of a
number.

Character Classes
Sometimes you want to match something fuzzy, but not so broad that you want to use
a dot. Fuzziness is the great strength of regular expressions: they allow you to be as
precise or vague as you want.

Regular Expressions | 363

One of the key features supporting fuzzy matching is the pair of square brackets, []. It
matches a single character, like a dot, but inside the brackets you put a list of things
that can match. If any of those characters appears, the text matches. For instance, if
you wanted to match both the American spelling “gray” and the British spelling “grey,”
you could specify:

/gr[ae]y/

After the gr in the text you’re matching, there can be either an a or an e. But there must
be only one of them: whatever you put inside the brackets matches exactly one char-
acter. The group of characters inside the brackets is called a character class.

Indicating a Range
Inside the brackets, you can use a hyphen (-) to indicate a range. One very common
task is matching a single digit, which you can do with a range as follows:

/[0-9]/

Digits are such a common item in regular expressions that a single character is provided
to represent them: \d. You can use it in the place of the bracketed regular expression
to match a digit:

/\d/

Negation
One other important feature of the square brackets is negation of a character class. You
can turn the whole character class on its head by placing a caret (^) after the opening
bracket. Here it means, “Match any characters except the following.” So let’s say you
want to find instances of “Yahoo” that lack the following exclamation point. (The name
of the company officially contains an exclamation point!) You could do it as follows:

/Yahoo[^!]/

The character class consists of a single character—an exclamation point—but it is in-
verted by the preceding ^. This is actually not a great solution to the problem—for
instance, it fails if “Yahoo” is at the end of the line, because then it’s not followed by
anything, whereas the brackets must match a character. A better solution involves neg-
ative look-ahead (matching something that is not followed by anything else), but that’s
beyond the scope of this book.

Some More Complicated Examples
With an understanding of character classes and negation, you’re ready now to see a
better solution to the problem of matching an HTML tag. This solution avoids going
past the end of a single tag, but still matches tags such as and as well as tags
with attributes such as:

364 | Chapter 17: JavaScript and PHP Validation and Error Handling

One solution is:

/<[^>]+>/

That regular expression may look like I dropped my teacup on the keyboard, but it is
perfectly valid and very useful. Let’s break it apart. Figure 17-3 shows the various ele-
ments, which I’ll describe one by one.

Figure 17-3. Breakdown of a typical regular expression

The elements are:

/
Opening slash that indicates this is a regular expression.

<
Opening bracket of an HTML tag. This is matched exactly; it is not a
metacharacter.

[^>]
Character class. The embedded ^> means “match anything except a closing angle
bracket.”

+
Allows any number of characters to match the previous [^>], as long as there is at
least one of them.

>
Closing bracket of an HTML tag. This is matched exactly.

/
Closing slash that indicates the end of the regular expression.

Another solution to the problem of matching HTML tags is to use a
nongreedy operation. By default, pattern matching is greedy, returning
the longest match possible. Nongreedy matching finds the shortest pos-
sible match and its use is beyond the scope of this book, but there are
more details at http://oreilly.com/catalog/regex/chapter/ch04.html.

We are going to look now at one of the expressions from Example 17-1, where the
validateUsername function used:

/[^a-zA-Z0-9_]/

Regular Expressions | 365

http://oreilly.com/catalog/regex/chapter/ch04.html

Figure 17-4 shows the various elements.

Figure 17-4. Breakdown of the validateUsername regular expression

Let’s look at these elements in detail:

/
Opening slash that indicates this is a regular expression.

[
Opening bracket that starts a character class.

^
Negation character: inverts everything else between the brackets.

a-z
Represents any lowercase letter.

A-Z
Represents any uppercase letter.

0-9
Represents any digit.

_
An underscore.

]
Closing bracket that ends a character class.

/
Closing slash that indicates the end of the regular expression.

There are two other important metacharacters. They “anchor” a regular expression by
requiring that it appear in a particular place. If a caret (^) appears at the beginning of
the regular expression, the expression has to appear at the beginning of a line of text—
otherwise, it doesn’t match. Similarly, if a dollar sign ($) appears at the end of the regular
expression, the expression has to appear at the end of a line of text.

366 | Chapter 17: JavaScript and PHP Validation and Error Handling

It may be somewhat confusing that ^ can mean “negate the character
class” inside square brackets and “match the beginning of the line” if
it’s at the beginning of the regular expression. Unfortunately, the same
character is used for two different things, so take care when using it.

We’ll finish our exploration of regular expression basics by answering a question raised
earlier: suppose you want to make sure there is nothing extra on a line besides the
regular expression? What if you want a line that has “Le Guin” and nothing else? We
can do that by amending the earlier regular expression to anchor the two ends:

/^Le *Guin$/

Summary of Metacharacters
Table 17-1 shows the metacharacters available in regular expressions.

Table 17-1. Regular expression metacharacters

Metacharacters Description

/ Begins and ends the regular expression

. Matches any single character except the newline

element* Matches element zero or more times

element+ Matches element one or more times

element? Matches element zero or one time

[characters] Matches a character out of those contained within the brackets

[^characters] Matches a single character that is not contained within the brackets

(regex) Treats the regex as a group for counting or a following *, +, or ?

left|right Matches either left or right

l-r Matches a range of characters between l and r (only within brackets)

^ Requires match to be at the string’s start

$ Requires match to be at the string’s end

\b Matches a word boundary

\B Matches where there is not a word boundary

\d Matches a single digit

\D Matches a single nondigit

\n Matches a newline character

\s Matches a whitespace character

\S Matches a nonwhitespace character

\t Matches a tab character

\w Matches a word character (a-z, A-Z, 0-9, and _)

Regular Expressions | 367

Metacharacters Description

\W Matches a nonword character (anything but a-z, A-Z, 0-9, and _)

\x x (useful if x is a metacharacter, but you really want x)

{n} Matches exactly n times

{n,} Matches n times or more

{min,max} Matches at least min and at most max times

Provided with this table, and looking again at the expression /[^a-zA-Z0-9_]/, you can
see that it could easily be shortened to /[^\w]/ because the single metacharacter \w
(with a lowercase w) specifies the characters a-z, A-Z, 0-9, and _.

In fact, we can be more clever than that, because the metacharacter \W (with an upper-
case W) specifies all characters except for a-z, A-Z, 0-9, and _. Therefore we could also
drop the ^ metacharacter and simply use /[\W]/ for the expression.

To give you more ideas of how this all works, Table 17-2 shows a range of expressions
and the patterns they match.

Table 17-2. Some example regular expressions

Example Matches

r The first r in The quick brown

rec[ei][ei]ve Either of receive or recieve (but also receeve or reciive)

rec[ei]{2}ve Either of receive or recieve (but also receeve or reciive)

rec(ei)|(ie)ve Either of receive or recieve (but not receeve or reciive)

cat The word cat in I like cats and dogs

cat|dog Either of the words cat or dog in I like cats and dogs

\. . (the \ is necessary because . is a metacharacter)

5\.0* 5., 5.0, 5.00, 5.000, etc.

a-f Any of the characters a, b, c, d, e or f

cats$ Only the final cats in My cats are friendly cats

^my Only the first my in my cats are my pets

\d{2,3} Any two or three digit number (00 through 999)

7(,000)+ 7,000;7,000,000; 7,000,000,000; 7,000,000,000,000; etc.

[\w]+ Any word of one or more characters

[\w]{5} Any five-letter word

368 | Chapter 17: JavaScript and PHP Validation and Error Handling

General Modifiers
Some additional modifiers are available for regular expressions:

• /g enables “global” matching. When using a replace function, specify this modifier
to replace all matches, rather than only the first one.

• /i makes the regular expression match case-insensitive. Thus, instead
of /[a-zA-Z]/ you could specify /[a-z]/i or /[A-Z]/i.

• /m enables multiline mode, in which the caret (^) and dollar ($) match before and
after any newlines in the subject string. Normally, in a multiline string, ^ matches
only at the start of the string and $ matches only at the end of the string.

For example, the expression /cats/g will match both occurrences of the word cats in
the sentence “I like cats and cats like me”. Similarly, /dogs/gi will match both occur-
rences of the word dogs (Dogs and dogs) in the sentence “Dogs like other dogs”, because
you can use these specifiers together.

Using Regular Expressions in JavaScript
In JavaScript you will use regular expressions mostly in two methods: test (which you
have already seen) and replace. Whereas test just tells you whether its argument
matches the regular expression, replace takes a second parameter: the string to replace
the text that matches. Like most functions, replace generates a new string as a return
value; it does not change the input.

To compare the two methods, the following statement just returns true to let us know
that the word “cats” appears at least once somewhere within the string:

document.write(/cats/i.test("Cats are fun. I like cats."))

But the following statement replaces both occurrences of the word cats with the word
dogs, printing the result. The search has to be global (/g) to find all occurrences, and
case-insensitive (/i) to find the capitalized “Cats”:

document.write("Cats are fun. I like cats.".replace(/cats/gi,"dogs"))

If you try out the statement, you’ll see a limitation of replace: because it replaces text
with exactly the string you tell it to use, the first word “Cats” is replaced by “dogs”
instead of “Dogs”.

Using Regular Expressions in PHP
The most common regular expression functions that you are likely to use in PHP are
preg_match, preg_match_all, and preg_replace.

Regular Expressions | 369

To test whether the word cats appears anywhere within a string, in any combination
of upper- and lowercase, you could use preg_match like this:

$n = preg_match("/cats/i", "Cats are fun. I like cats.");

Because PHP uses 1 for TRUE and 0 for FALSE, the preceding statement sets $n to 1. The
first argument is the regular expression and the second is the text to match. But
preg_match is actually a good deal more powerful and complicated, because it takes a
third argument that shows what text matched:

$n = preg_match("/cats/i", "Cats are fun. I like cats.", $match);
echo "$n Matches: $match[0]";

The third argument is an array (here given the name $match). The function puts the text
that matches into the first element, so if the match is successful you can find the text
that matched in $match[0]. In this example, the output lets us know that the matched
text was capitalized:

1 Matches: Cats

If you wish to locate all matches, you use the preg_match_all function, like this:

$n = preg_match_all("/cats/i", "Cats are fun. I like cats.", $match);
echo "$n Matches: ";
for ($j=0 ; $j < $n ; ++$j) echo $match[0][$j]." ";

As before, $match is passed to the function and the element $match[0] is assigned the
matches made, but this time as a subarray. To display the subarray, this example iterates
through it with a for loop.

When you want to replace part of a string, you can use preg_replace as shown here.
This example replaces all occurrences of the word cats with the word dogs, regardless
of case:

echo preg_replace("/cats/i", "dogs", "Cats are fun. I like cats.");

The subject of regular expressions is a large one and entire books have
been written about it. If you would like further information I suggest
the Wikipedia entry at http://wikipedia.org/wiki/Regular_expression, or
the excellent book Mastering Regular Expressions by Jeffrey E.F. Friedl
(O’Reilly).

Redisplaying a Form After PHP Validation
OK, back to form validation. So far we’ve created the HTML document
validate.html, which will post through to the PHP program adduser.php, but only if
JavaScript validates the fields, or if JavaScript is disabled or unavailable.

So now it’s time to create adduser.php to receive the posted form, perform its own
validation, and then present the form again to the visitor if the validation fails. Exam-
ple 17-3 contains the code that you should type in and save.

370 | Chapter 17: JavaScript and PHP Validation and Error Handling

http://wikipedia.org/wiki/Regular_expression
http://oreilly.com/catalog/9780596528126

Example 17-3. The adduser.php program

<?php // adduser.php

// Start with the PHP code

$forename = $surname = $username = $password = $age = $email = "";

if (isset($_POST['forename']))
 $forename = fix_string($_POST['forename']);
if (isset($_POST['surname']))
 $surname = fix_string($_POST['surname']);
if (isset($_POST['username']))
 $username = fix_string($_POST['username']);
if (isset($_POST['password']))
 $password = fix_string($_POST['password']);
if (isset($_POST['age']))
 $age = fix_string($_POST['age']);
if (isset($_POST['email']))
 $email = fix_string($_POST['email']);

$fail = validate_forename($forename);
$fail .= validate_surname($surname);
$fail .= validate_username($username);
$fail .= validate_password($password);
$fail .= validate_age($age);
$fail .= validate_email($email);

echo "<html><head><title>An Example Form</title>";

if ($fail == "") {
 echo "</head><body>Form data successfully validated: $forename,
 $surname, $username, $password, $age, $email.</body></html>";

 // This is where you would enter the posted fields into a database

 exit;
}

// Now output the HTML and JavaScript code

echo <<<_END

<!-- The HTML section -->

<style>.signup { border: 1px solid #999999;
 font: normal 14px helvetica; color:#444444; }</style>
<script type="text/javascript">
function validate(form)
{
 fail = validateForename(form.forename.value)
 fail += validateSurname(form.surname.value)
 fail += validateUsername(form.username.value)
 fail += validatePassword(form.password.value)
 fail += validateAge(form.age.value)
 fail += validateEmail(form.email.value)

Redisplaying a Form After PHP Validation | 371

 if (fail == "") return true
 else { alert(fail); return false }
}
</script></head><body>
<table class="signup" border="0" cellpadding="2"
 cellspacing="5" bgcolor="#eeeeee">
<th colspan="2" align="center">Signup Form</th>

<tr><td colspan="2">Sorry, the following errors were found

in your form: <p><i>$fail</i></p>
</td></tr>

<form method="post" action="adduser.php"
 onSubmit="return validate(this)">
 <tr><td>Forename</td><td><input type="text" maxlength="32"
 name="forename" value="$forename" /></td>
</tr><tr><td>Surname</td><td><input type="text" maxlength="32"
 name="surname" value="$surname" /></td>
</tr><tr><td>Username</td><td><input type="text" maxlength="16"
 name="username" value="$username" /></td>
</tr><tr><td>Password</td><td><input type="text" maxlength="12"
 name="password" value="$password" /></td>
</tr><tr><td>Age</td><td><input type="text" maxlength="3"
 name="age" value="$age" /></td>
</tr><tr><td>Email</td><td><input type="text" maxlength="64"
 name="email" value="$email" /></td>
</tr><tr><td colspan="2" align="center">
 <input type="submit" value="Signup" /></td>
</tr></form></table>

<!-- The JavaScript section -->

<script type="text/javascript">
function validateForename(field) {
 if (field == "") return "No Forename was entered.\\n"
 return ""
}

function validateSurname(field) {
 if (field == "") return "No Surname was entered.\\n"
 return ""
}

function validateUsername(field) {
 if (field == "") return "No Username was entered.\\n"
 else if (field.length < 5)
 return "Usernames must be at least 5 characters.\\n"
 else if (/[^a-zA-Z0-9_-]/.test(field))
 return "Only a-z, A-Z, 0-9, - and _ allowed in Usernames.\\n"
 return ""
}

function validatePassword(field) {
 if (field == "") return "No Password was entered.\\n"
 else if (field.length < 6)

372 | Chapter 17: JavaScript and PHP Validation and Error Handling

 return "Passwords must be at least 6 characters.\\n"
 else if (!/[a-z]/.test(field) || ! /[A-Z]/.test(field) ||
 ! /[0-9]/.test(field))
 return "Passwords require one each of a-z, A-Z and 0-9.\\n"
 return ""
}

function validateAge(field) {
 if (isNaN(field)) return "No Age was entered.\\n"
 else if (field < 18 || field > 110)
 return "Age must be between 18 and 110.\\n"
 return ""
}

function validateEmail(field) {
 if (field == "") return "No Email was entered.\\n"
 else if (!((field.indexOf(".") > 0) &&
 (field.indexOf("@") > 0)) ||
 /[^a-zA-Z0-9.@_-]/.test(field))
 return "The Email address is invalid.\\n"
 return ""
}
</script></body></html>
_END;

// Finally, here are the PHP functions

function validate_forename($field) {
 if ($field == "") return "No Forename was entered
";
 return "";
}

function validate_surname($field) {
 if ($field == "") return "No Surname was entered
";
 return "";
}

function validate_username($field) {
 if ($field == "") return "No Username was entered
";
 else if (strlen($field) < 5)
 return "Usernames must be at least 5 characters
";
 else if (preg_match("/[^a-zA-Z0-9_-]/", $field))
 return "Only letters, numbers, - and _ in usernames
";
 return "";
}

function validate_password($field) {
 if ($field == "") return "No Password was entered
";
 else if (strlen($field) < 6)
 return "Passwords must be at least 6 characters
";
 else if (!preg_match("/[a-z]/", $field) ||
 !preg_match("/[A-Z]/", $field) ||
 !preg_match("/[0-9]/", $field))
 return "Passwords require 1 each of a-z, A-Z and 0-9
";
 return "";

Redisplaying a Form After PHP Validation | 373

}

function validate_age($field) {
 if ($field == "") return "No Age was entered
";
 else if ($field < 18 || $field > 110)
 return "Age must be between 18 and 110
";
 return "";
}

function validate_email($field) {
 if ($field == "") return "No Email was entered
";
 else if (!((strpos($field, ".") > 0) &&
 (strpos($field, "@") > 0)) ||
 preg_match("/[^a-zA-Z0-9.@_-]/", $field))
 return "The Email address is invalid
";
 return "";
}

function fix_string($string) {
 if (get_magic_quotes_gpc()) $string = stripslashes($string);
 return htmlentities ($string);
}
?>

The result of submitting the form with JavaScript disabled (and two fields incorrectly
completed) can be seen in Figure 17-5.

Figure 17-5. The form as represented after PHP validation fails

374 | Chapter 17: JavaScript and PHP Validation and Error Handling

I have put the PHP section of this code (and changes to the HTML section) in a bold
typeface so that you can more clearly see the difference between this and Examples
17-1 and 17-2.

If you browsed through this example (or, hopefully, typed it in or downloaded it from
the http://lpmj.net website), you’ll have seen that the PHP code is almost a clone of the
JavaScript code; the same regular expressions are used to validate each field in very
similar functions.

But there are a couple of things to note. First, the fix_string function (right at the end)
is used to sanitize each field and prevent any attempts at code injection from succeeding.

Also, you will see that the HTML from Example 17-1 has been repeated in the PHP
code within a <<<_END... _END; structure, displaying the form with the values that the
visitor entered the previous time. This is done by simply adding an extra value param-
eter to each <input ...> tag (such as value="$forename"). This courtesy is highly rec-
ommended so that the user has to edit only the previously entered values, and doesn’t
have to type the fields in all over again.

In the real world, you probably wouldn’t start with an HTML form such
as the one in Example 17-1. Instead, you’d be more likely to go straight
ahead and write the PHP program in Example 17-3, which incorporates
all the HTML. And, of course, you’d also need to make a minor tweak
for the case when it’s the first time the program is called up, to prevent
it displaying errors when all the fields are empty. You also might drop
the six JavaScript functions into their own .js file for separate inclusion.

Now that you’ve seen how to bring all of PHP, HTML, and JavaScript together, the
next chapter will introduce Ajax (Asynchronous JavaScript And XML), which uses
JavaScript calls to the server in the background to seamlessly update portions of a web
page, without having to resubmit the entire page to the web server.

Test Your Knowledge: Questions
Question 17-1

What JavaScript method can you use to send a form for validation prior to sub-
mitting it?

Question 17-2
What JavaScript method is used to match a string against a regular expression?

Question 17-3
Write a regular expression to match any characters that are not in a word, as defined
by regular expression syntax.

Test Your Knowledge: Questions | 375

http://lpmj.net

Question 17-4
Write a regular expression to match either of the words fox or fix.

Question 17-5
Write a regular expression to match any single word followed by any nonword
character.

Question 17-6
Using regular expressions, write a JavaScript function to test whether the word
fox exists in the string “The quick brown fox”.

Question 17-7
Using regular expressions, write a PHP function to replace all occurrences of the
word the in “The cow jumps over the moon” with the word my.

Question 17-8
What HTML keyword is used to precomplete form fields with a value?

See the section “Chapter 17 Answers” on page 449 in Appendix A for the answers to
these questions.

376 | Chapter 17: JavaScript and PHP Validation and Error Handling

CHAPTER 18

Using Ajax

The term “Ajax” was first coined in 2005. It stands for Asynchronous JavaScript and
XML, which, in simple terms, means using a set of methods built into JavaScript to
transfer data between the browser and a server in the background. An excellent example
of this technology is Google Maps (see Figure 18-1), in which new sections of a map
are downloaded from the server when needed, without requiring a page refresh.

Figure 18-1. Google Maps is an excellent example of Ajax in action

377

Using Ajax not only substantially reduces the amount of data that must be sent back
and forth, it also makes web pages seamlessly dynamic—allowing them to behave more
like self-contained applications. The results are a much improved user interface and
better responsiveness.

What Is Ajax?
The beginnings of Ajax as used today started with the release of Internet Explorer 5 in
1999, which introduced a new ActiveX object, XMLHttpRequest. ActiveX is Microsoft’s
technology for signing plug-ins that add additional software to your computer. Other
browser developers later followed suit, but rather than using ActiveX, they all imple-
mented the feature as a native part of the JavaScript interpreter.

However, even before then, an early form of Ajax had already surfaced that used hidden
frames on a page that interacted with the server in the background. Chat rooms were
early adopters of this technology, using it to poll for and display new message posts
without requiring page reloads.

Nowadays, though, XMLHttpRequest is the way to go, and there have been numerous
frameworks written to simplify its use. In fact, Chapter 19 introduces the powerful
Yahoo! User Interface (YUI) JavaScript framework. But first, let’s see how to implement
Ajax with raw JavaScript. This will help you understand what your program and the
browser are doing as you code with YUI or another library of your choice.

Using XMLHttpRequest
Due to the differences between browser implementations of XMLHttpRequest, it’s nec-
essary to create a special function in order to ensure that your code will work on all
major browsers.

To do this, you must understand the three ways of creating an XMLHttpRequest object:

• IE 5: request = new ActiveXObject("Microsoft.XMLHTTP")

• IE 6+: request = new ActiveXObject("Msxml2.XMLHTTP")

• All others: request = new XMLHttpRequest()

This is the case because Microsoft chose to implement a change with the release of
Internet Explorer 6. Therefore, the code in Example 18-1 will work for all the following
browsers and newer versions:

• Windows Internet Explorer 5.0

• Mozilla Firefox 1.0

• Netscape 7.1

• Apple Safari 1.2

378 | Chapter 18: Using Ajax

• Konqueror 3.0

• Nokia S60

• Google Chrome 1.0

• Opera 8.0

Example 18-1. A cross-browser Ajax function

<script>
function ajaxRequest()
{
 try // Non IE Browser?
 {
 var request = new XMLHttpRequest()
 }
 catch(e1)
 {
 try // IE 6+?
 {
 request = new ActiveXObject("Msxml2.XMLHTTP")
 }
 catch(e2)
 {
 try // IE 5?
 {
 request = new ActiveXObject("Microsoft.XMLHTTP")
 }
 catch(e3) // There is no Ajax Support
 {
 request = false
 }
 }
 }
 return request
}
</script>

You may remember the introduction to error handling in the previous chapter, using
the try...catch construct. Example 18-1 is a perfect illustration of its utility, because
it uses the try keyword to execute the non-IE Ajax command, and upon success, jumps
on to the final return statement, where the new object is returned.

Otherwise, a catch traps the error and the subsequent command is executed. Again,
upon success, the new object is returned; otherwise, the final of the three commands
is tried. If that attempt fails, then the browser doesn’t support Ajax and the request
object is set to false; otherwise, the object is returned. So there you have it—a cross-
browser Ajax request function that you may wish to add to your library of useful Java-
Script functions.

OK, so now you have a means of creating an XMLHttpRequest object, but what can you
do with these objects? Well, each one comes with a set of properties (variables) and
methods (functions), which are detailed in Tables 18-1 and 18-2.

Using XMLHttpRequest | 379

Table 18-1. An XMLHttpRequest object’s properties

Properties Description

onreadystatechange Specifies an event handling function to be called whenever the
readyState property of an object changes.

readyState An integer property that reports on the status of a request. It can have
any of these values: 0 = Uninitialized, 1 = Loading, 2 = Loaded, 3 =
Interactive, and 4 = Completed.

responseText The data returned by the server in text format.

responseXML The data returned by the server in XML format.

status The HTTP status code returned by the server.

statusText The HTTP status text returned by the server.

Table 18-2. An XMLHttpRequest object’s methods

Methods Description

abort() Aborts the current request.

getAllResponseHeaders() Returns all headers as a string.

getResponseHeader(param) Returns the value of param as a string.

open('method', 'url', 'asynch') Specifies the HTTP method to use (GET or POST), the target URL, and
whether the request should be handled asynchronously (true or
false).

send(data) Sends data to the target server using the specified HTTP method.

setRequestHeader('param', 'value') Sets a header with a parameter/value pair.

These properties and methods give you control over what data you send to the server
and receive back, as well as a choice of send and receive methods. For example, you
can choose whether to request plain text (which could include HTML and other tags)
or data in XML format. You can also decide whether you wish to use the POST or GET
method to send to the server.

Let’s look at the POST method first by creating a very simple pair of documents: a com-
bination of HTML and JavaScript, and a PHP program to interact via Ajax with the
first. Hopefully you’ll enjoy these examples, because they illustrate just what Web 2.0
and Ajax are all about. With a few lines of JavaScript, they request a web document
from a third-party web server, which is then returned to the browser by your server and
placed within a section of the current document.

Your First Ajax Program
Type in and save the code in Example 18-2 as urlpost.html, but don’t load it into your
browser yet.

380 | Chapter 18: Using Ajax

Example 18-2. urlpost.html

<html><head><title>Ajax Example</title>
</head><body><center />
<h1>Loading a web page into a DIV</h1>
<div id='info'>This sentence will be replaced</div>
<script>

params = "url=oreilly.com"
request = new ajaxRequest()
request.open("POST", "urlpost.php", true)
request.setRequestHeader("Content-type",
 "application/x-www-form-urlencoded")
request.setRequestHeader("Content-length", params.length)
request.setRequestHeader("Connection", "close")

request.onreadystatechange = function()
{
 if (this.readyState == 4)
 {
 if (this.status == 200)
 {
 if (this.responseText != null)
 {
 document.getElementById('info').innerHTML =
 this.responseText
 }
 else alert("Ajax error: No data received")
 }
 else alert("Ajax error: " + this.statusText)
 }
}

request.send(params)

function ajaxRequest()
{
 try
 {
 var request = new XMLHttpRequest()
 }
 catch(e1)
 {
 try
 {
 request = new ActiveXObject("Msxml2.XMLHTTP")
 }
 catch(e2)
 {
 try
 {
 request = new ActiveXObject("Microsoft.XMLHTTP")
 }
 catch(e3)
 {
 request = false

Using XMLHttpRequest | 381

 }
 }
 }
 return request
}
</script></body></html>

Let’s go through this document and look at what it does, starting with the first three
lines, which simply set up an HTML document and display a heading. The next line
creates an HTML DIV tag with the ID “info”, containing the text “This sentence will
be replaced” by default. Later on, the text returned from the Ajax call will be inserted
here.

The next six lines are required for making an HTTP POST Ajax request. The first sets
the variable params to a parameter=value pair, which is what we’ll send to the server.
Then the Ajax object request is created. After this, the open method is called to set the
object to make a POST request to geturl.php in asynchronous mode. The last three lines
in this group set up headers that are required for the receiving server to know that a
POST request is coming.

The readyState property

Now we get to the nitty-gritty of an Ajax call, which all hangs on the readyState prop-
erty. The “asynchronous” aspect of Ajax allows the browser to keep accepting user
input and changing the screen, while our program sets the onreadystatechange property
to call a function of our choice each time readyState changes. In this case, a nameless
(or anonymous) inline function has been used, as opposed to a separate, named func-
tion. This type of function is known as a callback function, as it is called back each time
readyState changes.

The syntax to set up the callback function using an inline, anonymous function is as
follows:

request.onreadystatechange = function()
{
 if (this.readyState == 4)
 {
 // do something
 }
}

If you wish to use a separate, named function, the syntax is slightly different:

request.onreadystatechange = ajaxCallback

function ajaxCallback()
{
 if (this.readyState == 4)
 {
 // do something
 }
}

382 | Chapter 18: Using Ajax

Looking at Table 18-1, you’ll see that readyState can have five different values. But
only one of them concerns us: value 4, which represents a completed Ajax call. There-
fore, each time the new function gets called, it returns without doing anything until
readyState has a value of 4. When our function detects that value, it next inspects the
status of the call to ensure it has a value of 200, which means that the call succeeded.
If it’s not 200, an alert pop up is displayed containing the error message contained in
statusText.

You will notice that all of these object properties are referenced using
this.readyState, this.status, and so on, rather than the object’s cur-
rent name, request, as in request.readyState or request.status. This is
so that you can easily copy and paste the code and it will work with any
object name, because the this keyword always refers to the current
object.

So, having ascertained that the readyState is 4 and the status is 200, the responseText
value is tested to see whether it contains a value. If not, an error message is displayed
in an alert box. Otherwise, the inner HTML of the DIV is assigned the value of
responseText, like this:

document.getElementById('info').innerHTML = this.responseText

What happens in this line is that the element “info” is referenced using the
getElementByID method and then its innerHTML property is assigned the value that was
returned by the Ajax call.

After all this setting up and preparation, the Ajax request is finally sent to the server
using the following command, which passes the parameters already defined in the var-
iable params:

request.send(params)

After that, all the preceding code is activated each time readyState changes.

The remainder of the document is the ajaxRequest method from Example 18-1, and
the closing script and HTML tags.

The server half of the Ajax process

Now we get to the PHP half of the equation, which you can see in Example 18-3. Type
it in and save it as urlpost.php.

Example 18-3. urlpost.php

<?php // urlpost.php
if (isset($_POST['url'])) {
 echo file_get_contents("http://".SanitizeString($_POST['url']));
}

function SanitizeString($var) {

Using XMLHttpRequest | 383

 $var = strip_tags($var);
 $var = htmlentities($var);
 return stripslashes($var);
}
?>

As you can see, this is short and sweet, and also makes use of the ever-important
SanitizeString function, as should always be done with all posted data.

What the program does is use the file_get_contents PHP function to load in the web
page at the URL supplied to it in the POST variable $_POST['url']. The
file_get_contents function is versatile, in that it loads in the entire contents of a file
or web page from either a local or a remote server—it even takes into account moved
pages and other redirects.

Once you have typed the program in, you are ready to call up urlpost.html into your
web browser and, after a few seconds, you should see the contents of the oreilly.com
front page loaded into the DIV that we created for that purpose. It won’t be as fast as
directly loading the web page, because it is transferred twice: once to the server and
again from the server to your browser. The result should look like Figure 18-2.

Figure 18-2. The oreilly.com front page has been loaded into a DIV

384 | Chapter 18: Using Ajax

Not only have we succeeded in making an Ajax call and having a response returned
back to JavaScript, we also harnessed the power of PHP to enable the merging in of a
totally unrelated web object. Incidentally, if we had tried to find a way to fetch the
oreilly.com web page directly via Ajax (without recourse to the PHP server-side mod-
ule), we wouldn’t have succeeded, because there are security blocks preventing cross-
domain Ajax. So this little example also illustrates a handy solution to a very practical
problem.

Using GET Instead of POST
As with submitting any form data, you have the option of submitting your data in the
form of GET requests, and you will save a few lines of code if you do so. However, there
is a downside: some browsers may cache GET requests, whereas POST requests will never
be cached. You don’t want to cache a request because the browser will just redisplay
what it got last time instead of going to the server for fresh input. The solution to this
is to use a workaround that adds a random parameter to each request, ensuring that
each URL requested is unique.

Example 18-4 shows how you would achieve the same result as with Example 18-2,
but using an Ajax GET request instead of POST.

Example 18-4. urlget.html

<html><head><title>Ajax GET Example</title>
</head><body><center />
<h1>Loading a web page into a DIV</h1>
<div id='info'>This sentence will be replaced</div>
<script>

nocache = "&nocache=" + Math.random() * 1000000
request = new ajaxRequest()
request.open("GET", "urlget.php?url=oreilly.com" + nocache, true)

request.onreadystatechange = function()
{
 if (this.readyState == 4)
 {
 if (this.status == 200)
 {
 if (this.responseText != null)
 {
 document.getElementById('info').innerHTML =
 this.responseText
 }
 else alert("Ajax error: No data received")
 }
 else alert("Ajax error: " + this.statusText)
 }
}

request.send(null)

Using XMLHttpRequest | 385

function ajaxRequest()
{
 try
 {
 var request = new XMLHttpRequest()
 }
 catch(e1)
 {
 try
 {
 request = new ActiveXObject("Msxml2.XMLHTTP")
 }
 catch(e2)
 {
 try
 {
 request = new ActiveXObject("Microsoft.XMLHTTP")
 }
 catch(e3)
 {
 request = false
 }
 }
 }
 return request
}
</script></body></html>

The differences to note between the two documents are highlighted in bold, and are as
follows:

• It is not necessary to send headers for a GET request.

• The open method is called using a GET request, supplying a URL with a string
comprising a ? symbol followed by the parameter/value pair url=oreilly.com.

• A second parameter/value pair is started using an & symbol, followed by setting the
value of the parameter nocache to a random value between 0 and a million. This is
used to ensure that each URL requested is different, and therefore that no requests
will be cached.

• The call to send now contains only a parameter of null as no parameters are being
passed via a POST request. Note that leaving the parameter out is not an option, as
it would result in an error.

To accompany this new document, it is necessary to modify the PHP program to re-
spond to a GET request, as in Example 18-5, urlget.php.

Example 18-5. urlget.php

<?php
if (isset($_GET['url'])) {
 echo file_get_contents("http://".sanitizeString($_GET['url']));
}

386 | Chapter 18: Using Ajax

function sanitizeString($var) {
 $var = strip_tags($var);
 $var = htmlentities($var);
 return stripslashes($var);
}
?>

All that’s different between this and Example 18-3 is that the references to $_POST have
been replaced with $_GET. The end result of calling up urlget.html in your browser is
identical to loading in urlpost.html.

Sending XML Requests
Although the objects we’ve been creating are called XMLHttpRequest objects, so far we
have made absolutely no use of XML. This is where the Ajax term is a bit of a misnomer,
because the technology actually allows you to request any type of textual data, only
one of which is XML. As you have seen, we have requested an entire HTML document
via Ajax, but we could equally have asked for a text page, a string or number, or even
spreadsheet data.

So let’s modify the previous example document and PHP program to fetch some XML
data. To do this, take a look at the PHP program first, xmlget.php, shown in Exam-
ple 18-6.

Example 18-6. xmlget.php

<?php
if (isset($_GET['url'])) {
 header('Content-Type: text/xml');
 echo file_get_contents("http://".sanitizeString($_GET['url']));
}

function sanitizeString($var) {
 $var = strip_tags($var);
 $var = htmlentities($var);
 return stripslashes($var);
}
?>

This program has been very slightly modified (shown in bold highlighting) to first out-
put the correct XML header before returning a fetched document. No checking is made
here, as it is assumed the calling Ajax will request an actual XML document.

Now on to the HTML document, xmlget.html, shown in Example 18-7.

Example 18-7. xmlget.html

<html><head><title>Ajax XML Example</title>
</head><body>
<h2>Loading XML content into a DIV</h2>
<div id='info'>This sentence will be replaced</div>

Using XMLHttpRequest | 387

<script>

nocache = "&nocache=" + Math.random() * 1000000
url = "rss.news.yahoo.com/rss/topstories"
request = new ajaxRequest()
request.open("GET", "xmlget.php?url=" + url + nocache, true)
out = "";

request.onreadystatechange = function()
{
 if (this.readyState == 4)
 {
 if (this.status == 200)
 {
 if (this.responseXML != null)
 {
 titles = this.responseXML.getElementsByTagName('title')

 for (j = 0 ; j < titles.length ; ++j)
 {
 out += titles[j].childNodes[0].nodeValue + '
'
 }
 document.getElementById('info').innerHTML = out
 }
 else alert("Ajax error: No data received")
 }
 else alert("Ajax error: " + this.statusText)
 }
}

request.send(null)

function ajaxRequest() {
 try
 {
 var request = new XMLHttpRequest()
 }
 catch(e1)
 {
 try
 {
 request = new ActiveXObject("Msxml2.XMLHTTP")
 }
 catch(e2)
 {
 try
 {
 request = new ActiveXObject("Microsoft.XMLHTTP")
 }
 catch(e3)
 {
 request = false
 }
 }
 }

388 | Chapter 18: Using Ajax

 return request
}
</script></body></html>

Again, the differences have been highlighted in bold, so you can see that this code is
substantially similar to previous versions, except that the URL now being requested,
rss.news.yahoo.com/rss/topstories, contains an XML document, the Yahoo! News Top
Stories feed.

The other big change is the use of the responseXML property, which replaces the
responseText property. Whenever a server returns XML data, responseText will return
a null value, and responseXML will contain the XML returned instead.

However, responseXML doesn’t simply contain a string of XML text: it is actually a
complete XML document object that can be examined and parsed using DOM tree
methods and properties. This means it is accessible, for example, by the JavaScript
getElementsByTagName method.

About XML

An XML document will generally take the form of the RSS feed shown in Exam-
ple 18-8. However, the beauty of XML is that this type of structure can be stored in-
ternally in a DOM tree (see Figure 18-3) to make it quickly searchable.

Figure 18-3. The DOM tree of Example 18-8

Example 18-8. An XML document

<?xml version="1.0" encoding="UTF-8"?>
<rss version="2.0">
 <channel>
 <title>RSS Feed</title>

Using XMLHttpRequest | 389

 <link>http://website.com</link>
 <description>website.com's RSS Feed</description>
 <pubDate>Mon, 16 May 2011 00:00:00 GMT</pubDate>
 <item>
 <title>Headline</title>
 <guid>http://website.com/headline</guid>
 <description>This is a headline</description>
 </item>
 <item>
 <title>Headline 2</title>
 <guid>http://website.com/headline2</guid>
 <description>The 2nd headline</description>
 </item>
 </channel>
</rss>

Therefore, using the getElementsByTagName method, you can quickly extract the values
associated with various tags without a lot of string searching. This is exactly what we
do in Example 18-7, where the following command is issued:

titles = this.responseXML.getElementsByTagName('title')

This single command has the effect of placing all the values of the “title” elements into
the array titles. From there, it is a simple matter to extract them with the following
expression (where j is the title to access):

titles[j].childNodes[0].nodeValue

All the titles are then appended to the string variable out and, once all have been pro-
cessed, the result is inserted into the empty DIV at the document start. When you call
up xmlget.html in your browser, the result will be something like Figure 18-4.

Figure 18-4. Fetching a Yahoo! XML news feed via Ajax

390 | Chapter 18: Using Ajax

As with all form data, you can use either the POST or the GET method
when requesting XML data—your choice will make little difference to
the result.

Why use XML?

You may ask why you would use XML other than for fetching XML documents such
as RSS feeds. Well, the simple answer is that you don’t have to, but if you wish to pass
structured data back to your Ajax applications, it could be a real pain to send a simple,
unorganized jumble of text that would need complicated processing in JavaScript.

Instead, you can create an XML document and pass that back to the Ajax function,
which will automatically place it into a DOM tree as easily accessible as the HTML
DOM object with which you are now familiar.

Now that you’ve learned how Ajax works in raw form, in the next chapter we’ll look
at the popular YUI library, which is a framework that makes Ajax and other JavaScript
even easier to use.

Test Your Knowledge: Questions
Question 18-1

Why is it necessary to write a function for creating new XMLHttpRequest objects?

Question 18-2
What is the purpose of the try...catch construct?

Question 18-3
How many properties and how many methods does an XMLHttpRequest object have?

Question 18-4
How can you tell when an Ajax call has completed?

Question 18-5
How do you know whether an Ajax call completed successfully?

Question 18-6
What XMLHttpRequest object’s property returns an Ajax text response?

Question 18-7
What XMLHttpRequest object’s property returns an Ajax XML response?

Question 18-8
How can you specify a callback function to handle Ajax responses?

Question 18-9
What XMLHttpRequest method is used to initiate an Ajax request?

Test Your Knowledge: Questions | 391

Question 18-10
What are the main differences between an Ajax GET and POST request?

See the section “Chapter 18 Answers” on page 450 in Appendix A for the answers to
these questions.

392 | Chapter 18: Using Ajax

CHAPTER 19

Using YUI for Ajax and More

Let’s face it: JavaScript isn’t the easiest programming language to master, particularly
if you’ve never come across such an object-oriented approach before. And this is true
also because Microsoft has, until relatively recently, steadfastly ignored web standards,
resulting in the need to spend a lot of time writing cross-browser-compatible code.

Thankfully, though, several organizations have set about trying to make JavaScript a
much simpler and even more powerful language by creating frameworks for it. What
they do is write wrappers around the JavaScript to break down complex tasks into
small, more easily manageable ones. At the same time, they ensure that their framework
methods are fully cross-browser compatible.

Choosing a Framework
The new difficulty now is choosing among the bewildering variety of frameworks. Some
of the more popular of which are listed in Table 19-1.

Table 19-1. Some popular JavaScript frameworks

Framework Web address

ASP.NET Ajax Framework http://asp.net/ajax

Clean Ajax Framework http://sourceforge.net/projects/clean-ajax

Dojo Toolkit http://dojotoolkit.org

jQuery http://jquery.com

MochiKit http://mochikit.com

MooTools http://mootools.net

OpenJS http://openjs.com

Prototype http://prototypejs.org

Rialto http://rialto.improve-technologies.com/wiki

script.aculo.us http://script.aculo.us

393

http://asp.net/ajax
http://sourceforge.net/projects/clean-ajax
http://dojotoolkit.org
http://jquery.com
http://mochikit.com
http://mootools.net
http://openjs.com
http://prototypejs.org
http://rialto.improve-technologies.com/wiki
http://script.aculo.us

Framework Web address

Spry Framework http://labs.adobe.com/technologies/spry

YUI http://developer.yahoo.com/yui

Because each of these frameworks works differently, I have opted to settle on just one
of them—the YUI framework—for this chapter. I made this decision because it was
originally written by programmers at Yahoo!, which since then has allowed the Java-
Script community as a whole to contribute code to the project. As a result, it’s a solid
framework used across all the Yahoo! properties and also by tens of thousands of de-
velopers around the world.

What’s more, you can download the entire framework and an extensive collection of
more than 300 example programs, along with a comprehensive amount of documen-
tation, amounting to over 70 MB of data once uncompressed. But although I say “you
can,” you don’t have to, because all of these scripts and the documentation appear on
the YUI developer website, and you are permitted to simply link to each YUI script
directly from Yahoo’s servers.

Using YUI
To get started with YUI, visit the following URL to download the complete distribution
to your hard disk, where you can work on it locally:

http://developer.yahoo.com/yui/download

The download is about 11 MB in size and is supplied as a ZIP file that you will need to
decompress. Once this is done, you will have a folder with a name such as
yui_2.7.0b, depending on the version downloaded, inside of which will be another
folder simply called yui.

Navigate to this folder and load up the index.html file that you’ll find there into your
browser to see a web page like that shown in Figure 19-1.

In the same directory where index.html resides, you’ll also see a number of others. In
particular I’d like to point you in the direction of the build folder, which contains about
60 subfolders that hold all the framework scripts (see Figure 19-2). You can copy the
ones you need from here directly to your website, or access the ones on Yahoo’s website
by referencing http://yui.yahooapis.com/2.7.0/build/ followed by the folder and script
name. (Without the latter two names, this URL will call up an error page.)

For example, you could copy the file yahoo.js from the build/yahoo folder to your web-
site and link to it like this:

<script src="yahoo.js"></script>

Or you could link directly to Yahoo’s copy, like this:

<script src="http://yui.yahooapis.com/2.7.0/build/yahoo/yahoo.js"></script>

394 | Chapter 19: Using YUI for Ajax and More

http://labs.adobe.com/technologies/spry
http://developer.yahoo.com/yui
http://developer.yahoo.com/yui/download

Figure 19-1. The YUI documentation main page

Figure 19-2. The build folder, which contains the .js framework files

Using YUI | 395

If you link directly, make sure to change the version folder name from 2.7.0 if you are
using a newer version of YUI.

Compressed Versions
If you wish to speed up loading of these framework files, you can use the alternate
“min” versions Yahoo! supplies. For example, yahoo.js is about 33 KB in size, but there
is a file called yahoo-min.js that acts identically; by simply removing unnecessary
whitespace and other text, the developers have compressed it down to under 6 KB in
size. (There are tools on the Internet that let you minimize your own scripts, in case
you think doing so will speed up loading significantly.)

Using YUI for Ajax
In the previous chapter, we used XMLHttpRequest objects to provide Ajax connectivity
between the web browser, a server, and a third-party server. The process wasn’t too
difficult, but it was a bit fiddly due to differences between implementations in different
browsers.

With YUI, handling Ajax becomes a whole lot easier, because it provides a range of
cross-browser methods that will work on any major browser. What’s more, they re-
move the need for you to output headers and perform other bits and pieces for POST
requests, and so on.

The upshot is that you can replace about 35 lines of code with a dozen or less. This
makes your programs much easier to write and debug, and removes all the lower-level
stuff, leaving it up to YUI to deal with.

Including the framework files

To perform Ajax calls with YUI, you need to include the following three framework
files (I have chosen to use the compressed versions for speed):

yahoo-min.js
The main YUI file, generally required

event-min.js
The event handling framework file, used here for the callback

connection-min.js
The Ajax handling framework file

If you copy those files from the relevant subfolders within the build folder to your web
folder, your program can load the files using the following code:

<script src="yahoo-min.js"></script>
<script src="event-min.js"></script>
<script src="connection-min.js"></script>

396 | Chapter 19: Using YUI for Ajax and More

Or you can fetch them directly from Yahoo’s website using the following code:

<script src="http://yui.yahooapis.com/2.7.0/build/yahoo/yahoo-min.js"></script>
<script src="http://yui.yahooapis.com/2.7.0/build/event/event-min.js"></script>
<script src="http://yui.yahooapis.com/2.7.0/build/connection/connection-min.js">
</script>

The YUI asyncRequest method

Now all you need to do is call asyncRequest, Yahoo’s version of the ajaxRequest function
we created in the last chapter. The syntax is:

YAHOO.util.Connect.asyncRequest('method', 'url', callback [, 'parameters...'])

The method to use is either POST or GET; the url should be a PHP script on your server.
If you’re using the GET method, the name of the script should be followed by a ? and
the parameter/value pairs you wish to send. The callback needs to point to a pair of
functions to handle either successful completion or failure, and the parameters are
passed only when you are using the POST method and the target server requires param-
eters for the request.

So an Ajax GET request might look like this:

YAHOO.util.Connect.asyncRequest('GET', 'program.php', callback)

The callback object should be created like this:

callback = { success:successHandler, failure:failureHandler }

The successHandler and failureHandler functions should contain instructions for your
program to execute according to the intention of your project.

An Ajax GET example using YUI

Let’s take Example 18-4 from the previous chapter and see what it looks like when
modified to use YUI (see Example 19-1, yuiurlget.html).

Example 19-1. yuiurlget.html

<html><head><title>YUI GET Example</title>
</head><body><center />
<h2>Loading a web page into a DIV with YUI</h2>
<div id='info'>This sentence will be replaced</div>
<script src="yahoo-min.js"></script>
<script src="event-min.js"></script>
<script src="connection-min.js"></script>
<script>
url = "yahoo.com"
callback = { success:successHandler, failure:failureHandler }
request = YAHOO.util.Connect.asyncRequest('GET',
 'urlget.php?url=' + url, callback)

function successHandler(o) {
 document.getElementById('info').innerHTML = o.responseText
}

Using YUI | 397

function failureHandler(o) {
 document.getElementById('info').innerHTML =
 o.status + " " + o.statusText
}
</script></body></html>

I’m sure you’ll agree that this is very simple indeed. After setting up the web page,
displaying a heading, and creating the DIV in which to place the Ajax response, the
program loads three YUI framework files. The rest of the document (less than 10 lines
of code) is the Ajax, which does the following:

1. Place the URL to fetch, yahoo.com, in the variable url.

2. Create the callback object. This is an associative array that points to the handlers
to be called in case of the success or failure of the call.

3. Place the Ajax call, which is a GET request to the URL urlget.php?url=yahoo.com.

You may recall that we wrote urlget.php in the previous chapter (Example 18-5) and,
as it doesn’t require modifying, I won’t repeat it here. Suffice it to say that the program
fetches the HTML page at http://yahoo.com and returns it to the Ajax method.

All that remains are the two functions for success or failure of the call. The success
function, successHandler, simply places the Ajax response text into the DIV that we
prepared for it, and failureHandler displays an appropriate message upon error.

The result of calling up this new document in your browser can be seen in Figure 19-3.

Figure 19-3. The result of calling up yuiurlget.html in a browser

398 | Chapter 19: Using YUI for Ajax and More

http://yahoo.com

An Ajax XML example using YUI

Now let’s see how you can use the asyncRequest method with XML by calling up the
Yahoo! RSS weather feed for Washington, D.C., using Example 19-2, yuixmlget.html.

Example 19-2. yuixmlget.html

<html><head><title>YUI XML Example</title>
</head><body>
<h2>Loading XML content into a DIV with YUI</h2>
<div id='info'>This sentence will be replaced</div>
<script src="yahoo-min.js"></script>
<script src="event-min.js"></script>
<script src="connection-min.js"></script>
<script>
url = encodeURI("xml.weather.yahoo.com/forecastrss?p=20500")
callback = { success:successHandler, failure:failureHandler }
request = YAHOO.util.Connect.asyncRequest('GET',
 'xmlget.php?url=' + url, callback)

function successHandler(o) {
 root = o.responseXML.documentElement;
 title = root.getElementsByTagName('description')[0].
 firstChild.nodeValue
 date = root.getElementsByTagName('lastBuildDate')[0].
 firstChild.nodeValue
 text = root.getElementsByTagName('description')[1].
 firstChild.nodeValue

 document.getElementById('info').innerHTML =
 title + "
" + date + "
" + text
}

function failureHandler(o) {
 document.getElementById('info').innerHTML =
 o.status + " " + o.statusText
}
</script></body></html>

This document is fairly similar to the previous one, in that the same YUI framework
scripts are included, but right away, you’ll notice that the url is different. Because the
weather feed itself takes GET parameters using a ? symbol, we have to URI-encode it as
follows:

url = encodeURI("xml.weather.yahoo.com/forecastrss?p=20500")

This encoding has the effect of turning any special characters into a form that will not
confuse the PHP program into thinking that additional parameters have been passed.

Next, you’ll see that the callback object is the same as before, so we’ll gloss over that
and move on to the request, which has only a name change from urlget.php to
xmlget.php in order to call the correct PHP program for XML. The xmlget.php program
is the same one we created in the previous chapter (see Example 18-6) and thus doesn’t
need repeating here.

Using YUI | 399

You’ll also notice that the function failureHandler is identical. So the main remaining
change is in successHandler. This function refers to responseXML instead of
responseText, from which it extracts the title, date, and text from the RSS feed and
then inserts them into the DIV we prepared. The result of calling up yuixmlget.html
into a browser can be seen in Figure 19-4.

Other Uses for YUI
The YUI framework offers support in a wide range of areas, including animation, but-
tons, calendars, charts, colors, cookies, drag and drop, fonts, imaging, menus, styles,
uploading, and a great deal more as well.

To find features you need, check out the examples down the left of the main
index.html page in the downloaded distribution or at http://developer.yahoo.com/yui
and click on ones that interest you.

Figure 19-4. The result of calling up yuixmlget.html in a browser

400 | Chapter 19: Using YUI for Ajax and More

http://developer.yahoo.com/yui

A Simple YUI Calendar
For example, clicking through to the calendar link reveals how you can make your own
calendars, a common feature needed by many websites. Here’s how you can recreate
the calendar example shown at:

http://developer.yahoo.com/yui/examples/calendar/multi.html

To do so, locate all the following files in the build folder of the downloaded YUI dis-
tribution on your hard disk, and copy them to your web folder (bearing in mind that
assets is a folder, not a file):

• fonts/fonts-min.css

• calendar/assets

• yahoo-dom-event /yahoo-dom-event.js

• calendar/calendar-min.js

Now you can type in the document in Example 19-3, calendar.html, which, when you
call it up in your browser, will look like Figure 19-5.

Figure 19-5. A YUI calendar

Other Uses for YUI | 401

http://developer.yahoo.com/yui/examples/calendar/multi.html

Example 19-3. calendar.html—a multiselect calendar

<html><head><title>YUI Calendar</title>
<link rel="stylesheet"
 type="text/css" href="fonts-min.css" />
<link rel="stylesheet"
 type="text/css" href="assets/skins/sam/calendar.css" />
<script src="yahoo-dom-event.js"></script>
<script src="calendar-min.js"></script>
</head><body class="yui-skin-sam">
<div id="cal1Container"></div>

<script>
YAHOO.namespace("example.calendar")
YAHOO.example.calendar.init = function() {
 YAHOO.example.calendar.cal1 =
 new YAHOO.widget.Calendar("cal1", "cal1Container",
 { MULTI_SELECT: true })
 YAHOO.example.calendar.cal1.render()
}
YAHOO.util.Event.onDOMReady(YAHOO.example.calendar.init)
</script>
</body></html>

All that remains to do is place the following DIV where you want it on your web page,
and the calendar will appear there:

<div id="cal1Container"></div>

You can also link directly to the various files on the Yahoo! server by modifying the
three lines that link to the YUI libraries to read as follows:

<link rel="stylesheet" type="text/css"
 href="http://yui.yahooapis.com/2.7.0/build/calendar/assets/skins/sam/calendar.css" />

<script src="http://yui.yahooapis.com/2.7.0/build/yahoo-dom-event/yahoo-dom-event.js">
</script>

<script src="http://yui.yahooapis.com/2.7.0/build/calendar/calendar-min.js">
</script>

All the other YUI features are just as easy to use, and require you only
to carefully read the accompanying documentation before copying and
pasting the supplied code. There’s even a link to the YUI Dependency
Configurator supplied with each example, which will build a copy-and-
paste script to load all the dependent JavaScript and CSS files for any
feature, directly from the Yahoo! servers.

I hope you have a lot of fun using the resources supplied by YUI (and any of the other
frameworks you try). If you do, you’ll find yourself saved from reinventing the wheel
time and time again.

402 | Chapter 19: Using YUI for Ajax and More

In the next and final chapter I’ll bring everything you’ve learned so far together into a
social networking application.

Test Your Knowledge: Questions
Question 19-1

What is YUI’s method of implementing an Ajax connection?

Question 19-2
Write a callback object for YUI called callback to reference a success handler called
succeeded and a failure handler called failed.

Question 19-3
Write a GET call to asyncRequest that references the program getdata.php and a
callback object.

Question 19-4
How can you encode the URL mysite.com/message?m=123, which contains the ?
symbol, so that if sent as a GET request it will be treated just as a string and not
interpreted?

See the section “Chapter 19 Answers” on page 451 in Appendix A for the answers to
these questions.

Test Your Knowledge: Questions | 403

CHAPTER 20

Bringing It All Together

Now that you’ve reached the end of your journey into learning the hows, whys, and
wherefores of dynamic web programming, I want to leave you with a real example that
you can sink your teeth into. In fact, it’s 10 examples, because I’ve put together a simple
social networking project comprising all the main features you’d expect from such a
site.

Across the various files, there are examples of MySQL table creation and database
access, file inclusion, session control, DOM access, Ajax calls, event and error handling,
file uploading, image manipulation, and a whole lot more.

Each example file is complete and self-contained, yet works with all the others to build
a fully working social networking site. I have deliberately left styling and design to an
absolute minimum to keep the examples short and easy to follow. This means that, as
it stands, the end product is particularly usable on mobile platforms such as the iPhone,
where reducing the file size and dimensions of web documents is important.

I leave it up to you to take any pieces of code you think you can use and expand on
them for your own purposes. Perhaps you may even wish to build on these files to create
a social networking site of your own.

Designing a Social Networking Site
Before writing any code, I sat down and came up with several things that I decided were
essential to such a site. These included:

• A sign-up process

• A login form

• A logout facility

• Session control

• User profiles with uploaded thumbnails

• A member directory

405

• Adding members as friends

• Public and private messaging between members

That’s 8 main elements, but in the end it turned out that because the project would
require a main index.html page and a separate include file for the main functions, 10
PHP program files were required.

I decided to name the project Robin’s Nest, but you have to modify only one line of
code to change this to a name of your choice. Also, all the filenames (except
index.html) start with the letters rn to separate them from any other files you have saved
from this book. If you change these names, make sure you also change all references
across all the files.

About Third-Party Add-Ons
For reasons of simplicity and size, and so that you don’t have to install add-ons to your
server if you don’t wish to, I have deliberately not used either PEAR (see Appendix E)
or Smarty (see Chapter 12) in these examples. But if you plan on extending the code,
I strongly recommend you consider them, as PEAR can make the programming process
simpler. Furthermore, if you will be working with separate designers, Smarty can re-
move the programming layer from the presentation layer, leaving them free to create
at their heart’s content.

However, where I have implemented an Ajax call, I have also included an alternative
YUI version, as you can use it without installing any software on your server.

On the Website
All the examples in this chapter can be found on the companion website located at
http://lpmj.net, where the code syntax is color-highlighted, making it easier to follow.
You can also download the examples from there to your computer by clicking on the
“Examples” link. This will download an archive file called examples.zip, which you
should extract to a suitable location on your computer.

Of particular interest to this chapter, within the ZIP file there’s a folder called
robinsnest, in which all the following examples have been saved using the correct file-
names required by this sample application. So you can easily copy them all to your web
development folder to try them out.

rnfunctions.php
So let’s jump right into the project, starting with Example 20-1, rnfunctions.php, the
include file of main functions. This file contains a little more than just the functions,
though, because I have added the database login details here instead of using yet another

406 | Chapter 20: Bringing It All Together

http://lpmj.net

separate file. So the first half-dozen lines of code define the host, database name, user-
name, and password of the database to use.

It doesn’t matter what you call the database, as long as it already exists (see Chap-
ter 8 for how to create a new database). Also make sure to correctly assign a MySQL
username and password to $dbuser and $dbpass. With correct values, the subsequent
two lines will open a connection to MySQL and select the database. The last of the
initial instructions sets the name of the social networking site by assigning the value
“Robin’s Nest” to the variable $appname. If you want to change the name, here’s the
place to do so.

The Functions
The project uses six main functions:

createTable
Checks whether a table already exists and, if not, creates it.

tableExists
Returns a value of 1 if a table already exists, otherwise 0.

queryMysql
Issues a query to MySQL, outputting an error message if it fails.

destroySession
Destroys a PHP session and clears its data to log users out.

sanitizeString
Removes potentially malicious code or tags from user input.

showProfile
Displays a user’s image and “about me” if they have one.

All of these should be obvious in their action to you by now, with the possible exception
of showProfile, which looks for an image of the name user.jpg (where user is the user-
name of the current user), and if found, displays it. It also displays any “about me” text
the user may have saved.

I have ensured that error handling is in place for all the functions that need it, so that
they can catch any typographical or other errors you may introduce. However, if you
use any of this code on a production server, you will probably want to provide your
own error-handling routines to make the code more user-friendly.

So type this file in and save it as rnfunctions.php and you’ll be ready to move on to the
next section.

Example 20-1. rnfunctions.php

<?php // rnfunctions.php
$dbhost = 'localhost'; // Unlikely to require changing
$dbname = 'publications'; // Modify these...
$dbuser = 'username'; // ...variables according

rnfunctions.php | 407

$dbpass = 'password'; // ...to your installation
$appname = "Robin's Nest"; // ...and preference

mysql_connect($dbhost, $dbuser, $dbpass) or die(mysql_error());
mysql_select_db($dbname) or die(mysql_error());

function createTable($name, $query)
{
 if (tableExists($name))
 {
 echo "Table '$name' already exists
";
 }
 else
 {
 queryMysql("CREATE TABLE $name($query)");
 echo "Table '$name' created
";
 }
}

function tableExists($name)
{
 $result = queryMysql("SHOW TABLES LIKE '$name'");
 return mysql_num_rows($result);
}

function queryMysql($query)
{
 $result = mysql_query($query) or die(mysql_error());
 return $result;
}

function destroySession()
{
 $_SESSION=array();

 if (session_id() != "" || isset($_COOKIE[session_name()]))
 setcookie(session_name(), '', time()-2592000, '/');

 session_destroy();
}

function sanitizeString($var)
{
 $var = strip_tags($var);
 $var = htmlentities($var);
 $var = stripslashes($var);
 return mysql_real_escape_string($var);
}

function showProfile($user)
{
 if (file_exists("$user.jpg"))
 echo "";

 $result = queryMysql("SELECT * FROM rnprofiles WHERE user='$user'");

408 | Chapter 20: Bringing It All Together

 if (mysql_num_rows($result))
 {
 $row = mysql_fetch_row($result);
 echo stripslashes($row[1]) . "<br clear=left />
";
 }
}
?>

rnheader.php
For uniformity, each page of the project needs to have the same overall design and
layout. Therefore I placed these things in Example 20-2, rnheader.php. This is the file
that is actually included by the other files and it, in turn, includes rnfunctions.php. This
means that only a single include is required in each file.

rnheader.php starts by calling the function session_start. As you’ll recall from Chap-
ter 13, this sets up a session that will remember certain values we want stored across
different PHP files.

With the session started, the program then checks whether the session variable
'user' is currently assigned a value. If so, a user has logged in and the variable
$loggedin is set to TRUE.

Using the value of $loggedin, an if block displays one of two sets of menus. The non-
logged-in set simply offers options of Home, Sign up, and Log in, whereas the logged-
in version offers full access to the project’s features. Additionally, if a user is logged in,
his or her username is appended in brackets to the page title and placed before the
menu options. We can freely refer to $user wherever we want to put in the name,
because if the user is not logged in, that variable is empty and will have no effect on the
output.

The only styling applied in this file is to set the default font to Verdana at a size of 2 via
a <font...> tag. For a more comprehensive design and layout, you’ll probably wish to
apply CSS styling to the HTML.

Example 20-2. rnheader.php

<?php // rnheader.php
include 'rnfunctions.php';
session_start();

if (isset($_SESSION['user']))
{
 $user = $_SESSION['user'];
 $loggedin = TRUE;
}
else $loggedin = FALSE;

echo "<html><head><title>$appname";
if ($loggedin) echo " ($user)";

rnheader.php | 409

echo "</title></head><body>";
echo "<h2>$appname</h2>";

if ($loggedin)
{
 echo "$user:
 Home |
 Members |
 Friends |
 Messages |
 Profile |
 Log out";
}
else
{
 echo "Home |
 Sign up |
 Log in";
}
?>

rnsetup.php
With the pair of included files written, it’s now time to set up the MySQL tables they
will use. This is done with Example 20-3, rnsetup.php, which you should type in and
load into your browser before calling up any other files—otherwise you’ll get numerous
MySQL errors.

The tables created are kept short and sweet, and have the following names and columns:

rnmembers
username user (indexed), password pass

rnmessages
ID id (indexed), author auth (indexed), recipient recip, message type pm, message
message

rnfriends
username user (indexed), friend’s username friend

rnprofiles
username user (indexed), “about me” text

Because the function createTable first checks whether a table already exists, this pro-
gram can be safely called multiple times without generating any errors.

It is very likely that you will need to add many more columns to these tables if you
choose to expand on this project. If so, you may need to issue a MySQL DROP TABLE
command before recreating a table.

410 | Chapter 20: Bringing It All Together

Example 20-3. rnsetup.php

<?php // rnsetup.php
include_once 'rnfunctions.php';
echo '<h3>Setting up</h3>';

createTable('rnmembers', 'user VARCHAR(16), pass VARCHAR(16),
 INDEX(user(6))');

createTable('rnmessages',
 'id INT UNSIGNED AUTO_INCREMENT PRIMARY KEY,
 auth VARCHAR(16), recip VARCHAR(16), pm CHAR(1),
 time INT UNSIGNED, message VARCHAR(4096),
 INDEX(auth(6)), INDEX(recip(6))');

createTable('rnfriends', 'user VARCHAR(16), friend VARCHAR(16),
 INDEX(user(6)), INDEX(friend(6))');

createTable('rnprofiles', 'user VARCHAR(16), text VARCHAR(4096),
 INDEX(user(6))');
?>

index.php
This file is a trivial file but necessary nonetheless to give the project a home page. All
it does is display a simple welcome message. In a finished application, this would be
where you sell the virtues of your site to encourage signups.

Incidentally, seeing as all the MySQL tables have been created and the include files
saved, you can now load Example 20-4, index.php, into your browser to get your first
peek at the new application. It should look like Figure 20-1.

Figure 20-1. The main page of the site

index.php | 411

Example 20-4. index.php

<?php // index.php
include_once 'rnheader.php';

echo "<h3>Home page</h3>
 Welcome, please Sign up and/or Log in to join in.";
?>

rnsignup.php
Now we need a module to enable users to join the new network, and that’s Exam-
ple 20-5, rnsignup.php. This is a slightly longer program, but you’ve seen all its parts
before.

Let’s start by looking at the end block of HTML. This is a simple form that allows a
username and password to be entered. But note the use of the empty span given the
id of 'info'. This will be the destination of the Ajax call in this program that checks
whether a desired username is available. See Chapter 18 for a complete description of
how this works.

Checking for Username Availability
Now go back to the program start and you’ll see a block of JavaScript that starts with
the function checkUser. This is called by the JavaScript onBlur event when focus is
removed from the username field of the form. First it sets the contents of the span I
mentioned (with the id of 'info') to an empty string, which clears it in case it previously
had a value.

Next a request is made to the program rnchecker.php, which reports whether the user-
name user is available. The returned result of the Ajax call, a friendly message, is then
placed in the 'info' span.

After the JavaScript section comes some PHP code that you should recognize from the
Chapter 17 section of form validation. This section also uses the sanitizeString func-
tion to remove potentially malicious characters before looking up the username in the
database and, if it’s not already taken, inserting the new username $user and password
$pass.

Upon successfully signing up, the user is then prompted to log in. A more fluid response
at this point might be to automatically log in a newly created user but, as I don’t want
to overly complicate the code, I have kept the sign-up and login modules separate from
each other.

When loaded into a browser (and in conjunction with rncheckuser.php, shown later)
this program will look like Figure 20-2, where you can see that the Ajax call has iden-
tified that the username Robin is available.

412 | Chapter 20: Bringing It All Together

Figure 20-2. The sign-up page

Example 20-5. rnsignup.php

<?php // rnsignup.php
include_once 'rnheader.php';

echo <<<_END
<script>
function checkUser(user)
{
 if (user.value == '')
 {
 document.getElementById('info').innerHTML = ''
 return
 }

 params = "user=" + user.value
 request = new ajaxRequest()
 request.open("POST", "rncheckuser.php", true)
 request.setRequestHeader("Content-type",
 "application/x-www-form-urlencoded")
 request.setRequestHeader("Content-length", params.length)
 request.setRequestHeader("Connection", "close")

 request.onreadystatechange = function()
 {
 if (this.readyState == 4)
 {
 if (this.status == 200)
 {
 if (this.responseText != null)

rnsignup.php | 413

 {
 document.getElementById('info').innerHTML =
 this.responseText
 }
 else alert("Ajax error: No data received")
 }
 else alert("Ajax error: " + this.statusText)
 }
 }
 request.send(params)
}

function ajaxRequest()
{
 try
 {
 var request = new XMLHttpRequest()
 }
 catch(e1)
 {
 try
 {
 request = new ActiveXObject("Msxml2.XMLHTTP")
 }
 catch(e2)
 {
 try
 {
 request = new ActiveXObject("Microsoft.XMLHTTP")
 }
 catch(e3)
 {
 request = false
 }
 }
 }
 return request
}
</script>
<h3>Sign up Form</h3>
_END;

$error = $user = $pass = "";
if (isset($_SESSION['user'])) destroySession();

if (isset($_POST['user']))
{
 $user = sanitizeString($_POST['user']);
 $pass = sanitizeString($_POST['pass']);

 if ($user == "" || $pass == "")
 {
 $error = "Not all fields were entered

";
 }
 else

414 | Chapter 20: Bringing It All Together

 {
 $query = "SELECT * FROM rnmembers WHERE user='$user'";

 if (mysql_num_rows(queryMysql($query)))
 {
 $error = "That username already exists

";
 }
 else
 {
 $query = "INSERT INTO rnmembers VALUES('$user', '$pass')";
 queryMysql($query);
 die("<h4>Account created</h4>Please Log in.");
 }
 }
}

echo <<<_END
<form method='post' action='rnsignup.php'>$error
Username <input type='text' maxlength='16' name='user' value='$user'
 onBlur='checkUser(this)'/>

Password <input type='text' maxlength='16' name='pass'
 value='$pass' />

<input type='submit' value='Signup' />
</form>
_END;
?>

On a production server, I wouldn’t recommend storing user passwords
in the clear as I’ve done here (for reasons of space and simplicity). In-
stead, you should salt them and store them as MD5 or other one-way
hash strings. See Chapter 13 for more details on how to do this.

rnsignup.php (YUI version)
If you prefer to use YUI, here’s an alternative version of rnsignup.php (see Exam-
ple 20-6). I have highlighted the main differences in bold type and, as you can see, it’s
substantially shorter. Please refer to Chapter 19 for details on how the YUI Ajax im-
plementation works.

Example 20-6. rnsignup.php (YUI version)

<?php // rnsignup.php (YUI version)
include_once 'rnheader.php';

echo <<<_END
<script src="yahoo-min.js"></script>
<script src="event-min.js"></script>
<script src="connection-min.js"></script>
<script>
function checkUser(user)
{
 if (user.value == '')

rnsignup.php (YUI version) | 415

 {
 document.getElementById('info').innerHTML = ''
 return
 }

 params = "user=" + user.value
 callback = { success:successHandler, failure:failureHandler }
 request = YAHOO.util.Connect.asyncRequest('POST',
 'rncheckuser.php', callback, params);
}

function successHandler(o)
{
 document.getElementById('info').innerHTML = o.responseText;
}

function failureHandler(o)
{
 document.getElementById('info').innerHTML =
 o.status + " " + o.statusText;
}

</script>
<h3>Sign up Form</h3>
_END;

$error = $user = $pass = "";
if (isset($_SESSION['user'])) destroySession();

if (isset($_POST['user']))
{
 $user = sanitizeString($_POST['user']);
 $pass = sanitizeString($_POST['pass']);

 if ($user == "" || $pass == "")
 {
 $error = "Not all fields were entered

";
 }
 else
 {
 $query = "SELECT * FROM rnmembers WHERE user='$user'";

 if (mysql_num_rows(queryMysql($query)))
 {
 $error = "That username already exists

";
 }
 else
 {
 $query = "INSERT INTO rnmembers VALUES('$user', '$pass')";
 queryMysql($query);
 }

 die("<h4>Account created</h4>Please Log in.");
 }
}

416 | Chapter 20: Bringing It All Together

echo <<<_END
<form method='post' action='rnsignup.php'>$error
Username <input type='text' maxlength='16' name='user' value='$user'
 onBlur='checkUser(this)'/>

Password <input type='text' maxlength='16' name='pass'
 value='$pass' />

<input type='submit' value='Signup' />
</form>
_END;
?>

rncheckuser.php
To go with rnsignup.php, here’s Example 20-7, rncheckuser.php, the program that looks
up a username in the database and returns a string indicating whether it has already
been taken. Because it relies on the functions sanitizeString and queryMysql, the pro-
gram first includes the file rnfunctions.php.

Then, if the $_POST variable 'user' has a value, the function looks it up in the database
and, depending on whether it exists as a username, outputs either “Sorry, already
taken” or “Username available.” Just checking the function mysql_num_rows against the
result is sufficient for this, as it will return 0 for not found, or 1 if it is found.

The HTML entity ← is also used to preface the string with a little left-pointing
arrow.

Example 20-7. rncheckuser.php

<?php // rncheckuser.php
include_once 'rnfunctions.php';

if (isset($_POST['user']))
{
 $user = sanitizeString($_POST['user']);
 $query = "SELECT * FROM rnmembers WHERE user='$user'";

 if (mysql_num_rows(queryMysql($query)))
 echo " ←
 Sorry, already taken";
 else echo " ←
 Username available";
}
?>

rnlogin.php
With users now able to sign up to the site, Example 20-8, rnlogin.php, provides the
code needed to let them log in. Like the sign-up page, it features a simple HTML form

rnlogin.php | 417

and some basic error checking, as well as using sanitizeString before querying the
MySQL database.

The main thing to note here is that, upon successful verification of the username and
password, the session variables 'user' and 'pass' are given the username and password
values. As long as the current session remains active these variables will be accessible
by all the programs in the project, allowing them to automatically provide access to
logged-in users.

You may be interested in the use of the die function upon successfully logging in. This
is used because it combines an echo and an exit command in one, thus saving a line of
code.

When you call this program up in your browser, it should look like Figure 20-3. Note
how the <input...> type of password has been used here to mask the password with
asterisks to prevent it from being viewed by anyone looking over the user’s shoulder.

Figure 20-3. The login page

Example 20-8. rnlogin.php

<?php // rnlogin.php
include_once 'rnheader.php';
echo "<h3>Member Log in</h3>";
$error = $user = $pass = "";

if (isset($_POST['user']))
{
 $user = sanitizeString($_POST['user']);
 $pass = sanitizeString($_POST['pass']);

418 | Chapter 20: Bringing It All Together

 if ($user == "" || $pass == "")
 {
 $error = "Not all fields were entered
";
 }
 else
 {
 $query = "SELECT user,pass FROM rnmembers
 WHERE user='$user' AND pass='$pass'";

 if (mysql_num_rows(queryMysql($query)) == 0)
 {
 $error = "Username/Password invalid
";
 }
 else
 {
 $_SESSION['user'] = $user;
 $_SESSION['pass'] = $pass;
 die("You are now logged in. Please
 click here.");
 }
 }
}

echo <<<_END
<form method='post' action='rnlogin.php'>$error
Username <input type='text' maxlength='16' name='user'
 value='$user' />

Password <input type='password' maxlength='16' name='pass'
 value='$pass' />

<input type='submit' value='Login' />
</form>
_END;
?>

rnprofile.php
One of the first things that new users may want to do after signing up and logging in
is to create a profile, which can be done via Example 20-9, rnprofile.php. I think you’ll
find some interesting code here, such as routines to upload, resize, and sharpen images.

Let’s start by looking at the main HTML at the end of the code. This is like the forms
you’ve just seen, but this time it has the parameter enctype='multipart/form-data'.
This allows us to send more than one type of data at a time, enabling the posting of an
image as well as some text. There’s also an <input...> type of file, which creates a
browse button that a user can press to select a file to be uploaded.

When the form is submitted, the code at the start of the program is executed. The first
thing it does is ensure that a user is logged in before allowing program execution to
proceed. Only then is the page heading displayed.

rnprofile.php | 419

Adding the “About Me” Text
Then the POST variable 'text' is checked to see whether some text was posted to the
program. If so, it is sanitized and all long whitespace sequences (including returns and
line feeds) are replaced with a single space. This function incorporates a double security
check, ensuring that the user actually exists in the database and that no attempted
hacking can succeed before inserting this text into the database, where it will become
the user’s “about me” details.

If no text was posted, the database is queried to see whether any already exists in order
to prepopulate the textarea for the user to edit it.

Adding a Profile Image
Next we move on to the section where the $_FILES system variable is checked to see
whether an image has been uploaded. If so, a string variable called $saveto is created,
based on the user’s username followed by the extension .jpg. For example, user Jill will
cause $saveto to have the value Jill.jpg. This is the file where the uploaded image will
be saved for use in the user’s profile.

Following this, the uploaded image type is examined and is only accepted if it is a jpeg,
png, or gif image. Upon success, the variable $src is populated with the uploaded image
using one of the imagecreatefrom functions according to the image type uploaded. The
image is now in a raw format that PHP can process. If the image is not of an allowed
type, the flag $typeok is set to FALSE, preventing the final section of image upload code
from being processed.

Processing the Image
First, the image’s dimensions are stored in $w and $h using the following statement,
which is a quick way of assigning values from an array to separate variables:

list($w, $h) = getimagesize($saveto);

Then, using the value of $max (which is set to 100), new dimensions are calculated that
will result in a new image of the same ratio, but with no dimension greater than 100
pixels. This results in giving the variables $tw and $th the new values needed. If you
want smaller or larger thumbnails, simply change the value of $max accordingly.

Next, the function imagecreatetruecolor is called to create a new, blank canvas $tw
wide and $th high in $tmp. Then imagecopyresampled is called to resample the image
from $src, to the new $tmp. Sometimes resampling images can result in a slightly blurred
copy, so the next piece of code uses the imageconvolution function to sharpen the image
up a bit.

420 | Chapter 20: Bringing It All Together

Finally the image is saved as a jpeg file in the location defined by the variable $saveto,
after which both the original and the resized image canvases are removed from memory
using the imagedestroy function, returning the memory that was used.

Displaying the Current Profile
Last but not least, so that the user can see what the current profile looks like before
editing it, the showProfile function from rnfunctions.php is called prior to outputting
the form HTML. If no profile exists yet, nothing will be displayed.

The result of loading Example 20-9 into a browser is shown in Figure 20-4, where you
can see that the textarea has been prepopulated with the “about me” text.

Figure 20-4. Editing a user profile

rnprofile.php | 421

Example 20-9. rnprofile.php

<?php // rnprofile.php
include_once 'rnheader.php';

if (!isset($_SESSION['user']))
 die("

You need to login to view this page");
$user = $_SESSION['user'];

echo "<h3>Edit your Profile</h3>";

if (isset($_POST['text']))
{
 $text = sanitizeString($_POST['text']);
 $text = preg_replace('/\s\s+/', ' ', $text);

 $query = "SELECT * FROM rnprofiles WHERE user='$user'";
 if (mysql_num_rows(queryMysql($query)))
 {
 queryMysql("UPDATE rnprofiles SET text='$text'
 where user='$user'");
 }
 else
 {
 $query = "INSERT INTO rnprofiles VALUES('$user', '$text')";
 queryMysql($query);
 }
}
else
{
 $query = "SELECT * FROM rnprofiles WHERE user='$user'";
 $result = queryMysql($query);

 if (mysql_num_rows($result))
 {
 $row = mysql_fetch_row($result);
 $text = stripslashes($row[1]);
 }
 else $text = "";
}

$text = stripslashes(preg_replace('/\s\s+/', ' ', $text));

if (isset($_FILES['image']['name']))
{
 $saveto = "$user.jpg";
 move_uploaded_file($_FILES['image']['tmp_name'], $saveto);
 $typeok = TRUE;

 switch($_FILES['image']['type'])
 {
 case "image/gif": $src = imagecreatefromgif($saveto); break;

 case "image/jpeg": // Both regular and progressive jpegs
 case "image/pjpeg": $src = imagecreatefromjpeg($saveto); break;

422 | Chapter 20: Bringing It All Together

 case "image/png": $src = imagecreatefrompng($saveto); break;

 default: $typeok = FALSE; break;
 }

 if ($typeok)
 {
 list($w, $h) = getimagesize($saveto);
 $max = 100;
 $tw = $w;
 $th = $h;

 if ($w > $h && $max < $w)
 {
 $th = $max / $w * $h;
 $tw = $max;
 }
 elseif ($h > $w && $max < $h)
 {
 $tw = $max / $h * $w;
 $th = $max;
 }
 elseif ($max < $w)
 {
 $tw = $th = $max;
 }

 $tmp = imagecreatetruecolor($tw, $th);
 imagecopyresampled($tmp, $src, 0, 0, 0, 0, $tw, $th, $w, $h);
 imageconvolution($tmp, array(// Sharpen image
 array(−1, −1, −1),
 array(−1, 16, −1),
 array(−1, −1, −1)
), 8, 0);
 imagejpeg($tmp, $saveto);
 imagedestroy($tmp);
 imagedestroy($src);
 }
}

showProfile($user);

echo <<<_END
<form method='post' action='rnprofile.php'
 enctype='multipart/form-data'>
Enter or edit your details and/or upload an image:

<textarea name='text' cols='40' rows='3'>$text</textarea>

Image: <input type='file' name='image' size='14' maxlength='32' />
<input type='submit' value='Save Profile' />
</pre></form>
_END;
?>

rnprofile.php | 423

rnmembers.php
Using Example 20-10, rnmembers.php, your users will be able to find other members
and choose to add them as friends (or drop them if they are already friends). This
program has two modes. The first lists all members and their relationships to you, and
the second shows a user’s profile.

Viewing a User’s Profile
The code for the latter mode comes first, where a test is made for the GET variable
'view'. If it exists, a user wants to view someone’s profile, so the program does that
using the showProfile function, along with providing a couple of links to the user’s
friends and messages.

Adding and Dropping Friends
After that the two GET variables 'add' and 'remove' are tested. If one or the other has a
value, it will be the username of a user to either add or drop as a friend. This is achieved
by looking the user up in the MySQL rnfriends table and either inserting a friend
username or removing it from the table.

And, of course, every posted variable is first passed through sanitizeString to ensure
it is safe to use with MySQL.

Listing All Members
The final section of code issues a SQL query to list all usernames. The code places the
number returned in the variable $num before outputting the page heading.

A for loop then iterates through each and every member, fetching their details and then
looking them up in the rnfriends table to see if they are either being followed by or a
follower of the user. If someone is both a follower and a followee, they are classed as a
mutual friend. By the way, this section of code is particularly amenable to a template
solution such as Smarty.

The variable $t1 is nonzero when the user is following another member, and $t2 is
nonzero when another member is following the user. Depending on these values, text
is displayed after each username showing their relationship (if any) to the current user.

Icons are also displayed to show the relationships. A double pointing arrow means that
the users are mutual friends. A left-pointing arrow indicates the user is following an-
other member. And a right-pointing arrow indicates that another member is following
the user.

Finally, depending on whether the user is following another member, a link is provided
to either add or drop that member as a friend.

424 | Chapter 20: Bringing It All Together

When you call Example 20-10 up in a browser, it will look like Figure 20-5. See how
the user is invited to “follow” a nonfollowing member, but if the member is already
following the user, a “recip” link to reciprocate the friendship is offered. In the case of
a user already following another member, the user can select “drop” to stop the
following.

Figure 20-5. Using the members module

Example 20-10. rnmembers.php

<?php // rnmembers.php
include_once 'rnheader.php';

if (!isset($_SESSION['user']))
 die("

You must be logged in to view this page");
$user = $_SESSION['user'];

if (isset($_GET['view']))
{
 $view = sanitizeString($_GET['view']);

 if ($view == $user) $name = "Your";
 else $name = "$view's";

 echo "<h3>$name Page</h3>";
 showProfile($view);
 echo "$name Messages
";
 die("$name Friends
");
}

rnmembers.php | 425

if (isset($_GET['add']))
{
 $add = sanitizeString($_GET['add']);
 $query = "SELECT * FROM rnfriends WHERE user='$add'
 AND friend='$user'";

 if (!mysql_num_rows(queryMysql($query)))
 {
 $query = "INSERT INTO rnfriends VALUES ('$add', '$user')";
 queryMysql($query);
 }
}
elseif (isset($_GET['remove']))
{
 $remove = sanitizeString($_GET['remove']);
 $query = "DELETE FROM rnfriends WHERE user='$remove'
 AND friend='$user'";
 queryMysql($query);
}

$result = queryMysql("SELECT user FROM rnmembers ORDER BY user");
$num = mysql_num_rows($result);
echo "<h3>Other Members</h3>";

for ($j = 0 ; $j < $num ; ++$j)
{
 $row = mysql_fetch_row($result);
 if ($row[0] == $user) continue;

 echo "$row[0]";
 $query = "SELECT * FROM rnfriends WHERE user='$row[0]'
 AND friend='$user'";
 $t1 = mysql_num_rows(queryMysql($query));

 $query = "SELECT * FROM rnfriends WHERE user='$user'
 AND friend='$row[0]'";
 $t2 = mysql_num_rows(queryMysql($query));
 $follow = "follow";

 if (($t1 + $t2) > 1)
 {
 echo " ↔ is a mutual friend";
 }
 elseif ($t1)
 {
 echo " ← you are following";
 }
 elseif ($t2)
 {
 $follow = "recip";
 echo " → is following you";
 }

 if (!$t1)
 {

426 | Chapter 20: Bringing It All Together

 echo " [$follow]";
 }
 else
 {
 echo " [drop]";
 }
}
?>

On a production server, there could be thousands or even hundreds of
thousands of users, so you would probably substantially modify this
program to include searching the “about me” text, and support paging
of the output a screen at a time.

rnfriends.php
The module that shows a user’s friends and followers is Example 20-11,
rnfriends.php. This interrogates the rnfriends table just like the rnmembers.php pro-
gram, but only for a single user. It then shows all of that user’s mutual friends and
followers along with the people they are following.

All the followers are saved into an array called $followers and all the people being
followed are placed in an array called $following. Then a neat piece of code is used to
extract all those that are both following and followed by the user, like this:

$mutual = array_intersect($followers, $following);

The array_intersect function extracts all members common to both arrays and returns
a new array containing only those people. This array is then stored in $mutual. Now
it’s possible to use the array_diff function for each of the $followers and $following
arrays to keep only those people who are not mutual friends, like this:

$followers = array_diff($followers, $mutual);
$following = array_diff($following, $mutual);

This results in the array $mutual containing only mutual friends, $followers containing
only followers (and no mutual friends), and $following containing only people being
followed (and no mutual friends).

Armed with these arrays, it’s a simple matter to separately display each category of
members, as can be seen in Figure 20-6. The PHP sizeof function returns the number
of elements in an array; here I use it just to trigger code when the size is nonzero (that
is, friends of that type exist). Note how, by using the variables $name1, $name2, and
$name3 in the relevant places, the code can tell when you’re looking at your own friends
list, using the words Your and You are, instead of simply displaying the username.

rnfriends.php | 427

Figure 20-6. Displaying a user’s friends and followers

Example 20-11. rnfriends.php

<?php // rnfriends.php
include_once 'rnheader.php';

if (!isset($_SESSION['user']))
 die("

You need to login to view this page");
$user = $_SESSION['user'];

if (isset($_GET['view'])) $view = sanitizeString($_GET['view']);
else $view = $user;

if ($view == $user)
{
 $name1 = "Your";
 $name2 = "Your";
 $name3 = "You are";
}
else
{
 $name1 = "$view's";
 $name2 = "$view's";
 $name3 = "$view is";
}

echo "<h3>$name1 Friends</h3>";
showProfile($view);
$followers = array(); $following = array();

428 | Chapter 20: Bringing It All Together

$query = "SELECT * FROM rnfriends WHERE user='$view'";
$result = queryMysql($query);
$num = mysql_num_rows($result);

for ($j = 0 ; $j < $num ; ++$j)
{
 $row = mysql_fetch_row($result);
 $followers[$j] = $row[1];
}

$query = "SELECT * FROM rnfriends WHERE friend='$view'";
$result = queryMysql($query);
$num = mysql_num_rows($result);

for ($j = 0 ; $j < $num ; ++$j)
{
 $row = mysql_fetch_row($result);
 $following[$j] = $row[0];
}

$mutual = array_intersect($followers, $following);
$followers = array_diff($followers, $mutual);
$following = array_diff($following, $mutual);
$friends = FALSE;

if (sizeof($mutual))
{
 echo "$name2 mutual friends";
 foreach($mutual as $friend)
 echo "$friend";
 echo "";
 $friends = TRUE;
}

if (sizeof($followers))
{
 echo "$name2 followers";
 foreach($followers as $friend)
 echo "$friend";
 echo "";
 $friends = TRUE;
}

if (sizeof($following))
{
 echo "$name3 following";
 foreach($following as $friend)
 echo "$friend";
 $friends = TRUE;
}

if (!$friends) echo "None yet";

rnfriends.php | 429

echo "View $name2 messages";
?>

rnmessages.php
The last of the main modules is Example 20-12, rnmessages.php. The program starts
by checking whether a message has been posted in the POST variable 'text'. If so, it is
inserted into the rnmessages table. At the same time, the value of 'pm' is also stored.
This indicates whether a message is private or public. A 0 represents a public message
and 1 is private.

Next, the user’s profile and a form for entering a message are displayed, along with
radio buttons to choose between a private or public message. After this, all the messages
are shown, depending on whether they are private or public. If they are public, all users
can see them, but private messages are visible only to the sender and recipient. This is
all handled by a couple of queries to the MySQL database. Additionally, when a mes-
sage is private, it is introduced by the word “whispered” and shown in italic.

Finally, the program displays a couple of links to refresh the messages, in case another
user has posted one in the meantime, and to view the user’s friends. The trick using
the variables $name1 and $name2 is again used so that when you view your own profile
the word Your is displayed instead of the username.

You can see the result of viewing this program with a browser in Figure 20-7. Note how
users viewing their own messages are provided with links to erase any they don’t want.

Figure 20-7. The messaging module

430 | Chapter 20: Bringing It All Together

Example 20-12. rnmessages.php

<?php // rnmessages.php
include_once 'rnheader.php';

if (!isset($_SESSION['user']))
 die("

You need to login to view this page");
$user = $_SESSION['user'];

if (isset($_GET['view'])) $view = sanitizeString($_GET['view']);
else $view = $user;

if (isset($_POST['text']))
{
 $text = sanitizeString($_POST['text']);

 if ($text != "")
 {
 $pm = substr(sanitizeString($_POST['pm']),0,1);
 $time = time();
 queryMysql("INSERT INTO rnmessages VALUES(NULL,
 '$user', '$view', '$pm', $time, '$text')");
 }
}

if ($view != "")
{
 if ($view == $user)
 {
 $name1 = "Your";
 $name2 = "Your";
 }
 else
 {
 $name1 = "$view's";
 $name2 = "$view's";
 }

 echo "<h3>$name1 Messages</h3>";
 showProfile($view);

 echo <<<_END
<form method='post' action='rnmessages.php?view=$view'>
Type here to leave a message:

<textarea name='text' cols='40' rows='3'></textarea>

Public<input type='radio' name='pm' value='0' checked='checked' />
Private<input type='radio' name='pm' value='1' />
<input type='submit' value='Post Message' /></form>
_END;

 if (isset($_GET['erase']))
 {
 $erase = sanitizeString($_GET['erase']);
 queryMysql("DELETE FROM rnmessages WHERE id=$erase
 AND recip='$user'");
 }

rnmessages.php | 431

 $query = "SELECT * FROM rnmessages WHERE recip='$view'
 ORDER BY time DESC";
 $result = queryMysql($query);
 $num = mysql_num_rows($result);

 for ($j = 0 ; $j < $num ; ++$j)
 {
 $row = mysql_fetch_row($result);

 if ($row[3] == 0 ||
 $row[1] == $user ||
 $row[2] == $user)
 {
 echo date('M jS \'y g:sa:', $row[4]);
 echo " <a href='rnmessages.php?";
 echo "view=$row[1]'>$row[1] ";

 if ($row[3] == 0)
 {
 echo "wrote: "$row[5]" ";
 }
 else
 {
 echo "whispered: <i>"$row[5]"</i> ";
 }

 if ($row[2] == $user)
 {
 echo "[<a href='rnmessages.php?view=$view";
 echo "&erase=$row[0]'>erase]";
 }
 echo "
";
 }
 }
}

if (!$num) echo "No messages yet
";

echo "
Refresh messages";
echo " | View $name2 friends";
?>

rnlogout.php
The final ingredient in our social networking recipe is Example 20-13, rnlogout.php,
the logout page that closes a session and deletes any associated data and cookies. The
result of calling up this program can be seen in Figure 20-8, where the user is now asked
to click on a link which will take them to the un-logged-in home page and remove the
logged-in links from the top of the screen. Of course, you could write a JavaScript or

432 | Chapter 20: Bringing It All Together

PHP redirect to do this, and this is probably a good idea in order to keep logging out
looking clean.

Figure 20-8. The logout page

Example 20-13. rnlogout.php

<?php // rnlogout.php
include_once 'rnheader.php';
echo "<h3>Log out</h3>";

if (isset($_SESSION['user']))
{
 destroySession();
 echo "You have been logged out. Please
 click here to refresh the screen.";
}
else echo "You are not logged in";
?>

And that, as they say, is that. If you write anything based on this code, or any other
examples in this book, or have gained in any other way from it, then I’m glad to have
been of help, and thank you for reading this book.

But before you go out and try out your newly learned skills on the Web at large, please
take a browse through the appendices that follow, as there’s a lot of additional infor-
mation there you should find useful.

rnlogout.php | 433

APPENDIX A

Solutions to the Chapter Questions

Chapter 1 Answers
Question 1-1

A web server (such as Apache), a server-side scripting language (PHP), a database
(MySQL), and a client-side scripting language (JavaScript).

Question 1-2
HyperText Markup Language: the web page itself, including text and markup
commands.

Question 1-3
Like nearly all database engines, MySQL accepts commands in Structured Query
Language (SQL). SQL is the way that every user (including a PHP program) com-
municates with MySQL.

Question 1-4
PHP runs on the server, whereas JavaScript runs on the client. PHP can commu-
nicate with the database to store and retrieve data, but it can’t alter the user’s web
page quickly and dynamically. JavaScript has the opposite benefits and drawbacks.

Question 1-5
Some of these technologies are controlled by companies that accept bug reports
and fix the errors like any software company. But open source software also de-
pends on a community, so your bug report may be handled by any user who un-
derstands the code well enough. You may someday fix bugs in an open source tool
yourself.

435

Chapter 2 Answers
Question 2-1

WAMP stands for “Windows, Apache, MySQL, and PHP,” whereas the first M in
MAMP stands for Mac instead of Windows. They both refer to a complete solution
for hosting dynamic web pages.

Question 2-2
Both 127.0.0.1 and http://localhost are ways of referring to the local computer.
When a WAMP or MAMP is properly configured, you can type either into a
browser’s address bar to call up the default page on the local server.

Question 2-3
FTP stands for File Transfer Protocol. An FTP program is used to transfer files back
and forth between a client and a server.

Question 2-4
It is necessary to FTP files to a remote server in order to update it, which can
substantially increase development time if this action is carried out many times in
a session.

Question 2-5
Dedicated program editors are smart and can highlight problems in your code
before you even run it.

Chapter 3 Answers
Question 3-1

The tag used to start PHP interpreting code is <?php ... ?>, which can be shortened
to <? ... ?>.

Question 3-2
You can use // for a single line comment or /* ... */ to span multiple lines.

Question 3-3
All PHP statements must end with a semicolon (;).

Question 3-4
With the exception of constants, all PHP variables must begin with $.

Question 3-5
Variables hold a value that can be a string, a number, or other data.

Question 3-6
$variable = 1 is an assignment statement, whereas $variable == 1 is a comparison
operator. Use $variable = 1 to set the value of $variable. Use $variable == 1 to
find out later in the program whether $variable equals 1. If you mistakenly use
$variable = 1 where you meant to do a comparison, it will do two things you
probably don’t want: set $variable to 1 and return a true value all the time, no
matter what its previous value was.

436 | Appendix A: Solutions to the Chapter Questions

Question 3-7
A hyphen is reserved for the subtraction operators. A construct like $current-
user would be harder to interpret if hyphens were also allowed in variable names
and, in any case, would lead programs to be ambiguous.

Question 3-8
Variable names are case-sensitive. $This_Variable is not the same as
$this_variable.

Question 3-9
You cannot use spaces in variable names, as this would confuse the PHP parser.
Instead try using the _ (underscore).

Question 3-10
To convert one variable type to another, reference it and PHP will automatically
convert it for you.

Question 3-11
There is no difference between ++$j and $j++ unless the value of $j is being tested,
assigned to another variable, or passed as a parameter to a function. In such cases,
++$j increments $j before the test or other operation is performed, whereas $j++
performs the operation and then increments $j.

Question 3-12
Generally, the operators && and and are interchangeable except where precedence
is important, in which case && has a high precedence while and has a low one.

Question 3-13
You can use multiple lines within quotations marks or the <<< _END ... _END con-
struct to create a multiline echo or assignment.

Question 3-14
You cannot redefine constants because, by definition, once defined they retain their
value until the program terminates.

Question 3-15
You can use \' or \" to escape either a single or double quote.

Question 3-16
The echo and print commands are similar, except that print is a PHP function and
takes a single argument and echo is a construct that can take multiple arguments.

Question 3-17
The purpose of functions is to separate discrete sections of code into their own,
self-contained sections that can be referenced by a single function name.

Question 3-18
You can make a variable accessible to all parts of a PHP program by declaring it as
global.

Chapter 3 Answers | 437

Question 3-19
If you generate data within a function, you can convey the data to the rest of the
program by returning a value or modifying a global variable.

Question 3-20
When you combine a string with a number, the result is another string.

Chapter 4 Answers
Question 4-1

In PHP TRUE represents the value 1 and FALSE represents NULL, which can be thought
of as “nothing” and is output as the empty string.

Question 4-2
The simplest forms of expressions are literals (such as numbers and strings) and
variables, which simply evaluate to themselves.

Question 4-3
The difference between unary, binary and ternary operators is the number of op-
erands each requires (one, two, and three, respectively).

Question 4-4
The best way to force your own operator precedence is to place parentheses around
subexpressions to which you wish to give high precedence.

Question 4-5
Operator associativity refers to the direction of processing (left-to-right or right-
to-left).

Question 4-6
You use the identity operator when you wish to bypass PHP’s automatic operand
type changing (also called type casting).

Question 4-7
The three conditional statement types are if, switch, and the ? operator.

Question 4-8
To skip the current iteration of a loop and move on to the next one, use a
continue statement.

Question 4-9
Loops using for statements are more powerful than while loops, because they
support two additional parameters to control the loop handling.

Question 4-10
Most conditional expressions in if and while statements are literal (or Boolean)
and therefore trigger execution when they evaluate to TRUE. Numeric expressions
trigger execution when they evaluate to a nonzero value. String expressions trigger
execution when they evaluate to a nonempty string. A NULL value is evaluated as
false and therefore does not trigger execution.

438 | Appendix A: Solutions to the Chapter Questions

Chapter 5 Answers
Question 5-1

Using functions avoids the need to copy or rewrite similar code sections many times
over by combining sets of statements together so that they can be called by a simple
name.

Question 5-2
By default, a function can return a single value. But by utilizing arrays, references,
and global variables, any number of values can be returned.

Question 5-3
When you reference a variable by name, such as by assigning its value to another
variable or by passing its value to a function, its value is copied. The original does
not change when the copy is changed. But if you reference a variable, only a pointer
(or reference) to its value is used, so that a single value is referenced by more than
one name. Changing the value of the reference will change the original as well.

Question 5-4
Scope refers to which parts of a program can access a variable. For example, a
variable of global scope can be accessed by all parts of a PHP program.

Question 5-5
To incorporate one file within another, you can use the include or require direc-
tives, or their safer variants, include_once and require_once.

Question 5-6
A function is a set of statements referenced by a name that can receive and return
values. An object may contain zero or many functions (which are then called meth-
ods) as well as variables (which are called properties) all combined in a single unit.

Question 5-7
To create a new object in PHP, use the new keyword like this: $object = new Class.

Question 5-8
To create a subclass, use the extends keyword with syntax such as this: class Sub
class extends Parentclass.

Question 5-9
To call a piece of initializing code when an object is created, create a constructor
method called __construct within the class and place your code there.

Question 5-10
Explicitly declaring properties within a class is unnecessary, as they will be im-
plicitly declared upon first use. But it is considered good practice as it helps with
code readability and debugging, and is especially useful to other people who may
have to maintain your code.

Chapter 5 Answers | 439

Chapter 6 Answers
Question 6-1

A numeric array can be indexed numerically using numbers or numeric variables.
An associative array uses alphanumeric identifiers to index elements.

Question 6-2
The main benefit of the array keyword is that it enables you to assign several values
at a time to an array without repeating the array name.

Question 6-3
Both the each function and the foreach...as loop construct return elements from
an array; both start at the beginning and increment a pointer to make sure the next
element is returned each time; and both return FALSE when the end of the array is
reached. The difference is that the each function returns just a single element, so
it is usually wrapped in a loop. The foreach...as construct is already a loop, exe-
cuting repeatedly until the array is exhausted or you explicitly break out of the loop.

Question 6-4
To create a multidimensional array, you need to assign additional arrays to ele-
ments of the main array.

Question 6-5
You can use the count function to count the number of elements in an array.

Question 6-6
The purpose of the explode function is to extract sections from a string that are
separated by an identifier, such as extracting words separated by spaces within a
sentence.

Question 6-7
To reset PHP’s internal pointer into an array back to the first element, call the
reset function.

Chapter 7 Answers
Question 7-1

The conversion specifier you would use to display a floating-point number is %f.

Question 7-2
To take the input string “Happy Birthday” and output the string “**Happy”, you
could use a printf statement such as printf("%'*7.5s", "Happy Birthday");.

Question 7-3
To send the output from printf to a variable instead of to a browser, you would
use sprintf instead.

Question 7-4
To create a Unix timestamp for 7:11am on May 2nd 2016, you could use the
command $timestamp = mktime(7, 11, 0, 5, 2, 2016);.

440 | Appendix A: Solutions to the Chapter Questions

Question 7-5
You would use the “w+” file access mode with fopen to open a file in write and
read mode, with the file truncated and the file pointer at the start.

Question 7-6
The PHP command for deleting the file file.txt is unlink('file.txt');.

Question 7-7
The PHP function file_get_contents is used to read in an entire file in one go. It
will also read them from across the Internet if provided with a URL.

Question 7-8
The PHP associative array $_FILES contains the details about uploaded files.

Question 7-9
The PHP exec function enables the running of system commands.

Question 7-10
In XHTML 1.0, the tag <input type=file name=file size=10> should be replaced
with the following correct syntax <input type="file" name="file" size="10" />,
because all parameters must be quoted, and tags without closing tags must be self
closed using />.

Chapter 8 Answers
Question 8-1

The semicolon is used by MySQL to separate or end commands. If you forget to
enter it, MySQL will issue a prompt and wait for you to enter it. (In the answers in
this section, I’ve left off the semicolon, because it looks strange in the text. But it
must terminate every statement.)

Question 8-2
To see the available databases, type SHOW databases. To see tables within a database
that you are using, type SHOW tables. (These commands are case-insensitive.)

Question 8-3
To create this new user, use the GRANT command like this:

GRANT PRIVILEGES ON newdatabase.* TO 'newuser'
 IDENTIFIED BY 'newpassword';

Question 8-4
To view the structure of a table, type DESCRIBE tablename.

Question 8-5
The purpose of a MySQL index is to substantially decrease database access times
by maintaining indexes of one or more key columns, which can then be quickly
searched to locate rows within a table.

Chapter 8 Answers | 441

Question 8-6
A FULLTEXT index enables natural language queries to find keywords, wherever they
are in the FULLTEXT column(s), in much the same way as using a search engine.

Question 8-7
A stopword is a word that is so common that it is considered not worth including
in a FULLTEXT index or using in searches. However, it does participate in a search
when it is part of a larger string bounded by double quotes.

Question 8-8
SELECT DISTINCT essentially affects only the display, choosing a single row and
eliminating all the duplicates. GROUP BY does not eliminate rows, but combines all
the rows that have the same value in the column. Therefore, GROUP BY is useful for
performing an operation such as COUNT on groups of rows. SELECT DISTINCT is not
useful for that purpose.

Question 8-9
To return only those rows containing the word Langhorne somewhere in the col-
umn author of the table classics, use a command such as:

SELECT * FROM classics WHERE author LIKE "%Langhorne%";

Question 8-10
When joining two tables together, they must share at least one common column
such as an ID number or, as in the case of the classics and customers tables, the
isbn column.

Question 8-11
To correct the years in the classics table you could issue the following three
commands:

UPDATE classics SET year='1813' WHERE title='Pride and Prejudice';
UPDATE classics SET year='1859' WHERE title='The Origin of Species';
UPDATE classics SET year='1597' WHERE title='Romeo and Juliet';

Chapter 9 Answers
Question 9-1

The term relationship refers to the connection between two pieces of data that have
some association, such as a book and its author, or a book and the customer who
bought the book. A relational database such as MySQL specializes in storing and
retrieving such relations.

Question 9-2
The process of removing duplicate data and optimizing tables is called
normalization.

442 | Appendix A: Solutions to the Chapter Questions

Question 9-3
The three rules of First Normal Form are: (1) There should be no repeating columns
containing the same kind of data; (2) All columns should contain a single value;
and (3) There should be a primary key to uniquely identify each row.

Question 9-4
To satisfy Second Normal Form, columns whose data repeats across multiple rows
should be removed to their own tables.

Question 9-5
In a one-to-many relationship, the primary key from the table on the “one” side
must be added as a separate column (a foreign key) to the table on the “many” side.

Question 9-6
To create a database with a many-to-many relationship, you create an intermediary
table containing keys from two other tables. The other tables can then reference
each other via the third.

Question 9-7
To initiate a MySQL transaction, use either the BEGIN or the START TRANSACTION
command. To terminate a transaction and cancel all actions, issue a ROLLBACK com-
mand. To terminate a transaction and commit all actions, issue a COMMIT command.

Question 9-8
To examine how a query will work in detail, you can use the EXPLAIN command.

Question 9-9
To back up the database publications to a file called publications.sql, you would
use a command such as:

mysqldump -u user -ppassword publications > publications.sql

Chapter 10 Answers
Question 10-1

The standard MySQL function used for connecting to a MySQL database is
mysql_connect.

Question 10-2
The mysql_result function is not optimal when more than one cell is being re-
quested, because it fetches only a single cell from a database and therefore has to
be called multiple times, whereas mysql_fetch_row will fetch an entire row.

Question 10-3
The POST form method is generally better than GET, because the fields are posted
directly, rather than appending them to the URL. This has several advantages,
particularly in removing the possibility to enter spoof data at the browser’s address
bar. (It is not a complete defense against spoofing, however.)

Chapter 10 Answers | 443

Question 10-4
To determine the last entered value of an AUTO_INCREMENT column, use the
mysql_insert_id function.

Question 10-5
The PHP function that escapes a string, making it suitable for use with MySQL, is
mysql_real_escape_string.

Question 10-6
Cross Site Scripting injection attacks can be prevented using the function
htmlentities.

Chapter 11 Answers
Question 11-1

The associative arrays used to pass submitted form data to PHP are $_GET for the
GET method and $_POST for the POST method.

Question 11-2
The register_globals setting was the default in versions of PHP prior to 4.2.0. It was
not a good idea, because it automatically assigned submitted form field data to
PHP variables, thus opening up a security hole for potential hackers, who could
attempt to break into PHP code by initializing variables to values of their choice.

Question 11-3
The difference between a text box and a text area is that although they both accept
text for form input, a text box is a single line, whereas a text area can be multiple
lines and include word wrapping.

Question 11-4
To offer three mutually exclusive choices in a web form, you should use radio
buttons, because checkboxes allow multiple selections.

Question 11-5
Submit a group of selections from a web form using a single field name by using
an array name with square brackets such as choices[], instead of a regular field
name. Each value is then placed into the array, whose length will be the number
of elements submitted.

Question 11-6
To submit a form field without the user seeing it, place it in a hidden field using
the parameter type="hidden".

Question 11-7
You can encapsulate a form element and supporting text or graphics, making the
entire unit selectable with a mouse-click, by using the <label> and </label> tags.

Question 11-8
To convert HTML into a format that can be displayed but will not be interpreted
as HTML by a browser, use the PHP htmlentities function.

444 | Appendix A: Solutions to the Chapter Questions

Chapter 12 Answers
Question 12-1

There are several benefits to using a templating system such as Smarty. They in-
clude but are not limited to:

• Separating the program code from the presentation layer.

• Preventing template editors from modifying program code.

• Removing the need for programmers to design page layout.

• Allowing the redesign of a web page without modifying any program code.

• Enabling multiple “skin” designs with little recourse to modifying program
code.

Question 12-2
To pass a variable to a Smarty template, a PHP program uses the
$smarty->assign function.

Question 12-3
Smarty templates access variables passed to them by prefacing them with a dollar
sign $ and enclosing them with curly braces {}.

Question 12-4
To iterate through an array in a Smarty template, you use the opening {section}
and closing {/section} tags.

Question 12-5
If Smarty has been installed, you can enable it in a PHP program by including the
Smarty.class.php file from its correct location (normally in a folder called Smarty,
just under the document root).

Chapter 13 Answers
Question 13-1

Cookies should be transferred before a web page’s HTML, because they are sent
as part of the headers.

Question 13-2
To store a cookie on a web browser, use the set_cookie function.

Question 13-3
To destroy a cookie, reissue it with set_cookie but set its expiration date in the past.

Question 13-4
Using HTTP authentication, the username and password are stored in
$_SERVER['PHP_AUTH_USER'] and $_SERVER['PHP_AUTH_PW'].

Chapter 13 Answers | 445

Question 13-5
The md5 function is a powerful security measure, because it is a one-way function
that converts a string to a 32-character hexadecimal number that cannot be con-
verted back, and is therefore almost uncrackable.

Question 13-6
When a string is salted, extra characters (known only by the programmer) are
added to it before md5 conversion. This makes it nearly impossible for a brute force
dictionary attack to succeed.

Question 13-7
A PHP session is a group of variables unique to the current user.

Question 13-8
To initiate a PHP session, use the session_start function.

Question 13-9
Session hijacking is where a hacker somehow discovers an existing session ID and
attempts to take it over.

Question 13-10
Session fixation is the attempt to force your own session ID onto a server rather
than letting it create its own.

Chapter 14 Answers
Question 14-1

To enclose JavaScript code, you use <script> and </script> tags.

Question 14-2
By default, JavaScript code will output to the part of the document in which it
resides. If the head it will output to the head; if the body then the body.

Question 14-3
You can include JavaScript code from other source in your documents by either
copying and pasting them or, more commonly, including them as part of a
<script src='filename.js'> tag.

Question 14-4
The equivalent of the echo and print commands used in PHP is the JavaScript
document.write function (or method).

Question 14-5
To create a comment in JavaScript, preface it with // for a single-line comment or
surround it with /* and */ for a multiline comment.

Question 14-6
The JavaScript string concatenation operator is the + symbol.

446 | Appendix A: Solutions to the Chapter Questions

Question 14-7
Within a JavaScript function, you can define a variable that has local scope by
preceding it with the var keyword upon first assignment.

Question 14-8
To display the URL assigned to the link ID thislink in all main browsers, you can
use the two following commands:

document.write(document.getElementById('thislink').href)
document.write(thislink.href)

Question 14-9
The commands to change to the previous page in the browser’s history array are:

history.back()
history.go(-1)

Question 14-10
To replace the current document with the main page at the oreilly.com website,
you could use the following command:

document.location.href = 'http://oreilly.com'

Chapter 15 Answers
Question 15-1

The most noticeable difference between Boolean values in PHP and JavaScript is
that PHP recognizes the keywords TRUE, true, FALSE, and false, whereas only
true and false are supported in JavaScript. Additionally, in PHP TRUE has a value
of 1 and FALSE is NULL; in JavaScript they are represented by true and false, which
can be returned as string values.

Question 15-2
Unlike PHP, no character is used (such as $) to define a JavaScript variable name.
JavaScript variable names can start with and contain any uppercase and lowercase
letters as well as underscores; names can also include digits, but not as the first
character.

Question 15-3
The difference between unary, binary, and ternary operators is the number of op-
erands each requires (one, two, and three, respectively).

Question 15-4
The best way to force your own operator precedence is to surround the parts of an
expression to be evaluated first with parentheses.

Question 15-5
You use the identity operator when you wish to bypass JavaScript’s automatic
operand type changing.

Chapter 15 Answers | 447

Question 15-6
The simplest forms of expressions are literals (such as numbers and strings) and
variables, which simply evaluate to themselves.

Question 15-7
The three conditional statement types are if, switch, and the ? operator.

Question 15-8
Most conditional expressions in if and while statements are literal or Boolean and
therefore trigger execution when they evaluate to TRUE. Numeric expressions trigger
execution when they evaluate to a nonzero value. String expressions trigger exe-
cution when they evaluate to a nonempty string. A NULL value is evaluated as false
and therefore does not trigger execution.

Question 15-9
Loops using for statements are more powerful than while loops, because they
support two additional parameters to control loop handling.

Question 15-10
The with statement takes an object as its parameter. Using it, you specify an object
once, then for each statement within the with block, that object is assumed.

Chapter 16 Answers
Question 16-1

JavaScript functions and variable names are case-sensitive. The variables Count,
count, and COUNT are all different.

Question 16-2
To write a function that accepts and processes an unlimited number of parameters,
access parameters through the arguments array, which is a member of all functions.

Question 16-3
One way to return multiple values from a function is to place them all inside an
array and return the array.

Question 16-4
When defining a class, use the this keyword to refer to the current object.

Question 16-5
The methods of a class do not have to be defined within a class definition. If a
method is defined outside the constructor, the method name must be assigned to
the this object within the class definition.

Question 16-6
New objects are created using the new keyword.

Question 16-7
A property or method can be made available to all objects in a class without rep-
licating the property or method within the object by using the prototype keyword

448 | Appendix A: Solutions to the Chapter Questions

to create a single instance, which is then passed by reference to all the objects in a
class.

Question 16-8
To create a multidimensional array, place subarrays inside the main array.

Question 16-9
The syntax you would use to create an associative array is key : value, within curly
braces, as in the following:

assocarray = {"forename" : "Paul", "surname" : "McCartney",
"group" : "Beatles"}

Question 16-10
A statement to sort an array of numbers into descending numerical order would
look like this:

numbers.sort(function(a,b){return b - a})

Chapter 17 Answers
Question 17-1

You can send a form for validation prior to submitting it by adding the JavaScript
onSubmit method to the <form ...> tag. Make sure that your function returns
true if the form is to be submitted and false otherwise.

Question 17-2
To match a string against a regular expression in JavaScript, use the test method.

Question 17-3
Regular expressions to match characters not in a word could be any of /[^\w]/, /
[\W]/, /[^a-zA-Z0-9_]/, and so on.

Question 17-4
A regular expression to match either of the words fox or fix could be /f[oi]x/.

Question 17-5
A regular expression to match any single word followed by any non-word character
could be /\w+\W/g.

Question 17-6
A JavaScript function using regular expressions to test whether the word fox exists
in the string “The quick brown fox” could be:

document.write(/fox/.test("The quick brown fox"))

Question 17-7
A PHP function using a regular expression to replace all occurrences of the word
the in “The cow jumps over the moon” with the word my could be:

$s=preg_replace("/the/i", "my", "The cow jumps over the moon");

Chapter 17 Answers | 449

Question 17-8
The HTML keyword used to precomplete form fields with a value is the value
keyword, which is placed within an <input ...> tag and takes the form
value="value".

Chapter 18 Answers
Question 18-1

It’s necessary to write a function for creating new XMLHTTPRequest objects, because
Microsoft browsers use two different methods of creating them, while all other
major browsers use a third. By writing a function to test the browser in use, you
can ensure that code will work on all major browsers.

Question 18-2
The purpose of the try...catch construct is to set an error trap for the code inside
the try statement. If the code causes an error, the catch section will be executed
instead of a general error being issued.

Question 18-3
An XMLHTTPRequest object has six properties and six methods (see Tables 18-1 and
18-2).

Question 18-4
You can tell that an Ajax call has completed when the readyState property of an
object has a value of 4.

Question 18-5
When an Ajax call successfully completes, the object’s status will have a value of
200.

Question 18-6
The responseText property of an XMLHTTPRequest object contains the value returned
by a successful Ajax call.

Question 18-7
The responseXML property of an XMLHTTPRequest object contains a DOM tree created
from the XML returned by a successful Ajax call.

Question 18-8
To specify a callback function to handle Ajax responses, assign the function name
to the XMLHTTPRequest object’s onreadystatechange property. You can also use an
unnamed, inline function.

Question 18-9
To initiate an Ajax request, an XMLHTTPRequest object’s send method is called.

450 | Appendix A: Solutions to the Chapter Questions

Question 18-10
The main differences between an Ajax GET and POST request are that GET requests
append the data to the URL and not as a parameter of the send method, and POST
requests pass the data as a parameter of the send method and require the correct
form headers to be sent first.

Chapter 19 Answers
Question 19-1

To implement an Ajax connection, YUI uses a method called asyncRequest, which
is referenced as YAHOO.util.Connect.asyncRequest.

Question 19-2
A callback object called callback for YUI, referring to a success handler called
succeeded and a failure handler called failed, would be written like this:

callback = { success:succeeded, failure:failed }

Question 19-3
A GET call to asyncRequest that refers to the program getdata.php and a callback
object would look like this:

request = YAHOO.util.Connect.asyncRequest('GET', 'getdata.php', callback);

Question 19-4
To encode the URL mysite.com/message?m=123, which contains the ? symbol, so
that if sent as a GET request, it will be treated just as a string and not interpreted,
use the encodeURI method, like this:

url = encodeURI("mysite.com/message?m=123")

Chapter 19 Answers | 451

APPENDIX B

Online Resources

This appendix lists useful websites where you can get material used in this book, or
other resources that will enhance your web programs.

PHP Resource Sites
• http://codewalkers.com

• http://developer.yahoo.com/php/

• http://forums.devshed.com

• http://free-php.net

• http://hotscripts.com/category/php/

• http://htmlgoodies.com/beyond/php/

• http://php.net

• http://php.resourceindex.com

• http://php-editors.com

• http://phpbuilder.com

• http://phpfreaks.com

• http://phpunit.de

• http://w3schools.com/php/

• http://zend.com

453

http://codewalkers.com
http://developer.yahoo.com/php/
http://forums.devshed.com
http://free-php.net
http://hotscripts.com/category/php/
http://htmlgoodies.com/beyond/php/
http://php.net
http://php.resourceindex.com
http://php-editors.com
http://phpbuilder.com
http://phpfreaks.com
http://phpunit.de
http://w3schools.com/php/
http://zend.com

MySQL Resource Sites
• http://code.google.com/edu/tools101/mysql.html

• http://launchpad.net/mysql/

• http://mysql.com

• http://php.net/mysql

• http://planetmysql.org

• http://sun.com/software/products/mysql/

• http://sun.com/systems/solutions/mysql/resources.jsp

• http://w3schools.com/PHP/php_mysql_intro.asp

JavaScript Resource Sites
• http://developer.mozilla.org/en/JavaScript

• http://dynamicdrive.com

• http://javascript.about.com

• http://javascript.internet.com

• http://javascript.com

• http://javascriptkit.com

• http://w3schools.com/JS/

• http://www.webreference.com/js/

Ajax Resource Sites
• http://ajax.asp.net

• http://ajaxian.com

• http://ajaxmatters.com

• http://developer.mozilla.org/en/AJAX

• http://dojotoolkit.org

• http://jquery.com

• http://mochikit.com

• http://mootools.net

• http://openjs.com

• http://prototypejs.org

454 | Appendix B: Online Resources

http://code.google.com/edu/tools101/mysql.html
http://launchpad.net/mysql/
http://mysql.com
http://php.net/mysql
http://planetmysql.org
http://sun.com/software/products/mysql/
http://sun.com/systems/solutions/mysql/resources.jsp
http://w3schools.com/PHP/php_mysql_intro.asp
http://developer.mozilla.org/en/JavaScript
http://dynamicdrive.com
http://javascript.about.com
http://javascript.internet.com
http://javascript.com
http://javascriptkit.com
http://w3schools.com/JS/
http://www.webreference.com/js/
http://ajax.asp.net
http://ajaxian.com
http://ajaxmatters.com
http://developer.mozilla.org/en/AJAX
http://dojotoolkit.org
http://jquery.com
http://mochikit.com
http://mootools.net
http://openjs.com
http://prototypejs.org

• http://sourceforge.net/projects/clean-ajax

• http://w3schools.com/Ajax/

Miscellaneous Resource Sites
• http://apachefriends.org

• http://easyphp.org

• http://eclipse.org

• http://editra.org

• http://fireftp.mozdev.org

• http://sourceforge.net/projects/glossword/

• http://mamp.info/en/

• http://pear.php.net

• http://programmingforums.org

• http://putty.org

• http://smarty.net

• http://wampserver.com/en/

O’Reilly Resource Sites
• http://onlamp.com

• http://onlamp.com/php/

• http://onlamp.com/onlamp/general/mysql.csp

• http://oreilly.com/ajax/

• http://oreilly.com/javascript/

• http://oreilly.com/mysql/

• http://oreilly.com/php/

• http://oreillynet.com/javascript/

O’Reilly Resource Sites | 455

http://sourceforge.net/projects/clean-ajax
http://w3schools.com/Ajax/
http://apachefriends.org
http://easyphp.org
http://eclipse.org
http://editra.org
http://fireftp.mozdev.org
http://sourceforge.net/projects/glossword/
http://mamp.info/en/
http://pear.php.net
http://programmingforums.org
http://putty.org
http://smarty.net
http://wampserver.com/en/
http://onlamp.com
http://onlamp.com/php/
http://onlamp.com/onlamp/general/mysql.csp
http://oreilly.com/ajax/
http://oreilly.com/javascript/
http://oreilly.com/mysql/
http://oreilly.com/php/
http://oreillynet.com/javascript/

APPENDIX C

MySQL’s FULLTEXT Stopwords

This appendix contains the more than 500 stopwords referred to in the section “Using
a FULLTEXT Index” in Chapter 7. Stopwords are words that are considered so com-
mon as to not be worth searching for, or storing, in a FULLTEXT index. Theoretically,
ignoring these words makes little difference to the results of most FULLTEXT searches,
but makes MySQL databases considerably smaller and more efficient. The words are
shown here in lowercase but apply to uppercase and mixed-case versions, too:

A
a’s, able, about, above, according, accordingly, across, actually, after, afterwards,
again, against, ain’t, all, allow, allows, almost, alone, along, already, also, al-
though, always, am, among, amongst, an, and, another, any, anybody, anyhow,
anyone, anything, anyway, anyways, anywhere, apart, appear, appreciate, appro-
priate, are, aren’t, around, as, aside, ask, asking, associated, at, available, away,
awfully

B
be, became, because, become, becomes, becoming, been, before, beforehand, be-
hind, being, believe, below, beside, besides, best, better, between, beyond, both, brief,
but, by

C
c’mon, c’s, came, can, can’t, cannot, cant, cause, causes, certain, certainly, changes,
clearly, co, com, come, comes, concerning, consequently, consider, considering, con-
tain, containing, contains, corresponding, could, couldn’t, course, currently

D
definitely, described, despite, did, didn’t, different, do, does, doesn’t, doing, don’t,
done, down, downwards, during

E
each, edu, eg, eight, either, else, elsewhere, enough, entirely, especially, et, etc, even,
ever, every, everybody, everyone, everything, everywhere, ex, exactly, example,
except

457

F
far, few, fifth, first, five, followed, following, follows, for, former, formerly, forth,
four, from, further, furthermore

G
get, gets, getting, given, gives, go, goes, going, gone, got, gotten, greetings

H
had, hadn’t, happens, hardly, has, hasn’t, have, haven’t, having, he, he’s, hello, help,
hence, her, here, here’s, hereafter, hereby, herein, hereupon, hers, herself, hi, him,
himself, his, hither, hopefully, how, howbeit, however

I
i’d, i’ll, i’m, i’ve, ie, if, ignored, immediate, in, inasmuch, inc, indeed, indicate, indi-
cated, indicates, inner, insofar, instead, into, inward, is, isn’t, it, it’d, it’ll, it’s, its, itself

J
just

K
keep, keeps, kept, know, knows, known

L
last, lately, later, latter, latterly, least, less, lest, let, let’s, like, liked, likely, little, look,
looking, looks, ltd

M
mainly, many, may, maybe, me, mean, meanwhile, merely, might, more, more-
over, most, mostly, much, must, my, myself

N
name, namely, nd, near, nearly, necessary, need, needs, neither, never, neverthe-
less, new, next, nine, no, nobody, non, none, noone, nor, normally, not, nothing,
novel, now, nowhere

O
obviously, of, off, often, oh, ok, okay, old, on, once, one, ones, only, onto, or, other,
others, otherwise, ought, our, ours, ourselves, out, outside, over, overall, own

P
particular, particularly, per, perhaps, placed, please, plus, possible, presumably,
probably, provides

Q
que, quite, qv

R
rather, rd, re, really, reasonably, regarding, regardless, regards, relatively, respec-
tively, right

458 | Appendix C: MySQL’s FULLTEXT Stopwords

S
said, same, saw, say, saying, says, second, secondly, see, seeing, seem, seemed, seem-
ing, seems, seen, self, selves, sensible, sent, serious, seriously, seven, several, shall,
she, should, shouldn’t, since, six, so, some, somebody, somehow, someone, some-
thing, sometime, sometimes, somewhat, somewhere, soon, sorry, specified, specify,
specifying, still, sub, such, sup, sure

T
t’s, take, taken, tell, tends, th, than, thank, thanks, thanx, that, that’s, thats, the,
their, theirs, them, themselves, then, thence, there, there’s, thereafter, thereby, there-
fore, therein, theres, thereupon, these, they, they’d, they’ll, they’re, they’ve, think,
third, this, thorough, thoroughly, those, though, three, through, throughout, thru,
thus, to, together, too, took, toward, towards, tried, tries, truly, try, trying, twice, two

U
un, under, unfortunately, unless, unlikely, until, unto, up, upon, us, use, used, use-
ful, uses, using, usually

V
value, various, very, via, viz, vs

W
want, wants, was, wasn’t, way, we, we’d, we’ll, we’re, we’ve, welcome, well, went,
were, weren’t, what, what’s, whatever, when, whence, whenever, where, where’s,
whereafter, whereas, whereby, wherein, whereupon, wherever, whether, which,
while, whither, who, who’s, whoever, whole, whom, whose, why, will, willing, wish,
with, within, without, won’t, wonder, would, would, wouldn’t

Y
yes, yet, you, you’d, you’ll, you’re, you’ve, your, yours, yourself, yourselves

Z
zero

MySQL’s FULLTEXT Stopwords | 459

APPENDIX D

MySQL Functions

By having functions built into MySQL, the speed of performing complex queries is
substantially reduced, as is their complexity. If you wish to learn more about the avail-
able functions you can visit the following URLs:

• String functions: http://dev.mysql.com/doc/refman/5.0/en/string-functions.html

• Date and time: http://dev.mysql.com/doc/refman/5.0/en/date-and-time-functions
.html

But, for easy reference, here are some of the most commonly used MySQL functions.

String Functions

CONCAT()
CONCAT(str1, str2, ...)

Returns the result of concatenating str1, str2, and any other parameters (or NULL if any ar-
gument is NULL). If any of the arguments are binary, then the result is a binary string; otherwise,
the result is a nonbinary string. The code returns the string “MySQL”:

SELECT CONCAT('My', 'S', 'QL');

CONCAT_WS()
CONCAT_WS(separator, str1, str2, ...)

This works in the same way as CONCAT except it inserts a separator between the items being
concatenated. If the separator is NULL the result will be NULL, but NULL values can be used as
other arguments, which will then be skipped. This code returns the string “Truman,Harry,S”:

SELECT CONCAT_WS(',' 'Truman', 'Harry', 'S');

461

http://dev.mysql.com/doc/refman/5.0/en/string-functions.html
http://dev.mysql.com/doc/refman/5.0/en/date-and-time-functions.html
http://dev.mysql.com/doc/refman/5.0/en/date-and-time-functions.html

LEFT()
LEFT(str, len)

Returns the leftmost len characters from the string str (or NULL if any argument is NULL). The
following code returns the string “Chris”:

SELECT LEFT('Christopher Columbus', '5');

RIGHT()
RIGHT(str, len)

Returns the rightmost len characters from the string str (or NULL if any argument is NULL). This
code returns the string “Columbus”:

SELECT RIGHT('Christopher Columbus', '8');

MID()
MID(str, pos, len)

Returns up to len characters from the string str starting at position pos. If len is omitted, then
all characters up to the end of the string are returned. You may use a negative value for pos,
in which case it represents the character pos places from the end of the string. The first position
in the string is 1. This code returns the string “stop”:

SELECT MID('Christopher Columbus', '6', '4');

LENGTH()
LENGTH(str)

Returns the length in bytes of the string str. Note that multibyte characters count as multiple
bytes. If you need to know the actual number of characters in a string use the CHAR_LENGTH
function. This code returns the value 10:

SELECT LENGTH('Tony Blair');

LPAD()
LPAD(str, len, padstr)

Returns the string str padded to a length of len characters by prepending the string with
padstr characters. If str is longer than len then the string returned will be truncated to len
characters. The example code returns the following strings:

January
February

462 | Appendix D: MySQL Functions

 March
 April
 May

Notice how all the strings have been padded to be eight characters long.

SELECT LPAD('January', '8', ' ');
SELECT LPAD('February', '8', ' ');
SELECT LPAD('March', '8', ' ');
SELECT LPAD('April', '8', ' ');
SELECT LPAD('May', '8', ' ');

RPAD
RPAD(str, len, padstr)

This is the same as the LPAD function except that the padding takes place on the right of the
returned string. This code returns the string “Hi!!!”:

SELECT RPAD('Hi', '5', '!');

LOCATE()
LOCATE(substr, str, pos)

Returns the position of the first occurrence of substr in the string str. If the parameter pos is
passed, the search begins at position pos. If substr is not found in str, a value of zero is returned.
This code returns the values 5 and 11, because the first function call returns the first encounter
of the word “unit”, while the second one only starts to search at the seventh character, and
so returns the second instance:

SELECT LOCATE('unit', 'Community unit');
SELECT LOCATE('unit', 'Community unit' 7);

LOWER()
LOWER(str)

This is the inverse of UPPER. Returns the string str with all the characters changed to lowercase.
This code returns the string “queen elizabeth ii”:

SELECT LOWER('Queen Elizabeth II');

UPPER()
UPPER(str)

This is the inverse of LOWER. It returns the string str with all the characters changed to upper-
case. This code returns the string “I CAN’T HELP SHOUTING”:

UPPER() | 463

SELECT UPPER('I can't help shouting');

QUOTE()
QUOTE(str)

Returns a quoted string that can be used as a properly escaped value in a SQL statement. The
returned string is enclosed in single quotes with all instances of single quotes, backslashes,
the ASCII NUL character, and Control-Z preceded by a backslash. If the argument str is NULL,
the return value is the word NULL without enclosing quotes. The example code returns the
following string:

'I\'m hungry'

Note how the " symbol has been replaced with \".

SELECT QUOTE("I'm hungry");

REPEAT()
REPEAT(str, count)

Returns a string comprising count copies of the string str. If count is less than 1, an empty
string is returned. If either parameter is NULL then NULL is returned. This code returns the strings
“Ho Ho Ho” and “Merry Christmas”:

SELECT REPEAT('Ho', 3), 'Merry Christmas';

REPLACE()
REPLACE(str, from, to)

Returns the string str with all occurrences of the string from replaced with the string to. The
search and replace is case-sensitive when searching for from. This code returns the string
“Cheeseburger and Coke”:

SELECT REPLACE('Cheeseburger and Fries', 'Fries', 'Coke');

TRIM()
TRIM([specifier remove FROM] str)

Returns the string str with all remove prefixes or suffixes removed. The specifier can be one
of BOTH, LEADING, or TRAILING. If no specifier is supplied, then BOTH is assumed. The remove
string is optional and, if omitted, spaces are removed. This code returns the strings “No
Padding” and “Hello__”:

SELECT TRIM(' No Padding ');
SELECT TRIM(LEADING '_' FROM '__Hello__');

464 | Appendix D: MySQL Functions

LTRIM() and RTRIM()
LTRIM(str)

RTRIM(str)

The function RTRIM returns the string str with any leading spaces removed, while the function
RTRIM performs the same action on the string’s tail. This code returns the strings “No Padding ”
and “ No Padding”:

SELECT LTRIM(' No Padding ');
SELECT RTRIM(' No Padding ');

Date Functions
Dates are an important part of most databases. Whenever financial transactions take
place, the date has to be recorded, expiry dates of credit cards need to be noted for
repeat billing purposes, and so on. So, as you might expect, MySQL comes with a wide
variety of functions to make handling dates a breeze.

CURDATE()
CURDATE()

Returns the current date in YYYY-MM-DD or YYYMMDD format, depending on whether
the function is used in a numeric or string context. On the date May 2, 2010, the following
code returns the values 2010-05-02 and 20100502:

SELECT CURDATE();
SELECT CURDATE() + 0;

DATE()
DATE(expr)

Extracts the date part of the date for a DATETIME expression expr. This code returns the value
“1961-05-02”:

SELECT DATE('1961-05-02 14:56:23');

DATE_ADD()
DATE_ADD(date, INTERVAL expr unit)

Returns the result of adding the expression expr using units unit to the date. The date argument
is the starting date or DATETIME value and expr may start with a - symbol for negative intervals.
Table D-1 shows the interval types supported and the expected expr values. Note the examples

DATE_ADD() | 465

in this table that show where it is necessary to surround the expr value with quotes for MySQL
to correctly interpret them. Although if you are ever in doubt, adding the quotes will always
work.

Table D-1. Expected expr values

Type Expected expr value Example

MICROSECOND MICROSECONDS 111111

SECOND SECONDS 11

MINUTE MINUTES 11

HOUR HOURS 11

DAY DAYS 11

WEEK WEEKS 11

MONTH MONTHS 11

QUARTER QUARTERS 1

YEAR YEARS 11

SECOND_MICROSECOND 'SECONDS.MICROSECONDS' 11.22

MINUTE_MICROSECOND 'MINUTES.MICROSECONDS' 11.22

MINUTE_SECOND 'MINUTES:SECONDS' '11:22'

HOUR_MICROSECOND 'HOURS.MICROSECONDS' 11.22

HOUR_SECOND 'HOURS:MINUTES:SECONDS' '11:22:33'

HOUR_MINUTE 'HOURS:MINUTES' '11:22'

DAY_MICROSECOND 'DAYS.MICROSECONDS' 11.22

DAY_SECOND 'DAYS HOURS:MINUTES:SECONDS' '11 22:33:44'

DAY_MINUTE 'DAYS HOURS:MINUTES' '11 22:33'

DAY_HOUR 'DAYS HOURS' '11 22'

YEAR_MONTH 'YEARS-MONTHS' '11-2'

You can also use the DATE_SUB function to subtract date intervals. However it’s not actually
necessary for you to use the DATE_ADD or DATE_SUB functions, as you can use date arithmetic
directly in MySQL. This code:

SELECT DATE_ADD('1975-01-01', INTERVAL 77 DAY);
SELECT DATE_SUB('1982-07-04', INTERVAL '3-11' YEAR_MONTH);
SELECT '2010-12-31 23:59:59' + INTERVAL 1 SECOND;
SELECT '2000-01-01' - INTERVAL 1 SECOND;

returns the following values:

1975-03-19
1978-08-04

466 | Appendix D: MySQL Functions

2011-01-01 00:00:00
1999-12-31 23:59:59

Notice how the last two commands use direct date arithmetic without recourse to functions.

DATE_FORMAT()
DATE_FORMAT(date, format)

This returns the date value formatted according to the format string. Table D-2 shows the
specifiers that can be used in the format string. Note that the % character is required before
each specifier, as shown. This code returns the given date and time as “Thursday May 4th
2006 03:02 AM”:

SELECT DATE_FORMAT('2006-05-04 03:02:01', '%W %M %D %Y %h:%i %p');

Table D-2. DATE_FORMAT specifiers

Specifier Description

%a Abbreviated weekday name (Sun–Sat)

%b Abbreviated month name (Jan–Dec)

%c Month, numeric (0–12)

%D Day of the month with English suffix (0th, 1st, 2nd, 3rd, ...)

%d Day of the month, numeric (00–31)

%e Day of the month, numeric (0–31)

%f Microseconds (000000–999999)

%H Hour (00–23)

%h Hour (01–12)

%I Hour (01–12)

%i Minutes, numeric (00–59)

%j Day of year (001–366)

%k Hour (0–23)

%l Hour (1–12)

%M Month name (January–December)

%m Month, numeric (00–12)

%p AM or PM

%r Time, 12-hour (hh:mm:ss followed by AM or PM)

%S Seconds (00–59)

%s Seconds (00–59)

%T Time, 24-hour (hh:mm:ss)

DATE_FORMAT() | 467

Specifier Description

%U Week (00–53), where Sunday is the first day of the week

%u Week (00–53), where Monday is the first day of the week

%V Week (01–53), where Sunday is the first day of the week; used with %X

%v Week (01–53), where Monday is the first day of the week; used with %x

%W Weekday name (Sunday–Saturday)

%w Day of the week (0=Sunday–6=Saturday)

%X Year for the week where Sunday is the first day of the week, numeric, four digits; used with %V

%x Year for the week, where Monday is the first day of the week, numeric, four digits; used with %v

%Y Year, numeric, four digits

%y Year, numeric, two digits

%% A literal % character

DAY()
DAY(date)

Returns the day of the month for date, in the range 1 to 31 or 0 for dates that have a zero day
part such as “0000-00-00” or “2010-00-00”. You can also use the function DAYOFMONTH to return
the same value. This code returns the value 3:

SELECT DAY('2001-02-03');

DAYNAME()
DAYNAME(date)

Returns the name of the weekday for the date. This code returns the string “Saturday”:

SELECT DAYNAME('2001-02-03');

DAYOFWEEK()
DAYOFWEEK(date)

Returns the weekday index for date between 1 for Sunday through 7 for Saturday. This code
returns the value 7:

SELECT DAYOFWEEK('2001-02-03');

DAYOFYEAR()
DAYOFYEAR(date)

468 | Appendix D: MySQL Functions

Returns the day of the year for date in the range 1 to 366. This code returns the value 34:

SELECT DAYOFYEAR('2001-02-03');

LAST_DAY()
LAST_DAY(date)

Returns the last day of the month for the given DATETIME value date. If the argument is invalid
it returns NULL. This code:

SELECT LAST_DAY('2011-02-03');
SELECT LAST_DAY('2011-03-11');
SELECT LAST_DAY('2011-04-26');

returns the following values:

2011-02-28
2011-03-31
2011-04-30

As you’d expect, it correctly returns the 28th day of February, the 31st of March, and the 30th
of April 2011.

MAKEDATE()
MAKEDATE(year, dayofyear)

Returns a date given year and dayofyear values. If dayofyear is zero, the result is NULL. This
code returns the date “2011-10-01”:

SELECT MAKEDATE(2011,274);

MONTH()
MONTH(date)

Returns the month for date in the range 1 through 12 for January through December. Dates
that have a zero month part, such as “0000-00-00” or “2012-00-00”, return zero. This code
returns the value 7:

SELECT MONTH('2012-07-11');

MONTHNAME()
MONTHNAME(date)

Returns the full name of the month for date. This code returns the string “July”:

SELECT MONTHNAME('2012-07-11');

MONTHNAME() | 469

SYSDATE()
SYSDATE()

Returns the current date and time as a value in either YYYY-MM-DD HH:MM:SS or
YYYYMMDDHHMMSS format, depending on whether the function is used in a string or
numeric context. The function NOW works in a similar manner, except that it returns the time
and date only at the start of the current statement, whereas SYSDATE returns the time and date
at the exact moment the function itself is called. On December 19, 2011, this code returns
the values 2011-12-19 19:11:13 and 20111219191113:

SELECT SYSDATE();
SELECT SYSDATE() + 0;

YEAR()
YEAR(date)

Returns the year for date in the range 1000 to 9999, or 0 for the zero date. This code returns
the year 1999:

SELECT YEAR('1999-08-07');

WEEK()
WEEK(date [, mode])

Returns the week number for date. If passed the optional mode parameter, the week number
returned will be modified according to Table D-3. You can also use the function
WEEKOFYEAR, which is equivalent to using the WEEK function with a mode of 3. This code returns
the week number 14:

SELECT WEEK('2006-04-04', 1);

Table D-3. The modes supported by the WEEK function

Mode First day of week Range Where week 1 is the first week ...

0 Sunday 0–53 with a Sunday in this year

1 Monday 0–53 with more than 3 days this year

2 Sunday 1–53 with a Sunday in this year

3 Monday 1–53 with more than 3 days this year

4 Sunday 0–53 with more than 3 days this year

5 Monday 0–53 with a Monday in this year

6 Sunday 1–53 with more than 3 days this year

7 Monday 1–53 with a Monday in this year

470 | Appendix D: MySQL Functions

WEEKDAY()
WEEKDAY(date)

Returns the weekday index for date where 0=Monday through 6=Sunday. This code returns
the value 1:

SELECT WEEKDAY('2006-04-04');

Time Functions
Sometimes you need to work with the time, rather than the date, and MySQL provides
plenty of functions for you to do so.

CURTIME()
CURTIME()

Returns the current time as a value in the format HH:MM::SS or HHMMSS.uuuuuu, de-
pending on whether the function is used in a string or numeric context. The value is expressed
using the current time zone. When the current time is 11:56:23, this code returns the values
11:56:23 and 11:56:23.000000:

SELECT CURTIME() + 0;

HOUR()
HOUR(time)

Returns the hour for time. This code returns the value 11:

SELECT HOUR('11:56:23');

MINUTE()
MINUTE(time)

Returns the minute for time. This code returns the value 56:

SELECT MINUTE('11:56:23');

SECOND()
SECOND(time)

Returns the second for time. This code returns the value 23:

SELECT SECOND('11:56:23');

SECOND() | 471

MAKETIME()
MAKETIME(hour, minute, second)

Returns a time value calculated from the hour, minute, and second arguments. This code
returns the time 11:56:23:

SELECT MAKETIME(11, 56, 23);

TIMEDIFF()
TIMEDIFF(expr1, expr2)

Returns the difference between expr1 and expr2 (expr1 – expr2) as a time value. Both expr1
and expr2 must be TIME or DATETIME expressions of the same type. This code returns the value
01:37:38:

SELECT TIMEDIFF('2000-01-01 01:02:03', '1999-12-31 23:24:25');

UNIX_TIMESTAMP()
UNIX_TIMESTAMP([date])

If called without the optional date argument, this function returns the number of seconds
since 1970-01-01 00:00:00 UTC as an unsigned integer. If the date parameter is passed, then
the value returned is the number of seconds since the 1970 start date until the given date. This
code will return the value 946684800 (the number of seconds up to the start of the new
millennium) followed by a TIMESTAMP representing the current Unix time at the moment you
run it:

SELECT UNIX_TIMESTAMP('2000-01-01');
SELECT UNIX_TIMESTAMP();

FROM_UNIXTIME()
FROM_UNIXTIME(unix_timestamp [, format])

Returns the unix_timestamp parameter as either a string in YYYY-MM-DD HH:MM:SS or
YYYYMMDDHHMMSS.uuuuuu format, depending on whether the function is used in a
string or numeric context. If the optional format parameter is provided, the result is formatted
according to the specifiers in Table 8-17. This code returns the strings “2000-01-01 00:00:00”
and “Saturday January 1st 2000 12:00 AM”:

SELECT FROM_UNIXTIME(946684800);
SELECT FROM_UNIXTIME(946684800, '%W %M %D %Y %h:%i %p');

472 | Appendix D: MySQL Functions

APPENDIX E

Using PEAR and PHPUnit

If you’re going to use PHP as a web development language, why not make use of the
wealth of packages that have already been written for it? The community has turned
out in force to write an enormous amount of add-ons, a whole host of which have been
combined in PEAR (the PHP Extension and Application Repository). Among these
submissions is MDB2, a powerful package that makes it easier to access MySQL. Ta-
ble E-1 lists some of the PEAR packages.

Table E-1. Categories of PEAR packages (number in each category)

Authentication (8) Filesystem (5) Math (19) Streams (2)

Caching (2) Gtk Components (4) Networking (55) Structures (30)

Console (7) Gtk2 Components (7) Numbers (2) System (8)

Database (31) HTML (40) Payment (4) Text (19)

Date and Time (22) HTTP (14) PEAR (18) Tools & Utilities (9)

Encryption (13) Images (19) PEAR Website (5) Validate (29)

Event (2) Internationalization (6) PHP (20) Web Services (40)

File Formats (33) Mail (8) Semantic Web (5) XML (32)

Installation
Installation of PEAR will vary according to which operating system you are using. A
Linux/Unix machine (especially if XAMPP has been installed on it as described in
Chapter 2) will generally be ready to go after issuing just a couple of commands. But
Windows and Mac OS X require a little more work.

Windows
The EasyPHP setup that you installed in Chapter 2 comes packaged with a version of
PEAR that you can install by selecting Start→Programs→Accessories and then right-
clicking on the Command Prompt and choosing the “Run as Administrator” option.
You must have administrative privileges to install PEAR.

473

Now navigate to C:\Program Files\EasyPHP 3.0\php\, then run the batch file
go-pear.bat by typing the following (and then pressing Return):

go-pear

During installation, accept the defaults by pressing Return whenever you’re asked to
do something. Figure E-1 shows the installation process.

Figure E-1. Installing PEAR on Windows

Next you need to install PEAR’s database helper package, called MDB2, by typing in
the following (see Figure E-2):

pear install MDB2

Figure E-2. Installing the PEAR MDB2 package

474 | Appendix E: Using PEAR and PHPUnit

To finish your installation, install the MDB2 add-on driver that understands how to
interact with MySQL. To do this, type in the following (see Figure E-3):

pear install -f MDB2_Driver_mysql

Figure E-3. Installing the PEAR MySQL MDB2 driver

If you receive an error message at any point from a pop-up window that says “Invalid
configuration directive” while installing PEAR or MDB2, you should be able to safely
ignore it by clicking the OK button.

Finally, as there appears to be a problem with file and path locations in EasyPHP 3.0,
you need to type the following command to copy the PEAR files to a location where
they can be found by PHP:

xcopy /E pear*.* includes

Mac OS
Most Macs come supplied with a version of PEAR, but often it’s out of date. The safest
bet is to ensure that you have the latest version by visiting http://pear.php.net/go-pear
in your browser and then using Save As to save the file that loads into your browser as
go-pear.php in your MAMP htdocs folder. Once saved, ensure that you have MAMP
running and enter the following into your browser’s address bar:

http://localhost/go-pear.php

Now all you have to do is click on the Next >> button to see the main installation screen
(see Figure E-4). Ensure that the MDB2 checkbox is checked and then edit the Instal-
lation prefix field to read:

/Applications/MAMP

Installation | 475

http://pear.php.net/go-pear

Finally, scroll to the bottom of the page and click the Install button. You can now sit
back and watch the installation as it progresses.

Once the installation completes, you will need to add the PEAR installation path to
your include path. To do this, open up the file /Applications/MAMP/conf/php5/
php.ini in a text or program editor and locate the line that reads:

include_path = ".:/Applications/MAMP/bin/PHP5/lip/php"

Now change the string after include_path = to read:

".:/Applications/MAMP/bin/PHP5/lip/php:/Applications/MAMP/PEAR"

Once you have done this, pull up the MAMP control panel and stop and restart the
servers. If prompted, you may also have to enter your Mac password, too.

The last part of the installation involves downloading and adding the MySQL driver to
PEAR. To do this, call up the Terminal and type the following. The output on the
Terminal will look like Figure E-5.

/Applications/MAMP/bin/pear install MDB2_Driver_mysql

Figure E-4. Installing Pear and MDB2

476 | Appendix E: Using PEAR and PHPUnit

Linux/Unix
If you installed the XAMPP package in Chapter 2, you already have PEAR installed.
However, you will need to install the MDB2 database access package and the MySQL
driver for it. To do this, you should need to issue only the following two commands:

pear install MDB2
pear install MDB2_Driver_mysql

Creating a Connect Instance
With all of PEAR, the MDB2 package, and the MySQL driver installed, you can start
to take advantage of these new additions. But to do so, you need to understand what
MDB2 is providing you with: a layer of abstraction.

In other words, MDB2 knows everything about accessing any major brand of database
program you may have installed. You simply use a common set of commands and tell
MDB2 which database to access. This means you can migrate to another SQL database
such as PostgreSQL and will only have to install the new MDB2 driver and change a
single line of code in your PHP file to be up and running again.

You connect to a MySQL database using MDB2 with code such as the following, where
$db_username and the other $db_ variables have already been read in from the
login.php file:

Figure E-5. Installing the PEAR MySQL MDB2 driver

Creating a Connect Instance | 477

require_once 'MDB2.php';

$dsn = "$db_username:$db_password@$db_hostname/$db_database";
$mdb2 = MDB2::connect("mysql://$dsn");

The require_once line loads MDB2. In the next line, the variable $dsn stands for data
source name and is an identifier for the database. It comprises
username:password@hostname/database. The variable $mdb2 is an object returned by
calling the connect method within the MDB2 class. Recall that as mentioned in Chap-
ter 5, the double colon (::) token indicates a class to be used on the left and a method
to call from that class to the right.

The full string passed to the connect method is as follows:

mysql://username:password@hostname/database

The mysql:// at the head of the string identifies the MDB2 driver to use and hence the
type of database to access. If, for example, you were using a PostgreSQL database you
would replace the head with pgsql://. The possible database types supported (as long
as you install the drivers) are fbsql, ibase, mssql, mysql, mysqli, oci8, pgsql, querysim,
and sqlite.

To check whether the program successfully connected to the database, you can issue
a call to the PEAR isError method, like this:

if (PEAR::isError($mdb2))
 die("Unable to connect to MySQL: " . $mdb2->getMessage());

Here the $mdb2 object is passed to the isError method, which returns TRUE if there is an
error. In that case the die function is called, and an error message is issued before calling
the getMessage method from within the $mdb2 object to output the last message, de-
scribing the error encountered.

Querying
Once you have an MDB2 object in $mdb2, you can use it to query the database. Instead
of calling the mysql_query function, call the query method of the $mdb2 object as follows
(assuming that the variable $query has already been assigned a query string):

$result = $mdb2->query($query);

Fetching a Row
The variable $result, returned by the query method, is another object. To fetch a row
from the database, just call the object’s fetchRow method like this:

$row = $result->fetchRow();

You can also determine the number of rows in $result using the numRows method like
this:

$rows = $result->numRows();

478 | Appendix E: Using PEAR and PHPUnit

Closing a Connection
To close an MDB2 database connection, call the disconnect method of the $mdb2 object:

$mdb2->disconnect();

Rewriting Example 10-8 to Use PEAR
Hopefully you now have the hang of this new object-oriented approach to accessing
MySQL. So let’s look at how the sqltest.php program in Example 10-8 can be rewritten
using PEAR’s MDB2 package (see Example E-1, sqltest_mdb2.php).

Example E-1. Inserting and deleting using MDB2: sqltest_mdb2.php

<?php // sqltest_mdb2.php
require_once 'login.php';
require_once 'MDB2.php';

$dsn = "mysql://$db_username:$db_password@$db_hostname/$db_database";
$options = array('debug' => 2);
$mdb2 = MDB2::connect($dsn,$options);

if (PEAR::isError($mdb2))
 die("Unable to connect to MySQL: " . $mdb2->getMessage());

if (isset($_POST['author']) &&
 isset($_POST['title']) &&
 isset($_POST['category']) &&
 isset($_POST['year']) &&
 isset($_POST['isbn']))
{
 $author = get_post('author');
 $title = get_post('title');
 $category = get_post('category');
 $year = get_post('year');
 $isbn = get_post('isbn');

 if (isset($_POST['delete']) && $isbn != "")
 {
 $query = "DELETE FROM classics WHERE isbn='$isbn'";

 if (!$mdb2->query($query))
 echo "DELETE failed: $query
" .
 $mdb2->getMessage() . "

";
 }
 else
 {
 $query = "INSERT INTO classics VALUES" .
 "('$author', '$title', '$category', '$year', '$isbn')";

 if (!$mdb2->query($query))
 echo "INSERT failed: $query
" .
 $mdb2->getMessage() . "

";
 }

Rewriting Example 10-8 to Use PEAR | 479

}

echo <<<_END
<form action="sqltest_mdb2.php" method="post"><pre>
 Author <input type="text" name="author" />
 Title <input type="text" name="title"/ >
Category <input type="text" name="category" />
 Year <input type="text" name="year" />
 ISBN <input type="text" name="isbn" />
 <input type="submit" value="ADD RECORD" />
</pre></form>
_END;

$query = "SELECT * FROM classics";
$result = $mdb2->query($query);

if (!$result) die ("Database access failed: " . $mdb2->getMessage());
$rows = $result->numRows();

for ($j = 0 ; $j < $rows ; ++$j)
{
 $row = $result->fetchRow();
 echo <<<_END
<pre>
 Author $row[0]
 Title $row[1]
Category $row[2]
 Year $row[3]
 ISBN $row[4]
</pre>
<form action="sqltest_mdb2.php" method="post">
<input type="hidden" name="delete" value="yes" />
<input type="hidden" name="isbn" value="$row[4]" />
<input type="submit" value="DELETE RECORD" /></form>
_END;
}

$mdb2->disconnect();

function get_post($var)
{
 return mysql_real_escape_string(@$_POST[$var]);
}
?>

Looking through this code, you should see that very little has been changed from the
nonobject-oriented version of the program, other than replacing the database accessing
functions with calls to methods contained within the $mdb2 object, and objects returned
from them. The differences have been highlighted in bold.

I recommend that you try modifying sqltest.php for yourself to use MDB2, as in the
example, and then save it as sqltest_mdb2.php to test it.

480 | Appendix E: Using PEAR and PHPUnit

Using PEAR, you can save yourself a considerable amount of work, but if you still prefer
not to use it, at least you will now recognize PEAR packages when you see them used
in other programs and will know how to work with them.

Adding Other PEAR Packages
With PEAR properly installed on your system, you are able to install additional pack-
ages from the command line by using one of the commands in Table E-2, where
package is the name of a PEAR package, as listed at the web page http://pear.php.net/
packages.php.

Table E-2. Installing PEAR packages on different systems

System Command

Windows "C:\Program Files\EasyPHP 3.0\php\pear" install package

Mac OS X /Applications/MAMP/bin/pear install package

Linux Unix pear install package

To determine which packages are installed, replace install package in Table E-2 with
the word list and the output should be similar to the following:

INSTALLED PACKAGES, CHANNEL PEAR.PHP.NET:
===
PACKAGE VERSION STATE
Archive_Tar 1.3.2 stable
Console_Getopt 1.2.3 stable
MDB2 2.4.1 stable
MDB2_Driver_mysql 1.4.1 stable
PEAR 1.7.2 stable
Structures_Graph 1.0.2 stable

Unit Testing with PHPUnit
Now that you are familiar with object-oriented programming, it’s a good idea to get a
taste of unit testing. This is a method of code testing that verifies whether individual
units of source code are working correctly.

Unit testing provides the following benefits:

• It allows for automation of the testing process.

• It reduces the difficulty of discovering errors within more complex code.

• Testing is often enhanced because attention is given to each unit.

Install PHPUnit with the PEAR installer. To do this, go to a Command or Terminal
prompt, ensure that you have Administrator or Superuser privileges, and issue the two

Unit Testing with PHPUnit | 481

http://pear.php.net/packages.php
http://pear.php.net/packages.php

lines of code in Table E-3, according to your operating system. (On Windows systems,
ignore and close any pop-up “Invalid configuration directive” alerts that may appear.)

Table E-3. Commands for Installing PHPUnit on different systems

System Instructions to type from an Administrator Command prompt or a Terminal window

XP/Vista

(4 instructions)

cd \Program Files\EasyPHP 3.0\php

pear channel-discover pear.phpunit.de

pear install phpunit/PHPUnit

Xcopy /E pear*.* includes

Mac OS X

(3 instructions)

cd /Applications/MAMP/bin

pear channel-discover pear.phpunit.de

pear install phpunit/PHPUnit

Linux/Unix

(2 instructions)

pear channel-discover pear.phpunit.de

pear install phpunit/PHPUnit

The two main commands register the PEAR channel on your system, download
PHPUnit, and install it. On Windows, you need the additional XCOPY command to
resolve a file and path bug in EasyPHP 3.0. Press the A key if prompted to “Overwrite
(Yes/No/All)?”.

You are then ready to take on some powerful bug testing. But first, let’s look at how
you might perform testing without PHPUnit. So, for example, consider the case of
testing PHP’s in-built array and the function sizeof and its alias count. For a newly
created array, sizeof should return a value of 0 and then increase by 1 for every new
element added, as in Example E-2.

Example E-2. Testing array and sizeof

$names = array();
echo sizeof($names) . "
";
$names[] = 'Bob';
echo count($names) . "
"; // count is an alias of sizeof

As you would expect, the output from this code is:

0
1

In Example E-3, this code is expanded to support automatic interpretation by writing
the comparison of the expected and actual values, outputting “OK” if the value is cor-
rect and “Not OK” if it isn’t.

482 | Appendix E: Using PEAR and PHPUnit

Example E-3. Modified Example E-2 to output OK/Not OK

$names = array();
echo sizeof($names) == 0 ? "OK
" : "Not OK
";
$names[] = 'Bob';
echo sizeof($names) == 1 ? "OK
" : "Not OK
";

Helpful as this code is, there’s an even better way to handle errors, which is to display
a message only when a value is incorrect. Example E-4 uses function assertTrue to do
this by throwing an exception.

Example E-4. Modified Example E-2 to throw an exception

$names = array();
assertTrue(sizeof($names) == 0);
$names[] = 'Bob';
assertTrue(sizeof($names) == 1);

function assertTrue($condition)
{
 if (!$condition) throw new Exception('Assertion failed.');
}

Now we’ve arrived at a fully automated test, let’s look at how we would rewrite it using
PHPUnit (see Example E-5).

Example E-5. PHPUnit testing in action

require_once 'PHPUnit/Framework.php';

class ArrayTest extends PHPUnit_Framework_TestCase
{
 public function testNewArrayIsEmpty()
 {
 $names = array();
 $this->assertEquals(0, sizeof($names));
 }

 public function testArrayContainsAnElement()
 {
 $names = array();
 $names[] = 'Bob';
 $this->assertEquals(1, sizeof($names));
 }
}

$testObject = new ArrayTest;
$testObject->testNewArrayIsEmpty();
$testObject->testArrayContainsAnElement();

Unit Testing with PHPUnit | 483

The first thing to notice is that PHPUnit/Framework.php has been included in order to
make the PHPUnit classes available to the program. After that, the program defines a
new class that extends the PHPUnit_Framework_TestCase class. This new class contains
two methods: one for testing a newly created array and another for testing an array
containing an element.

The rules for writing PHPUnit tests are:

• The tests for a class called Class go into a class with the name ClassTest.

• ClassTest usually inherits from PHPUnit_Framework_TestCase.

• The tests are public methods that are named testSomethingDescriptive.

• Inside the test methods, assertion methods such as assertEquals are used to assert
that an actual value matches an expected value.

And there you have it. The three lines of code at the end of Example E-5 create a new
test object called $testObject and then call each of the object’s methods in turn. All
being well, this program will display nothing, so to see the output from PHPUnit, try
changing the 0 or 1 parameters in the assertEquals calls to other values.

A comprehensive and easy-to-follow manual on PHPUnit is available at http://www
.phpunit.de. Click “Read the documentation” to view it in either HTML or PDF format.

484 | Appendix E: Using PEAR and PHPUnit

http://www.phpunit.de
http://www.phpunit.de

Index

Symbols
! (exclamation mark)

!= (not equal) operator, 43, 65, 68, 309,
321

!== (not identical) operator, 65, 68, 309,
321

logical not operator, 44, 309, 321, 324
precedence in PHP, 65

NOT operator, 69
" " (quotation marks, double)

escaping in JavaScript strings, 310
in multiline PHP strings, 47
in MySQL search strings, 189
in PHP strings, 38, 46
in JavaScript strings, 306

$ (dollar sign)
$ function in JavaScript, 316
end-of-line matching in regular expressions,

366, 367
preceding PHP variable names, 37

omitting when using -> operator, 105
% (percent sign)

%= (modulus assignment) operator, 43, 65,
308, 321

modulus operator, 42, 65, 308, 321
& (ampersand)

&& (logical and) operator, 44, 309, 321,
324

precedence of, 321
&& (logical and) operator/precedence in

PHP, 65
&= (bitwise and assignment) operator, 65,

321
bitwise and operator, 65

variables passed by reference, 94
' ' (quotation marks, single)

enclosing PHP array items, 40
escaping in JavaScript strings, 310
in PHP strings, 46
in JavaScript strings, 306

() (parentheses)
forcing operator precedence, 65
function call in JavaScript, 321
function call in PHP, 90
grouping in regular expressions, 363, 367
implied, indicating operator precedence,

65
precedence in PHP, 65

* (asterisk)
*= (multiplication assignment) operator, 43,

65, 308, 321
multiplication operator, 42, 65, 308, 321
regular expression metacharacter, 361, 367
wildcard character, use with SELECT

command, 183
+ (plus sign)

++ (increment) operator, 42, 45, 308, 310,
321

precedence in PHP, 65
using in while loop, 80

+= (addition assignment) operator, 43, 45,
65, 308, 321

addition and string concatenation operator
in JavaScript, 321

addition operator, 42, 65, 308
Boolean mode in MySQL searches, 189
regular expression metacharacter, 362, 367
string concatenation operator in JavaScript,

310, 321

We’d like to hear your suggestions for improving our indexes. Send email to index@oreilly.com.

485

, (comma)
comma operator in JavaScript, 321
separating statements within parameter

section of loop, 82
- (hyphen)

indicating ranges in regular expressions,
364, 367

- (minus sign)
-= (subtraction assignment) operator, 43

-> operator (PHP), 105
. (period)

.= (string concatenation and assignment)
operator, 43, 46, 65

member operator in JavaScript, 321
in regular expressions, 362, 367
separating objects, properties, and methods

in JavaScript, 314
string concatenation operator, 46, 65

/ (slash)
/* and */ in JavaScript multiline comments,

305
/* and */ in PHP comments*, 36
// in JavaScript single-line comments, 305
// in PHP comments, 36
/= (division assignment) operator, 43, 65,

308, 321
division operator, 42, 65, 308, 321
enclosing regular expressions, 361, 367

/i (case-insensitive matching) in regular
expressions, 369

: (colon)
:: (scope resolution) operator in PHP, 106

using with self keyword, 107
replacing first curly brace in PHP switch

statement, 77
; (semicolon)

ending JavaScript statements, 305
ending MySQL commands, 163
ending PHP statements, 37
separating parameters in for loop, 82

< (less than) operator, 43, 65, 68, 309, 321,
324

<< (bitwise left shift) operator, 65, 321
<<< (heredoc) operator, 48
<<= (bitwise left shift and assignment)

operator, 65, 321
<= (less than or equal to) operator, 43, 65, 68,

309, 321, 324
<> (not equal) operator, 65

<? ?> tags in PHP code, 5
<?php ?> tags, 34

importance in login file, 226
omitting closing tag, 35

= (equals sign)
== (equal to) operator, 43, 65, 67, 309, 321,

323
=== (identity) operator, 65, 68, 309, 321,

323
=> assigning value to array index, 118
assignment operator, 43, 65, 308, 321

> (greater than) operator, 43, 65, 68, 309, 321,
324

>= (greater than or equal to) operator, 43, 65,
68, 309, 321, 324

>> (bitwise right shift) operator, 65, 321
>>= (bitwise right shift and assignment)

operator, 65, 321
>>> (bitwise unsigned right shift) operator,

321
>>>= (unsigned right shift and assignment)

operator, 321
? (question mark)

? : (ternary) operator, 65, 77, 321, 331
encoding in URL for GET request, 399
regular expression metacharacter, 367

[] (square brackets)
accessing array elements in JavaScript, 348,

349
array element, accessing, 122
character classes in regular expressions, 364,

367
member operator in JavaScript, 321

\ (backslash)
escaping characters in JavaScript, 310
escaping characters in PHP strings, 47
escaping regular expression metacharacters,

363
^ (caret)

beginning-of-line matching in regular
expressions, 366, 367

bitwise xor operator, 65
negating character class in regular

expressions, 364, 367
^= (bitwise xor with assignment) operator,

65, 321
_ (underscore)

double underscore (__), beginning method
names in PHP, 105

486 | Index

in PHP variable names, 42
` ` (backticks), execution operator, 63
{ } (curly braces)

in do . . . while loops, 81
in if . . . else statement in PHP, 72
in if . . . elseif . . . else statement in PHP, 73
in if statements in PHP, 71
in switch command in PHP, replacing, 77
in while loops, 79
statement execution in function calls, 92

| (pipe character)
bitwise or operator, 65
regular expression metacharacter, 367
|= (bitwise or with assignment) operator, 65,

321
|| (logical or) operator, 44, 65, 309, 321,

324
problems caused by, 325

~ (bitwise not) operator in JavaScript, 321
– (minus sign)

-- (decrement) operator, 42, 45, 308, 310,
321

precedence in PHP, 65
-= (subtraction assignment) operator, 45,

65, 308, 321
Boolean mode in MySQL searches, 189
subtraction and string operator in

JavaScript, 321
subtraction operator, 42, 65, 308

A
ActiveX, 378
Ajax, xv, 8, 377–392

checking availability of usernames for email
accounts, 10

choosing framework for JavaScript, 393
description of, 378
using XMLHttpRequest, 378–391

cross-browser function for, 378
example program (urlpost.html), 380–

385
GET method, using in example program,

385–387
properties and methods, 379
sending XML requests, 387–391

using YUI, 394–400
Ajax XML example, 399–400
asyncRequest method, 397
GET request (example), 397

including framework files, 396
alphabetical sort (JavaScript sort method), 352
ALTER command, 173

adding auto-incrementing column, 172
creating table index, 178
removing a column, 173
renaming a table, 175

and operator
&&, 44, 309
low-precedence and, 44
precedence in PHP, 65

AND operator, 69
AND operator (in MySQL), 194
anonymous functions, 382
Apache web server, 8
arguments array (JavaScript functions), 338
arithmetic operators

JavaScript, 308
PHP, 42

array function (PHP), testing, 482
array keyword (JavaScript), 347
array keyword (PHP), 118
arrays

fetching row from MySQL database as
associative array, 274

JavaScript, 307, 346–353
associative arrays, 347
concat method, 349
forEach method, 349
join method, 350
multidimensional arrays, 348
numeric arrays, 346
push and pop methods, 350
reverse method, 352
sort method, 352

PHP, 39, 115–128
assignment using array keyword, 118
associative arrays, 117
foreach . . . as loop, 119–120
multidimensional, 121–123
numerically indexed, adding items, 115
two-dimensional, 40
using array functions, 123–128

returning from PHP function call, 93
returning with JavaScript functions, 341

array_combine function, checking existence of,
98

AS keyword (MySQL), 194
assignment

Index | 487

combining with expressions in PHP, 63
to PHP arrays, using array keyword, 118
variable type, setting in JavaScript, 311

assignment operators
JavaScript, 308
PHP, 43

associative arrays
in JavaScript, 347
in PHP, 117

$_FILES array, 145
multidimensional, 121
walking through, using foreach . . . as,

119
walking through, using list and each

functions, 120
associativity, operator, 66

in JavaScript, 322
authentication, 279

(see also HTTP authentication)
login page for social networking site project,

418
simplifying with sessions, 291
starting session after, 289
storing user IP addresses, 293

AUTO_INCREMENT data type, 172
using in MySQL table from PHP, 243

B
\b (backspace character) in JavaScript strings,

310
\B (nonword boundary) in regular expressions,

367
\b (word boundary) in regular expressions,

367
backups and restores in MySQL, 219–223

creating backup file, 220
planning backups, 223
restoring from backup file, 222
using mysqldump, 219

BEGIN command, 216
Berners-Lee, Tim, 1
BIGINT data type, 171
BINARY data type, 169
binary operators, 64
bitwise operators, 63
BLOB data type, 170
blogging platform, WordPress, 86
Boolean expressions in JavaScript, 319

Boolean mode in MATCH . . . AGAINST
queries, 189

break command
using in JavaScript loops, 333
using in JavaScript switch statement, 330
using in PHP for loop, 83
using in PHP switch statement, 76

browser/server request/response dialog with
cookies, 279

browsers, 1
basic request/response procedure, 2
catching JavaScript errors with try . . . catch,

327
dynamic request/response procedure, 3
forEach method, cross-browser solution,

350
JavaScript, 299
JavaScript error messages, accessing, 303
JavaScript implementations, differences in,

7
older and nonstandard, not supporting

scripting, 301
reading link URL in JavaScript, 316
user agent string, 294
XMLHttpRequest object, cross-browser

function, 378
browsing history (JavaScript history object),

317
bumpyCaps convention, 338, 342
BYTE data type, 169

C
calendar (YUI), 400–403
callbacks, YUI asyncRequest method, 397
carriage return (\r)

in JavaScript strings, 310
in PHP strings, 47

Cascading Style Sheets (CSS), manipulation
with JavaScript, 5

case commands in switch statement, 76
case-insensitive matching in regular

expressions (/i), 369
case-insensitivity, function names in PHP, 92
casting

explicit, JavaScript and, 334
implicit and explicit in PHP, 84

CERN (European Laboratory for Particle
Physics), 1

488 | Index

CGI (Common Gateway Interface), server-side
scripting, 5

CHANGE keyword, specifying data type, 176
CHAR data type, 168

listing of CHAR types, 169
character classes in regular expressions, 363

negating, 364
check user program (social networking site

project), 417
checkboxes in forms, 257

submitting multiple values with an array,
258

checkdate function (PHP), 136
classes

declaring in JavaScript, 342
defined, 89
PHP, 99

declaring, 100
inheritance and extension, 109–113
static properties and methods, 108

Classic FTP, 28
clone operator (PHP), 103
cloning objects in PHP, 102
Codd, E. F., 203
code examples from this book, xviii

viewing and downloads, 35
website, 406

columns
adding auto-incrementing column, 173
adding new column and viewing its data,

175
changing data type, 175
defined, 158
removing, 173, 176
renaming, 176

comma (,)
comma operator in JavaScript, 321
separating statements within parameter

section of loop, 82
Comma-Separated Values format (see CSV

format)
command prompts, MySQL, 163
command-line interface, accessing MySQL,

158–177
Linux users, 161
Mac OS X users, 160
MySQL commands, 164–168
MySQL data types, 168–177
using MySQL on, 163

Windows users, 159
commands, MySQL, 164–168

canceling, 163
comment tags in HTML <!-- and -->, 301
comments

JavaScript, 305
PHP, 36

COMMIT command, 216
compact function, using with PHP arrays, 126
comparison operators

JavaScript, 309, 324
PHP, 43, 68

concat method (JavaScript), 349
condition expression (for loop), 81
conditionals

in JavaScript, 328–331
? operator, 331
if statement, 328
switch statement, 329

in PHP, 70–78
? operator, 77
else statement, 72
elseif statement, 73
if statement, 71
switch statement, 74–77

connection-min.js file, 396
connections, database

closing MySQL database connection from
PHP, 231

closing PEAR MDB2 connection, 479
connecting to MySQL from PHP, 227–231
creating connect instance using PEAR

MDB2, 477
constants

PHP, 50
date constants, 136
defining within a class, 107
predefined, 51

constructors
JavaScript classes, 342
PHP classes, 104

subclass constructors, 111
constructs (pseudofunctions), 90
content types, Internet media, 147
continue statements, 84

using in JavaScript loops, 334
cookies, 279–282

accessing in PHP, 281

Index | 489

browser/server request/response dialog
with, 279

destroying in PHP, 282
forcing cookie-only sessions, 296
setting in PHP, 281
third-party, 279

copy function (PHP), 139
count function (PHP), counting array elements,

124
COUNT qualifier, SELECT command, 183
CREATE command

adding auto-incrementing id column, 173
adding indexes when creating tables, 179
CREATE INDEX, 179
creating a table in MySQL, 167

Cross-Site Scripting (XSS) injections, 248
CSS (Cascading Style Sheets), manipulation

with JavaScript, 5
CSV (Comma-Separated Values) format, 219

dumping data in, using mysqldump, 223

D
\d (digit character) in regular expressions, 368
\d (digit character) in regular expressions, 364
\D (nondigit character) in regular expressions,

368
data types

casting, in PHP, 84
JavaScript type-changing functions, 334
MySQL, 168–177

AUTO_INCREMENT type, 172
BINARY types, 169
BLOB, 170
changing for column, 175
CHAR types, 169
DATE and TIME types, 172
numeric, 170
TEXT and VARCHAR types, 170

variable typing in JavaScript, 311
databases, 6

creating in MySQL, 165
defined, 157
design in MySQL

highly inefficient table design, 203
requirements of First Normal Form,

205
designing in MySQL, 201
privacy and, 214

selecting database for PHP query in MySQL,
228

triggers, 211
DATE and TIME data types, 172
date and time functions (PHP), 133–137

checkdate, 136
date constants, 136

date function (PHP), 53, 134
date functions (MySQL), 465–471
DATETIME data type, 172
debugging JavaScript errors, 303
decrement operator (--), 42, 45

in JavaScript, 308
variable decrementing in JavaScript, 310

decrementing variables in JavaScript, 310
default action for switch statement

in JavaScript, 330
in PHP, 76

default values in forms, 255
DELETE command, 184

issuing DELETE FROM query using PHP,
242

dependencies in table data, 209
DESC keyword (MySQL), 191
DESCRIBE command, 168

issuing from PHP, 239
destroy_session_and_data function (PHP),

292
destructor methods (PHP5), 104
development server, setting up, 13–32

installing LAMP on Linux, 25–26
installing MAMP on Mac OS X, 19–25
installing WAMP on Windows, 14–18
using a program editor, 29
using an IDE, 30
WAMP, MAMP, or LAMP, 13
working remotely, 26–28

die function (PHP), 227
different_user function (PHP), 294
digits (\d) in regular expressions, 364
DISTINCT qualifier, SELECT command, 184
DNS (Domain Name Service), 3
do . . . while loops, 81

in JavaScript, 332
DOCTYPE declaration, 153

HTML 4.01 document types, 153
XHTML 1.0 document types, 153

Document Object Model (see DOM)
DOM (Document Object Model), 314–318

490 | Index

example XML document, DOM tree of,
389

DOUBLE data type, 171
DROP keyword, 176
DROP TABLE command, issuing from PHP,

240
duplication of data

across multiple database columns, 204
across multiple database rows, 206

dynamic linking (PHP), 85
use by WordPress blogging platform, 86

dynamic web content, 1–11
Apache web server, 8
benefits of PHP, MySQL, and JavaScript, 5–

8
combination of PHP, MySQL, and

JavaScript, 9
HTTP and HTML, 2

E
each function, using with list function to walk

through associative array, 120
EasyPHP, 14–18

downloading and installing, 14
overcoming installation problems, 14
testing installation, 16

echo <<< construct, 252
echo command (PHP), print command versus,

51
Editra program editor, 29
else statements

in JavaScript, 329
in PHP, 72

closing if . . . else or if . . . elseif . . . else
statements, 74

elseif statements (PHP), 73
positioning and number of, 74

email address, validating in form input, 360
empty object, creating in JavaScript, 343
encapsulation, 100
end function, using with PHP arrays, 128
endswitch command, replacing final curly

brace in switch statement, 77
equality operators

in JavaScript, 323
in PHP, 67

ereg_replace function (PHP), 149
errors

error text from last called MySQL function
in PHP, 227

JavaScript
catching using onError, 326
catching using try . . . catch, 327
debugging, 303

trapping in for loop using break statement,
83

trapping in for loop using continue
statement, 84

escape characters
backslash (\) in regular expressions, 363
in JavaScript, 310
in PHP, 47
preventing in strings for submission to

MySQL, 263
escapeshellcmd function (PHP), 150
European Laboratory for Particle Physics

(CERN), 1
event-min.js file, 396
exclusive or (xor) operator, 44
exec system call (PHP), 149

arguments, 150
execution (` `) operator, 63
EXPLAIN tool (MySQL), 217
explicit casting, 85

JavaScript and, 334
explode function, using to create PHP arrays,

125
expressions

JavaScript, 319–321
literals and variables, 320
operators, 321–325

PHP, 61
literals and variables, 62
operators, 63–70

extends operator (PHP), 109
Extensible Hypertext Markup Language (see

XHTML)
extract function, using with PHP arrays, 125

F
\f (form feed) in JavaScript strings, 310
fclose function (PHP), 138
fgets function (PHP), 138, 141

reading from files, 139
file handling in PHP, 137–149

checking if file exists, 137
copying files, 139

Index | 491

creating a file, 137
deleting a file, 140
locking files, 142
moving a file, 140
reading entire file, 143
reading from files, 139
updating files, 141
uploading files, 144–149

form data validation, 147
using $_FILES array, 146

file pointer, 141
$_FILES array, 145

contents of, 146
files, including and requiring in PHP, 96

include statement, 96
include_once, 97
require and require_once, 97

FileZilla, 28
file_exists function, 137
file_get_contents function (PHP), 143
final methods (PHP), 112
finally clause (try . . . catch), 328
Firefox

accessing JavaScript error messages, 303
Error Console message for JavaScript errors,

304
Firebug plug-in, 305
FireFTP, 27

FireFTP
advantages of, 27
installing, 27

fixation, session, 294
FLOAT data type, 171
flock function (PHP), 142

filesystems not supporting and use on
multithreaded server, 143

unlocking files, 143
fopen function (PHP), 138

supported modes, 138
for loops

in JavaScript, 332
breaking out of, 333
continue statement, 334

in PHP, 81
breaking out of, 83
continue statement, 84
controls removed from body of loop, 82

when to use, while loops versus, 82
foreach . . . as loops, 119–120

printing out values in multidimensional
associative array, 122

walking through multidimensional numeric
array, 123

forEach method (JavaScript), 349
cross-browser solution, 350

foreign keys, 206
form feed (\f) in JavaScript strings, 310
<form> tag, onSubmit attribute, 357
forms, 251–267

building using PHP, 251
creating form to add records to MySQL

database, using Smarty, 272
data validation, 147
example PHP program converting between

Fahrenheit and Celsius, 264–266
inserting and deleting data in MySQL using

PHP (example), 232–236
processing submitted data using PHP, 253–

264
checkboxes, 257
default values, 255
hidden fields, 260
input types, 256
labels, 262
radio buttons, 259
sanitizing input, 263
select tags, 260
text areas, 256
text boxes, 256

redisplaying after PHP validation, 370–375
uploading files from, 144–149
validating user input with JavaScript, 355–

361
form field validation, 358–361

frameworks for JavaScript, 393, 394
(see also YUI)

fread function (PHP), 138
reading a file, 139

friends on social networking site
adding and dropping, 424
module showing user’s friends and

followers, 427–430
fseek function (PHP), 141
FTP, transferring files to and from web server,

27
FULLTEXT indexes, 182

stopwords, 457–459
using MATCH . . . AGAINST on, 188

492 | Index

functions
defined, 89
JavaScript, 312, 337–341

defining, 337
prototype property, 344
returning a value, 339
returning an array, 341

MySQL, 194
commonly used, reference listing, 461–

472
PHP, 52, 90–96

array functions, 123–128
defining, 91
passing by reference, 94
returning a value, 92
returning an array, 93
version compatibility, 98

social networking site project, 407–409
fwrite function (PHP), 138

G
/g (global matching) in regular expressions,

369
$_GET and $_POST arrays, sanitizing user

input, 263
GET method, 380, 397

Ajax GET example using YUI, 397
using instead of Ajax POST, 385–387

getElementById function (JavaScript), 316
get_post function (PHP), 234
global matching in regular expressions (/g),

369
global variables

JavaScript, 312
PHP, 55

returning from function calls, 95
Glossword WAMP, 18
Gmail, use of Ajax to check for username

availability, 10
Google Chrome

accessing JavaScript error messages, 303
Error Console message for JavaScript error,

304
Google Maps, 377
GRANT command, example parameters for,

165
GROUP BY command, 191

H
head section of HTML document, using

JavaScript within, 301
heredoc (<<<) operator, 48
hexadecimals, escaping in JavaScript strings,

310
hidden fields in forms, 260
history object (JavaScript), 317
HTML, 2, 151

(see also XHTML)
basic knowledge of, xv
DOM (Document Object Model) in

JavaScript, 314–318
incorporating PHP within, 33
JavaScript and, 300

comment tags for older and nonstandard
browsers, 301

debugging JavaScript errors, 303
including JavaScript files, 302
using scripts within document head,

301
left arrow (← entity), 417
manipulation with JavaScript, 7
multiline output, creating in PHP, 252
program editors for, 29
sanitizing in form input, 263

HTML 4.01 document types, 153
HTML injections, 248
<html> tag, xmlns attribute, 153
htmlentities function (PHP), 57, 249
HTTP, 2

request/response procedure, 2
HTTP authentication, 282–288

checking for valid username and password
using PHP, 284

login prompt, 282
storing usernames and passwords, 285

creating users table in MySQL using
PHP, 286

PHP authentication using MySQL, 287
salting passwords, 285

user clicks Cancel before logging in, 283
HTTPS, 293

I
identity operator (see ===, under symbols)
IDEs (Integrated Development Environments),

30

Index | 493

PHP IDEs, listed, 32
if . . . else statements (PHP), 72
if statements

in JavaScript, 328
else statements, 329

in PHP, 71
OR operator, problems with, 70

image media types, 149
images, uploading as form data in PHP, 144
implicit casting, 84
in keyword (JavaScript), 347
include statements in PHP, 96
include_once function (PHP), 97
increment operator (++), 42, 45

in JavaScript, 308
using in while loop, 80
variable incrementing in JavaScript, 310

incrementing
using AUTO_INCREMENT in MySQL,

172
variable incrementing in JavaScript, 310
variables in JavaScript, 310

index.php file (social networking site project),
411

indexes, 206
arrays in PHP, 40

associative arrays, 117
numerically indexed, 115

MySQL tables, 177–183
adding when creating tables, 179
creating using ALTER TABLE, 178
creating using CREATE INDEX, 179
FULLTEXT index, 182
performance and, 182
PRIMARY KEY, 180
types of indexes, 178
using MATCH . . . AGAINST on

FULLTEXT index, 188
inheritance

defined, 100
PHP classes, 109–113

initialization expression (for loop), 81
ini_set function (PHP), 293

session data on shared server, 296
InnoDB storage engine, 215
input, forms

sanitizing, 263
types of input, 256

INSERT command, 7

adding data to table, 174
insert IDs, 243
instance of a class, 342
INT data type, 171
INTEGER data type, 171
Integrated Development Environments (see

IDEs)
interface, PHP objects, 100
Internet Explorer

accessing JavaScript error messages, 303
compatibility issues, JavaScript program

testing and, 305
Error Console message for JavaScript error,

304
forEach method and, 350
incompatibilities caused by JScript, 316
XMLHttpRequest object, IE 6 and, 378

Internet media types, 147
Internet, early history of, 1
intval function (PHP), 266
IP addresses, 3

storing for users, 293
is system command, 149
isNAN function (JavaScript), 360
isset function (PHP), 254
is_array function, 123

J
JavaScript, 299–318, 377

(see also Ajax)
arrays, 346–353
benefits of, 5
combination with PHP and MySQL for

dynamic content, 9
comments, 305
conditionals, 328–331
DOM (Document Object Model), 314–318
explicit casting and, 334
expressions, 319
frameworks for, 393, 394

(see also YUI)
functions, 312, 337–341
global variables, 312
HTML and

debugging JavaScript errors, 303
including JavaScript files, 302
older and nonstandard browsers,

comment tags, 301

494 | Index

using scripts within document head,
301

HTML text and, 300
injection via malicious form input, 263
local variables, 312
looping, 331–334
objects, 341–346
onError event, 326
operators, 308–311, 321–325
regular expressions, 361–369

using, 369
semicolon (;) ending statements, 305
try . . . catch statements, 327
using, 7
validating user input, 355–361
variable typing, 311
variables, 306–307
with statement, 325
XSS injections, 248

JOIN . . . ON construct in MySQL, 194
join method (JavaScript), 350
joining tables in MySQL, 192–194

AS keyword, 194
JOIN . . . ON construct, 194
NATURAL JOIN, 193

JScript, 316

K
keys, 168, 181

(see also indexes)
purposes of keys in MySQL, 206

keys and values, numerically indexed PHP
arrays, 117

L
labels in forms, 262
LAMPs (Linux, Apache, MySQL, and PHP),

13
installing on Linux, 25–26

LIKE qualifier (MySQL), 186
link URL, reading with JavaScript, 315
linking, dynamic linking in PHP, 85
links object (JavaScript), 317
Linux

accessing MySQL via command line, 161
accessing MySQL via phpMyAdmin, 195
installing LAMP, 25–26
installing MDB2 package, 477

installing other PEAR packages, 481
installing PHPUnit, 482
likely location for mysqldump, 219
system calls from PHP, 149

Linux, Apache, MySQL, and PHP (see LAMPs)
list function, using with each function to walk

through associative array, 120
literals, 320

PHP, 62
local variables

JavaScript, 312
PHP, 53

locking files in PHP, 142
log out page (social networking site project),

433
logical operators

in JavaScript, 309, 324
in MySQL queries, 194
in PHP, 44, 69

login page, social networking site project, 418
login.php file, creating, 226
looping

in JavaScript, 331–334
breaking out of loops, 333
continue statement, 334
do . . . while loops, 332
for loops, 332
while loops, 331

in PHP, 78–84
breaking out of loops, 83
continue statement, 84
do . . . while loops, 81
for loops, 81
foreach . . . as loop, 119–120
while loops, 78

M
/m (multiline mode) in regular expressions,

369
Mac OS X

accessing MySQL via command line, 160
accessing MySQL via phpMyAdmin, 195
FTP on, 28
installing a MAMP, 19–25

versions of OS X prior to 10.3, 25
installing other PEAR packages, 481
installing PEAR, 475
installing PHPUnit, 482
likely location for mysqldump, 219

Index | 495

system calls from PHP, 149
Macintosh, SSH on, 27
MAMPs (Mac, Apache, MySQL, and PHP), 13

installing on Mac OS X, 19–25
alternative MAMPs, 25
configuring ports, 24

many-to-many relationships, 213
MATCH . . . AGAINST queries, 188

using Boolean mode, 189
md5 function (PHP), 285
md5 hexadecimal strings, 294
MDB2 package (PEAR), 473

creating connect instance, 477
installing on Linux or Unix, 477
installing on Mac OS, 475
installing on Windows, 474
querying database, 478
using to rewrite sqltest.php program

(example), 479
MEDIUMINT data type, 171
members module, social networking site

project, 424–427
adding and dropping friends, 424
listing all members, 424–427
viewing a user’s profile, 424

messaging module, social networking site
project, 430–433

metacharacters (regular expressions), 361
escaping, 363
summary of, 367

method chaining, 340
methods

defined, 99
JavaScript objects, 314, 342

static methods, 345
using prototype keyword for a method,

344
PHP objects, 89

calling, 102
scope, controlling in PHP 5, 107
writing, 105

Microsoft Internet Explorer (see Internet
Explorer)

Microsoft JScript, 316
{min,max} matching in regular expressions,

368
mktime function (PHP), 134
modification expression (for loop), 81
move_uploaded_file function (PHP), 146

Mozilla Firefox (see Firefox)
multidimensional arrays

in JavaScript, 348
in PHP, 121–123

multiline mode in regular expressions (/m),
369

multipart/form-data encoding, 144
multiple-line commands in PHP, 47
MyISAM ENGINE, 167
MySQL

accessing remotely, 27
accessing via command-line, 158–177
accessing via command-line interface

on remote server, 162
accessing via phpMyAdmin, 195
adding data to table using PHP, 240
AUTO_INCREMENT, using from PHP,

243
backing up and restoring data, 219–223
benefits of, 5
combination with PHP and JavaScript for

dynamic content, 9
creating form to add records to database,

using Smarty, 272
creating table using PHP, 238
creating users table and adding accounts

using PHP, 286
data retrieval from table using PHP, 241
database design, 201
database terms, summary of, 158
deleting data from database using PHP,

242
describing table using PHP, 239
dropping table using PHP, 240
example of simple database, 157
EXPLAIN tool for queries, 217
FULLTEXT stopwords, 457–459
functions, 194

commonly used, reference listing, 461–
472

indexes for tables, 177–183
inserting and deleting data using PHP

(example), 232–238
$_POST array, 234
deleting a record, 235
displaying form, 236
querying database, 236
running program, 237

joining tables, 192–194

496 | Index

normalization, 203
PEAR MDB2 package (see MDB2 package)
performing secondary query using PHP,

244
PHP authentication using, 287
preventing escape character injection into

string presented to MySQL, 263
preventing HTML and XSS injections, 248
preventing SQL injection, 245–248
querying a database, 183–192
querying database with PHP, 225–231

connecting to MySQL, 227–231
creating login file, 226
steps in process, 225

relationships among data, 211–214
sanitizing in form input, 263
social networking site project

tables setup file, 410
transactions, 214–217
updating data using PHP, 242
using, 6

mysqldump utility, 219
dumping backups to file, 220
dumping data into CSV format files, 223
locations on various installations and

operating systems, 219
mysql_close function (PHP), 231
mysql_connect function (PHP), 227
mysql_entities_fix_string function (PHP), 249
mysql_error function (PHP), 227
mysql_fetch_array function (PHP), 274
mysql_fetch_row function (PHP), 231
mysql_insert_id function (PHP), 244
mysql_result function (PHP), 229

N
\n (newline character), 367

in JavaScript strings, 310
in PHP strings, 47

{n} matches exactly n times in regular
expressions, 368

{n, } matches n times or more in regular
expressions, 368

naming convention for JavaScript functions,
338, 342

NATURAL JOIN in MySQL, 193
new operator in JavaScript, 322
normalization, 203–211

First Normal Form, 204

Second Normal Form, 206–208
Third Normal Form, 209–210
when not to use, 210

<noscript> </noscript> tags, 300
not operator (!), 44, 309
NOT operator (!), 69
NOT operator (in MySQL), 194
NULL values, representing FALSE, 69
numbers

converting PHP strings to and from, 49
converting strings to and from in JavaScript,

311
numeric arrays

in PHP, 115
multidimensional, 122
walking through, using foreach . . . as,

119
JavaScript, 346

assigning element values, 346
assignment using Array keyword, 347

numeric data types (MySQL), 170
numeric variables

JavaScript, 307
PHP, 39

O
objects

defined, 89
DOM (Document Object Model) in

JavaScript, 314–318
JavaScript, 341–346

creating, 343
declaring a class, 342
prototype keyword, 344

PHP, 98–113
accessing, 101
cloning, 102
constructors, 104
creating, 101
declaring a class, 100
declaring constants, 107
declaring properties, 106
inheritance and extension of classes,

109–113
property and method scope in PHP 5,

107
static methods in PHP 5, 105
terminology associated with, 99
writing methods, 105

Index | 497

octals, escaping in JavaScript strings, 310
one-to-many relationships, 212
one-to-one relationships in data, 211
one-way functions, 285
onError event (JavaScript), 326
open source, 9
Opera browsers

accessing JavaScript error messages, 303
Error Console message for JavaScript, 304
Error Console message for JavaScript error,

304
operating systems, 13

(see also individual operating system names)
system calls in PHP, 149

operators
JavaScript, 308–311, 321–325

arithmetic, 308
assignment, 308
associativity, 322
comparison, 309
escaping characters, 310
logical, 309
precedence of, 321
relational, 323
string concatenation, 310
types of, 321

PHP, 42, 63–70
arithmetic, 42
assignment, 43
associativity, 66
comparison, 43
logical, 44
operator precedence, 64
precedence of, 64
relational, 67–70
types of, 63

or operator
low-precedence or, 44
precedence in PHP, 65
||, 44, 309

OR operator, 69
causing problems in if statements, 70

OR operator (in MySQL), 194
ORDER BY command, 191

P
page design and layout file (social networking

project), 409
parent operator (PHP), 110

parsers
calling PHP parser, 34

passing by reference, 94
pattern matching, 361

(see also regular expressions)
doing with LIKE qualifier in MySQL, 186

PEAR (PHP Extension and Application
Repository), 473–481

creating connect instance, 477
installation, 473–477
installing other PEAR packages, 481
querying database, 478
rewriting sqltest.php program (example)

using MDB2, 479
Perl, 5
PHP, 33–59, 269

(see also Smarty templating system)
adding data to MySQL table, 240
benefits of, 5
casting, implicit and explicit, 84
code examples from this book, 35
combination with MySQL and JavaScript

for dynamic content, 9
comments, 36
conditionals, 70–78
constants, 50
creating forms, 251
creating table in MySQL, 238
deleting data from MySQL database, 242
describing table in MySQL, 239
determining web server’s document root,

270
difference between echo and print

commands, 51
dropping table in MySQL, 240
dynamic linking, 85
echo <<< statement, 48, 252
expressions, 61
form handling

creating forms, 251
program converting between Fahrenheit

and Celsius, 264–266
retrieving submitted data, 253–264
sanitizing input, 263

form validation, redisplaying form after,
370–375

functions, 52
IDEs, listing of, 32
incorporating within HTML, 33

498 | Index

calling PHP parser, 34
inserting and deleting data in MySQL

(example), 232–238
$_POST array, 234
deleting a record, 235
displaying form, 236
querying database, 236
running program, 237

inserting and deleting data in MySQL table,
deleting a record, 235

multiple-line commands, 47
operators, 42–45, 63–70

arithmetic, 42
assignment, 43
comparison, 43
logical, 44

performing secondary query on MySQL
table, 244

phpDesigner IDE, 30
preventing HTML and XSS injections in

MySQL, 248
preventing SQL injection in MySQL, 245–

248
using placeholders, 248

program editors for, 29
querying MySQL database, 225–231

building and executing query, 228
closing connection, 231
connecting to MySQL, 227
creating login file, 226
fetching result, 229
selecting a database, 228
steps in process, 225

regular expressions in, 369
retrieving data from MySQL table, 241
semicolon (;) ending PHP statements, 37
support by Apache web server, 9
updating data in MySQL table, 242
using, 5
using AUTO_INCREMENT in MySQL

table, 243
using cookies, 279–282

accessing a cookie, 281
destroying a cookie, 282
setting a cookie, 281

using for Ajax
program for Ajax GET request, 397
urlget.php program (example), 398

using HTTP authentication, 282–288

checking for valid username and
password, 284

login prompt, 282
storing usernames and passwords, 285

using in social networking site (see social
networking site, creating)

using sessions, 289–296
ending a session, 292
session security, 293–296
starting a session, 289–291

using with Ajax
urlget.php program (example), 386
urlpost.php program (example), 383
xmlget.php program (example), 387

variable assignment, 45–47
escaping characters in strings, 47
incrementing and decrementing variable,

45
string concatenation, 46
string types, 46

variable scope, 53–58
variable typing, 49
variables, 38–42

arrays, 39
naming rules, 42
numeric, 39
syntax, 37
two-dimensional arrays, 40

version compatibility, checking for
functions, 98

PHP 5
constructor methods, creating, 104
destructor methods, creating, 104
property and method scope, 107
static methods, 105

PHP Extension and Application Repository (see
PEAR)

.php file extension, 33
phpinfo function, 90
phpMyAdmin, 195

accessing MySQL from Linux, 195
accessing MySQL from Mac OS X, 195
accessing MySQL from Windows, 195
using, 197

PHPUnit, 481–484
manual for, 484
rules for writing tests, 484

phpversion function, 98
placeholders

Index | 499

using to prevent SQL injection in MySQL,
247

pop method (JavaScript arrays), 350
ports, configuring for MAMP on Mac OS X,

24
$_POST array, 234
POST method, 145

Ajax program, urlpost.html (example), 380–
385

making Ajax POST request, 382
<pre> </pre> tags

forcing monospaced font, 236
<pre> </pre> tags, 122, 123
precedence, operator, 64

in JavaScript, 321
precision, setting for printf display, 131
predefined constants (PHP), 51
preg_match function (PHP), 369
preg_match_all function (PHP), 369
preg_replace function (PHP), 369
primary keys, 180

adding to table retrospectively, 181
adding when creating tables, 181
importance in database design, 202

print command (PHP), echo command versus,
51

printf function (PHP), 129–133
conversion specifiers, 129
setting precision for displayed results

conversion specifier components, 131
setting precision of displayed result, 131
string padding, 132

print_r function, 101
privacy, databases and, 214
private keyword (PHP 5), 108
profiles, social networking site project, 419–

424
adding profile image, 420
adding “About Me” text, 420
displaying current profile, 421
processing image, 420
viewing another member’s profile, 424

program editors, 29
properties

defined, 99
JavaScript objects, 314, 342

adding new, 343
prototype property, 344
static properties, 345

PHP objects
accessing, 102
declaring, 106
scope, controlling in PHP 5, 107

protected keyword (PHP 5), 108
prototype keyword (JavaScript), 344

extending objects, 345
static methods and properties, 345

prototype property (JavaScript functions), 344
pseudofunctions (constructs), 90
public keyword (PHP 5), 108
push method (JavaScript arrays), 346, 350
PuTTY program, for Telnet and SSH access on

Windows, 27

Q
querying MySQL database, 183–192, 225

(see also PHP, querying MySQL database)
building and executing query from PHP,

228
DELETE command, 184
EXPLAIN tool for queries, 217
grouping results with GROUP BY, 191
LIMIT qualifier, 187
logical operators in WHERE queries, 194
MATCH . . . AGAINST construct, 188
SELECT command, 183
SELECT COUNT command, 183
SELECT DISTINCT command, 184
sorting results with ORDER BY, 191
UPDATE . . . SET construct, 190
using PHP, 236
WHERE keyword, 185

quotation marks, 38
(see also listings under Symbols section)
escaping in JavaScript strings, 310
in JavaScript strings, 306

R
\r (carriage return)

in JavaScript strings, 310
in PHP strings, 47

radio buttons, 258
radio buttons in forms, 259
ranges, indicating in regular expressions, 364
readyState property (XMLHttpRequest), 382
REAL data type, 171
reference books, xvi

500 | Index

regeneration, session, 295
register_globals function (PHP), 254
regular expressions, 361–370

breakdown of typical regular expression,
365

breakdown of validateUsername regular
expression (example), 366

character classes, 363
examples of, 368
general modifiers, 369
grouping through parentheses, 363
metacharacters, 361

summary of, 367
negation of character class, 364
ranges in, 364
using in JavaScript, 369
using in PHP, 369
using to validate username in a form, 360
using with ereg_replace function in PHP,

149
relational databases, 158

(see also MySQL)
normalization, 203

relational operators
in JavaScript, 323–325
in PHP, 67–70

relationships in database data, 211–214
many-to-many, 213
one-to-many, 212
one-to-one, 211
privacy and, 214

remote server, accessing MySQL on, 162
RENAME command, 175
rename function (PHP), 140
replace method (JavaScript), 369
request/response process, 2

for dynamic web pages, 3
require statements (PHP), 97
require_once (PHP), 97, 227
reset function, using with PHP arrays, 127
results from PHP query of MySQL database,

229
fetching a row, 231

return statements, 92
reverse method (JavaScript), 352
Robin’s Nest project (see social networking site,

creating)
ROLLBACK command, 216
rows

defined, 158
deleting from table, 184
preventing duplicates, using

AUTO_INCREMENT type, 172

S
\S (nonwhitespace character) in regular

expressions, 367
\s (whitespace character) in regular characters,

367
Safari, accessing JavaScript error messages,

303
salting passwords, 285
sanitizeString and sanitizeMySQL functions

(PHP), 263
sanitizing user input, PHP authentication using

MySQL, 288
scope of variables

global and local variables in JavaScript, 312
PHP, 53–58, 96

scope resolution operator (::), 106
<script> </script> tags, 300
scripting languages, VBScript and Tcl, 302
security

register_globals function in PHP, 254
sessions, 293–296
superglobal variables in PHP, 57

SELECT command, 7, 183
grouping results with GROUP BY, 191
issuing SELECT * FROM statement using

PHP, 241
joining two tables in single SELECT, 193
SELECT COUNT, 183
SELECT DISTINCT, 184
sorting results with ORDER BY, 191
using LIKE qualifier, 186
using LIMIT qualifier, 187
WHERE keyword, 185

select tags in forms, 260
using with multiple parameter, 261

self keyword (PHP), referencing constants,
107

servers, 1
Apache web server, 8
basic request/response procedure, 2
dynamic request/response procedure, 3
shared, session security and, 296

sessions, 289–296
ending, 292

Index | 501

setting timeout, 293
security, 293–296

forcing cookie-only sessions, 296
preventing session fixation, 294
preventing session hijacking, 293
using shared server, 296

starting, 289–291
retrieving session variables, 290

session_regenerate_id function (PHP), 295
shuffle function, using with PHP arrays, 124
sign-up page, social networking site project,

412–417
checking username availability, 412
YUI version, 415–417

signed or unsigned data types, 171
sizeof function (PHP), testing, 482
SMALLINT data type, 171

changing column type from CHAR to, 175
Smarty templating system, 269–277

benefits of, 270
creating scripts, 271
creating templates, 272
installation, 270
rewriting sqltest.php program to use Smarty

(example), 272–277
social networking site, creating, 405–433

checking username for availability and
notifying user, 417

code examples on website, 406
designing the site, 405
friends module, 427–430
home page, index.php file for, 411
include file of main functions, 407–409
log out page, 433
login page, 418
members module, 424–427
messaging module, 430–433
MySQL tables setup file, 410
page design and layout include file, 409
profiles, 419–424
sign-up module for users, 412–417

checking username availability, 412
YUI version, 415–417

sorting
sort function in PHP, 124
sort method in JavaScript arrays, 352

sprintf function (PHP), 133
SQL (Structured Query Language), 7, 157

SQL injection, preventing in MySQL, 245–
248

SSH, using for remote access, 27
SSL (Secure Socket Layer), 293
START TRANSACTION command, 216
statements

defined, 320
PHP, 63

static modifier
static methods and properties in JavaScript,

345
static methods in PHP 5, 105
static properties and methods in PHP 5,

108
static variables in PHP, 56, 96

stopwords, 182, 457–459
in MySQL search strings, 189

storage engines, transaction, 215
string functions (MySQL), 461–465
string variables

JavaScript, 306
multiline string variable assignment in PHP,

48
PHP, 38

strings
JavaScript

arrays of, 307
concatenating, 310
converting to and from numbers, 311
escaping characters, 310

PHP, 46
concatenating, 46
converting to and from numbers, 49
escaping characters, 47
exploding into arrays, 125
functions for, 90
padding in printf results, 132
printf conversion specifier components,

133
types, 46

strrev function, 91
strtolower function, 92
strtoupper function, 91
Structured Query Language (see SQL)
str_repeat function, 91
subclass constructors (PHP), 111
submit button in forms, changing label text,

262
superglobal variables (PHP), 56

502 | Index

security and, 57
switch statements

in JavaScript, 329
break command, 330
default action, 330

in PHP, 74–77
alternative syntax, 77
breaking out, 76
default action, 76

system calls in PHP, 149

T
\t (tab character)

in JavaScript strings, 310
in PHP strings, 47
in regular expressions, 367
use with echo statement to print out array

data, 122
tables

adding new column, 175
checking whether new table has been

created, 167
creating for MySQL database, 166
creating in MySQL using PHP, 238
creating, viewing, and deleting, 177
defined, 158
describing in MySQL using PHP, 239
dropping in MySQL using PHP, 240
indexing, 177–183
intermediary table for many-to-many

relationships, 213
joining, 192–194
linking through insert ID, 244
populating using INSERT command, 174
relationships among, 212
renaming, 175

Tcl scripting language, 302
Telnet, using for remote access, 27
templating, 269
ternary operator (?), 77
ternary operators, 64
test function (JavaScript), 360
test method (JavaScript), 360, 369
text areas in forms, 256

controlling text wrapping, 257
text boxes in forms, 256
TEXT data type

listing of TEXT types, 170
VARCHAR versus, 170

<textarea> </textarea> tags, 256
this keyword (JavaScript), 342
$this variable (PHP), 105
TIME data type, 172
time function (PHP), 53, 133
time functions (MySQL), 471
timeout, setting for sessions, 293
TIMESTAMP data type, 172
TINYINT data type, 171
transactions, 214–217

beginning with BEGIN or START
TRANSACTION, 216

canceling using ROLLBACK, 216
committing using COMMIT command,

216
storage engines for, 215

triggers, 211
try . . . catch (JavaScript), 327
two-dimensional arrays (PHP), 40
type of a variable (in JavaScript), 311
typeof operator (JavaScript), 311, 313

U
ucfirst function, 92
unary operators, 64
Unauthorized error, 283
unit testing with PHPUnit, 481–484
Unix

installing MDB2 package, 477
installing other PEAR packages, 481
installing PHPUnit, 482
system calls from PHP, 149

unlink function (PHP), 140
UNSIGNED qualifier, MySQL numeric data

types, 171
UPDATE . . . SET queries, 190
updates, database

triggers for, 211
URLs

encoding question mark (?) in URL for GET
request, 399

links object in JavaScript, 317
user agent string (browsers), 294
user profiles (see profiles, social networking site

project)
usernames and passwords

checking validity in PHP authentication,
284

Index | 503

sign-up page for social networking site
project, 412–417

checking username availability, 412
YUI version, 415–417, 415

social networking site project
checking username against database for

availability, 417
login page, 418

storing, 285
salting, 285

validating form input using JavaScript, 359
users, creating in MySQL, 165

V
validate function (JavaScript), 357
validateUsername function (JavaScript

example)
breakdown of regular expression, 366

validation
form data, 147
JavaScript, 355–361
redisplaying form after PHP validation, 370–

375
XHTML, 154

VARBINARY data type, 169
VARCHAR data type, 168, 169

TEXT versus, 170
variable assignment in PHP, 45–47

incrementing and decrementing variables,
45

string concatenation, 46
string types, 46

variable substitution, 46
variables

JavaScript, 306–307
arrays, 307
checking scope of, 313
global variables, 312
incrementing and decrementing, 310
local variables, 312
numeric variables, 307
string variables, 306
typing, 311

passing by reference, 94
PHP, 37–42

arrays, 39
as expressions, 62
assigning ? conditional result to, 77
functions returning global variables, 95

naming rules, 42
numeric variables, 39
scope of, 53–58, 96
string variables, 38
syntax of, 37
typing, 49

VBScript, 302

W
\W (nonword character) in regular expressions,

367
\w (word character) in regular expressions,

367
WAMPs (Windows, Apache, MySQL, and

PHP), 13
alternatives to EasyPHP, 18
installing on Windows, 14–18

WAMPServer, 18
Web 1.0, 1
Web 2.0, 5
web browsers (see browsers)
web page for this book, xviii
web servers (see servers)
websites and online resources, 453
WHERE keyword (MySQL), 185

using logical operators with, 194
while loops, 78

in JavaScript, 331
removing controls from loop body, 80
when to use, for loops versus, 83

whitespace
matching a space in regular expressions,

363
use in PHP programs, 37

Windows
accessing MySQL via command line, 159
accessing MySQL via phpMyAdmin, 195
installing a WAMP, 14–18
installing other PEAR packages, 481
installing PEAR, 473
installing PHPUnit, 482
likely location for mysqldump, 219
system calls from PHP, 149
working remotely on development server,

27
Windows, Apache, MySQL, and PHP (see

WAMPs)
with statement (JavaScript), 325

504 | Index

word (\w) character in regular expressions,
368

WordPress blogging platform, 86
World Wide Web, 1

X
XAMPP, 18

downloading for Mac OS X, 25
installing on Linux, 25

XHTML, 151
benefits of, 151
document types in XHTML 1.0, 153
HTML 4.01 document types, 153
rules differentiating it from HTML, 152
validation, 154
versions, 151

XML
Ajax XML example using YUI, 399–400
example XHTML 1.0 document, 152
example XML document and DOM tree,

389
fetching Yahoo! XML news feed via Ajax,

390
reasons to use with Ajax, 391
sending XML requests with

XMLHttpRequest, 387
XMLHttpRequest object, 378–391

cross-browser function for, 378
example program (urlpost.html), 380–385

readyState property, 382
server half of Ajax process, 383

example program using GET, 385–387
properties and methods, 379
sending XML requests, 387–391

xor (exclusive or) operator, 44
precedence in PHP, 65

XOR operator, 69
XSS injections, 248

Y
Yahoo! User Interface (see YUI)
yahoo-min.js file, 396
YEAR data type, 172
YUI (Yahoo! User Interface), 394–403

compressed versions, 396
installing, 394
other uses for, 400

sign-up page for social networking site
project, 415–417

simple calendar, 400–403
using for Ajax, 396–400

Ajax GET example using YUI, 397
Ajax XML example using YUI, 399–400
asyncRequest method, 397
including framework files, 396

Z
Zend Server CE, 25
ZEROFILL qualifier, using with INT type, 171

Index | 505

About the Author
Robin Nixon has worked with and written about computers since the early 1980s (his
first computer was a Tandy TRS 80 Model 1 with a massive 4 KB of RAM!). During
this time he has written in excess of 500 articles for many of the UK’s top computer
magazines. Learning PHP, MySQL, and JavaScript is his third book.

Robin started his computing career in the Cheshire homes for disabled people, where
he was responsible for setting up computer rooms in a number of residential homes,
and for evaluating and tailoring hardware and software so that disabled people could
use the new technology—sometimes by means of only a single switch operated by
mouth or finger.

After writing articles for computer magazines about his work with disabled people, he
eventually worked full time for one of the country’s main IT magazine publishers, where
he held several roles including editorial, promotions, and cover disc editing.

With the dawn of the Internet in the 1990s, Robin branched out into developing web-
sites. One of these presented the world’s first radio station licensed by the music copy-
right holders, and was featured in several news reports on TV and radio networks in
the United Kingdom. In order to enable people to continue to surf while listening, Robin
also developed the first known pop-up windows.

Robin lives on the southeast coast of England with his wife Julie, a trained nurse, and
five children, where he also finds time to foster three disabled children, as well as
working full time from home as a technical author.

Colophon
The animals on the cover of Learning PHP, MySQL, and JavaScript are sugar gliders
(Petaurus breviceps). Sugar gliders are small, gray-furred creatures that grow to an adult
length of six to seven-and-a-half inches. Their tails, which are distinguished by a black
tip, are usually as long as their bodies. Membranes extend between their wrists and
ankles and provide an aerodynamic surface that helps them glide between trees.

Sugar gliders are native to Australia and Tasmania. They prefer to live in the hollow
parts of eucalyptus and other types of large trees with several other adult sugar gliders
and their own children.

Though sugar gliders reside in groups and defend their territory together, they don’t
always live in harmony. One male will assert his dominance by marking the group’s
territory with his saliva and then by marking all group members with a distinctive scent
produced from his forehead and chest glands. This ensures that members of the group
will know when an outsider approaches; group members will fight off any sugar glider
not bearing their scent. However, a sugar glider group will welcome and mark an out-
sider if one of their adult males dies (the group will typically replace a deceased adult
female with their one of their own female offspring).

Sugar gliders make popular pets because of their inquisitive, playful natures, and be-
cause many think they are cute. But there are disadvantages to keeping sugar gliders as
pets: as they are exotic animals, sugar gliders need specialized, complicated diets con-
sisting of items such as crickets, a variety of fruits and vegetables, and mealworms;
healthy housing requires a cage or space no less than the size of an aviary; their dis-
tinctive scents can be bothersome to humans; as they are nocturnal creatures, they will
bark, hiss, run, and glide all night long; it’s not uncommon for them to extricate their
bowels while playing or eating; and in some states and countries, it is illegal to own
sugar gliders as household pets.

The cover image is from Dover’s Animals. The cover font is Adobe ITC Garamond. The
text font is Linotype Birka; the heading font is Adobe Myriad Condensed; and the code
font is LucasFont’s TheSansMonoCondensed.

	Table of Contents
	Preface
	Audience
	Assumptions This Book Makes
	Organization of This Book
	Supporting Books
	Conventions Used in This Book
	Using Code Examples
	We’d Like to Hear from You
	Safari® Books Online
	Acknowledgments

	Chapter 1. Introduction to Dynamic Web Content
	HTTP and HTML: Berners-Lee’s Basics
	The Request/Response Procedure

	The Benefits of PHP, MySQL, and JavaScript
	Using PHP
	Using MySQL
	Using JavaScript

	The Apache Web Server
	About Open Source
	Bringing It All Together
	Test Your Knowledge: Questions

	Chapter 2. Setting Up a Development Server
	What Is a WAMP, MAMP, or LAMP?
	Installing a WAMP on Windows
	Overcoming Installation Problems
	Testing the Installation
	Alternative WAMPs

	Installing a MAMP on Mac OS X
	Some Final Tweaking
	Other Alternatives

	Installing a LAMP on Linux
	Working Remotely
	Logging In
	Using FTP

	Using a Program Editor
	Using an IDE
	Test Your Knowledge: Questions

	Chapter 3. Introduction to PHP
	Incorporating PHP Within HTML
	Calling the PHP Parser

	This Book’s Examples
	The Structure of PHP
	Using Comments
	Basic Syntax
	Semicolons
	The $ symbol

	Understanding Variables
	String variables
	Numeric variables
	Arrays
	Two-dimensional arrays
	Variable naming rules

	Operators
	Arithmetic operators
	Assignment operators
	Comparison operators
	Logical operators

	Variable Assignment
	Variable incrementing and decrementing
	String concatenation
	String types
	Escaping characters

	Multiple-Line Commands
	Variable Typing
	Constants
	Predefined constants

	The Difference Between the echo and print Commands
	Functions
	Variable Scope
	Local variables
	Global variables
	Static variables
	Superglobal variables
	Superglobals and security

	Test Your Knowledge: Questions

	Chapter 4. Expressions and Control Flow in PHP
	Expressions
	Literals and Variables

	Operators
	Operator Precedence
	Associativity
	Relational Operators
	Equality
	Comparison operators
	Logical operators

	Conditionals
	The if Statement
	The else Statement
	The elseif Statement
	The switch Statement
	Breaking out
	Default action
	Alternative syntax

	The ? Operator

	Looping
	while Loops
	do...while Loops
	for Loops
	Breaking Out of a Loop
	The continue Statement

	Implicit and Explicit Casting
	PHP Dynamic Linking
	Dynamic Linking in Action

	Test Your Knowledge: Questions

	Chapter 5. PHP Functions and Objects
	PHP Functions
	Defining a Function
	Returning a Value
	Returning an Array
	Passing by Reference
	Returning Global Variables
	Recap of Variable Scope

	Including and Requiring Files
	The include Statement
	Using include_once
	Using require and require_once

	PHP Version Compatibility
	PHP Objects
	Terminology
	Declaring a Class
	Creating an Object
	Accessing Objects
	Cloning objects

	Constructors
	PHP 5 destructors

	Writing Methods
	Static methods in PHP 5

	Declaring Properties
	Declaring Constants
	Property and Method Scope in PHP 5
	Static properties and methods

	Inheritance
	The parent operator
	Subclass constructors
	Final methods

	Test Your Knowledge: Questions

	Chapter 6. PHP Arrays
	Basic Access
	Numerically Indexed Arrays
	Associative Arrays
	Assignment Using the array Keyword

	The foreach...as Loop
	Multidimensional Arrays
	Using Array Functions
	is_array()
	count()
	sort()
	shuffle()
	explode()
	extract()
	compact()
	reset()
	end()

	Test Your Knowledge: Questions

	Chapter 7. Practical PHP
	Using printf
	Precision Setting
	String Padding
	Using sprintf

	Date and Time Functions
	Date Constants
	Using checkdate

	File Handling
	Checking Whether a File Exists
	Creating a File
	Reading from Files
	Copying Files
	Moving a File
	Deleting a File
	Updating Files
	Locking Files for Multiple Accesses
	Reading an Entire File
	Uploading Files
	Using $_FILES
	Validation

	System Calls
	XHTML
	The Benefits of XHTML
	XHTML Versions
	What’s Different?
	HTML 4.01 Document Types
	XHTML 1.0 Document Types
	XHTML Validation

	Test Your Knowledge: Questions

	Chapter 8. Introduction to MySQL
	MySQL Basics
	Summary of Database Terms
	Accessing MySQL via the Command Line
	Starting the Command-Line Interface
	Windows users
	Mac OS X users
	Linux users
	MySQL on a remote server

	Using the Command-Line Interface
	The semicolon
	Canceling a command

	MySQL Commands
	Creating a database
	Creating users
	Creating a table

	Data Types
	The CHAR data type
	The BINARY data type
	The TEXT and VARCHAR data types
	The BLOB data type
	Numeric data types
	DATE and TIME
	The AUTO_INCREMENT data type
	Adding data to a table
	Renaming a table
	Changing the data type of a column
	Adding a new column
	Renaming a column
	Removing a column
	Deleting a table

	Indexes
	Creating an Index
	Using CREATE INDEX
	Adding indexes when creating tables
	Primary keys
	Creating a FULLTEXT index

	Querying a MySQL Database
	SELECT
	SELECT COUNT
	SELECT DISTINCT
	DELETE
	WHERE
	LIMIT
	MATCH...AGAINST
	MATCH...AGAINST...IN BOOLEAN MODE
	UPDATE...SET
	ORDER BY
	GROUP BY

	Joining Tables Together
	NATURAL JOIN
	JOIN...ON
	Using AS

	Using Logical Operators

	MySQL Functions
	Accessing MySQL via phpMyAdmin
	Windows Users
	Mac OS X Users
	Linux Users
	Using phpMyAdmin

	Test Your Knowledge: Questions

	Chapter 9. Mastering MySQL
	Database Design
	Primary Keys: The Keys to Relational Databases

	Normalization
	First Normal Form
	Second Normal Form
	Third Normal Form
	When Not to Use Normalization

	Relationships
	One-to-One
	One-to-Many
	Many-to-Many
	Databases and Anonymity

	Transactions
	Transaction Storage Engines
	Using BEGIN
	Using COMMIT
	Using ROLLBACK

	Using EXPLAIN
	Backing Up and Restoring
	Using mysqldump
	Creating a Backup File
	Restoring from a Backup File
	Dumping Data in CSV Format
	Planning Your Backups

	Test Your Knowledge: Questions

	Chapter 10. Accessing MySQL Using PHP
	Querying a MySQL Database with PHP
	The Process
	Creating a Login File
	Connecting to MySQL
	Selecting a database
	Building and executing a query
	Fetching a result
	Fetching a row
	Closing a connection

	A Practical Example
	The $_POST Array
	Deleting a Record
	Displaying the Form
	Querying the Database
	Running the Program

	Practical MySQL
	Creating a Table
	Describing a Table
	Dropping a Table
	Adding Data
	Retrieving Data
	Updating Data
	Deleting Data
	Using AUTO_INCREMENT
	Using insert IDs

	Performing Additional Queries
	Preventing SQL Injection
	Using placeholders

	Preventing HTML Injection

	Test Your Knowledge: Questions

	Chapter 11. Form Handling
	Building Forms
	Retrieving Submitted Data
	register_globals: An Old Solution Hangs On
	Default Values
	Input Types
	Text Boxes
	Text Areas
	Checkboxes
	Radio Buttons
	Hidden Fields
	Select
	Labels
	The submit button

	Sanitizing Input

	An Example Program
	Test Your Knowledge: Questions

	Chapter 12. Templating with Smarty
	Why Smarty?
	Installation
	Creating Scripts
	Creating Templates
	A Practical Example
	Test Your Knowledge: Questions

	Chapter 13. Cookies, Sessions, and Authentication
	Using Cookies in PHP
	Setting a Cookie
	Accessing a Cookie
	Destroying a Cookie

	HTTP Authentication
	Storing Usernames and Passwords
	Salting

	Using Sessions
	Starting a Session
	Ending a Session
	Setting a timeout

	Session Security
	Preventing session hijacking
	Preventing session fixation
	Forcing cookie-only sessions
	Using a shared server

	Test Your Knowledge: Questions

	Chapter 14. Exploring JavaScript
	JavaScript and HTML Text
	Using Scripts Within a Document Head
	Older and Nonstandard Browsers
	Including JavaScript Files
	Debugging JavaScript Errors

	Using Comments
	Semicolons
	Variables
	String Variables
	Numeric Variables
	Arrays

	Operators
	Arithmetic Operators
	Assignment Operators
	Comparison Operators
	Logical Operators
	Variable Incrementing and Decrementing
	String Concatenation
	Escaping Characters

	Variable Typing
	Functions
	Global Variables
	Local Variables

	The Document Object Model
	Browser Incompatibilities
	Another use for the $ sign

	Using the DOM

	Test Your Knowledge: Questions

	Chapter 15. Expressions and Control Flow in JavaScript
	Expressions
	Literals and Variables

	Operators
	Operator Precedence
	Associativity
	Relational Operators
	Equality operators
	Comparison operators
	Logical operators

	The with Statement
	Using onError
	Using try...catch
	Conditionals
	The if Statement
	The else statement

	The switch Statement
	Breaking out
	Default action

	The ? Operator

	Looping
	while Loops
	do...while Loops
	for Loops
	Breaking Out of a Loop
	The continue Statement

	Explicit Casting
	Test Your Knowledge: Questions

	Chapter 16. JavaScript Functions, Objects, and Arrays
	JavaScript Functions
	Defining a Function
	The arguments array

	Returning a Value
	Returning an Array

	JavaScript Objects
	Declaring a Class
	Creating an Object
	Accessing Objects
	The prototype Keyword
	Static methods and properties
	Extending JavaScript objects

	JavaScript Arrays
	Numeric Arrays
	Assigning element values
	Assignment using the array keyword

	Associative Arrays
	Multidimensional Arrays
	Using Array Methods
	concat
	forEach: For non-IE browsers
	forEach: A cross-browser solution
	join
	push and pop
	Using reverse
	sort

	Test Your Knowledge: Questions

	Chapter 17. JavaScript and PHP Validation and Error Handling
	Validating User Input with JavaScript
	The validate.html Document (Part One)
	How it works

	The validate.html Document (Part Two)
	Validating the forename
	Validating the surname
	Validating the username
	Validating the password
	Validating the age
	Validating the email
	Using a separate JavaScript file

	Regular Expressions
	Matching Through Metacharacters
	Fuzzy Character Matching
	Grouping Through Parentheses
	Character Classes
	Indicating a Range
	Negation
	Some More Complicated Examples
	Summary of Metacharacters
	General Modifiers
	Using Regular Expressions in JavaScript
	Using Regular Expressions in PHP

	Redisplaying a Form After PHP Validation
	Test Your Knowledge: Questions

	Chapter 18. Using Ajax
	What Is Ajax?
	Using XMLHttpRequest
	Your First Ajax Program
	The readyState property
	The server half of the Ajax process

	Using GET Instead of POST
	Sending XML Requests
	About XML
	Why use XML?

	Test Your Knowledge: Questions

	Chapter 19. Using YUI for Ajax and More
	Choosing a Framework
	Using YUI
	Compressed Versions
	Using YUI for Ajax
	Including the framework files
	The YUI asyncRequest method
	An Ajax GET example using YUI
	An Ajax XML example using YUI

	Other Uses for YUI
	A Simple YUI Calendar

	Test Your Knowledge: Questions

	Chapter 20. Bringing It All Together
	Designing a Social Networking Site
	About Third-Party Add-Ons

	On the Website
	rnfunctions.php
	The Functions

	rnheader.php
	rnsetup.php
	index.php
	rnsignup.php
	Checking for Username Availability

	rnsignup.php (YUI version)
	rncheckuser.php
	rnlogin.php
	rnprofile.php
	Adding the “About Me” Text
	Adding a Profile Image
	Processing the Image
	Displaying the Current Profile

	rnmembers.php
	Viewing a User’s Profile
	Adding and Dropping Friends
	Listing All Members

	rnfriends.php
	rnmessages.php
	rnlogout.php

	Appendix A. Solutions to the Chapter Questions
	Chapter 1 Answers
	Chapter 2 Answers
	Chapter 3 Answers
	Chapter 4 Answers
	Chapter 5 Answers
	Chapter 6 Answers
	Chapter 7 Answers
	Chapter 8 Answers
	Chapter 9 Answers
	Chapter 10 Answers
	Chapter 11 Answers
	Chapter 12 Answers
	Chapter 13 Answers
	Chapter 14 Answers
	Chapter 15 Answers
	Chapter 16 Answers
	Chapter 17 Answers
	Chapter 18 Answers
	Chapter 19 Answers

	Appendix B. Online Resources
	PHP Resource Sites
	MySQL Resource Sites
	JavaScript Resource Sites
	Ajax Resource Sites
	Miscellaneous Resource Sites
	O’Reilly Resource Sites

	Appendix C. MySQL’s FULLTEXT Stopwords
	Appendix D. MySQL Functions
	String Functions
	CONCAT()
	CONCAT_WS()
	LEFT()
	RIGHT()
	MID()
	LENGTH()
	LPAD()
	RPAD
	LOCATE()
	LOWER()
	UPPER()
	QUOTE()
	REPEAT()
	REPLACE()
	TRIM()
	LTRIM() and RTRIM()

	Date Functions
	CURDATE()
	DATE()
	DATE_ADD()
	DATE_FORMAT()
	DAY()
	DAYNAME()
	DAYOFWEEK()
	DAYOFYEAR()
	LAST_DAY()
	MAKEDATE()
	MONTH()
	MONTHNAME()
	SYSDATE()
	YEAR()
	WEEK()
	WEEKDAY()

	Time Functions
	CURTIME()
	HOUR()
	MINUTE()
	SECOND()
	MAKETIME()
	TIMEDIFF()
	UNIX_TIMESTAMP()
	FROM_UNIXTIME()

	Appendix E. Using PEAR and PHPUnit
	Installation
	Windows
	Mac OS
	Linux/Unix

	Creating a Connect Instance
	Querying
	Fetching a Row
	Closing a Connection

	Rewriting Example 10-8 to Use PEAR
	Adding Other PEAR Packages
	Unit Testing with PHPUnit

	Index

