Learning Rate Sensitivity Model

Nichols F. Brown Timothy P. Anderson The Aerospace Corporation

2018 NASA Cost and Schedule Symposium August 14-16, 2018

Introduction

Learning in Space System Cost Estimating

- Learning curves are frequently used to model reduction in per unit cost associated with a manufacturing production run
 - Usually, humans get better at doing things thus later units cost less than early ones
- Historically, space system production runs have been small (1 to 4 units)
 - Using an assumed learning rate assumption has produced reliable results
 - Partially, learning rate assumed has not been a very large driver in overall cost
- Future, space is changing and many organizations are proposing or interested in unprecedentedly large production runs (100's to 1000's of units)
 - Learning rate can be the most significant driver to overall cost
- Large production cost estimates are highly sensitive to learning rate assumed
 - With large numbers of spacecraft, it is necessary to test assumptions about learning rates versus cost estimates

As space moves to large production runs, learning rate assumptions become critical and need to be re-visited

Introduction

Learning in Space System Cost Estimating

- The Aerospace Corporation has developed a methodology to test assumptions about learning rates vis a vis proposed cost estimates
- Suppose a spacecraft provider makes claims about the learning rate associated with a cost estimate for a high production rate acquisition
 - We have developed a methodology to provide a data-driven assessment of whether this learning rate/cost combination is feasible, or even likely
 - The sensitivity model further describes the learning rate that would need to be achieved to meet a proposed cost estimate, and how likely that learning rate is to being achieved based on the past history of other high rate production processes
- While this process was developed for a space application, it is equally applicable to other manufacturing processes with large numbers of units

A Methodology to Assess Learning Rate vs. Cost in High Rate Spacecraft Production

Learning Curves Review

- Learning curves enjoy wide use as a tool to estimate recurring costs in a production process
 - In general, as production quantity increases, manufacturing cost decreases in a predictable manner
- Two models in most widespread use:
 - Cumulative Average Theory (Wright) Original model from 1936
 - Every time production quantity is doubled, the <u>average cost required to build a</u> <u>group of *n* units</u> decreases by a constant percentage
 - Single Unit Theory (Crawford)
 - Every time production quantity is doubled, the <u>cost required to build that last single</u> n^{th} unit decreases by a constant percentage
- Both approaches are valid but should not be mixed
 - For a given "% Learning Rate," cumulative average represents faster learning than unit theory

For this study, using cumulative average (Wright) model

Learning Curves Review (Continued)

- Failure to model learning, when it exists, is equivalent to assuming a 100% learning curve (i.e., no learning)
 - Each unit costs the same as the first one built
 - This results in cost estimates that are larger than reality

If neglect to include learning, then cost estimates are unrealistically high

Problem Description

- What is a realistic learning rate for high production space systems?
 - There is little to no historical, empirical data available in space industry
- Look to empirical data from other industries
 - Ideally, complex manufacturing processes which produce 100's to 1000's of units
 - Examples: aircraft, ships, trucks, power plants, petroleum products, etc.
 - Leverage work by Linda Argote and Dennis Epple who estimated the learning rate of a broad collection of manufacturing programs
- We provide a mechanism to evaluate realism learning rate/cost combinations
 - Given an estimate first unit cost for the hardware in question
 - We determine the learning rate needed to achieve a total proposed cost
 - Compare derived learning rate to a collection of learning rates achieved by over 100 projects across a variety of industries to assess difficulty in achieving the derived learning rate
 - Perform sensitivity analysis of total cost versus learning rate

Historical Learning Rates in Manufacturing

- In their paper, "Learning Curves in Manufacturing¹," Linda Argote and Dennis Epple collected data on observed learning rates from more than 100 different manufacturing processes across a wide range of industries
 - The following chart is a histogram representing the learning rate frequency derived from Argote and Epple's paper

¹Linda Argote and Dennis Epple, "Learning Curves in Manufacturing," *Science*, vol. 247, no. 4945, 1990, pp. 920-924.

The Learning Rate Sensitivity Model

- The learning rate plays a major role as a cost driver
 - But it is one of the least known, unpredictable aspects of the cost estimate
 - In their paper, "Historical Cost Improvement Curves for Selected Satellites²," Peter Meisl and Lana Morales proposed broad-based cumulative average theory learning rates of 95% for 1-10 units, 90% for 11-50 units, and 85% for 50 or more units, as well as specific learning rates for individual subsystems
 - While useful for estimating cost, setting learning rates to some static value ignores a major driver of cost risk due to the volatility of learning rates observed
- The Learning Rate Sensitivity Model is constructed with the goal of helping decision makers understand the sensitivity of a cost estimate to the assumed learning rate
- Has been implemented in the Concept Design Center (CDC) cost model
- Developed using Visual Basic for Applications
 - Iteratively computes cost estimates using learning rates that span the range of those found in different industries, from 54% to 108%
 - Identifies implied learning rate of the original cost estimate
 - Computes the cumulative probability of achieving such a learning rate based on industry data
 - Provides numerical and graphic representation of cost estimates that would arise assuming different learning rates

²Peter Meisl and Lana Morales, "Historical Cost Improvement Curves for Selected Satellites: Final Report," Management Consulting and Research, Inc., TR-9338/029-1, 1994.

Example (1 of 5)

• Consider the following example CDC cost estimate of a commercial satellite program containing a large number of units with a high production rate

Mean Parametric Cost Estimate for the Commercial Class D Program					
	Sat+Grnd Dev	Sat+Lnch Prod	Total	Sat T1	Sat Ta for 500
Total Cost (FY18\$M)	\$216	\$8,501	\$8,717	\$56	\$13
Total Cost (FY18\$K)	\$216,012	\$8,501,137	\$8,717,149	\$55,826	\$13,002
SPACE SEGMENT (FY18\$K)	\$216,012	\$6,177,692	\$6,393,704	\$53,048	\$12,355
Payloads	\$34,314	\$3,221,773	\$3,256,087	\$27,666	\$6,444
Communication System	\$34,314	\$3,221,773	\$3,256,087	\$27,666	\$6,444
Bus	\$13,901	\$1,915,873	\$1,929,775	\$16,452	\$3,832
Propulsion	\$505	\$133,038	\$133,543	\$1,142	\$266
ADCS	\$2,157	\$283,243	\$285,400	\$2,432	\$566
TT&C	\$1,157	\$134,778	\$135,935	\$1,157	\$270
C&DH	\$2,445	\$284,723	\$287,168	\$2,445	\$569
Thermal	\$476	\$51,185	\$51,661	\$440	\$102
Power	\$3,471	\$632,300	\$635,771	\$5,430	\$1,265
Structure	\$3,689	\$396,606	\$400,296	\$3,406	\$793
Flight Software	\$138,552		\$138,552		
Integration, Assembly & Test	\$10,300	\$438,961	\$449,261	\$3,769	\$878
Program Level	\$18,945	\$601,085	\$620,030	\$5,162	\$1,202
LAUNCH SEGMENT (FY18\$K)		\$2,323,445	\$2,323,445	\$2,777	\$647

- The total cost is estimated at \$8,717M (FY18), derived using the Maisel and Morales learning rate assumption guidance
 - Similarly, could be used to reproduce a developer's cost estimate, enabling sensitivity analysis of the developer's learning curve assumptions

Example (2 of 5)

 Upon completion, the Learning Rate Sensitivity Model is activated, cycling the cost estimate through all learning rates experienced in industry (54% - 108%) resulting in the following table of cost estimates versus learning rates

Learning Rate	Mean Total
Assumption	Cost (FY18\$M)
54%	\$2,285
55%	\$2,298
56%	\$2,314
57%	\$2,331
58%	\$2,352
59%	\$2,376
60%	\$2,404
61%	\$2,436
62%	\$2,473
63%	\$2,516
64%	\$2,566
65%	\$2,623
66%	\$2,689
67%	\$2,765
68%	\$2,852
69%	\$2,952
70%	\$3,067
71%	\$3,198

Learning Rate	Mean Total		
Assumption	Cost (FY18\$M)		
72%	\$3,347		
73%	\$3,518		
74%	\$3,714		
75%	\$3,936		
76%	\$4,190		
77%	\$4,478		
78%	\$4,806		
79%	\$5,178		
80%	\$5,601		
81%	\$6,080		
82%	\$6,622		
83%	\$7,237		
84%	\$7,932		
85%	\$8,717		
86%	\$9,604		
87%	\$10,605		
88%	\$11,734		
89%	\$13,005		

Learning Rate	Mean Total	
Assumption	Cost (FY18\$M)	
90%	\$14,437	
91%	\$16,048	
92%	\$17,859	
93%	\$19,893	
94%	\$22,177	
95%	\$24,739	
96%	\$27,610	
97%	\$30,827	
98%	\$34,428	
99%	\$38,456	
100%	\$42,958	
101%	\$47,988	
102%	\$53,601	
103%	\$59,863	
104%	\$66,843	
105%	\$74,619	
106%	\$83,274	
107%	\$92,902	
108%	\$103,605	

Example (3 of 5)

- From this table, we can determine what the cost estimate would be for a given cumulative average (Wright) learning rate.,
 - e.g. an 80% learning curve assumption = a mean cost estimate of \$5,601M (FY18).
- Now suppose that a spacecraft developer were to propose a cost estimate of \$3,000M, while asserting that its learning rate is 80%
- This table would suggest that their cost estimate should be closer to \$5,601M if their learning rate assumption is 80%
- Also shows that the developer would need to achieve about a 70% learning rate for total production to cost \$3,000M

Learning Rate	Mean Total		
Assumption	Cost (FY10\$M)		
54%	\$2,285		
55%	\$2,298		
56%	\$2,314		
57%	\$2,331		
58%	\$2,352		
59%	\$2,376		
60%	\$2,404		
61%	\$2,436		
62%	\$2,473		
63%	\$2,516		
64%	\$2,566		
65%	\$2,623		
66%	\$2,689		
67%	\$2,765		
68%	\$2,852		
69%	\$2,952		
70%	\$3,067		
71%	\$3,198		
72%	\$3,347		
73%	\$3,518		
74%	\$3,714		
75%	\$3,936		
76%	\$4,190		
77%	\$4,478		
78%	\$4,806		
79%	\$5,178		
80%	\$5.601		

Learning Rate	Mean Total
Assumption	Cost (FY10\$M)
81%	\$6,080
82%	\$6,622
83%	\$7,237
84%	\$7,932
85%	\$8,717
86%	\$9,604
87%	\$10,605
88%	\$11,734
89%	\$13,005
90%	\$14,437
91%	\$16,048
92%	\$17,859
93%	\$19,893
94%	\$22,177
95%	\$24,739
96%	\$27,610
97%	\$30,827
98%	\$34,428
99%	\$38,456
100%	\$42,958
101%	\$47,988
102%	\$53,601
103%	\$59,863
104%	\$66,843
105%	\$74,619
106%	\$83,274
107%	\$92,902
108%	\$103,605

Example (4 of 5)

- Now we overlay the cost estimates versus learning rates with the industry learning rate data
 - The cost estimate vs. learning rate (red curve) illustrates graphically the sensitivity analysis of the cost estimate as a function of the assumed learning rate

Example (5 of 5)

- Suppose now that the developer has a proposed cost estimate of \$3,000M with an 80% learning rate
- This can be shown to be an optimistic estimate by the developer
 - An 80% learning rate implies a cost of about \$5,600, while a \$3,000M cost estimate implies a learning rate of about 70%
- The decision maker should come away from this thinking that the developer will...
 - Need a much more aggressive learning rate in order to deliver at \$3,000M

or

 Need to start with a very low, optimistic first unit cost to deliver at \$3,000M with an 80% learning rate

Learning Rate	Mean Total	Learning Rate	Mean Total
Assumption	Cost (FY10\$M)	Assumption	Cost (FY10\$M)
		81%	\$6,080
54%	\$2,285	82%	\$6,622
55%	\$2,298	83%	\$7,237
56%	\$2,314	84%	\$7,932
57%	\$2,331	85%	\$8,717
58%	\$2,352	86%	\$9,604
59%	\$2,376	87%	\$10,605
60%	\$2,404	88%	\$11,734
61%	\$2,436	89%	\$13,005
62%	\$2,473	90%	\$14,437
63%	\$2,516	91%	\$16,048
64%	\$2,566	92%	\$17,859
65%	\$2,623	93%	\$19,893
66%	\$2,689	94%	\$22,177
67%	\$2,765	95%	\$24,739
68%	\$2,852	96%	\$27,610
69%	\$2,952	97%	\$30,827
70%	\$3,067	98%	\$34,428
71%	\$3,198	99%	\$38,456
72%	\$3,347	100%	\$42,958
73%	\$3,518	101%	\$47,988
74%	\$3,714	102%	\$53,601
75%	\$3,936	103%	\$59,863
76%	\$4,190	104%	\$66,843
77%	\$4,478	105%	\$74,619
78%	\$4,806	106%	\$83,274
79%	\$5,178	107%	\$92,902
80%	\$5,601	108%	\$103,605

Conclusion

- The Learning Rate Sensitivity Model is one of the tools used by The Aerospace Corporation to assess reasonableness of proposed cost estimates
- Useful in evaluating credibility of one or more cost estimates which might have substantially different learning rate assumptions
 - Allows one to estimate the learning rate that would be necessary to deliver a high rate production program given a developer's proposed cost
 - Provides a basis for assessing reasonableness of learning assumptions
- Can also be used to estimate sensitivity of cost estimates to learning assumptions, especially in high rate production acquisitions
- Further research:
 - Historical data from Argote and Epple are predominantly large hardware and labor intensive systems which may be comparable to traditional spacecraft manufacturing methods
 - But, as spacecraft designs trend toward microsats and cubesats, the traditional learning curve theories described herein may not adequately apply

Tool to assess reasonableness of cost estimates versus learning rate assumptions