
Learning SciPy for Numerical and Scientific Computing

Francisco Blanco-Silva

University of South Carolina

A PERSONAL PERSPECTIVE

A PERSONAL PERSPECTIVE

Scientific Computing is concerned with constructing mathematical models and quantitative analysis techniques, and using computers to analyze and solve scientific problems.

Trust the Mathematicians: High-level Mathematics do solve challenging research problems in *simple* ways—even if you don't understand why or how yet!

A PERSONAL PERSPECTIVE

- Trust the Mathematicians: High-level Mathematics do solve challenging research problems in *simple* ways—even if you don't understand why or how yet!
- Trust the Engineer, Biologist, Chemist, Physicist, ...: There are different ways to solve any problem. Rather than dismiss a different point of view, embrace it, work it out, explore the source of the problem, and look for connections with other techniques.

A PERSONAL PERSPECTIVE

- Trust the Mathematicians: High-level Mathematics do solve challenging research problems in *simple* ways—even if you don't understand why or how yet!
- Trust the Engineer, Biologist, Chemist, Physicist, ...: There are different ways to solve any problem. Rather than dismiss a different point of view, embrace it, work it out, explore the source of the problem, and look for connections with other techniques.
- Trust the Computer Scientist: Writing low-level code from scratch seldom guarantees best results.

A PERSONAL PERSPECTIVE

- Trust the Mathematicians: High-level Mathematics do solve challenging research problems in *simple* ways—even if you don't understand why or how yet!
- Trust the Engineer, Biologist, Chemist, Physicist, ...: There are different ways to solve any problem. Rather than dismiss a different point of view, embrace it, work it out, explore the source of the problem, and look for connections with other techniques.
- Trust the Computer Scientist: Writing low-level code from scratch seldom guarantees best results.
- ► Find a reliable way to communicate through software.

SOME BASIC PRINCIPLES IN SCIENTIFIC COMPUTING

A PERSONAL PERSPECTIVE

- Trust the Mathematicians: High-level Mathematics do solve challenging research problems in *simple* ways—even if you don't understand why or how yet!
- Trust the Engineer, Biologist, Chemist, Physicist, ...: There are different ways to solve any problem. Rather than dismiss a different point of view, embrace it, work it out, explore the source of the problem, and look for connections with other techniques.
- Trust the Computer Scientist: Writing low-level code from scratch seldom guarantees best results.
- ► Find a reliable way to communicate through software.
- Big guns: Solving these problems usually require massive amounts of calculations and are often executed on supercomputers or distributed computing platforms.

- Optimized Algebra Libraries
 - ► BLAS
 - ► LAPACK

Optimized Algebra Libraries

- ► BLAS
- ► LAPACK

Computer Algebra systems

- ► MATLAB
- ▶ Mathematica
- ▶ SciLab
- ► GNU Octave

Software

- Optimized Algebra Libraries
 - ► BLAS
 - ► LAPACK
- Computer Algebra systems
 - ► MATLAB
 - Mathematica
 - ▶ SciLab
 - GNU Octave
- Computer Languages
 - ► C
 - ▶ Fortran
 - ▶ Perl
 - ► R
 - ▶ julia
 - Python

Software

Optimized Algebra Libraries

- ► BLAS
- ► LAPACK

Computer Algebra systems

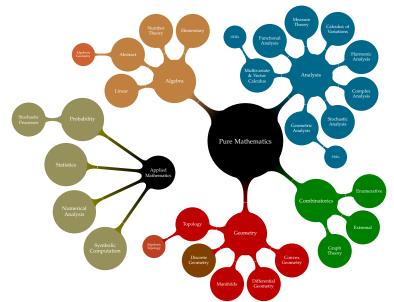
- ► MATLAB
- Mathematica
- ▶ SciLab
- GNU Octave

Computer Languages

- ► C
- ▶ Fortran
- Perl (with PDL)
- ► R
- ▶ julia
- ▶ Python

Software

- Optimized Algebra Libraries
 - ► BLAS
 - ► LAPACK
- Computer Algebra systems
 - ► MATLAB
 - Mathematica
 - ▶ SciLab
 - GNU Octave
- Computer Languages
 - ► C
 - ▶ Fortran
 - Perl (with PDL)
 - ► R
 - ▶ julia
 - ▶ Python
 - with PyLab: ipython + NumPy + SciPy + matplotlib


Software

- Optimized Algebra Libraries
 - ► BLAS
 - ► LAPACK

Computer Algebra systems

- ► MATLAB
- Mathematica
- ▶ SciLab
- GNU Octave
- Computer Languages
 - ► C
 - ▶ Fortran
 - Perl (with PDL)
 - ► R
 - ▶ julia
 - ▶ Python
 - with PyLab: ipython + NumPy + SciPy + matplotlib
 - with scikits and Pandas on top of that

THE STRUCTURE OF SCIPY Similarity to the different areas of Mathematics

THE STRUCTURE OF SCIPY Similarity to the different areas of Mathematics

scipy.misc scipy.constants

THE STRUCTURE OF SCIPY SIMILARITY TO THE DIFFERENT AREAS OF MATHEMATICS

numpy.polynomial scipy.linalg scipy.sparse.linalg

scipy.misc
scipy.constants

THE STRUCTURE OF SCIPY SIMILARITY TO THE DIFFERENT AREAS OF MATHEMATICS

numpy.polynomial scipy.linalg scipy.sparse.linalg

scipy.special
scipy.integrate
scipy.optimize
scipy.interpolate
scipy.fftpack

scipy.misc
scipy.constants

THE STRUCTURE OF SCIPY SIMILARITY TO THE DIFFERENT AREAS OF MATHEMATICS

numpy.polynomial
scipy.linalg
scipy.sparse.linalg

scipy.special
scipy.integrate
scipy.optimize
scipy.interpolate
scipy.fftpack

scipy.misc
scipy.constants

scipy.cluster
scipy.sparse.csgraph

THE STRUCTURE OF SCIPY

numpy.polynomial
scipy.linalg
scipy.sparse.linalg

scipy.special
scipy.integrate
scipy.optimize
scipy.interpolate
scipy.fftpack

scipy.misc
scipy.constants

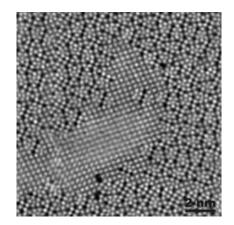
scipy.cluster
scipy.sparse.csgraph

scipy.spatial
scipy.odr

THE STRUCTURE OF SCIPY

numpy.polynomial
scipy.linalg
scipy.sparse.linalg

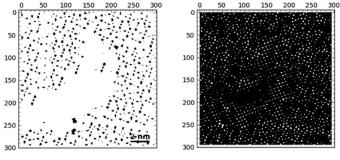
scipy.special
scipy.integrate
scipy.optimize
scipy.interpolate
scipy.fftpack


scipy.signal
scipy.ndimage
scipy.stats
scipy.stats.mstats

scipy.misc
scipy.constants

scipy.cluster
scipy.sparse.csgraph

scipy.spatial
scipy.odr


Extract the structural model of a molecule of $Nb_4W_{13}O_{47}$

COMPUTATION OF STRUCTURAL MODELS

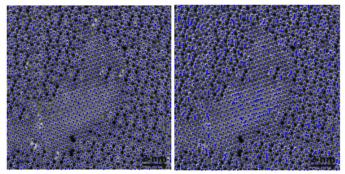
We take the following (naïve) approach:

Segmentation of the atoms by thresholding and morphological operations.

img>0.2

img>0.7

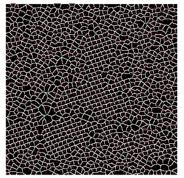
COMPUTATION OF STRUCTURAL MODELS


We take the following (naïve) approach:

- Segmentation of the atoms by thresholding and morphological operations.
- Connected component labeling to extract each atom for posterior examination.

COMPUTATION OF STRUCTURAL MODELS

We take the following (naïve) approach:


- Segmentation of the atoms by thresholding and morphological operations.
- Connected component labeling to extract each atom for posterior examination.
- Computation of the centers of mass of each label identified as an atom.

COMPUTATION OF STRUCTURAL MODELS

We take the following (naïve) approach:

- Segmentation of the atoms by thresholding and morphological operations.
- Connected component labeling to extract each atom for posterior examination.
- Computation of the centers of mass of each label identified as an atom.
- Computation of the Voronoi diagram of the lattice formed by the previous points.

COMPUTATION OF STRUCTURAL MODELS

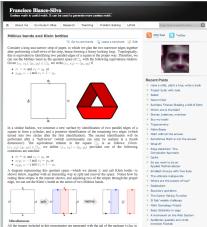
```
# Preamble
1
2
    import numpy
3
    import scipy
4
    from scipy.ndimage import binary_opening, label, center_of_mass,
         distance transform edt
5
6
7
8
9
10
11
    # Segmentation of each atom
12
13
14
    # Computation of centers of mass of each atom
15
16
    xcoords = array([x[0] for x in coords])
17
    vcoords = arrav([x[1] for x in coords])
18
19
20
```

```
1
2
    import numpy
3
    import scipy
4
    from scipy.ndimage import binary_opening, label, center_of_mass,
5
    # Load the image
6
    img = scipy.misc.imread('NbW-STEM.png')
7
8
9
10
11
    # Segmentation of each atom
12
13
14
    # Computation of centers of mass of each atom
15
16
    xcoords = array([x[0] for x in coords])
17
    vcoords = arrav([x[1] for x in coords])
18
19
20
```

```
1
2
    import numpy
3
    import scipy
4
    from scipy.ndimage import binary_opening, label, center_of_mass,
5
6
7
    # Apply a threshold to segment atoms
8
    BWatoms = (img > 0.62)
9
10
11
    # Segmentation of each atom
12
13
14
    # Computation of centers of mass of each atom
15
16
    xcoords = array([x[0] for x in coords])
17
    vcoords = arrav([x[1] for x in coords])
18
19
20
```

```
1
2
    import numpy
3
    import scipy
4
    from scipy.ndimage import binary_opening, label, center_of_mass,
5
6
7
8
    # Perform a binary operation to eliminate outliers
9
10
    BWatoms = binary opening (BWatoms, structure=numpy.ones((2,2)))
11
    # Segmentation of each atom
12
13
14
    # Computation of centers of mass of each atom
15
16
    xcoords = array([x[0] for x in coords])
17
    vcoords = arrav([x[1] for x in coords])
18
19
20
```

SCIPY IN ACTION Computation of structural models


```
1
2
    import numpy
3
    import scipy
4
    from scipy.ndimage import binary_opening, label, center_of_mass,
5
6
7
8
9
10
11
    # Segmentation of each atom
12
    structuring_element = [[0,1,0],[1,1,1],[0,1,0]]
13
    segmentation, segments = label (BWatoms, structuring element)
14
    # Computation of centers of mass of each atom
15
16
    xcoords = array([x[0] for x in coords])
17
    vcoords = arrav([x[1] for x in coords])
18
19
20
```

```
Scientific Computing
0000
```

```
1
2
    import numpy
3
    import scipy
4
    from scipy.ndimage import binary_opening, label, center_of_mass,
5
6
7
8
9
10
11
    # Segmentation of each atom
12
13
14
    # Computation of centers of mass of each atom
15
    coords = center of mass(img, segmentation, range(1, segments+1))
16
    xcoords = array([x[0] for x in coords])
17
    ycoords = array([x[1] for x in coords])
18
    # Compute the Voronoi diagram of the lattice
19
20
```

```
1
2
    import numpy
3
    import scipy
4
    from scipy.ndimage import binary_opening, label, center_of_mass,
5
6
7
8
9
10
11
    # Segmentation of each atom
12
13
14
    # Computation of centers of mass of each atom
15
16
    xcoords = array([x[0] for x in coords])
17
    vcoords = arrav([x[1] for x in coords])
    # Compute the Voronoi diagram of the lattice
18
    L1, L2 = distance_transform_edt(seqmentation==0, return distances=False,
19
         return indices=True)
20
    Voronoi = segmentation[L1,L2]
```

FOR MORE INFORMATION, EXAMPLES, IDEAS, ...

blancosilva.wordpress.com

Learning SciPy for Numerical and Scientific Computing

A practical tutorial that guarantees fast, accurate, and computing problems with the power of SciPy and Python

PACKT open source*