
1

Learning Sparsifying Transforms
Saiprasad Ravishankar, Student Member, IEEE, and Yoram Bresler, Fellow, IEEE

Abstract—The sparsity of signals and images in a certain
transform domain or dictionary has been exploited in many
applications in signal and image processing. Analytical sparsi-
fying transforms such as Wavelets and DCT have been widely
used in compression standards. Recently, synthesis sparsifying
dictionaries that are directly adapted to the data have become
popular especially in applications such as image denoising, in-
painting, and medical image reconstruction. While there has been
extensive research on learning synthesis dictionaries and some
recent work on learning analysis dictionaries, the idea of learning
sparsifying transforms has received no attention. In this work,
we propose novel problem formulations for learning sparsifying
transforms from data. The proposed alternating minimization
algorithms give rise to well-conditioned square transforms. We
show the superiority of our approach over analytical sparsifying
transforms such as the DCT for signal and image representation.
We also show promising performance in signal denoising using
the learnt sparsifying transforms. The proposed approach is
much faster than previous approaches involving learnt synthesis,
or analysis dictionaries.

Index Terms—Sparsifying transforms, Dictionary learning,
Signal denoising, Sparse representation, Compressed Sensing.

I. INTRODUCTION

Sparse representation of signals has become widely popular
in recent years. It is well known that natural signals and im-
ages have an essentially sparse representation (few significant
non-zero coefficients) in analytical transform domains such
as Wavelets [1] and discrete cosine transform (DCT). This
property has been exploited in designing various compression
algorithms and in compression standards such as JPEG2000
[2].

While transforms are a classical tool in signal processing,
alternative models have also been studied for sparse rep-
resentation of data. Two such well-known models are the
synthesis and analysis models [3]. More recently, attention has
turned to adapting these models to data. These approaches are
known in the literature as synthesis dictionary learning [4]–[9]
and analysis dictionary learning [10]–[15]. Surprisingly, the
adaptation or learning of transforms has received no attention.
In this paper, we develop formulations aimed at learning
sparsifying transforms from data. In the following, we discuss
the synthesis and analysis models and their learning, and
elucidate their drawbacks. This discussion will also serve to
highlight the fundamental differences between the transform
model and the synthesis/analysis models. The former will be
shown to possess important advantages.

Copyright (c) 2012 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending a request to pubs-permissions@ieee.org.

This work was supported in part by the National Science Foundation (NSF)
under grant CCF 10-18660.

S. Ravishankar and Y. Bresler are with the Department of Electrical
and Computer Engineering and the Coordinated Science Laboratory, Uni-
versity of Illinois, Urbana-Champaign, IL, 61801 USA e-mail: (ravisha3,
ybresler)@illinois.edu.

A. Synthesis Model for Sparse Representation
A popular sparse representation model is the synthesis

model, which states that a signal y ∈ Rn may be represented as
a linear combination of a small number of atoms/columns from
a dictionary D ∈ Rn×K [3], [16]. This means y = Dx, where
x ∈ RK is sparse with ∥x∥0 ≪ K, and the l0 quasi-norm
counts the number of non-zeros in x. In practice, “real world”
signals are expected to deviate from this model. Therefore, the
data is more generally assumed to satisfy y = Dx+ ξ, where
ξ is an error or noise term in the signal domain [16]. When
n = K, and D is full rank, the dictionary D is said to be
a basis, whereas when K > n, the dictionary is said to be
overcomplete.

The approach of representing a signal in a synthesis dictio-
nary D has received considerable attention recently. Specif-
ically, the problem shown in (1), of extracting the sparse
representation of a signal y in a synthesis dictionary D, has
been studied in great detail in recent years [17]–[20], and is
popularly known as the sparse coding problem 1.

min
x

∥y −Dx∥22 s.t. ∥x∥0 ≤ s (1)

Here, parameter s represents the desired sparsity level.
Although this problem is NP-hard (Non-deterministic
Polynomial-time hard) and therefore computationally infeasi-
ble in general, under certain conditions it can be solved exactly
using polynomial-time algorithms [17]–[23]. Other algorithms,
for which similar theoretical performance guarantees may not
be available, often provide even better empirical performance
[24]–[28]. All these various algorithms are, however, compu-
tationally expensive in practice [16].

The process of obtaining a sparse representation for a
signal/image requires explicit knowledge of the synthesis dic-
tionary D. Many analytical dictionaries have been developed
for sparse image representation such as the Ridgelet [29],
Contourlet [30], and Curvelet [31] dictionaries.

The idea of learning a synthesis dictionary from training
signals has also been exploited [4]–[7]. Given a matrix Y ∈
Rn×N whose columns represent training signals, the problem
of learning a dictionary D that gives a sparse representation
for the signals in Y , can be formulated as follows [6].

(P0s) min
D,X

∥Y −DX∥2F s.t. ∥Xi∥0 ≤ s ∀ i (2)

Here, the columns Xi of matrix X ∈ RK×N with maximum
allowed sparsity level s are the sparse representations, or
sparse codes, of the signals/columns in Y , and ∥ · ∥F denotes
the Frobenius norm. The columns of the learnt dictionary
in (P0s) are typically constrained to be of unit norm (or
normalized) in order to avoid the scaling ambiguity [32].

1Alternative formulations swap the constraint and cost, or use a Lagrangian
formulation.



2

Problem (P0s) is to minimize the fitting error of the training
signals with respect to the dictionary D subject to sparsity
constraints. This problem too is NP-hard (for each fixed D, it
requires the solution of N sparse coding problems), and unlike
the sparse coding problem, there are no known polynomial-
time algorithms for its exact solution under practically inter-
esting conditions. Nonetheless, several popular heuristics have
been developed for the solution of (P0s), or its variations,
in recent years [5]–[9]. The algorithms typically alternate
between finding the dictionary D (dictionary update step), and
the sparse representations X (sparse coding step). The sparse
coding step is always solved with fixed D. Of the various
algorithms, the K-SVD algorithm [6] has been especially
popular in applications.

Unfortunately, since Problem (P0s) is non-convex, methods
such as K-SVD can get easily caught in local minima or
even saddle points [33]. Moreover, the sparse coding step in
such methods is computationally expensive. Although there
has been some preliminary theoretical analysis of dictionary
identification [32], no proof exists to date for the general global
convergence of K-SVD or other synthesis dictionary learning
algorithms.

Adaptive synthesis dictionaries have been shown to be
useful in a variety of applications such as image/video denois-
ing, image/video inpainting, deblurring, demosaicing [34]–
[40], clustering and classification [41], and tomography [42].
Recently, we have shown impressive performance for learnt
dictionaries in magnetic resonance imaging (MRI) involving
highly undersampled k-space data [43], [44].

B. Analysis Model for Sparse Representation

Another model for sparse representation of data is the
analysis model [3]. This model suggests that given a signal
y ∈ Rn and operator Ω ∈ Rm×n, the representation Ωy ∈ Rm

is sparse, i.e., ∥Ωy∥0 ≪ m [12], [15]. Here, Ω is known
as the analysis dictionary, since it “analyzes” the signal y to
produce a sparse result. The zeros of Ωy essentially define the
subspace to which the signal belongs, and the total number
of these zeros is called co-sparsity [12], [15]. A well-known
analysis dictionary is the finite difference dictionary. Elad et
al. [3] derived conditions for the equivalence of analysis and
synthesis based priors.

When the given signal y ∈ Rn is contaminated with noise,
the analysis model is extended as y = q + ξ, with Ωq being
sparse, and ξ representing the noise [12], [15]. We refer to this
as the noisy signal analysis model. Given the noisy signal y
and dictionary Ω, the problem of recovering the clean signal
q is as follows [12], [15].

min
q

∥y − q∥22 s.t. ∥Ωq∥0 ≤ m− t (3)

Here, parameter t represents the minimum allowed co-sparsity.
This problem is called the analysis sparse coding problem [15].
It can also be viewed as a denoising scheme. This problem
too is NP-hard, just like sparse coding in the synthesis case.
Approximate algorithms have been proposed in recent years
for solving the analysis sparse coding problem [12], [15],
which similar to the synthesis case are also computationally
expensive. Note that when the analysis dictionary Ω is square

and non-singular, we have q = Ω−1v for some sparse v, and
the problem of finding q above is identical to a synthesis sparse
coding problem of finding v, where D = Ω−1 is the synthesis
dictionary. While (3) uses the l0 quasi norm for sparsity, some
authors [14] alternatively consider a convex relaxation of the
problem in which they replace it with an l1 norm that they
add as a penalty in the cost.

While there has been considerable research on the learn-
ing of synthesis dictionaries, the idea of learning analysis
dictionaries has received only recent attention. Peyré et al.
[10] learn a dictionary in a sparsity-promoting analysis-type
prior. Analysis dictionary learning has been pursued by several
authors. Given the training matrix Y ∈ Rn×N , Ophir et al.
[13] and Yaghoobi et al. [11] minimize the l0 and l1 norm
of ΩY respectively. However, the (global) convergence of
these learning algorithms is unclear, even in the case when
l1 relaxation is used for sparsity.

Some authors alternatively consider analysis dictionary
learning with the noisy signal analysis model [12], [14], [15].
Rubinstein et al. [12], [15] proposed the following formulation
for the noisy signal case that involves the l0 quasi norm for
sparsity.

(P0a) min
Ω,Q

∥Y −Q∥2F s.t. ∥ΩQi∥0 ≤ m− t ∀ i (4)

The columns of matrix ΩQ are constrained to have a minimum
co-sparsity of t. In (P0a), the rows of Ω are also typically
constrained to be of unit norm [14], [15].

Problem (P0a) is non-convex and NP-hard. However, heuris-
tics have been proposed for its solution such as the analysis
K-SVD algorithm [15] which alternates between updating
Q (analysis sparse coding), and Ω. Still, no convergence
guarantees exist for these algorithms. Indeed, because these
algorithms are similar to those proposed in the synthesis case,
we expect that they can get similarly stuck in bad local
minima.

The promise of learnt analysis dictionaries in signal and im-
age processing applications has not been sufficiently explored.
Furthermore, it is unclear whether the recent methods can out-
perform previous synthesis based approaches such as K-SVD
[6]. On the contrary, in preliminary experiments, Yaghoobi et
al. [14], [45] show that the learned operator denoises not much
better than even a fixed analytical dictionary.

C. Transform Model for Sparse Representation

In this paper, we pursue a generalized analysis model for
sparse representation of data, which we call the transform
model. This model suggests that a signal y ∈ Rn is approx-
imately sparsifiable using a transform W ∈ Rm×n, that is
Wy = x+ e where x ∈ Rm is sparse, i.e., ∥x∥0 ≪ m, and e
is the representation error or residual in the transform domain
that is assumed to be small (of small norm). The transform
model suggests that signals can be approximately sparse in
the transform domain. This can be viewed as a generalization
of the analysis model with Ωy exactly sparse. Additionally,
unlike the analysis model in which the sparse representation
Ωy lies in the range space of Ω, the sparse representation x
in the transform model is not constrained to lie in the range
space of W . The generalization allows the transform model



3

to include a wider class of signals within its ambit than the
analysis model.

The transform model Wy ≈ x with x sparse, is also more
general than the notion of compressibility [46] applied to Wy,
where the assumption would be that the coefficients of Wy,
when arranged in non-increasing magnitude order, follow a
power law decay. The transform model only assumes that the
residual Wy − x has small energy compared to the energy in
x. Well-known examples of sparsifying transforms for natural
signals and images include the Wavelets and DCT.

The reason we have chosen the name “transform model”
for our approach is because the assumption Wy ≈ x has
been traditionally used in transform coding (with orthonormal
transforms), and the concept of transform coding is older [47]
and pre-dates the terms analysis and synthesis [48].

The transform model is more general not only than the
analysis model, but also than the noisy signal analysis model.
To demonstrate this point, we use for convenience, the same
symbol W for both the transform and analysis operator.

First, if we assume that the signal y satisfies the noisy signal
analysis model, we have the representation y = q + ξ with
z′ = Wq being sparse. This implies that

Wy = W (q + ξ) = Wq +Wξ = z′ + e′ (5)

where e′ = Wξ is the error in the transform domain of W .
Thus, z′ is a transform code with error e′ for the noisy y.
Hence, it is true that if a signal y satisfies the noisy signal
analysis model, it also satisfies a corresponding transform
model. However, the converse is not true, in general. That is,
for a given signal y, if the transform model Wy = x + e
holds with sparse x, then the relation y = q′ + ξ′, with
Wq′ = x need not hold for any error ξ′. This is because the
transform model does not restrict its sparse code x to lie in
the range space of W (i.e., Wq′ = x need not be true for any
q′, especially for a tall/overcomplete transform W ). Hence,
if a signal satisfies the transform model, it need not satisfy
a corresponding noisy signal analysis model. In this sense,
the noisy signal analysis model is restrictive compared to the
transform model, or, in other words, the transform model is
more general. In this paper, we will also consider an explicit
extension of the transform model for the “noisy signal” case,
that makes it even more general.

We note that in the aforementioned arguments, the relation
Wq′ = x can be satisfied when the transform W is square
and full rank (invertible), in which case q′ = W−1x. How-
ever, although for the square and invertible case, the noisy
signal analysis model translates to a corresponding transform
model and vice-versa, the error ξ in the signal domain in
the noisy signal analysis model becomes e′ = Wξ in the
transform domain and conversely, the error e in the transform
domain for the transform model becomes ξ′ = W−1e in the
signal domain. Thus, even small errors in one model can be
amplified, when translated to the other model for a poorly
conditioned matrix W . (That is, ∥Wξ∥2 or its “normalized”
version ∥Wξ∥2 / ∥Wy∥2, and

∥∥W−1e
∥∥
2

or its “normalized”
version

∥∥W−1e
∥∥
2
/ ∥y∥2, can be large.) This indicates that the

noisy signal analysis model can translate to a bad transform
model and vice-versa.

When a sparsifying transform W is known for the signal
y, the process of obtaining a sparse code x of given sparsity
s involves solving the following problem, which we call the
transform sparse coding problem.

min
x

∥Wy − x∥22 s.t. ∥x∥0 ≤ s (6)

This problem minimizes the transform domain residual. The
solution x̂ is obtained exactly by thresholding the product
Wy and retaining the s largest coefficients. In contrast, sparse
coding with the synthesis or analysis dictionaries involves in
general an NP-hard problem. Thus, a sparsifying transform is
much simpler and faster to use in practice. Given the transform
W and sparse code x, we can also recover a least squares
estimate of the true signal y by minimizing ∥Wy − x∥22 over
all y ∈ Rn. The recovered signal is then simply W †x, where
W † is the pseudo-inverse of W .

While analytical sparsifying transforms such as the
Wavelets, DCT, and discrete fourier transform (DFT) have
been extensively used in many applications such as compres-
sion, denoising, and compressed sensing [49], [50], adapting
the sparsifying transform to the data could make it more
effective in these applications. In this adaptive setting, given
a matrix Y of training signals, we would like to learn a
transform W such that the sparsification error ∥WY −X∥2F
is minimized. Here, X is again a matrix (unknown) containing
the sparse codes of the training signals as columns. This
idea of learning a sparsifying transform, is the subject of this
paper. In this paper, we restrict ourselves to learning square
transforms, i.e., W ∈ Rn×n.

We propose a novel framework for transform learning that
aims to learn well-conditioned transforms, and provide algo-
rithms to solve the proposed problems. The learnt transforms
will be shown to be useful in applications such as signal
denoising. In contrast to the prior work on synthesis and
analysis dictionary learning, the transform model allows WY
to be approximated by a sparse matrix X , which makes the
learning of this model easier. Specifically, with the transform
model, sparse coding is cheap and exact. Furthermore, un-
like synthesis or analysis dictionary learning, the proposed
transform learning formulation does not include a highly
non-convex function involving the product of two unknown
matrices. Moreover, while the convergence analysis in this
paper is only partial, it shows monotone convergence of the
objective function in the proposed algorithm. Empirical results
demonstrate convergence of the iterates regardless of initial
conditions. This desirable convergence behavior contrasts with
that of current synthesis or analysis learning algorithms, for
which no such results, theoretical or empirical, are available.

The rest of the paper is organized as follows. Our problem
formulations for learning sparsifying transforms are described
in Section II. Section III details the proposed algorithms for
transform learning and discusses their relevant properties such
as convergence and computational cost. In Section IV, we
introduce a novel signal denoising framework incorporating
sparsifying transforms. Section V demonstrates the perfor-
mance of our algorithms including promising performance of
learnt transforms in denoising. In Section VI, we conclude
with proposals for future work.



4

II. TRANSFORM LEARNING PROBLEMS AND PROPERTIES

A. Trivial Solutions, and Full Rank Constraint

Given the training matrix Y ∈ Rn×N , we propose to min-
imize the sparsification error given by ∥WY −X∥2F , where
W ∈ Rm×n and X is column-sparse.

(P1) min
W,X

∥WY −X∥2F s.t. ∥Xi∥0 ≤ s ∀ i (7)

The minimization corresponds to fitting the transform model
parametrized by W and X to the data Y , by selecting the best
(matrix) parameters W and X . The notion of sparsification
error can be justified by the fact that natural signals and
images can be reasonably approximated in a transform domain
(such as Wavelets) using few (here s) significant non-zero
transform coefficients. The rest of the coefficients contribute
only marginally to the sparsification error.

Problem (P1), although intuitive, has a glaring defect. It has
a trivial solution W = 0, X = 0. In order to avoid the trivial
solution, we need to enforce additional constraints or penalties.
Introducing a constraint on the norm of W or of its rows
(similar to constraints in synthesis [6], [7], [32] or analysis
[14], [15] dictionary learning) may seem apt for this setting.
However, such a constraint does not preclude the possibility
of repeated rows in W . That is, if a particular non-trivial row
vector can individually provide the lowest sparsification error
for Y (compared to any other row vector), the best solution
would be to form W by repeating this row. This problem is
exacerbated in the case when Y has rank n−1 or lower (i.e., is
rank deficient). In this case, all the rows of W can be chosen
as scaled versions of a left null vector (left null space has
dimension 1 or higher) of Y , leading to a zero sparsification
error. However, the resulting W has repeated rows and is not
useful.

Therefore, an appropriate constraint must preclude zero
rows, repeated rows, or even linearly dependent rows (except
when W is a tall matrix, in which case linear dependence of
the rows cannot be avoided but may be minimized). In the
following, we consider a formulation for the case of square
W (m = n).

We propose a full rank constraint to address the ambi-
guities in the square case. We note that many well-known
square sparsifying transforms, such as the DCT, Wavelets,
and Hadamard, are non-singular. The one-dimensional finite
difference transform, which typically has fewer rows than
columns, can be appended with a linearly independent row(s),
thereby making it non-singular. The two-dimensional finite
difference transform can be obtained as the Kronecker product
of two such non-singular (one-dimensional) matrices.

However, full rank is a non-convex and non-smooth con-
straint. Hence, in the square W setting, we propose to add a
negative log-determinant (of W ) penalty [51] in the cost. Such
a constraint penalizes transforms that have a small determinant
(note that full rank is trivially imposed by this constraint).

(P2) min
W,X

∥WY −X∥2F − λ log detW (8)

s.t. ∥Xi∥0 ≤ s ∀ i

Fig. 1. Plot of − log detW for 2× 2 diagonal matrices W . The horizontal
axes indicate the first and second diagonal entry values.

Problem (P2) is non-convex. To illustrate this fact, we plot
in Figure 1, − log detW for 2× 2 diagonal matrices W as a
function of the diagonal elements. The function is well-defined
and symmetric in the first and third quadrants (W is positive
definite in the first quadrant and negative definite in the third).
While the function is convex within each of these quadrants,
it is non-convex overall. Note that the domain of the function,
which is the union of the first and third quadrants, is also a
non-convex set.

One could constrain W in (P2) to be positive definite,
W ≻ 0. If in addition the l0 quasi norm for X were
relaxed to an l1 norm, the resulting problem would be jointly
convex in W and X . However, enforcing the transform to
be positive definite is too restrictive in general. Many well-
known sparsifying transforms such as the DCT and Wavelets
are not positive definite. Hence, a positive definite constraint
will preclude many good candidate transforms from the class
of solutions. Therefore, we do not use such a constraint.

B. Scale Ambiguity and Conditioning

When the data Y admits an exact representation, i.e., there
exists a pair (W̃ , X̃) with X̃ sparse such that W̃Y = X̃ ,
then the cost in (P2) can be made arbitrarily small by pre-
multiplying W̃ and X̃ by a scalar α (or equivalently, by a di-
agonal matrix Γ with entries ±α chosen such that det (ΓW̃ ) >
0) with α → ∞. The cost becomes unbounded from below
in this case, which spells trouble for optimization algorithms.
We refer to this phenomenon as the ‘scale’ ambiguity.

Moreover, the negative log determinant penalty although
it enforces full rank, does not necessarily imply good-
conditioning. To elucidate the importance of conditioning,
consider again the case of Y with rank n − 1 or lower. Let
Ŵ be a matrix that has the left singular vectors of Y as its
rows. We can scale a row of Ŵ that contains a singular vector
corresponding to a zero singular value by 1

ϵp , where ϵ > 0

is small and p is an integer. All the other rows of Ŵ can
be scaled by ϵ. In this case, such a scaled transform Ŵ is
full rank (has non-zero det Ŵ = ϵn−1−p, which is large for
p ≫ n − 1), and provides a sparsification error (computed
using the X , whose columns are obtained by thresholding the
columns of ŴY ) that is close to zero for sufficiently small
ϵ. However, this transform is poorly conditioned (condition
number κ(Ŵ ) = 1

ϵp+1 , which is large for large p), and



5

produces only about as much good/non-redundant information
as the single row with the large scaling (since the other
rows are almost zero in scale). With better conditioning, we
would expect the transform to produce more information and
less degeneracies. The conditioning of a transform is also an
important property for applications such as denoising.

Note that the transform Ŵ in the aforementioned example
also suffers from the scale ambiguity (the objective function
decreases without bound as ϵ → 0). While the example
considers an extreme case of rank deficient Y , Problem (P2)
was also empirically observed to give rise to ill-conditioned
transforms for matrices Y constructed from image patches.

In order to address the scale ambiguity and the conditioning
of the transform, we introduce an additional norm-constraint
∥W∥F ≤ 1, which is convex.2 Alternatively, the constraint
can be added as a penalty in the cost to result in the following
formulation.

(P3) min
W,X

∥WY −X∥2F − λ log detW + µ ∥W∥2F (9)

s.t. ∥Xi∥0 ≤ s ∀ i

While we use the l0 quasi-norm for sparsity in Problem
(P3), it could be substituted by a convex l1 penalty in the cost
(i.e., penalize ∥X∥1 =

∑N
i=1 ∥Xi∥1).

In the following, we will prove that the cost function
of Problem (P3) is lower bounded and encourages well-
conditioning. For convenience, we define

Q , − log detW + c ∥W∥2F (10)

Then, the cost function of Problem (P3) can be written as
follows

∥WY −X∥2F + λQ (11)

with c = µ
λ . Since, ∥WY −X∥2F ≥ 0, we proceed to lower

bound Q. We define

Q0 , n

2
+

n

2
log(2c) (12)

Lemma 1. Suppose W ∈ Rn×n has positive determinant, and
let Q , − log detW + c ∥W∥2F , for some c > 0. Then,

Q ≥ n

2
+

n

2
log(2c)− log

2κ

1 + κ2
(13)

where κ is the 2-norm condition number of W .

Proof: See Appendix A.

Corollary 1. Q ≥ Q0, with equality if and only if κ = 1 and
the singular values of W are all equal to

√
1
2c .

Proof: See Appendix B.

It follows from corollary 1 that the cost function in equation
(11) is lower bounded by λQ0. Furthermore, Problem (P3)
attains this lower bound if and only if there exists a pair
(Ŵ , X̂) with X̂ sparse (and det Ŵ > 0) such that ŴY = X̂ ,
and the singular values of Ŵ are all equal to

√
0.5λ/µ (hence,

2The Frobenius-norm constraint could be alternatively replaced by con-
straining each row of W to unit norm. However, this alternative was found
empirically to produce inferior transforms than those resulting from Problem
(P3).

the condition number κ(Ŵ ) = 1). Thus, formulation (P3) does
not suffer from the scale ambiguity (due to finite lower bound
on cost), and favors both a low sparsification error and good
conditioning.

Next, we demonstrate that the function Q can be used to
derive an upper bound for κ(W ).

Proposition 1. Suppose W ∈ Rn×n has positive determinant,
then

1 ≤ κ ≤ eQ−Q0 +
√
e2(Q−Q0) − 1

Proof: Inequality (13) in Lemma 1 can be rewritten as
κ2 − 2κeQ−Q0 + 1 ≤ 0. Solving for κ, we get

eQ−Q0 −
√
e2(Q−Q0) − 1 ≤ κ ≤ eQ−Q0 +

√
e2(Q−Q0) − 1

Since, the lower bound above is ≤ 1, we instead use the trivial
lower bound of 1 for κ. �

In Proposition 1, the upper bound on κ is a monotonically
increasing function of Q. Hence, we conclude that in gen-
eral, the minimization of the proposed cost function (11) (of
Problem (P3)) encourages reduction of condition number.

Moreover, the following corollary shows that the solution to
Problem (P3) is perfectly conditioned in the limit of λ → ∞.
Let the value of Q corresponding to the minimum/optimum
value of the cost function (11) of Problem (P3) be denoted by
Q∗, and the condition number of the minimizing transform(s)
be denoted by κ∗. We then have the following result.

Corollary 2. For a fixed µ
λ , as λ → ∞ in Problem (P3),

κ∗ → 1.

Proof: By (12), for a fixed c = µ
λ , Q0 is fixed too.

Suppose we were to minimize the function Q alone, then by
corollary 1, the minimum value is Q0 which is attained by
any transform Ŵ (of positive determinant) that has all of its
singular values equal to

√
λ
2µ . Now, as λ is increased in (P3)

with fixed µ
λ , Q∗ can only decrease because the Q part of the

cost function (11) is weighted more heavily. In the limit as
λ → ∞, we get Q∗ ↘ Q0. By proposition 1, we then have
that as Q∗ ↘ Q0, κ∗ → 1 (the upper bound on κ∗ goes to 1
while the lower bound is 1). �

The upper bound on κ∗ decreases as λ is increased with
fixed µ

λ , suggesting that the minimizing transform(s) can be
better conditioned at larger λ. This is also shown empirically
in Section V.

Our Problem formulation (P3) thus, aims to minimize the
sparsification error while controlling the condition number and
eliminating the scale ambiguity, with the goal of estimating a
“good” transform W that provides the best fit to the data.
No particular performance metric in an application is directly
optimized here. However, as we will show in Sections IV and
V, W produced as a solution to Problem (P3), either by itself
or via its extensions, performs well in applications such as
signal representation/recovery, and denoising.

We note that a cost function similar to that in Problem (P3),
but lacking the ∥W∥2F penalty (or in other words, similar to
(P2)) has been derived under certain assumptions in a very
different setting of blind source separation [52]. However, the



6

transform learning Problem (P3) performs poorly in signal
processing applications in the absence of the crucial ∥W∥2F
penalty, which as discussed earlier, helps overcome the scale
ambiguity and control the condition number. The superiority
of (P3) over (P2) is also illustrated empirically in Section V.

We also note that penalty terms similar to − log detW
and ∥W∥2F (of (P3)) can be used to regularize synthesis and
analysis dictionary learning in order to enforce full-rank and
well-conditioning, and overcome scale ambiguities.
C. Positive Determinant and Equivalent Solutions

As discussed earlier, Problem (P3) is non-convex. Moreover,
there is an implicit constraint of detW > 0 for log detW
to be well-defined. However, this constraint is non-restrictive,
because if (W̃ , X̃) is a non-trivial minimizer of the sparsifica-
tion error term in (P3) (or equivalently solves Problem (P1))
with det W̃ < 0, then we can always form an equivalent
pair (ΓW̃ ,ΓX̃) (where Γ is a diagonal “sign matrix” with
±1 on the diagonal and det Γ < 0), which provides the same
sparsification error, but has det ΓW̃ > 0. Therefore, it suffices
to only consider transforms that have detW > 0.

Furthermore, the detW > 0 constraint need not be enforced
explicitly. This is because the cost function in (P3) has log-
barriers (see Figure 1) in the space of matrices at W for
which the determinant is less than or equal to zero. These
log-barriers help prevent an iterative minimization algorithm
initialized with W satisfying detW > 0 from getting into the
infeasible regions, where detW ≤ 0.

The problem has one remaining inherent ambiguity. Similar
to synthesis dictionary learning [32], Problem (P3) admits an
equivalence class of solutions/minimizers. Given a particular
minimizer (W̃ , X̃), we can form equivalent minimizers by
simultaneously permuting the rows of W̃ and X̃ (only per-
mutations that retain the sign of the determinant of W̃ are
permitted). Pre-multiplying a minimizer by a sign matrix Γ
with det Γ > 0 also provides an equivalent minimizer. This
ambiguity between completely equivalent solutions is of no
concern, and we do not attempt to eliminate it. Which of the
equivalent solutions will be obtained by an iterative algorithm
for the solution of (P3) will depend on initialization.

III. ALGORITHM AND PROPERTIES

A. Algorithm

Our algorithm for solving Problem (P3) alternates between
updating X and W .

1) Sparse Coding Step: In this step, we solve Problem (P3)
with fixed W .

min
X

∥WY −X∥2F s.t. ∥Xi∥0 ≤ s ∀ i (14)

The solution X can be computed exactly by thresholding WY ,
and retaining only the s largest coefficients in each column.
Contrast this with the sparse coding step in synthesis dictio-
nary learning [6], which can only be solved approximately
using techniques such as OMP. If instead the l0 quasi norm is
relaxed to an l1 norm and added as a penalty in the cost, we
solve the following problem.

min
X

∥WY −X∥2F + η
N∑
i=1

∥Xi∥1 (15)

The solution for X in this case can again be exactly computed
by soft thresholding as follows.

Xij =


(WY )ij − η

2 , (WY )ij ≥ η
2

(WY )ij +
η
2 , (WY )ij < −η

2

0 , else

(16)

Here, subscript ij indexes matrix entries. We will show that
such soft thresholding is even cheaper than the projection onto
the l0 ball (14) by hard thresholding.

2) Transform Update Step: In this step, we solve Problem
(P3) with fixed X . This involves the unconstrained minimiza-
tion

min
W

∥WY −X∥2F − λ log detW + µ ∥W∥2F (17)

This problem can be solved using methods such as steepest
descent, or conjugate gradients. We can employ the conjugate
gradient method with backtracking line search [53] (also
known as Armijo rule), which typically converges faster than
steepest descent. Fixed step size rules were also observed to
work well and faster in practice.

The gradient expressions for the various terms in the cost
[54] are as follows. We assume that detW > 0 on some
neighborhood of W , otherwise log() would be discontinuous.

∇W log detW = W−T (18)

∇W ∥W∥2F = 2W (19)

∇W ∥WY −X∥2F = 2WY Y T − 2XY T (20)

Various stopping rules can be used for the conjugate gradient
iterations, such as the norm of the gradient of the objective
function dropping below a threshold. However, the conjugate
gradient algorithm typically converges quickly, and a fixed
number of iterations were empirically observed to work well.

As described above, the update of W is performed with
fixed X . Alternative strategies such as updating W jointly
with the non-zero values in X (using the conjugate gradient
method) for a fixed sparsity pattern of X (similarly to K-SVD),
yielded similar empirical performance, albeit at a considerably
higher computational cost.

For the proposed alternating algorithm to work, W must
be initialized to have a positive determinant. The alternating
algorithm itself typically converges quickly, and as shown in
Section V, a fixed number of iterations suffices in practice.

B. Convergence

The algorithm for solving Problem (P3) alternates between
sparse coding and transform update steps. The solution for the
sparse coding step is exact/analytical. Thus, the cost function
can only decrease in this step. For the transform update step,
the solution is obtained by conjugate gradients (for instance
with Armijo step size rule). Thus, in this step too, the cost
function can again only decrease. The cost function being
monotone decreasing and lower bounded, it must converge.
While convergence of the iterates themselves for the proposed
alternating minimization of the non-convex problems does not
follow from this argument, the iterates are found empirically
to converge as well.



7

C. Computational Cost

The algorithm for Problem (P3) involves Sparse coding
steps and Transform Update steps. In the sparse coding step,
when the ℓ0 quasi norm is used for sparsity of X , then the
projection onto the ℓ0 ball by hard thresholding, if done by
full sorting [55], involves O(n log n) comparisons per training
signal, or a total of O(nN log n) operations. Using instead
the ℓ1 norm penalty for sparsity, the soft thresholding in (16)
requires only O(nN) operations, and is therefore cheaper than
projecting onto the ℓ0 ball. Either way, computing WY (prior
to thresholding) requires O(Nn2) operations, and dominates
the computation in the sparse coding step.

To estimate the cost of the Transform Update step, assume
that Y Y T has been pre-computed (at a total cost of O(Nn2)
for the entire algorithm). The gradient evaluation in equa-
tion (20) involves the matrix products WY Y T and XY T .
Computing W (Y Y T ) requires n3 multiply-add operations.
Furthermore, when X is sparse with Ns non-zero elements
and s = αn (where α ≪ 1 typically), then computing
the product XY T requires αNn2 multiply-add operations.
(Note that when the ℓ1 norm is used for sparsity of X , one
would need to carefully choose the parameter η in (16), to
get the αNn2 cost for computing XY T .) Next, the gradient
evaluations in (18) and (19) are dominated (in computations)
by C3n

3 (for the matrix inverse), where C3 is a constant. Thus,
the transform update step roughly has computational cost
αNLn2 + (1 +C3)Ln

3, where L is the number of conjugate
gradient steps (typically fixed). Assuming (1 + C3)n < αN ,
and that αL is approximately constant, the cost per Transform
Update step scales as O(n2N).

The total cost per iteration (of Sparse coding and Transform
Update) of the algorithms thus scales as O(Nn2). Contrast this
with the cost per iteration of the synthesis dictionary learning
algorithm K-SVD [6], which roughly scales as O(sNn2)
(cost dominated by the sparse coding step) for the square
dictionary case [34], [43]. Since s = αn, the K-SVD cost
scales as O(Nn3). The cost per iteration of the analysis K-
SVD algorithm [12], [15] also scales similarly. Our transform-
based algorithm thus provides a reduction of the computational
cost relative to synthesis/analysis K-SVD in the order, by
factor n. Computation times shown in the next section confirm
the significant speed-ups of transform learning over K-SVD.

IV. APPLICATION TO SIGNAL DENOISING

We introduce a novel problem formulation for signal denois-
ing using adaptive sparsifying transforms. In this application,
we are given N data signals/vectors arranged as columns
of matrix Y ∈ Rn×N that are corrupted by noise, i.e.,
Y = Y ∗+H , where Y ∗ are the original noiseless data and H
is the corrupting noise (a matrix). The goal is to estimate Y ∗

from Y . We propose the following formulation for denoising
signals using learnt sparsifying transforms

(P4) min
W,X,Ŷ

∥∥∥WŶ −X
∥∥∥2
F
+ λQ(W ) + τ

∥∥∥Y − Ŷ
∥∥∥2
F

(21)

s.t. ∥Xi∥0 ≤ s ∀ i

where the functional Q was defined in Section II (with
c = µ/λ), and represents the portion of the cost depending

only on W . The formulation assumes that the noisy Y can
be approximated by Ŷ that is approximately sparsifiable by a
learnt sparsifying transform W (i.e., WŶ ≈ X , with X being
column-sparse). This assumption for noisy signals can also be
viewed as a generalization of the transform model to allow
for explicit denoising. The assumptions Y ≈ Ŷ , WŶ ≈ X ,
with X being column-sparse, can then be regarded as a “noisy
signal” version of the transform model 3.

The parameter τ in Problem (P4) is typically inversely
proportional to the noise level σ [34]. When σ = 0, the optimal
Ŷ = Y = Y ∗, and Problem (P4) reduces to Problem (P3).
Note that while (P4) is aimed at explicit denoising, Problem
(P3) is aimed at signal representation, where explicit denoising
may not be required.

Problem formulation (P4) for simultaneously solving W , X ,
and Ŷ is non-convex even when the l0 quasi norm is relaxed to
an l1 norm. We propose a simple and fast alternating algorithm
to solve Problem (P4). In one step of this alternating algorithm,
Ŷ and W are fixed (in (P4)), and X is obtained by thresholding
WŶ (same as the sparse coding step in the algorithm for
(P3)). In the second step, Ŷ and X are fixed (in (P4)), and
W is updated using the conjugate gradient method (same as
the Transform Update step in the algorithm for (P3)). In the
third step, W and X are fixed (in (P4)), and Ŷ is updated by
solving the following simple least squares problem.

min
Ŷ

∥∥∥WŶ −X
∥∥∥2
F
+ τ

∥∥∥Y − Ŷ
∥∥∥2
F

(22)

The promise of the proposed denoising framework will be
demonstrated in the next section.

V. NUMERICAL EXPERIMENTS

We demonstrate the promise of our adaptive formulations in
terms of their ability to provide low sparsification errors, good
denoising, etc. While the algorithms can be initialized with
various useful/relevant transforms, such initializations must
have positive determinant (or else be pre-multiplied with a
sign matrix to ensure positive determinant). We work with
the l0 quasi norm for sparsity of X in the experiments,
but this can be easily substituted by an l1 norm penalty.
We use a fixed step size in the transform update step of
our algorithms here. Backtracking line search (employing the
Armijo search rule) gives similar performance, but is slower.
All implementations were coded in Matlab v7.8 (R2009a). Our
algorithm is compared to the synthesis K-SVD [6] using the
implementation available from Michael Elad’s website [56].
Computations were performed with an Intel Core i5 CPU at
2.27GHz and 4GB memory, employing a 64-bit Windows 7
operating system.

We first demonstrate the ability of our formulation (P3)
to learn a sparsifying transform. We consider both synthetic
and real data in our experiments. Synthetic data are generated
(without noise) as sparse linear combinations of the atoms
of a square random (full rank) synthesis dictionary D [6].
Such data are also exactly sparsifiable by D−1. Real data are
generated as non-overlapping patches of natural images. Since

3We do not explore the usefulness of Problem (P4) with fixed W in this
work, focusing instead on adaptivity.



8

real data are not exactly sparsifiable, the transform model
is well-suited to such data. For this case, we compare the
sparsification errors of transforms learnt using our algorithms
with the corresponding errors of analytical transforms. The
data, both synthetic and real, will be used to demonstrate
the properties of our algorithm such as convergence, well-
conditioned final transform, insensitivity to initialization, etc.
Finally, we illustrate the promise of our signal denoising
formulation and algorithm through simple experiments.

The quality of the learnt transforms in our experiments will
be judged based on their condition number and sparsification
error. We will argue and illustrate in this section that the
performance of the learnt transform in applications depends
on the trade-off between the sparsification error and condition
number.

We also define the ‘normalized sparsification error’ as
∥WY −X∥2F / ∥WY ∥2F . This measures the fraction of energy
lost in sparse fitting in the transform domain. In other words,
it indicates the degree of energy compaction achieved in the
transform domain, or how well the transform model holds for
the signals. This is an interesting property to observe for the
adaptive transforms.

For images, another useful metric is the recovery peak
signal to noise ratio (or recovery PSNR) defined as
255

√
P/

∥∥Y −W−1X
∥∥
F

in dB, where P is the number of
image pixels. This measures the error in recovering the patches
Y (or equivalently, the image in the case of non-overlapping
patches) as W−1X from their sparse codes X obtained by
thresholding WY . While we consider here the option of image
recovery from the sparse code, the sparse representations are
in general, used differently in various applications such as
denoising.

A. Sparsification of Synthetic Data

1) Case 1 - Generating Transform Not Unit-Conditioned.:
We generate a synthetic 20 × 20 synthesis dictionary with
zero mean and unit variance i.i.d. gaussian entries. The data
matrix Y has 200 training signals each of which is generated
as linear combination of a random set of s = 4 atoms of the
synthetic dictionary. The coefficients in the linear combination
are chosen to be zero mean and unit variance i.i.d. gaussian
random variables. Problem (P3) is solved with parameters
λ = 50, µ = 10−4, to learn a transform W that is adapted to
the data. The inital transform is the identity matrix. In each
transform update step, the conjugate gradient algorithm was
run for 60 iterations with a fixed step size of 10−4 (although
we use more CG iterations here, even 30 or fewer iterations
suffice typically).

Figure 2 shows the progress of the algorithm over itera-
tions. The objective function of (P3) (Figure 2(a)) converges
monotonically over the iterations (cannot decrease below the
bound λQ0 derived in Section II which is −5.7146× 103 for
this case). The sparsification error and normalized sparsifica-
tion error (Figure 2(b)) also decrease/converge quickly. The
normalized error decreases below 0.01 (or 1%) by the 23rd

iteration and below 0.001 by the 44th iteration. Thus, a small
number of algorithm iterations seem to suffice to reach a good
sparsification error.

0 1000 2000 3000
−4000

−2000

0

2000

Iteration Number

O
bj

ec
tiv

e 
F

un
ct

io
n

10
−1

10
0

10
2

10
4

S
pa

rs
ifi

ca
tio

n 
E

rr
or

 

 

10
0

10
1

10
2

10
3 10

−8

10
−6

10
−4

10
−2

10
0

N
or

m
al

iz
ed

 S
pa

rs
ifi

ca
tio

n 
E

rr
or

Iteration Number

Error
Normalized Error

(a) (b)

0 5 10 15 20
10

−2

10
−1

10
0

N
or

m
al

iz
ed

 S
in

gu
la

r 
V

al
ue

s

 

 

Final Transform

Generating Transform

2 10 100 1000
10

−4

10
−3

10
−2

10
−1

10
0

Iteration Number

R
el

at
iv

e 
Ite

ra
te

 C
ha

ng
e

(c) (d)
Fig. 2. Algorithm with synthetic data: (a) Objective function vs. iterations,
(b) Sparsification error and normalized sparsification error vs. iterations, (c)
Normalized singular values of final and generating transforms, (d) Relative
iterate change ∥Wi −Wi−1∥F / ∥Wi−1∥F vs. iterations beginning with
iteration 2.

Figure 2(c) shows the normalized singular values (normal-
ized by the largest singular value) of the final learnt transform,
and generating transform (i.e., inverse of the synthetic dictio-
nary used to generate the data) on a log-scale. The condition
number of the learnt transform is 60.8, while that of the
generating transform is 73. This indicates the ability of our
algorithm to converge to well-conditioned (not just full rank)
transforms. Moreover, the algorithm provides better condition-
ing compared to even the generating transform/dictionary. In
Figure 2(d), we plot the relative change between successive
iterates/transforms defined as ∥Wi −Wi−1∥F / ∥Wi−1∥F ,
where i denotes the iteration number. This quantity decreases
to a low value of 10−4 over the iterations, indicating conver-
gence of the iterates.

Since the synthetic data are exactly sparsifiable (i.e., they
satisfy the transform model WY = X + E with E = 0,
or equivalently, they satisfy the analysis model since WY is
column-sparse), the results of Figure 2 indicate that when the
analysis model itself holds, our transform learning algorithm
for (P3) can easily and cheaply find it.

2) Case 2 - Unit-Conditioned Generating Transform.:
We now consider the case when the generating dictionary
has equal singular values and evaluate the performance of the
algorithm for this case. The goal is to investigate whether the
algorithm can achieve the lower bounds derived in Section II.

For this experiment, a synthetic 20 × 20 dictionary with
i.i.d. gaussian entries is generated and its singular value
decomposition (SVD) of form UΣV H is computed. An or-
thonormal dictionary is then generated as UV H . The data Y
are generated using this dictionary similarly to the experiment
of Figure 2. The transform learning algorithm parameters are
set as λ = 0.5, µ = 0.25. The inital transform is another
random matrix with i.i.d. gaussian entries. All other algorithm
parameters are set similarly to the experiment of Figure 2.

The objective function, sparsification error, and condition
number (of W ) are plotted over iterations for our algorithm



9

(for (P3)) in Figures 3(a) and 3(b), repectively. In this case,
the objective function converges to a value of 5 which is the
lower bound (λQ0) predicted in Section II. The sparsification
error and condition number converge to 0 and 1 respectively.
The normalized sparsification error (not shown here) drops
below 0.01 (or 1%) by the 14th iteration. Thus, the learnt
transform provides zero sparsification error, and has equal
singular values as predicted in Section II (when the lower
bound of the objective is achieved). Moreover, since

√
λ
2µ = 1

(by choice of parameters), the singular values of the learnt
transform turn out to be all equal to 1 as predicted in Section
II. Thus, when a transform that satisfies the lower bound of
the objective function exists, the algorithm converges to it.

Note that when the data are generated using a synthetic
dictionary with condition number κgen > 1, the algorithm
tends to produce a transform Ŵ with condition number
κ(Ŵ ) < κgen lower than that of the generating dictionary.
A condition number κ(Ŵ ) = 1 may not be achieved, since
a transform that gives both low sparsification error and a
condition number of 1 may not exist in this case. This was
also observed in the experiment of Figure 2.

B. Sparsification of Real Data

1) Insensitivity to Initialization.: Here, we extract the 8×8
(n = 64) non-overlapping patches from the image Barbara
[6]. The data matrix Y in this case has 4096 training signals
(patches represented as vectors) and we work with s = 11.
The means (or DC values) of the patches are removed and
we only sparsify the mean-subtracted patches (mean removal
is typically adopted in image processing applications such as
K-SVD based image denoising). The means can be added
back for display purposes. Problem (P3) is solved to learn a
square transform W that is adapted to this data. The algorithm
parameters are λ = µ = 4 × 105. The conjugate gradient
algorithm was run for 128 iterations in each transform update
step, with a fixed step size of 10−8. (The performance is
similar even with 20 or less conjugate gradient iterations.)

We consider four different initializations (initial transforms)
for the algorithm. The first is the 64 × 64 2D DCT matrix
(defined as W0⊗W0, where W0 is the 8×8 1D DCT matrix,
and “⊗” denotes the Kronecker product). The second initial-
ization is obtained by inverting/transposing the left singular
matrix of Y . This initialization is also popularly known as
the Karhunen-Loève Transform (KLT). The third and fourth
initializations are the identity matrix, and a random matrix
with i.i.d. gaussian entries (zero mean and standard deviation
0.2), respectively. Note that any initial matrix with a negative
determinant can be made to have a positive determinant by
switching the signs of the entries on one row, or by exchanging
two rows.

Figure 4(a) shows the objective function of Problem (P3)
over the iterations of the algorithm for the different initial-
izations. The objective function converges monotonically, and
although different initializations lead to different initial rates of
convergence, the objective functions have nearly identical final
values in all cases. This indicates that our alternating algorithm
is robust to initialization. The sparsification error (Figures 4(b)
and 4(d)) too converges quickly and to similar values for all

0 200 400 600 800
10

0

10
1

10
2

10
3

10
4

Iteration Number

O
bj

ec
tiv

e 
F

un
ct

io
n

10
0

10
1

10
2

C
on

di
tio

n 
N

um
be

r

 

 

200 400 600 800
10

−10

10
−5

10
0

10
5

S
pa

rs
ifi

ca
tio

n 
E

rr
or

Iteration Number

Condition Number
Sparsification Error

(a) (b)
Fig. 3. Algorithm attains lower bound: (a) Objective function vs. iterations,
(b) Condition number and sparsification error vs. iterations.

initializations. The horizontal lines in Figures 4(b) and 4(d)
denote the sparsification errors of the 2D DCT, KLT, identity,
and random gaussian transforms (i.e., the sparsification error at
iteration zero). Our algorithm reduces the sparsification error
by 5.98 dB, 7.14 dB, 14.77 dB, and 18.72 dB, respectively,
from the values for the initial transforms. The normalized
sparsification error for the learnt transform W with the 2D
DCT initialization is 0.0437. The values corresponding to the
other initializations are only slightly different.

The recovery PSNR for the learnt W is 34.59 dB with the
2D DCT initialization. The corresponding values for the other
initializations differ only by hundredths of a dB. (These small
gaps could be reduced further with better choice of step size
and the number of conjugate gradient iterations.)

Finally, the condition number (Figure 4(c)) with the random
gaussian initialization, also converges quickly to a low value
of 1.46. This illustrates that image patches are well sparsified
by well-conditioned transforms.

To study further the effect of different initializations, Figure
4(e) compares the singular values of the transforms learnt
with 2D DCT and with random gaussian initializations. The
singular values for the two cases are almost identical, with
condition numbers of 1.40 and 1.46, respectively. For direct
comparison, the transforms learnt with the two different initial-
izations (DCT and random gaussian) are compared in Figures
4(f) and 4(g), respectively. Figures 4(h) and 4(i) provide a
different view of the learnt transforms, with each row of W
displayed as an 8 × 8 patch, which we call the ‘transform
atom’. While the two learnt transforms appear different, they
are essentially equivalent in the sense that they produce very
similar sparsification errors, and have almost identical singular
values (and thus, almost identical condition numbers). In
both cases, the atoms exhibit geometric and frequency like
structures. Apparently, the transform learning algorithm is able
to discover the structure of image patches, and provide dramat-
ically lower sparsification errors than analytical transforms.

Based on the results of Figure 4, we conjecture that in
general, Problem (P3) may admit multiple global minima that
are not related by only row permutations and sign changes.
Which of these essentially equivalent solutions is actually
achieved by the algorithm depends on the initialization. The
existence of alternative but essentially equivalent solutions
to (P3) also suggests that additional application-specific per-
formance criteria may be used to select between equivalent
transforms, or the problem formulation may be modified to
incorporate additional preferences.



10

10
0

10
1

10
22

4

6

8

10x 10
7

Iteration Number

O
bj

ec
tiv

e 
F

un
ct

io
n

 

 

DCT Initialization
KLT Initialization
Identity Initialization
Random Initialization

10
0

10
1

10
210

6

10
7

10
8

Iteration Number

S
pa

rs
ifi

ca
tio

n 
E

rr
or

 

 

DCT Initialization
KLT Initialization
DCT
KLT

(a) (b)

50 100 150 200 250 300
1.45

2

2.55

3.1

3.65

4.2

Iteration Number

C
on

di
tio

n 
N

um
be

r

10
0

10
1

10
210

6

10
7

10
8

10
9

Iteration Number

S
pa

rs
ifi

ca
tio

n 
E

rr
or

 

 

Identity Initialization
Random Initialization
Identity
Random Matrix

(c) (d)

10 20 30 40 50 60
0.45

0.5

0.55

0.6

0.65

0.7

0.75

S
in

gu
la

r 
V

al
ue

s

 

 

DCT Initialization
Random Initialization

(e)

(f) (g)

(h) (i)
Fig. 4. Real data - Effect of different Initializations: (a) Objective function
vs. iterations, (b) Sparsification error vs. iterations for DCT and KLT initial-
izations, along with the sparsification errors (horizontal lines) of the DCT
and KLT transforms, (c) Condition number vs. iterations for random gaussian
initialization, (d) Sparsification error vs. iterations for identity and random
gaussian initializations, along with the sparsification errors (horizontal lines)
of the identity and random gaussian matrices themselves, (e) Singular values
of the transforms learnt with DCT and random gaussian initializations, (f)
Transform learnt with DCT initialization, (g) Transform learnt with random
gaussian initialization, (h) Rows of learnt transform shown as patches for DCT
initialization, (i) Rows of learnt transform shown as patches for the case of
random gaussian initialization.

2) Performance for Various Images vs. DCT.: Next, we
study the behavior of our algorithm on different images, by

CN-L NSE-L RP-L NSE-D RP-D
Barbara 1.40 0.0437 34.59 0.0676 32.85

Lena 1.16 0.0376 37.64 0.0474 36.91
Peppers 1.17 0.0343 36.97 0.0448 36.15

Cameraman 1.13 0.0088 42.50 0.0191 39.43

TABLE I
NORMALIZED SPARSIFICATION ERRORS (NSE-L) AND RECOVERY PSNRS

(RP-L) FOR THE LEARNT TRANSFORMS, ALONG WITH THE
CORRESPONDING VALUES FOR THE 2D DCT (NSE-D/RP-D), AND THE

CONDITION NUMBERS OF THE LEARNT TRANSFORMS (CN-L).

solving (P3) to learn a transform for each of four different
512 × 512 images. The transforms are directly adapted to
the non-overlapping patches of the images. All algorithm
parameters are the same as for the experiment of Figure 4
(and we use the DCT initialization).

Table I lists the normalized sparsification errors and recov-
ery PSNRs for the learnt transforms and the patch-based 2D
DCT (at s = 11), along with the condition numbers of the
learnt transforms. The learnt transforms are seen to be well-
conditioned for all the images. The corresponding normalized
sparsification errors are small and, moreover, better than those
of the 2D DCT by upto 3.4 dB for the tested images. The learnt
transforms also provide up to 3.1 dB better recovery PSNRs
than the 2D DCT. All these results indicate the promise of the
adaptive transform model for natural signals.

Note that while we considered adapting the transform to
specific images, a transform adapted to a data-set of training
images also gives promising improvements over fixed trans-
forms such as the DCT and Wavelets on test images – a
property that can be exploited for image compression.

C. Performance as Function of Parameters

Next, we work with the same data as for Figure 4, and
test the performance of our algorithm as a function of the
parameter λ at different data sparsity levels s = 7, 11, 15 (with
µ = λ, and all other parameters fixed as in the experiment of
Figure 4). The algorithm is initialized with the 2D DCT for
the experiments.

For fixed s, the condition number of the learnt transform
(Figure 5(b)) decreases as a function of λ. For high values
(> 106) of λ (and µ = λ), the algorithm favors a condition
number of 1. For low values of λ, the condition number is quite
high (condition number of 70 at λ = 103 when s = 11). This
behavior of the condition number for fixed µ

λ , was predicted
in Section II.

On the other hand, the normalized sparsification error (Fig-
ure 5(a)) increases with λ for fixed s. The error is lowest
for smaller λ. This is because smaller λ values give higher
preference to the sparsification error term in the cost (11)
of Problem (P3). Moreover, even at high values of λ, the
normalized sparsification error tends to be reasonable. (For
example, it is 0.0457 at λ = 106 when s = 11.) Very high
λ values tend to increase the normalized sparsification error
only slightly. The plots indicate that we can get reasonable
normalized sparsification errors simultaneously with good
condition numbers.

Figure 5(c) plots the recovery PSNRs with the learnt
transforms for Barbara. For fixed s, the recovery PSNR is
best at λ values corresponding to intermediate conditioning



11

or ‘well-conditioning’. (For example when s = 11, the best
recovery PSNR is 34.65 dB at λ = 105, or at κ = 2.29.) At
unit conditioning, or bad conditioning, the recovery PSNR is
lower. This indicates that natural images tend to prefer well-
conditioned transforms, as far as recovery PSNR is concerned.

All the metrics, however, degrade when the data sparsity
level s is reduced (for fixed λ, µ). This behavior is expected
since at lower s values, we have fewer degrees of freedom
to represent the data (i.e., the learning is more constrained at
lower data sparsity levels). For a particular choice of condition
number (from Figure 5 (b)), we get a lower normalized
sparsification error at a larger value of s, and vice-versa.

As the data sparsity level s ↗ n (where n is the number of
pixels in a patch), we can expect all the metrics to improve,
because the problem becomes less and less constrained. In the
limit when s = n, we can have WY = X exactly and thus,
infinite recovery PSNR with orthonormal transforms such as
the DCT, or even with the trivial identity matrix/transform.
Thus, when s = n, Problem (P3) attains the lower bound
(with any W satisfying Corollary 1) of its cost function.

The normalized sparsification errors for the (patch-based)
2D DCT at s = 7, 11, 15 are 0.1262, 0.0676, and 0.0393,
respectively. The corresponding values for the recovery PSNR
are 30.14 dB, 32.85 dB, and 35.21 dB, respectively. At reason-
able condition numbers, the learnt transforms at s = 7, 11, 15
perform much better than the DCT at those sparsity levels.

Thus, it is evident from the results of Figure 5 that the
parameters can provide a trade-off between the various metrics
such as sparsification error and condition number. The choice
of parameters would also depend on the specific application
(i.e., on how sparsification error and condition number affect
the performance in the specific application). For example,
when the goal is recovery from sparse code, we see that since
the transform model suggests WY = X + E, where E is
the sparsification error term in the transform domain, we have
Y = W−1X+W−1E, when W is non-singular. The recovery
PSNR depends on the quantity W−1E, which in turn depends
on both the sparsification error and conditioning of W . Thus,
the trade-off between sparsification error and condition num-
ber can be expected to determine the best recovery PSNR.
Therefore, although the formulation of Problem (P3) does not
directly optimize for the recovery PSNR, it attempts to do so
indirectly by allowing control over the sparsification error and
condition number, which in turn serve as good surrogates for
the recovery PSNR.

An interesting point to note is that since our algo-
rithm can learn well-conditioned transforms, the quantities
∥WY −X∥2F and

∥∥Y −W−1X
∥∥2
F

are both well-behaved.
In contrast, K-SVD [6] typically provides very poorly condi-
tioned dictionaries D. The term

∥∥D−1Y −X
∥∥2
F

is typically
too high for K-SVD (even much worse than the sparisfication
errors of analytical transforms). Thus, the inverse of the K-
SVD dictionary hardly qualifies as a sparsifying transform.

Note that setting µ
λ = 1 (with λ chosen appropriately)

worked well for most experiments except for synthetic data
cases with poor generating conditioning for which the param-
eters were set manually.

Next, in order to illustrate the importance of the Frobenius-

10
3

10
4

10
5

10
6

10
710

−4

10
−3

10
−2

10
−1

N
or

m
al

iz
ed

 S
pa

rs
ifi

ca
tio

n 
E

rr
or

Lambda

 

 

s = 7
s = 11
s = 15

10
3

10
4

10
5

10
6

10
710

0

10
1

10
2

C
on

di
tio

n 
N

um
be

r

Lambda

 

 

s = 7
s = 11
s = 15

(a) (b)

10
4

10
5

10
6

10
730

31

32

33

34

35

36

37

R
ec

ov
er

y 
P

S
N

R

Lambda

 

 

s = 7
s = 11
s = 15

(c)

Fig. 5. Parameter Selection: (a) Normalized sparsification error vs. λ for
different values of s with µ = λ, (b) Condition number vs. λ for different s
values with µ = λ, (c) Recovery PSNR vs. λ for different values of s with
µ = λ.

norm regularization in our formulation (P3), we repeat the
experiment of Figure 4 (with DCT initialization), but with
µ = 0 (or, in other words, we solve Problem (P2)). In this
case, the constant atom (row of all 1’s) is an exact sparsifier
(or, orthogonal) for the zero-mean image patches. Thus, a
transform (of positive determinant) that has a constant row
scaled by α → ∞, and some other linearly independent rows
scaled by α̂ → 0, would be a good sparsifier as per Problem
(P2). The Frobenius-norm term in the cost of (P3) is necessary
to overcome such scaling ambiguities, and for encouraging
well-conditioning. Hence, when our algorithm is executed for
many iterations (5000 iterations) with µ = 0, we obtain a badly
conditioned transform, whose condition number is κ = 1037.
The learnt transform also has a high Frobenius norm (of 460)
which is mostly concentrated on the constant atom that is
learnt by our algorithm. (Note that a few other rows of the
learnt W also have high norms, but the constant row has a
much higher norm.) The normalized sparsification error and
recovery PSNR for this case (after 5000 iterations) are 0.003
and 32.59 dB, respectively. The low value for the normalized
sparsification error is expected, since the lack of the Frobenius-
norm regularization term in (P3) favors better sparsification.
However, the recovery PSNR is much worse (by 2 dB) than
that obtained in the experiment of Figure 4, due to the poor
conditioning of the learnt W 4. Thus, the Frobenius-norm reg-
ularization is crucial for removing various ambiguities and for
the success of sparsifying transform learning in applications.

Note that while the experiment for the µ = 0 case was

4Note that, although the condition number obtained with µ = 0 (after 5000
iterations) is substantially higher than that obtained with µ = λ, the drop in
the recovery PSNR is not as significant. This is because, the high norm of the
constant row has no effect on the sparsification error term E = WY − X .
Hence, the quantity W−1E (which determines the recovery PSNR), although
degraded by the poor conditioning of W , does not degrade as significantly
as the condition number, due to the higher norm of W .



12

(a) (b)

(c) (d)
Fig. 6. Piecewise-constant Case: (a) The Piecewise-constant image, (b) 2D
Finite difference transform with κ = 113, (c) Learnt transform with κ =
15.35, (d) Learnt transform with κ = 5.77.

performed with zero-mean patches, we also observed inferior
performance with µ = 0 (compared to µ = λ), when the
means of the patches were retained.

D. Performance for Piecewise-Constant Images

Next, we consider learning a transform for a 512 × 512
piecewise-constant image (Figure 6(a)). Piecewise-constant
images are well-sparsified by the finite difference transform.
We work with 8 × 8 non-overlapping image patches in this
experiment. The two-dimensional finite difference transform
shown in Figure 6(b) is obtained as a Kronecker product of two
one-dimensional finite difference matrices. (Each made square
and non-singular by appending a row that has all 0’s and a 1
on the last entry.) Note that this finite difference transform is
square rather than overcomplete. It is an exact sparsifier for
the patches (with means removed) of the image in Figure 6(a)
for sparsity levels of s ≥ 5. However, this transform is poorly
conditioned with κ = 113. We investigate the behavior of
our algorithm for this interesting example. We solve Problem
(P3) to learn transforms at various values of the parameter λ
(with µ = λ), with s = 5 and all other parameters fixed as in
the experiment of Figure 4. We initialize the algorithm with
the 2D finite difference transform itself, to check whether the
algorithm converges to the same structure.

The learnt transforms at λ = 4 × 102 (Figure 6(c)) and
λ = 8×103 (Figure 6(d)) are well-conditioned with condition
numbers 15.35 and 5.77, respectively. Both these transforms
provide almost zero normalized sparsification errors for the
data (normalized sparsification errors of 1.6 × 10−5 and
5 × 10−4 when κ is 15.35 and 5.77, respectively). Thus, our
transform learning algorithm is able to learn well-conditioned
transforms that sparsify almost as well as the poorly condi-
tioned finite difference transform. Such well-conditoned adap-
tive transforms also perform better than poorly conditioned
ones in applications such as image denoising [57]. Note
that the learnt transforms do appear somewhat different from

3 4 5 6 7
10

−3

10
−2

10
−1

10
0

Sparsity Level (s)

A
vg

. P
er

−
Ite

ra
tio

n 
T

im
e 

(s
ec

)

 

 

K−SVD
Transform Learning

(a)

10 20 40 60 80 100 120
10

−3

10
−2

10
−1

10
0

10
1

10
2

Size (n)

A
vg

. P
er

−
Ite

ra
tio

n 
T

im
e 

(s
ec

)

 

 

K−SVD
Transform Learning

(b)
Fig. 7. Algorithm Execution Time: (a) Average per-iteration execution time
vs. sparsity level (s) for the synthesis K-SVD and our transform learning
scheme, (b) Average per-iteration execution time vs. dictionary/transform size
(n) for both the synthesis K-SVD and our transform learning scheme.

the finite difference transform, since they are adapted to the
specific data.

When the transform learning algorithm was executed for
the same data, but with lower sparsity levels s < 5, the learnt
transforms apart from being well-conditioned, also provided
significantly better sparsification at the same sparsity level,
than the finite difference transform. The results here, much
like previous ones, indicate the promise of our algorithm for
(P3) to adapt to data and obtain significantly better sparse
representations than analytical transforms.

E. Run Time

Next, we test the execution times of the iterations of our
algorithm (for Problem (P3)) and compare it with the execu-
tion times of the iterations of the popular synthesis dictionary
learning algorithm, K-SVD [6], [56]. The goal here is to
demonstrate the promising speed-ups of transform learning,
which can prove advantageous in applications.

First, we study the behavior of run times as a function
of the sparsity level s. At each sparsity level, we generate
synthetic data similarly to the data of Figure 2, and execute
the algorithm of Problem (P3). The algorithm parameters are
set similarly to the experiment of Figure 2 (note that λ = 50
for most of the experiments, and it is optimally set for the
others). We also execute the synthesis K-SVD algorithm [6]
with square dictionaries for the same data. The algorithms are
executed for a fixed number of (700) iterations, and moreover
the simulation is repeated five times (with fresh data) at each
sparsity level.

Figure 7(a) plots the average per-iteration execution times



13

of our algorithm and of the synthesis K-SVD as a function
of the sparsity level. It can be seen that the iterations of
our algorithm are significantly faster (by at least a factor
of 32) than K-SVD. The per-iteration execution time of K-
SVD increases quickly with sparsity level. In contrast, the per-
iteration execution times of our algorithm are approximately
the same at the various sparsity levels. The iterations of our
algorithm are thus, nearly 50-60 times faster than the synthesis
K-SVD iterations at higher sparsity levels.

We also tested the speed of our algorithm as a function of
transform size. The data for this experiment were generated
synthetically at varying problem sizes (n). The number of
training signals N = 10n, and the sparsity at which data are
generated is s = n/5 (rounded to nearest integer). Both the
synthesis K-SVD and our algorithm (for Problem (P3)) are
executed for 100 iterations at the different problem sizes (both
transform and dictionary are square). The conjugate gradient
method within our algorithm is executed for 30 iterations, and
the parameters such as µ, λ are set appropriately.

Figure 7 (b) plots the average per-iteration execution times
of the algorithms as a function of problem size. The per-
iteration execution times for our algorithm are at least about
50 times better than those for K-SVD. Moreover, the gap
widens as the problem size increases. At n = 120, the
iterations of the transform learning algorithm are 167 times
faster than those of K-SVD. This was also predicted by the
expressions for computational cost in Section III. The K-SVD
iteration time also increases at a much faster rate with problem
size compared to our algorithm. The results indicate that the
proposed transform learning can be easily implemented at
large problem sizes.

Since our algorithm converges very quickly, we can say that
sparsifying transforms can in general, also be learnt (using
Problem (P3)) much faster than synthesis dictionaries (using
K-SVD). Note that while we compared to the case of a square
synthesis dictionary here, the speed-ups are much greater when
compared to the overcomplete K-SVD.

We expect the run times of our algorithm to decrease
substantially with conversion of the code to C/C++, and
code optimization. Efficient implementation of sparse matrix
multiplications (in the transform update step (20)) and efficient
thresholding (i.e., thresholding training vectors in parallel and
without resorting to full sorting in the sparse coding step) are
just some of the ways to reduce run times.

F. Preliminary Denoising Experiments

Here, we test the effectiveness of our denoising algorithm
that solves Problem (P4). For comparison, we also consider a
denoising formulation involving synthesis dictionary learning
as follows [34]

(P5) min
D,X,Ŷ

∥∥∥Ŷ −DX
∥∥∥2
F
+ ρ

∥∥∥Y − Ŷ
∥∥∥2
F

(23)

s.t. ∥Xi∥0 ≤ s ∀ i

The parameter ρ is chosen similarly (i.e., inversely propor-
tional to σ) to τ of Problem (P4). The synthesis denoising
formulation (P5) is also solved by alternating minimization
[34]. In one step, D and X are learnt via K-SVD with fixed

0.05 0.1 0.15 0.2 0.25 0.3
16

20

24

28

32

Noise Standard Deviation

A
vg

. D
en

oi
se

d 
S

N
R

 (
dB

)

 

 

Transform Learning
Square K−SVD
Overcomplete K−SVD

Fig. 8. Signal denoising: Average denoised SNR (in dB) vs. noise standard
deviation (σ) for our algorithm, and for K-SVD with square and overcomplete
dictionaries.

Ŷ while in the other step, Ŷ is updated by a least squares
procedure.

The data for the comparison of problems (P4) and (P5)
were generated synthetically using a random 20×20 synthesis
dictionary with a sparsity level of 5 (s = 5). Note that the
synthetic data obey both the synthesis dictionary model and
the transform model exactly. The generated synthetic data were
further corrupted by additive i.i.d. gaussian noise. The number
of noisy signals is N = 10n. The parameters τ and ρ for (P4)
and (P5) were both optimally chosen (empirically) as 0.5

σ . The
parameter λ = 20 for our transform-based algorithm, and all
other parameters for our algorithm (such as µ, etc.) were the
same as for Figure 2.

Problems (P4) and (P5) were solved at various noise levels
with fresh data generated at each noise level. In the case
of Problem (P5), we learnt both a square 20 × 20 dic-
tionary, and an overcomplete 20 × 80 dictionary. At each
noise level, the denoised signal-to-noise ratio (SNR), i.e.,
20 log10

(
∥Ŷ ∥F /∥Y ∗ − Ŷ ∥F

)
is computed for both algo-

rithms. Here, Y ∗ denotes the original noiseless data to which
noise was added, and Ŷ is the output of the denoising
algorithm (using either (P4) or (P5)). The denoised SNR is
averaged over five trials at each noise level.

Figure 8 plots the average denoised SNR (in decibels) as a
function of the noise standard deviation (σ). At a low noise
level (or noise standard deviation) of 0.063, our algorithm
provides nearly 4.2 dB better denoised SNR compared to the
square K-SVD, and 2.1 dB better denoised SNR compared
to the four fold overcomplete dictionary. (As expected, the
overcomplete K-SVD performs better than the square K-
SVD.) The improvement drops at higher noise levels as both
algorithms degrade in performance. However, even at high
noise levels (σ = 0.3), our algorithm still provides 1.1
dB of improvement over the square K-SVD, and 0.3 dB
improvement over the overcomplete K-SVD, respectively. At
mid-noise levels such as σ = 0.124, we obtain an improvement
of 2.6 dB over the square K-SVD, and 1.3 dB over the
overcomplete K-SVD, respectively. These results indicate that
learnt sparsifying transforms can provide promising denoising.

We have also applied sparsifying transforms to image de-
noising [57], [58] showing better denoising compared to both
adaptive overcomplete synthesis and analysis dictionaries.



14

VI. CONCLUSIONS AND FUTURE WORK

In this paper, a novel problem formulation for learning
sparsifying transforms was presented. The alternating algo-
rithm for square transform learning involves two steps -
thresholding and gradient descent. Our proposed framework
gives rise to well-conditioned transforms with much lower
sparsification errors than analytical transforms. Results with
natural images demonstrate that well-conditioning (but not
necessarily unit conditioning) of the transforms is compatible
with good sparsification and good performance in applications.
Even for piecewise constant images, for which a difference
operator provides optimal sparsification, but at high condition
number, our well-conditioned learnt transforms provide essen-
tially identical, or even better sparsification. Our algorithm
was shown to provide monotonic convergence of the cost
function, and is insensitive to initialization. Moreover, the
computational cost of our transform learning is nearly two
orders of magnitude lower than that of synthesis dictionary
learning algorithms such as K-SVD. We also introduced a
signal denoising formulation involving sparsifying transform
learning, and demonstrated promising performance for our
proposed algorithm. The usefulness of transform learning in
signal and image processing applications merits further study.

APPENDIX A
PROOF OF LEMMA 1

We now derive a lower bound for Q = − log detW +
c ∥W∥2F that depends on the condition number κ of W . We
work with the case detW > 0. Denoting the singular values
of W by βi, 1 ≤ i ≤ n, we have ∥W∥2F =

∑n
i=1 β

2
i and

− log detW = − log(
∏n

i=1 βi) = −
∑n

i=1 log βi. Therefore,

Q =
n∑

i=1

(
− log βi + cβ2

i

)
(24)

We now bound the terms on the right hand side of (24). Since,
− log βi + cβ2

i is a strictly convex function of βi for each i,
we lower bound it using its minimum value (achieved when
βi =

√
1
2c ) as follows.

− log βi + cβ2
i ≥ 1

2
+

1

2
log(2c) (25)

We substitute the above bound in equation (24) only for the
indices 2 ≤ i ≤ n− 1 to get

Q ≥ n− 2

2
+

n− 2

2
log(2c)− log(β1βn) + c(β2

1 + β2
n) (26)

We now express β1 in terms of βn in equation (26).

β1 = κβn (27)

Next, since, − log(κβ2
n) + cβ2

n(1 + κ2) is a strictly convex
function, we get the following lower bound using the minimum
value (achieved when βn =

√
1

c(1+κ2) ) of the function.

− log(κβ2
n) + cβ2

n(1 + κ2) ≥ 1− log
κ

c(1 + κ2)
(28)

Upon substitution of the preceding bound in equation (26)
and simplification, we get the following lower bound on Q.

Q ≥ n

2
+

n

2
log(2c)− log

2κ

1 + κ2
�

which completes the proof.

APPENDIX B
PROOF OF COROLLARY 1

The inequality Q ≥ Q0 follows from Lemma 1, because
− log 2κ

1+κ2 has a minimum value of zero (achieved for κ = 1).
For the result to hold with equality, we require that κ = 1. We
also require (26) and (28) in the proof of Lemma 1 to hold
with equality, which can happen if and only if

β1 =

√
κ2

c(1 + κ2)
, βn =

√
1

c(1 + κ2)
(29)

βi =

√
1

2c
, 2 ≤ i ≤ n− 1

Now, using κ = 1 in (29), we get the required result. �

REFERENCES

[1] S. Mallat, A Wavelet Tour of Signal Processing. Academic Press, 1999.
[2] M. W. Marcellin, M. J. Gormish, A. Bilgin, and M. P. Boliek, “An

overview of jpeg-2000,” in Proc. Data Compression Conf., 2000, pp.
523–541.

[3] M. Elad, P. Milanfar, and R. Rubinstein, “Analysis versus synthesis in
signal priors,” Inverse Problems, vol. 23, no. 3, pp. 947–968, 2007.

[4] B. A. Olshausen and D. J. Field, “Emergence of simple-cell receptive
field properties by learning a sparse code for natural images,” Nature,
vol. 381, no. 6583, pp. 607–609, 1996.

[5] K. Engan, S. Aase, and J. Hakon-Husoy, “Method of optimal directions
for frame design,” in Proc. IEEE International Conference on Acoustics,
Speech, and Signal Processing, 1999, pp. 2443–2446.

[6] M. Aharon, M. Elad, and A. Bruckstein, “K-SVD: An algorithm for
designing overcomplete dictionaries for sparse representation,” IEEE
Transactions on signal processing, vol. 54, no. 11, pp. 4311–4322, 2006.

[7] M. Yaghoobi, T. Blumensath, and M. Davies, “Dictionary learning for
sparse approximations with the majorization method,” IEEE Transac-
tions on Signal Processing, vol. 57, no. 6, pp. 2178–2191, 2009.

[8] K. Skretting and K. Engan, “Recursive least squares dictionary learning
algorithm,” IEEE Transactions on Signal Processing, vol. 58, no. 4, pp.
2121–2130, 2010.

[9] J. Mairal, F. Bach, J. Ponce, and G. Sapiro, “Online learning for matrix
factorization and sparse coding,” J. Mach. Learn. Res., vol. 11, pp. 19–
60, 2010.

[10] G. Peyré and J. Fadili, “Learning analysis sparsity priors,” in Proc.
of Sampta’11, 2011. [Online]. Available: http://hal.archives-ouvertes.fr/
hal-00542016/

[11] M. Yaghoobi, S. Nam, R. Gribonval, and M. Davies, “Analysis operator
learning for overcomplete cosparse representations,” in European Signal
Processing Conference (EUSIPCO), 2011.

[12] R. Rubinstein and M. Elad, “K-SVD dictionary-learning for analysis
sparse models,” in Proc. SPARS11, June 2011.

[13] B. Ophir, M. Elad, N. Bertin, and M. Plumbley, “Sequential minimal
eigenvalues - an approach to analysis dictionary learning,” in Proc.
European Signal Processing Conference (EUSIPCO), 2011.

[14] M. Yaghoobi, S. Nam, R. Gribonval, and M. E. Davies, “Noise aware
analysis operator learning for approximately cosparse signals,” in Proc.
IEEE International Conference on Acoustics, Speech and Signal Pro-
cessing (ICASSP), 2012, pp. 5409–5412.

[15] R. Rubinstein, T. Faktor, and M. Elad, “K-SVD dictionary-learning for
the analysis sparse model,” in Proc. IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), 2012, pp. 5405–
5408.

[16] A. M. Bruckstein, D. L. Donoho, and M. Elad, “From sparse solutions of
systems of equations to sparse modeling of signals and images,” SIAM
Review, vol. 51, no. 1, pp. 34–81, 2009.

[17] J. A. Tropp, “Greed is good: Algorithmic results for sparse approxi-
mation,” IEEE Trans. Inform. Theory, vol. 50, no. 10, pp. 2231–2242,
2004.

[18] E. Candès and T. Tao, “Decoding by linear programming,” IEEE Trans.
on Information Theory, vol. 51, no. 12, pp. 4203–4215, 2005.



15

[19] E. Candès, J. Romberg, and T. Tao, “Robust uncertainty principles: exact
signal reconstruction from highly incomplete frequency information,”
IEEE Trans. Information Theory, vol. 52, no. 2, pp. 489–509, 2006.

[20] D. Donoho, “Compressed sensing,” IEEE Trans. Information Theory,
vol. 52, no. 4, pp. 1289–1306, 2006.

[21] B. Efron, T. Hastie, I. Johnstone, and R. Tibshirani, “Least angle
regression,” Annals of Statistics, vol. 32, pp. 407–499, 2004.

[22] D. L. Donoho, “For most large underdetermined systems of linear
equations the minimal l1-norm solution is also the sparsest solution,”
Comm. Pure Appl. Math, vol. 59, pp. 797–829, 2004.

[23] W. Dai and O. Milenkovic, “Subspace pursuit for compressive sensing
signal reconstruction,” IEEE Trans. Information Theory, vol. 55, no. 5,
pp. 2230–2249, 2009.

[24] I. F. Gorodnitsky, J. George, and B. D. Rao, “Neuromagnetic source
imaging with FOCUSS: A recursive weighted minimum norm algo-
rithm,” Electrocephalography and Clinical Neurophysiology, vol. 95, pp.
231–251, 1995.

[25] G. Harikumar and Y. Bresler, “A new algorithm for computing sparse
solutions to linear inverse problems,” in ICASSP, may 1996, pp. 1331–
1334.

[26] G. Harikumar, “Blind image deconvolution from multiple blurs, and
sparse approximation,” Ph.D. dissertation, University of Illinois at
Urbana-Champaign, mar 1997, Yoram Bresler, adviser.

[27] Y. Bresler, C. Couvreur, and G. Harikumar, “Fast optimal and suboptimal
algorithms for sparse solutions to linear inverse problems,” in Proc. IEEE
Int. Conf. Acoust. Speech, Sig. Proc., vol. 3, apr 1998, pp. 1877–1880.

[28] R. Chartrand, “Exact reconstruction of sparse signals via nonconvex
minimization,” Signal Processing Letters, IEEE, vol. 14, no. 10, pp.
707–710, 2007.

[29] E. J. Candès and D. L. Donoho, “Ridgelets: A key to higher-dimensional
intermittency?” Phil. Trans. R. Soc. Lond. A, vol. 357, no. 1760, pp.
2495–2509, 1999.

[30] M. N. Do and M. Vetterli, “The contourlet transform: an efficient
directional multiresolution image representation,” IEEE Trans. Image
Process., vol. 14, no. 12, pp. 2091–2106, 2005.

[31] E. J. Candès and D. L. Donoho, “Curvelets - a surprisingly effective
nonadaptive representation for objects with edges,” in Curves and
Surfaces. Vanderbilt University Press, 1999, pp. 105–120.

[32] R. Gribonval and K. Schnass, “Dictionary identification–sparse matrix-
factorization via l1 -minimization,” IEEE Trans. Inform. Theory, vol. 56,
no. 7, pp. 3523–3539, 2010.

[33] R. Rubinstein, A. M. Bruckstein, and M. Elad, “Dictionaries for sparse
representation modeling,” Proceedings of the IEEE, vol. 98, no. 6, pp.
1045–1057, 2010.

[34] M. Elad and M. Aharon, “Image denoising via sparse and redundant
representations over learned dictionaries,” IEEE Trans. Image Process.,
vol. 15, no. 12, pp. 3736–3745, 2006.

[35] J. Mairal, M. Elad, and G. Sapiro, “Sparse representation for color image
restoration,” IEEE Trans. on Image Processing, vol. 17, no. 1, pp. 53–69,
2008.

[36] M. Protter and M. Elad, “Image sequence denoising via sparse and
redundant representations,” IEEE Trans. on Image Processing, vol. 18,
no. 1, pp. 27–36, 2009.

[37] M. Aharon and M. Elad, “Sparse and redundant modeling of image
content using an image-signature-dictionary,” SIAM Journal on Imaging
Sciences, vol. 1, no. 3, pp. 228–247, 2008.

[38] J. Mairal, G. Sapiro, and M. Elad, “Learning multiscale sparse repre-
sentations for image and video restoration,” SIAM Multiscale Modeling
and Simulation, vol. 7, no. 1, pp. 214–241, 2008.

[39] R. Rubinstein, M. Zibulevsky, and M. Elad, “Double sparsity: Learning
sparse dictionaries for sparse signal approximation,” IEEE Transactions
on Signal Processing, vol. 58, no. 3, pp. 1553–1564, 2010.

[40] G. Yu, G. Sapiro, and S. Mallat, “Image modeling and enhancement
via structured sparse model selection,” in Proc. IEEE International
Conference on Image Processing (ICIP), 2010, pp. 1641–1644.

[41] I. Ramirez, P. Sprechmann, and G. Sapiro, “Classification and clustering
via dictionary learning with structured incoherence and shared features,”
in Proc. IEEE International Conference on Computer Vision and Pattern
Recognition (CVPR) 2010, 2010, pp. 3501–3508.

[42] H. Y. Liao and G. Sapiro, “Sparse representations for limited data
tomography,” in Proc. IEEE International Symposium on Biomedical
Imaging (ISBI), 2008, pp. 1375–1378.

[43] S. Ravishankar and Y. Bresler, “MR image reconstruction from highly
undersampled k-space data by dictionary learning,” IEEE Trans. Med.
Imag., vol. 30, no. 5, pp. 1028–1041, 2011.

[44] ——, “Multiscale dictionary learning for MRI,” in Proc. ISMRM, 2011,
p. 2830.

[45] M. Yaghoobi, S. Nam, R. Gribonval, and M. E. Davies, “Constrained
overcomplete analysis operator learning for cosparse signal modelling,”
IEEE Trans. Signal Process., 2012, submitted. [Online]. Available:
http://arxiv.org/abs/1205.4133

[46] E. J. Candès and J. Romberg, “Practical signal recovery from random
projections,” in SPIE International Symposium on Electronic Imaging:
Computational Imaging III, 2005.

[47] W. K. Pratt, J. Kane, and H. C. Andrews, “Hadamard transform image
coding,” Proceedings of the IEEE, vol. 57, no. 1, pp. 58–68, 1969.

[48] J. B. Allen and L. R. Rabiner, “A unified approach to short-time fourier
analysis and synthesis,” Proc. IEEE, vol. 65, no. 11, pp. 1558–1564,
1977.

[49] M. Lustig, D. Donoho, and J. Pauly, “Sparse MRI: The application of
compressed sensing for rapid MR imaging,” Magnetic Resonance in
Medicine, vol. 58, no. 6, pp. 1182–1195, 2007.

[50] M. Lustig, J. M. Santos, D. L. Donoho, and J. M. Pauly, “k-t SPARSE:
High frame rate dynamic MRI exploiting spatio-temporal sparsity,” in
Proc. ISMRM, 2006, p. 2420.

[51] C. Wang, D. Sun, and K.-C. Toh, “Solving log-determinant optimization
problems by a newton-CG primal proximal point algorithm,” SIAM J.
Optim, vol. 20, no. 6, pp. 2994–3013, 2010.

[52] M. Zibulevsky and B. A. Pearlmutter, “Blind source separation by sparse
decomposition in a signal dictionary,” Neural Computation, vol. 13,
no. 4, pp. 863–882, 2001.

[53] R. Pytlak, Conjugate Gradient Algorithms in Nonconvex Optimization.
Springer-Verlag, 2009.

[54] J. Dattorro, Convex Optimization & Euclidean Distance Geometry.
Meboo Publishing USA, 2005.

[55] J. A. Fill and S. Janson, “Quicksort asymptotics,” Journal of Algorithms,
vol. 44, no. 1, pp. 4–28, 2002.

[56] M. Elad, “Michael Elad personal page,” http://www.cs.technion.ac.il/
∼elad/Various/KSVD Matlab ToolBox.zip, 2009.

[57] S. Ravishankar and Y. Bresler, “Learning doubly sparse transforms
for image processing,” IEEE Trans. Image Process., 2012, submitted.
[Online]. Available: https://netfiles.uiuc.edu/ravisha3/shared/tip s1.pdf

[58] ——, “Learning sparsifying transforms for image processing,” in IEEE
Int. Conf. Image Process., 2012, to appear.

Saiprasad Ravishankar received the B.Tech. de-
gree in Electrical Engineering from the Indian Insti-
tute of Technology Madras, in 2008. He received the
M.S. degree in Electrical and Computer Engineering,
in 2010, from the University of Illinois at Urbana-
Champaign, where he is currently a Ph.D candidate.
His current research interests are in signal and image
processing, and medical imaging.

Yoram Bresler received the B.Sc. (cum laude) and
M.Sc. degrees from the Technion, Israel Institute of
Technology, in 1974 and 1981 respectively, and the
Ph.D degree from Stanford University, in 1986, all
in Electrical Engineering. In 1987 he joined the Uni-
versity of Illinois at Urbana-Champaign, where he is
currently a Professor at the Departments of Electri-
cal and Computer Engineering and Bioengineering,
and at the Coordinated Science Laboratory. Yoram
Bresler is also President and Chief Technology Of-
ficer at InstaRecon, Inc., a startup he co-founded

to commercialize breakthrough technology for tomographic reconstruction
developed in his academic research. His current research interests include
multi-dimensional and statistical signal processing and their applications to
inverse problems in imaging, and in particular compressed sensing, computed
tomography, and magnetic resonance imaging.

Dr. Bresler has served on the editorial board of a number of journals, and on
various committees of the IEEE. Currently he serves on the editorial boards
for the SIAM Journal on Imaging Science. Dr. Bresler is a fellow of the
IEEE and of the AIMBE. He received two Senior Paper Awards from the
IEEE Signal Processing society, and a paper he coauthored with one of his
students received the Young Author Award from the same society in 2002.
He is the recipient of a 1991 NSF Presidential Young Investigator Award,
the Technion (Israel Inst. of Technology) Fellowship in 1995, and the Xerox
Senior Award for Faculty Research in 1998. He was named a University of
Illinois Scholar in 1999, appointed as an Associate at the Center for Advanced
Study of the University in 2001-02, and Faculty Fellow at NCSA in 2006.


