
Learning to Crawl: Comparing Classification
Schemes

GAUTAM PANT
The University of Utah
and
PADMINI SRINIVASAN
The University of Iowa

Topical crawling is a young and creative area of research that holds the promise of benefiting from
several sophisticated data mining techniques. The use of classification algorithms to guide topical
crawlers has been sporadically suggested in the literature. No systematic study, however, has been
done on their relative merits. Using the lessons learned from our previous crawler evaluation
studies, we experiment with multiple versions of different classification schemes. The crawling
process is modeled as a parallel best-first search over a graph defined by the Web. The classifiers
provide heuristics to the crawler thus biasing it towards certain portions of the Web graph. Our
results show that Naive Bayes is a weak choice for guiding a topical crawler when compared with
Support Vector Machine or Neural Network. Further, the weak performance of Naive Bayes can be
partly explained by extreme skewness of posterior probabilities generated by it. We also observe
that despite similar performances, different topical crawlers cover subspaces on the Web with low
overlap.

Categories and Subject Descriptors: H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval—Search process; I.2.6 [Artificial Intelligence]: Learning; I.5.4 [Pattern
Recognition]: Applications; H.3.4 [Information Storage and Retrieval]: Systems and Soft-
ware—Performance evaluation (efficiency and effectiveness)

General Terms: Experimentation, Performance, Algorithms, Design

Additional Key Words and Phrases: Topical crawlers, focused crawlers, classifiers, machine learning

1. INTRODUCTION

Web crawler programs exploit the graph structure of the Web by starting at a
seed page and then following the hyperlinks within it to attend to other pages.
This process repeats with the new pages offering more hyperlinks to follow,

Authors’ addresses: G. Pant, School of Accounting and Information Systems, The University of
Utah, Salt Lake City, UT 84112; email: gautam.pant@business.utah.edu; P. Srinivasan, School of
Library and Information Science and Department of Management Sciences; The University of Iowa,
Iowa City, IA 52242; email: padmini-srinivasan@uiowa.edu.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or direct commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,
to redistribute to lists, or to use any component of this work in other works requires prior specific
permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 1515
Broadway, New York, NY 10036 USA, fax: +1 (212) 869-0481, or permissions@acm.org.
C© 2005 ACM 1046-8188/05/1000-0430 $5.00

ACM Transactions on Information Systems, Vol. 23, No. 4, October 2005, Pages 430–462.

Learning to Crawl: Comparing Classification Schemes • 431

until a sufficient number of pages are fetched or some higher level objective
is reached. With topical Web crawlers, the goal is to be selective about the
pages fetched and ensure as best as possible that these are relevant to some
initiating topic. Such crawlers, sometimes referred to as focused or thematic
crawlers, are important for a variety of applications such as vertical search
engines [McCallum et al. 2000], competitive intelligence [Chen et al. 2002; Pant
and Menczer 2003], software agents [Chen et al. 1998; Menczer and Belew 2000;
Chau et al. 2001; Pant and Menczer 2002], and digital libraries [Pant et al.
2004b; Qin et al. 2004]. The need for topical crawlers is fueled by the large
size and the dynamic nature of the Web [Lawrence and Giles 1998]. While the
widespread usage of such crawlers by millions of end users is not practical, we
expect topical crawlers to be increasingly used for generating focused collections
for research, preserving, and gathering intelligence (business or otherwise). For
example, a business or a nonprofit organization may be interested in preserving
temporal snapshots of cancer related information that appears on the Web over
several years [Day 2003].

The significant challenge of identifying all and just the relevant or topical
subspaces of the Web is typically addressed by building intelligence into the
crawling strategy. This is generally achieved through appropriate heuristics to
bias the search. The key decision emphasized in these heuristics is: Which is
the next best hyperlink (URL) to follow given the crawler’s current position
in the Web as defined by the pages it has seen thus far? Examples of such
heuristics include computing content similarity between the parent page that
contains a hyperlink with a topic profile or query, measuring the centrality of
the parent page based on the neighboring Web graph, and using supervised
[Chakrabarti et al. 1999; McCallum et al. 2000] or unsupervised [Menczer
and Belew 2000] machine learning to estimate the benefit of following a
hyperlink.

A family of potential solutions for designing crawler heuristics comes from
the area of classifiers. These machine learning tools, built using training sets of
examples, have been studied extensively for a variety of purposes including the
closely related task of text classification [McCallum and Nigam 1998; Dumais
1998; Joachims 2002]. In the context of topical crawler logic, classifiers offer a
natural approach to decide if a given hyperlink is likely or is not likely to lead
to a relevant Web page. It may be noted that the task in classifier-guided topical
crawling is one of classifying URLs before downloading the pages corresponding
to them. The current literature provides a few examples of research exploring
classifiers for crawling. The highly cited 1999 paper by Chakrabarti et al. [1999]
explores Naive Bayes classifiers in what the authors call a focused crawling
framework. Similarly Diligenti et al. [2000] and Johnson et al. [2003] use Naive
Bayes and Support Vector Machine (SVM) classifiers respectively to guide their
topical crawlers. However, the research exploring the influence of classifiers on
crawlers is limited to a small set of papers. Also, most of these explore a single
classification scheme, which typically is Naive Bayes. Additionally, almost all
of these investigations are limited to crawls for not more than 10 topics. These
studies, although significant in that they draw our attention to the potential of
classifiers for crawling, lead us to conclude that a systematic study exploring

ACM Transactions on Information Systems, Vol. 23, No. 4, October 2005.

432 • G. Pant and P. Srinivasan

alternate classification schemes under rigorous experimental conditions is now
timely.

Our goal is thus to contribute such a systematic study, with experiments ex-
ploring multiple versions of the Naive Bayes, Support Vector Machine (SVM),
and Neural Network classification schemes for crawling. These classification
techniques are popular and well established in the areas of text and data min-
ing with readily available implementations in several programming languages.
We also study classifiers under varying conditions as for instance when there
are just a few examples of relevant pages available to train the classifier. We
perform our experiments using a collection of more than 100 topics, which al-
lows us to make statistically valid conclusions. We have designed and devel-
oped a crawling framework that allows for flexible addition of new classifiers.
The crawlers themselves are implemented as multithreaded objects that run
concurrently. Our results show that Naive Bayes is a weak choice for guid-
ing a topical crawler when compared with Support Vector Machine or Neural
Network. Our post hoc analysis explains the better performance of some
crawlers while recognizing the divergence among similar performing crawlers
in terms of the subspaces of the Web covered by them.

The rest of this article is organized as follows. We begin by detailing related
research in Section 2. Section 3 describes the underlying architecture of our
crawlers. The various classification schemes and their versions used in this
study are described in Section 4. The process of deriving topics for the evaluation
of crawlers and the performance metrics are explained in Section 5 and Section 6
respectively. We present our experiments in Section 7 and illustrate the results
in Section 8. Several observations, based on post hoc analysis, are made in
Section 9 and Section 10 concludes our findings and enumerates future research
directions.

2. RELATED RESEARCH

Starting from the early topical crawlers such as Fish Search [De Bra and Post
1994], a variety of methods have been proposed for building topical crawlers.
Although crawlers based on machine learning algorithms are our focus, it is
important to recognize the underlying research context exploring crawler de-
sign. Note that many crawler algorithms are variations of the best-first crawler,
where a list of unvisited URLs is maintained as a priority queue. The unvis-
ited URLs correspond to the pages that have not yet been downloaded by the
crawler. The list of such URLs maintained by the crawler is called a frontier.
Each unvisited URL has an associated score that reflects the benefit of follow-
ing that URL and hence determines its priority for download. Variations of the
best-first crawler may be produced by varying the heuristics used to score the
unvisited URLs in the frontier. The heuristics affect the scoring of unvisited
URLs and hence the path of the crawler. In a multi-threaded implementation
[Pant et al. 2004a] the best-first crawler acts like a best-N-first crawler where
N is a function of the number of simultaneously running threads. Thus best-
N-first is a generalized version of the best-first crawler that picks N best URLs
to crawl at a time.

ACM Transactions on Information Systems, Vol. 23, No. 4, October 2005.

Learning to Crawl: Comparing Classification Schemes • 433

The naive best-first crawler [Menczer et al. 2001; Pant et al. 2004a] measures
the cosine similarity [Salton and McGill 1983] of a page to a topic profile or a
query, and uses this similarity to estimate the benefit of following the hyperlinks
found on that page. The naive best-first crawlers and their variations have been
detailed and evaluated by us in multiple studies [Menczer et al. 2001; Pant
et al. 2002; Menczer et al. 2004]. We found that more explorative (less greedy)
best-N-first versions outperform a strict best-first crawler [Pant et al. 2002;
Menczer et al. 2004]. FishSearch [De Bra and Post 1994], one of the earliest
topical crawling algorithms uses a similarity measure like the one used in
the naive best-first crawler for estimating the relevance of an unvisited URL.
FishSearch also has a notion of depth-bound that prevents it from exploring
paths that lead to a sequence of irrelevant pages. SharkSearch [Maarek et al.
1997; Hersovici et al. 1998; Ben-Shaul et al. 1999], while adopting the concepts
of FishSearch, has a more refined notion of scores for unvisited URLs. The
anchor text, text surrounding the links or link context, and scores inherited
from ancestors, influence the scores of the URLs. The ancestors of a URL are
the pages that appeared on the crawl path to the URL. SharkSearch, like its
predecessor FishSearch, maintains a depth bound. That is, if the crawler finds
unimportant pages on a crawl path up to a certain depth or distance, it stops
crawling further along that path.

In general topical crawlers have used three different forms of contextual
information to estimate the benefit of following a URL. These are:

Link context: This is the lexical content that appears around the given
URL in the parent page. The parent page is the page from which the URL was
extracted. The link context could range from the entire parent page or a select
subset of it. Link context is utilized by almost all of the topical crawlers in
one form or the other [De Bra and Post 1994; Hersovici et al. 1998; Chakrabarti
et al. 1999; Menczer and Belew 2000; Diligenti et al. 2000; Aggarwal et al. 2001;
Johnson et al. 2003; Pant et al. 2004b; Srinivasan et al. 2005].

Ancestor pages: The lexical content of pages leading to the current page
that contains the given URL. A few topical crawlers such as those suggested by
Diligenti et al. [2000] and Johnson et al. [2003] have attempted to use ancestor
pages (in addition to the parent page). However, Johnson et al. [2003] have
shown that the content of ancestor pages beyond the parent page provides very
little help for topical crawling when compared with the parent page.

Web graph: The structure of the Web subgraph around the node (page)
corresponding to the given URL may also provide essential cues about the merit
of following the URL. For example, if the parent page in which the URL appears
is a “good” hub,1 then the priority for following the URL may be increased. This
strategy was first utilized by Chakrabarti et al. [1999] in their focused crawler;
however, no result (other than anecdotal comments) that pointed to its benefit
was shown in that work. In a more recent investigation we have shown that
exploitation of hubs can indeed produce statistically significant improvement
in a topical crawler’s performance [Pant and Menczer 2003].

1A page that has links to many resourceful pages.

ACM Transactions on Information Systems, Vol. 23, No. 4, October 2005.

434 • G. Pant and P. Srinivasan

In this article we focus on the use of the parent page as the context of the
unvisited URLs within it. This commonly used contextual information is the
most fundamental in classifier-based topical crawlers. Example Web pages are
used as training instances and the trained classifier is used to judge the crawled
pages in order to prioritize the unvisited URLs extracted from them. The use
of the parent page to score the hyperlinks in it is founded on the topical locality
hypothesis [Davison 2000], which states that most Web pages link to other
pages that are similar in content.

2.1 Classifier-Guided Topical Crawlers

In situations where examples of relevant Web pages are available for topics, it
is almost natural to involve classifiers when crawling. It is therefore surprising
to observe that there has only been sporadic study on the role of classifiers
in crawlers. Indeed besides the effort of Chakrabarti et al. [1999, 2002], few
papers have investigated classifier-based crawling.

Chakrabarti et al. [1999] were the first to use a (Naive Bayesian) classifier
to guide a topical crawler. The basic idea behind their crawler is to classify
crawled pages with categories in a topic taxonomy. A user can mark some of the
categories as “good” to indicate the information need. The crawler then uses
the example URLs to build a Bayesian classifier that can find the probability
Pr(c|p) that a crawled page p belongs to a category c in the taxonomy. We
note that this focused crawler can be generalized and used without a taxonomy
for crawling problems where only two categories (relevant/not relevant) are
available [Chakrabarti et al. 2002]. Diligenti et al. [2000] suggested a variation
of the above focused crawler and called it a context focused crawler. Unlike
the focused crawler described above, this crawler uses a set of Naive Bayes
classifiers that are trained to estimate the link distance between a crawled
page and the relevant pages. More recently Johnson et al. [2003] suggested the
use of an SVM classifier with a linear (1st degree) kernel for topical crawling.
No comparisons were made in these studies to other classification algorithms
or variations of the same algorithm (e.g., SVM with 2nd degree kernel).

Machine learning algorithms other than classifiers have been used to guide
topical crawlers. For example, Chen et al. [1998] proposed a topical crawler
that uses a genetic algorithm. A crawling algorithm based on reinforcement
learning (RL) [Mitchell 1997] was suggested by Rennie and McCallum [1999].
Menczer and Belew [2000] detailed InfoSpiders, an evolutionary algorithm that
generates a population of adaptive spiders that use Neural Networks with
Q-learning.

We recognize classifier-guided topical crawlers as an interesting direction in
the development of topical crawlers. This direction allows for flexible models
of topics being discovered from example Web pages. As mentioned before, the
main weakness of the current literature is the absence of a systematic study
that compares various types of classifiers in the role of guiding a topical crawler.
Also, studies that use large numbers of topics and make statistically robust
comparisons while using such crawlers are lacking. Our goal is to fill some
of these research gaps, while simultaneously suggesting new algorithms and
seeking insights into the use of classifier-guided topical crawlers.

ACM Transactions on Information Systems, Vol. 23, No. 4, October 2005.

Learning to Crawl: Comparing Classification Schemes • 435

Fig. 1. High-level design of topical crawling infrastructure.

3. CRAWLER ARCHITECTURE

Figure 1 details our high-level layered design for a topical crawling infrastruc-
ture. Each layer is oblivious to the implementation details of other layers; this
makes it easy to replace one implementation of a layer with another, as long
as their interface is kept the same. In a crawling loop a URL is picked from
the frontier (a list of unvisited URLs), the page corresponding to the URL is
fetched from the Web, the fetched page is processed through all the infrastruc-
ture layers (see Figure 1), and the unvisited URLs from the page are added
to the frontier. The networking layer is primarily responsible for fetching and
storing a page and making the process transparent to the layers above it. The
parsing and extraction layer parses the page and extracts the needed data such
as hyperlink URLs and their contexts (words, phrases etc.). The extracted data
is then represented in a formal notation (say a vector) by the representation
layer before being passed onto the intelligence layer that associates priorities
or scores with unvisited URLs in the page. We implement the high level layered
design as multithreaded objects in Java. Each thread implements a sequential
crawling loop that includes the layers shown in Figure 1. All of the threads
share a single synchronized frontier.

When a classifier is used to guide a topical crawler, each thread in our im-
plementation follows the steps shown in Figure 2. We use the Weka machine
learning software for the implementation of the classifiers.2 We chose Weka

2http://www.cs.waikato.ac.nz/ml/weka/

ACM Transactions on Information Systems, Vol. 23, No. 4, October 2005.

436 • G. Pant and P. Srinivasan

Fig. 2. Crawler model: details of a crawler thread and its interaction with the guiding classifier.

for our study because it is an open-source library of Java code that provides
simple and consistent API for various classification algorithms. We could have
used SVMlight,3 an implementation of SVM in C, along with locally developed
software for Naive Bayes and Neural Networks. However, Weka offers the ad-
vantage of a consistent API. We appropriately interface our implementation
with Weka so that classifiers can be used and replaced with ease and flexibil-
ity. In terms of the high-level design (see Figure 1) the change in classifiers
amounts to changing only the intelligence layer while all of the other layers
remain constant.

A topical crawler needs to process and represent Web content, apply intel-
ligence (e.g., through a classifier), and maintain a frontier of URLs based on
their priorities. All of these tasks require some amount of memory-resident
data structures that are not necessary for a generic (non-topical) crawler. This
additional memory consumption by a topical crawler may affect its scalability
when compared with a generic crawler.

3http://svmlight.joachims.org/

ACM Transactions on Information Systems, Vol. 23, No. 4, October 2005.

Learning to Crawl: Comparing Classification Schemes • 437

4. CLASSIFICATION SCHEMES AND CLASSIFIERS

We differentiate between classification schemes and classifiers. A classification
scheme is a general mechanism that can have many versions due to parame-
ter and algorithmic variations. A classifier is a particular version of a scheme.
Hence, we call SVM a classification scheme while we call a particular implemen-
tation of SVM, say with a linear kernel, a classifier. The purpose of a classifier is
to assign an object (or its representation) to a class or a category. In the current
experiments, the object is a Web page and the classes are “relevant” or “not
relevant.” A classifier makes the assignment based on historical or training
data on the topic. This training data is a set of examples each of which in-
cludes an object, its representation, and its true class. A classifier learns from
the examples through a training process. This form of learning is often called
supervised learning. Once trained, the classifier can be used for assignment of
previously unseen objects to classes. More formally, a two class (relevant/not
relevant or positive/negative or +1/ − 1) classification problem where objects
are represented in N dimensional real space (RN) is that of finding a function
(classifier) f : RN → {±1}. The training data can be written as,

(x1, y1), . . . , (xm, ym) ∈ RN × ±1

where xi is the vector representation of object i, and yi is its class label [Müller
et al. 2001]. Once the function is derived (classifier is trained) it draws a decision
surface in the space of objects in an attempt to differentiate between the two
classes.

Given a real world data set, such as pages and their true classes, no de-
cision surface will be perfect in classifying unseen data. However, we would
like the classifier to provide us with Pr(class = +1|xi), the probability that the
page belongs to the relevant (positive) class given its representation. We can
then associate this probability with the unvisited URLs within that page. This
probability will serve as a score through which we can prioritize the frontier of
URLs.

4.1 Representation, Training, and Usage

Our experiments are run over many topics that are obtained from the Open
Directory Project (ODP).4 The process used to extract topics from ODP is
described later in Section 5. For each topic, we have positive and negative ex-
amples. The positive examples are Web pages that have been manually judged
to be on the topic, and negative examples are randomly selected Web pages
from other topics. We keep the number of negatives to be twice the number of
positives. The positive and negative examples are represented in TF-IDF (term
frequency-inverse document frequency) [Salton and McGill 1983] vector space.
Hence, all of the examples are parsed and tokenized to identify the words within
them. The stop-words are removed and the remaining words are stemmed using
the Porter stemming algorithm [Porter 1980]. These stemmed words or terms
from all of the negative and positive examples form our vocabulary V for the

4http://dmoz.org

ACM Transactions on Information Systems, Vol. 23, No. 4, October 2005.

438 • G. Pant and P. Srinivasan

topic. This vocabulary may differ across topics. Next, we represent the positive
and the negative examples as feature vectors where each element in the vec-
tors corresponds to a term in V. Thus, we represent a Web page p as a vector
xp = (

w1p, w2p, ..., wN p
)
, where wsp is the weight of the term s in page p and N

is the size of V. The term weights are TF-IDF values that are computed as:

wsp =
(

0.5 + 0.5 · tfsp

maxs′∈Tp tfs′ p

)
︸ ︷︷ ︸

TF

· ln
(|E|

dfs

)
︸ ︷︷ ︸

IDF

(1)

where tfsp is the frequency of the term s in page p, Tp is the set of all terms in
page p, E is the collection containing the positive and the negative examples,
and dfs (document frequency or DF) is the number of pages in E that contain
the term s. Equation 1 corresponds to one of the standard weighting schemes
in the SMART system [Salton 1971].

Both the positive and the negative example pages represented as TF-IDF
based feature vectors are used for training a classifier. Once the classifier has
been trained, it is used to estimate the Pr(class = +1|xi) where i is the crawled
page and xi is its vector representation. The space in which this page is rep-
resented remains confined to the vocabulary V for the topic. Also, the page i is
represented in the same way as the positive and the negative examples, with
term weights being computed as given in Equation 1. We will continue to use the
dfs computed based on the collection E. Also, we note that no feature selection
[Yang and Pedersen 1997] is performed beyond stoplisting and stemming. Fea-
ture selection would have added another dimension to our experiments, lead-
ing to potentially different crawl performances based on the feature selection
technique used. We could have also explored various combinations of feature
selection techniques and classifiers that perform well. However, we have left
this dimension for future research.

We call the trained classifier the crawling classifier since we will use it to
guide a topical crawler. We next describe the classification schemes that will be
used in our experiments. We have picked three classification schemes that have
been commonly and successfully used in various data mining and information
retrieval applications. The use of different classifiers would lead to different
costs in terms of training and classification times. The classification cost is
paid at crawl time and hence must be judged relative to the time to download a
Web page. We may expect the time to download a Web page to be much greater
than the classification time.

4.2 Naive Bayes

A Bayesian classifier [Chow 1957; McLachlan 1992; Elkan 1997] is based
on the well known Bayes formula. It assumes that given a class, the data
(x) is produced from a probability distribution (e.g., p(x|class = +1) if the
class is positive). Hence, applying the Bayes formula, the posterior probability,

ACM Transactions on Information Systems, Vol. 23, No. 4, October 2005.

Learning to Crawl: Comparing Classification Schemes • 439

Pr(class = +1|x), can be computed as:

Pr(class = +1|x) = p(x|class = +1) · Pr(class = +1)
p(x)

(2)

where Pr(class = +1) is the prior probability of the relevant class, and for a two
class problem,

p(x) = p(x|class = +1) + p(x|class = −1) (3)

(we use p(·) for a pdf where the area under the function adds up to 1 and Pr(·)
for denoting probabilities). An added assumption in the Naive Bayes classifier
is that the various components (attributes) of the data x are independently
distributed. Hence, Equation 2 can be written as:

Pr(class = +1|x) =
∏N

j=1 p(x j |class = +1) · Pr(class = +1)

p(x)
(4)

where x j is the j th attribute of vector x.
We compute the prior probabilities Pr(class = +1) and Pr(class = −1) based

on how frequently a class appears in the training data. Since, p(x) is just a
normalization factor, the Naive Bayes’ training process [McCallum and Nigam
1998; Lewis 1998] is all about estimating the underlying distributions of at-
tributes given the class: estimating p(x j |class = +1) and p(x j |class = −1) for
all j . The manner in which these distributions are estimated differentiates the
two classifiers of this scheme available with Weka, that we have used.

Normal Density: In this case, we assume that the attribute values are nor-
mally distributed given the class. Hence, p(x j |class = +1) and p(x j |class = −1)
for each x j are normal distributions with some mean and variance. Then the
learning problem is that of estimating the parameters—mean and variance. In
other words, the learning problem is a parametric one. Since we have training
examples from both the positive and the negative class, we can use those to esti-
mate the needed parameters. We use the training data to derive the maximum
likelihood estimates (MLE) of the mean and the variance of the distributions.
The estimates will be the sample mean and variance of attribute values for
each class where the sample is our training examples.

Kernel Density: A more powerful model is obtained when we remove the
normality assumption and rely on nonparametric statistical methods for esti-
mating the distribution for p(x j |class = +1) and p(x j |class = −1) [John and
Langley 1995]. We use a nonparametric method where the p(x j |class = +1) is
computed as:

p(x j |class = +1) = 1
n+

·
n+∑
i=1

k(x j ; µi
+, σ i

+) (5)

where n+ is the number of training examples that belong to the relevant class,
xji is the j attribute of vector xi (representation of the ith positive example),
and k is a normal density function with mean µi

+ = xji and standard devia-
tion σ i

+ = 1√
n+

[John and Langley 1995]. A simple explanation for Equation 5
is that it takes an attribute value x j from a vector representation of an object

ACM Transactions on Information Systems, Vol. 23, No. 4, October 2005.

440 • G. Pant and P. Srinivasan

(say a Web page) x, and measures its average distance from the correspond-
ing attribute value in each of the positive training examples and uses that
as the p(x j |class = +1). p(x j |class = −1) is measured in a similar manner.
The distance is computed using a gaussian (normal density) kernel (distance
metric).

Note that once Pr(class = +1|x) and Pr(class = −1|x) have been computed,
the assignment of class is simple. If Pr(class = +1|x) > Pr(class = −1|x),
the class of x is relevant or positive, else it is not relevant or negative. We do
not know of any previous work in topical crawling that uses Naive Bayes with
kernel density estimation.

4.3 Support Vector Machines

Support vector machines (SVMs) have attracted much attention in the recent
literature due to their good real-world performance and their theoretical
underpinnings. Vapnik [1995] provides an authoritative treatment of SVMs.
For a two class problem, the basic idea behind SVM learning is to find an
optimal linear decision boundary (hyperplane) that minimizes the risk of erro-
neous classifications. This risk is defined in statistical terms and the training
process amounts to solving a quadratic programming problem [Burges 1998;
Platt 1999; Schölkopf et al. 1999; Cristianini and Schölkopf 2002; Schölkopf
and Smola 2003]. Applying the Kurush-Kuhn-Tucker conditions [Wright and
Nocedal 1999], it is found that the training examples that influence the optimal
decision boundary are the ones that are closest to it. These training points are
called the support vectors and the resulting optimal hyperplane classifier a
support vector machine. The optimal hyperplane thus found can be written as:

g (x) = w · x + w0 = 0 (6)

where x is a point on the plane, w are weights learned in the training process
that determine the direction of the hyperplane, and w0 fixes the position of the
hyperplane in space [Theodoridis and Koutroumbas 2003].

A trick to extend the SVM learning to nonlinear decision boundaries is to
convert the input space (RN) into a higher dimensional space such that a linear
decision boundary in the new space corresponds to a nonlinear counterpart in
the input space (see Figure 3) [Müller et al. 2001]. Hence, nonlinear separat-
ing surfaces can be created while solving a linear problem in the transformed
space. To simplify, the desired transformation effect is achieved by just redefin-
ing kernels (distance metrics) without having to map each point from the input
space to the transformed space. Note that the input space corresponds to the
space where the objects are originally represented. The SVM implementation
in Weka converts the output of an SVM (g (x)) for an object’s vector represen-
tation x (that could lie on either side of the optimal hyperplane) into a score
between 0 and 1 using a sigmoid function (see Equation 7). In addition it uses
John C. Platt’s sequential minimal optimization (SMO) [Platt 1999] for training
an SVM. We do not change Weka’s default values for variables such as complex-
ity constant (C = 1) and accuracy tolerance (10−3). We will use three versions of
SVMs in our experiments corresponding to 1st, 2nd, and 3rd degree polynomial

ACM Transactions on Information Systems, Vol. 23, No. 4, October 2005.

Learning to Crawl: Comparing Classification Schemes • 441

Fig. 3. Transformation (through φ2) of a two dimensional input space to three dimensional trans-
formed space. A circle in the input space corresponds to a hyperplane in the transformed space
[Schölkopf et al. 1999; Müller et al. 2001].

kernels. To the best of our knowledge, no work in topical crawling has ever used
SVM with 2nd and 3rd degree polynomial kernels.

4.4 Neural Networks

Neural Networks [Lippmann 1988; Rumelhart et al. 1994; Jain et al. 1996] are
computational models “inspired” by their biological counterparts [McCulloch
and Pitts 1943]. In our experiments we use a three layer feed-forward Neural
Network [Hornik et al. 1989; Widrow 1990] as shown in Figure 4. The input
layer nodes (circles) can take in a vector representation (x) of an object and
the output layer nodes represent the two classes (relevant or not relevant) in
which x may fall. Each node in the input layer corresponds to a term in our
vocabulary. The directed edges in the network (see Figure 4) that connect a pair
of nodes have a weight associated with them. The node at the source of an edge
provides an input that is then multiplied by the corresponding edge weight
before reaching the destination node of that edge. At the destination node the
weighted inputs received from all connected source nodes are summed up and
passed through a sigmoid function to derive an output (which may in turn be
an input to the next layer in the network). The sigmoid function is of the form:

f (x) = 1
1 + e−x (7)

where x is the sum of the weighted inputs from the source nodes in the previous
layer. The threshold value typically seen in a sigmoid function is modeled as
an additional weight connected to a source node with a constant output of 1.
Weka uses the back-propagation [Rumelhart et al. 1986; LeCun 1986] learning
strategy that uses the training data to adjust weights within the network in
order to move it in the direction of steepest squared error reduction. Hence, this
learning strategy is a form of gradient descent [Wright and Nocedal 1999]. The
general weight change rule in back-propagation learning is:

w j
i ← w j

i + c · δ
j
i · x j−1 (8)

ACM Transactions on Information Systems, Vol. 23, No. 4, October 2005.

442 • G. Pant and P. Srinivasan

Fig. 4. A three layer feed-forward neural network: Input layer receives xi corresponding to vector
representation of a Web page. Output layer gives scores that are normalized to get the Pr(class =
+1|xi) and Pr(class = −1|xi).

where w j
i is a vector of weights connecting a node in the j th layer with the

source nodes in the j − 1th layer, c is the learning rate, δ
j
i controls the magni-

tude and sign of the adjustment to weights, and x j−1 is the input vector from
the previous layer. All of these values are as they exist in the ith iteration of
the training process. By default, the strategy we use here, Weka performs 500
training iterations or epochs.

The training process can be viewed as a nonlinear regression problem where
the process estimates the constants and coefficients within the model (the
Neural Network) [Duda et al. 2000]. A three layer feed-forward neural network
with back-propagation learning is known to provide the universal approxima-
tion property [Hornik et al. 1989]; such a neural network can approximate any
bounded continuous function.

We experiment with classifiers based on multiple versions of neural net-
works that differ in learning rates and number of hidden nodes. While the
learning rate effects the magnitude of the adjustments in the network weights
and thresholds at each step in the training process, the number of hidden nodes
determines the complexity of the decision surface created. The literature does
not provide any previous work that uses crawlers based on pre-trained multi-
layered neural networks.

Once a classifier has been trained it can be used in the intelligence layer of a
topical crawler to provide scores for unvisited URLs based on their respective
parent pages.

5. ODP TOPICS

We obtained topics for our crawls from the Open Directory Project (ODP). The
following steps were used:

ACM Transactions on Information Systems, Vol. 23, No. 4, October 2005.

Learning to Crawl: Comparing Classification Schemes • 443

(1) Download the RDF format content file from the ODP Web site. The content
file contains a listing of ODP topics (categories) and the external URLs or
ODP relevant set corresponding to each topic. The ODP relevant set consists
of URLs that have been judged relevant to the topic by human editors of
ODP.

(2) Filter the content file to remove topics such as Regional, International,
and Adults. This is needed to avoid many semantically similar topics, sites
involved in search engine spamming, as well as pages with non-English
content. Also filter to remove the topics that have less than 40 URLs so that
we have topics with a critical mass of URLs for training and evaluation.

(3) From the remaining topics (more than 7000) randomly select a desired
number of topics and the associated ODP relevant sets. Due to the large
number of available topics, we do not expect random sampling to provide
us with a cluster of similar topics. It is possible that good quality pages,
such as the ODP pages, are better-connected and hence more reachable by
crawlers than random pages on the web. However, this aspect will not bias
this research in favor of one topic over another, or in favor of one crawler
over another.

(4) Divide the ODP relevant set for a selected topic into two random disjoint
subsets. The first set is the seeds. This set of URLs will be used to initial-
ize the crawl as well as provide the positive examples to train the classi-
fiers. The second set is the targets. It is a holdout set that will not be used
either to train or to seed the crawler. The seed set contains 20 URLs. The
rest of the (20 or more) external URLs make up the targets. These targets
will be used only for evaluation of crawl performance.

Table I shows sample topics and their corresponding seeds and targets. As
explained before, for training a two category classifier we need both positive
and negative examples. The positive examples are pages corresponding to the
seed URLs for a given topic. The negative examples are a random subset of
positive examples for the other topics in the set of selected topics; it is twice in
number as compared to the positive examples. Obtaining appropriate negative
examples as well as the appropriate proportion of positive and negative exam-
ples is a hard problem on the Web. We have opted for a simple technique while
maintaining the number of negative examples to be larger than the positive
examples.

6. PERFORMANCE METRICS

The output of a crawler l for a given topic can be written as a temporal sequence
Sl = {u1, u2, . . . , uM } where ui is the URL for the ith page crawled and M is
the maximum number of pages crawled. In order to measure the performance
of the crawler l we need a function f that maps the sequence Sl to a sequence
Rl = {r1, r2, . . . , rM } where ri is a scalar that represents the relevance of the
ith page crawled. Once we have a sequence Rl we may summarize the results
at various points during the crawl. However, evaluation of topical crawlers
is a challenging problem due to the unavailability of the complete relevance

ACM Transactions on Information Systems, Vol. 23, No. 4, October 2005.

444 • G. Pant and P. Srinivasan

Table I. Sample Topics—ODP Topic Name, Seeds, and Targets

topic name seeds targets
http://haberchemistry.tripod.com/ http://www.syvum.com/squizzes/chem/

http://www.creative-chemistry.org.uk/ http://seaborg.nmu.edu/

Science/Chemistry/ http://www.heptune.com/passchem.html http://www.towson.edu/saacs/

Education http://chemistry.org/portal/Chemistry/http://www.secondlaw.com/

. . . http://www.spusd.k12.ca.us/chemmybear/

. . .

http://www.paolosgelato.com/ http://www.carvel.com/

Business/ http://www.perrysicecream.com/ http://www.allscream.com/

Food and http://www.haganicecream.com/ http://www.greensicecream.com/

Related Products/ http://www.spaghettiicecream.com/ http://www.williesicecream.com/

Dairy/Ice Cream . . . http://www.jackjillicecream.com/

. . .

http://www.sybari.com/ http://www.grisoft.com/

Computers/Security/ http://www.kaspersky.com/ http://www.mwti.net/

Anti Virus/Products http://www.virusarrest.com/ http://www.pspl.com/

http://www.norman.com/ http://www.ravantivirus.com/

. . . http://www.centralcommand.com/

. . .

http://www.astromandir.com/ http://www.jyotish-yagya.com/

Society/Religion http://www.eastrovedica.com/ http://www.sgandhi.co.uk/

and Spirituality/ http://www.macrovedic.com/ http://enmag.org/jyotish.htm

Divination/ http://www.mywebastrologer.com/ http://www.indianastrology.com/

Astrology/Vedic . . . http://www.shyamasundaradasa.com/

. . .

set for any topic or query. Also, manual relevance judgement for each of the
crawled pages (manually created function f) is extremely costly in terms of
man-hours when we have millions of crawled pages spread over more than
one hundred topics. Even if we sample for manual evaluation, we will have
to do so at various points during a crawl to capture the temporal nature of
crawl performance. Hence, even such samples would be costly to evaluate over
a hundred topics. Hence, the two standard information retrieval (IR) measures
recall and precision can only be estimated using surrogate metrics. Below we
describe harvest rate, which we use as an estimate of precision and target recall,
which we use as an estimate of recall.

Harvest Rate: It estimates the fraction of crawled pages that are relevant.
How do we judge the relevance of a crawled page? We depend on multiple classi-
fiers to make this relevance judgement. These evaluation classifiers are essen-
tially the same as those used for crawling but they are trained on a larger set (at
least double in number) of examples. For each topic, we take one classifier at a
time and train it using the pages corresponding to the entire ODP relevant set
(instead of just the seeds) as the positive examples. The negative examples are
obtained from the ODP relevant sets of the other topics. The negative examples
are again twice as many as the positive examples. These trained classifiers are
called evaluation classifiers to distinguish them from crawling classifiers that
are used to guide the crawlers. Once we have a group of evaluation classifiers,
we judge each of the pages crawled for the topic and then consider it to be rele-
vant if at least half of the classifiers judge it to be relevant. Thus a majority vote
amongst the evaluation classifiers (this will be further illustrated in Section 7)
judges the relevance of a page and gives us the needed function f . The harvest

ACM Transactions on Information Systems, Vol. 23, No. 4, October 2005.

Learning to Crawl: Comparing Classification Schemes • 445

rate, H(t), after crawling the first t pages is then computed as:

H(t) = 1
t

t∑
i=1

ri (9)

where ri is the binary (0/1) relevance score for page i based on a majority vote
amongst the evaluation classifiers. The harvest rate is computed at different
points (t) during the crawl. We then average the harvest rate at these points
over all the topics in the test bed. Along with the average, we also compute the
±1 standard error. With the computed information we can plot the trajectory
of average harvest rate for a crawler over time (approximated by t crawled
pages). Our harvest rate metric while building on a similar metric suggested
by Chakrabarti et al. [1999], differs from it in two aspects. First, we use sev-
eral instead of a single classifier to judge the relevance of the crawled pages.
Second, we use classifiers that are trained on a larger set of examples than the
classifier used for crawling. In contrast, Chakrabarti et al. [1999] used exactly
the same classifier (trained on the same examples) to judge the crawled pages
and also to guide the crawler. We note that our harvest rate metric is analogous
to similarity-based precision measures previously suggested by us [Srinivasan
et al. 2005]. However, the similarity is measured here using a set of classifiers.
Such a similarity measurement is appropriate in the context of classifier-guided
topical crawlers.

Target Recall: Target recall [Pant and Menczer 2003; Srinivasan et al. 2005]
estimates the fraction of relevant pages on the Web that are downloaded by the
crawler. In the absence of a known relevant set, we treat the recall of the target
set, target recall, as an estimate of actual recall. If targets are a random sample
of the relevant pages on the Web, then we can expect target recall to give us
a good estimate of the actual recall. While we cannot expect targets to be a
true random sample of the relevant pages, they do provide a reasonable basis
for comparative analysis of different crawlers. As with harvest rate, we also
average the target recall over all the topics in the test bed. This give us the
average target recall trajectory over time.

7. EXPERIMENTS

7.1 Selecting the Best Classifier within each Scheme

We begin with a preliminary experiment to identify the better version for each
classification scheme. We test the following versions of the three classification
schemes:

(1) Naive Bayes—normal density and kernel density;
(2) Support Vector Machines (SVMs)—1st, 2nd, and 3rd degree kernels;
(3) Neural Networks—2,4, and 16 hidden nodes and learning rates of 0.1, 0.2,

and 0.4. We first find the better setting for the number of hidden nodes
while keeping the learning rate at 0.2. Then we fix the number of hidden
nodes to the better value and determine the best learning rate among the

ACM Transactions on Information Systems, Vol. 23, No. 4, October 2005.

446 • G. Pant and P. Srinivasan

three values. In this way we first find the better architecture (number of
hidden nodes) and then choose the better learning rate.

Hence, we test 11 crawlers guided by 11 different classifiers. In this preliminary
experiment we crawl 10, 000 pages for 10 topics that are obtained as described
in Section 5. For measuring the harvest rate we use evaluation classifiers built
using the 2 versions of Naive Bayes, the 3 versions of SVMs, and only 3 out of
the 6 versions of Neural Networks. The 3 that we use correspond to the different
numbers of hidden nodes (2,4,16) with a fixed learning rate (0.2).

7.2 Comparing Classification Schemes

Once the better classifier for each scheme has been identified in the previous
experiment, we conduct a more rigorous test of crawlers built on these se-
lect classifiers. Hence, this experiment will have three crawlers, one for each
scheme. Since Naive Bayes classifiers have been previously used in the crawling
literature [Chakrabarti et al. 1999; Diligenti et al. 2000; Pant et al. 2004b], our
best Naive Bayes crawler may be considered a reasonable baseline for compar-
ison. We perform this experiment over the 100 topics (distinct from the initial
set of 10 topics), and 10, 000 pages are crawled for each topic.

7.3 Comparing Classification Schemes with Few seeds

A related question that we address, concerns the number of seeds used by a
crawler. What if there are only a few seeds available? Will the order of per-
formances between the crawlers change? To answer these questions we repeat
the previous experiment with just 5 seeds for each topic. We note that fewer
seeds also means fewer examples used to train the guiding classifier. For this
experiment a random subset of seeds of size 5 is created from the initial seed
set of 20. However, when evaluating the runs we keep the targets for a given
topic the same as before.

7.4 Exploring the value of Adaptation

The experiments described thus far use classifiers that are trained before the
crawl begins. Moreover, the crawler learns nothing new during the time of the
crawl. As an extension we also explore the addition of new pseudo examples to
the original examples after crawling for a short time. We do this for the case
where we start with just 5 seeds. We also limit this experiment to the “better”
crawler from our comparison of classification schemes. This crawler will crawl
1000 pages and then pick the top 15 crawled pages (based on scores provided by
the crawling classifier) as pseudo positive examples. Additionally, the bottom
30 crawled pages will be treated as pseudo negative examples. These pseudo
examples (15+30) along with the original examples (5+10) are used to retrain
the classifier before crawling continues for the remaining 9000 pages. Note that
with the pseudo-examples, the crawler has a total of 20 positive and 40 negative
examples. These numbers are the same as those for the experiment where we
begin with 20 seeds. In all but the preliminary experiments where we select
the best classifiers for each of the three schemes, harvest rate will be based on

ACM Transactions on Information Systems, Vol. 23, No. 4, October 2005.

Learning to Crawl: Comparing Classification Schemes • 447

three evaluation classifiers corresponding to the best classifiers from each of
the three classification schemes studied.

We note that many of the algorithms that we test have never been tried
before. For example, to the best of our knowledge, no work in topical crawling
has ever used SVM with 2nd and 3rd degree kernels or Naive Bayes with ker-
nel density estimation. Results of crawlers that use pretrained (from positive
and negative examples) three-layered neural networks are also missing from
the literature. Although the Infospiders algorithm uses a neural network with
Q-learning to train during the time of crawl, it does not use a pretrained clas-
sifier [Menczer and Belew 2000].

8. RESULTS

8.1 Preliminary Experiments

Figure 5 shows the results of preliminary experiments for multiple versions of
each classification scheme. The goal is to select the best version for each scheme.
The horizontal axis in all of the plots is time approximated by the number of
pages crawled. The vertical axis shows a performance metric—average harvest
rate or average target recall. The error bars are also presented for each data
point.

Since the preliminary experiments are conducted over just 10 topics the
results in general do not allow us to identify a significant winner among the
choices for each classification scheme. However, we depend on the average re-
sults to identify the classifier within each scheme that is as good as or better
than any other from the scheme. We find that for Naive Bayes (Figure 5 (a) and
(b)), the classifier with kernel density performs the best on both of the perfor-
mance metrics. However, only the average target recall plot (Figure 5 (b)) shows
a significant result between the two versions (we performed a one tailed t-test
[Hogg et al. 2004] at α = 0.10). Similarly for the SVMs, the crawler with 1st
degree kernel is better than others (although not significantly) on both of the
metrics (Figure 5 (c) and (d)). Results for Neural Networks, however, require a
closer examination. The Neural Network with 4 hidden nodes performs better
than the other two versions on average harvest rate for most of the 10, 000 page
crawl (Figure 5 (e)). On average target recall the Neural Network with 4 (NN4)
hidden nodes is outperformed by the Neural Network with 16 (NN16) hidden
nodes by the end of the crawl (Figure 5 (f)). To make our choice, we look at the
p-values [Hogg et al. 2004] of two different one-tailed t-tests. hc, p is the average
harvest rate for a crawler based on classifier c after crawling p pages. Similarly,
rc, p is the average target recall for a crawler based on classifier c after crawling
p pages. Also, H0 is the null hypothesis and H1 is the alternative hypothesis.

(1) Test PH - H0: hN N4,10000 ≤ hN N16,10000, H1: hN N4,10000 > hN N16,10000.
(2) Test PR - H0: rN N4,10000 ≥ rN N16,10000, H1: rN N4,10000 < rN N16,10000.

We find the p-value of test PH to be 0.29 while that for test PR to be 0.43. While
neither of the two p-values show statistically significant results, the alternative
hypothesis of test PR is less likely as compared to the alternate hypothesis for

ACM Transactions on Information Systems, Vol. 23, No. 4, October 2005.

448 • G. Pant and P. Srinivasan

Fig. 5. Preliminary Experiments: Naive Bayes (a) average harvest rate (b) average target recall;
SVM (c) average harvest rate (d) average target recall; Neural Network (e) average harvest rate (f)
average target recall. The errorbars in these and following plots show ±1 standard error.

test PH. We also note that by the end of the crawl, NN2 is worse than NN4 on
both average harvest rate and average target recall. Hence, we choose NN4 as
the best alternative among the three.

Having found the best number of hidden nodes (among those tested) while
keeping the learning rate fixed at 0.2, we next vary the learning rate (0.1, 0.2,
0.4), while keeping the number of hidden nodes fixed at 4. Figures 6(a) and
(b) show the performance of the crawlers based on Neural Networks obtained

ACM Transactions on Information Systems, Vol. 23, No. 4, October 2005.

Learning to Crawl: Comparing Classification Schemes • 449

Fig. 6. Preliminary Experiments: Neural Network with different learning rates.

in this manner. Performing t-tests similar in nature to ones described earlier
(this time between the Neural Network with learning rate of 0.1 vs. the Neural
Network with learning rate of 0.2 and 0.4), we find that Neural Network with a
learning rate of 0.1 seems to be the best choice. We note that we conducted the
comparisons between Neural Networks with different numbers of hidden nodes
based on a learning rate of 0.2 and now we find a learning rate of 0.1 to be better.
However, we do not feel the need to repeat the experiments for the appropriate
number of hidden nodes, since the differences between performances of crawlers
based on Neural Networks with different learning rates is very small.

Based on these results we select the following versions as representative of
the corresponding classification schemes for further experimentation:

(1) Naive Bayes with kernel density (henceforth called Naive Bayes);
(2) SVM with 1st degree kernel (henceforth called SVM);
(3) Neural Network with 4 hidden nodes and learning rate of 0.1 (henceforth

called Neural Network).

We call the Naive Bayes guided crawler the NB crawler, the SVM-guided
crawler the SVM crawler, and the Neural Network guided crawler the NN
crawler.

8.2 Comparing Classification Schemes

These experiments are over the 100 topics with 10, 000 pages being crawled for
each topic. Figures 7 (a) and (b) show the performance of the different crawlers.
We find that the NB crawler for most of the crawl (up till the end) performs
significantly poorly as compared to SVM crawler or NN crawler, both on average
harvest rate as well as average target recall. We perform the following one tailed
t-tests to measure the significance of performance differences:

(1) Test FH1 - H0: hN N ,10000 ≤ hN B,10000, H1: hN N ,10000 > hN B,10000.
(2) Test FR1 - H0: rN N ,10000 ≤ rN B,10000, H1: rN N ,10000 > rN B,10000.
(3) Test FH2 - H0: hSV M ,10000 ≤ hN B,10000, H1: hSV M ,10000 > hN B,10000.
(4) Test FR2 - H0: rSV M ,10000 ≤ rN B,10000, H1: rSV M ,10000 > rN B,10000.

ACM Transactions on Information Systems, Vol. 23, No. 4, October 2005.

450 • G. Pant and P. Srinivasan

Fig. 7. Comparing Classification Schemes: (a) Average harvest rate (b) Average target recall.

(5) Test FH3 - H0: hN N ,10000 ≤ hSV M ,10000, H1: hN N ,10000 > hSV M ,10000.
(6) Test FR3 - H0: rN N ,10000 ≤ rSV M ,10000, H1: rN N ,10000 > rSV M ,10000.

Table II shows the p-values for these tests. We find that the first four tests reject
the null hypothesis at α = 0.05 significance level. Hence, both the SVM crawler
and the NN crawler significantly outperform the NB crawler. The differences
between SVM and NN are statistically insignificant.

We also compute the average training times for each of the classifier-guided
crawlers. Table III shows the average training times with ±1 standard errors.
Based on the results on average harvest rate, average target recall, and the
average training times, SVM seems to be the best choice of the three classifiers
for guiding topical crawlers since SVM performs as well as Neural Network
while requiring lower training time.

ACM Transactions on Information Systems, Vol. 23, No. 4, October 2005.

Learning to Crawl: Comparing Classification Schemes • 451

Table II. p-Values for Various Tests of Significance Between
Performances of Classifier-Guided Topical Crawlers

Test p-value Result (α = 0.05)
FH1 0.0001 H0 rejected in favor of H1
FR1 0.0134 H0 rejected in favor of H1
FH2 0.0022 H0 rejected in favor of H1
FR2 0.0254 H0 rejected in favor of H1
FH3 0.1755 H0 is not rejected
FR3 0.4155 H0 is not rejected

Table III. Average Training Time (in seconds) for Classifiers

Naive Bayes SVM Neural Network
0.310 ± 0.005 0.518 ± 0.009 56.637 ± 1.988

Table IV. Classification Time vs. Download Time (in seconds) for a Single Thread

Average Classification Time Average Download Time
Naive Bayes SVM Neural Network for all crawlers

0.0068 0.0002 0.0031 0.8767

We also note that the average time to classify a page (by a thread) during the
crawl time is much smaller as compared to the average time to download a page
(by a thread) for all of the crawlers (see Table IV). Hence, none of the classifiers
appreciably change crawling time. In other words differences in classification
time make little difference in the overall time consumed by a crawler. We also
observe that it would be misleading to treat the classification time alone as
the cost paid by a crawler since it is a very small fraction of the overall time
consumed in downloading and processing a Web page.

8.3 Comparing Classification Schemes with Few Seeds

Figures 8 (a) and (b) show the performance of NB, SVM, and NN crawlers
initialized with just 5 seeds. The purpose of the experiment was to observe the
effects of a very small seed set on the performance of the crawlers. We note
that the order of performance between the crawlers does not change. However,
the significance of performance differences between the crawlers changes. In
particular, SVM crawler is no longer significantly better than NB crawler on
both of the metrics. The NN crawler, however, still significantly outperforms
the NB crawler on average harvest rate. The performance difference on average
target recall is not as significant (only significant at α = 0.1). As we may expect,
all of the topical crawlers perform significantly worse with 5 seeds, both on
average harvest rate and average target recall, when compared with 20 seeds
(cf. Figure 8 and Figure 7). It may be interesting to tease out the effects of a
smaller set of seeds from the effect of a smaller set of examples. We have not
explored this issue. In practice, it would be hard to imagine why someone would
not provide all of the available positive examples as seeds.

8.4 Exploring the Value of Adaptation

The goal of this experiment is to explore a mechanism for finding pseudo exam-
ples after a short crawl in an attempt to provide more information to a crawler

ACM Transactions on Information Systems, Vol. 23, No. 4, October 2005.

452 • G. Pant and P. Srinivasan

Fig. 8. Comparing Classification Schemes with Few (5) Seeds: (a) Average harvest rate (b) Average
target recall.

that was initialized with very few examples. Figures 9 (a) and (b) show the effect
of retraining a classifier after crawling 1000 pages. The crawler that retrains
is called SVM Adaptive. We compare this crawler with the SVM crawler used
in the previous experiment with few seeds (5 seeds). We find that adaption in
this manner has little if any effect on performance. Although, on average target
recall, the SVM Adaptive crawler seems to slightly outperform SVM during the
latter part of the crawl (Figure 9 (b)), the difference is statistically insignificant.
For average harvest rate (Figure 9 (a)), the SVM crawler on an average performs
better than SVM Adaptive, but with insignificant difference. We may conclude
from the plots that adding pseudo examples in this way does not provide the
crawler with any new information that would help it improve its performance.

ACM Transactions on Information Systems, Vol. 23, No. 4, October 2005.

Learning to Crawl: Comparing Classification Schemes • 453

Fig. 9. Adaptation through pseudo examples: (a) Average harvest rate (b) Average target recall.

9. ANALYSIS

We further analyze our results in order to better understand the strengths and
weaknesses of different topical crawlers and obtain insights into their behavior.
The analysis presented now is conducted in a post hoc style using in all cases
the 100 topic, 10, 000 pages per topic crawl data from the experiments.

9.1 Weakness of Naive Bayes

We observe the NB crawler performing poorly when compared with the SVM
or the NN crawler. Could this be because Naive Bayes is a poor classifier when
compared with the other two? To explore this question, we take the three clas-
sifiers and perform 5-fold cross-validation runs for each of the 100 topics. The
cross-validation for a given topic is performed over its entire ODP relevant set

ACM Transactions on Information Systems, Vol. 23, No. 4, October 2005.

454 • G. Pant and P. Srinivasan

Fig. 10. Predictive accuracy of the three classifiers.

(as the positive instances/examples) that includes the seed set and the hold-
out set used for computing the target recall. The negative examples for cross-
validation are a random sample of ODP relevant sets from the other topics in our
collection. For a given topic, a 5-fold cross-validation involves randomly splitting
the set of positive and negative examples into 5 equally sized subsets. A classi-
fier is trained using, in turn, 4 of the 5 subsets and tested on the fifth. In partic-
ular, we measure the accuracy of predictions of the trained classifier on the in-
stances in the fifth set. Figure 10 shows the accuracy of classifiers based on these
5-fold cross-validation runs. Note that the accuracies are averages over the 100
topics.

We find that Figure 10 reflects the crawler performances in the experiment
that compares the classification schemes (Figure 7 (a) and (b)). However, ac-
curacy achieved by the SVM classifier (85.23 ± 0.78) is closer to the Naive
Bayes classifier (82.76 ± 0.62) than to the Neural Network classifier (88.91 ±
0.58). In contrast, Figure 7 (a) and (b) shows that the SVM crawler significantly
outperforms the NB crawler and also that the SVM and NN crawlers are not sig-
nificantly different. Is there something fundamentally weak with Naive Bayes
that leads to its poor performance in guiding a topical crawling? As explained
before, the central issue in topical crawling is an effective prioritization over
the frontier. What is the nature of priorities assigned to URLs by the different
crawlers? To answer this question, we plot histograms that give us a sense of
the distribution of scores given to crawled pages by the different crawling classi-
fiers during the crawl. Figure 11 shows such plots for each of the three crawling
classifiers used in the experiment that compares classification schemes. We find
that the page scores assigned by Naive Bayes are extremely skewed, tending to
be close to or equal to 0 or 1 (Figure 11 (a)). Hence, the NB crawler tends to lump

ACM Transactions on Information Systems, Vol. 23, No. 4, October 2005.

Learning to Crawl: Comparing Classification Schemes • 455

Fig. 11. Page score distributions: (a) Naive Bayes (b) SVM (c) Neural Network.

ACM Transactions on Information Systems, Vol. 23, No. 4, October 2005.

456 • G. Pant and P. Srinivasan

Fig. 12. Average pairwise URL overlap between SVM, NN, and NB crawler at various points
during the 10, 000 page crawl. The overlap is measured relative to N (number of pages crawled).

crawled pages as “relevant” or “irrelevant”, without providing enough shades
of gray. This extreme skewness must affect its ranking and hence prioritiza-
tion capabilities. Since page scores are assigned to the unvisited URLs within
them, the skewness fails to effectively prioritize the frontier, hence explaining
the particularly weak performance by the NB crawler. Naive Bayes in general
(not just the version we use) is known to provide extremely skewed scores in
high dimensional spaces [Chakrabarti et al. 2002]. Our classification problem
is high dimensional since each term corresponds to a dimension. It is interest-
ing that while Naive Bayes has been previously used for crawling [Chakrabarti
et al. 1999; Diligenti et al. 2000], the literature does not investigate the problem
due to skewed scores. Also as mentioned before, we do not know of any work
in the literature that compares Naives Bayes with other classification schemes
for topical crawling.

The histograms of Neural Network and SVM (Figure 11 (b) and (c)), although
different from each other, behave well in the sense that they provide different
shades of gray to the crawled pages.

9.2 Similar Performance Yet Dissimilar Pages

Turning our attention now to the SVM and NN crawlers we observe that they
perform the same on both of the performance metrics (Figure 7 (a) and (b)).
Does this mean that they cover the same subspaces on the Web? To answer
this question we look at the overlap between the two crawlers based on com-
mon URLs crawled by both at different points during the crawl. This overlap
(Figure 12) is averaged over all of the 100 topics. We note that the SVM and NN
crawlers have a significantly higher percentage of common URLs crawled when
compared with their overlap with the NB crawler. By the end of the 10, 000 page

ACM Transactions on Information Systems, Vol. 23, No. 4, October 2005.

Learning to Crawl: Comparing Classification Schemes • 457

Fig. 13. Average pairwise overlap of targets between SVM, NN, and NB crawlers at various points
during the 10, 000 page crawl. The overlap is measured relative to total targets obtained by the
pair of crawlers after crawling N pages.

crawl, however, less than 40% of the pages are in common between the SVM
crawler and the NN crawler. Hence, while they perform similarly on the metrics,
they are exploring different subspaces of the Web. This result has interesting
implications for an application designer—the choice of crawler will have an
effect on the end application even if the collections created seem equally good.

Perhaps more importantly, Figure 13 shows a plot that measures the over-
lap between the crawlers based on the common targets retrieved from the Web.
Again, the SVM and NN crawlers have significantly higher overlap on targets
when compared with the other two combinations. Yet the overlap between the
SVM and NN crawlers is no larger than 50%. This result again highlights the
observation that the crawlers are investigating different subspaces while re-
trieving equally valuable sets of relevant pages. This observation is not peculiar
to topical crawlers. Katzer et al. [1982] have previously noted that information
retrieval systems with similar performances showed low overlap in retrieved
sets of documents. For the Web, Lawrence and Giles [1998] found that com-
bining results from 6 different search engines can improve the coverage by
3.5 times as compared to a single search engine on average. The limited over-
lap of crawled pages between similarly performing crawlers could, in part, be
due to the nondeterminism in a multithreaded crawling system. However, any
practical crawling infrastructure will have some form of multithreading to be
sufficiently fast and efficient.

10. CONCLUSION

In summary, we present a systematic evaluation of classifier-based topical
crawling algorithms using a collection of more than 100 topics. Our main
findings are:

ACM Transactions on Information Systems, Vol. 23, No. 4, October 2005.

458 • G. Pant and P. Srinivasan

(1) Identification of better classifiers within each scheme included in the study.
We compare the performance of crawlers that use classifiers based on var-
ious versions of Naive Bayes, Neural Network, and SVM classification
schemes.

(2) The SVM and Neural Network-based classifiers perform equally well for
topical crawling. However, the former takes less time to train. Both the
SVM and NN crawlers outperform the NB crawler. Thus there is merit in
exploring classifier schemes other that NB, which is the one most focused
upon in the previous literature.

(3) Reducing the seed set size does not effect the order of performances between
the SVM, NN, and NB crawlers. It does, however, change the significance
of performance differences between them.

(4) An attempt with adaptation using pseudo examples when the number of
original examples are few (5 positive, 10 negative) does not help.

(5) The weakness of the NB crawler was a result of its weak classification
accuracy combined with extremely skewed scores that did not allow for
effective prioritization over the frontier.

(6) We observe that the similar performing NN and SVM crawlers have no
more than 50% average overlap on both the URLs crawled and the tar-
gets fetched. Hence, the choice of crawler will have an effect on the end
application even if the collections created seem equally good.

An aspect of our current work is that we constrain the context of hyperlinks to
be the entire parent page. It may be the case that instead, a context consisting of
a subset of terms within the page is more effective. More granular definitions of
contexts (words in anchor text or its neighborhood) have been shown to improve
crawler performance in previous work [Hersovici et al. 1998; Pant and Menczer
2003]. In parallel research we are investigating various definitions of contexts
of hyperlinks and their effect on classifier-based topical crawling.

We note that our results provide us with insights into crawler performances
for crawls of 0 − 10, 000 pages. While crawls of up to 10, 000 pages for a given
topic or a theme may be sufficient for many applications in research and for
personalized agents [Pant and Menczer 2002; Pant et al. 2004b], it remains to be
seen if we can generalize the results to crawls of millions of pages. Nevertheless,
based on the number of topics, variety of classifiers, and the number of pages
crawled per topic, our study is the most extensive in the current topical crawling
literature.

The classifiers that guide the crawlers are trained on an ad-hoc proportion
(priors) of negative (2/3) and positive (1/3) examples. One cannot assume these
to be the real priors over the Web. Moreover, the priors during a crawl can be
expected to change with time. Since our seeds are relevant (positive) pages, we
may expect the crawler to encounter more positive pages early in the crawl as
compared to later. It would be worthwhile to explore techniques that compen-
sate for this drift in the environment during a crawl.

Ensembles of classifiers have been shown to outperform individual classi-
fiers on accuracy [Dietterich 1998; Schapire 1999]. An ensemble combines the

ACM Transactions on Information Systems, Vol. 23, No. 4, October 2005.

Learning to Crawl: Comparing Classification Schemes • 459

decisions of several classifiers. This could be done in several ways, some as sim-
ple as a majority vote. It would be interesting to test if ensemble methods help
to improve crawling performance. Given the fact that even similar performing
classifier-guided crawlers have low overlap in terms of subspaces covered, we
may expect an ensemble-guided crawler to work well. Observe that our evalu-
ation classifiers are used as an ensemble to judge the relevance of the crawled
pages.

We can easily extend our experiments with many other classification al-
gorithms (Weka provides implementations for several others such as Linear
Regression, Bayes Network, and C4.5). However, any such extension comes at
the cost of crawling millions of additional pages spread over a test bed of 100
topics. Another simple extension can be achieved by combining the scores for
a given URL if the URL appears on several downloaded pages. At present, we
only keep the score from the first page in which the URL was found. As future
work, we may apply different heuristics for combining the scores and compare
the affects of such heuristics on crawling performance.

Our experiment with retraining the classifier by adding pseudo-examples
after crawling for a short span of time did not show merit. Can the qual-
ity of pseudo-examples be improved if we emphasize training examples that
are authoritative or hub pages? Here, the crawled pages will be picked as
pseudo-examples, not just based on the content but also the linkages. This
is another direction for future work.

Active efforts at studying special challenges when retrieving information
from the Web may be observed. A leading venue for such research is that of
the TREC Web track [Craswell et al. 2003]. However, such efforts are yet to
translate into a standardized framework for performance evaluation of Web
crawlers [Srinivasan et al. 2003; Srinivasan et al. 2005].

In this article, we used previously untested crawling configurations and dis-
covered insights into the comparative performances of different topical crawlers
that are guided by classifiers. The entire study was done with an emphasis on
systematic, extensive, and statistically robust design and experimentation that
involves several crawlers, millions of pages and over more than one hundred
topics.

ACKNOWLEDGMENTS

We would like to thank Filippo Menczer, Nick Street, and Shannon Bradshaw
for insightful discussions. We also thank the anonymous reviewers for their
helpful comments and suggestions.

REFERENCES

AGGARWAL, C. C., AL-GARAWI, F., AND YU, P. S. 2001. Intelligent crawling on the World Wide Web
with arbitrary predicates. In Proceedings of the 10th International World Wide Web Conference.
Hong Kong.

BEN-SHAUL, I., HERSCOVICI, M., JACOVI, M., MAAREK, Y. S., PELLEG, D., SHTALHAIM, M., SOROKA, V.,
AND UR, S. 1999. Adding support for dynamic and focused search with fetuccino. Computer
Networks and ISDN Systems 31, 11–16, 1653–1665.

ACM Transactions on Information Systems, Vol. 23, No. 4, October 2005.

460 • G. Pant and P. Srinivasan

BURGES, C. J. C. 1998. A tutorial on support vector machines for pattern recognition. Data Mining
and Knowledge Discovery 2, 2, 121–167.

CHAKRABARTI, S., PUNERA, K., AND SUBRAMANYAM, M. 2002. Accelerated focused crawling through
online relevance feedback. In Proceedings of the 11th International World Wide Web Conference.
Hawaii.

CHAKRABARTI, S., VAN DEN BERG, M., AND DOM, B. 1999. Focused crawling: A new approach to
topic-specific Web resource discovery. In Proceedings of the 8th International World Wide Web
Conference.

CHAU, M., ZENG, D., AND CHEN, H. 2001. Personalized spiders for web search and analysis. In
Proceedings of the 1st ACM/IEEE-CS Joint Conference on Digital libraries.

CHEN, H., CHAU, M., AND ZENG, D. 2002. Ci spider: A tool for competitive intelligence on the Web.
Decision Support Systems 1–17.

CHEN, H., CHUNG, Y., RAMSEY, M., AND YANG, C. 1998. A smart itsy bitsy spider for the Web.
J. Ameri. Soc. Info. Sci. 49, 7, 604–618.

CHOW, C. K. 1957. An optimum character recognition system using decision functions. IRE Trans-
actions 247–254.

CRASWELL, N., HAWKING, D., WILKINSON, R., AND WU, M. 2003. Overview of the trec-2003 web track.
In Proceedings of TREC-2003.

CRISTIANINI, N. AND SCHÖLKOPF, B. 2002. Support vector machines and kernel methods: the new
generation of learning machines. AI Magazine 23, 3, 31–41.

DAVISON, B. D. 2000. Topical locality in the web. In Proceedings of the 23rd Annual International
ACM SIGIR Conference on Research and Development in Information Retrieval.

DAY, M. 2003. Collecting and preserving the World Wide Web. Tech. rep., UKOLN, University of
Bath. February. http://library.wellcome.ac.uk/assets/WTL039229.pdf.

DE BRA, P. M. E. AND POST, R. D. J. 1994. Information retrieval in the World Wide Web: Making
client-based searching feasible. In Proceedings of the 1st International World Wide Web Conference
(Geneva).

DIETTERICH, T. G. 1998. Machine-learning research: Four current directions. The AI Maga-
zine 18, 4, 97–136.

DILIGENTI, M., COETZEE, F., LAWRENCE, S., GILES, C. L., AND GORI, M. 2000. Focused crawling using
context graphs. In Proceedings of the 26th International Conference on Very Large Data Bases
(VLDB 2000). Cairo, Egypt, 527–534.

DUDA, R. O., HART, P. E., AND STORK, D. G. 2000. Pattern Classification (2nd Edition). Wiley-
Interscience.

DUMAIS, S. T. 1998. Using svms for text categorization. IEEE Intelligent Systems Magazine 13, 4.
ELKAN, C. 1997. Boosting and naive bayesian learning. In International Conference on Knowledge

Discovery in Databases.
HERSOVICI, M., JACOVI, M., MAAREK, Y. S., PELLEG, D., SHTALHAIM, M., AND UR, S. 1998. The shark-

search algorithm—An application: Tailored Web site mapping. In Proceedings of the 7th Interna-
tional World Wide Web Conference.

HOGG, R. V., CRAIG, A., AND MCKEAN, J. W. 2004. Introduction to Mathematical Statistics, 6 ed.
Prentice Hall.

HORNIK, K., STINCHCOMBE, M., AND WHITE, H. 1989. Multilayer feedforward networks are universal
approximators. Neural Network 2, 5, 359–366.

JAIN, A. K., MAO, J., AND MOHIUDDIN, K. M. 1996. Artificial neural networks: A tutorial. Com-
puter 29, 3, 31–44.

JOACHIMS, T. 2002. Learning to classify text using support vector machines. Ph.D. thesis, Kluwer.
JOHN, G. H. AND LANGLEY, P. 1995. Estimating continuous distributions in bayesian classifiers.

In Proceedings of the 11th Annual Conference on Uncertainty in Artificial Intelligence (UAI 95).
Montreal, Quebec, Canada, 338–345.

JOHNSON, J., TSIOUTSIOULIKLIS, K., AND GILES, C. L. 2003. Evolving strategies for focused web crawl-
ing. In Proceedings of the 20th International Conference on Machine Learning (ICML-2003).
Washington DC.

KATZER, J., MCGILL, M. J., TESSIER, J. A., FRAKES, W., AND DAS-GUPTA, P. 1982. A study of the overlap
among document representations. Information Technology: Research and Development 2, 261–
274.

ACM Transactions on Information Systems, Vol. 23, No. 4, October 2005.

Learning to Crawl: Comparing Classification Schemes • 461

LAWRENCE, S. AND GILES, C. L. 1998. Searching the World Wide Web. Science 280, 98–100.
LECUN, Y. 1986. Learning processes in an asymmetric threshold network. In Disordered Sys-

tems and Biological Organization, E. Bienenstock, F. Fogelman-Soulié, and G. Weisbuch, Eds.
Springer-Verlag, Les Houches, France, 233–240.

LEWIS, D. D. 1998. Naive (bayes) at forty: The independence assumption in information retrieval.
In Proceedings of the 10th European Conference on Machine Learning. Springer-Verlag, 4–15.

LIPPMANN, R. P. 1988. An introduction to computing with neural nets. In Artificial Neural Net-
works: Theoretical Concepts. V. Vemuri Ed. IEEE Computer Society Press, Los Alamitos, CA,
36–54.

MAAREK, Y. S., JACOVI, M., SHTALHAIM, M., UR, S., ZERNIK, D., AND BEN-SHAUL, I. Z. 1997. Webcutter:
a system for dynamic and tailorable site mapping. Computer Networks and ISDN Systems 29, 8–
13, 1269–1279.

MCCALLUM, A. AND NIGAM, K. 1998. A comparison of event models for naive bayes text classifica-
tion. In Proceedings of the AAAI 98 Workshop on Learning for Text Categorization.

MCCALLUM, A. K., NIGAM, K., RENNIE, J., AND SEYMORE, K. 2000. Automating the construction of
internet portals with machine learning. Information Retrieval 3, 2, 127–163.

MCCULLOCH, W. S. AND PITTS, W. 1943. A logical calculus of ideas imminent in nervous activity.
Bulletin of Mathematical Biophysics 5, 115–133.

MCLACHLAN, G. J. 1992. Discriminant Analysis and Statistical Pattern Recognition. Wiley, New
York.

MENCZER, F. AND BELEW, R. K. 2000. Adaptive retrieval agents: Internalizing local context and
scaling up to the Web. Machine Learning 39, 2–3, 203–242.

MENCZER, F., PANT, G., RUIZ, M., AND SRINIVASAN, P. 2001. Evaluating topic-driven Web crawlers.
In Proceedings of the 24th Annual International ACM SIGIR Conference on Research and Devel-
opment in Information Retrieval.

MENCZER, F., PANT, G., AND SRINIVASAN, P. 2004. Topical Web crawlers: Evaluating adaptive algo-
rithms. ACM Trans. Int. Tech. 4, 4, 378–419.

MITCHELL, T. M. 1997. Machine Learning. McGraw-Hill, New York.
MÜLLER, K.-R., MIKA, S., RÄTSCH, G., TSUDA, K., AND SCHÖLKOPF, B. 2001. An introduction to kernel-

based learning algorithms. IEEE Neural Networks 12, 2, 181–201.
PANT, G. AND MENCZER, F. 2002. MySpiders: Evolve your own intelligent Web crawlers. Au-

tonomous Agents and Multi-Agent Systems 5, 2, 221–229.
PANT, G. AND MENCZER, F. 2003. Topical crawling for business intelligence. In Proceedings of the

7th European Conference on Research and Advanced Technology for Digital Libraries (ECDL
2003). Trondheim, Norway.

PANT, G., SRINIVASAN, P., AND MENCZER, F. 2002. Exploration versus exploitation in topic driven
crawlers. In Proceedings of the 11th World Wide Web Workshop on Web Dynamics.

PANT, G., SRINIVASAN, P., AND MENCZER, F. 2004a. Web Dynamics. Springer-Verlag, Chapter Crawl-
ing the Web.

PANT, G., TSIOUTSIOULIKLIS, K., JOHNSON, J., AND GILES, C. L. 2004b. Panorama: Extending digital
libraries with topical crawlers. In Proceedings of the 4th ACM/IEEE-CS Joint Conference on
Digital Libraries. 142–150.

PLATT, J. C. 1999. Fast training of support vector machines using sequential minimal optimiza-
tion. In Advances in Kernel Methods Support Vector Learning, B. Schölkopf and A. Smola, Eds.
M.I.T. Press, 185–208.

PORTER, M. 1980. An algorithm for suffix stripping. Program 14, 3, 130–137.
QIN, J., ZHOU, Y., AND CHAU, M. 2004. Building domain-specific web collections for scientific

digital libraries: A meta-search enhanced focused crawling method. In Proceedings of the 4th
ACM/IEEE-CS Joint Conference on Digital Libraries.

RENNIE, J. AND MCCALLUM, A. K. 1999. Using reinforcement learning to spider the Web efficiently.
In Proceedings of the 16th International Conference on Machine Learning. Morgan Kaufmann,
San Francisco, CA, 335–343.

RUMELHART, D. E., HINTON, G. E., AND WILLIAMS, R. J. 1986. Learning internal representations by
error propagation. Parallel Data Processing 1, 318–362.

RUMELHART, D. E., WIDROW, B., AND LEHR, M. A. 1994. The basic ideas in neural networks. Comm.
ACM 37, 3, 87–92.

ACM Transactions on Information Systems, Vol. 23, No. 4, October 2005.

462 • G. Pant and P. Srinivasan

SALTON, G. 1971. The SMART Retrieval System—Experiments in automatic document processing.
Prentice Hall Inc., Englewood Cliffs, NJ.

SALTON, G. AND MCGILL, M. J. 1983. Introduction to Modern Information Retrieval. McGraw-Hill.
SCHAPIRE, R. E. 1999. A brief introduction to boosting. In Proceedings of the International Joint

Conference on Artificial Intelligence (IJCAI). 1401–1406.
SCHÖLKOPF, B., BURGES, C. J. C., AND SMOLA, A. J. 1999. Advances in Kernel Methods: Support

Vector Learning. MIT Press.
SCHÖLKOPF, B. AND SMOLA, A. J. 2003. A short introduction to learning with kernels. In Advanced

Lectures on Machine Learning, S. Mendelson and A. J. Smola, Eds. Lecture Notes in Artificial
Intelligence. Springer-Verlag, New York, NY, 41–64.

SRINIVASAN, P., MENCZER, F., AND PANT, G. 2003. Defining evaluation methodologies for topical
crawlers. In SIGIR 2003 Workshop on Defining Evaluation Methodologies for Terabyte-Scale
Collections. http://dollar.biz.uiowa.edu/˜gpant/Papers/crawl framework position.pdf.

SRINIVASAN, P., MENCZER, F., AND PANT, G. 2005. A general evaluation framework for topical
crawlers. Information Retrieval 8, 3, 417–447.

THEODORIDIS, S. AND KOUTROUMBAS, K. 2003. Pattern Recognition. Academic Press, San Diego, CA.
VAPNIK, V. N. 1995. The nature of statistical learning theory. Springer-Verlag New York, Inc.
WIDROW, B. 1990. 30 years of adaptive neural networks: Perceptron, madaline, and backpropa-

gation. Proceedings of the IEEE 78, 9, 1415–1452.
WRIGHT, S. AND NOCEDAL, J. 1999. Numerical Optimization. Springer.
YANG, Y. AND PEDERSEN, J. O. 1997. A comparative study on feature selection in text categorization.

In Proceedings of the 14th International Conference on Machine Learning (ICML-97). Morgan
Kaufmann Publishers, 412–420.

Received July 2004; revised March 2005; accepted May 2005

ACM Transactions on Information Systems, Vol. 23, No. 4, October 2005.

