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Abstract

Image cropping aims at improving the framing of an im-

age by removing its extraneous outer areas, which is widely

used in the photography and printing industry. In some

cases, the aspect ratio of cropping results is specified de-

pending on some conditions. In this paper, we propose a

meta-learning (learning to learn) based aspect ratio speci-

fied image cropping method called Mars, which can gener-

ate cropping results of different expected aspect ratios. In

the proposed method, a base model and two meta-learners

are obtained during the training stage. Given an aspect

ratio in the test stage, a new model with new parameters

can be generated from the base model. Specifically, the

two meta-learners predict the parameters of the base model

based on the given aspect ratio. The learning process of the

proposed method is learning how to learn cropping mod-

els for different aspect ratio requirements, which is a typi-

cal meta-learning process. In the experiments, the proposed

method is evaluated on three datasets and outperforms most

state-of-the-art methods in terms of accuracy and speed. In

addition, both the intermediate and final results show that

the proposed model can predict different cropping windows

for an image depending on different aspect ratio require-

ments.

1. Introduction

Image cropping is commonly used in image editing, try-

ing to find a good view with a better composition than the

input image. Automatic image cropping can be widely ap-

plied in the photographic, printing industry, and other re-

lated fields for saving time. Depending on the application,

the aspect ratio of the cropped image may be specified and

vary with different conditions. As such, the aspect ratio

specified image cropping algorithms should be able to cover

a range of aspect ratios, an illustration of which is shown in

Figure 1.

Early researches on the general image cropping mostly

Figure 1. Illustration of the aspect ratio specified image crop-

ping. The left image is the original image, and the three images

on the right are cropped images of different required aspect ratios.

focus on the two-stage methods [31, 32, 13, 6, 7, 19]. Many

candidates are generated at the first stage and ranked on

the second stage. These two-stage methods can be directly

transferred to the aspect ratio specified settings by adjust-

ing the candidates. Since there are many candidates in an

image, the speed of these methods is inevitably slow. To

speed up, several methods [40, 25, 41, 26] obtain the crop-

ping window directly without using the sliding window.

However, these methods rarely consider the aspect ratios.

In [12], an object detection based approach is proposed for

the aspect ratio specified image cropping by adding more

prediction heads.

In this paper, we regard generating the cropped images

of a specified aspect ratio as an isolated task and adopt a

single model to accomplish multiple such sub-tasks. The

model should be able to adapt to many environments with

different aspect ratio requirements. Therefore, we propose

a meta-learning (learning to learn) based aspect ratio spec-

ified image cropping approach (called Mars) to accomplish

this goal. In the proposed approach, we train a base model

and two meta-learners during the training process. In the

inference stage, a new model with new parameters is gener-

ated from the base model given a new aspect ratio. Specif-

ically, some parameters of the base model are predicted by

the meta-learners depending on the required aspect ratio. As

the required aspect ratio is a continuous value, the number

of models with different parameters is infinite. The learning

process of the proposed method can be viewed as learning

how to learn cropping models for different aspect ratios. In

the base model, the parameters depending on the required

aspect ratio are the aspect ratio specified feature transfor-
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mation matrix (ARS-FTM) and the aspect ratio specified

pixel-wise predictor (ARS-PWP). When both ARS-FTM

and ARS-PWP are determined by the meta-learners, the

newly generated model can predict the cropping window

of the specified aspect ratio from the image. In the exper-

iments, both the quantitative and qualitative results show

that the proposed meta-learning based approach can gener-

ate cropping windows of required aspect ratios effectively

and efficiently.

The main contributions of this work are:

• We propose a meta-learning based method that can

predict the cropping results of arbitrary aspect ratios

using a single model.

• We develop an aspect ratio embedding method and

two aspect ratio specified modules (i.e., ARS-FTM and

ARS-PWP) to model the aspect ratio information and

map the aspect ratio to the parameters of the model.

• We show that the proposed algorithm achieves state-

of-the-art performance on both the quantitative evalu-

ation and user study and can run in real-time (over 100

FPS).

2. Related Work

Image Cropping. Most early researches on image crop-

ping focused on the sliding window based two-stage opera-

tions. According to the standards of ranking the candidates

generated by the sliding window, these methods can be di-

vided into two groups, the attention-based and aesthetics-

based methods. The attention-based methods [30, 32, 37,

13, 4] usually rank candidates according to the attention

score obtained by saliency detection [30]. As such, the

cropping windows can preserve the main subjects and draw

more attention from people. However, they may fail to gen-

erate visually pleasing results due to the lack of considering

the image composition [6]. Those aesthetics-based meth-

ods [19] try to find the most visually pleasing cropping win-

dow from the input image. Some methods [31, 8, 42, 13]

design a set of hand-crafted features to evaluate the aesthet-

ics, and other methods [17, 6, 7, 41] train aesthetics dis-

criminators from data to rank cropping candidates. Several

methods [36, 9, 35, 4, 25, 26] are developed to search for the

optimal cropping window more efficiently instead of eval-

uating all candidates to speed up the sliding window based

methods.

Fast-AT [12] is designed for the aspect ratio speci-

fied image cropping by plugging several predicting heads

for different aspect ratio intervals to the object detection

model [10]. In the proposed meta-learning based approach,

we do not have to train different filters separately for differ-

ent aspect ratios, but use a single model to adapt to different

aspect ratio requirements, where the aspect ratio specified

parameters are predicted by the meta-learners. Image re-

targeting methods [1, 27] adjust the images to fit the target

aspect ratio while keeping the import contents, which are

related to our task. However, image cropping aims to find

the best window on the image that satisfies the requirement,

while image retargeting concentrates on content-aware im-

age resizing, the experimental settings between these two

tasks are different.

Meta-Learning. Meta-learning is also known as learn-

ing to learn, which means the machine learning algorithms

can learn how to learn the knowledge. In other words, the

model needs to be aware of and take control of its learn-

ing [24]. Through these properties of meta-learning, mod-

els can be more easily adapted to different environments

and tasks, rather than considering each one separately. Due

to these reasons, meta-learning has been widely applied

in hyper-parameter optimization [29], neural network op-

timization [5], few-shot learning [14], fast reinforcement

learning [38], and visual tracking [2, 24].

In this paper, our goal is to solve cropping problems for

different aspect ratio requirements with a single model. Re-

garding generating cropping results for a specified aspect

ratio as an isolated task, the above goal can be naturally

solved by meta-learning. The weight prediction is one of

the meta-learning strategies [23], which can adapt mod-

els to different environments by dynamically predicting the

weight of the model [3, 16, 43]. The proposed method also

belongs to this category, which predicts the weight of the

model depending on the aspect ratio information. Kishore et

al. [21] use the adaptive convolution [18] for the final classi-

fication and regression according to a scalar input value (the

aspect ratio). In contrast, our method proposes to uses the

embedding interpolation for the aspect ratio representation

and also generates an ARS-FTM module for the global fea-

ture transformation in the middle stage, which can encode

the aspect ratio information in the global feature represen-

tation. In addition, our model can run much faster (over 100

FPS).

3. Proposed Algorithm

3.1. Problem Formulation

In this section, we formulate the aspect ratio specified

image cropping problem and the proposed meta-learning

based approach (Mars). For general image cropping prob-

lems, the model takes an image xi as input and outputs a

visually pleasing cropping window yi, which is

yi = F(xi;W ), (1)

where W represents the parameters of the model F . Differ-

ent from the general setting, the aspect ratio specified image

cropping has an additional aspect ratio requirement, which

is

y
(τi)
i = F(xi, τi;W ), (2)
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Figure 2. Overview of the proposed model. The numbers above each feature map represent the shape of the feature map (height ×
width× channel).

where τi is the required aspect ratio, and y
(τi)
i is the crop-

ping result with an aspect ratio of τi.
In this paper, we propose a meta-learning based approach

that can generate model parameters for different τi continu-

ously. Specifically, a sub-network (meta-learner) is used to

map τi to the model parameters, which is

W = ϕ(τi;W
′), (3)

where W ′ is the parameters of the meta-learner ϕ. Since τi
is a continuous value, the number of models with different

parameters generated by the meta-learner can be infinite.

The proposed approach can be finally formulated as

y
(τi)
i = F(xi;ϕ(τi;W

′)), (4)

where the model parameters incorporate the aspect ratio in-

formation and will change accordingly.

3.2. Architecture Overview

With the previous formulation, we start to introduce the

proposed meta-learning framework, which contains a base

model and two meta-learners. The architecture and details

of the proposed framework are illustrated in Figure 2.

There are two inputs of the framework, the image

and required aspect ratio (τi). At first, the aspect-ratio-

agnostic feature vector fara is extracted from the input im-

age through the convolution blocks (backbone network) and

a global average pooling (GAP) operation, which is the fea-

ture representation of the input image without considering

the required aspect ratio. After that, fara is transformed into

an aspect-ratio-specified feature vector fars by an aspect-

ratio-specified feature transformation matrix (ARS-FTM),

which is a fully-connected layer whose parameters are pre-

dicted by a meta-learner depending on τi. In this way, the

image feature and the aspect ratio information are both em-

bedded in fars. Then fars is added to each location of the

last feature map before the GAP layer to generate a new

feature map. The new feature map retains the original spa-

tial information and also incorporates the global feature and

aspect ratio information. The details of the feature transfor-

mation process are shown in Figure 3.

The new feature map is fed into several cascaded decon-

volution layers (the upsampling module) to increase its spa-

tial resolution to Hout × Wout. Each deconvolution layer

doubles the resolution and keeps the same channel dimen-

sion (Cout). After that, an aspect-ratio-specified pixel-wise

predictor (ARS-PWP), which is a 1 × 1 convolution layer

predicted by a meta-learner, is used to predict the cropping

area. The prediction is finally normalized by a sigmoid

function, and the cropping window of the required aspect

ratio is generated through a post-processing process (see

Section 3.4).

In general, the parameters of machine learning models

are fixed in the test stage. However, the parameters of

ARS-FTM and ARS-PWP vary depending on the required

aspect ratio during the test, which can be interpreted as a

new model for a new aspect ratio. With meta-learning, we

can generate models for arbitrary aspect ratio requirements.

Even these aspect ratios do not appear in the training stage.

3.3. Aspect Ratio Specified Module

In this section, we introduce the meta-learners that map

the aspect ratio to the parameters of the base model. As

shown in Figure 2, there are two modules whose parameters

are determined by τi, namely ARS-FTM and ARS-PWP.

According to Equation 3, the map functions of these two

modules can be written as

WARS−FTM = ϕARS−FTM (τi;W
′

ARS−FTM ) (5)

and

WARS−PWP = ϕARS−PWP (τi;W
′

ARS−PWP ). (6)

The output of ϕARS−FTM is a matrix that can transform the

aspect-ratio-agnostic feature into the aspect-ratio-specified

feature space, and the output of ϕARS−PWP is a 1×1 con-

volution layer that predicts the cropping area.

In this paper, we use a fully-connected network with two

outputs to implement the above two map functions. Since
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Figure 3. Illustration of the feature transformation process. The obtained feature map retains the original spatial information and also

incorporates the global information (GAP) and the aspect ratio information (ARS-FTM). The above symbols are described in Figure 2.

the aspect ratio τi is a scalar, directly mapping τi to a high-

dimensional space may not perform well, which is also ver-

ified in the following experiment sections (see Section 4.2).

Instead, we use the embedding vectors and linear interpola-

tion to represent the continuous τi.
First, we select N aspect ratios, each with a correspond-

ing embedding vector. The set of selected aspect ratios is

denoted as Sτ , and the corresponding set of embedding vec-

tors is Semb. To generate the embedding vector of an arbi-

trary τi, we use the linear interpolation of two embedding

vectors from Semb whose corresponding aspect ratios are

the closest to τi. Following [12], the range of aspect ratio is

from 0.5 to 2, which is τi ∈ [0.5, 2]. When choosing the N
aspect ratios in Sτ , we want to make the number of chosen

aspect ratios in [0.5, 1) and (1, 2] equal, because the shape

of the image in these two intervals is symmetrical (rotated

90◦), such as 3:4 and 4:3. For this purpose, we use the loga-

rithmic transformation to map τi to log τi and choose log τi
in [− log 2 (log 0.5), log 2] evenly with a step size of 2 log 2

N−1 ,

where N is an odd number.

Since the aspect ratio is equally spaced in the logarith-

mic space, linear interpolation is also performed in the log-

arithmic space to generate the embedding vector E(τi) of

arbitrary τi, which is

E(τi) =
log τ

(upper)
i − log τi

2 log 2
N−1

× E(τ
(lower)
i )

+
log τi − log τ

(lower)
i

2 log 2
N−1

× E(τ
(upper)
i ),

(7)

where τ
(upper)
i and τ

(lower)
i are the two adjacent aspect ra-

tios of τi in Sτ , satisfying τ
(upper)
i > τi > τ

(lower)
i . Since

τi is a continuous value, the number of the embedding vec-

tors generated by the linear interpolation is infinite. Em-

bedding vectors from Semb are all trainable in the training

stage, and new embedding vectors for new aspect ratios can

be generated in the test stage. The dimension of the embed-

ding vectors is 512.

After obtaining the embedding vector of the required as-

pect ratio, we use a fully-connected network with two out-

puts to implement the two meta-learners, which map the

embedding vector to the model parameters. The architec-

ture of the meta-learners is shown in Figure 4. When a

newly required aspect ratio is given, the outputs of the sub-

512

ARS-FTM

reshape

ARS-PWP

reshape

(aspect ratio)

embedding 
vector

FCs

Figure 4. Illustration of the aspect-ratio-specified modules. We

translation the aspect ratio τi (1-d) to the embedding vector (512-

d) using Equation 7. Then the sub-network maps the embedding

vector to the parameters of the base model. The channel dimension

of fara in Figure 2 is c. Because the channel dimension of the

feature map outputted by the upsampling module is Cout, ARS-

PWP is reshaped to Cout × 1, which means the number of input

channels is Cout, and the number of the output channels is 1.

network are reshaped to the target shape and plugged into

the base model to form a new model with new parameters.

3.4. Training and Inference

During the training process, the target value of the pixels

in the cropping area is 1, and the value of the rest is 0. Bi-

nary cross entropy (BCE) loss is used to compute the loss

function, which is

L(p, g) = −
1

Npixel

∑

i

[gi log pi+(1−gi)log(1−pi)], (8)

where p and g are the prediction and ground truth values,

respectively, Npixel is the number of the pixels, and i is

the indicator of the pixel position. The meta-learners do not

have other supervisions, and the entire model is trained with

the BCE loss in an end-to-end manner.

In the inference stage, after obtaining the prediction of

the network, we use a post-processing process to get the

cropping result. First, the prediction is binarized using a

threshold θ. Then, the center of the cropping result is ob-

tained by computing the median of the coordinates of all

positions whose value is 1. We sum the values of each col-

umn (or row) and select the median of those non-zero re-

sults as the height (or width). After that, the height or width

is reduced to meet the aspect ratio requirement, while the
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other one keeps unchanged. Finally, the cropping window

is determined by the center, width, and height.

4. Experimental Results

4.1. Experimental Settings

Data and Metrics. In the experiments, we adopt the train-

ing set provided by FAT [12] to train the proposed frame-

work, which contains 24,154 images with 63,043 annota-

tions. Each image has up to 3 annotations with an as-

pect ratio in [0.5, 2]. We evaluate the proposed method on

three image cropping datasets, including the HCDB [13],

FCDB [6], and FAT. HCDB contains 500 images, and each

image is annotated by 10 different experts. FCDB contains

343 testing images, and each image has a single annotation.

The test set of FAT contains 3,910 images with 7,005 anno-

tations. To show the generalization of the proposed model,

we evaluate the model trained with the training set of FAT

on the above three datasets without additional training.

Following existing methods [41], we use the average

intersection-over-union ratio (IoU) and average boundary

displacement error (BDE) as performance evaluation met-

rics for FCDB and HCDB and employ the average IoU and

average center offset to evaluate different methods for FAT.

Implementation Details. The backbone network is pre-

trained on the ImageNet [11]. The longest edge of the input

image is resized to 256, while the aspect ratio keeps un-

changed. The mini-batch size for training is 32. Adam algo-

rithm [20] is used to optimize the model, while the learning

rate is set to 1e−4. The weight decay for the base model

is 1e−4, and for the meta-learners is 1e−3. The model

is trained for 50 epochs on the training set, during which

warmup [15] is adopted in the first 5 epochs and cosine

learning rate decay [28] is used in the following 45 epochs.

The number of chosen aspect ratios in Sτ (N ) is set to 101.

The threshold θ for the binarization in section 3.4 is set to

0.4 through the grid search on the training set.

4.2. Ablation Study

In this section, we conduct a series of experiments to

determine the backbone network, the aspect ratio specified

module, and the upsampling module. During the ablation

study, we choose 1000 training images with 2357 annota-

tions from the training set as the validation set and use other

training images to train the models.

4.2.1 Backbone Network

First, we conduct experiments to determine the backbone

network of the proposed model. The running speed is crit-

ical for the image cropping since it usually runs on mo-

bile devices or laptops. We consider both the accuracy

and complexity of models when choosing the backbone

Table 1. Ablation study of the backbone network on the val-

idation set. The cx y in the layer column means the model is

truncated after the y-th convolution layer whose output resolution

(h× w in Figure 2) is Hin/2
x ×Win/2

x. The parameter size of

the model (param), speed, and cropping accuracy (IoU and offset)

are evaluated for different backbone networks.
Backbone Layer Param Speed↑ IoU↑ Offset↓

MobileV2

c3 3 1.0M 127FPS 0.652 65.1

c4 3 2.7M 115FPS 0.688 53.8

c4 6 5.6M 108FPS 0.706 49.8

c5 1 14.3M 96FPS 0.705 50.9

VGG16

c3 3 142.6M 110FPS 0.672 64.7

c4 1 145.0M 107FPS 0.693 52.6

c4 3 149.7M 103FPS 0.702 51.1

pool5 149.7M 102FPS 0.698 51.5

ResNet50

c3 4 136.4M 115FPS 0.668 58.8

c4 3 140.7M 96FPS 0.699 51.3

c4 6 144.0M 86FPS 0.702 50.6

c5 1 150.6M 81FPS 0.705 50.1

network. We choose three networks (MobileNetV2 [33],

VGG16 [34], and ResNet50 [15]) truncated at different

layers as candidates, and keep other experimental settings

the same. The FCs in Figure 4 is implemented by a 1-

layer fully-connected network with 512 neurons. The out-

put of the model (Hout × Cout) is up-sampled to Hin/4 ×
Win/4, and the channel dimension of all deconvolution lay-

ers (Cout) is 96 (see Figure 2). The results on the validation

set are shown in Table 1.

From Table 1, we have the following observations: 1)

For each model, truncated at shallow layers may lead to un-

satisfied performance (e.g., c3 y). With a deeper network

and more parameters, the performance also increases but

plateaus when the complexity is too high (e.g., c5 y). 2)

Surprisingly, the best performance of the above three mod-

els is similar. Although ResNet50 can significantly sur-

pass MobileNetV2 in the ImageNet classification [11], it

fails to improve the performance of the proposed method.

This may be because the number and distribution of the

training samples limit further performance gains for image

cropping. Considering the performance and running speed,

we choose the MobileNetV2 (truncated after c4 6 layer)

as the backbone network in the following experiments un-

less stated. As such, h × w × c in Figure 2 is equal to

Hin/16×Win/16× 96.

4.2.2 Aspect Ratio Specified (ARS) Module

In this section, we conduct experiments to determine the

model size of the ARS module and analyze the necessity

of each component. As shown in Figure 4, the embedding

of the target aspect ratio is passed through several fully-

connected layers (FCs) and then transformed into the pa-

rameters of the base model. First, we evaluate the FCs of

different sizes on the validation set and keep other modules

the same as the ablation study of the backbone network. The
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Table 2. Ablation study on the model size of the aspect ratio

specified module on the validation set. The FC512 × n means

there are n fully-connected (FC) layers with 512 neurons for the

feature representation (FCs in Figure 4), and FC512 × 0 means

the embedding is directly mapped to the parameters without inter-

mediate FC layers.

Model size Param Speed↑ IoU↑ Offset↓

FC512× 0 5.3M 110FPS 0.701 50.3

FC512× 1 5.6M 108FPS 0.706 49.8

FC512× 2 5.9M 108FPS 0.704 50.1

FC512× 3 6.1M 107FPS 0.704 50.3

FC512× 4 6.4M 105FPS 0.704 50.1

Table 3. Ablation study on each component of the aspect ratio

specified module on the validation set.

Model IoU↑ Offset↓

Ours w/o ARS-FTM & ARS-PWP 0.665 53.6

Ours w/o ARS-FTM 0.694 52.6

Ours w/o ARS-PWP 0.696 52.2

Ours 0.706 49.8

Table 4. Ablation study on the the aspect ratio embedding

method on the validation set.
Embedding vector of aspect ratios IoU↑ Offset↓

w/o aspect ratio embedding vector 0.689 52.5

w/o embedding interpolation 0.704 50.6

proposed 0.706 49.8

results are shown in Table 2, where we increase the number

of FC layers and keep the number of neurons in each layer

at 512. Table 2 shows that a shallow network (1-layer) can

obtain a pleasant result, and deeper architectures do not im-

prove the performance. As such, we use the 1-layer FC

(with 512 neurons) to implement the FCs of Figure 4 in the

following parts.

Second, we study the influence of each component in the

ARS module, e.g., the ARS-FTM and ARS-PWP (see sec-

tion 3.3). The ablation study results are shown in Table 3.

When removing ARS-FTM from the model (Ours w/o ARS-

FTM), fars is identical to fara in Figure 2. When remov-

ing ARS-PWP (Ours w/o ARS-PWP), we replace it with a

standard 1 × 1 convolution layer, the parameters of which

are fixed after training. When the meta-learning approach

is abandoned (Ours w/o ARS-FTM & ARS-PWP), the per-

formance drops dramatically. After plugging ARS-FTM or

ARS-PWP to the model, the performance is improved sig-

nificantly. The model without ARS-PWP outperforms the

model without ARS-FTM, showing that ARS-FTM plays a

more critical part than ARS-PWP in the proposed model.

Overall, the model plugged with both modules achieves the

best performance.

Third, we study the influence of the proposed aspect ra-

tio embedding method (see Section 3.3). In Table 4, we

employ simpler ways to represent the aspect ratio informa-

tion. For “w/o aspect ratio embedding vector”, the input of

the meta-learner is not the embedding vector but the value

of the aspect ratio directly. For “w/o embedding interpola-

tion”, the proposed model predicts the map using the aspect

Table 5. Ablation study on the number and dimension of the

aspect ratio embedding vectors on the validation set.

Number Dimension IoU↑ Offset↓

11 512 0.702 51.5

101 512 0.706 49.8

201 512 0.707 49.8

501 512 0.709 49.5

101 128 0.699 51.6

101 256 0.700 50.7

101 512 0.706 49.8

101 1024 0.708 49.4

Table 6. Ablation study on the upsampling module with dif-

ferent output resolution (Hout × Wout) and output channel

dimension (Cout). The first column (Hr × Wr) is the ratio of

output resolution to input resolution (Hr = Hout/Hin,Wr =

Wout/Win).

Hr ×Wr Cout Param speed↑ IoU↑ Offset↓

1/16× 1/16 96 5.5M 113FPS 0.695 52.1

1/8× 1/8 96 5.6M 110FPS 0.702 52.0

1/4× 1/4 96 5.6M 108FPS 0.706 49.8

1/2× 1/2 96 5.6M 105FPS 0.705 50.3

1× 1 96 5.7M 101FPS 0.708 49.5

1/4× 1/4 32 5.5M 108FPS 0.703 50.4

1/4× 1/4 64 5.5M 108FPS 0.704 50.2

1/4× 1/4 96 5.6M 108FPS 0.706 49.8

1/4× 1/4 128 5.7M 107FPS 0.703 50.1

1/4× 1/4 256 6.2M 105FPS 0.703 50.0

ratio in Sτ which is the closest to the required one. Af-

ter that, the post-processing is used to resize the cropping

window to the target size. Table 4 shows that the model us-

ing the proposed embedding method outperforms the other

two baselines. The reason can be interpreted as that the

proposed embedding method can contain more useful in-

formation to make the model find better cropping results

that satisfy the aspect ratio requirements. We also study the

number and dimension of the embedding vectors in Table 5

and find that increasing the number and dimension of the

embedding vectors both help improve the performance, but

the gain is marginal when they are too big. As such, we set

the number and dimension of the embedding vectors to 101

and 512, respectively.

4.2.3 Upsampling module

The backbone network and the aspect ratio specified mod-

ule have been determined. Now we conduct experiments to

determine the upsampling module. As shown in Figure 2,

after the feature transformation (from fara to fars), the fea-

ture map is upsampled to Hout ×Wout ×Cout with several

deconvolution layers. In the implementation, each decon-

volution layer doubles the resolution and keeps the same

channel dimension (Cout). In this section, we study the in-

fluence of different output resolutions (Hout × Wout) and

different channel dimensions (Cout). The ablation study

results are shown in Table 6. Upsampling the resolution

of the output feature maps does help improve the perfor-
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Table 7. Comparisons against state-of-the-art methods on three datasets. For HCDB and FCDB, the modified aspect ratio specified

results (before the brackets) and the results from their original papers (in the brackets) are both shown in each column. Except that VFN and

A2RL are based on Alexnet [22] and Fast-AT is based on ResNet101, other methods are all based on VGG16, so we also show the results of

the proposed model using VGG16 (truncated after c4 3 layer) as the backbone (h×w×c in Figure 2 is equal to Hin/16×Hin/16×512).

Method Backbone Speed↓
HCDB [13] FCDB [6] FAT [12]

IoU↑ BDE↓ IoU↑ BDE↓ IoU↑ Offset↓

Speed < 1 FPS

VFN [7] AlexNet 0.5 FPS 0.848 (-) 0.034 (-) 0.687 (0.684) 0.077 (0.084) 0.617 74.7

VEN [41] VGG16 0.2 FPS 0.852 (0.837) 0.032 (0.041) 0.734 (0.735) 0.064 (0.072) 0.702 49.9

Speed > 1 FPS

Fast-AT [12] ResNet101 9 FPS - - - - 0.680 55.0

AdaConv [21] VGG19 12 FPS - - - - 0.770 51.8

A2RL [25] Alexnet 4 FPS 0.818 (0.820) 0.041 (0.045) 0.695 (0.663) 0.073 (0.089) 0.630 66.9

DIC (Conf.) [39] VGG16 5 FPS - (0.810) - (0.057) - - - -

DIC [40] VGG16 5 FPS - (0.830) - (0.052) - (0.650) - (0.080) - -

VPN [41] VGG16 75 FPS 0.837 (0.835) 0.034 (0.044) 0.716 (0.711) 0.068 (0.073) 0.708 48.3

GAIC [44] VGG16 125 FPS 0.826 (-) 0.033 (-) 0.673 (0.673) 0.064 (-) 0.585 66.2

Mars (Ours) VGG16 103 FPS 0.858 0.031 0.736 0.062 0.710 47.7

Mars (Ours) MobileNetV2 108 FPS 0.868 0.029 0.735 0.062 0.710 47.7

mance (from 1/16 × 1/16 to 1/4 × 1/4), but the gain is

marginal or even poor when the output resolution is high

enough. As such, the output resolution (Hout × Wout) is

set to Hin/4×Win/4 in the following parts. Similar obser-

vations are also obtained for the channel dimension of the

output feature map (Cout). The reason may be that more pa-

rameters make the model easier to be overfitting. As such,

Cout is set to 96 for the output feature map.

4.3. Quantitative Evaluation

After determining the model through the ablation study,

we retrain the model using all the training data and compare

it to other state-of-the-art methods.

Cropping Accuracy. We show the comparison results on

the three datasets (HCDB [13], FCDB [6], and FAT [12])

in Table 7. Since the proposed method is designed for the

aspect ratio specified image cropping, we use the aspect ra-

tio of the user-annotated window as the required aspect ra-

tio when evaluating on HCDB and FCDB. As the original

results of compared methods do not use the aspect ratio in-

formation on these two datasets, we modify these methods

to meet the aspect ratio requirements for the fair compari-

son. For sliding-window (grid anchor) based methods (i.e.,

VFN, VEN, and GAIC), we only generate sliding windows

with the required aspect ratio as candidates, and the num-

ber of candidates (1140) is higher than that of the origi-

nal methods (e.g., 895 for VEN). Since A2RL generates the

cropping result directly and VPN predicts scores for its pre-

defined cropping boxes, we shrink their results to meet the

required aspect ratios following [41]. Table 7 shows the

results of these modified methods accompanying with the

results from their original papers (without considering the

aspect ratio). Since the source code for DIC (Conf) and

DIC is not available, we only show the results of the orig-

inal paper for reference. Most modified results are better

than the original results, and others achieve similar results.

Overall, the proposed model can achieve better performance

than these state-of-the-art cropping methods under different

evaluation metrics on these two datasets. The most competi-

tive one among the above methods is VEN, but the proposed

method can run 540 times faster than VEN (108 FPS vs. 0.2

FPS) and also achieves better accuracy than it.

The results on the test set of FAT are also shown in Ta-

ble 7. Since this dataset itself has the aspect ratio require-

ment, we directly compare the proposed method with ex-

isting methods without modification. The proposed method

also achieves better results than most compared methods.

Running Speed. A practical cropping model should run

at a fast speed due to its application scenarios. As such,

we also show the running speed of the proposed method

and other competing methods in Table 7, where the speed

is compared in terms of frame-per-second (FPS). For our

model, both the inference time and post-processing time are

included in computing the speed, which is evaluated on a

single GPU. Since the proposed method directly predicts

the cropping area (without using the sliding window or pre-

defined anchors) and adopts the lightweight architecture, it

runs in real-time at a speed of 108 FPS, which is faster than

most existing methods.

4.4. Qualitative Results

In this section, we show both the predicted cropping ar-

eas (intermediate results) and final cropping results in Fig-

ure 5. The intermediate results show that the prediction for

an image varies with the required aspect ratio, indicating the

capabilities of the proposed meta-learning method. After

the post-processing, the obtained cropping results can rep-

resent the original images effectively, while satisfying the

aspect ratio requirement. We also compare the qualitative

results of the proposed method with that of other state-of-

the-art methods in Figure 6, which shows that the proposed
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Figure 5. Qualitative results of the proposed method. In each group of images, the left one is the original image, the second column

shows the predicted maps (Hout × Wout × 1) for different aspect ratio requirements, the third column shows the images masked by the

predicted maps, and the fourth column shows the results satisfying the aspect ratio requirements after the post-processing. More results are

available in the supplementary materials.

(a) Input (b) Ours (c) GAIC [44] (d) VEN [41] (e) VPN [41] (f) A2RL [25] (g) VFN [7]

Figure 6. Qualitative comparison. Compared to other state-of-the-art methods, the proposed method can find better-composed cropping

windows that satisfy the aspect ratio requirements. More results are available in the supplementary materials.

0

0.05

0.1

0.15

0.2

0.25

0.3

Ours GAIC VEN VPN A2RL VFN

Figure 7. User study results. We show the proportion of crop-

ping results selected by the photographers for the proposed method

and other compared methods, including the GAIC [44], VEN [41],

VPN [41], A2RL [25], and VFN [7] methods.

method can obtain better visual results of the target aspect

ratio than other methods. More qualitative results are avail-

able in the supplementary material.

4.5. User Study

Due to the subjective nature of evaluating the image

cropping results, we also perform a user study to further

compare the proposed method with other state-of-the-art

methods. We randomly select 300 images from the above

three datasets, i.e., the HCDB [13], FCDB [6], and FAT [12]

datasets, 100 from each dataset. For each image, we gen-

erate the aspect ratio specified cropping results using the

settings in Section 4.3 for the proposed method and the

compared methods, and ask 5 experts to select the best one

from the cropping results. We show the user study results

in Figure 7. An interesting observation is that, although the

GAIC [44] model obtains the worse IoU than VEN [41] and

VPN [41] in Table 7, it can achieve better results in the user

study. The reason may be that the cropping results gener-

ated by the GAIC [44] do not have the large overlaps with

the ground truth, but these cropping results are still well-

composed. Nonetheless, the proposed method still gets bet-

ter user study results than other compared methods.

5. Conclusion

In this paper, we propose a meta-learning based method

for the aspect-ratio-specified image cropping, which can

generate cropping results of different aspect ratios for an

input image in real-time (108 FPS). A base model and two

meta-learners are trained in an end-to-end manner. In the in-

ference stage, the meta-learners can predict the parameters

of the base model according to the given aspect ratio, which

means the parameters of the base model is not fixed during

the test. The experiment results demonstrate that the pro-

posed method can generate cropping results effectively and

efficiently, outperforming most existing methods in terms

of accuracy and speed.
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