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Abstract
Characterizing the transform from cortical potentials to scalp electrode
readings (theforward problemof brain tomography) and from scalp elec-
trode readings to cortical potentials (theinverse problem) remain chal-
lenging research problems. A major reason for this is the lack of ground
truth data on both sides of the mapping: to our knowledge, no published
studies to date have analyzed channel characteristics derived from simul-
taneous high-density cortical and scalp recordings. Usingsimultaneous
recordings from a high-density array of 258 EEG electrodes and 42 sub-
dural ECoG electrodes implanted in a human subject, we present the first
such characterization of the cortex-scalp transfer function using known
ground truth data. We show that a linear method suffices to solve the
forward problem. We apply nonlinear statistical machine learning meth-
ods based on non-parametric inference for the inverse problem. Specif-
ically, we show that a Gaussian process method employing minimal as-
sumptions about the transfer function can recover important temporal
and spectral features of the underlying brain signal. Applying a particle
filter to the cortical estimate improves the model’s accuracy in both the
temporal and spectral domains.

1 Introduction
Electroencephalography (EEG) and electrocorticography (ECoG) are attractive for a vari-
ety of applications, including brain mapping [3, 4, 5, 6] anduser interfaces for locked-in
patients [12, 20]. The strengths and weaknesses of each approach are well known; to
summarize, EEG is non-invasive but has low signal-to-noiseratio, while ECoG is clini-
cally invasive but provides much cleaner signals. If EEG contains meaningful information
about cortical activity, it is reasonable to hope that sufficiently expressive, predictive mod-
els could reduce the need for invasive surgical procedures.While many physiologically
reasonable models have been proposed, the lack ofin vivo, ground truth data has made
verification of these models and associated parameters problematic. Below, we discern
between theforward problemof determining EEG signals given ECoG signals, and the
inverse problemof determining ECoG signals given EEG signals.

We present what is, to our knowledge, the first characterization of EEG-ECoG transfer
functions based on simultaneous recordings from dense electrode arrays on the scalp and
the cortical surface of an awake, interacting human. We begin by analyzing mutual infor-
mation between individual EEG and ECoG channels. We then characterize the frequency



attenuation of the ECoG→ EEG transfer function. Preliminary approaches to solving the
forward and inverse regression problems follow. The regression models rely on minimal
assumptions. We discuss the performance of our general models, and consider future ex-
tensions to the inverse problem using simultaneous recording.

2 Methods
We simultaneously recorded EEG (using 258 electrode leads)and ECoG (using 42 cortical
electrodes) from a single epileptic subject. Fig. 1(a) is a diagram of electrode grid place-
ment on the surface of the scalp; (b) shows a sagittal X-ray ofECoG electrode placement.
Our analysis is based on 17 trials (1 training, 16 testing) ofsimultaneous recording while
the subject performed a hand-related motor task.

The experiment was performed in the patient’s hospital room. Simultaneous recordings
were performed using a 258 high density sponge-electrode EGI EEG array and a 42 elec-
trode EcoG array recorded on Neuroscan Synamps2 amplifiers1. Data was recorded at
1000 Hz on each amplifier, and was synchronized by aligning a trigger sent simultane-
ously to each system. Instrument-imposed band-pass filtering was performed from 0.15 to
200 Hz in the ECoG recording and 0.1 to 500 Hz in the EEG recording. The patient was
instructed to move their hand when given a visual stimulus todo so; there were thirty 3 sec-
ond movement stimuli interleaved with 3 second rest periods. Two electrodes from each
array were used as reference and ground, and two of the ECoG electrodes were rejected
due to defect; our analysis is based on data from the remaining 38 ECoG and 256 EEG
electrodes. We performed a spatial common-average reference across the sets of ECoG
and EEG electrodes. To minimize the number of model assumptions about the data, we did
not perform any additional artifact rejection for the results shown here.

a) b)

Figure 1:Simultaneous recording of EEG and ECoG:(a) Example of EEG electrode placement.
(b) Sagittal X-ray of our subject’s ECoG electrode placement.

3 Channel characterization

3.1 Maximum entropy feature selection
The high dimensionality of EEG and ECoG data (256 and 38 dimensions respectively) and
large number of data points collected (∼44000) motivate feature selection to determine
which EEG and ECoG electrodes are most informative. We therefore computed mutual in-
formation between pairs of ECoG and EEG electrodes as follows. First, we discretized the
EEG signals into 16 levels and the ECoG signals into 16 levels. We then employed joint and

1EGI from Electrical Geodesics, Inc. of Eugene, OR; ECoG array from Neuroscan, El Paso, TX



marginal histogram counts to compute the mutual information between each (discretized)
EEG-ECoG signal pairg, c as:

I(g; c) =

16
∑

i=1

16
∑

j=1

P (g = i, c = j) log
P (g = i, c = j)

P (g = i)P (c = j)
(1)
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Figure 2:Mutual information for EEG/ECoG feature selection: Top plots show average mutual
information between each EEG electrode and each ECoG electrode, in number of bits, over 4 different
trials of hand movement. At bottom we show the columnwise sumof the top plot for trial 10. This
reflects the total amount of information (in bits) about eachECoG signal we expect to recover from
the EEG signals. We restrict our regression mapping from ECoG to EEG to consider only the most
informative ECoG electrode, number 31 (indicated by an arrow here and in Fig. 1(b)).

Fig. 2 shows pairwise mutual information between all meaningful (i.e. non-ground or ref-
erence) ECoG electrodes and all EEG electrodes; some ECoG electrodes are noticeably
more informative than others. The bar graph below shows the columnwise sum of one rep-
resentative matrix, that of trial 10. ECoG electrode 31 appears to be the most informative,
and will be used for regression as described below.

3.2 Frequency response
One goal of our analysis is to characterize the frequency response of the ECoG→ EEG
transfer function. This analysis indicates which frequency bands are least attenuated by
passing from ECoG to EEG, and may serve to confirm or refute various physiological
models that have been proposed [1, 16, 7, 15].

Under the assumption that the matter between cortex and scalp implements a finite impulse
response filter, we derived the frequency-domain filter coefficient at frequencyf , denoted
F(f), as:

Aα (f) =
√

α̃ (f) α̃∗ (f) (2)

F (f) =
AEEG (f)

AECoG (f)
(3)

whereα̃(f) is the Fourier transform of signalα at frequencyf , α̃∗ is the complex conjugate
of the Fourier transform, andA(f) is the amplitude (square root of the power) at frequency
f . Fig. 3(a) plots frequency response characteristicsF of the channel from ECoG electrode
31 to various EEG electrodes during a single trial. Fig. 3(b)plots mean (black line) and
mean plus standard deviation (red dashed line) for the filtercoefficients, taken over all EEG
electrodes during the single trial.

EEG is susceptible to ambient contamination, and this is reflected by the peaks at 60 Hz.
The spectra show heavy attenuation at higher frequencies (greater than∼100 Hz), with the
exception of significant power at around 180 Hz. The high intertrial variance (Fig. 3(b)) of
the spectrum at that point suggests that the observed power may be attributable to noise in
the ECoG recording equipment. Intertrial variance relative to mean signal strength is par-
ticularly low for frequencies around 20-50 Hz, suggesting that this frequency band carries
high information content.
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Figure 3: Channel characteristics from simultaneous EEG/ECoG recording: (a) Frequency-
domain representation of ECoG→ EEG transfer function measured between several EEG electrodes
and ECoG electrode 31 over the course of a single trial (see text for details). Higher values indicate
greater signal power passed from ECoG to EEG; lower values indicate greater attenuation of signals
at that frequency band. All plots are scaled identically. (b) Mean (solid black) and standard deviation
(red dashed line) of frequency-domain filter coefficients ofthe ECoG→ EEG function, taken over
all EEG electrodes. Plot is scaled identically to subplots in (a).

4 Regression techniques
4.1 The forward problem
Many physiological models use basic electrodynamic equations to derive a linear mapping
for the forward problem [14, 19, 8]. In this section, we show that an accurate, linear solution
to the forward problem can be derived from simultaneous recording without explicit use of
electrodynamic equations. LetC denote the38 × t matrix of ECoG signals (from time
1 . . . t), andG denote the corresponding256 × t matrix of EEG signals. We used the
pseudoinverse to infer the forward mapping ECoG→ EEG:

A = GCT
(

CCT
)−1

(4)

The matrixA is thus a38 × 256 matrix that describes how a linear combination of ECoG
signals yields each EEG signal. We derived the matrixA using data from trial 10, and
tested using ECoG data from trial 15 to predict EEG responseson trial 15 using the equa-
tion Gtest = ATCtest. Fig. 4 shows the testing result (true EEG in blue, pseudoinverse
prediction in red), demonstrating the viability of linear methods to infer the ECoG→ EEG
mapping. Note that EEG channels 32 and 128 have high impedance connections with ap-
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Figure 4:Linear reconstruction of EEG signals using pseudoinverse:As expected, simple linear
techniques suffice to estimate EEG signals from ECoG. We treat the data as stationary (independent
with respect to time), and use the pseudoinverse to compute amatrix A ≡

`

CTC
´

−1

CTG using
the data from a single trial (here, trial 10 of the subject making hand movements). We then test the
resulting pseudoinverse mapping using data from another trial (here, trial 15 of the subject making
hand movements). The blue solid line is test EEG data for the shown electrodes (on trial 15); the red
dashed line is predicted EEG data based on simultaneously recorded ECoG (from trial 15). Below
each subgraph we show the correlation coefficients (r

2 values) between the predicted and actual EEG
data. Subgraphs are not to scale vertically.

preciable 60 Hz contamination. The pseudoinverse-based forward mapping nonetheless
produces a reasonable prediction of the signals for those channels.

4.2 The inverse problem

The inverse problem of mapping EEG→ ECoG is much more difficult than the forward
problem due to temporal and spatial smearing of the corticalsignal at the scalp. Here we
present some preliminary experiments suggesting the powerof statistical machine learning
to infer ECoG from EEG. We applied two approaches from statistical machine learning for
the inverse mapping: particle filters [18, 9] and Gaussian processes [17]: first, we learned
a mapping from EEG to ECoG using a Gaussian process; then we applied the learned GP
as an observation model, together with a learned model of ECoG dynamics, to implement
a particle filter on ECoG signals. Fig. 5(a) depicts a graphical model corresponding to the
GP alone approach (top) and the GP plus particle filter approach (bottom). In the latter,
directed arrows between temporally consecutive ECoG readingsc show that the particle
filter models how the ECoG signal changes over time.

Gaussian processes (GPs) perform a regression mapping froma vector-valued quantityg ∈
R

n (the EEG signal) to a Gaussian-distributed variablec (the ECoG signal) conditioned on
g. The conditional probability ofc giveng is modeled as a Gaussian:c ∼ N (µg; σg).
Hereµg, σg are not the empirical mean and standard deviation ofc, but functions ofg
determined by a kernel function. A covariance function orkernel functionk computes
the pairwise “similarity” of any two EEG readingsg,g′. We performed Gaussian process
regression using two different kernel functions. The first,an isotropic kernel function,
uses a single hyperparameterγ for all diagonal covariances; the second uses a vectora
to provide a different covariance for each dimension, and assumes an automatic relevance
determination (ARD) distance measure [13].
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Figure 5:Gaussian process regression for the inverse problem:Gaussian processes show some
promise in predicting ECoG signals from EEG. (a) Graphical models for the GP alone (top) and GP
plus particle filter (bottom). The ECoG signalc generates a vector-valued EEG signalg. The GP
plus particle filter model also models the time dependence ofECoG values on previous ECoG values.
(b) At left, we show a closeup of 1 second of ECoG testing data from electrode 31 (blue line) plotted
against the mean (solid red) and standard deviation (dashedred) of a Gaussian process estimated
using an isotropic squared exponential function, and trained using scaled conjugate gradients on the
hyperparameters. Training was performed using 1 second of EEG and corresponding ECoG data.
At right, we show 1-second testing predictions for several different trials of hand movement (note:
vertical axes not to scale).

Particle filters (sometimes calledbootstrapor survival of the fittestfilters) approximate
arbitrary distributions as collections of point particles, and have been used for diverse ap-
plications, including decoding neural signals [11]. On each iteration of the filter, particles
are weighted according to a probabilistic observation model (in our case, a Gaussian pro-
cess with an isotropic squared exponential kernel function). Particles with high weight
“survive” to the next distribution, modified by a “proposal”distribution describing the fil-
ter dynamics from one iteration to the next. We derived a proposal distribution from ECoG
training data by discretizing the ECoG signal into 100 levels, then learning a 100× 100
transition kernel describing how the signal changes from timet to timet+∆t (here∆t = 1
ms). The particle filter estimate at a given time is given by taking the mean over all particles
at that time step. We used the isotropic kernel GP model to weight particles on each time
step according to:

wĉ ∝ exp

( ||ĉ − µGP (g)||2
σGP (g)2

)

(5)

whereĉ is a sample from the particle filter over ECoG signals,g is a vector of EEG elec-
trode measurements, andµGP (g), σGP (g) are the GP-predicted mean and standard devia-
tion of the ECoG signal, conditioned ong.

The GP hyperparameters and particle filter proposal distribution were inferred from 1 sec-
ond (1000 data points) of data from a single training trial. GP hyperparameters were learned
using scaled conjugate gradients on the training ECoG likelihood; the particle filter pro-
posal distribution was computed from transition counts of the discretized ECoG signal.
The results shown here are taken from inverse estimates of 1 second of ECoG data on 16
different testing trials.

Table 1 shows mean square error (MSE) reconstructing ECoG from EEG over several test-
ing trials. Here standard deviation represents the standard deviation of the error (residual)
values; lower values thus indicate more consistent performance. We normalized across the
four methods to show three significant digits. We tested several methods for performing the
inverse regression mapping: i) linear (pseudoinverse); ii) Gaussian process regression with



an anisotropic squared exponential kernel and automatic relevance determination (ARD);
iii) Gaussian process regression with an isotropic squaredexponential kernel; and iv) parti-
cle filter with Gaussian process observation model (using anisotropic squared exponential
kernel). Note that Gaussian process regression outperforms a linear model by an order of
magnitude. Although the GP with anisotropic kernel gives lower MSE, the learned model
suffers from two problems. First, learning hyperparameters for the anisotropic kernel failed
to converge after 100 iterations of the scaled conjugate gradients algorithm. Second, the
prediction from the resulting learned model frequently results in a “flat” waveform, grossly
distorting the power spectrum of the resulting signal (see Fig. 6(c) for an example). We sug-
gest that these problems result from the anisotropic kerneloverfitting the training data. In
contrast, the isotropic kernel seems to preserve spectral characteristics with greater fidelity,
with the same order of magnitude MSE as the anisotropic kernel.

Method Mean MSE over 16 test trials
(± mean std. dev.): lower is better

Linear (pseudoinverse) 96.0± 7.78E-4
GP (isotropic sq. exp. kernel) 7.49± 5.08E-4
GP (anisotropic sq. exp. kernel, ARD)1.63± 2.32E-4 (convergence problem)
GP (isotropic sq. exp. kernel) + PF 2.40± 3.54E-4

Table 1: Prediction accuracy for the inverse problem: Mean accuracy± standard deviation of
error residuals for 3 different methods, taken over 16 test trials of 1000 data points each. See text for
details.
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Figure 6:Particle filter plus GP leads to more accurate inverse estimates: (a) First-order state
transition kernel for ECoG signal. We show the probability of transitioning from some example
discretized ECoG values (indexed by rows) to other ECoG values (indexed by columns). High values
along the diagonal reflect the slowly-changing nature of recorded ECoG signals; that is, the signal
typically stays around the same value it had during the preceding time interval. (b) Examples of
ECoG signal prediction from EEG testing data. Shows true ECoG (blue), mean of Gaussian process
prediction (red), and particle filter prediction (green). The particle filter estimates are more accurate
in terms of both mean square accuracy and (c) the one-sided power spectral density compared to the
Gaussian process prediction alone.



Fig. 5(b) shows the ability of a Gaussian process using the isotropic squared exponential
kernel to predict ECoG signals from EEG. The solid blue line shows the ground truth
ECoG signal; solid red shows the mean of the GP prediction; and dashed red lines show
one standard deviation away from the mean. Note that, on mosttime steps shown in (a), the
true ECoG values are within one standard deviation of the GP mean prediction, suggesting
that the model has learned to capture at least the gross features of the ECoG waveform.

Fig. 6(a) shows the learned proposal distribution (transition kernel) for the particle filter
model. Each row of the matrix is a distribution over next (discretized) states of the ECoG
signal at timet + ∆t, conditioned on the ECoG state at timet. Fig. 6(b) shows in greater
detail how a combination of a GP regression model with a particle filter over time can
lead to greater accuracy (both in MSE and power spectrum) than GP regression alone.
Ground truth ECoG is plotted in solid blue, GP mean prediction in solid red, and the particle
filter prediction in dashed green. Fig. 6(c) shows the one-sided power spectrum for the
waveform in (b). The GP model captures low-frequency behavior of the ECoG well, but
tends to overestimate power at higher frequencies. The combination of GP plus particle
filter brings the estimated power spectrum closer to the actual, attenuating power at the
higher frequencies while still tracking the lower-frequency components of the waveform
with accuracy.

5 Discussion and extensions
Our analysis has focused on information-theoretic criteria for feature selection, and on sim-
ple techniques for regression of EEG electrode readings to ECoG readings. Although our
results concentrate on time-domain analysis, we anticipate that selecting for features in the
frequency domain will also yield valuable models. Future work will concentrate regres-
sion methods in the frequency domain. This may be particularly applicable for detecting
physiologically relevant signals for brain-computer interface control. Recent simultaneous
recordings of EEG and ECoG in an awake, epileptic subject [21] show promising results
using a sparser EEG electrode array. The work in [21] employsa finite-element method
to infer ECoG from EEG. While their work differs from ours in i) its significantly greater
computational complexity; ii) its lack of dense recording arrays; iii) its focus on showing
correlation between predicted and actual ECoG (rather thanfrequency-domain character-
ization of the predicted and actual ECoG signals); iv) its neglect of ECoG temporal dy-
namics; and v) its need for extremely accurate head geometryto make predictions, we are
intrigued by the possibility of combining their method withours for more accurate predic-
tions. For example, one might envision a finite-element method where different Gaussian
process hyperparameters are learned for each element in a coarse mesh over the head, rather
than the single set of hyperparameters learned in the GP hereor the fine mesh employed
in [21].

Another immediate extension is to generalize our results beyond a single subject. As we
have shown, producing a reliable characterization of the EEG-ECoG mapping for a single
subject across trials even given ground-truth data is a nontrivial task. For the even more
difficult task of generalizing across subjects, we believe Bayesian inference techniques will
be of particular value. The attraction of Bayesian inference in the problem of simultane-
ous recording is the elegant correspondence between distributions and measurements given
model parametersθ:

P (ECoG|EEG) =
1

Z

∫

θ

P (ECoG|EEG, θ)P (EEG, θ)dθ (6)

Future progress will thus hinge on characterizing the intersubject variance in theECoG →
EEG mapping (the higher-order moments ofP (ECoG|EEG, θ)), which we expect to
have relatively low variance under the assumption of physiological homogeneity in the
skull, meninges, etc. A subject-by-subject “burn-in” period while sufficient data is col-
lected to characterize the subject-dependent distribution P (EEG, θ) will permit infer-



ence of cortical signals. The parameter vectorθ could include subject-independent, task-
dependent values, such as task context, cortical regions being monitored, etc.

We expect time-series analysis to play an important future role in inferring ECoG data
from EEG data; characterizing the evolution of ECoG measurements as a subject performs
a particular task remains a challenging future problem. We also expect techniques such
as independent component analysis (ICA) [2, 10] to play an important role in deciphering
ECoG signals from EEG. Ongoing work in our lab is attempting to correlate independent
components of EEG with simultaneously recorded ECoG signals, hoping to conclusively
demonstrate the viability of ICA-based approaches to brain-computer interfaces.
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