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*1 INTRODUCTION

The majority of artificial intelligence systems to date have been designed to func-

tion only in simulated worlds. For instance, a system might be very good at manipulat-

ing simulated boxes around a simulated workspace. Could such a system achieve simi-

I lar goals with real boxes in the real world? Naturally, the answer depends on how

3 precisely the simulation compares to the real-world situation. With a sufficiently com-

plex model of real-world behavior, the system could achieve its goals with high likeli-

hood. Invariably, the higher the model's complexity, the less efficient it is to reason

I with. Furthermore, no matter how complex the model is, there is some chance that the

3 system will fail. A model may be very complex and consider many factors including the

potential for an excessive force causing a box to be crushed or for the weight of a box to

be nonuniformly distributed. Nevertheless, even this complex model may still neglect a

3 tear in the side of a box. In lifting the box, a gantry arm may catch on the tear and

3 cause the box to be overturned. A system's sensors can provide information about

disparities between the model and the real world. Any Al system which hopes to deal

m with the real world must be flexible enough to respond to such disparities. It is worth-

3 while to note that even a system's sensors can't provide perfect information about the

world. A real-world system will inevitably need to handle uncertainty.

One promising technique for training systems to achieve real-world goals involves

use of explanation-based learning (EBL), a method for learning plans through observa-

m tion of a single training example [DeJong86, Mitchell86]. The first step of the tech-

I
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nique is to have the system construct an explanation, using a domain theory, for how the

observed example achieves some particular goal. The explanation is then generalized to

form a rule which can apply not only to the observed training example but to all mem-

bers of a broader class of similar examples. The formulated rule allows the system's

problem-solver to perform much more efficiently when it encounters future problems of

this class.

Explanation-based learning has been applied to many domains including narra-

tive understanding [Mooney88i, natural deduction [O'Rorke87], physics problem solv-

ing [Shavlik88], and robotics [Segre87] to name a few. For the most part, these systems

have dealt with well-structured mathematical domains or have functioned in simplified

world scenarios such as block worlds.

For example, one of the problems in robotics is known as the robot training

problem. Robot manipulators have usually been trained either with teach pendants, small

hand-held remote controllers which allow an operator to step the robot arm through a

series of motions, or through use of various robot programming languages. Teach

pendants have the advantage of being easy to use without special training. However, the

sequences of motions they produce are very specific and nonrobust. Robot program-

ming, on the other hand, can be used to construct more general programs but requires

skilled programmers and can take many man-hours. Furthermore, the program is only

as good as the possible situations the programmer was able to anticipate when it was

written. Robotics researchers have sought a better solution to this training problem.

2
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Explanation-based learning has been successfully applied to the problem in sim-

3 plified blocks worlds [Segre87]. Here, the robot operator uses a teach pendant to

instruct the robot in what operations to perform. The difference is that the EBL system

acts as an intelligent observer of the operator's instructions. The system's problem solver

I can then learn to accomplish goals, even in ways it wasn't specifically trained for.

3 Unfortunately, current systems make many implicit assumptions about the way *Ie world

behaves that simply aren't true. Surfaces become perfect planes, object's locations are

known precisely, the gripper may be disembodied and completely accurate in its move-

I ment, and so forth.

I Naturally, dealing with these differences between the real world and a simplified

3 model world is difficult. For anyone or any system to successfully operate in the real

world requires a large number of approximations to be made. If we did not make

approximations, we would be swamped by the complexity of performing the simplest

3 tasks. The most important thing about making approximations is to know that you're

3 making them. Previous learning systemns that implicitly make artproximatiorns can never

reason about and therefore question them. They are doomed to make the same errors

I repeatedly if the error was rooted in a bad approximation. Systems which are to func-

1 tion in the real world must:

1 (1) be capable of making explicit approximations as necessary for successful

operation under specified constraints

3 (2) be capable of detecting a failure and if it were rooted in bad approximations,

identifying them

I
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(3) have a means for refining bad approximations.

One especially important capability a real-world system must have is the capabil-

ity to reason about imprecise data. Approximations can be used to represent the data

and methods for operating in spite of imprecise data. These methods are described as

uncertainty tolerant. This thesis presents a general method for learning and using uncer-

tainty tolerant plans. Our primary focus is the robotics domain, where uncertainty

tolerance is a critical factor in formulating useful plans. However, the technique dis-

cussed is not limited to robotics, and is useful wherever uncertainty and thus uncertainty

tolerance is important. The next chapter discusses approximations, how plans are mod-

eled, how operationality is viewed, and presents a general architecture for approxima-

tion in explanation-based learning. The third chapter illustrates how approximations

can be used to represent uncertainties about the world. The fourth chapter, gives an

overview of GRASPER, a system which implements the approximate EBL architecture to

learn uncertainty tolerant grasping plans in the robotics domain. Chapters follow on

how GRASPER understands observations and detects and refines approximation fail-

ures. Last, related work is discussed and future directions and conclusions are given.
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2 APPROXIMATION IN EXPLANATION-BASED LEARNING

Before outlining our approach for approximation in explanation-based learning,

two important areas must be addressed. First, approximations must be defined and their

possible uses illustrated. Second, since our view of operationality has a major impact on

I our approach for learning in complex real-world scenarios, a definition of

I operationality is presented which takes approximate plans into consideration.

2.1 Approximations

Three of the outstanding problem areas in explanation-based learning are those

I characteristic of real-world domains [Mitchell86]. These are

(1) an incomplete domain theory may be all that is available

3 (2) even complete domain theories may prove intractable

(3) the theory the system is using may be incorrect.

I One important feature of approximations is that they are one type of assumption:

3 they are explicit conjectures without inferential support. Approximations, therefore,

3 (1) can allow otherwise incomplete theories to be completed

(2) can make otherwise intractable reasoning tractable

I (3) provide a framework in which imperfections in a theory can be explained

as the results of bad explicit approximations

I (4) allow "learning at the know!edge-level" [Dietterich86] as approximations

allow unsound inferences which can result in the discovery of more opera-

3 tional methods for accomplishing goals.

An approximation has the following two defining features:

II5



(1) Assumability

An approximation must make some statement about the world based not
on logical proof but on conjecture.

(2) Tunability

An approximation must provide a method by which it can be tuned as the
system acquires new knowledge and/or its goals change. This is the prop-
erty which distinguishes approximations from simple binary assumptions.
Should a simple assumption be found inconsistent with the system's
knowledge, the only choice is to remove it. Approximations are more
complex and must be tunable to a tighter approximation using relatively
inexpensive techniques in order to account for inconsistencies in the
knowledge base.

An additional desirable feature for an approximation is

(3) Measurability

At approximation should include some method by which its quality can
be rated as the system acquires new knowledge and/or its goals change.
This is necessary in rating which of several approximations are most badly
in need of being tuned and indirectly which is most likely to have caused
some recently discovered inconsistency in the system's knowledge.

2.2 Operationality

In order to illustrate in a more formal way how approximations can be used to

facilitate explanation-based learning, we move to the issue of operationality. One of the

earliest definitions of operationalization for machine learning was given by Jack Mostow

as: "convertling] knowledge about a task domain into procedures useful in performing

the task." [Mostow83] The term was especially useful in representing where "learning"

was taking place in EBL. As work towards a unifying framework for explanation-based

learning progressed around 1986, a simple binary notion of operationality was in use.

Mitchell marks specific predicates as operational, a system's goal being to express the

6
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I concept in terms of those operational predicates [Mitchell86]. DeJong and Mooney

3 point out two disadvantages of using this approach [DeJong861. First, no method is

prescribed for how operational predicates are so designated. In effect, the procedure for

marking predicates as operational is nonoperational. Second, it is undesirable to mark

I predicates as operational regardless of arguments. It may well be possible to judge

3 whether a predicate can be achieved with one type of argument while impossible with

another. Operationality is also dependent on the current state of the system and should

therefore be dynamic not static as the earlier definition proposes. Finally, the binary

I definition lacks any way to express a preference between two different, yet operational,

3 ways in which the system may achieve a goal.

3 2.2.1 The Model

We propose a definition of operationality which overcomes these shortcomings

U and includes several more specific components which should have meaning for all learn-

3 ing systems. In order to define operationality, a set-theoretic model for viewing plans is

used.

When a system uses approximate values in constructing a plan, what the system

believes the plan will accomplish and what the plan will acttually accomplish when

I carried out in the real world can be two different things. In the model, three mappings

3 are -. ed. Mapping 1 is carried out under the believed functional mapping and map-

pings 2 and 3 are under the actual functional mapping.

I
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Precondition State Set (PSS) Effect State Set (ESS) Fome states
cntutdusing \may be

unreachable/I
aapproximations dunder

Actual Precondition State Set (APSS) Actual Effect State Set (AESS)

Figure 2.1. Representing the Use of a Plan

Figure 2. 1 illustrates how a plan is viewed. The Precondition State Set (PSS) is 3
the set of world states where the plan's preconditions are satisfied. The Effect State Set 3
(ESS) is the set of states reached under mapping I from states in the PSS. The system

treats a plan as a mapping between these two sets (mapping 1), which are illustrated by I
the shaded circles in the diagram. This mapping is characterized as I

(1) functional in that it maps an xePSS to one and only one yeESS

(2) noninjective (not one-to-one) in that many states in the PSS may map to the 3
same state in the ESS I

(3) surjective (onto) in that all states in the ESS are achievable under mapping

1 from states originating in the PSS. 3
The shaded circles represent the system's belief about the plan. Since, the preconditions

and effects to the plan were constructed using approximations, the actual mapping may I
behave differently when carried out in the real world. Two additional sets are intro- 3
duced for this purpose. The first is the Actual Precondition State Set (APSS) and is the

8 3
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I set of states which the plan may be carried out from in the real world which will result in

a state which is a member of the ESS. The second is the Actual Effect State Set (AESS)

and is the set of states which result from application of the plan in the real world to

states contained in the PSS. The plan's real world mapping between the PSS and AESS

I (mapping 2) is characterized as functional, noninjective, and surjective. The plan's real

3 world mapping between the APSS and ESS (mapping 3) is characterized as functional,

noninjective, and potentially nonsurjective in that some states in the ESS may not be

achievable as a result of using approximations.I
Figure 2.1 also illustrates 6 regions lettered a through f. With respect to

I real-world mappings 2 and 3: states in region b (PSSnAPSS) map to states in region e

3 (ESSnAESS), states in region a (PSS-APSS) map to states in region f (AESS-ESS), and

states in region d (ESS-AESS), if achievable, can be mapped from states in region cU
(APSS-PSS).-

I The system treats the plan as if it is a mapping between the PSS and ESS as

3 described earlier. The plan is believed to be useful when the system's current goal has a

3 nonempty intersection with the plan's ESS (regions d2 and e2 in Figure 2.2). Note that

the goal may also intersect with region f2. However, the system incorrectly believes that

I states in region f2 aren't reachable from the PSS. There are 8 possible cases that may

3 arise in determining plan preconditions and subsequently applying the plan to achieve

I
I
3



Precondition State Set (PSS) some states Effect State Set (ESS)Precnditon Sate et (SS)may be

Actual Precondition State Set (APSS) Actual Effect State Set (AESS)

Figure 2.2. Unifying a Goal with a Plan

the goal:

Goal Region Po0ssible Precondition Regions Possible Xesultant ESS Regions

d2 apo f = failure

.f2 = success
bPla el = failure

"-"--'- e2 = success
e2 a --- fl = failureSf2 = success

b Pe---.. el = failure

e2 = success

Additionally, it is also possible that the system observes a plan being employed originat-

ing in a state in region c. If the plan succeeds in achieving a state in region d2, an

unexpected success occurs. Also, some states in region d are not achievable as indicated

by the nonsurjective nature of mapping 3.

10
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1 2.2.2 An Example

3 Before using the model to define operationality, let us introduce a simple example

which can be used to illustrate both the model just defined and the aspects of

operationality. Figure 2.3 illustrates the example domain and plan. The universe ofU

n ...... . ...

8 ... .. .... .. . . .. . .. . . .

6 . .. . . ... . . . . . . .

42 ...... ....

• PS ...... ..... .....

1 0

17 1 2 3 : \7 8 9 1

Operators in ADD5 Actually X Operators in ADD5 ActuallyUIncrement X & Y by 5 In Real World Increment X & Y by 4 In Real World
Figure 2.3. A Simple Plan with Real World Difficulties

I states consists of the set of points in the 10 unit rectangle with (0,0) in the lower left and

3 (10,10) in the upper right. The system believes that an ADD5 plan can successfully

achieve states in the illustrated ESS region ( 6<cx<8 A 6<y!58 ) from those in the

illustrated PSS region ( 1 x<3 A 1<y 3 ). The figure also illustrates some difficulties

U
* 11:
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the plan encounters with respect to the real wei, I w,,ch the system is unaware of. I

Whenever the plan is applied to those states contained in the shaded-L in the lower left 3
of the diagram, the plan successfully adds 5 units to the X and Y coordinates of the

point. However, with all other states the ADD5 plan succeeds only in adding 4 units to

the X and Y coordinates. These simulated difficulties with the real world will give rise 3
to a situation such as that described in the model and hence to the APSS and AESS 3
regions illustrated in Figure 2.4. Expressions for all the state sets are given in Table

2.1. Table 2.2 demonstrates the different possible cases with respect to the goal illus-

trated in Figure 2.5. Figure 2.6 shows the cases as different regions within the ESS. 3
Specific points which achieve the goal are used to show the different cases. 3

II
I
t
I
i
I
I
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10 . .. . .... . ... ...

i ... ... ..... ...... ......

S . ..... ......

5 ................... ...... ...... . ......... .......

4 ...... , . e ... .. .. .. ;. o. .. 0. ..... .. ..3.... . ........ "

2 0 ..... . ..... ... . ............................

0 1 2 3 4 5 6 7 8 9 10

i x
Figure 2.4. ADD5 Plan with PSS, APSS, ESS, and AESS
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Table 2.1. State Set Descriptions

Stat Set Region Description

Universe ( 0<x<10 A 0<y<10 )

PSS 1 l<x<3 A l<y_3 )

ESS ( 6<x<8 A 6<y<8 )

APSS ( 1<x<1.5 A 1<y_93) v
(2<x<4 A 2<y54 )

AESS (5.5<:x<7 A 5 <y< 7 ) v
( 6<x<6.5 A 5<y_8 )9

Goal ((y!5 ) A ( x26.5 ) A ( y<9 A( y:17-x )A
( y>1.5x-5.5 )) v ( 6.25<x<6.5 A 5<y<7 ) V
( 5.75<x<6.25 A 5<y<6 )

Table 2.2. Sample States Illustrating Different Cases

Case# Goal Type Possible Precondition Type Possible Resultant ESS Regions

1 d2 a fP = Failure
(6.75,7.5) (1.75,2.5) (5.75,6.5)

2 d2 a f2 = Success
(7.25,6.75) (2.25,1.75) (6.25,5.75)

3 d2 b el = Failure
(7.2,7.5) (2.2,2.5) (6.2,6.5)

4 d2 b e2 = Success
(7.75,7.5) (2.75,2.5) (6.75,6.5)

5 e2 a fi = Failure
(6.7,6.75) (1.7,1.75) (5.7,5.75)

6 e2 a f2 = Success
(6.8,6.75) (1.8,1.75) (5.8,5.75)

7 e2 b el = Failure
(Not Possible In This Example)

8 e2 b e2 = Success
(6.3,6.5) (1.3,1.5) (6.3,6.5)

1
14a II Ig
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8

elGoal 11/Fall Success
/21/4, 3/4

d2- Primary Region Name
G) -Case Number

AESW success

6 Area of Region

5-
6 7 89

Figure 2.6. Cases Mapped to ESS Subregions

2.2.3 Aspects of Operationality

Operationality will be treated here as a continuous notion comprised of nine

aspects. Each of the aspects is a scalar value normalized to [0, 1]. Each is expressed in

such a way that operationality improves as the aspect approaches 1 (holding everything

else constant). In general, adjusting the plan parameters to force an improvement in one

of the aspect values results in a deterioration in several of the other aspect values. The

user defines a 9-ary function of the different aspects of operationality which is used to

give the overall operationality determination.

16
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I After the aspects have been defined, a method is proposed for managing

operationality in the context of reasoning with approximation. The definitions presented

here assume world states to be equally likely as goals. The major components of

operationality are as follows:I
2.2.3.1 Generality Aspects

Precondition Generality (Gp)

Precondition generality (Gp) refers to how broad a set of circumstances under

which the plan can be applied. This is indicated by the ratio of the size of the

I precondition state space to the size of the universe of possible states.

It is important to note that we are defining theoretical terms here, not attempt-

ing to propose specific methods for measuring them. Ultimately, working values

must be computed for these constructs. It may be tractable only to approximate these

measures. That is, it is also necessary to have a way of characterizing the plan

independent of the specific state to which it will be applied. Some aspects of

operationality which will be discussed, such as applicability economy, may depend on

the precise state of the world in which one is testing the applicability of the plan.

I This is clearly much less desirable than having adequate approximations which are

* less dependent on the precise situation.

1
I
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Effect Generality (Ge) IESSI
[universel

Effect generality (Ge) describes how large a set of world states a plan can

achieve. For example, suppose plan A and plan B both have equal precondition

generality. Further suppose that plan A can only achieve half as many world states

as plan B. Therefore, assuming the states for both plans in the ESS are equally likely

to be goals, the system would find plan B preferable. The Ge measure is necessary

to express such a preference.

2.2.3.2 Economy Aspects

I I
Applicability Economy (Ea) 1 + s PSS)

In order for a system to decide when a plan can be applied requires its pre-

conditions to be tested. In the proposed framework, this amounts to testing whether

the current world state is a member nf the plan's PSS. There is always some cost

associated with this operation. Plans with a low cost for this test (high applicability

economy (Ea)) should be favored.

Effect Economy (Ee) 1+
I+cost(wC- ESS)

In part, system performance also depends on how rapidly the current goal can

be tested against available plans. This amounts to a membership test for a desired

state in the ESS and is called effect economy (Ee).
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Plan Economy (Ep) 1
I1 + cost(plan)

i The other major cost associated with a plan is the cost of execution. A plan

may have a high Ea but still be very slow. The plan economy (Ep) measure is

I designed to reflect how inexpensi. y a plan's actions can be performed after it has

3 been deemed applicahle

2.2.3.3 Real-World Aspects

In specifying formulas for the following real-world aspects the following func-

tional notations are used:

I mapl(x) with x E PSS the resulting state in the ESS under mapping 1

map 1 (X) with X C PSS U map (x)
VxXX

revmapl(x) with x E ESS the set of states in the PSS which can result in x
under mapping I

3 revmapl(X) with X C ESS U revmapl(x)
VxEX

map2(x) with x E PSS the resulting state in the AESS under mapping 2

map2(X) with X C PSS U map2 (x)

revmap2(x) with x r AESS the set of states in the PSS which can result in x
under mapping 2

revmap2(X) with X C AESS U revmap2(x)
VxEX

dist(x,y) with states x & y a measure of the difference in certainty between

an expected state x and some other state actually
observed y

I
I
I
I
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I map2 (revmapl1(ESSfl GoaI) )fl Goall

Probability of Success (Sp) m ESS Goal)

An important factor for every system to consider is probability of success. This

measure is based on the system's own estimation of the quality of the approximations

in use. As better approximations are used, the probability of success increases. This

is evident from the above definition because mapping 2 becomes closer to mapping 1

as approximations improve. How significantly probability of success is weighted

depends on the degree to which the system can tolerate failure. One can envision a

scenario, like picking up a beaker containing a toxic chemical, where probability of

success may be treated as the most important aspect of operationality. On the other

hand, picking up a small unbreakable object may be best done with a quick, easy

grabbing action.
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Ipss I
Result Accuracy (Ra) I PssI + dist(mapl(p),map2(p))

V pEPSS

Precondition State Space (PSS) Effect State Space (ESS)

Calculate Final State

I Plan(args) Possibi Actual

Inital tateJWFinal States

I Figure 2.7. A View of Result Accuracy

I If the plan's approximations are sufficiently tight, differences between what

the plan accomplishes in the real world and what the system believes the plan will

accomplish can be made arbitrarily small. There must exist some specification of

how large this disparity is for a particular set of approximations. This measure is

I referred to as result accuracy and is dr-iicted graphically in Figure 2.7.

I Let Pg = members of the PSS which achieve the goal in the real-world

= revmap2(map2(revmapl (ESSn Goal)) n Goal)

F I MIN [dist(pp2-
Uncertainty Tolerance (Ut) VpE Pg p2 E (Universe - Pg)j

Pg MAX MIN dist(p.p2) 1
vp EPg LVp2 G (Universe -Pgj

I Uncertainty tolerance refers to the ability of a plan to achieve a goal despite

uncertainties present due to a lack of knowledge about the initial world state and/or
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resulting from approximations in the plan. Achieving uncertainty tolerance doesn't

imply that uncertainty is reduced or even reasoned about, merely that the goal can be

achieved in spite of bad knowledge. Specifically, uncertainty tolerance is the maxi-

mum amount of initial uncertainty such that the goal can be achieved. With respect

to our example, those states in the PSS from which the goal can be achieved are

illustrated in Figure 2.8. The definition for Ut is an average of the maximum

amount by which each state in the PSS capable of achieving the goal can deviate

according to the dist function before it fails to achieve the goal. This is then normal-

ized to a value between 0 and 1 by dividing by the maximum possible deviation of

any of these states.

4

C

3S

/Ib a

2 PSI

5- succeeds in
/ / / //7, ~achieving goal

1 2 3 4

Figure 2.8. States in the PSS Which Achieve the Goal in the Real World
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Uncertainty Reduction (Ur) Ut - RaI
Uncertainty reduction takes place when a plan performs actions which serve to

I reduce uncertainty. It measures the "funneling" that takes place from an initially

3 less certain situation to a later more certain situation. As with all the measures, high

uncertainty reduction is preferred to the extent is doesn't sacrifice other aspects of

operationality. Negative Ur is also possible and represents a plan which, when

I applied, leads to a less certain situation. Specifically, Ur is the difference between

3 measures of certainty in the final situation (Ra) and those in the initial situation (Ut).

3 2.2.4 Measuring Operationality With Our Example

In our example, the cost of a numeric comparison is 1 and the cost of an addi-

3 tion is 2. The different aspects of operationality can be calculated with respect to our

* example as follows:

23
I
I
I
I
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SI 1 0.04
Gp- luniversel 100

(ESSI 4

Ge =ES 4 0.04luniversel 100
1 1 1

Ea - 1 + cost(t E PSS) 1 1 + 4 cost(numericcomparison) 5

Ee = I + cost( 1 E ESS) = 1 + 4 cost(numericcomparison) 5

1 1 1
Ep = I + cost(plan) 1 + 2 cost(addition) 5

(areas of regions from figure 2.6)

map2 (revmap 1(ESSr ) Goal)) n Goal 11 +3 1+ + I
12 4 4 4 13Sp 11 3 1 1 1 1 19

ESS nl Goalj - + - +-q-+ 2--

jPSSJ 4 16

I pSSI + dist(mapl(p),map2(p)) 4 + (-- "0+ "" V ) 16+3v2

Y P 6 PSS result of integrating MIN
function over regions illustrated

/in Figure 2.8

MIN dist(p,p2) 
i

Ut ypepg V P2 e (Universe - Pg) _ _ _ _.

Ut = IPg  MAX dist(p,p2) 1 /
Pg2- 6

Y p1E Pg 2 8
V p2 E (Universe - Pg)

Ur = Ut + Ra

2.2.5 Variability, Granularity, and Certainty

Keller outlined several features important in characterizing operationality defini-

tions: variability, granularity, and certainty [Keller87a]. Variability is either dynamic or

static indicating whether the rating of a predicate as operational can change as the per-

formance environment of the system changes. Whether our definition is dynamic de-

pends on the specific techniques chosen to calculate the various aspects. As mentioned

24



I

I earlier, various approximations may be used to make calculation of these measures

3 easier. It is, however, desirable to have the measures linked to the environment the

system is operating in. That is, they should not be linked to any specific state the plan is

operating from but to the environment in general. This includes factors such as what

I objects are available in the world and what actions are possible. Therefore, measures

3 such as Ea and Ee, which represent the cost of testing membership for preconditions and

effects, are typically calculated based on the environment. For instance, as the number

of facts, relevant or not, increases, Ea and Ee will tend to decrease as the overhead of

I individual predicate tests increase. Also, Ra, Ut, and Ur will be affected as they depend

3 on the likelihood of encountering certain states, a factor which is often empirically meas-

ured and will change as the system engages in problem solving.

Granularity reflects whether operationality is defined as being continuous or bi-

nary. Our definition is a continuous one which permits making the distinction between

I multiple plans which are operational as to which one is the most operational.

U Certainty indicates whether performance is guaranteed or unguaranteed by the

3 operationality assessment. Although a guaranteed operationality assessment is ideal,

seldom is it possible to tractably make this guarantee. One would have to anticipate all

the situations in which the plan might be used and test them all to determine

3 operationality. The components of operationality in our definition are measured using

3 approximate means, therefore, making the assessment tractable but the result un-

guaranteed.I
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2.2.6 The Influence of Representation

One should not overlook the effect that the predicate language in which the states

are expressed strongly biases aspects of operationality. For instance, increasing the

fraction of states in the universe from which a plan can work (Gp) may or may not

affect precondition economy (Ep). Whether it does depends on how easily the new set

of states can be expressed as opposed to the former set. It also should be pointed out

that in some fine grained representations the size of a state set such as the PSS or ESS

may contain a very large or perhaps infinite number of states. Ideally, the representa-

tion should be course grained enough to promote tractable reasoning about

operationality.

2.2.7 Dependence on the Performance Element

As Keller has observed, operationality is a function of the system's performance

element [Keller88]. In our definition, we have sought to be as general as possible not

tying it to any specific system's performance element. Therefore, in applying this defini-

tion for use with a specific system, the various aspects of operationality must be weighted

in accordance with the performance element. If a system has a very low tolerance for

failures, it may lend the greatest importance to probability of success (Sp). If it needs to

deal with noisy data, it may place a premium on uncertainty tolerance (Ut) and possibly

uncertainty reduction (Ur).
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U 2.3 The Proposed Architecture

3 In terms of our operationality definition, approximation can be used to achieve

high values for the economy and generality aspects (Ep, Ea, Ee, Gp, and Ge). The

remainder of the operationality definition illustrates the price that may be paid for such

I improvements. Namely, the plan may not be as likely to succeed (Sp), may not achieve

3 as predictable a result (Ra), and may increase or be unable to handle uncertainty result-

ing from the approximations (Ur and Ut).

An approximation could be chosen which results in an optimal plan according to

the operationality definition. However, our operationality measure is unguaranteed as

U discussed earlier. Therefore, at best, the operationality definition can only provide a

good approximate plan. There is simply no tractable way to anticipate all the ways in

which a plan may fail. An empirical component is necessary. The plan must therefore

U be carried out and some recovery mechanism employed to remedy encountered prob-

3 lems if the system chooses to remedy them. This involves tuning the approximation(s)

* and proposing a replacement plan employing the new revised approximation(s). It may

be the case that several methods may remedy the failure situation. In this case, the most

I operational of the alternatives should be chosen. In short, the set of situations in which

3 the plan is carried out can impose constraints en the approximations. This, in turn,

affects the operationality rating for the plan. However, operationality considerations

should be used to favor which approximations get tuned and/or which method is used to

2
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tune them. The general approximate explanation-based learning process therefore con-

sists of the following seven primary steps:

(1) Approximate EBL

For the most part, this phase proceeds as with standard explanation-based
learning. That is, an explanation is constructed from the system's back-
ground knowledge either through observation of an external prob-

lem-solving trace or frum scratch without the guidance of such a trace.
The explanation is then generalized and the resulting plan is added to the
system's knowledge base. The difference between standard EBL and ap-
proximate EBL is that the domain knowledge includes explicit approxima-
tions. This has ramifications on the two learning techniques as follows:

(a) Learning From Internal Planning

While learning from planning, plans produced are based on approxi-

mations in the system's world model. This naturally means that they
may fail if the approximations are bad, a possibility that must be dealt
with.

(b) Learning From External Observation

In learning from observation, the system must explain observations
through use of its approximate model of the world. This can lead to
situations where the necessity of certain aspects of the observations are

not supported by the system's approximate model. These unsupported

aspects are eliminated in the produced approximate plan.

(2) Execution Monitoring

An important phase of the process involves monitoring execution of the
produced plans. All action primitives in a plan carry with them a measur-

able expectation of behavior for the primitive in the real world. In execu-
tion monitoring, as primitives in the plan are executed, expectations are

monitored. Expectation violations encountered constitute failures and the

failure explanation phase begins.
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I At this point, the system must decide whether it will tolerate the failure or attempt
to fix the plan. A system deciding to tolerate the failure continues to use the plan
without any modification. Otherwise, the process continues with step 3.

(3) Failure Explanation

During failure explanation, the expectation violation, knowledge base, and
world model are used to arrive at a set of plausibly bad approximations
which could explain the failure.

1 (4) Plausibility Thresholding

Although many potentially bad approximations could have caused the
failure, some may be significantly more. likely to have caused it than oth-
ers. The plausibility thresholding phase eliminates the potentially bad
approximations below a certain plausibility threshold to promote more3 tractable consideration of the candidates in the next phase.

1 (5) Tuning Selection

In this step, the final decision is made as to which of the remaining candi-
date approximations to tune. This decision is made through an analysis of
the iew plans which result from tuning each of the candidates, This
allows operationality decisions related to the resulting plan to affect the
choice of a candidate to tune. Although this analysis is more expensive
than other methods, it has the feature of keeping the system's current set of
plans as operational as possible for the current set of approximations in

* use.

(6) Tuning

In the next phase, given an approximation to tune, the tuning is actually
carried out by using the tuning method associated with the approximations

in conjunction with the world model and knowledge base. Tuning an
approximation affects the system's representation of the world model.

I (7) Plan Installation

Once an approximation has been revised in response to an expectation
failure, the plan is rejustified using the new world model after the approxi-
mation has been tuned. In order to relearn the plan the same observation3 sequence which led to the original rule being learned is reused.

I
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The next chapter explores how approximations are used to represent uncertainty

in the world and how this approach can give rise to error tolerant plans.

3
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3 USING APPROXIMATIONS FOR ACHIEVING UNCERTAINTY
TOLERANi PLANS

In this chapter, we focus on approximations which aid in the construction and

U refinement of uncertainty tolerant plans. First, we will discuss data uncertainty and how

3 it is represented using the approximation framework outlined earlier. Next, the mecha-

nism and effects of uncertainty tolerant plans are introduced. Finally, we discuss how

uncertainty tolerance relates to other important aspects of operationality.

U 3.1 Representing Data Uncertainty

* Approximations can come about in two ways:

3 1) external approximation

3 Approximate data may be all the system has available. For instance, a

vision system may be incapable of providing precise data.

1 2) internal approximation

Even if the system has precise data, it may be forced to approximate that

data due to intractability considerations. For example, a vision system might

accurately characterize an object as polygons with very large numbers of vertices

3 or generalized cylinders with many tiny intricate parts. It becomes intractable to

reason about the complex polygons or cylinders in rcal time, so the representa-

3 tions are simplified by the learning system to approximate ones which contain less

vertices and which the system can reason about quickly.

The effects of these are the same. In a real-world implementation, external

I approximation is forced by limited sensory accuracy and internal approximation is used

I
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by the system where necessary to reach a tractable level of data for planning and under-

standing. The primary difference is that internal approximation can be controlled where

external cannot. External approximations can be narrowed (to a more exact level) only

through interaction with the world. Internal approximations can be narrowed through

expending computational resources alone.

The uncertainty we are concerned with is that of the data the system receives. In

constructing plans, the system reasons about possible uncertainty through use of internal

approximations. Each approximation has explicitly noted the amount of uncertainty the

system must plan for. A plan constructed based on approximations like these expects

the values indicated by the various approximations to be correct. However, uncertainty

tolerance and reduction will be employed as necessary in constructing the action se-

quence for the plan. In this way, the plan deals with the margins of uncertainty indi-

cated in the approximations at the time of plan construction. Notice, that the plan itself

performs no special reasoning about uncertainty when appliea. ACcuns which have the

effect of being uncertainty tolerant are introduced when the plan is constructed.

To illustrate more concretely how some of these concepts in uncertainty tolerance

are applied, examples will be drawn from a 2D robotics world. Consider the sample

position approximation illustrated in Figure 3.1. It is important to note that this repre-

sentation is only used in constructing and revising plans. The system's world model

used during plan selection and execution simply asserts the fact: (position square53 (3.5

1.0)). In the example, uncertainty is represented as a maximum distance that the object
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(approximation
values

target-type position
object square53
position (3.5 1.0)
position-error 0.5 . explicit error representation

:update-function #'position-approx-update
:deviation-function #'position-deviation)

Figure 3.1. An Uncertainty Approximation Involving Object Position

I could be from the designated Cartesian coordinates. That is, a plan using this approxi-

3 mation expects the object position to be (3.5 1.0). If the position of the square ever

varies more than 0.5 units from (3.5 1.0), the approximation is in error and will

require tuning. If the system deems it necessary, a new plan is constructed that incorpo-

rates sufficient uncertainty tolerance for the revised approximation. Approximations of

3 this format break down if the position error is too great because planning or understand-

ing becomes intractable. Our assumption is that the data given the system are not

completely erroneous and that uncertainties tend to be small.I
The uncertainty approximation described above is a specific type of approxima-

I tion as defined in the approximate EBL framework and must therefore be tunable and

3 measurable. That is, with the position approximation illustrated in Figure 3. 1, the

deviation function provides measurability and the update function provides tunability.

The chapters which follow on the GRASPER system describe how these functions were

3 implemented for the robotics domain.

3 3.2 Uncertainty Tolerant Plans

An uncertainty tolerant plan is one which can function despite some data uncer-

tainty. There are two possible component methods to any uncertainty tolerant plan:

I
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1) avoidance

This technique involves making allowances for uncertainty without neces-

sarily reducing it. For example, consider the collision avoidance technique illus-

trated in Figure 3.2. A collision free path is sought for an object whose position

Translation of Known Object

Figure 3.2. An Instance of Avoidance

is known through a field of objects whose positions are somewhat uncertain. The

solution proposed involves a path which stays maximally far away from believed

positions for objects. This constitutes one simple technique for introducing uncer-

tainty tolerance into plans. Unfortunately, this is a rather inflexible technique -

when used in isolation it can, through its conservative nature, rule out the best or

only solutions.

2) uncertainty reduction

The technique of uncertainty reduction involves manipulating and sensing

the world so as to reduce the amount of uncertainty. Figure 3.3 illustrates an

instance of uncertainty reduction. This single translation of the gripper (which

holds a long beam) made possible the more precise location of the square block

As long as the gripper and beam swept the space in which the square block was

located and the gripper sensed the contact forces and torques, the block's y posi-

tion is the position of the lower beam and the block is aligned with one face along
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Before After

I w
x x

Figure 3.3. An Instance of Uncertainty Reduction

the beam. Overall, the maneuver has reduced the amount of uncertainty associ-

ated with the square block's location.I
3.3 Recognizing and Understanding Uncertainty Tolerant Plans

A learning system must be able to recognize and understand application of both

3 of these methods when they take place in an observed plan. The avoidance technique

can be explicitly represented in the domain-specific knowledge but is not always possi-

U ble and can only guarantee success under limited conditions.

I The task of explaining instances of uncertainty reduction is a far more compli-

3 cated one. Uncertainty reduction involves operations which achieve a state in which a

set of target data is more precisely known than in the initial state. One important

principle for accomplishing that is the following:I
If an external relation can be established between two internally related
sets of data, the external relation can be used to reduce the uncertainty of
the more uncertain of the two sets.

3I
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With this principle, the goal in uncertainty reduction is simplified to one of achieving

such a relation. We seek to relate a first set of data we are more certain about to a

second set we are less certain about in order to increase our knowledge of the second set. 3
Consider how this might be applied in a robotics domain. The uncertainty is that

associated with the positions, orientations, and shapes of objects in the world. We are,

however, certain of the gripper's position, orientation, and shape. One way of accom-

plishing uncertainty reduction is to establish a relation between the gripper and objects in

the world whose associated data we would like to make more certain. To that end, an

important aspect of the robotics specific domain knowledge should include a theory of

object-to-object contacts and sensing. An important aspect of this theory, an instance

of which is depicted in Figure 3.3, involves the concept of alignment. Alignment can be

described as follows:

If objectl is forced against object2 which is free to move without interfer-
ence from other objects, object2 will tend to align itself in one of a set of
possibly predictable configurations with respect to objectl.

Special cases of this include the tendency for edges perpendicular to the applied force to 3
align themselves. These could be straight, periodic, and other forms as shown in Figure

3.4. In the case of the complementary form illustrated, once the alignment has been

Straight Matching Periods Complementary

Figure 3.4. Some Instances of Alignment

3
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I accomplished, knowledge of the exact information about the top piece translates into

3 exact knowledge about the bottom piece. For the matching periodic case, uncertainty

about the bottom piece has been reduced to one of the several possible phase configura-

tions. In the situation following straight edge alignment, position uncertainty in the x

I direction is still uncertain although the relative position of the two pieces in the y direc-

I tion is precisely known. Figure 3.5 shows a labeled enlargement of the situation that

exists after a straight-edge alignment. At plan construction time, the approximation for

M Mill fl

UL
I1Wi f 3 fl

I f4 block2 f2

3 y f3 - object faces

x Figure 3.5. After an Alignment

U block2 indicates a small possible deviation in orientation. Hence, the plan constructed

specifies use of an alignment operation. When the alignment has been done, small

orientation deviations are corrected. Therefore, an orientation known with certainty

such as that for f3 of blockl translates into a certain knowledge of the orientation of ft

I of block2.

3 3.4 Tradeoffs In Learning Uncertainty Tolerant Plans

One of the most important choices made about the use of uncertainty tolerance

has been to reason about uncertainties only at plan creation time, not in the plans

I
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themselves. Reasoning about uncertainties is a powerful but costly technique. In our

approach, the plan is only revised if the approximations upon which it is based are

questioned and the system decides it is unwilling to tolerate similar future failures of the

plan. Let us consider how the goal of uncertainty tolerance interacts with the other

important goals involved in learning operational plans.

Uncertainty Tolerance vs. Generality

A plan can have high generality in the sense that it is broadly applicable

(Gp) and/or capable of achieving a large set of states (Ge). If an uncertainty

exists for some measure, and a plan exists which has a certain degree of uncer-

tainty tolerance for that measure, then that plan's PSS must include a range of

states each of which takes on some value for that measure along a continuous

spectrum. That is, the plan is still capable of achieving the goal despite slight

differences in the measure. The relation between uncertainty tolerance and gen-

erality is based on the existence of such sets of states in the plan's PSS. If there is

uncertainty in the environment, a plan needs uncertainty tolerance to preserve

generality.

Uncertainty Tolerance vs. Economy

The most direct influence of uncertainty tolerance on economy comes in

the change to economy of plan execution (Ep) due to the actions used in the plan

to achieve the goal in an uncertainty tolerant manner. A plan's economy will

usually decrease as extra action is often required. This, in turn, has an indirect

influence on economy of applicability (Ea) and economy of plan execution (Ep)

due to changes in the PSS and ESS in reflecting greater uncertainty tolerance.

Economy of our plans will be much higher than those which do explicit reason-
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1 ing about uncertainty at plan execution time. Furthermore, it is desirable to use

3 as little uncertainty tolerance as is required by the expected problem solving situ-

ations; otherwise, economy may be sacrificed unnecessarily.

Uncertainty Tolerance vs. Probability of Success

3 Sometimes a system may be utilized to perform some critical application

where a plan should never be executed without a great amount of certainty that it

I wiil function correctly. In this situation, failures cannot be tolerated. This means

the system must engage in a heavy amount of reasoning and would certainly be

slow and inefficient but plans produced would have a high probability of success.

I On the other hand, a system might be used in an environment where

failure has little or no cost. Here, trying things out can be much more efficient

than performing any nontrivial reasoning about their probability of success.

3 Each individual failure need only help in a small way in taking the system to its

ultimate goal of learning the best set of plans.

U Most systems will treat probability of success somewhere between the two

3 extremes. Failure is no great tragedy but it has a nonnegligible cost. Therefore,

the system should take maximum advantage of failures that do occur to try to

I converge quickly to a plan which fails infrequently on the situations the system

* observes.

In our system, we use a notion of success probability of the last variety:

I failures are relatively cheap but not negligible. Uncertainty tolerance has a direct

contribution to probability of success for those plans operating in real-world

environments where uncertainty is present.

I
I
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3.5 Managing Uncertainty Tolerance

In designing a system with uncertainty tolerance, we make the following observa-

tions based on the previous discussion of tradeoffs:

(1) unnecessary use of uncertainty tolerance hurts economy

(2) lack of uncertainty tolerance in spite of uncertain data precludes

most real-world applications

Figure 3.6 shows an error distribution for some measure used in a plan. A plan will be

aProjected Error Distribution )ected Value For Measure

L a k o f U c r t i t 
D e s i r e d V a l u e

u ai of Uncertaint 
Som ewhere In

Tolerance Hurts Between ExtremesGenerality

F geGenerality,

The plan is always constructed assum ing the 
Exe ssieance H rt aint

expected value for the measure but the actions oso b
are structured to promote the margin ofEc 

n m

Possible Value Taken On By Some Measure

Figure 3.6. Uncertainty Tolerance, Generality, and Economy

constructed assuming the expected value for the measure. However, a decision has to be

made as to how uncertainty tolerant the plan should be. On one end of the spectrum,

illustrated by the horizontal double arrow at the top of the curve, a plan incorporates
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I little uncertainty tolerance. The generality of such a plan would be very low in an

environment with uncertainty. The other extreme, illustrated by the horizontal double

arrow at the bottom of the curve, incorporates a large amount of uncertainty tolerance,

so much so that it even deals with uncertainties that occur very rarely. This type of plan

sacrifices efficiency. What is sought is a plan somewhere between the extremes. The

approximate EBL architecture outlined in the previous chapter is ideal for achieving

such uncertainty tolerant plans. When failures occur, the system has a choice of

redesigning the plan to incorporate another level of uncertainty tolerance or tolerating

I such failures in the future. This will be demonstrated by the GRASPER system which

* embodies this approach and is described in following chapters.

I
I
I
I
I
I
I
I
I
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4 GRASPER SYSTEM OVERVIEW

The GRASPER system described in this chapter is intended as a first-generation

EBL system with explicit approximation capability. First, the general architecture for

the system will be described. Next, an example involving planning uncertainty tolerant

grasping operations in robotics will be described which illustrates how the approach

works.

4.1 System Architecture

Figure 4.1 illustrates how the GRASPER system is organized. The understander

portion of the system observes operations being planned and carried out by an external

agent. In the case of a robotics system, the understander is monitoring the command the

operator gives to the robot through the teach pendant. This is similar to the idea of a

"learning apprentice," but emphasis is placed on having the system function in a non-

obtrusive way. The system could become a hindrance to the operator if it posed ques-

tions about the operator's intent in performing some action. Furthermore, it may be

difficult for the operator to explain the intent behind every action. This problem is

evident in the design of expert systems where experts can't always explain how they

made a decision. The understander continually makes inferences using its knowledge

base and world model as to what goals the operator is achieving and how they are being

achieved. It is important to point out that where many previous systems assumed rules

in the knowledge base to be guaranteed and their model to be correct, this is not neces-
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I sarily the case with those of GRASPER which has been designed fLr handling explicit

* approximations.

Thc g.nc..I.,zcr reccivcs cxplanations a to how goals have 1ben achieved from

the understander. The explanations are then generalized into efficient rules for accom-

plishing tasks of that class. These efficient rules are added to the system's knowledge

I base.I
Goal

Generalizer KoldeBePlanner

I
Understander System's Executive

UndersanderWorld Mode

Operator Real
Sequence World

Figure 4.1I. GRASPER System ArchitectureI
GRASPER can be asked by the operator to achieve goals. The planner will

attempt to construct a plan using knowledge the system has. Due to the extreme com-

I plexity of real-world domains, the planner, working with finite resources, may not be

able to construct plans without the help of the understander and generalizer which com-

I
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prise the learning element of the system. With them, efficient rules can be used which

were already constructed through observation of external problem-solving behavior.

The executive is responsiole for carrying out the plans proctuced by the piannti

in order to accomplish the desired goal. It uses the system's world model to maintain an

expectation of the way the world should behave as execution progresses. Feedback is

obtained from the world. For instance, when GRASPER is used in the robotics domain,

various sensors are used to give position and force feedback. If the exetcutive senses a

conflict between its expectations of the world's behavior and the actual world's behavior

as determined through the feedback, it recognizes a failure to have occurred. The

system uses the failure to focus on finding possible fixes for it in observed behavior.

In some cases the system has already observed actions which can deal with the

failure. The problem is that the system may have used approximations during under-

standing which obscured uncertainty tolerant aspects of the external agent's plan. It is

the duty of the focusser to

(1) determine plausible candidates from among the approximations

(2) select one or more candidates for tuning

(3) decide how each candidate should be tuned

(4) update the world model in accordance with the tuned approximations.

The focusser is responsible for using information about expectation violations to

focus the understander on aspects of the observed sequence that might explain how to
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I avoid the failure. This is accomplished through the selection and tuning of approxima-

tions that led to the failed system behavior.

Figure 4.2 gives a ffow diagram for the focusser. First, the failure explainer

produces a set of possible approximation failures which explain the expectation viola-

tion. This set is filtered based on a domain-specific plausibility heuristic to eliminate

I possible but extremely unlikely failures. The tuning selector analyzes elements of the

remaining set and decides which will be tuned. The important goals in deciding what to

tune are really a function of the plan which would result from the tuning. The preferred

resulting plan should be judged on its operationality according to the definition proposed

I in Chapter 2.

I
System Expectation / Real World Data Conflict

I Focuser Failure Explainer

I Possible Contributory Approximations

Plausibility Filter

Most Plausible Bad Approximations

Observations - Tuning Selector -'-ReplacementI Plan For Failing
Approximations To Be Tuned One

I proximation Tuner]

I Replacement Approximations
For Use In World Model

Figure 4.2. The Focusser

I
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The focusser needs a set of observations which are ideally those associated with

original construction of the rule which failed. Each candidate plan is constructed by

tuning its candidate approximation and using the understander and generalizer on the

observations. Once the selector completes its plan analysis, the plan can be entered in

the knowledge base while the tuned approximation is included in the world model.

4.2 Use of GRASPER for Learning in Robotics

In order to illustrate how this architecture is employed, we introduce an example

concerning learning uncertainty tolerant grasping strategies in the robotics domain. The

example takes place in a two-dimensional world with a disembodied gripper and a set

of polygonal objects. Real-world complexity is introduced through uncertainty in the

known positions, orientations, and shapes of the objects. It is assumed that the position,

orientation, and shape of the robot are known.

4.2.1 The Gripper

The two-dimensional gripper is shown in Figure 4.3. The two fingers slide open

and closed along the beam, each finger having a motion equal and opposite to the other.

The gripper reference point is the point at which the gripper's position and orientation are

measured.

4.2.2 Gripper Primitives

Gripper motion is directed using a set of four primitive actions: apply-force,

apply-torque, close-fingers, and open-fingers. The format of these actions is illustrated in

Figure 4.4. All motion is compliant; the primitives specify forces to be applied. Each
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I

finger-lengthI
nr finger-width

finger reference

beam-length * gripper-finger-width

Igripper reference
point

finge r rfrence

beam-width

Figure 4.3. The Gripper

I Format: ( operator-name-- name of the primitive

Lorarruments misc. input arguments

sensor-expectations - a set of sensor values expected after execution

of the operator

termination-condition a partial world state specification marking
normal termination of the
operator

termination-sensor-values -- a return of sensor values
on termination of the

) operator

I Figure 4.4. Robot Primitive Format

operator invocation also specifies expected sensor readings and a termination condition.

I An operation terminates if any of the sensor expectations are violated, in which case a

failure occurs, or if the termination condition is met without a violation of sensor expec-

i tations.
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4.2.3 Gripper Sensors

The gripper is equipped with force sensors on its periphery and with position

sensors. The sensor expectations consist of a set of position and force specifications with

respect to the gripper which must be satisfied at completion of the operation. The I
termination condition is a partial world state specification which marks completion of +he

operation. The termination sensor values are a dump of all the sensor values returned at

the termination of the operation. Force sensors return information as illustrated in

Figure 4.5. I

Force representation: I
(force ?finger ?contact-x ?contact-y ?magnitude ?x-component ?y-component)

I
finer efrence

x-component

:oel y-component 5

finger ref reice
poin

t'qcontact-x I

Figure 4.5. Gripper Contact Sensing I
4.2.4 Object Representation

Objects in the two-dimensional world have their shapes represented by simple I
polygons. The polygon has a reference point about which the object's orientation and at 3
which its position is measured. Shape, position, and orientation information about each

I
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U object in the world is contained in the system's world model. This information is treated

5 as precise.

4.2.5 Object Approximations

At plan construction time and in explaining failures, it is necessary to reason

about object shape, position, and orientation as approximations to their exact values in

I the real world. These approximations take a form as shown for the position approxima-

3 tion of Figure 4.6. The approximation has two domain-specific functions associated

(approximation
:values

target-type position
object square53
position (3.5 1.0) explicit uncertainty representation
position-uncertainty 0.5 ei r e n

:update-function #'position-approx-update
:deviation-function #'position-deviation)

3 Figure 4.6. A Position Approximation

with it. The first, called the deviation function, in this case measures distance between a

specified position and the position in the approximation. This is used for rating which

I of several approximations can be most easily extended to account for errant positions.

3 The update function is used for extending the approximation to account for such a posi-

tion. Figure 4.7 demonstrates the procedure for tuning the approximation to account

for an errant position. In this case, one face of a polygon has been assigned an approxi-

U -- point of contact minimum position
position: (x,y) j error deviation necessary

to explain single
fault of position

error

Figure 4.7. Attributing Position Error

I
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mate position but a known contact point has forced modification of the approximation

to account for it. The update function extends the value of the position uncertainty to

account for it.

4.3 An Example

The GRASPER system starts out by observing a grasp operation being carried out

on block2 as shown in Figure 4.8. The figure shows the six states involved in the

operation both from the approximate view of the system (4.8a) and from an ideal

precise view (4.8b). The system is incapable of getting or processing information as

precise as that seen in the latter view in real time. From the initial position (frame 1),

an apply-force operator leads to a successful translation of the gripper to an approach

position (frame 2). An apply-torque operator aligns the gripper's fingers toward the

object through a successful rotation (frame 3). The open-fingers operation is performed

to allow the gripper to be opened wide enough to surround the object (frame 4).

Another apply-force is used to move the gripper to a position around the block (frame

5). Last, a close-fingers is used to bring the fingers together enough to achieve a speci-

fied gripping force on the object (frame 6).

From the initial view of the understander and the approximate view of the world,

the extra-wide opening of the fingers for the approach is both inefficient and unneces-

sary. This view of the observed sequence finds its way into the general rule produced to

achieve a grasping goal. Figure 4.9 shows how the system performs with the new rule

when asked to apply it to a similar grasping situation. The plan proceeds much as the
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I

1 Initial Position 2 Apply-Force 3 Apply-Torque

Gripper Block1 Gripper Block1 Block I

5 *Gripper
Block2 Block2 Block2

4 Open-Fingers Block5 Apply-Force 6 Close-Fingers3 Blockl Blockl

1 Gripper I Gripper Gripper

I [ Block2 Block2

1 (4.8a) System's Approximate View of the Operator Sequence

1 1 Initial Position 2 Apply-Force 3 Apply-Torque

Gripper Block1 Gripper Blockl Block1

Gripper .
% lc2Block2 GiprBlock2

U 4 Open-Fingers Block] Apply-Force 6 Close-Fingers
Block I Block1

Gripper Block2 Gripper Gripper

I * -_ _-_

(4.8b) Real-World Precise View of the Operator Sequence
Figure 4.8. System's Initial Observations of a Grasp Being Performed
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I Initial Position 2 Apply-Force 3 Apply-Torque

Blockl Block I Blocki1

Gripper Gripper Gripper

4 Open-Fingers Block 15 Apply-ForceBlcI
Blc0

Gripper
Block2Gripper Block2

(4.9a) System's Approximate View of the Operator Sequence

I Initial Position 2 Apply-Force 3 Apply-Torque

Blocki Block 1 Block I

Q0 ED
Gri pper Block2 Gripper Block2 Gripperk

4 Open-Fingers Bok15 Apply-Force
Blok Uepce lc

Gripper Results

(4.9b) Real-World Precise View of the Operator Sequence
Figure 4.9. System's First Attempt at Achieving a Grasp
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I initially observed plan did up until the open-fingers operation. Here, since the system

3 uses only an approximate view of the data, it can't show the necessity for opening the

gripper fingers wider than the block. However, the approximation lends itself to effi-

cient reasoning about and execution of the plan. Unfortunately, in this case, these

I actions lead to a failure as shown in the precise view of Figure 4.9. Since the block was

I actually positioned slightly differently, the upper-left edge protruded, making contact

with the gripper finger in an unexpected place. The system, only expecting a small

contact force on the insides of the fingers, has a violation of expectations.

I
3 GRASPER now attempts to explain the failure by explaining the discrepancy

between the real sensor readings and the expected ones. The system arrives at four

primary single-fault failure explanations in this specific example which are rooted in

I possible errors in approximations for:

1 (1) blockl's shape

(2) blockl's position

I (3) block2's shape

3 (4) block2's position

In this case, the only approximations not identified as possible causes of the failure are

the orientation approximations. This is because no orientation error of either block

I could explain the encountered contact.

I
I
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In general, failed approximations receive a likelihood rating in accordance with

the degree to which the approximation needs to be changed to account for the failure.

In this case, failures receive likelihood ratings inversely proportional to the distance the

contact was from their expected positions. This is due to the method for position and

shape approximations used for objects, which is illustrated in Figures 4.7 and 4.10,

respectively. A threshold is used to avoid consideration of more unlikely causes for the

failure. Here, blockl's expected position is substantially farther from the point of con-

tact than block2's position. Explanations corresponding to 1 and 2 in the list above are

below threshold and are not considered.

shape: straight-line point of contact

mdminimum shape
md deviation necessary

,~o explain singleI
fault of shape

Figure 4.10. Attributing Shape Error

GRASPER's focusser suggests methods which the understander can use to focus

on possible shape and position discrepancies with block2. Specifically, this is to in-

crease the uncertainty margin considered in the approximate attributes of block2 to

allow the understander to recognize fixes for the failures. The amount which the uncer-

tainty margin is increased is a function of the attribution procedure illustrated in Figures

4.7 and 4. 10 for position and shape. The approximation for an object is revised as

little as necessary through consideration of each individual line segment that makes up

its polygonal approximation. Having encountered a failure, the system now has a good
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reason to invest more resources in trying to understand possible discrepancies in this

* area.

3 The understander constructs explanations for a new observed grasp operation

from each of the failure perspectives. The generalizer generalizes each of these explana-

tions and analyzes the resulting rules. In attempting to understand a successful grasp

I operation from each of the failure perspectives, each of the failures actually was deter-

3 mined to be a motive in opening the gripper wider. That is, opening wider and closing

actually can take care of small variations in shape and positional uncertainty of the

object being grasped. In the post-generalization analysis, after the system has per-

formed some rule simP.fication, it is found tht one of the rules actually deals with both

3 of the potential failures and is thus more general. Although this may not always be the

case, the systcm is capable of recognizing such occurrences and profiting from them.

Naturally, that rule is used in the knowledge base and the system now has a good

method for dealing with two types of uncertainty in this type of grasp operation.

I
I
I

I

I
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i
5 UNDERSTANDING OBSERVED MANIPULATOR SEQUENCES

Central to any explanation-based learning system is the method by which more

efficient plans are discovered. This process is known as understanding and is similar to

methods used in natural language understanding.

5.1 Basic Elements of the System's Knowledge Representation

It is necessary that a few aspects of the system's knowledge representation be

discussed now so as to clarify the tecniques to be presented later in the section. The

system assumes a complete albeit intractable set of domain knowledge which equips it to

deal with real-world robot manipulation situations. The domain knowledge is organized

into facts, rules, and procedures. Facts and rules are encoded in a first-order predicate

calculus representation which can be examined by the system. We therefore refer to

these components of the domain knowledge as introspectable. The procedural knowledge

represents low-level built-in functions such as the basic arithmetic operators which need 3
to be fast and have internal logic which it is unnecessary to have the system to reason

about. The procedural knowledge consists of actual program code and is nonintrospec-

table.

Facts are represented as ground instances. For instance, a fact might relate the

initial Cartesian X coordinate of a certain robot gripper as

(gripper-x gripperl -7.5).

Actions the system takes serve as transitions between situations: complete specifications of

world state. Facts are therefore true in a specified situation or situations.
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URules are a general structure for representing inference rules and actions. The

3 general form for a rule is

(rule :cons <consequent 1> <consequent 2> ... <consequent n>

:ants <antecedent 1> <antecedent 2> ... <antecedent n>).

IRule semantics are such that the conjunct of the antecedents implies the conjunct of the

3 consequents. Disjunctions are not allowed in rules. The system uses an approach

i similar to the STRIPS formalism of add and delete lists [Fikes72]. Consequents are

predicate expressions just as were the facts discussed above. Consequents of the form

I(not <predicate>) are handled as if <predicate> were on a delete list. That is, <predicate>

3 would be true in the situation prior to the rule application but not true in the following

situation. Antecedents are also of predicate form and can be proved true through unifi-

cation with facts, prcc.dures, and/or thrcugh unification with and backward chaining

Ion the consequents to other rules. t

I Several of the predicates illustrated in the example in this chapter should be

3 1defined. They are

5choose-grip
given a gripper and an object this predicate determines a target position and3 angle from which to grasp the object

I
t Implementation Note: It is interesting to note that some have approached the representation of

domain knowledge in Prolog [Prieditis87]. Prolog does provide an obvious representation for
rules of Horn clause form. Beyond that, representation of more complex rules necessitates more
awkward higher level work on top of thc basic Prolog syste . it also seems to make search3control more difficult. It is for these reasons that the system was written in Common Lisp.
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foral

checks that a set of conditions are true for each member of a list with the
exception of those for which an exception condition evaluates to true

gripper-approach-sequence

finds a gripper approach sequence which includes choosing an approach posi-

tion, angle, and opening width and gripping position and angle

gripper-clear-translate

checks whether it is possible to translate the gripper from one position to an-

other free of collisions

translate-poly-area

returns as a polygon the area traversed by the gripper during a translate

world-objects

returns a list of the objects in the world

I
Consider the following rule used in the system:

(rule :cons (gripper-clear-translate ?gripper ?current-x ?current-y ?target-x

?target-y ?object-list ?gripper-beam-length

?gripper-beam-width ?gripper-finger-length

?gripper-finger-width 3
?gripper-finger-separation ?gripper-angle)

(gripper-x ?gripper ?target-x) I
(gripper-y ?gripper ?target-y) 3
(not (gripper-x ?gripper ?current-x)) 3
(not (gripper-y ?gripper ?current-y))
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I :ants (translate-poly-area ?gripper ?current-x ?current-y ?target-x

?target-y ?polygon ?gripper-beam-length

?gripper-beam-width ?gripper-finger-length

?gripper-finger-width ?gripper-finger-separation

I?gripper-angle)

3 (world-objects ?object-list)

i (forall ?name ?object-list

((not (equal ?name ?gripper)))

I (not (intersect-object-poly ?name ?polygon))))

I
This rule represents a gripper translation that is completely clear of contact with other

objects in the world. In addition to achievement of the gripper-clear-translate goal,

I other consequents include the change in position of the gripper. Therefore, the current

I gripper position is marked for deletion and the new position is asserted. The antecedents

of this rule consist of predicates which calculate a polygonal representation of the area

I covered by the translation, enumerate objects the system knows to exist, and iterate over

3 a list establishing that none of the known objects interfere with the translation path.

3An explanation for a goal achievement has three primary components: a list of

3 rules used in achieving the goal, a list of consequent antecedent pairs where the antece-

dent of one rule used in achieving the goal was satisfied by the consequent of another,

I
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and a variable binding list. The binding list gives values for rule variables as they

appeared in the specific goal achievement.

5.2 The Suggestion Mechanism

The sequence an understander observes consists only of robot manipulator primi-

tives. The understander must somehow attribute purpose to these observed primitives.

The most natural way to do this is by a technique known as suggestion. For example, if

a close-fingers primitive is observed one suggestion might be that a grip was being at-

tempted. This is by no means a certainty. Naturally, the gripper fingers could have

been closed for many other reasons. Maybe the fingers were closed because they were

previously open too far for an optimal approach to an object. That is, they unnecessar-

ily increased the risk of striking an object on the approach. Therefore, suggestion is

used here as a heuristic function for what goal likely produced the observed effect.

If the system knew all the ways in which the knowledge would be applied to

problem solving, an analysis of the knowledge could produce an optimal set of sugges-

tion heuristics. Unfortunately, such a complete analysis is intractable. We use a practi-

cal approach as illustrated with the suggestion rule of Figure 5.1 which is built into the

understander. This rule states that good suggestions are ones in which the antecedent

suggesting a particular consequent is found as an antecedent relatively infrequently in the

rule set. The threshold T used in the rule indicates a frequency above which an antece-

dent becomes a poor predictor. The threshold can be dynamically tuned, based on the

performance of the understander. When the threshold is too low, the understander fails
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I to understand due to a lack of suggestions. When the threshold is too high, the under-

* standing process takes much more processing time and can become unmanageable.

3 Given:
a set of rules or
nodes a and 03
a numeric threshold r

If: p c

o is an antecedent of o
03 is a consequent of p
cx appears as an antecedent in !ess than T rules over o"

Then:3h 
c suggests 3

Figure 5.1. Suggestion Rule

5.3 An Algorithm For Understanding

I An algorithm for understanding is illustrated in Figure 5.2. Initially, a queue is

3 built with entries representing the observations the system is seeking to understand. The

goal is to produce a series of connected explanations for these observations. Each node

on the queue is examined in turn. First, a list of nodes which it suggests are identified.

I For each of these we attempt to prove that the suggested node could have taken place. If

3 any of the suggested nodes could have taken place, they are added to the end of the

queue. Otherwise, the node itself is replaced on the end of the queue as its suggestions

may later become provable through the integration of information provided by the other

1
1
1
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queue <- a nonempty list of observations in node form

1:
if an element of queue satisfies a primary system goal then
begin

result <- queue
end
else
begin

foreach node In queue do
begin

tail-queue <- nil
suggested-nodes <- list of nodes suggested by node
a-suggestion-worked <- nil
foreach suggested-node in suggested-nodes do
begin

this-suggestion-worked <- nil
foreach rule of which suggested-node is a consequent do
begin

urule <- a unique copy of rule
foreach antecedent a in urule do
begin

unless this-suggestion-worked do
try to prove the conjunct of urule's antecedents under the binding set
produced by the unification of node with the corresponding urule
antecedent
If the antecedents could be proved then
begin

this-suggestion-worked <- t
a-suggestion-worked <- t
assert that the consequents of the rule are thought to have occurred
(update add/delete lists accordingly)
add the previously suggested consequent of urule to the tail-queue

end
end

end
end
unless a-suggestion-worked add node to the tail-queue

end
if a-suggestion-worked then
begin

queue <- tail-queue
goto I

end
else result <- queue

end

Figure 5.2. An Understanding Algorithm
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I observations. This process continues until no further suggestions can be confirmed from

* the nodes on the queue or a node on the queue is discovered to satisfy one of the

system's key goals. After having eliminated equivalent explanations, all the elements on

the queue then represent partial explanations as to what might have taken place. Usu-

I ally, in observing intelligent behavior, the set of observations will have been reduced to

3 explanations which are able to explain all of the observations rather than just a few.

3 The differences between this understander and those in standard explana-

tion-based learning system lie primarily in the domain knowledge used in the under-

standing. That is, some of the domain knowledge is approximate. This has no effect on

I the functionality of the understander. Another difference, however, is that the under-

3stander interprets things according to the approximate world model. This leads to the

possibility of interpreting some aspects of observed behavior as unnecessary.

The system's operationality criteria should be used to determine the interpretation

Igiven to the observations. For instance, in our example, the human operator of the

3 robot gripper is observed to open much wider than the piece being grasped. Any physi-

3 cally possible opening width greater than the width of the piece would satisfy the goal

under the system's world model. The system then faces a complicated operationality

I tradeoff in selecting the appropriate width to use. Opening very wide may improve

3 uncertainty tolerance but may sacrifice generality as in many situations other objects

nearby may prohibit such a wide opening. Movement of the gripper's fingers is part of

the economy of execution of the plan. A desire purely for economy of execution would
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favor moving the gripper's fingers the least possible from their current position such that

they are open wider than the piece. In our implementation, the preferred opening width

is to open just wide enough to clear the object as described in the system's world model. I
5.4 An Example

The understander starts with a sequence of observed actions as follows:

OBSERVED-APPLY-FORCE

GRIPPER1 < ---------- Gripper Name

5 < ----------------- Motor Force Applied

o < ----------------- Numeric Starting Time

i < ----------------- Numeric Ending Time

-7.5 < -------------- Current Gripper X-Coordinate

8.5 < --------------- Current Gripper Y-Coordinate

-9.5 <-------------- Target X-Coordinate

3.5 < --------------- Target Y-Coordinate

4 < ----------------- Gripper Beam Length

2 <- ---------------- Gripper Beam Width

3 < ----------------- Gripper Finger Length

2 <----------------- Gripper Finger width

2 < ----------------- Current Gripper Finger Separation

-90 < --------------- Current Gripper Angle

OBSERVED-APPLY-TORQUE

ORIPPERI < ---------- Gripper Name

5 < ------------------ Motor Force Applied

I < ----------------- Numeric Starting Time

2 < ----------------- Numeric Ending Time

-90 < --------------- Current Gripper Angle

0 < ---------------- Target Gripper Angle

4 < ----------------- Gripper Beam Length

2 < ----------------- Gripper Beam Width

3 < ----------------- Gripper Finger Length

2 <- ---------------- Gripper Finger width

2 < ----------------- Current Gripper Finger Separation

-9.5 < -------------- Current Gripper X-Coordinate

3 < ---------------- Current Gripper Y-Coordinate

OBSERVED-OPEN-FINGERS

GRIPPERI < ---------- Gripper Name

5 < ----------------- Motor Force Applied

2 <----------------- Numeric Starting Time

3 < ----------------- Numeric Ending Time
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3 2 < ----------------- Current Gripper Finger Separation

3.75 < -------------- Target Gripper width
-9.5 < -------------- Current Gripper X-Coordinate

3.5 < --------------- Current Gripper Y-Coordinate

0 < ----------------- Current Gripper Angle

2 < ----------------- Current Gripper Finger Separation

2 < ----------------- Gripper Beam Width

4 < ----------------- Gripper Beam Length
2 < ----------------- Gripper Finger width

3 < ----------------- Gripper Finger Length

.OBSERVED-APPLY-FORCE

GRIPPER1 < ---------- Gripper Name

5 < ----------------- Motor Force Applied

3 < ----------------- Numeric Starting Time

4 < ----------------- Numeric Ending Time

-9.5 < -------------- Current Gripper X-Coordinate

3.5 < --------------- Current Gripper Y-Coordinate

4.5 < --------------- Target X-Coordinate
3.5 < --------------- Target Y-Coordinate

4 < ----------------- Gripper Beam Length

2 < ----------------- Gripper Beam Width

3 < ----------------- Gripper Finger Length
2 < ----------------- Gripper Finger width

S3. 75 < -------------- Current Gripper Finger Separation
0 < ----------------- Current Gripper Angle

3 OBSERVED-CLOSE-FINGERS

GRIPPERI < ---------- Gripper Name

5 <----------------- Motor Force Applied

4 < ----------------- Numeric Starting Time
5 < ----------------- Numeric Ending Time

3.75 < -------------- Current Gripper Finger Separation

3 < ----------------- Target Gripper width

4.5 < --------------- Current Gripper X-Coordinate
3.5 < --------------- Current Gripper Y-Coordinate

0 < ----------------- Current Gripper Angle

3.75 < -------------- Current Gripper Finger Separation
2 < ----------------- Gripper Beam Width

4 < ----------------- Gripper Beam Length

2 < ----------------- Gripper Finger Width

3 < ----------------- Gripper Finger Length

3 A node is created for each of these actions and is placed on a queue. In the next

3 phase, the system attempts to suggest various higher-level goals of which each of the

observed actions may be a part. It will then try to follow these up in a top-down
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fashion. The First observed-apply-force suggests two possible rules of which it may be a

part. Not surprisingly, both are versions of apply-force. However, each of the versions

of apply-force carry along with them different expectations on the part of the operator.

By associating the bottom-level observed-apply-force with one of these, the system is

beginning to infer goals on the part of the external agent. The two versions of ap-

ply-force are shown below. The first apply-force is used as the final approach to an

object which we desire to grip. It carries the expectation of contacting the goal object in

a gripping position. The second is used as an unimpeded translate from one location to

another. It carries the expectation that no objects will interfere with the object being

moved during the translate.
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3 (rule :cons :nc (apply-force ?gripper ?dx ?dy ?force ?start ?end

(gripper-approach-sequence ?gripper ?dx dy ?object ?facel

?face2 ?mid-x ?mid-y ?angle

?separation ?gx ?gy ?ob-poly ?gcx

?gcy ?ob-list ?gbl ?gbw ?gfl ?gfw

7angle)

(at-coordinates ?mid-x ?mid-y ?gripper)

((gripper-x ?gripper ?mid-x)

(gripper-y ?gripper ?mid-y)

(gripper-angle ?gripper ?angle)

(gripper-finger-separation ?gripper ?separation)))

:ants (observed-apply-force ?gripper ?force 7start ?end ?gx 7gy ?mid-x 7mid-y ?gbl

?gbw ?gfl ?gfw ?separation ?angle)

(world-objects ?ob-list)

(dif ?dx ?mid-x ?gx)

(dif ?dy ?mid-y ?gy)

3 (choose-grip ?gripper ?object ?mid-x ?mid-y ?angle ?min-separation 7facel

7face2 7perror ?oerror)

3 (less-than-or-equal ?min-separation ?separation))

I
I
i
I
I
i
I
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(rule :cons :nc (apply-force ?gripper ?dx ?dy ?force ?start ?end

(gripper-clear-translate 7gripper ?cx ?cy ?tx 7ty ?ob-list

?gbl ?gbw ?gfl ?gfw ?gfs ?ga)

(at-coordinates ?tx ?ty ?gripper)

((gripper-x ?gripper ?tx)

(gripper-y ?gripper fty)

(gripper-angle ?gripper ?ga)

(gripper-finger-separation ?gripper ?gfs)))

:ants (observed-apply-force ?gripper ?force ?start ?end ?cx ?cy ?tx ?ty ?gbl ?gbw

?gfl ?gfw ?gfs ?ga)

(world-objects lob-list)

(dif ?dx ?tx ?cx)

(dif Idy ?ty ?cy))

Initially, the first action of observed-apply-force unifies successfully with the like

term in the first of our two rules. Using this binding list, an attempt is made to prove the

antecedents of that rule in order to infer it had taken place in the external agent's

planning process. At this stage, the specifically bound antecedents to the rule could be

written as

(observed-apply-force gripperl 0 0 1 -7.5 8.5 -9.5 3.5 4 2 3 2 2 -90)

(world-objects ?ob-list)

(dif ?dx -9.5 -7.5)

(dif ?dy 3.5 8.5)

(choose-grip gripperl ?object -9.5 3.5 -90 ?min-separation ?facel

?face2 ?perror ?oerror)

(less-than-or-equal ?min-separation 2).
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I The first is trivial as it was an observed action and was already unified with the

3 antecedent. The world-objects predicate looks up the known world objects as this infor-

mation is part of the rule consequents. The next two dif (subtraction) predicates calcu-

late relative move coordinates for use in the consequents. The choose-grip predicate

I indicates that this rule is designed for use of apply-force while anticipating contact with

3 Ian object to be gripped. Without going into the subproof for choose-grip here (see the

appendix for the complete example), the choose-grip could only succeed if there were an

object to grasp at the end point (-9.5 3.5) of the apply-force. There is no such object at

I that location. Consequently, the choose-grip fails and this suggested use of apply-force

3 will not be confirmed.

The second rule, on the other hand, does apply.. It makes no special conditions,

at this point, about there being an object at the termination of the apply-force. The

antecedents for the second rule after the unification of the observed-apply-force could be

3 instantiated as follows:

U
(observed-apply-force gripperl 0 0 1 -7.5 8.5 -9.5 3.5 4 2 3 2 2 -90)

(world-objects ?ob-list)

3 (dif ?dx -9.5 -7.5)

3 (dif ?dy 3.5 8.5)

All of these antecedents can be proved so the consequents of the rule are asserted.

In the next level of suggestion, in the example, expectations of the inferred apply-force

I
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will be confirmed. This is an expectation of an object-free path from initial to final

positions of the apply-force.

The following shows how the queue appears at each cycle of the algorithm until

one of the nodes, having arrived at grasp, has achieved a basic system goal.

(0) Queue: observed-apply-force observed-apply-torque

obsorved-open-fingers observed-apply-force

observed-close-fingers

(1) Queue: apply-force apply-torque open-fingers apply-force close-fingers

(2) Queue: move-gripper-clear rotate-gripper-clear adjust-fingers

approach-target-clear grip

(3) Queue: move-for-approach rotate-for-approach

adjust-fingers-for-approach approach-target

achieve-frictional-force

(4) Queue: prepare-for-approach prepare-for-approach prepare-for-approach

achieve-frictional-force grasp

Stage 0 shows the initial contents of the queue containing only the observed ac-

tions, no inferences having yet been made. Next, primitive actions and expectations are

inferred. Eventually, in steps 3 and 4, the first three observed actions are recognized to

be part of preparing for an approach to an object. All along, the close-fingers action
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SI provided the strongest clue to the goal of the operation. From it was inferred that an

3 object was being gripped and that a frictional force was being sought between the grip-

per and an object. This indicated a grasp which could suggest no further rules and

which actually made use of all the observed actions. An abbreviated view of the final

I explanation structure is shown in Figure 5.3. The reader is referred to the appendix

3 where a complete demonstration of the understander on this example is documented.

I
I
I
I
I
I
I
I
I
I
U
I
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Grasp

Achieve-Frictional-Force

Choose-Grip Approach-Target Gi

Stable-Two-Face-Config Cs ingers

Choose-Approach Approach-Target-Clear
000 0 000 Prepare-For-Approach 0 00

/ Apply-Fo~rce
Safe-Distance-Vecto r t

000 Rotate-For-Approach

Object-Extent Move-For-Approach Adjust-Fingers
I Rotate-Gripper-Clear

Move-Gripper-Clear Adjust-Fingers-Clear

Apply-Force Apply-Torque Open-Fingers]

Apro- osition "

Approx-Orientation Observed Primitives

Approx-Shape Dependencies on approximations to
Approx-Shape the object being grasped

Figure 5.3. An Abbreviated View of the Explanation Structure
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* 6 EXPLAINING AND USING FAILURES

The first phase of dealing with failures involves identifying when they have oc-

curred. The executive component is responsible for this. Whenever a primitive is

executed, a prediction is generated based on the domain knowledge, world model, and

I current state as to the values of several measurable parameters. These parameters are

3 compared to those values measured from the real-world environment to provide feed-

back on the success of the action. In the current implementation, since no interface has

yet been constructed with a real robot arm, the measurements are obtained through a

I world simulator.

3 Before discussing the specifics of the mechanism for learning from failures in the

I robotics domain, it is necessary to describe the approximations used to represent uncer-

tainty of world objects. Physica! objects such as the gripper, about which we assume

U perfect knowledge as discussed earlier, are represented by their exact polygons. All

3 other physical objects are approximated through use of position, orientation, and shape

u approximations. Each of the three basic approximations includes the attribute and

update procedures. For a position approximation, the attribution function measures the

I minimum distance from a point of contact to the polygon representing the object (see

3 Figure 6. 1). The associated update function extends the uncertainty margin to include

the possibility that the contact point was on the object. The functions for the object

orientation approximation are similar. Instead of using distance to the object, the mini-

I mum angle by which the polygon representing the object could be rotated to produce the

I
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point of contact

minimum position
deviation necessary

to explain single
fault of position

error

0

polygon reference point
(from which polygon position
is measured)

Figure 6. 1. Attributing Position Error

,,,point of contact

minimum angle

deviation necessary
to explain single

Wfault of orientationi
error

polygon reference point
(from which polygon orientation
is measured)

Figure 6.2. Attributing Orientation Error

encountered contact is measured for the attribution function (Figure 6.2). The update

function extends the angular uncertainty to account for such a contact with the object.

Last, the object shape approximation measures the minimum deviation for a face of the
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I polygon such that the contact could be achieved (Figure 6.3). The update function

3 ~point of contact
-..._ minimum

I deviation necessary[
~to explain single

fault of shape

I\

polygon reference point

Figure 6.3. Attributing Shape Error

extends the shape error of each side of the polygon to account for the contact.

The system's executive component performs actions moving through a series of

I qualitatively different states. During each action, the system has a set of sensory expecta-

3 tions. The actual sensor values are monitored to see that they lie within expected limits.

When expectations are violated, a failure is said to have occurred. In the example

introduced in Chapter 4, such a violation occurs as the gripper strikes an object slightly

3 before it was expecting to contact the object it was attempting to surround for the grasp.

3 Figure 6.4 illustrates the situation at the time of the failure. The executive indicates the

failure and returns information about the expected sensor values as well as the actual

sensor values as follows:

I Prior Value Dump:
(GRIPPER-X GRIPPERI -8.5)

I
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Block 1

Unexpected
Collision

Results

Gripper

Apply-Force Block2

Figure 6.4. Illustration of a Failure

(GRIPPER-Y GRIPPERi 3.5)

(GRIPPER-ANGLE GRIPPERI 0)
(GRIPPER-FINGER-SEPARATION GRIPPERI 3 .0)

(NOT (GRIPPER-X GRIPPERI -7.5))
(NOT (GRIPPER-Y GRIPPERI 8,5))

(NOT (GRIPPER-ANGLE GRIPPER1 -90))

(NOT (GRIPPER-FINGER-SEPARATION GRIPPERI 2))
Dump At Failure:

(GRIPPER-X GRIPPERI 1.5)
(GRIPPER-Y GRIPPERI 3.5)
(GRIPPER-ANGLE GRIPPER1 0)

(GRIPPER-FINGER-SEPARATION GRIPPER1 3)

(FORCE GRIPPER1 FINGERI 3 0.25 5 -1 0)

(NOT (GRIPPER-X GRIPPERI -7.5))

(NOT (GRIPPER-Y GRIPPERI 8.5))

(NOT (GRIPPER-ANGLE GRIPPERI -90))

(NOT (GRIPPER-FINGER-SEPARATION GRIPPER1 2))
Expectation Goal:

CR1 PPER-APFROACH-SEQUEN'CE
GRIPPERI <--------------Gripper Name

13.0 <------------------- Delta X

0.0 <-------------------- Delta Y

SQUARE2 <--------------- object
F1 <--------------------- One Face Of The Object
F3 <----------------------Another Face Of The Object

4 5 <-------------------- Target X-Coordinate
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U 3.5 < --------------- Target Y-Coordinate

0 < ------------------ Target Gripper Angle

3.0 < --------------- Target Gripper width

-8.5 < --------------- Current Gripper X-Coordinate

3.5 < --------------- Current Gripper Y-Coordinate
#<Structure POLY 1OA640CB> <-- Polygon Representation Of The Object

1.5 < ---------------- Nearest Gripper X-Position Prior To Object Contact
3.5 < --------------- Nearest Gripper Y-Position Prior To Object Contact

(SQUARE1 GRIPPER1 SQUARE2)
4 < ------------------ Gripper Beam Length
2 < ----------------- Gripper Beam Width
3 < ------------------ Gripper Finger Length
2 < ----------------- Gripper Finger Width
0 < ------------------ Current Gripper Angle

Expectation Expi:I#tt<Structure EXPLANATION 10AF49F3>
Expected Dump:

(GRIPPER-X GRIPPER 1.5)
(GRIPPER-Y GRIPPERI 3.5)

(GRIPPER-ANGLE GRIPPER 0)

(GRIPPER-FINGER-SEPARATION GRIPPERI 3)

(NOT (GRIPPER-X GRIPPERI -7.5))

(NOT (GRIPPER-Y GRIPPERI 8.5))
(NOT (GRIPPER-ANGLE GRIPPER1 -90))

(NOT (GRIPPER-FINGER-SEPARATION GRIPPER 2))

The discrepancy between the expected and actual dumps at the time of failure

lies with the presence of an unexpected force. The f.,ure explainer evaluates each of

I the object approximations utilized in the plan with respect to the unexpected contact

position (see Figure 6.5). This is done using the attribute function for each approxima-

tion. While the algorithm currently employed does look at all approximations, future

plans include only considering those approximations likely to have contributed to the

I failure (e.g., using a distance threshold). Of the six approximations evaluated (position,

orientation, and shape of each of two squares), only failures in the pt tion and shape

approximations could have resulted in the observec. failure. These four possible con

tributory approximations are passed through a plausibility filter which eliminates ap-
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Squarel: OBJECT-POSITION-APPROXIMATION
Squaiel: OBJECT-ORIENTATION-APPROXIMATION I
Square 1: OBJECT-SHAPE-APPROXIMATION Approximations
Square2: OBJECT-POSITION-APPROXIMATION Used In Plan Construction

Square2: OBJECT-ORIENTATION-APPROXIMATION
Square2: OBJECT-SHAPE-APPROXIMATION

Failure Explainer

Square 1: OBJECT-POSITION-APPROXIMATION (error=-8.4)
Squarel: OBJECT-SHAPE-APPROXIMATION (error=6.75) Possible
Square2: OBJECT-POSITION-APPROXIMATION (error0.25 Contributory
Square2: OBJECT-SHAPE-APPROXIMATION (error0.25) Approximations

Square2: OBJECT-POSITION-APPROXIMATION Most Plausible
Square2: OBJECT-SHAPE-APPROXIMATION Faulty Approximations

Figure 6.5. Narrowing a Set of Candidate Faulty Approximations

proximations from consideration whose error would have to be very large to explain the

failure. In this case, the approximations to Square l are eliminated as their errors would

have to be very large to explain the contact near Square2 and are, therefore, over a

predetermined plausibility threshold. Figure 6.6 shows a comparison of errors for the

position approximations for squares 1 and 2. If the position appioximation for square 1

were to blame for the failure, it must have been grossly in error, which is inconsistent
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I

SError If Faulty Position
I [Approximation For Squarel

[Error If Faulty Position SquarelI
I[-[~~Approximationl (m idFor Square2 ' iliiiili

Gripper -'7----"

Apply-Force
IR Square2

Figure 6.6. A Comparison of Errors for Faulty Position Approximations of
Squares 1 and 2

with the system's basic assumption that uncertainties tend to be small. The remaining

two most plausible faulty assumptions are input to the tuning selector for analysis.U
The tuning selector retrieves the initial primitive operator sequence that led to

3 construction of the failed plan and produces a set of plans each of which results from

3 tuning one of the approximations being considered. An approximation is tuned using its

update function which, in this case, makes use of the position of the unexpected contact.

Under the assumption that only one faulty approximation caused the failure, at least one

U of the produced plans will remedy the problem. The tuning selector gives preference to

3 the most operational plan. Measuring operationality of plans is an area of ongoing work

(see Chapter 8). The current GRASPER implementation uses a technique as follows:

First, each of the plans is simplified to aid in comparing them. Simplification occurs

I
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when some of a plan's antecedents can be satisfied independent of context. For in-

stance, consider an antecedent which consists of the following predicate:

(sum ?xll 3 4)

The binding for ?xl1 (7) can be calculated prior to application of the plan. The

constant 7 is then substituted for all occurrences of ?x1 1 throughout the plan. The

simplification process involves repeatedly performing such calculations until no further

reductions can be made. Once simplification is complete, the plans are compared to

each other. The current comparison technique compares plans with the same conse-

quents and action sequences. If plan A's antecedents are a subset of plan B's, plan A is

preferred to plan B in coverage as it will also remedy the approximation failure which

led to creation of plan B. A full operationality comparison is planned in the future.

In the example, the plans produced from tuning of Square2's position and shape

approximations are already in simplified form and are totally comparable. Both specify

that the gripper should be opened 0.25 unit wider than in the original p!an. One of the

two plans is therefore picked arbitrarily to rep!ace the original plan and the tuned ap-

proximation which generated it is now utilized in the world model.

This approach demonstrates how explicit object approximations can be rcasoned

about at failure recovery time so as to produce a set of candidate revised plans the most

operational of which is selected. If the approximations don't deviate widely from their

targets in reality and the operationality criterion is suited to the system and environment,

this method will take full advantage of the information gained from each failure. Fur
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I thermore, the revised plan is designed to to.erate uncertainty rather than to restrict its

I application so as to avoid it.

I
I
I
I
I
I
U
I
I
I
I
I
I
I
I
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7 RELATED WORK

In this chapter, related work is discussed in the areas of: machine learning and

robotics, reasoning about uncertainty in robotics, learning from failures, approximation

and learning, and operationality.

7.1 Learning and Robotics

One of the earliest systems utilizing machine-learning techniques for controlling a

robot was the STRIPS system [Fikes72]. It was able to learn macro-operators for

operating a robot from analysis of its own problem solving. The generalization tech-

nique used for constructing the macro-operators is very similar to the EGGS technique

used in explanation-based learning today.

The first work in demonstrating the application of explanation-based learning

(EBL) to problem solving in robotics was done by Segre in his ARMS system [Segre87].

ARMS observes a human operator achieving some goal through sending commands to a

robot manipulator. Using its domain theory, the system is able to construct a general

plan for achieving th%- aoal. The plan is not sensitive to incidentals in the original

training example as are plans generated using other learning techniques. This is because

only aspects of the training example which support the goal, according to the domain

theory, find their way into the final plan.

The problem with ARMS is that it uses an idealized model of the world as other

current EBL systems do. The world is never ideal like the model and ARMS has no Way

of reasoning about possible disparities between the model and real world. Furthermore,
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I its plans will never incorporate uncertainty tolerance because of these representational

shortcomings.

3 Mel's MURPHY system is a first step in using a connectionist learning technique

to aid robot manipulation [Mel88]. MURPHY uses knowledge about a robot arm's

current joint configurations in conjunction with visual data about the joint configurations

I to learn connections between the two. This can be accomplished without an intelligent

teacher by having the robot step through a representative sample of the 1 billion possible

joint configurations. MURPHY can use its learned connections to "envision" sequences

of actions for planning.

MURPHY is quite appealing as a method for learning sensory-motor interaction

I in a robot arm because of its simplicity. It requires little domain knowledge but faces the

common disadvantages of such connectionist techniques: it requires a myriad of exam-

ples, needs an environment to "train" in where failures have negligible cost, and with

little domain knowledge can be sensitive to incidental associations made from observa-

* tions.

Several systems using similarity-difference-based learning (SDBL' have also

3 been used for controlling robots [Andreae84, Whitehall87]. Whitehall's PLAND sys-

tem observes a trace of robo+ ztivity and develops macro-operators which include

I loops, conditionals, and sequences. This system is designed to function with only a

3 single positive example and little domain knowledge. Although the system can develop a

I
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macro-operator based on the one example, with little domain knowledge, not much I
confidence can be expressed in the resulting operator. Systems like these help to demon- i

strate that learning systems are located on a knowledge t-untinuum ranging from those

systems very good at dealing with knowledge poor domains but requiring many exam-

ples like SDBL systems and those good at operating in knowledge rich domains with

only a few examples like EBL systems. Eventually, these approaches will merge into

one system to which the amount of available knowledge determines which learning tech-

niques apply and the system can function comfortably anywhere on the continuum.

GRASPER uses a rich domain theory and generates a plan from a single training exam-

ple but also utilizes future training examples to improve the plan as failures are ob-

served.

7.2 Reasoning About Uncertainty in Robotics

Brooks provides a logic for reasoning about uncertainties and defines a plan

checker capable 0f recognizing when a plan cannot deal with a certain range of uncer-

tainties and adding sensing constraints to ensure its success [Brooks82]. This approach

propagates error ranges throughout the plan to infer what effects they will have. This is

computationally an expensive technique. Our approach doesn't seek a complete error

analysis so as to preserve system efficiency.

Brost provides a detailed algorithm for automatic grasp planning in the presence

of uncertainty [Brost88]. For instance, this includes a detailed analysis of the

squeeze-grasp, the grasp used by GRASPER in our examples. This grasp can succeed
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I in spite of some uncertainty in object position, shape, and orientation. Brost's approach,

3 like Brooks', involves a detailed analysis of the grasp and the possible uncertainties to

determine which grasp to use and exactly how it should be applied to succeed. Brost has

made a number of assumptions in order to simplify the algorithm which handles three

I basic grasping methods. Brost's technique is expensive like Brooks and also has no

3 provision for correcting itself. GRASPER uses observation to acquire its grasping tech-

niques and uses approximations to promote tractability. Unlike the fixed algorithms of

Brooks and Brost, GRASPER can tune approximations and regenerate the plan so as to

I adapt to observed failure situations.

1 7.3 Learning from Failures

The concept of using failures to trigger learning is not a new one. Many re-

searchers have used incremental techniques for learning. One of the earlier works in

I this area was Sussman's HACKER system [Sussman73]. HACKER operated in a

3 blocks-world, constructing plans and simulating their execution. The system initially

assumed it could achieve subgoals independently. Naturally, this led to the generation

of incorrect plans where one subgoal could clobber another. The plan was then simu-

I lated to see if it worked. Failures were then discovered through a comparison of the

3 system's intentions and expectations with the actual result. Next, bug fixes were located

which could be applied to the situation at hand. In this way, HACKER incrementally

produced better and better plans until the desired criterion was met.

I
I
* 85



I

HACKER, like many of the early machine learning systems, was bound tightly to I
a specific domain. Not only were the different features of the system not all found in the

same implementation, but the complex and specific nature of the knowledge libraries

made domain independence a tough goal to achieve. Furthermore, HACKER was also

making implicit assumptions about its world which actually affect the overall approach U
used. Since the system had ideal information, it was naturally possible to identify the 3
precise cause of the failure. Several other researchers have done work in incrementally

refining from failure. Among these are Chien and Gupta. I
Chien's approach [Chien87] assumes a complete but intractable domain theory.

The system operates in a machine-shop scheduling domain. The explanation of ob- I
served examples is made tractable through the use of persistence assumptions about 3
world states. When the plan is executed, if failures occur, an explanation for the fail-

ure, ultimately due to an incorrect persistence assumption, is constructed and generalized

for use in constructing a censor against using the plan in similar bad situations in the 3
future. The system can additionally augment plans through understanding gained from 3
observing unexpected situations where an observed plan succeeds despite censors which

indicate it should not. Chien's system assumes it has perfect knowledge about the world

but that, due to intractability, it must use assumptions in explanation construction. The 3
GRASPER system must make use of approximations at a lower level to handle the

problem of imperfect world knowledge. GRASPER has the capability to rate plausible

failures and gives preference to recognizing plans which can deal with the largest set of
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I plausible failures. While Chien's system works by adding censors and attaching addi-

3 tional causal explanations to failing plans, GRASPER is able to construct a new plan

incorporating more of the subtleties of the training example through tuning its approxi-

mations and regenerating the general plan. Furthermore, GRASPER may decide that

I some particular failure is tolerable according to its notion of operationality and may

I choose, for instance, to repeat the plan to see if it succeeds on a retry. GRASPER relies

primarily on the uncertainty tolerant plans it develops to prevent errors in carrying out

the plans in the real world. The approximations are a method for supporting this.

I
Gupta has also implemented a system which incrementally refines from failures

I [Gupta87]. The system consists of a planning system, called TRAP, which simulates

3 plans it produces, generalizes failure explanations with the EBG algorithm, and adds

additional constraints to the plan which serve to prevent such failures. In other words, it

produces over-general plans which are then constrained using the incremental technique

* as failures are encountered.

3 Gupta's system is somewhat limited in that, although it may have a complete set

of knowledge, it doesn't learn with an understander -- only from its own problem

solver. One of the helpful aspects of using an understander in intractable domains is

that you can use the observed task execution of others as a vital clue into how the

3 system's knowledge should be accessed and applied. Furthermore, repeatedly constrain-

3 ing a plan, is not always desirable. Use of methods which can result in modification of

I
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the structure of the plan is desirable, such as GRASPER's plan regeneration and Chien's

use of learning from unexpected successes.

Minton's PRODIGY system has the capability of learning control knowledge from

failures [Minton87]. A naive planner is used to construct a plan for achieving some

goal. The planner makes implicit assumptions, for example, about the independence of

subgoals. After a proof structure for achieving the goal has been constructed (or while it

is being constructed for in-trial learning), observed failures are generalized into control

rules which prevent the system from making unwise choices during such a proof. Rather

than learning approximate rules, the system learns methods by which search can be

made more efficient. This can be very useful but the system cannot effectively deal with

intractability unless it has the ability to make and assess explicit approximations. With-

out such a method, PRODIGY can easily be overwhelmed with the size of search space.

Hammond's CHEF system [Hammond86] uses a case-based p~d11-cL to lea;

from previous failures. When the system encounters a situation in which the plan it

developed fails, it indexes the failure under a generalized set of features which indicate

why the failure occurred as well as a set of features which help to predict the failure.

During future planning, the system uses the failure predictive features to focus on avoid-

ing similar failures during the construction of the new plan.

Central to the CHEF system is the notion of a powerful case-based planner that

can select relevant failures and incorporate fixes for them into the current plan. Fur-
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I thermore, the possible plan fixes have to be selected from a fixed set already coded into

3 the system. In contrast, the GRASPER system uses an understander to recognize and

employ fixes for use in developing its own plan. For a planner to develop a complicated

error tolerant plan by itself is frequently intractable. A good understanding mechanism

I is a much more effective way to solve the problem given that the domain is one where a

good human problem solver is available to be observed.

7.4 Approximation and Learning

The author's earlier work used approximations in explanation generation to pro-

mote tractable EBL in mathematical domains [Bennett87]. This work motivated an

3 investigation of how rules learned using approximations should be treated in the EBL

framework and led to the current GRASPER system. The approximations used in the

earlier system were of the common mathematical variety. Work is ,nirrently underway in

I demonstrating GRASPER in mathematical domains through defining common mathe-

3 matical approximations within the GRASPER approximation framework.

3 Zweben's system simplifies control rules by eliminating some of their antecedents

[Zweben88]. The antecedents are taken pairwise and their conditional probabilities

examined over a set of instances where the rule was used. If one of the antecedents

I "almost always" evaluates to the same value as another, one of them can be dropped.

3 A standard failure-based recovery approach is used if a control rule is results in bad

system performance. Simplifications are then reconsidered if used in the failing control

rule. Similarly Keller's METALEX system replaces a rule antecedent with TRUE if the
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antecedent evaluates to TRUE in all instances seen and substitutes FALSE for an antece-

dent which evaluates to FALSE in all instances seen [Keller87b].

The systems of Zweben and Keller address the question of "when to approxi-

mate." Both seek to minimize the chance of the approximations being invaiici through

use of a number of observed training instances. Ultimately, a recovery scheme must be

in place to remedy bad approximations. If several different approximations were possi-

ble, the process of deciding "what to approximate with" is added and makes the process

even less tractable. When GRASPER is used in the robotics domain, the approxima-

tions are defined immediately for any objects in the world about which uncertainty

exists. Since no object can be described precisely, approximations are mandatory.

Naturally, it is open to question how precise the initial approximations are to be. There-

fore, useful results from the issue of "when to approximate and with what" could be

applied to GRAuSPER as well. One future issue is that the GRASPER system may have

several good approximate representations possible for an object and one must be cho-

sen.

Mostow and Fawc.tt highlight the importance of seeking the best theory through a

search of an approximate theory space using the scope, accuracy, cost, and operational

requirements of the theories (Mostow87j. These ideas are very much in line witb the I

generality, accuracy, and efficiency aspects of operationality th we propose as a major 3
guiding factor in the GRASPER approximation architecture. Mostow and Fav ceti's

current system, HDF, demonstrates how approximations from a specified set can he
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1 applied manually to improve the scope, accuracy, cost, and operational requirements of

3 a routine to calculate the cost of a search.

3 Ellman's POLLYANNA system uses approximations to a program playing the

game of "hearts" [Ellman88]. It also user a search through the approximate theory

space to arrive at the set of approximations to be used. The search starts with the

I simplest theory and resorts only to the next more complicated theory when the simpler

3 theory contradicts training examples. A "simpler" theory is define as one having a set

of assumptions which logically imply those of the less simple theory.

Doyle has constructed a system for refining causal explanations of how various

devices operate [Doyle86]. His emphasis is on dealing with inconsistent theories: those

I ones which have abstracted away details of otherwise complete theories. Explanations

5produced with such theories can be incorrect. Doyle's approach is to make the theory

less abstract to deal with encountered failures. The technique is only applied to learning

causal descriptions of mechanisms. However, the major problem with this approach is

3 the required predefined abstraction hierarchy. Moving to various levels of abstraction is

3 a traversal of this hierarchy. In GRASPER, we need no such predefined hierarchy.

3 7.5 Operationality

Operationality is integral to explanation-based learning; every EBL system must

I have some method of handling it. Until recently, however, little effort had bee:i made to

3 formalize it. Other recently proposed definitions include those of Dietterich & Bennett,

Keller, Minton, and Segre.
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An often recognized paradox regarding operationality is: "If the goal was initially

nonoperational to the system, how could the system ever make it operational?" In other

words, in order to operationalize it, the system has to have some way of achieving the

goal.

One remedy for the paradox, proposed by Dietterich and Bennett, is to create two

distinct agents [Dietterich881. One meta-agent's duty is to operationalize things and the

other agent simply achieves goals using existing rules. Therefore, by this definition,

iniually the goal is operational for the meta-agent but nonoperational for the regular

agent. Afterwards, the meta-agent has succeeded in making the goal operational for the

regular agent through a change in the rules which the regular agent uses.

Such a multiple agent solution seems unnecessary. First, if the definition of

operationality were continuous rather than binary, the situation is one in which the

system makes a goal "more" operational. This by itself resolves the paradox. Further-

more, for systems that learn from an analysis of an externally produced solution rather

than from an internal trace, the analysis is almost always easier. Therefore, for such

understanding systems the paradox can be resolved as well. It was operational to under-

stand initially, but nonoperational in a planning sense.

Keller proposes a definition of operationality based on useability and utility

[Keller87a]. This definition focuses on systems concerncd with concept recognition and

the target for operationalization is therefore the concept description. A concept descrip-

92



U

I tion is useable if it is evaluable by the performance system. However, in cases where the

3 concept description is constructed by the system and has been shown to be valid,

I useability follows automatically as validity could have never been proven had it not been

evaluable by the systcm. t Describing Keller's useable as evaluable by the performance

system is not much of a clarification of the term and leaves a large part of operationality

I very vague. Keller does contribute a more precise definition for utility. This is a meas-

3 ure of to what degree the concept description r.eets the system's performance objectives.

Since each system has its own performance objectives, this naturally means each system

will measure utility in a different way. Keller's MetaLEX system uses an empirical

3 approach for measuring utility [Keller87c]. MetaLEX's utility is defined as

u "achiev[ing] an X% improvement without a deterioration in effectiveness."

3 Minton's PRODIGY system learns search control rules to improve system per-

formance [Minton88]. In order to decide which control rules are actually beneficial to

I the system, their utility is measured. In its simplest form, the utility of a rule is the

3 Idifference between the average solution time without the rule and the average solution

time with the rule. Minton's utility therefore corresponds to the efficiency aspects of our

operationality definition.I
Segre presents a definition which recognizes how real-world situations affect

3 operationality. He has a five-fold definition including obviousness, efficiency, generality,

I
*Naturally, this does not hold for the multiple agent view where both agents may not have the same

* vocabulary of terms.
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robustness, and recoverability [Segre88]. One plan is more obvious than another when it

has a lower planning cost. Efficiency implies lower execution cost which has been

defined in our model as plan economy. To be more general means for one plan to have

broader applicability than another. This corresponds to the combination of precondition

generality and effect generality. Robustness means "more likely to be successful in the

real world." We have refined this to include aspects such as result accuracy, uncertainty

tolerance and uncertainty reduction. Recoverability indicates a preference for plans

whose failure modes are less extreme. This amounts to a combination of our probability

of success and some account of the environment the system operates in. Overall, Segre's

definition recognizes many of the same factors as our own but many of the terms could

have been broken down to be more concrete. Segre's robustness is vague but constitutes

an important part of the definition for use with real-world systems.

Braverman's IMEX system concerns itself with finding the most general way of

expressing a rule while at the same time maintaining its operationality [Braverman88].

However, since generality is included as an aspect to our continuous definition of

operationality, in our model this means searching for the most operational way in which

a concept can be expressed. The search should really be directed using all the aspects of

our operationality definition, not just on generality. However, if generality were the

most important fartor in operationality according to the user-designed weighting, a

search keying on generality would be a good approach.
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Hirsh points out that sometimes things are conditionally operational and presents

3 a system called ROE for incorporating the conditions of operationality into the opera-

1 tional rule produced [Hirsh88]. This technique is useful where an explicit theory of

operationality exists and can be reasoned about by the system. We plan to construct an

I explicit operationality theory for use in the next version of GRASPER.

I
I
I
U
I
I
I

I
I
I
I
I
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8 FUTURE DIRECTIONS

There are many aspects of this system we plan to extend and adjunct areas that 3
will be investigated. The ultimate goal of this work is to demonstrate how techniques

embodied in the GRASPER system can be extended to the control of an actual robot

arm using current sensing technology in a less than ideal environment. 3
The current GRASPER system functions with uncertain data about world objects. 3

The system used a disembodied gripper which is assumed accurate. While it is true that

uncertainty tolerant plans developed with this model can usually compensate for uncer-

tainties in the arm as well, in order to be able to correct for all possible failures, the arm

should be modeled as approximate as well. This extension primarily means the addition I

of domain knowledge which gives a model of how the robot arms functions. As with the

initial approximation that objects were in the positions the approximate vision system

indicated, the initial approximation for the robot arm would be that it should function I
just as textbook kinematic equations dictate. In reality, a number of complex problems 3
plague this simple model. Robot arms, in general, have problems with repeatability:

reproducing the same movement from the same commands. Eventually through obser-

vation, GRASPER would be able to learn plans that can deal with problems such as I
repeatability.

The current system uses a two-dimensional world to simplify some of the reason- 3
ing involved. Despite this simplification, much of the reasoning involved in determining

the spatial reiauonships between objects is quite time consuming. One method we are

I
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working on to address this problem and to make possible the move to a three-dimen-

3 sional space is an approach to balancing accuracy and efficiency of these tests. The

3 approximations being used in the current version of GRASPER are designed to simplify

reasoning about uncertainties present in the world. Approximations could also be used

U to reduce thie complexity of object representations, yielding greater efficiency for many

3 of the spatial relationship tests.

3 Another way to increase the efficiency of the system would be to add in-trial

learning. The issue faced when adding this capability is knowing what to learn. Learn-

ing every possible operator nullifies any advantage in efficiency that an in-trial learner

U might hope to gain. One solution is to use situations in which failures have occurred to

3 learn control knowledge so that fruitless paths are not taken in the future [Minton87].

Another, is to learn rules for segments of the proof which were nontrivial in some way to

discover [Minton85]. Usually, once an explanation was constructed, only the entire

I explanation formed the rule (unless in-trial learning had already taken place). It is

3 useful to analyze the explanation in greater depth and to recognize repeated elements for

use as learned rules. Such substructure discovery algorithms have already been impie-

mented in similarity/difference-based learning (SDBL) for the purpose of generating

3 new features for use in constructive induction and/or for reducing the complexity of

3 certain examples [Holder88, Whitehall87].

3 GRASPER's current plans are somewhat limited by an imposed linear ordering

on the actions. For example, in observing a human operator performing a grasp, it may

I
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happen to observe the gripper's fingers being opened for the approach before the grip-

per is even in position for the approach. The general rule wouid indicate that this

procedure is performed first. Such a rule is clearly over-specific as the finger adjust-

ment could have been performed at any point prior to the final translate to the object to

be grasped. What is needed is a plan which does not impose such a restrictive ordering

on the actions. Work begun in this area includes that of Mooney [Mooney88], who

presents an algorithm which extends the EGGS technique in the area of order generali-

zation. Chien is also addressing this problem [Chien88].

Another interesting area involves limitations placed on generalization. If

GRASPER were to observe a robot stacking a series of blocks, one above the other, in

the real world, what generalized plan should be acquired? That is, how many blocks is

an acquired plan good for stacking? Clearly, due to the inherent uncertainty about the

positions, orientations, and shapes of the blocks, some limit exists. That limit is closely

related to the uncertainty tolerance of the block stacking operation as acquired from the

example. GRASPER should be able to make use of the determined uncertainty toler-

ance of the component operation of the plan to determine limitation, on the overall

plan.

GRASPER has been so tailored for working in real-world environments that we

must not forget that some domains, such as mathematics, support precise formalisms.

Here, approximations are all of the internal variety, capable of being revised by reason-

ing alone, not through interaction with some outside world. In mathematics, a check
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can be used to see if approximate equations are consistent within some margin of error.

3 If not, the approximations would have to be revised or eliminated to satisfy the goal of

3 producing an efficient and reasonably accurate solution. We plan to use GRASPER in

"perfect" domains such as mathematics through use of mathematical approximations in

U GRASPER's approximation framework.

I The most significant area of future work for the GRASPER system is to incorpo-

3 rate explicitly the theory of operationality into the system. This constitutes a major step

forward in system flexibility. It would allow GRASPER to function in many environ-

ments simply by changing the weighting of the different aspects of operationality. One

I can even envision algorithms that may allow the system to change the weighting gradu-

3ally itself as it performs more work in a certain environment in order to tailor itself to it.

3 The major goals for explicit operationality involve developing a logic for expres-

I sion of operationality measures, developing good approximate measures of the different

aspects of operationality with respect to a plan, and illustrating techniques in system

I design which are favorable under our proposed definition of operationality.

I
I
I
U
3
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9 CONCLUSIONS

This thesis demonstrates a powerful technique for using approximations to repre-

sent infolmation about uncertain objects. Approximation allows a system to reason

economically about world objects and handle their possible uncertainties. These are key

factors in using a system in complex real-world environments.

Explicit reasoning about approximations is carried out only when planning con-

cepts are acquired or when failures are diagnosed. The plans themselves do no explicit

reasoning about uncertainties. This promotes much more economical problem solving

by the system. Failures which do occur due to an approximation-based plan are cor-

rected by the system through revision of participating planning concepts. When a plan

fails due to bad approximations of uncertain objects, the approximations are refined and

a new planning concept acquired with sufficient uncertainty tolerance to prevent the

failure.

The entire system is moderated by a complete definition of operationality. The

nine aspect definition deals with general'y, economy, and uncertainty. The definition

helps us to see the important tradeoffs that approximation permits. It demonstrates how

important uncertainty tolerance is for real-world systems. The definition is used in the

understander to make decisions regarding the elimination or modification of actions not

supported by the approximate model. It is also used in the failure recovery mechanism

to favor one revised plan over another. This approach to learning and using uncertainty
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N tolerant plans through approximations offers great promise for use in complex

3 real-world environments.

I
I
I
I
I
I
U
I
I
I
I
I
I
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APPENDIX I FORMING THE GENERAL RULE

Once an explanation has been produced, in order for the system to take advan-

tage of the new knowledge, a general rule or rules must be produced from it.

GRASPER will produce a single general rule for achieving a goal using an explanation

of the specific way in which that goal was achieved.

The explanation, as described in Chapter 5, has a trace of the rules which are

used and how they are connected. In order for an antecedent of one rule to be sup-

ported by the consequent of another requires their corresponding patterns to be equal.

The first step involves producing a list of variable/value pairs obtained through unifica-

tion of these patterns. This is the first phase of the EGGS generalization algorithm and

is stated formally below [Mooney86]:

let -y be the null substitution {}

for each equality between patterns pi and pj in the explanation structure do

let 0 be the MGU of pi y and Pj '

let -y be -y

Next, a rule is formed whose consequents are the consequents of applying all the

rules as specified in the explanation structure. The rule's antecedents are the leaves of

the explanation structure. The rule also specifies the actions to be carried out if there

were any specified in the explanation.

The substitution list y produced in the first step is now used to instantiate the rule

produced in the previous step. This is accomplished as follows:
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for each pattern Pk in the explanation structure do

3 replace pk with pk -

3 To illustrate how the algorithm is applied, consider the procedure for choosing a

grip on an object. Alternatively, this can be viewed as verifying that a grip is a correct

one. Suppose our goal is to choose a grip for square2 as specified byI
choose-grip3 gripperl < ------------------------------------------ Gripper Name

square2 <- ------------------------------------------- Object3 ?target-x <-- ------------------------------------------ Target X-Coordinate

?target-y <-- ------------------------------------------ Target Y-Coordinate3 ?target-angle < ------------------------------------- Target Gripper Angle

?target-width <-- ------------------------------------- Target Gripper width

?facel <-- -------------------------------------------- one Face Of The Object

?face2 < ------------------------------------------ Another Face Of The Object3 ?max-position-error < ------------------------------- Maximum Position Error

?max-orientation-error < --------------------------- Maximum Orientation ErrorI
The planner or understander constructs the explanation for the goal. The exp!a-

I nation appears below in its specific form (side effects excluded):

CHOOSE-GRP2081 STABLE-TWO-FACE-CONFIOURA1,ON2082 To N001

I To NO0Z

PARALLEL-FACES2084 < To N003

N001 PAPALLFL-OVERtPPING-FACE$2083 FACE-ANGLE2094 NOT2093

V ERLAPPING-FACES295Z 
c73 POSMON2096

O.A. RELATIVEOVERLAppINGFACES209.

I
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ORIENTATION2086

N002 FACE-ANOLE208 RELATIVE-FACE-ORIENTATION2087

DIP2088

ORIErJTATON2090

N031 FACE-ANOLE2089 RELATZVE-FACE-ORBNTATION2091
DIF2092

CHOOSE-GRIP2081
(CHOOSE-GRIP GRIPPER1 SQUARE2 4.5 3.5 0.0 3.0 F1 F3 0 0)

DIF2088 DIF2092
(DIF -0.0 0.0 0)

FACE-ANGLE2085 FACE-ANGLE2094
(FACE-ANGLE SQUARE2 F1 0.0 0 0)

FACE-ANGLE2089
(FACE-ANGLE SQUARE2 F3 0.0 0 0)

NOT2093
(NOT (EQUAL F1 F3))

ORIENTATION2086 ORIENTATION2090

(ORIENTATION SQUARE2 0 0)
OVERLAPPING-FACES2095

(OVERLAPPING-FACES SQUARE2 F1 F3 4.5 3.5 3.0 0 0)
PARALLEL-FACES2084

(PARALLEL-FACES SQUARE2 F1 F3 0)

PARALLEL-OVERLAPPING-FACES2083
(PARALLEL-OVERLAPPING-FACES SQUARE2 4.5 3.5 0.0 3.0 F1 F3 0 0)

POSITION2096

(POSITION SQUARE2 4.5 3.5 0)
RELATIVE-FACE-ORIENTATION2087

(RELATIVE-FACE-ORIENTATION SQUARE2 Fl -0.0 0)
RELATIVE-FACE-ORIENTATION2091

(RELATIVE-FACE-ORIENTATION SQUARE2 F3 -0.0 0)
RELATIVE-OVERLAPPING-FACES2097

(RELATIVE-OVERLAPPING-FACES SQUARE2 F1 F3 0.0 0.0 3.0 0)
STABLE-TWO-FACE-CONFIGURATION2082

(STABLE-TWO-FACE-CONFIGURATION SQUARE2 4.5 3.5 0.0 3.0 F1 F3 0 0)

The following rules and facts are used in one explanation for the above

choose-grip operator. The rules shown are uniquified versions of those from the knowl-

edge-basc.
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(rule :cons3 (choose-grip ?gripper2023
?object2024

?target-x2025
?target-y2026
?target-angle2027
?target-width2028

?face12029
?face22030
?perror2031
?oerror2032)

:ants
(stable-two-face-configuration ?object2024

?target-x2025

?target-y2026
?target-angle2027
?target-width2028
?face12029
?face22030
?perror2031
?oerror2032))

(rule :cons

(stable-two-face-configuration ?object2033
ltarget-x2034
?target-y2035
?target-angle2036

?target-width2037
?face12038
?face22039
?perror204O

:ants ?oerror2041)

(parallel-overlapping-faces ?object2033
?target-x2034

?target-y2035
?target-angle20367target-width2037

?face12038
?face22039

?perror204O3?oerror2041))

I
I
I
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(rule :cons
(parallel-overlapping-faces ?object2042

?target-x2043
?target-y2044
?target-angle2045
?target-width2046
?face12047
?face22048
?perror204g

:ants ?oerror2050)

(parallel-faces ?object2042 ?face12047 ?face22048 ?oerror205O)
(face-angle ?objectZ042 ?face12047 ?target-angle2045
(overlapping-faces ?object2042 ?oerror205O 0)

?face12047
?face22048
?target-x2043
?target-y2044
?target-width2046
?perror2049
?serror2051))

(rule :cons
(parallel-faces ?object2052

?face12053
?face22054
?oerror2055)

:ants
(face-angle ?object2052 ?face12053 ?angle2O56 ?oerror2055 0)
(face-angle ?object2052 ?face22054 ?angle2056 ?oerror2055 0)
(not (equal ?face12053 ?face22054)))

(rule :cons
(face-angle ?object2057

?face2O58
?face-angle2059
?oerror2060

:ants ?rfe-error2o61)

(orientation ?object2057 ?angle2062 ?oerror206O)
(relative-face-orientation ?object2057

?face2058
?relative-face-angle2063
?rfe-error2061)

(dif ?relative-face-angle2063 ?face-angle2059 ?angle2O62))
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(rule :cons
(face-angle ?object2065

?face2066
?face-angle2067
?oerror2068
Srfe-error2069)

(orientation ?object2065 ?angle207O ?oerror2068)(relative-face-orientation ?object2065

?face2066

?relative-face-angle2071
?rfe-error2069)

(dif ?relative-face-angle2071 ?face-angle2067 ?angle207O))

(rule :cons
(overlapping-faces ?object2073

?face12074
?face22075

?x2076
?y2077
7separation2078
?perror2079

:ants ?of-error208O)

(position ?object2073 ?x2076 ?y2077 ?perror2079)
(relative-overlapping-faces ?object2073

?face12074
?face22075
0
0
?separation2078
?of-error208O))

Facts used in the explanation:

I

I
I
I
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(orientation square2 0 0) . Fl

(position squareZ 4.5 3.5 0) F2

(relative-face-orientation square2 fl 0 0) F3

(relative-face-orientation square2 f3 0 0) -4

(relative-overlapping-faces square2 fl f3 0 0 3 0) F5

Facts and built-in predicates are considered operational. That is, they will form

the antecedents of our general rule. It is also possible to explicitly mark rules in the

database as operational should this be desirable. Using the specific/general binding list

approach from the EGGS algorithm, the explanation predicates are unified. Unifica-

tions between the goal predicate choose-grip and the consequent of the choose-grip rule

as well as all unifications to operational predicates do not appear in the general bindings

as they are particular to the current example. All other unifications appear on both the

general and specific lists. The specific and general lists for the above example are

shown below:
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SPECIFIC-BINDING-LISTU

U(T (?GRIPPER2O23 GRIPPERI)
(POBJEC'r2024 SQUARE2)
(?TARGEr-X ?TARGET-X2025)U (?TARGET-Y ?TARGET-Y2026)
(?TARGET-ANGLE ?TARGET-ANGLE2027) Goal & RI
(?TARGET-WIDTH ?TARGEr-WIm'H2028)
(?FACEI ?FACE12029)I (?FACEZ ?FACE22030)
(?MAX-POSITION-ERROR ?PERROR2O31)
(?MAX-ORIENTATION-ERROR ?OERROR2O32)I (?OBJECT2O33 SQUARE2)
(?TARGET-X2025 ?TARGEr-X20 34)
(?TARGET-Y2026 ?TARGEr-Y2o35)

(?TARGET-ANGLE2027 ?TARGEr-ANGLE20 36)

(?TARGET-WIDTHZOZ8 ?TARGET-WID-12037) R1 & R2
(?FACE12029 ?FACE12O38)
(?FACE22030 ?FACE22039)IERR01?ERR00
(?PERROR2031 ?PERROR204O)

(?OBJECT2 042 SQUARE2)I (?TARGET-X2034 ?TARGET-X2043)
(?TARGE-Y2035 ?TARGE'r-Y2044)
(?TARGEr-ANGLE2O36 ?TARGET-ANGLE2 045)
(?TARGEI'-W1DUh2037 ?TARGET-WIDTH2046) R2 & R3

(?FACE12O38 7FACE12O47)
(?FACE22039 ?FACE22048)
(?PERRORZO4O ?PERROR2049)I (?OERRORZO41 ?OERROR205O)
(?OBJECT2052 SQUARE2)
(?FACE12047 ?FACE12O53) R3 & R4
(?FACE22O48 ?FACE22054)

(?OERROR2O5O ?OERROR2055)
(?OBJECT2O57 SQUARE2)
(?FACE12053 ?FACE2O58)I(?ANGLE2O56 ?FACE-ANGLE2O59) R4 & R5
(?OERROR2O55 ?OERROR2060)
(?RFE-ERROR2O61 0)

(?ANGL.E2063 0) R5 & F1
(?OERROR2O60 0)
(?FACE2O58 Fl)R5&F
(?RELATIVE-FACE-ANGLE2063 -0.0) ~ &P

(?FACE-ANGLE2O59 0.0) R5 & DIF Procedure
(?OBJECT2065 SQUAREZ)
(9FACE22054 ?FACE2066)
(?FACE-ANGLE2O67 0.0) R4 & R6
(?OERROR2OB8 0)

(?RFE-ERlROR2069 0)

(7ANGLE2O7O 0) R6 & F1
(?FACE2O66 F3) R6 & F4

(?RELATIVE-FACE-ANGLE2O7l -0.0)
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SPECIFIC-BINDING-LIST (continued)~

(?TARGST-ANGLE2O45 ?FACE-ANGLE2O59) -R3 & R5U
(?OBJECr2O73 SQUARE2)

(?FACE12O74 Fl)

(?FACE22075 F3)
(?TARGEfl-X2043 ?X2076) R3&R
(?TARGET-Y2044 ?Y2077)R3&7
(?TARGET-WIDTH2O46 ?SEPARATION2O78)

(?PERROR2O49 ?PERROR2O79)
(?7SERR2051 ?OF-ERROR208O)

(?X2076 4.5)
(?Y2077 3.5) R7 & F2

(?PERBOR2O79 0)II
(?SEPARATION2078 30 7&F
(?OF-EPRRZ8O 0))R7&F
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GEN'ERAL-BINDING-LI S

I(T (?0BJECr2O24 ?BET03
(?TARGET-X202 5 ?TARGET-X20 34)
(?TARGET-Y2026 ?TARGET-Y2035)I (?TARGET-ANGLE2O2 7 ?TARGET-ANGLE2O36)
(?TARGETr-WIDT12028 ?TARGETr-WIDTH2O37) R1 & R2
(?FACE12O29 ?FACE12O38)
(?FACE2O3O ?FACE22O39)

(?PERROR2O31 ?PERROR2O4O)
(?OERROR2O32 ?OERROR2O41)
(?OBJECr2O33 ?OBJECT2O42)
(?TARGEI-X2034 ?TARGET-X2043)
(?TARGETr-Y2O35 ?TARGET-Y2044)

(?TARGET-ANGLE2O36 ?TARGE-r-ANGLE2O45)
(?TARGET-WIDTH2037 ?TARGET-WIDTH2O48) R2 & R3
(?FACE12O38 ?FACE12O47)
(?FACE22O39 ?FACE22048)

(?PERROR204O ?PERROR2O49)

(?OERROR2O4I ?OERROR2O5O)_ _ _ _ _

(?OBJEC'r2042 ?OBJECr2052)

(?FACE12O47 ?FACE12O53) R&4IAE24 ?FACE22054) R3 & R4____

(?OBJECT2052 ?OUBJECT2O57)
(?FACE12O53 ?FACE2O58)

(?ANGLE2O56 ?FACE-ANGLE2O59) R4 & R5
(?0ERROR2O55 ?OERROR2O6O)
(?RFE-ERROR2061 0)I (?OBJECr2057 ?OBJECr2O65)
(?FACE22O54 ?FACE2O66)
(?FACE-ANGLE2O5Q ?FACE-ANGLE2O67) R4 & R6
(?OERROR2O6O ?OERR.OR2068)_ _

(?RFE-ERROR2O69 0)
(?TARGET-ANGLE2O45 ?FACE-ANGL.E2059) R3 & R5
(?0BJECr2065 ?0BJECT2O73)I (7FACE2058 ?FACE12O74)
(?FACE2O66 ?FACE22075)
(?TARGET-X2043 ?X2076)R3& 7I ~(?TARGET-Y2044 ?Y2077)R3&7
(?TARGE'r-WIDTH2O46 ?SEPARATION2O78)

(?PERROR2O49 ?PERROR2079)
(?SERROR2O51 ?OF-EHR0R2080))

The resulting generalized rule for choose-grip appears as follows:



I

(rule :cons i
(choose-grip ?gripper2O23

?object2073 I
?x2076
?y2077
?face-angle2067
?separation2078
?face12074
?faceZ2075
?perror2079

?oerror2088)
:ants
(orientation ?object2073 ?angle2062 ?oerror2068)
(relative-face-orientation ?object2073

?face12074
?relative-face-angle2063
0)

(dif ?relative-face-angle2O63 ?face-angle2O67 ?angle2062)
(orientation ?object2073 ?angle207O ?oerror2068)
(relative-face-orientation ?object2073

?face22075
?relative-face-angle2071
0)

(dif ?relative-face-angle2071 ?face-angle2067 ?angle2070)
(not (equal ?face12074 ?face22075))
(position ?object2073 ?x2076 ?y2077 ?perror2079)
(relative-overlapping-faces ?object2073

7face12074
?face22075
0
0
?separation2078

?of-error208O))
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APPENDIX 2 A COMPLETE SAMPLE RUN

> (demo)
Reloading Rules & Object Hierarchy...
;;; Loading source file "rules.lisp"
Observation Started...
Action Observed...

OBSERVED-APPLY-FORCE
GRIPPER1 < - Gripper Name
5 < ---- Motor Force Applied
0 < -- Numeric Starting Time
1 < ---- Numeric Ending Time
-7.5 <...... Current Gripper X-Coordinate
8.5 <- .--. Current Gripper Y-Coordinate
-9.5 Target X-Coordinate
3.5 < . Target Y-Coordinate

4 < Gripper Beam Length
2 <I_ _ Gripper Beam Width
3 < - Gripper Finger Length
2 < ----- Gripper Finger Width
2 2<- Current Gripper Finger Separation
-90 <- Current Gripper Angle

3 Action Observed...

OBSERVED-APPLY-TORQUE
GRIPPER1 <-...-. Gripper Name
5 < Motor Force Applied
1 < Numeric Starting Time
2 < - Numeric Ending Time
-90 < - Current Gripper Angle
0 < . . -... Target Gripper Angle
4 <- Gripper Beam Length
2 < _-_ Gripper Beam Width
3 < Gripper Finger Length
2 < Gripper Finger Width
2 < .. . . Current Gripper Finger Separation
-9.5 <- Current Gripper X-Coordinate
3.5 < ----- Current Gripper Y-Coordinate

Action Observed...

* OBSERVED-OPEN-FINGERS
GRIPPERI <----- Gripper Name
5 < ---.----- Motor Force Applied

* 2 <---.---.---.- Numeric Starting Time

3 < -.-. --. Numeric Ending Time
2 < --.-.---- Current Gripper Finger Separation

I
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3.75 < ...--... Target Gripper Width
-9.5 < ------- Current Gripper X-Coordinate
3.5 <-... -.-.- Current Gripper Y-Coordinate
0 < -Current Gripper Angle
2 < Current Gripper Finger Separation
2 <-.-.. ....- Gripper Beam Width
4 <--..--..... Gripper Beam Length
2 < -.... Gripper Finger Width
3 < . ..... Gripper Finger Length

Action Observed...

OBSERVED-APPLY-FORCE
GRIPPER1 < - Gripper Name
5 <- Motor Force Applied
3 < - Numeric Starting Time
4 <-.-.. Numeric Ending Time
-9.5 <-....- Current Gripper X-Coordinate
3.5 <- Current Gripper Y-Coordinate
4.5 <---.-.- Target X-Coordinate
3.5 < Target Y-Coordinate
4 <- --. Gripper Beam Length
2 <- --- Gripper Beam Width
3 < -------- Gripper Finger Length
2 <- Gripper Finger Width
3.75 <- -- Current Gripper Finger Separation
0 < --- Current Gripper Angle

Action Observed...

OBSERVED-CLOSE-FINGERS

GRIPPERI < Gripper Name
5 < - Motor Force Applied
4 < Numeric Starting Time
5 < - -- Numeric Ending Time
3.75 <- Current Gripper Finger Separation
3 < Target Gripper Width
4.5 <----- Current Gripper X-Coordinate

3.5 <-- - - --- -- Current Gripper Y-Coordinate
0 <--.-.-----. Current Gripper Angle
3.75 <---Current Gripper Finger Separation
2 <--- -Gripper Beam Width
4 <-- Gripper Beam Length
2 < ---- Gripper Finger Width
3 <----...--.- Gripper Finger Length

Observation Ended...
Seeking To Understand Observations...
No Errors Queued, Performing No Focusing.
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Creating suggestion list...

Queue: (OBSERVED-APPLY-FORCE OBSERVED-APPLY-TORQUE OB-
SERVED-OPEN-FINGERS OBSERVED-APPLY-FORCE OBSERVED-CLOSE-FINGERS)

Suggestions for OBSERVED-APPLY-FORCE are (APPLY-FORCE)..
Working on (OBSERVED-APPLY-FORCE GRIPPER1 5 0 1 -7.5 8.5 -9.5 3.5 4 2 3 2 2 -90)
which suggests (APPLY-FORCE).. .Attempting Suggestion Link-Up.. .Retrieving Suggested
Rule... Found Corresponding Antecedent.. .Successful. F'und
Corresponding Antecedent... Successful... Working top-duwn to prove suggestion... Working
top-down to prove suggestion... Explanation found...Queueing (APPLY-FORCE GRIPPERI -2.0
-5.0 5 0 1 (GRIPPER-CLEAR-TRANSLATE GRIPPER1 -7.5
8.5 -9.5 3.5 (GRIPPERI SQUAREI SQUARE2) 4 2 3 2 2 -90) (AT-COORDINATES -9.5
3.5 GRIPPERI) ((GRIPPER-X GRIPPER1 -9.5) (GRIPPER-Y GRIPPERI 3.5) (GRIP-
PER-ANGLE GRIPPERI -90) (GRIPPER-FINGER-SEPARATION GRIPPER1 2)))...
Suggestions for OBSERVED-APPLY-TORQUE are (APPLY-TORQUE)...
Working on (OBSERVED-APPLY-TORQUE GRIPPERI 5 1 2 -90 0 4 2 3 2 2 -9.5 3.5)
which suggests (APPLY-TORQUE)...Attempting Suggestion Link-Up...Retrieving Suggested
Rule ... Found Corresponding Antecedent... Successful... Working top
-down to prove suggestion... Explanation found.. .Queueing (APPLY-TORQUE GRIPPERI 90.0
5 1 2 (GRIPPER-CLEAR-ROTATE GRIPPERI -90 0 (GRIPPERI SQUAREI SQUARE2) 4 2
3 2 2 -9.5 3.5) (AT-ANGLE 0 GRIPPERI) ((GRIPPER-X GRIPPERI -9.5)
(GRIPPER-Y GRIPPERI 3.5) (GRIPPER-ANGLE GRIPPERI 0) (GRIPPER-FINGER-SEPA-
RATION GRIPPERI 2)))...
Suggestions for OBSERVED-OPEN-FINGERS are (OPEN-FINGERS)...I
Working on (OBSERVED-OPEN-FINGERS GRIPPERI 5 2 3 2 3.75 -9.5 3.5 0 2 2 4 2 3)
which suggests (OPEN-FINGERS)... Attempting Suggestion Link-Up... Retrieving Suggested
Rule... Found Corresponding Antecedent.. .Successful... Working
top-down to prove suggestion... Explanation found... Queueing (OPEN-FINGERS GRIPPER1
1.75 5 2 3 (GRIPPER-CLEAR-FINGER-ADJUST GRIPPERI 2 3.75 (GRIPPERI SQUAREI
SQUARE2) -9.5 3.5 0 2 2 4 2 3) (AT-WIDTH 3.75 GRIPPERI) ((GRIPPER-X
GRIPPERI -9.5) (GRIPPER-Y GRIPPERI 3.5) (GRIPPER-ANGLE GRIPPER1 0) (GRIP-

PER-FINGER-SEPARATION GRIPPERI 3.75)))...
Suggestions for OBSERVED-APPLY-FORCE are (APPLY-FORCE)...
Working on (OBSERVED-APPLY-FORCE GRIPPERI 5 3 4 -9.5 3.5 4.5 3.5 4 2 3 2 3.75 0)
which suggests (APPLY-FORCE)... Attempting Suggestion Link-Up ... Retrieving Suggested
Rule... Found Corresponding Antecedent.. .Successful ... Found
Corresponding Antecedent.. .Successful.. Working top-down to prove suggestion... Explanation
found.. .Queueing (APPLY-FORCE GRIPPERI 14.0 0.0 5 3 4 (GRIPPER-APPROACtI-SE-
QUENCE GRIPPERI 14.0 0.0 SQUARE2 F1 F3 4.5 3.5 0 3.75 -9.5
3.5 ?OB-POLY733 ?GCX734 ?GCY735 (GRIPPERI SQUAREl SQUARE2) 4 2 3 2 0)
(AT-COORDINATES 4.5 3.5 GRIPPERI) ((GRIPPER-X GRIPPERI 4.5) (GRIPPER-Y
GRIPPERI 3.5) (GRIPPER-ANGLE GRIPPERI 0) (GRIPPER-FINGER-SEPARATION GRIP-
PERI 3.75))

Suggestions for OBSERVED-CLOSE-FINGERS are (CLOSE-FINGERS)...
Working on (OBSERVED-CLOSE-FINGERS GRIPPERI 5 4 5 3.75 3 4.5 3.5 0 3.75 2 4 2 3)
which suggests (CLOSE-FINGERS)... Attempting Suggestion Link-Up... Retrieving Suggested
Rule... Found Corresponding Antecedent.. .Successful... Work
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ing top-down to prove suggestion... Explanation found... Queueing (CLOSE-FINGERS GRIP-
PERI -0.75 5 4 5 (GRIPPING-SEQUENCE GRIPPERI SQUARE2 F1 F3 5 3.75 3) (GRIP-
PER-GRIP-PRESSURE GRIPPERI 5) ((GRIPPER-X GRIPPERI 4.5) (GRIPPER-Y
GRIPPERI 3.5) (GRIPPER-ANGLE GRIPPER1 0) (GRIPPER-FINGER-SEPARATION GRIP-
PER1 3)))...

Queue: (APPLY-FORCE APPLY-TORQUE OPEN-FINGERS APPLY-FORCE CLOSE-FIN-
GERS)

Suggestions for APPLY-FORCE are (MOVE-GRIPPER-CLEAR APPROACH-TAR-
GET-CLEAR)...
Working on (APPLY-FORCE GRIPPER1 -2.0 -5.0 5 0 1 (GRIPPER-CLEAR-TRANSLATE
GRIPPERI -7.5 8.5 -9.5 3.5 (GRIPPER1 SQUARE1 SQUARE2) 4 2 3 2 2 -90) (AT-COOR-
DINATES -9.5 3.5 GRIPPER1) ((GRIPPER-X GRIPPERI -9 5) (GRIPPER-Y GRIPPER1
3.5) (GRIPPER-ANGLE GRIPPER1 -90) (GRIPPER-FINGER-SEPARATION GRIPPERI

2))) which suggests (MOVE-GRIPPER-CLEAR APPROACH-TARGET-CLEAR).. Attempting
Suggestion Link-Up... Retrieving Suggested Rale.. Found Corresponding Antecede
nt.. Successful... Found Corresponding Antecedent... Unsuccessful... Working top-down to prove
suggestion... Explanation found.. .Queueing (MOVE-GRIPPER-CLEAR GRIPPER] -2.0 -5.0
-7.5 8.5 -90 2 -9.5 3.5 2 3 4 2 5 0 1 (GRIPPER1 SQU
AREI SQUARE2) ((GRIPPER-X GRIPPERI -9.5) (GRIPPER-Y URIPPERI 3.5' (GRIP-
PER-ANGLE GRIPPERI -90) (GRIPPER-FINGER-SEPARATION GRIPPER1 2)))...
Attempting Suggestion Link-Up... Retrieving Suggested Rule... Found Corresponding Antece-
dent... Unsuccessful.. .Suggestions for APPLY-TORQUE are (ROTATE-GRIPPER-CLEAR)
Working on (APPLY-TORQUE GRIPPERI "C.0 5 1 2 (GRIPPER-CLEAR-ROTATE GRIP-
PER1 -90 0 (GRIPPER1 SQUAREI SQUARE2) 4 2 3 2 2 -9.5 3.5) (AT-ANGLE 0 GRIP-
PER1) ((GRIPPER-X GRIPPERI -9.5) (GRIPPER-Y GRIPPER1 3.5) (GRIPPER-ANGLE
GRIPPE
R1 0) (GRIPPER-FINGER-SEPARATION GRIPPER1 2))) which suggests (ROTATE-GRIP-
PER-CLEAR) ... Attempting Suggestion Link-Up ... Retrieving Suggested Rule.. .Found Corre-
sponding Antecedent.. .Successful ... Found Corresponding Antecedent.
.. Unsuccessful... Working top-down to prove suggestion... Explanation found... Queueing (RO-
TATE-GRIPPER-CLEAR GRIPPER1 90.0 -9.5 3.5 -90 2 0 2 3 4 2 5 1 2 (GRIPPERI
SQUARE1 SQUARE2) ((GRIPPER-X GRIPPER] --9.5) (GRIPPER-Y GRIPPER
1 3.5) (GRIPPER-ANGLE GRIPPERI 0) (GRIPPER-FINGER-SEPARATION GRIPPER1
2)))...
Suggestions for OPEN-FINGERS are (ADJUST-FINGERS)...
Working on (OPEN-FINGERS GRIPPER1 1.75 5 2 3 (GRIPPER-CLEAR-FINGER-ADJUST
GRIPPER1 2 3.75 (GRIPPER1 SQUARE1 SQUARE2) -9.5 3.5 0 2 2 4 2 3) (AT-WIDTH
3.75 GRIPPERI) ((GRIPPER-X GRIPPER1 -9.5) (GRIPPER-Y GRIPPERI 3.5) (GRIPPER
-ANGLE GRIPPERI 0) (GRIPPER-FINGER-SEPARATION GRIPPER1 3.75))) which suggests
(ADJUST-FINGERS)...Attempting Suggestion Link-Up... Retrieving Suggested Rule..Found
Corresponding Antecedent... Successful ... Found Corresponding A
ntecedent... Unsuccessful.. Working top-down to prove suggestion... Explanation found... Queue-
ing (ADJUST-FINGERS GRIPPER1 1.75 5 2 3 (GRIPPER-CLEAR-FINGER-ADJUST GRIP-
PERI 2 3.75 (GRIPPERI SQUAREI SQUARE2) -9.5 3.5 0 2 2 4 2 3)
(AT-WIDTH 3.75 GRIPPERI) ((GRIPPER-X GRIPPER1 -9.5) (GRIPPER-Y GRIPPERI

3.5) (GRIPPER-ANGLE GRIPPER] 0) (GRIPPER-FINGER-SEPARATION GRIPPERI
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3.75)))...
Suggestions for APPLY-FORCE are (MOVE-GRIPPER-CLEAR APPROACII-TAR-
GET-CLEAR)...
Working on (APPLY-FORCE GRIPPERI 14.0 0.0 5 3 4 (GRIPPER-APPROACH-SEQUENCE
GRIPPERI 14.0 0.0 SQUARE2 F F3 4.5 3.5 0 3.75 -9.5 3.5 ?OB-POLY733 ?GCX734
?GCY735 (GRIPPERI SQUAREI SQUARE2) 4 2 3 2 0) (AT-COORDINATES 4.5 3.5 GRI
PPER1) ((GRIPPER-X GRIPPER1 4.5) (GRIPPER-Y GRIPPERI 3.5) (GRIPPER-ANGLE
GRIPPERI 0) (GRIPPER-FINGER-SEPARATION GRIPPERI 3.75))) which suggests
(MOVE-GRIPPER-CLEAR APPROACH-TARGET-CLEAR)... Attempting Suggestion
Link-Up... Ret
rieving Suggested Rule... Found Corresponding Antecedent... Unsuccessful... Found Corresponding
Antecedent... Unsuccessful... Attempting Suggestion Link-Up... Retrieving Suggested
Rule... Found Corresponding Antecedent... Successful
.. Working top-down to prove suggestion... Explanation found... Queueing (APPROACH-TAR-

GET-CLEAR GRIPPERI SQUARE2 -9.5 3.5 0 3.75 4.5 3.5 2 3 4 2 5 3 4 (GRIPPERI
SQUARE1 SQUARE2) ((GRIPPER-X GRIPPERI 4.5) (GRIPPER-Y GRIPPER1 3.
5) (GRIPPER-ANGLE GRIPPERI 0) (GRIPPER-FINGER-SEPARATION GRIPPERI 3.75))
Fl F3)...
Suggestions for CLOSE-FINGERS are (GRIP ADJUST-FINGERS)...
Working on (CLOSE-FINGERS GRIPPER1 -0.75 5 4 5 (GRIPPING-SEQUENCE GRIPPERI
SQUARE2 F1 F3 5 3.75 3) (GRIPPER-GRIP-PRESSURE GRIPPER1 5) ((GRIPPER-X GRIP-
PERI 4.5) (GRIPPER-Y GRIPPERI 3.5) (GRIPPER-ANGLE GRIPPER1 0) (GRIPPER-FIN
GER-SEPARATION GRIPPERI 3))) which suggests (GRIP ADJUST-FINGERS).. Attempting
Suggestion Link-Up... Retrieving Suggested Rule... Found Corresponding Antecedent... Success-
u. .. Working top-down to prove suggestion... Explanation
found.. .Queueing (GRIP GRIPPER1 5 SQUARE2 F1 F3 4 5 3.75 3)...

Attempting Suggestion Link-Up... Retrieving Suggested Rule... Found Corresponding Antece-
* dent... Unsuccessful... Found Corresponding Antecedent... Unsuccessful...

Queue: (MOVE-GRIPPER-CLEAR ROTATE-GRIPPER-CLEAR ADJUST-FINGERS AP-
* PROACH-TARGET-CLEAR GRIP)

Suggestions for MOVE-GRIPPER-CLEAR are (MOVE-FOR-APPROACH)...
Working on (MOVE-GRIPPER-CLEAR GRIPPER1 -2.0 -5.0 -7.5 8.5 -90 2 -9.5 3.5 2 3 4 2
5 0 1 (GRIPPERI SQUAREI SQUARE2) ((GRIPPER-X GRIPPER1 -9.5) (GRIPPER-Y GR:P-
PERI 3.5) (GRIPPER-ANGLE GRIPPERI -90) (GRIPPER-FINGER-SEPARATION G
RIPPERI 2))) which suggests (MOVE-FOR-APPROACH).. Attempting Suggestion
Link-Up... Retrieving Suggested Rule... Found Corresponding Antecedent.. Successful.. .Working
top-down to prove suggestion... Explanation found... Queueing
(MOVE-FOR-APPROACH GRIPPER1 -7.5 8.5 -90 2 -9.5 3.5 2 3 4 2 5 0 1 (GRIPPERI

SQUARE1 SQUARE2) ((GRIPPER-X GRIPPER] -9.5) (GRIPPER-Y GRIPPER1 3.5) (GRIP-
PER-ANGLE GRIPPERI -90) (GRIPPER-FINGER-SEPARATION GRIPPERI 2)))...
Suggestions for ROTATE-GRIPPER-CLEAR are (ROTATE-FOR-APPROACH)...

Working on (ROTATE-GRIPPER-CLEAR GRIPPERI 90.0 -9.5 3.5 -90 2 0 2 3 4 2 5 1 2
(GRIPPERI SQUAREI SQUARE2) ((GRIPPER-X GRIPPERI -9.5) (GRIPPER-Y GRIPPERI
3.5) (GRIPPER-ANGLE GRIPPERI 0) (GRIPPER-FINGER-SEPARATION GRIPPERI 2)))
which suggests (ROTATE-FOR-APPROACH).. Attempting Suggestion Link--Up...Retrieving

Suggested Rule... Found Corresponding Antecedent.. .Successful... Working top-down to prove
suggestion... Explanation found.. .Queueing (ROTATE-FO
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R-APPROACH GRIPPERI -9.5 3.5 -90 2 0 2 3 4 2 5 1 2 (GRIPPER] SQUAREI SQUARE2)
((GRIPPER-X GRIPPERI -9.5) (GRIPPER-Y GRIPPERI 3.5) (GRIPPER-ANGLE GRIPPER1
0) (GRIPPER-FINGER-SEPARATION GRIPPERI 2)))...
Suggestions for ADJUST-FINGERS are (ADJUST-FINGERS-CLEAR)...
Working on (ADJUST-FINGERS GRIPPERI 1.75 5 2 3 (GRIPPER-CLEAR-FINGER-AD-
JUST GRIPPER1 2 3.75 (GRIPPER1 SQUARE1 SQUARE2) -9.5 3.5 0 2 2 4 2 3)
(AT-WIDTH 3.75 GRIPPERI) ((GRIPPER-X GRIPPER1 -9.5) (GRIPPER-Y GRIPPER! 3.5)
(GRIPP
ER-ANGLE GRIPPERI 0) (GRIPPER-FINGER-SEPARATION GRIPPERI 3.75))) which sug-
gests (ADJUST-FINGERS-CLEAR).. .Attempting Suggestion Link-Up,.. Retrieving Suggested
Rule... Found Corresponding Antecedent.. .Successful... Found Corresp
onding Antecedent.. .Unsuccessful.. .Working top-down to prove suggestion... Explanation
found...Queueing (ADJUST-FINGERS-CLEAR GRIPPERI 1.75 ?GRIPPER-X 1990 ?GRIP-
PER-Y1991 ?GRIPPER-ANGLE1992 2 3.75 2 3 4 2 5 2 3 (GRIPPER1 SQUAR
El SQUARE2) ((GRIPPER-X GRIPPER1 -9.5) (GRIPPER-Y GRIPPER] 3.5) (GRIP-
PER-ANGLE GRIPPER1 0) (GRIPPER-FINGER-SEPARATION GRIPPERI 3.75)))...
Suggestions for APPROACH-TARGET-CLEAR are (APPROACH-TARGET)...
Working on (APPROACH-TARGET-CLEAR GRIPPERI SQUARE2 -9.5 3.5 0 3.75 4.5 3.5 2
3 4 2 5 3 4 (GRIPPERI SQUARE1 SQUARE2) ((GRIPPER-X GRIPPER1 4.5) (GRIPPER-Y
GRIPPER! 3.5) (GRIPPER-ANGLE GRIPPER1 0) (GRIPPER-FINGER-SEPARATION GRI
PPER1 3.75)) F1 F3) which suggests (APPROACH-TARGET).. .Attempting Suggestion
Link-Up... Retrieving Suggested Rule... Found Corresponding Antecedent.. .Successful... Working
top-down to prove suggestion... Explanation found... Queu
eing (APPROACH-TARGET GRIPPER1 SQUARE2 -9.5 3.5 0 3.75 4.5 3.5 0 3.0 0 4 ?GRIP-
PING-FORCE2032 5 F1 F3 0 0)...
Suggestions for GRIP are (ACHIEVE-FRICTIONAL-FORCE)...
Working on (GRIP GRIPPER1 5 SQUARE2 F1 F3 4 5 3.75 3) which suggests
(ACHIEVE-FRICTIONAL-FORCE).. .Attempting Suggestion Link-Up.. .Retrieving Suggested
Rule... Found Corresponding Antecedent... Successful... Working top-down to
prove suggestion... Explanation found... Queueing (ACHIEVE-FRICTIONAL-FORCE GRIP-
PERI SQUARE2 5 0 5 ?GRIPPING-FORCE2032 5)...

Queue: (MOVE-FOR-APPROACH ROTATE-FOR-APPROACH ADJUST-FINGERS-CLEAR
APPROACH-TARGET ACHIEVE-FRICTIONAL-FORCE)

Suggestions for MOVE-FOR-APPROACH are (PREPARE-FOR-APPROACH)...
Working on (MOVE-FOR-APPROACH GRIPPERI -7.5 8.5 -90 2 -9.5 3.5 2 3 4 2 5 0 1
(GRIPPER1 SQUARE! SQUARE2) ((GRIPPER-X GRIPPER1 -9.5) (GRIPPER-Y GRIPPER1
3.5) (GRIPPER-ANGLE GRIPPER! -90) (GRIPPER-FINGER-SEPARATION GRIPPERI 2))
) which suggests (PREPARE-FOR-APPROACH)... Attempting Suggestion Link-Up... Retrieving
Suggested Rule... Found Corresponding Antecedent... Successful.. .Working top-down to prove
suggestion... Explanation found... Queueing (PREPARE
-FOR-APPROACH GRIPPER! -9.5 3.5 0 3.75 2 3 4 2 5 0 3 (GRIPPERI SQUARE!
SQUARE2) ((GRIPPER-X GRIPPER1 -9.5) (GRIPPER-Y GRIPPERI 3.5) (GRIPPER-AN-
GLE GRIPPER! 0) (GRIPPER-FINGER-SEPARATION GRIPPER! 3.75)))...
Suggestions for ROTATE-FOR-APPROACH are (PREPARE-FOR-APPROACH)...
Working on (ROTATE-FOR-APPROACH GRIPPERI -9.5 3.5 -90 2 0 2 3 4 2 5 1 2 (GRIP-
PERI SQUARE! SQUARE2) ((GRIPPER-X GRIPPER! -9.5) (GRIPPER-Y GRIPPER! 3,5)
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(GRIPPER-ANGLE GRIPPERI 0) (GRIPPER-FINGER-SEPARATION GRIPPERI 2))) which
suggests (PREPARE-FOR-APPROACH) ... Attempting Suggestion Link-Up... Retrieving Sug-

gested Rule... Found Corresponding Antecedent.. Successful... Working top-down to prove sug-
gestion... Explanation found.. .Queueing (PREPARE-FOR-AP
PROACH GRIPPERI -9.5 3.5 0 3.75 2 3 4 2 5 0 3 (GRIPPERI SQUAREI SQUARE2)
((GRIPPER-X GRIPPERI -9.5) (GRIPPER-Y GRIPPERI 3.5) (GRIPPER-ANGLE GRIPPERI
0) (GRIPPER-FINGER-SEPARATION GRIPPER1 3.75)))...
Suggestions for ADJUST-FINGERS-CLEAR are (ADJUST-FINGERS-FOR-APPROACH)...
Working on (ADJUST-FINGERS-CLEAR GRIPPERI 1.75 -9.5 3.5 0 2 3.75 2 3 4 2 5 2 3
(GRIPPER1 SQUARE1 SQUARE2) ((GRIPPER-X GRIPPERI -9.5) (GRIPPER-Y GRIPPERI
3.5) (GRIPPER-ANGLE GRIPPERI 0) (GRIPPER-FINGER-SEPARATION GRIPPERI 3.7
5))) which suggests (ADJUST-FINGERS-FOR-APPROACH)... Attempting Suggestion
Link-Up... Retrieving Suggested Rule... Found Corresponding Antecedent... Successful... Working
top-down to prove suggestion... Explanation found... Queuein
g (ADJUST-FINGERS-FOR-APPROACH GRIPPERI -9.5 3.5 0 2 3.75 2 3 4 2 5 2 3 (GRIP-
PERI SQUARE1 SQUARE2) ((GRIPPER-X GRIPPERI -9.5) (GRIPPER-Y GRIPPERI 3.5)
(GRIPPER-ANGLE GRIPPER1 0) (GRIPPER-FINGER-SEPARATION GRIPPER1 3.75)))...

3 Suggestions for APPROACH-TARGET are (ACHIEVE-FRICTIONAL-FORCE)...
Working on (APPROACH-TARGET GRIPPER1 SQUARE2 -q.5 3.5 0 3.75 4.5 3.5 0 3.0 0 4
?GRIPPING-FORCE2032 5 F1 F3 0 0) which suggests (ACHIEVE-FRIC-
TIONAL-FORCE) ... Attempting Suggestion Link-Up... Retrieving Suggested Rule... Found Co
rresponding Antecedent.. .Successful.. .Working top-down to prove suggestion... Explanation
found... Queueing (ACHIEVE-FRICTIONAL-FORCE GRIPPER1 SQUARE2 5 0 5 ?GRIP-
PING-FORCE2032 5)...
Suggestions for ACHIEVE-FRICTIONAL-FORCE are (GRASP)...
Working on (ACHIEVE-FRICTIONAL-FORCE GRIPPER1 SQUARE2 5 0 5 ?GRIP-
PING-FORCE2032 5) which suggests (GRASP).. .Attempting Suggestion Link-Up.. .Retrieving
Suggested Rule... Found Corresponding Antecedent... Successful... Working to
p-down to prove suggestion... Explanation found.. .Queueing (GRASP GRIPPERI SQUARE2
?GRIPPING-FORCE2032 5 0 5)...

Queue: (PREPARE-FOR-APPROACH ADJUST-FINGERS-FOR-APPROACH
ACHIEVE-FRICTIONAL-FORCE GRASP)

Suggestions for PREPARE-FOR-APPROtACH are (APPROACH-TARGET)...
Working on (PREPARE-FOR-APPROACH GRIPPER1 -9.5 3.5 0 3.75 2 3 4 2 5 0 3 (GRIP-
PERI SQUARE1 SQUARE2) ((GRIPPER-X GRIPPERI -9.5) (GRIPPER-Y GRIPPER1 3.5)
(GRIPPER-ANGLE GRIPPER1 0) (GRIPPER-FINGER-SEPARATION GRIPPERI 3.75))) wh
ich suggests (APPROACH-TARGET)... Attempting Suggestion Link-Up... Retrieving Suggested
Rule... Found Corresponding Antecedent.. Successful.. .Working top-down to prove sugges-
tion ... Explanation found... Queueing (APPROACH-TARGET
GRIPPER1 SQUARE2 -9.5 3.5 0 3.75 4.5 3.5 0 3.0 0 4 ?GRIPPING-FORCE2354 5 Fl F3 0
0)...
Suggestions for ADJUST-FINGERS-FOR-APPROACH are (PREPARE-FOR-APPROACI)...
Working on (ADJUST-FINGERS-FOR-APPROACH GRIPPER] -9.5 3.5 0 2 3.75 2 3 4 2 5 2
3 (GRIPPERI SQUAREI SQUARE2) ((GRIPPER-X GRIPPERI -9.5) (GRIPPER-Y GRIP-
PERI 3.5) (GRIPPER-ANGLE GRIPPER1 0) (GRIPPER-FINGER-SEPARATION GRIPPER]
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.75))) which suggests (PREPARE-FOR-APPROACH).. Attempting Suggestion Link-Up.. Re-
trieving Suggested Rule.. .Found Corresponding Antecedent.. .Successful... Working top-down to
prove suggestion... Explanation found... Queueing (PR
EPARE-FOR-APPROACH GRIPPER1 -9.5 3.5 0 3,75 2 3 4 2 5 0 3 (GRIPPERI SQUAREI
SQUARE2) ((GRIPPER-X GRIPPERI -9.5) (GRIPPER-Y GRIPPERI 3,5) (GRIPPER-AN-
GLE GRIPPERI 0) (GRIPPER-FINGER-SEPARATION GRIPPERI 3.75)))...
Suggestions for ACHIEVE-FRICTIONAL-FORCE are (GRASP)...
Working on (ACHIEVE-FRICTIONAL-FORCE GRIPPER1 SQUARE2 5 0 5 ?GRIP-
PING-FORCE2032 5) which suggests (GRASP) ... Attempting Suggestion Link-Up.. Retrieving
Suggested Rule... Found Corresponding Antecedent.. •Successful• .. Working to
p-down to prove suggestion... Explanation found.. .Queueing (GRASP GRIPPER1 SQUARE2
?GRIPPING-FORCE2032 5 0 5)...
Suggestions for GRASP are NIL...
Working on (GRASP GRIPPER1 SQUARE2 ?GRIPPING-FORCE2032 5 0 5) which suggests

NIL... Enter Name For Cache Assignment- >lnitial Non-tolerant
Generalizing An Explanation...
Cleaning Up Rules & Object herarchy...
;;; Loading source fil "rules.lisp"
;; Warning: Redefining function LIKELY-DEMON

Instailir Learned Rule...
AsKing System To Grasp An Object...

GRASP
GRIPPER1 <-- Gripper Name
SQUARE2 < Object
5 < -- .----- Force For Gripping
5 < . .. .. Force For Gripper Movements
0 <-.----.-. Numeric Starting Time
?E < --- Numeric Ending Time

Plan Formulated...

EXECUTE-APPLY-FORCE
GRIPPER1 <---- Gripper Name
-1.0<--- Delta X
-5.0 <--.... . Delta Y
5 <-------Force For Gripper Movements
0 < -.--------- Numeric Starting Time
I < - .-----.--- Numeric Ending Time
GRIPPER-CLEAR-TRANSLATE

GRIPPER1 < ------. Gripper Name
-7.5 < ---. - Current Gripper X-Coordinate
8.5 < ---------. Current Gripper Y-Coordinate
-8.5 < --------. Target X-Coordinate
3.5 < .------- Target Y-Coordinate
(GRIPPERI SQUARE1 SQUARE2)

4 < --.. -- Gripper Beam Length
2 <------ --- Gripper Beam Width
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3 < Gripper Finger Length
2 < - Gripper Finger Width
2 - - -- Current Gripper Finger Separation
-90 <-- -- Current Gripper Angle

AT-COORDINATES
-8.5 <--- X-Coordinate
3.5 <---- - Y-Coordinate
GRIPPER1 < - Gripper Name

7TERM-VALUES9119422401 <- Dump Of Gripper State After The Operation

EXECUTE-APPLY-TORQUE
GRIPPER1 <-. -. Gripper Name
90.0 < ---- Delta Angle
5 < Force For Gripper Movements

I <--Numeric Starting Time
2 <-- Numeric Ending Time
GRIPPER-CLEAR-ROTATE

GRIPPER1 < -- Gripper Name
-90 < Current Gripper Angle
0.0 < - - Target Gripper Angle
(GRIPPERI SQUARE1 SQUARE2)
4 <-- Gripper Beam Length
2 < - - Gripper Beam Width
3 <- --- Gripper Finger Length
2 <-Gripper Finger Width
2 <----- --- Current Gripper Finger Separation
-8.5 < Current Gripper X-Coordinate

3.5 < - - Current Gripper Y-Coordinate
AT-ANGLE

0.0 < Angle
GRIPPERI <--- Gripper Name

?TERM-VALUES109611252405 <- Dump Of Gripper State After The OperationU
EXECUTE-OPEN-FINGERS

GRIPPER1 <----- Gripper NameI1.0 <-Delta Width
5 < - ------ - - Force For Gripper Movements
2 < ----- Numeric Starting Time
3 <-. -...-. --- Numeric Ending Time
GRIPPER-CLEAR-FINGER-ADJUST

GRIPPER1 < -----. Gripper Name
2 <-Current Gripper Finger Separation
3.0 < ----- Target Gripper Width
(GRIPPERI SQUAREI SQUARE2)
-8.5 < -------- Current Gripper X-Coordinate
3.5 <--- Current Gripper Y-Coordinate
0.0 <- .Current Gripper Angle
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2 <------------ Current Gripper Finger Separation
2 < ---------- Gripper Beam Width
4 <-......... . Gripper Beam Length
2 < ---..------- Gripper Finger Width
3 < --... ..... Gripper Finger Length

AT-WIDTH
3.0 < . .... Width
GRIPPER1 <---- Gripper Name

?TERMINATION-VALUES125112852409 <-- Dump Of Gripper State After The Operation

EXECUTE-APPLY-FORCE
GRIPPERI <.----- Gripper Name
13.0 < -- Delta X
0.0 < Delta Y
5 < . --...- Force For Gripper Movements
3 <- Numeric Starting Time
4 <-- . Numeric Ending Time
GRIPPER-APPROACH-SEQUENCE

GRIPPERI <- Gripper Name
13.0 < - - Delta X
0.0 < - Delta Y
SQUARE2 <- Object
Fl <-.-. . One Face Of The Object
F3 <--.-.-.- Another Face Of The Object
4.5 <- . Target X-Coordinate
3.5 <- Target Y-Coordinate
0.0 <-..-... Target Gripper Angle
3.0 < -- Target Gripper Width
-8.5 < ----- Current Gripper X-Coordinate
3.5 <-.-.-.. Current Gripper Y-Coordinate
#<Structure POLY 10754DC3> <- Polygon Representation Of The Object
1.5 < -Nearest Gripper X-Position Prior To Object Contact
3.5 < - Nearest Gripper Y-Position Prior To Object Contact
(GRIPPERI SQUAREI SQUARE2)

4 <----.--. Gripper Beam Length
2 < - Gripper Beam Width
3 <---- Gripper Finger Length
2 < --.-------- Gripper Finger Width
0.0 <--.--. . Current Gripper Angle

AT-COORDINATES
4.5 < -----.---- X-Coordinate

3.5 < ..-.-.- Y-Coordinate
GRIPPER1 <----- Gripper Name

?TERMINATION-VALUES154515702420 <-- Dump Of Gripper State After The Operation

EXECUTE-CLOSE-FINGERS
GRIPPERI <-..--. Gripper Name
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0.0 < --------------- Delta Width
?FORCE19052422 <---- Force For Gripper Movements
4 < --- -------- Numeric Starting Time
5 <-.----... Numeric Ending Time
GRIPPING-SEQUENCE

GRIPPER1 <----.- Gripper Name
SQUARE2 < --- Object
Fl < -.------- One Face Of The Object
F3 <--------.- Another Face Of The Object
?FORCE19052422 <-- Motor Force Applied
3.0 <--..------ Current Gripper Finger Separation
3.0 < -------- Target Gripper Width

GRIPPER-GRIP-PRESSURE
GRIPPERI <- Gripper Name
?FORCE19052422 <-- Object

?TERMINATION-VALUES187818892425 <-- Dump Of Gripper State After The Operation

Executing Plan...
Plan Failedl

Prior Value Dump:
(GRIPPER-X GRIPPER1 -8.5)
(GRIPPER-Y GRIPPER1 3.5)
(GRIPPER-ANGLE GRIPPERI 0.0)
(GRIPPER-FINGER-SEPARATION GRIPPER1 3.0)
(NOT (GRIPPER-X GRIPPER1 -7.5))
(NOT (GRIPPER-Y GRIPPERI 8.5))
(NOT (GRIPPER-ANGLE GRIPPERI -90))
(NOT (GRIPPER-FINGER-SEPARATION GRIPPER1 2))

Dump At Failure:
(GRIPPER-X GRIPPERI 1.5)
(GRIPPER-Y GRIPPERI 3.5)
(GRIPPER-ANGLE GRIPPER1 0)
(GRIPPER-FINGER-SEPARATION GRIPPERI 3)
(FORCE GRIPPERI FINGER1 3 0.25 5 -1 0)
(NOT (GRIPPER-X GRIPPER1 -7.5))
(NOT (GRIPPER-Y GRIPPERI 8.5))
(NOT (GRIPPER-ANGLE GRIPPERI -90))
(NOT (GRIPPER-FINGER-SEPARATION GRIPPER1 2))

Expectation Goal:
GRIPPER-APPROACH-SEQUENCE

GRIPPER1 < ------- Gripper Name
13.0 < ------.--- Delta X
0.0 < --------- Delta Y

DSQUARE2 < --------- Object
F1 <----....- One Face Of The Object
F3 < --------- Another Face Of The Object
4.5 <--------- Target X-Coordinate
3.5 < ------ Target Y-Coordinate
0.0 <-Target Gripper Angle

3 123



3.0 <-.......... Target Gripper Width
-8.5 < - Current Gripper X-Coordinate
3.5 < -Current Gripper Y-Coordinate
#<Structure POLY 10754DC3> <- Polygon Representation Of The Object
1.5 < Nearest Gripper X-Position Prior To Object Contact
3.5 <--- -- Nearest Gripper Y-Position Prior To Objecl Contact
(GRIPPER1 SQUAREI SQUARE2)
4 < Gripper Beam Length
2 <-Gripper Beam Width
3 <- Gripper Finger Length
2 < Gripper Finger Width
0.0 < Current Gripper Angle

Expectation Expl:
#<Structure EXPLANATION 10799D63>

Expected Dump:
(GRIPPER-X GRIPPER1 1.5)
(GRIPPER-Y GRIPPER1 3.5)
(GRIPPER-ANGLE GRIPPERI 0)
(GRIPPER-FINGER-SEPARATION GRIPPER1 3)
(NOT (GRIPPER-X GRIPPER1 -7.5))
(NOT (GRIPPER-Y GRIPPERI 8.5))
(NOT (GRIPPER-ANGLE GRIPPERI -90))
(NOT (GRIPPER-FINGER-SEPARATION GRIPPER1 2))

Explaining Failure(s)...
Evaluating SQUAREI's OBJECT-POSITION-APPROXIMATION With Respect To A Contact
At (3.0 5.25).

- Contact Deviates From Approximation By 8.400148
Evaluating SQUAREI's OBJECT-SHAPE-APPROXIMATION With Respect To A Contact At
(3.0 5.25).

- Contact Deviates From Approximation By 6.75
Evaluating SQUAREI's OBJECT-ORIENTATION-APPROXIMATION With Respect To A
Contact At (3.0 5.25).

- Contact Not Explainable By Deviation In This Approximation
Evaluating SQUARE2's OBJECT-POSITION-APPROXIMATION With Respect To A Contact
At (3.0 5.25).

- Contact Deviates From Approximation By 0.25
Evaluating SQUARE2's OBJECT-SHAPE-APPROXIMATION With Respect To A Contact At
(3.0 5.25).

- Contact Dcviates From Approximation By 0.25
Evaluating SQUARE2's OBJECT-ORIENTATION-APPROXIMATION With Respect To A
Contact At (3.0 5.25).

- Contact Not Explainable By Deviation In This Approximation
4 Possible Failure(s) Have Been Identified.
The following is a list of possible root causes for the failure.
Failure of OBJECT-POSITION-APPROXIMATION with regard to SQUARE1
Failure of OBJECT-SHAPE-APPROXIMATION with regard to SQUARE1
Failure of OBJECT-POSITION-APPROXIMATION with regard to SQUARE2
Failure of OBJECT-SHAPE-APPROXIMATION with regard to SQUARE2
Reloading Rules & Object Hierarchy...
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Loading source file "rules.lisp"
;;Warning: Redefining function LIKELY-DEMON

Observation Started...
Action Observed...

OBSERVED-APPLY-FORCE
GRIPPFRI < -Gripper Name.
5 < .. Motor Force Applied
0 <- Numeric Starting Time
1 < Numeric Ending Time
-7.5 < . .-.. Current Gripper X-Coordinate
8.5 <--..... Current Gripper Y-Coordinate
-9.5 <-- -- Target X-Coordinate
3.5 < Target Y-Coordinate
4 <- - --.. -. Gripper Beam Length
2 <- - ----- Gripper Beam Width
3 <--Gripper Finger Length
2 <- --. Gripper Finger Width
2 < Current Gripper Finger Separation
-90 <---.. -... Current Gripper Angle

* Action Observed...

OBSERVED-APPLY-TORQUE
GRIPPERI < -- Grippei Name

5 < -- Motor Force Applied
1 < .. .. Numeric Starting Time3 2< ---. -. Numeric Ending Time
-90 < - Current Gripper Angle
0 < - Target Gripper Angle
4 < - Gripper Beam Length
2 < Gripper Beam Width
3 < Gripper Finger Length
2 < Gripper Finger Width

2 < -... Current Gripper Finger Separation
-9.5 < ------ Current Gripper X-Coordinate5 3.5 <- ---..... Current Gripper Y-Coordinate

Action Observed...

IOBSERVED-OPEN-FINGERS
GRIPPERI < ..-.-. Gripper Name
5 <- - -.. -. . Motor Force Applied
2 < ... . Numeric Starting Time
3 < - Numeric Ending Time
2 < ---------- Current Gripper Finger Separation

I 1 3.75 <--.. -. -.. Target Gripper Width
-9.5 < --..-------- Current Gripper X-Coordinate
3.5 < -------.-.- Current Gripper Y-Coordinate
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0 <-- ------ Current Gripper Angle i
2 <------- -- Current Gripper Finger Separation
2 < --- Gripper Beam Width
4 <--.-...-.-. Gripper Beam Length
2 < Gripper Finger Width
3 <- Gripper Finger Length

Action Observed...

OBSERVED-APPLY-FORCE
GRIPPERI <----- Gripper Name
5 <- Motor Force Applied
3 <_ --- - Numeric Starting Time
4 < - - Numeric Ending Time
-') 5 < _Current Gripper X-Coordinate

3.5 <- Current Gripper Y-Coordinate
4.5 Target X-Coordinate
3.5 < Target Y-Coordinate

4 < Gripper Beam Length
2 <-- Gripper Beam Width
3 <- - Gripper Finger Length
2 < Gripper Finger Width
3.75 Current Gripper Finger Separation
0 < Current Gripper Angle

Action Observed... i
OBSERVED-CLOSE-FINGERS

GRIPPER1 < - Gripper Name
5 <- Motor Force Applied
4 < Numeric Starting Time
5 < -- , Numeric Ending Time I
3.75 <----- - Current Gripper Finger Separation
3 <-Target Gripper Width
4.5 < -...---- Current Gripper X-Coordinate 3
3.5 <------ Current Gripper Y-Coordinate
0 <---- Current Gripper Angle
3.75 <--.--...- Current Gripper Finger Separation
2 < -.-. --- Gripper Beam Width
4 < - --------- Gripper Beam Length
2 < ------- Gripper Finger Width
3 < - --- --- Gripper Finger Length

Observation Ended...
Seeking To Understand Observations...

Seeking An Understanding Which Prevents Error With OBJECT-POSITION-APPROXIMATION
Of SQUARE2
;;; Loading source file "rules.lisp"

Warning: Redefining function LIKELY-DEMON

1
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U Updating SQUARE2's OBJECT-POSITION-APPROXIMATION To Account For A Contact At
(3.0 5.25).
That sequence of observations corresponds to cached understandings.

Please indicate whether you wish one to be retrieved.
Creating suggestion list...

I Queue: (OBSERVED-APPLY-FORCE OBSERVED-APPLY-TORQUE OB-
SERVED-OPEN-FINGERS OBSERVED-APPLY-FORCE OBSERVED-CLOSE-FINGERS)

I Suggestions for OBSERVED-APPLY-FORCE are (APPLY-FORCE)...
Working on (OBSERVED-APPLY-FORCE GRIPPERI 5 0 1 -7.5 8.5 -9.5 3.5 4 2 3 2 2 -90)
which suggests (APPLY-FORCE).. .Attempting Suggestion Link-Up.. .Retrieving Suggested
Rule... Found Corresponding Antecedent... Successful ... Found
Corresponding Antecedent.. .Successful...Working top-down to prove suggestion... Working
top-down to prove suggestion.. .Explanation found.. .Queueing (APPLY-FORCE GRIPPER1 -2.0
-5.0 5 0 1 (GRIPPER-CLEAR-TRANSLATE GRIPPER1 -7.5
8.5 -9.5 3.5 (GRIPPERI SQUAREI SQUARE2) 4 2 3 2 2 -90) (AT-COORDINATES -9.5
3.5 GRIPPERI) ((GRIPPER-X GRIPPER1 -9.5) (GRIPPER-Y GRIPPER1 3.5) (GRIP-
PER-ANGLE GRIPPERI -90) (GRIPPER-FINGER-SEPARATION GRIPPERI 2)))...
Suggestions for OBSERVED-APPLY-TORQUE are (APPLY-TORQUE)...
Working on (OBSERVED-APPLY-TORQUE GRIPPER1 5 1 2 -90 0 4 2 3 2 2 -9.5 3.5)
which suggests (APPLY-TORQUE)...Attempting Suggestion Link-Up.. .Retrieving Suggested
Rule... Found Corresponding Antecedent.. .Successful... Working top
-down to prove suggestion... Explanation found.., Queueing (APPLY-TORQUE GRIPPERI 90.0
5 1 2 (GRIPPER-CLEAR-ROTATE GRIPPER1 -90 0 (GRIPPER1 SQUAREI SQUARE2) 4 2
3 2 2 -9.5 3.5) (AT-ANGLE 0 GRIPPERI) ((GRIPPER-X GRIPPER1 -9.5)
(GRIPPER-Y GRIPPERI 3.5) (GRIPPER-ANGLE GRIPPERI 0) (GRIPPER-FINGER-SEPA-
RATION GRIPPERI 2)))...
Suggestions for OBSERVED-OPEN-FINGERS are (OPEN-FINGERS)...
Working on (OBSERVED-OPEN-FINGERS GRIPPERI 5 2 3 2 3.75 -9.5 3.5 0 2 2 4 2 3)
which suggests (OPEN-FINGERS)... Attempting Suggestion Link-Up... Retrieving Suggested
Rule... Found Corresponding Antecedent.. .Successful ... Working
top-down to prove suggestion... Explanation found... Queueing (OPEN-FINGERS GRIPPER1
1.75 5 2 3 (GRIPPER-CLEAR-FINGER-ADJUST GRIPPERI 2 3.75 (GRIPPER1 SQUAREI
SQUARE2) -9.5 3.5 0 2 2 4 2 3) (AT-WIDTH 3.75 GRIPPERI) ((GRIPPER-X
GRIPPERI -9.5) (GRIPPER-Y GRIPPER1 3.5) (GRIPPER-ANGLE GRIPPERI 0) (GRIP-

PER-FINGER-SEPARATION GRIPPERI 3.75)))...
Suggestions for OBSERVED-APPLY-FORCE are (APPLY-FORCE)...
Working on (OBSERVED-APPLY-FORCE GRIPPER1 5 3 4 -9.5 3.5 4.5 3.5 4 2 3 2 3.75 0)
which suggests (APPLY-FORCE),.. Attempting Suggestion Link-Up... Retrieving Suggested
Rule... Found Corresponding Antecedent... Successful... Found
Corresponding Antecedent.. .Successful... Working top-down to prove suggestion... Explanation
found.. .Queueing (APPLY-FORCE GRIPPER1 14.0 0.0 5 3 4 (GRIPPER-APPROACH-SE-

SQUENCE GRIPPERI 14.0 0.0 SQUARE2 F1 F3 4.5 3.5 0 3.75 -9.5
3.5 ?OB-POLY3281 ?GCX3282 ?GCY3283 (GRIPPERI SQUARE1 SQUARE2) 4 2 3 2 0)
(AT-COORDINATES 4.5 3.5 GRIPPER1) ((GRIPPER-X GRIPPERI 4.5) (GRIPPER-Y
GRIPPERI 3.5) (GRIPPER-ANGLE GRIPPERI 0) (GRIPPER-FINGER-SEPARATION GRIP-
PER1 3.7
5)))...
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Suggestions for OBSERVED-CLOSE-FINGERS are (CLOSE-FINGERS)...
Working on (OBSERVED-CLOSE-FINGERS GRIPPERI 5 4 5 3.75 3 4.5 3.5 0 3.75 2 4 2 3)
which suggests (CLOSE-FINGERS).. .Attempting Suggestion Link-Up... R,.rieving Suggested
Rule... Found Corresponding Antecedent... Successful ... Work
ing top-down to prove suggestion... Explanation found... Queueing (CLOSE-FINGERS GRIP-
PERI -0.75 5 4 5 (GRIPPING-SEQUENCE GRIPPER] SQUARE2 F1 F3 5 3.75 3) (GRIP-
PER-GRIP-PRESSURE GRIPPERI 5) ((GRIPPER-X GRIPPERI 4.5) (GRIPPER-Y
GRIPPER1 3.5) (GRIPPER-ANGLE GRIPPER1 0) (GRIPPER-FINGER-SEPARATION GRIP-
PER1 3)))...

Queue: (APPLY-FORCE APPLY-TORQUE OPEN-FINGERS APPLY-FORCE CLOSE-FIN-
GERS)

Suggestions for APPLY-FORCE are (MOVE-GRIPPER-CLEAR APPROACH-TAR-
GET-CLEAR)...
Working on (APPLY-FORCE GRIPPERI -2.0 -5.0 5 0 1 (GRIPPER-CLEAR-TRANSLATE
GRIPPER1 -7.5 8.5 -9.5 3.5 (GRIPPER1 SQUARE1 SQUARE2) 4 2 3 2 2 -90) (AT-COOR-
DINATES -9.5 3.5 GRIPPERI) ((GRIPPER-X GRIPPER] -9.5) (GRIPPER-Y GRIPPERI
3.5) (GRIPPER-ANGLE GRIPPER1 -90) (GRIPPER-FINGER-SEPARATION GRIPPERI

2))) which suggests (MOVE-GRIPPER-CLEAR APPROACH-TARGET-CLEAR)... Attempting
Suggestion Link-Up... Retrieving Suggested Rule... Found Corresponding Antecede
nt... Successful ... Found Corresponding Antecedent... Unsuccessful.. .Working top-down to prove
suggestion... Explanation found.. .Queueing (MOVE-GRIPPER-CLEAR GRIPPER1 -2.0 -5.0
-7.5 8.5 -90 2 -9.5 3.5 2 3 4 2 5 0 1 (GRIPPERI SQU
ARE1 SQUARE2) ((GRIPPER-X GRIPPER1 -9.5) (GRIPPER-Y GRIPPER1 3.5) (GRIP-
PER-ANGLE GRIPPER1 -90) (GRIPPER-FINGER-SEPARATION GRIPPERI 2)))...
Attempting Suggestion Link-Up... Retrieving Suggested Rule... Found Corresponding Antece-
dent... Unsuccessful... Suggestions for APPLY-TORQUE are (ROTATE-GRIPPER-CLEAR)...
Working on (APPLY-TORQUE GRIPPER1 90.0 5 1 2 (GRIPPER-CLEAR-ROTATE GRIP-
PERI -90 0 (GRIPPERI SQUARE1 SQUARE2) 4 2 3 2 2 -9.5 3.5) (AT-ANGLE 0 GRIP-
PERI) ((GRIPPER-X GRIPPERI -9.5) (GRIPPER-Y GRIPPERI 3.5) (GRIPPER-ANGLE
GRIPPE
RI 0) (GRIPPER-FINGER-SEPARATION GRIPPER1 2))) which suggests (ROTATE-GRIP-
PER-CLEAR)... Attempting Suggestion Link-Up... Retrieving Suggested Rule... Found Corre-
sponding Antecedent... Successful... Found Corresponding Antecedent.
• Unsuccessful... Working top-down to prove suggestion... Explanation found... Queueing (RO-
TATE-GRIPPER-CLEAR GRIPPERI 90.0 -9.5 3.5 -90 2 0 2 3 4 2 5 1 2 (GRIPPERI
SQUAREI SQUARE2) ((GRIPPER-X GRIPPER1 -9.5) (GRIPPER-Y GRIPPER
1 3.5) (GRIPPER-ANGLE GRIPPERI 0) (GRIPPER-FINGER-SEPARATION GRIPPERI
2)))...
Suggestions for OPEN-FINGERS are (ADJUST-FINGERS)...
Working on (OPEN-FINGERS GRIPPER1 1.75 5 2 3 (GRIPPER-CLEAR-FINGER-ADJUST
GRIPPERI 2 3.75 (GRIPPER1 SQUARE1 SQUARE2) -9.5 3.5 0 2 2 4 2 3) (AT-WIDTH
3.75 GRIPPERI) ((GRIPPER-X GRIPPERI -9.5) (GRIPPER-Y GRIPPERI 3.5) (GRIPPER
-ANGLE GRIPPERI 0) (GRIPPER-FINGER-SEPARATION GRIPPER] 3.75))) which suggests
(ADJUST-FINGERS)... Attempting Suggestion Link-Up... Retrieving Suggested Rule.. Found
Corresponding Antecedent.. Successful... Found Corresponding A
ntecedent... Unsuccessful... Working top-down to prove suggestion... Explanation found.. Queue-
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ing (ADJUST-FINGERS GRIPPER1 1.75 5 2 3 (GRIPPER-CLEAR-FINGER-ADJUST GRIP-
PERI 2 3.75 (GRIPPERI SQUARE1 SQUARE2) -9.5 3.5 0 2 2 4 2 3)
(AT-WIDTH 3.75 GRIPPER1) ((GRIPPER-X GRIPPERI -9.5) (GRIPPER-Y GRIPPER1

3.5) (GRIPPER-ANGLE GRIPPERI 0) (GRIPPER-FINGER-SEPARATION GRIPPER1
3.75)))...
Suggestions for APPLY-FORCE are (MOVE-GRIPPER-CLEAR APPROACH-TAR-IGET-CLEAR)...
Working on (APPLY-FORCE GRIPPER1 14.0 0.0 5 3 4 (GRIPPER-APPROACH-SEQUENCE
GRIPPER1 14.0 0.0 SQUARE2 F1 F3 4.5 3.5 0 3.75 -9.5 3.5 ?OB-POLY3281 ?GCX3282
?GCY3283 (GRIPPERI SQUAREI SQUARE2) 4 2 3 2 0) (AT-COORDINATES 4.5 3.5
GRIPPERI) ((GRIPPER-X GRIPPER1 4.5) (GRIPPER-Y GRIPPERI 3.5) (GRIPPER-ANGLE
GRIPPERI 0) (GRIPPER-FINGER-SEPARATION GRIPPERI 3.75))) which suggests
(MOVE-GRIPPER-CLEAR APPROACH-TARGET-CLEAR)... Attempting Suggestion
Link-Up...
Retrieving Suggested Rule... Found Corresponding Antecedent.. .Unsuccessful... Found Corre-
sponding Antecedent... Unsuccessful... Attempting Suggestion Link-Up... Retrieving Suggested
Rule... Found Corresponding Antecedent.. .Success
ful... Working top-down to prove suggestion... Explanation found... Queueing (AP-
PROACH-TARGET-CLEAR GRIPPER1 SQUARE2 -9.5 3.5 0 3.75 4.5 3.5 2 3 4 2 5 3 4
(GRIPPERI SQUARE] SQUARE2) ((GRIPPER-X GRIPPER1 4.5) (GRIPPER-Y GRIPPER1
3.5) (GRIPPER-ANGLE GRIPPER1 0) (GRIPPER-FINGER-SEPARATION GRIPPER13 3.75)) F1 F3)...

Suggestions for CLOSE-FINGERS are (GRIP ADJUST-FINGERS)...
Working on (CLOSE-FINGERS GRIPPER1 -0.75 5 4 5 (GRIPPING-SEQUENCE GRIPPERI
SQUARE2 F1 F3 5 3.75 3) (GRIPPER-GRIP-PRESSURE GRIPPERI 5) ((GRIPPER-X GRIP-
PER1 4.5) (GRIPPER-Y GRIPPER1 3.5) (GRIPPER-ANGLE GRIPPERI 0) (GRIPPER-FIN
GER-SEPARATION GRIPPERI 3))) which suggests (GRIP ADJUST-FINGERS).. .Attempting
Suggestion Link-Up... Retrieving Suggested Rule... Found Corresponding Antecedent... Success-
ful... Working top-down to prove suggestion... Explanation
found...Queueing (GRIP GRIPPERI 5 SQUARE2 F1 F3 4 5 3.75 3)...

Attempting Suggestion Link-Up... Retrieving Suggested Rule... Found Corresponding Antece-
dent... Unsuccessful ... Found Corresponding Antecedent... Unsuccessful...

Queue: (MOVE-GRIPPER-CLEAR ROTATE-GRIPPER-CLEAR ADJUST-FINGERS AP-
PROACH-TARGET-CLEAR GRIP)

Suggestions for MOVE-GRIPPER-CLEAR are (MOVE-FOR-APPROACH)...
Working on (MOVE-GRIPPER-CLEAR GRIPPER1 -2.0 -5.0 -7.5 8.5 -90 2 -9.5 3.5 2 3 4 2
5 0 1 (GRIPPER1 SQUAREI SQUARE2) ((GRIPPER-X GRIPPER1 -9.5) (GRIPPER-Y GRIP-
PERI 3.5) tGRIPPER-ANGLE GRIPPER1 -90) (GRIPPER-FINGER-SEPARATION G
RIPPERI 2))) which suggests (MOVE-FOR-APPROACH)...Attempting Suggestion
Link-Up... Retrieving Suggested Rule... Found Corresponding Antecedent... Successful... Working
top-down to prove suggestion... Explanation found... Queueing
(MOVE-FOR-APPROACH GRIPPERI -7.5 8.5 -90 2 -9.5 3.5 2 3 4 2 5 0 1 (GRIPPERI
SQUAREI SQUARE2) ((GRIPPER-X GRIPPER1 -9.5) (GRIPPER-Y GRIPPERI 3.5) (GRIP-
PER-ANGLE GRIPPERI -90) (GRIPPER-FINGER-SEPARATION GRIPPERI 2)))...

m Suggestions for ROTATE-GRIPPER-CLEAR are (ROTATE-FOR-APPROACH)...
Working on (ROTATE-GRIPPER-CLEAR GRIPPER1 90.0 -9.5 3.5 -90 2 0 2 3 4 2 5 1 2
(GRIPPERI SQUARE1 SQUARE2) ((GRIPPER-X GRIPPER1 -9.5) (GRIPPER-Y GRIPPERI

1
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3.5) (GRIPPER-ANGLE GRIPPERI 0) (GRIPPER-FINGER-SEPARATION GRIPPERI 2)))
which suggests (ROTATE-FOR-APPROACH)... Attempting Suggestion Link-Up... Retrieving

Suggested Rule... Found Corresponding Antecedent.. .Successful... Working top-down to prove
suggestion... Explanation found... Queueing (ROTATE-FO
R-APPROACH GRIPPERI -9.5 3.5 -90 2 0 2 3 4 2 5 1 2 (GRIPPER1 SQUAREI SQUARE2)
((GRIPPER-X GRIPPER1 -9.5) (GRIPPER-Y GRIPPERI 3.5) (GRIPPER-ANGLE GRIPPER1
0) (GRIPPER-FINGER-SEPARATION GRIPPERI 2)))...
Suggestions for ADJUST-FINGERS are (ADJUST-FINGERS-CLEAR)...
Working on (ADJUST-FINGERS GRIPPERI 1.75 5 2 3 (GRIPPER-CLEAR-FINGER-AD-
JUST GRIPPER] 2 3.75 (GRIPPER1 SQUAREI SQUARE2) -9.5 3.5 0 2 2 4 2 3)
(AT-WIDTH 3.75 GRIPPER1) ((GRIPPER-X GRIPPERI -9.5) (GRIPPER-Y GRIPPERI 3.5)
(GRIPP
ER-ANGLE GRIPPER1 0) (GRIPPER-FINGER-SEPARATION GRIPPERI 3.75))) which sug-
gests (ADJUST-FINGERS-CLEAR).. .Attempting Suggestion Link-Up... Retrieving Suggested
Rule... Found Corresponding Antecedent... Successful... Found Corresp
onding Antecedent.. .Unsuccessful... Working top-down to prove suggestion. .. Explanation
found... Queueing (ADJUST-FINGERS-CLEAR GRIPPER1 1.75 ?GRIPPER-X4559 ?GRIP-
PER-Y4560 ?GRIPPER-ANGLE4561 2 3.75 2 3 4 2 5 2 3 (GRIPPER1 SQUAR
El SQUARE2) ((GRIPPER-X GRIPPER1 -9.5) (GRIPPER-Y GRIPPER1 3.5) (GRIP-
PER-ANGLE GRIPPERI 0) (GRIPPER-FINGER-SEPARATION GRIPPER1 3.75)))...
Suggestions for APPROACH-TARGET-CLEAR are (APPROACH-TARGET)...
Working on (APPROACH-TARGET-CLEAR GRIPPER1 SQUARE2 -9.5 3.5 0 3.75 4.5 3.5 2
3 4 2 5 3 4 (GRIPPERI SQUARE1 SQUARE2) ((GRIPPER-X GRIPPER1 4.5) (GRIPPER-Y
GRIPPER] 3.5) (GRIPPER-ANGLE GRIPPER1 0) (GRIPPER-FINGER-SEPARATION GRI
PPERI 3.75)) F1 F3) which suggests (APPROACH-TARGET)...Attempting Suggestion
Link-Up... Retrieving Suggested Rule... Found Corresponding Antecedent... Successful... Working
top-down to prove suggestion... Explanation found... Queu
eing (APPROACH-TARGET GRIPPERI SQUARE2 -9.5 3.5 0 3.75 4.5 3.5 0 3.0 0 4 ?GRIP-
PING-FORCE4601 5 F1 F3 0.25 0)...
Suggestions for GRIP are (ACHIEVE-FRICTIONAL-FORCE)...
Working on (GRIP GRIPPERI 5 SQUARE2 F1 F3 4 5 3.75 3) which suggests
(ACHIEVE-FRICTIONAL-FORCE)... Attempting Suggestion Link-Up... Retrieving Suggested
Rule... Found Corresponding Antecedent... Successful.. Working top-down to
prove suggestion... Explanation found... Queueing (ACHIEVE-FRICTIONAL-FORCE GRIP-
PER1 SQUARE2 5 0 5 ?GRIPPING-FORCE4601 5)...

Queue: (MOVE-FOR-APPROACH ROTATE-FOR-APPROACH ADJUST-FINGERS-CLEAR
APPROACH-TARGET ACHIEVE-FRICTIONAL-FORCE)

Suggestions for MOVE-FOR-APPROACH are (PREPARE-FOR-APPROACH)...
Working on (MOVE-FOR-APPROACH GRIPPERI -7.5 8.5 -90 2 -9.5 3.5 2 3 4 2 5 0 1
(GRIPPER1 SQUARE1 SQUARE2) ((GRIPPER-X GRIPPERI -9.5) (GRIPPER-Y GRIPPERI
3.5) (GRIPPER-ANGLE GRIPPERI -90) (GRIPPER-FINGER-SEPARATION GRIPPERI 2))
) which suggests (PREPARE-FOR-APPROACH).. Attempting Suggestion Link-Up.. Retrieving
Suggested Rule... Found Corresponding Antecedent.. .Successful... Working top-down to prove
suggestion... Explanation found.. .Queueing (PREPARE
-FOR-APPROACH GRIPPERI -9.5 3.5 0 3.75 2 3 4 2 5 0 3 (GRIPPERI SQUAREI
SQUARE2) ((GRIPPER-X GRIPPERI -9.5) (GRIPPER-Y GRIPPER, 3.5) (GRIPPER-AN-
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U GLE GRIPPERI 0) (GRIPPER-FINGER-SEPARATION GRIPPERI 3.75)))...
Suggestions for ROTATE-FOR-APPROACH are (PREPARE-FOR-APPROACH)...
Working on (ROTATE-FOR-APPROACH GRIPPERI -9.5 3.5 -90 2 0 2 3 4 2 5 1 2 (GRIP-
PERI SQUAREI SQUARE2) ((GRIPPER-X GRIPPER1 -9.5) (GRIPPER-Y GRIPPERI 3.5)
(GRIPPER-ANGLE GRIPPERI 0) (GRIPPER-FINGER-SEPARATION GRIPPER] 2))) which
suggests (PREPARE-FOR-APPROACH) ... Attempting Suggestion Link-Up ... Retrieving Sug-

gested Rule... Found Corresponding Antecedent.. ,Successful... Working top-down to prove sug-
gestion... Explanation found... Queueing (PREPARE-FOR-AP

PROACH GRIPPERI -9.5 3.5 0 3.75 2 3 4 2 5 0 3 (GRIPPER1 SQUARE1 SQUARE2)

II ((GRIPPER-X GRIPPERI -9.5) (GRIPPER-Y GRIPPERI 3.5) (GRIPPER-ANGLE GRIPPER1
0) (GRIPPER-FINGER-SEPARATION GRIPPER1 3.75)))...
Suggestions for ADJUST-FINGERS-CLEAR are (ADJUST-FINGERS-FOR-APPROACH)...
Working on (ADJUST-FINGERS-CLEAR GRIPPERI 1.75 -9.5 3.5 0 2 3.75 2 3 4 2 5 2 3

(GRIPPER1 SQUARE1 SQUARE2) ((GRIPPER-X GRIPPER1 -9.5) (GRIPPER-Y GRIPPER1
3.5) (GRIPPER-ANGLE GRIPPER1 0) (GRIPPER-FINGER-SEPARATION GRIPPER1 3.7
5))) which suggests (ADJUST-FINGERS-FOR-APPROACH)... Attempting Suggestion
Link-Up... Retrieving Suggested Rule... Found Corresponding Antecedent... Successful... Working
top-down to prove suggestion... Explanation found... Queuein
g (ADJUST-FINGERS-FOR-APPROACH GRIPPER1 -9.5 3.5 0 2 3,75 2 3 4 2 5 2 3 (GRIP-Ig
PER1 SQUAREI SQUARE2) ((GRIPPER-X GRIPPER1 -9.5) (GRIPPER-Y GRIPPER1 3.5)

(GRIPPER-ANGLE GRIPPER1 0) (GRIPPER-FINGER-SEPARATION GRIPPER 1 3.75)))...

ISuggestions for APPROACH-TARGET are (ACHIEVE-FRICTIONAL-FORCE)...
Working on (APPROACH-TARGET GRIPPERI SQUARE2 -9.5 3.5 0 3.75 4.5 3.5 0 3.0 0 4
?GRIPPING-FORCE4601 5 F1 F3 0.25 0) which suggests (ACHIEVE-FRIC-
TIONAL-FORCE)...Attempting Suggestion Link-Up... Retrieving Suggested Rule... Found
Corresponding Antecedent.. .Successful... Working top-down to prove suggestion... Explanation

found.. .Queueing (ACHIEVE-FRICTIONAL-FORCE GRIPPER1 SQUARE2 5 0 5 ?GRIP-
PING-FORCE4601 5)...
Suggestions for ACHIEVE-FRICTIONAL-FORCE are (GRASP)...
Working on (ACHIEVE-FRICTIONAL-FORCE GRIPPER1 SQUARE2 5 0 5 ?GRIP-

PING-FORCE4601 5) which suggests (GRASP).. Attempting Suggestion Link-Up.. .Retrieving
Suggested Rule... Found Corresponding Antecedent... Successful.. .Working to
p-down to prove suggestion... Explanation found... Queueing (GRASP GRIPPERI SQUARE2

?GRIPPW"G-FORCE4601 5 0 5)...

3 Queue: (PREPARE-FOR-APPROACH ADJUST-FINGERS-FOR-APPROACH
ACHIEVE-FRICTIONAL-FORCE GRASP)

SSuggestions for PREPARE-FOR- APPROACH are (APPROACH-TARGET)...
Working on (PREPARE-FOR-APPROACH GRIPPER1 -9.5 3.5 0 3.75 2 3 4 2 5 0 3 (GRIP-
PER1 SQUARE1 SQUARE2) ((GRIPPER-X GRIPPERI -9.5) (GRIPPER-Y GRIPPER1 3.5)

(GRIPPER-ANGLE GRIPPER1 0) (GRIPPER-FINGER-SEPARATION GRIPPERI 3.75))) wh

ich suggests (APPROACH-TARGET)...Attempting Suggestion Link-Up... Retrieving Suggested
Rule... Found Corresponding Antecedent... Successful... Working top-down to prove sugges-
tion ... Explanation found.. .Queueing (APPROACH-TARGET

GRIPPERI SQUARE2 -9.5 3.5 0 3.75 4.5 3.5 0 3.0 0 4 ?GRIPPING-FORCE4923 5 F1 F3
0.25 0)...
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Suggestions for ADJUST-FINGERS-FOR-APPROACH are (PREPARE-FOR-APPROACH)...
Working on (ADJUST-FINGERS-FOR-APPROACH GRIPPERI -9.5 3.5 0 2 3.75 2 3 4 2 5 2
3 (GRIPPERI SQUARE1 SQUARE2) ((GRIPPER-X GRIPPERI -9.5) (GRIPPER-Y GRIP-
PERI 3.5) (GRIPPER-ANGLE GRIPPERI 0) (GRIPPER-FINGER-SEPARATION GRIPPERI
3
.75))) which suggests (PREPARE-FOR-APPROACH) ... A ttmnting Suggestion Link-Up... Re-
trieving Suggested Rule... Found Corresponding Antecedent... Successful.. .Working top-down to
prove suggestion... Explanation found... Queueing (PR
EPARE-FOR-APPROACH GRIPPERI -9.5 3.5 0 3.75 2 3 4 2 5 0 3 (GRIPPERI SQUAREI
SQUARE2) ((GRIPPER-X GRIPPERI -9.5) (GRIPPER-Y GRIPPERI 3.5) (GRIPPER-AN-
GLE GRIPPERI 0) (GRIPPER-FINGER-SEPARATION GRIPPER1 3.75)))...
Suggestions for ACHIEVE-FRICTIONAL-FORCE are (GRASP)...
Working on (ACHIEVE-FRICTIONAL-FORCE GRIPPER1 SQUARE2 5 0 5 ?GRIP-
PING-FORCE4601 5) which suggests (GRASP)...Attempting Suggestion Link-Up... Retrieving
Suggested Rule... Found Corresponding Antecedent.. .Successful.. •Working to
p-down to prove suggestion... Explanation found... Queueing (GRASP GRIPPERI SQUARE2
?GRIPPING-FORCE4601 5 0 5)...
Suggestions for GRASP are NIL...
Working on (GRASP GRIPPER1 SQUARE2 ?GRIPPING-FORCE4601 5 0 5) which suggests
NIL... Enter Name For Cache Assignment-->Position Approx Error
Seeking An Understanding Which Prevents Error With OBJECT-SHAPE-APPROXIMATION
Of SQUARE2
;;; Loading source file "rules.lisp"
;; Warning: Redefining function LIKELY-DEMON

Updating SQUARE2's OBJECT-SHAPE-APPROXIMATION To Account For A Contact At
(3.0 5.25).
That sequence of observations corresponds to cached understandings.
Please indicate whether you wish one to be retrieved.
Creating suggestion list...

Queue: (OBSERVED-APPLY-FORCE OBSERVED-APPLY-TORQUE OB-
SERVED-OPEN-FINGERS OBSERVED-APPLY-FORCE OBSERVED-CLOSE-FINGERS)

Suggestions for OBSERVED-APPLY-FORCE are (APPLY-FORCE)...
Working on (OBSERVED-APPLY-FORCE GRIPPERI 5 0 1 -7.5 8.5 -9.5 3.5 4 2 3 2 2 -90)
which suggests (APPLY-FORCE)...Attempting Suggestion Link-Up...Retrieving Suggested
Rule... Found Corresponding Antecedent... Successful... Found
Corresponding Antecedent.. •Successful .• •Working top-down to prove suggestion.. .Working
top-down to prove suggestion... Explanation found.. .Queueing (APPLY-FORCE GRIPPERI -2.0
-5.0 5 0 1 (GRIPPER-CLEAR-TRANSLATE GRIPPERI -7.5
8.5 -9.5 3.5 (GRIPPERI SQUARE1 SQUARE2) 4 2 3 2 2 -90) (AT-COORDINATES -9.5
3.5 GRIPPERI) ((GRIPPER-X GRIPPERI -9.5) (GRIPPER-Y GRIPPERI 3.5) (GRIP-
PER-ANGLE GRIPPERI -90) (GRIPPER-FINGER-SEPARATION GRIPPERI 2)))...
Suggestions for OBSERVED-APPLY-TORQUE are (APPLY-TORQUE)...
Working on (OBSERVED-APPLY-TORQUE GRIPPERI 5 1 2 -90 0 4 2 3 2 2 -9.5 3.5)
which suggests (APPLY-TORQUE)... Attempting Suggestion Link-Up... Retrieving Suggested
Rule... Found Corresponding Antecedent... Successful... Working top
-down to prove suggestion... Explanation found... Queueing (APPLY-TORQUE GRIPPERI 90.0
5 1 2 (GRIPPER-CLEAR-ROTATE GRIPPERI -90 0 (GRIPPERI SQUARE] SQUARE2) 4 2
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1 3 2 2 -9.5 3.5) (AT-ANGLE 0 GRIPPERI) ((GRIPPER-X GRIPPERI -9.5)
(GRIPPER-Y GRIPPERI 3.5) (GRIPPER-ANGLE GRIPPER1 0) (GRIPPER-FINUER-SEPA-
RATION GRIPPERI 2)))...
Suggestions for OBSERVED-OPEN-FINGERS are (OPEN-FINGERS)...
Working on (OBSERVED-OPEN-FINGERS GRIPPERI 5 2 3 2 3.75 -9.5 3.5 0 2 2 4 2 3)
which suggests (OPEN-FINGERS)... Attempting Suggestion Link-Up... Retrieving SuggestedI Rle... .. ,- ,d C orrcspc.d.g Antecedent.. .Successful... Working
top-down to prove suggestion... Explanation found... Queueing (OPEN-FINGERS GRIPPER1
1.75 5 2 3 (GRIPPER-CLEAR--FINGER-ADJUST GRIPPERI 2 3.75 (GRIPPERI SQUAREI
SQUARE2) -9.5 3.5 0 2 2 4 2 3) (AT-WIDTH 3.75 GRIPPERI) ((GRIPPER-X
GRIPPERI -9.5) (GRIPPER-Y GRIPPER1 3.5) (GRIPPER-ANGLE GRIPPERI 0) (GRIP-

PER-FINGER-SEPARATION GRIPPER1 3.75)))...
Suggestions for OBSERVED-APPLY-FORCE are (APPLY-FORCE)...
Working on (OBSERVED-APPLY-FORCE GRIPPERI 5 3 4 -9.5 3.5 4.5 3.5 4 2 3 2 3.75 0)
which suggests (APPLY-FORCE)... Attempting Suggestion Link-Up... Retrieving Suggested
Rule... Found Corresponding Antecedent... Successful... Found
Corresponding Antecedent.. .Successful... Working top-down to prove suggestion... Explanation
found.. .Queueing (APPLY-FORCE GRIPPER1 14.0 0.0 5 3 4 (GRIPPER-APPROACH-SE-3 QUENCE GRIPPER1 14.0 0.0 SQUARE2 Fl F3 4.5 3.5 0 3.75 -9.5
3.5 ?OB-POLY5291 ?GCX5292 ?GCY5293 (GRIPPERI SQUARE1 SQUARE2) 4 2 3 2 0)
(AT-COORDINATES 4.5 3.5 GRIPPERI) ((GRIPPER-X GRIPPER1 4.5) (GRIPPER-Y
GRIPPER1 3.5) (GRIPPER-ANGLE GRIPPER1 0) (GRIPPER-FINGER-SEPARATION GRIP-
PERI 3.7
5)))...
Suggestions for OBSERVED-CLOSE-FINGERS are (CLOSE-FINGERS)...
Working on (OBSERVED-CLOSE-FINGERS GRIPPERI 5 4 5 3.75 3 4.5 3.5 0 3.75 2 4 2 3)
which suggests (CLOSE-FINGERS).. .Attempting Suggestion Link-Up... Retrieving Suggested
Rule ... Found Corresponding Antecedent... Successful... Work

ing top-down to prove suggestion... Explanation found.. .Queueing (CLOSE-FINGERS GRIP-
PERI -0.75 5 4 5 (GRIPPING-SEQUENCE GRIPPER1 SQUARE2 F1 F3 5 3.75 3) (CRIP-
PER-GRIP-PRESSURE GRIPPER1 5) ((GRIPPER-X GRIPPER1 4.5) (GRIPPER-Y
GRIPPERI 3.5) (GRIPPER-ANGLE GRIPPERI 0) (GRIPPER-FINGER-SEPARATION GRIP-
PER1 3)))...I
Queue: (APPLY-FORCE APPLY-TORQUE OPEN-FINGERS APPLY-FORCE CLOSE-FIN-

* GERS)

Suggestions for APPLY-FORCE are (MOVE-GRIPPER-CLEAR APPROACH-TAR-
GET-CLEAR)...
Working on (APPLY-FORCE GRIPPERI -2.0 -5.0 5 0 1 (GRIPPER-CLEAR-TRANSLATE
GRIPPER1 -7.5 8.5 -9.5 3.5 (GRIPPERI SQUAREI SQUARE2) 4 2 3 2 2 -90) (AT-COOR-
DINATES -9.5 3.5 GRIPPERI) ((GRIPPER-X GRIPPER1 -9.5) (GRIPPER-Y GRIPPERI
3.5) (GRIPPER-ANGLE GRIPPERI -90) (GRIPPER-FINGER-SEPARATION GRIPPER1

2))) which suggests (MOVE-GRIPPER-CLEAR APPROACH-TARGET-CLEAR) ... Attempting
Suggestion Link-Up... Retrieving Suggested Rule... Found Corresponding Antecede
nt... Successful... Found Corresponding Antecedent... Unsuccessful... Working top-down to prove
suggestion... Explanation found... Queueing (MOVE-GRIPPER-CLEAR GRIPPERI -2.0 -5.0
-7.5 8.5 -90 2 -9.5 3.5 2 3 4 2 5 0 1 (GRIPPER1 SQU

I
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AREI SQUARE2) ((GRIPPER-X GRIPPERI -9.5) (GRIPPER-Y GRIPPER1 3.5) (GRIP-
PER-ANGLE GRIPPER1 -90) (GRIPPER-FINGER-SEPARATION GRIPPER1 2)))...
Attempting Suggestion Link-Up... Retrieving Suggested Rule... Found Corresponding Antece-
dent.. ,Unsuccessful.. .Suggestions for APPLY-TORQUE are (ROTATE-GRIPPER-CLEAR)...
Working on (APPLY-TORQUE GRIPPER1 90.0 5 1 2 (GRIPPER-CLEAR-ROTATE GRIP-
PER1 -90 0 (GRIPPER1 SQUAREI SQUARE2) 4 2 3 2 2 -9.5 3.5) (AT-ANGLE 0 GRIP-
PERI) ((GRIPPER-X GRIPPERI -9.5) (GRIPPER-Y GRIPPERi _i.5) (GRIPPER-ANGLE
GRIPPE
RI 0) (GRIPPER-FINGER-SEPARATION GRIPPER1 2))) which suggests (ROTATE-GRIP-
PER-CLEAR)... Attempting Suggestion Link-Up... Retrieving Suggested Rule... Found Corre-
sponding Antecedent... Successful, .. Found Corresponding Antecedent.
.. Unsuccessful... Working top-down to prove suggestion... Explanation found... Queueing (RO-
TATE-GRIPPER-CLEAR GRIPPER1 90.0 -9.5 3.5 -90 2 0 2 3 4 2 5 1 2 (GRIPPER1
SQUARE1 SQUARE2) ((GRIPPER-X GRIPPERI -9.5) (GRIPPER-Y GRIPPER
1 3.5) (GRIPPER-ANGLE GRIPPERI 0) (GRIPPER-FINGER-SEPARATION GRIPPER1
2)))...
Suggestions for OPEN-FINGERS are (ADJUST-FINGERS)...
Working on (OPEN-FINGERS GRIPPERI 1.75 5 2 3 (GRIPPER-CLEAR-FINGER-ADJUST

GRIPPER1 2 3.75 (GRIPPER1 SQUAREI SQUARE2) -9.5 3.5 0 2 2 4 2 3) (AT-WIDTH
3.75 GRIPPERI) ((GRIPPER-X GRIPPERI -9.5) (GRIPPER-Y GRIPPER1 3.5) (GRIPPER
-ANGLE GRIPPER1 0) (GRIPPER-FINGER-SEPARATION GRIPPERI 3.75))) which suggests
(ADJUST-FINGERS)... Attempting Suggestion Link-Up... Retrieving Suggested Rule... Found
Corresponding Antecedent... Successful... Found Corresponding A
ntecedent... Unsuccessful.. .Working top-down to prove suggestion.. .Explanation found.. .Queue-
ing (ADJUST-FINGERS GRIPPERI 1.75 5 2 3 (GRIPPER-CLEAR-FINGER-ADJUST GRIP-
PER1 2 3.75 (GRIPPER1 SQUARE1 SQUARE2) -9.5 3.5 0 2 2 4 2 3)
(AT-WIDTH 3.75 GRIPPER1) ((GRIPPER-X GRIPPER1 -9.5) (GRIPPER-Y GRIPPER1

3.5) (GRIPPER-ANGLE GRIPPER1 0) (GRIPPER-FINGER-SEPARATION GRIPPER1
3.75)))...
Suggestions for APPLY-FORCE are (MOVE-GRIPPER-CLEAR APPROACH-TAR-
GET-CLEAR)...
Working on (APPLY-FORCE GRIPPER1 14.0 0.0 5 3 4 (GRIPPER-APPROACH-SEQUENCE

GRIPPER1 14.0 0.0 SQUARE2 F1 F3 4.5 3.5 0 3.75 -9.5 3.5 ?OB-POLY5291 ?GCX5292
?GCY5293 (GRIPPER1 SQUARE1 SQUARE2) 4 2 3 2 0) (AT-COORDINATES 4.5 3.5
GRIPPER1) ((GRIPPER-X GRIPPERI 4.5) (GRIPPER-Y GRIPPER1 3.5) (GRIPPER-ANGLE
GRIPPER1 0) (GRIPPER-FINGER-SEPARATION GRIPPER1 3.75))) which suggests
(MOVE-GRIPPER-CLEAR APPROACH-TARGET-CLEAR) ... Attempting Suggestion
Link-Up...
Retrieving Suggested Rule... Found Corresponding Antecedent... Unsuccessful... Found Corre-
sponding Antecedent... Unsuccessful ... Attempting Suggestion Link-Up... Retrieving Suggested
Rule... Found Corresponding Antecedent... Success
ful... Working top-down to prove suggestion... Explanation found... Queueing (AP-
PROACH-TARGET-CLEAR GRIPPERI SQUARE2 -9.5 3.5 0 3.75 4.5 3.5 2 3 4 2 5 3 4
(GRIPPER1 SQUAREI SQUARE2) ((GRIPPER-X GRIPPER1 4.5) (GRIPPER-Y GRIPPERI
3.5) (GRIPPER-ANGLE GRIPPER1 0) (GRIPPER-FINGER-SEPARATION GRIPPER1

3.75)) F1 F3)...
Suggestions for CLOSE-FINGERS are (GRIP ADJUST-FINGERS)...
Working on (CLOSE-FINGERS GRIPPER1 -0.75 5 4 5 (GRIPPING-SEQUENCE GRIPPERI

SQUARE2 Fl F3 5 3.75 3) (GRIPPER-GRIP-PRESSURE GRIPPERI 5) ((GRIPPER-X GRIP-
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I PERI 4.5) (GRIPPER-Y GRIPPERI 3.5) (GRIPPER-ANGLE GRIPPERI 0) (GRIPPER-FIN
GER-SEPARATION GRIPPERI 3))) which suggests (GRIP ADJUST-FINGERS).. .Attempting
Suggestion Link-Up... Retrieving Suggested Rule... Found Corresponding Antecedent... Success-
ful ... Working top-down to prove suggestion... Explanation
found...Queueing (GRIP GRIPPER1 5 SQUARE2 F1 F3 4 5 3.75 3)...

Attempting Suggestion Link-Up... Retrieving Suggested Rule... Found Corresponding Antece-
dent... Unsuccessful... Found Corresponding Antecedent... Unsuccessful...

Queue: (MOVE-GRIPPER-CLEAR ROTATE-GRIPPER-CLEAR ADJUST-FINGERS AP-
PROACH-TARGET-CLEAR GRIP)

Suggestions for MOVE-GRIPPER-CLEAR are (MOVE-FOR-APPROACH)...
Working on (MOVE-GRIPPER-CLEAR GRIPPER1 -2.0 -5.0 -7.5 8.5 -90 2 -9.5 3.5 2 3 4 2
5 0 1 (GRIPPERI SQUARE1 SQUARE2) ((GRIPPER-X GRIPPERI -9.5) (GRIPPER-Y GRIP-
PER1 3.5) (GRIPPER-ANGLE GRIPPER1 -90) (GRIPPER-FINGER-SEPARATION G
RIPPER1 2))) which suggests (MOVE-FOR-APPROACH) ... Attempting Suggestion
Link-Up... Retrieving Suggested Rule... Found Corresponding Antecedent... Successful... Working
top-down to prove suggestion... Explanation found... Queueing
(MOVE-FOR-APPROACH GRIPPER1 -7.5 8.5 -90 2 -9.5 3.5 2 3 4 2 5 0 1 (GRIPPER1
SQUARE1 SQUARE2) ((GRIPPER-X GRIPPER1 -9.5) (GRIPPER-Y GRIPPER1 3.5) (GRIP-
PER-ANGLE GRIPPER1 -90) (GRIPPER-FINGER-SEPARATION GRIPPER1 2)))...
Suggestions for ROTATE-GRIPPER-CLEAR are (ROTATE-FOR-APPROACH)...
Working on (ROTATE-GRIPPER-CLEAR GRIPPER1 90.0 -9.5 3.5 -90 2 0 2 3 4 2 5 1 2
(GRIPPERI SQUARE1 SQUARE2) ((GRIPPER-X GRIPPER1 -9.5) (GRIPPER-Y GRIPPERI
3.5) (GRIPPER-ANGLE GRIPPERI 0) (GRIPPER-FINGER-SEPARATION GRIPPER1 2)))
which suggests (ROTATE-FOR-APPROACH).. .Attempting Suggestion Link-Up... Retrieving

Suggested Rule... Found Corresponding Antecedent... Successful... Working top-down to prove
suggestion... Explanation found... Queueing (ROTATE-FO
R-APPROACH GRIPPER1 -9.5 3.5 -90 2 0 2 3 4 2 5 1 2 (GRIPPER1 SQUARE1 SQUARE2)
((GRIPPER-X GRIPPERI -9.5) (GRIPPER-Y GRIPPERI 3.5) (GRIPPER-ANGLE GRIPPERI
0) (GRIPPER-FINGER-SEPARATION GRIPPERI 2)))...
Suggestions for ADJUST-FINGERS are (ADJUST-FINGERS-CLEAR)...
Working on (ADJUST-FINGERS GRIPPER1 1.75 5 2 3 (GRIPPER-CLEAR-FINGER-AD-
JUST GRIPPER1 2 3.75 (GRIPPER1 SQUARE1 SQUARE2) -9.5 3.5 0 2 2 4 2 3)
(AT-WIDTH 3.75 GRIPPERI) ((GRIPPER-X GRIPPER1 -9.5) (GRIPPER-Y GRIPPER1 3.5)
(GRIPP
ER-ANGLE GRIPPERI 0) (GRIPPER-FINGER-SEPARATION GRIPPERI 3.75))) which sug-
gests (ADJUST-FINGERS-CLEAR)...Attempting Suggestion Link-Up.. .Retrieving Suggested
Rule... Found Corresponding Antecedent.. .Successful... Found Corresp
onding Antecedent... Unsuccessful.. .Working top-down to prove suggestion... Explanation
found... Queueing (ADJUST-FINGERS-CLEAR GRIPPER1 1.75 ?GRIPPER-X6559 ?GRIP-
PER-Y6570 ?GRIPPER-ANGLE6571 2 3.75 2 3 4 2 5 2 3 (GRIPPER1 SQUAR
El SQUARE2) ((GRIPPER-X GRIPPER1 -9.5) (GRIPPER-Y GRIPPERI 3.5) (GRIP-3 PER-ANGLE GRIPPER1 0) (GRIPPER-FINGER-SEPARATION GRIPPER1 3.75)))...
Suggestions for APPROACH-TARGET-CLEAR are (APPROACH-TARGET)...
Working on (APPROACH-TARGET-CLEAR GRIPPERI SQUARE2 -9.5 3.5 0 3.75 4.5 3.5 2
3 4 2 5 3 4 (GRIPPER1 SQUARE1 SQUARE2) ((GRIPPER-X GRIPPER] 4.5) (GRIPPER-Y

GRIPPER1 3.5) (GRIPPER-ANGLE GRIPPERI 0) (GRIPPER-FINGER-SEPARATION GRI
PPERI 3.75)) Fl F3) which suggests (APPROACH-TARGET)...Attempting Suggestion
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Link-Up... Retrieving Suggested Rule... Found Corresponding Antecedent.. .Successful... Working
top-down to prove suggestion... Explanation found... Queu
eing (APPROACH-TARGET GRIPPERI SQUARE2 -9.5 3.5 0 3.75 4.5 3.5 0 3.0 0 4 ?GRIP-
PING-FORCE6611 5 F1 F3 0 0)...
Suggestions for GRIP are (ACHIEVE-FRICTIONAL-FORCE)...
Working on (GRIP GRIPPERI 5 SQUARE2 F1 F3 4 5 3.75 3) which suggests
(ACHIEVE-FRICTIONAL-FORCE)...Attempting Suggestion Link-Up. .Retrieving Suggested
Rule... Found Corresponding Antecedent... Successful... Working top-down to
prove suggestion... Explanation found... Queueing (ACHIEVE-FRICTIONAL-FORCE GRIP-
PER1 SQUARE2 5 0 5 ?GRIPPING-FORCE6611 5)...

Queue: (MOVE-FOR-APPROACH ROTATE-FOR-APPROACH ADJUST-FINGERS-CLEAR
APPROACH-TARGET ACHIEVE-FRICTIONAL-FORCE)

Suggestions for MOVE-FOR-APPROACH are (PREPARE-FOR-APPROACH)...
Working on (MOVE-FOR-APPROACH GRIPPER1 -7.5 8.5 -90 2 -9.5 3.5 2 3 4 2 5 0 1
(GRIPPER1 SQUARE] SQUARE2) ((GRIPPER-X GRIPPER] -9.5) (GRIPPER-Y GRIPPER]
3.5) (GRIPPER-ANGLE GRIPPER1 -90) (GRIPPER-FINGER-SEPARATION GRIPPER1 2))
) which suggests (PREPARE-FOR-APPROACH)... Attempting Suggestion Link-Up... Retrieving
Suggested Rule... Found Corresponding Antecedent... Successful.. .Working top-down to prove
suggestion... Explanation found... Queueing (PREPARE
-FOR-APPROACH GRIPPER1 -9.5 3.5 0 3.75 2 3 4 2 5 0 3 (GRIPPER] SQUARE1
SQUARE2) ((GRIPPER-X GRIPPER1 -9.5) (GRIPPER-Y GRIPPER1 3.5) (GRIPPER-AN-
GLE GRIPPER1 0) (GRIPPER-FINGER-SEPARATION GRIPPER1 3.75)))...
Suggestions for ROTATE-FOR-APPROACH are (PREPARE-FOR-APPROACH)...
Working on (ROTATE-FOR-APPROACH GRIPPER1 -9.5 3.5 -90 2 0 2 3 4 2 5 1 2 (GRIP-
PER1 SQTJARE1 SQUARE2) ((GRIPPER-X GRIPPERI -9.5) (GRIPPER-Y GRIPPER] 3.5)
(GRIPPER-ANGLE GRIPPERI 0) (GRIPPER-FINGER-SEPARATION GRIPPER] 2))) which
suggests (PREPARE-FOR-APPROACH)... Attempting Suggestion Link-Up... Retrieving Sug-

gested Rule... Found Corresponding Antecedent... Successful.. .Working top-down to prove sug-
gestion... Explanation found... Queueing (PREPARE-FOR-AP
PROACH GRIPPER1 -9.5 3.5 0 3.75 2 3 4 2 5 0 3 (GRIPPER1 SQUARE1 SQUARE2)
((GRIPPER-X GRIPPER] -9.5) (GRIPPER-Y GRIPPER1 3.5) (GRIPPER-ANGLE GRIPPER1
0) (GRIPPER-FINGER-SEPARATION GRIPPER1 3.75)))...
Suggestions for ADJUST-FINGERS-CLEAR are (ADJUST-FINGERS-FOR-APPROACH)...
Working on (ADJUST-FINGERS-CLEAR GRIPPER] 1.75 -9.5 3.5 0 2 3.75 2 3 4 2 5 2 3
(GRIPPER] SQUARE1 SQUARE2) ((GRIPPER-X GRIPPERI -9.5) (GRIPPER-Y GRIPPER1
3.5) (GRIPPER-ANGLE GRIPPER] 0) (GRIPPER-FINGER-SEPARATION GRIPPER] 3.7
5))) which suggests (ADJUST-FINGERS-FOR-APPROACH).. .Attempting Suggestion
Link-Up... Retrieving Suggested Rule... Found Corresponding Antecedent.. .Successful... Working
top-down to prove suggestion... Explanation found... Queuein
g (ADJUST-FINGERS-FOR-APPROACH GRIPPER] -9.5 3.5 0 2 3.75 2 3 4 2 5 2 3 (GRIP-
PERI SQUARE1 SQUARE2) ((GRIPPER-X GRIPPER] -9.5) (GRIPPER-Y GRIPPER] 3.5)
(GRIPPER-ANGLE GRIPPER1 0) (GRIPPER-FINGER-SEPARATION GRIPPER] 3.75)))...

Suggestions for APPROACH-TARGET are (ACHIEVE-FRICTIONAL-FORCE)...
Working on (APPROACH-TARGET GRIPPER] SQUARE2 -9.5 3.5 0 3.75 4.5 3.5 0 3.0 0 4
?GRIPPING-FORCE6611 5 F1 F3 0 0) which suggests (ACMtIEVE-FRIC-
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I TIONAL-FORCE) ... Attempting Suggestion Link-Up... Retrieving Suggested Rule... Found Co
rresponding Antecedent.. .Successful... Working top-down to prove suggestion... Explanation
found.. .Queueing (ACHIEVE-FRICTIONAL-FORCE GRIPPERI SQUARE2 5 0 5 ?GRIP-
PING-FORCE6611 5)...
Suggestions for ACHIEVE-FRICTIONAL-FORCE are (GRASP)...
Working on (ACHIEVE-FRICTIONAL-FORCE GRIPPERI SQUARE2 5 0 5 ?GRIP-
PING-FORCE6611 5) which suggests (GRASP)...Attempting Suggestion Link-Up...Retrieving
Suggested Rule... Found Corresponding Antecedent... Successful.. Working to
p-down to prove suggestion... Explanation found... Queueing (GRASP GRIPPERI SQUARE2
?GRIPPING-FORCE6611 5 0 5)...

3 Queue: (PREPARE-FOR-APPROACH ADJUST-FINGERS-FOR-APPROACH
ACHIEVE-FRICTIONAL-FORCE GRASP)

* Suggestions for PREPARE-FOR-APPROACH are (APPROACH-TARGET)...
Working on (PREPARE-FOR-APPROACH GRIPPER1 -9.5 3.5 0 3.75 2 3 4 2 5 0 3 (GRIP-
PER1 SQUARE1 SQUARE2) ((GRIPPER-X GRIPPER1 -9.5) (GRIPPER-Y GRIPPER1 3.5)
(GRIPPER-ANGLE GRIPPER1 0) (GRIPPER-FINGER-SEPARATION GRIPPERI 3.75))) wh
ich suggests (APPROACH-TARGET).. .Attempting Suggestion Link-Up.. .Retrieving Suggested
Rule... Found Corresponding Antecedent... Successful.. .Working top-down to prove sugges-
tion... Explanation found... Queueing (APPROACH-TARGET
GRIPPER1 SQUARE2 -9.5 3.5 0 3.75 4.5 3.5 0 3.0 0 4 ?GRIPPING-FORCE6933 5 Fl F3 0
0)...
Suggestions for ADJUST-FINGERS-FOR-APPROACH are (PREPARE-FOR-APPROACH)...

Working on (ADJUST-FINGERS-FOR-APPROACH GRIPPER1 -9.5 3.5 0 2 3.75 2 3 4 2 5 2
3 (GRIPPERI SQUARE1 SQUARE2) ((GRIPPER-X GRIPPER1 -9.5) (GRIPPER-Y GRIP-
PER1 3.5) (GRIPPER-ANGLE GRIPPER1 0) (GRIPPER-FINGER-SEPARATION GRIPPER1I 3
.75))) which suggests (PREPARE-FOR-APPROACH) ... Attempting Suggestion Link-Up... Re-
trieving Suggested Rule... Found Corresponding Antecedent... Successful.. .Working top-down to
prove suggestion... Explanation found... Queueing (PR
EPARE-FOR-APPROACH GRIPPERI -9.5 3.5 0 3.75 2 3 4 2 5 0 3 (GRIPPERI SQUAREI
SQUARE2) ((GRIPPER-X GRIPPER1 -9.5) (GRIPPER-Y GRIPPER1 3.5) (GRIPPER-AN-
GLE GRIPPERI 0) (GRIPPER-FINGER-SEPARATION GRIPPER1 3.75)))...
Suggestions for ACHIEVE-FRICTIONAL-FORCE are (GRASP)...
Working on (ACHIEVE-FRICTIONAL-FORCE GRIPPERI SQUARE2 5 0 5 ?GRIP-
PING-FORCE6611 5) which suggests (GRASP)...Attempting Suggestion Link-Up ... Retrieving
Suggested Rule... Found Corresponding Antecedent.. .Successful... Working to
p-down to prove suggestion... Explanation found•.. Queueing (GRASP GRIPPERI SQUARE23 ?GRIPPING-FORCE6611 5 0 5)...
Suggestions for GRASP are NIL...
Working on (GRASP GRIPPER1 SQUARE2 ?GRIPPING-FORCE6611 5 0 5) which suggests3 NIL... Enter Name For Cache Assignment-->Shape Error
Generalizing An Explanation...
Generalizing An Explanation...
Cleaning Up Rules & Object Hierarchy...
;;; Loading source file "rules.lisp"
;;; Warning: Redefining function LIKELY-DEMON
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Updating SQUARE2's OBJECT-SHAPE-APPROXIMATION To Account For A Contact At
(3.0 5.25).
Installing Learned Rule...
Asking System To Grasp An Object...

GRASP
GRIPPER1 < ------ Gripper Name
SQUARE2 < --- Object
5 < - - Force For Gripping
5 <-..-- Force For Gripper Movements
0 < . . - Numeric Starting Time
?E < -.- Numeric Ending Time

Plan Formulated...

EXECUTE-APPLY-FORCE
GRIPPER1 <----- Gripper Name
-1.25 <- Delta X
-5.0 < . .. Delta Y
5 <Force For Gripper Movements
0 < Numeric Starting Time
1 < Numeric Ending Time
GRIPPER-CLEAR-TRANSLATE

GRIPPERI < Gripper Name
-7.5 <- Current Gripper X-Coordinate
8.5 < Current Gripper Y-Coordinate
-8.75 < Target X-Coordinate
3.5 < - Target Y-Coordinate
(GRIPPERI SQUARE1 SQUARE2)
4 < Gripper Beam Length
2 < Gripper Beam Width
3 < . . Gripper Finger Length
2 <- Gripper Finger Width
2 < - Current Gripper Finger Separation
-90 < -- Current Gripper Angle

AT-COORDINATES
-8.75 < X-Coordinate
3.5 <---- - Y-Coordinate
GRIPPER1 <--- Gripper Name

?TERM-VALUES546955006980 <- Dump Of Gripper State After The Operation

EXECUTE-APPLY-TORQUE
GRIPPER1 <-- -- Gripper Name
90.0 < - .-.... Delta Angle
5 <.--- Force For Gripper Movements
I < - Numeric Starting Time
2 < - Numeric Ending Time
GRIPPER-CLEAR-ROTATE
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U GRIPPER1 <---- Gripper Name
-90 < ---------- Current Gripper Angle
0.0 < ------ Target Gripper Angle
(GRIPPER1 SQUARE1 SQUARE2)
4 <-... -- Gripper Beam Length
2 < - Gripper Beam Width
3< --. . -. Gripper Finger Length
2 < Gripper Finger Width
2 <- Current Gripper Finger Separation
-8.75 <----. Current Gripper X-Coordinate
3.5 <A-L Current Gripper Y-CoordinateAT-ANGLE

0.0 < -- Angle
GRIPPER1 <-- Gripper Name

?TERM-VALUES565456836984 <- Dump Of Gripper State After The Operation

EXECUTE-OPEN-FINGERS
GRIPPER1 < - Gripper Name
1.25 < -Delta Width
5 < -.. Force For Gripper Movements
2 < - Numeric Starting Time
3 < --. Numeric Ending Time
GRIPPER-CLEAR-FINGER-ADJUST

GRIPPERI < - Gripper Name
2 <-- Current Gripper Finger Separation
3.25 < - Target Gripper Width
(GRIPPER1 SQUARE1 SQUARE2)
-8.75 < Current Gripper X-Coordinate
3.5 < Current Gripper Y-Coordinate

0.0 < Current Gripper Angle
2I<____ Current Gripper Finger Separatio1
2 < Gripper Beam Width
4 <- Gripper Beam Length
2 < Gripper Finger Width
3 < . ...- Gripper Finger Length

AT-WIDTH
3.25 <-Width

GRIPPER1 <----- Gripper Name
?TERMINATION-VALUES580958436988 <-- Dump Of Gripper State After The Operation

EXECUTE-APPLY-FORCE
GRIPPER1 < - - Gripper Name
13.25 < ------- Delta X
0.0 <-- -- Delta Y
5 <-- Force For Gripper Movements
3 < Numeric Starting Time
4 < -- Numeric Ending Time
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GRIPPER-APPROACH-SEQUENCE i
GRIPPER1 <----- Gripper Name
13.25 < - Delta X
0.0 <--- Delta Y I
SQUARE2 <-...... Object
Fl <-....... One Face Of The Object
F3 < -- Another Face Of The Object
4.5 <- -- Target X-Coordinate
3.5 <- -Target Y-Coordinate
0.0 <---- Target Gripper Angle
3.25 < Target Gripper Width
-8.75 <----- Current Gripper X-Coordinate
3.5 <-- Current Gripper Y-Coordinate i
#<Structure POLY 10FBA2AB> <- Polygon Representation Of The Object
1.375 <---- Nearest Gripper X-Position Prior To Object Contact
3.5 < . .... Nearest Gripper Y-Position Prior To Object Contact
(GRIPPERI SQUARE1 SQUARE2)
4 < Gripper Beam Length
2 <- - Gripper Beam Width
3 < ---- Gripper Finger Length
2 <--- Gripper Finger Width
0.0 < Current Gripper Angle

AT-COORDINATES
4.5 < X-Coordinate
3.5 <- -- Y-Coordinate
GRIPPER1 <- - Gripper Name

?TERMINATION-VALUES610361286999 <-- Dump Of Gripper State After The Operation

EXECUTE-CLOSE-FINGERS
GRIPPERI < - Gripper Name
-0.25 < - Delta Width
?FORCE64847001 <-- Force For Gripper Movements 3
4 < Numeric Starting Time
5 <-- - Numeric Ending Time
GRIPPING-SEQUENCE3

GRIPPER1 <---- Gripper Name
SQUARE2 < Object
F1 < - One Face Of The Object
F3 < ----- Another Face Of The Object
?FORCE64847001 <- Motor Force Applied

3.25 < Current Gripper Finger Separation
3.0 <--- Target Gripper Width

GRIPPER-GRIP-PRESSURE
GRIPPERI < - Gripper Name
?FORCE64847001 <-- Object

7TERMINATION-VALUES645764687004 <-- Dump Of Gripper State After The Operation

Executing Plan...
Plan Worked Successfully
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