
Least Squares Adjustment:
Linear and Nonlinear Weighted Regression Analysis

Allan Aasbjerg Nielsen

Technical University of Denmark
National Space Institute/Informatics and Mathematical Modelling

Building 321, DK-2800 Kgs. Lyngby, Denmark
phone +45 4525 3425, fax +45 4588 1397

e-mail aa@space.dtu.dk
www.imm.dtu.dk/∼aa

29 August 2012

Preface

This note primarily describes the mathematics of least squares regression analysis as it is often used in
geodesy including land surveying and satellite based positioning applications. In these fields regression is
often termed adjustment1. The note also contains a couple of typical land surveying and satellite positioning
application examples. In these application areas we are typically interested in the parameters of the model
(often 2- or 3-D positions) and their uncertainties and not in predictive modelling which is often the main
concern in other regression analysis applications.

Adjustment is often used to obtain estimates of relevant parameters in an over-determined system of equations
which may arise from deliberately carrying out more measurements than actually needed to determine the set
of desired parameters. An example may be the determination of a geographical position based on information
from a number of Global Navigation Satellite System (GNSS) satellites also known as space vehicles (SV).
It takes at least four SVs to determine the position (and the clock error) of a GNSS receiver. Often more than
four SVs are used and we use adjustment to obtain a better estimate of the geographical position (and the
clock error) and to obtain estimates of the uncertainty with which the position is determined.

Regression analysis is used in many other fields of application both in the natural, the technical and the social
sciences. Examples may be curve fitting, calibration, establishing relationships between different variables
in an experiment or in a survey, etc. Regression analysis is probably one the most used statistical techniques
around.

Dr. Anna B. O. Jensen provided insight and data for the Global Positioning System (GPS) example.

Matlab code and sections that are considered as either traditional land surveying material or as advanced
material are typeset with smaller fonts.

Comments in general or on for example unavoidable typos, shortcomings and errors are most welcome.

1in Danish “udjævning”

2 Least Squares Adjustment

Contents

Preface 1

Contents 2

1 Linear Least Squares 4

1.1 Ordinary Least Squares, OLS . 7

1.1.1 Linear Constraints . 8

1.1.2 Parameter Estimates . 8

1.1.3 Dispersion and Significance of Estimates . 11

1.1.4 Residual and Influence Analysis . 13

1.1.5 Singular Value Decomposition, SVD . 15

1.1.6 QR Decomposition . 15

1.1.7 Cholesky Decomposition . 15

1.2 Weighted Least Squares, WLS . 16

1.2.1 Parameter Estimates . 17

1.2.2 Weight Assignment . 18

1.2.3 Dispersion and Significance of Estimates . 21

1.2.4 WLS as OLS . 24

1.3 General Least Squares, GLS . 24

2 Nonlinear Least Squares 24

2.1 Nonlinear WLS by Linearization . 26

2.1.1 Parameter Estimates . 26

2.1.2 Iterative Solution . 27

2.1.3 Dispersion and Significance of Estimates . 27

2.1.4 Confidence Ellipsoids . 28

2.1.5 Dispersion of a Function of Estimated Parameters 29

2.1.6 The Derivative Matrix . 29

2.2 Nonlinear WLS by other Methods . 46

Allan Aasbjerg Nielsen 3

2.2.1 The Gradient or Steepest Descent Method . 46

2.2.2 Newton’s Method . 47

2.2.3 The Gauss-Newton Method . 47

2.2.4 The Levenberg-Marquardt Method . 49

3 Final Comments 49

Literature 50

Index 52

4 Least Squares Adjustment

1 Linear Least Squares

Example 1 (from Conradsen, 1984, 1B p. 5.58) Figure 1 shows a plot of clock error as a function of time
passed since a calibration of the clock. The relationship between time passed and the clock error seems to
be linear (or affine) and it would be interesting to estimate a straight line through the points in the plot, i.e.,
estimate the slope of the line and the intercept with the axis time = 0. This is a typical regression analysis
task (see also Example 2). [end of example]

0 5 10 15 20 25 30 35 40 45 50
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Time [days]

C
lo

ck
 e

rr
or

 [s
ec

on
ds

]

Figure 1: Example with clock error as a function of time.

Let’s start by studying a situation where we want to predict one (response) variable y (as clock error in
Example 1) as a linear function of one (predictor) variable x (as time in Example 1). When we have one
predictor variable only we talk about simple regression. We have n joint observations of x (x1, . . . , xn) and
y (y1, . . . , yn) and we write the model where the parameter θ1 is the slope of the line as

y1 = θ1x1 + e1 (1)
y2 = θ1x2 + e2 (2)

... (3)
yn = θ1xn + en. (4)

The eis are termed the residuals; they are the differences between the data yi and the model θ1xi. Rewrite to
get

e1 = y1 − θ1x1 (5)
e2 = y2 − θ1x2 (6)

... (7)
en = yn − θ1xn. (8)

In order to find the best line through (the origo and) the point cloud {xi yi}ni=1 by means of the least squares

Allan Aasbjerg Nielsen 5

principle write

ϵ =
1

2

n∑
i=1

e2i =
1

2

n∑
i=1

(yi − θ1xi)
2 (9)

and find the derivative of ϵ with respect to the slope θ1

dϵ

dθ1
=

n∑
i=1

(yi − θ1xi)(−xi) =
n∑

i=1

(θ1x
2
i − xiyi). (10)

Setting the derivative equal to zero and denoting the solution θ̂1 we get

θ̂1
n∑

i=1

x2
i =

n∑
i=1

xiyi (11)

or (omitting the summation indices for clarity)

θ̂1 =

∑
xiyi∑
x2
i

. (12)

Since

d2ϵ

dθ21
=

n∑
i=1

x2
i > 0 (13)

for non-trivial cases θ̂1 gives a minimum for ϵ. This θ̂1 gives the best straight line through the origo and the
point cloud, “best” in the sense that it minimizes (half) the sum of the squared residuals measured along the
y-axis, i.e., perpendicular to the x-axis. In other words: the xis are considered as uncertainty- or error-free
constants, all the uncertainty or error is associated with the yis.

Let’s look at another situation where we want to predict one (response) variable y as an affine function of one
(predictor) variable x. We have n joint observations of x and y and write the model where the parameter θ0
is the intercept of the line with the y-axis and the parameter θ1 is the slope of the line as

y1 = θ0 + θ1x1 + e1 (14)
y2 = θ0 + θ1x2 + e2 (15)

... (16)
yn = θ0 + θ1xn + en. (17)

Rewrite to get

e1 = y1 − (θ0 + θ1x1) (18)
e2 = y2 − (θ0 + θ1x2) (19)

... (20)
en = yn − (θ0 + θ1xn). (21)

In order to find the best line through the point cloud {xi yi}ni=1 (and this time not necessarily through the
origo) by means of the least squares principle write

ϵ =
1

2

n∑
i=1

e2i =
1

2

n∑
i=1

(yi − (θ0 + θ1xi))
2 (22)

6 Least Squares Adjustment

and find the partial derivatives of ϵ with respect to the intercept θ0 and the slope θ1

∂ϵ

∂θ0
=

n∑
i=1

(yi − (θ0 + θ1xi))(−1) = −
n∑

i=1

yi + nθ0 + θ1
n∑

i=1

xi (23)

∂ϵ

∂θ1
=

n∑
i=1

(yi − (θ0 + θ1xi))(−xi) = −
n∑

i=1

xiyi + θ0
n∑

i=1

xi + θ1
n∑

i=1

x2
i . (24)

Setting the partial derivatives equal to zero and denoting the solutions θ̂0 and θ̂1 we get (omitting the summa-
tion indices for clarity)

θ̂0 =

∑
x2
i

∑
yi −

∑
xi

∑
xiyi

n
∑

x2
i − (

∑
xi)2

(25)

θ̂1 =
n
∑

xiyi −
∑

xi
∑

yi
n
∑

x2
i − (

∑
xi)2

. (26)

We see that θ̂1
∑

xi + nθ̂0 =
∑

yi or ȳ = θ̂0 + θ̂1x̄ (leading to
∑

êi =
∑
[yi − (θ̂0 + θ̂1xi)] = 0) where

x̄ =
∑

xi/n is the mean value of x and ȳ =
∑

yi/n is the mean value of y. Another way of writing this is

θ̂0 = ȳ − θ̂1x̄ (27)

θ̂1 =

∑
(xi − x̄)(yi − ȳ)∑

(xi − x̄)2
=

σ̂xy

σ̂2
x

. (28)

where σ̂xy =
∑
(xi − x̄)(yi − ȳ)/(n− 1) is the covariance between x and y, and σ̂2

x =
∑
(xi − x̄)2/(n− 1) is

the variance of x. Also in this case θ̂0 and θ̂1 give a minimum for ϵ, see page 8.

Example 2 (continuing Example 1) With time points (xi) [3 6 7 9 11 12 14 16 18 19 23 24 33 35 39 41 42 44
45 49]T days and clock errors (yi) [0.435 0.706 0.729 0.975 1.063 1.228 1.342 1.491 1.671 1.696 2.122 2.181
2.938 3.135 3.419 3.724 3.705 3.820 3.945 4.320]T seconds we get θ̂0 = 0.1689 seconds and θ̂1 = 0.08422
seconds/day. This line is plotted in Figure 1. Judged visually the line seems to model the data fairly well.

[end of example]

More generally let us consider n observations of one dependent (or response) variable y and p′ independent
(or explanatory or predictor) variables xj, j = 1, . . . , p′. The xjs are also called the regressors. When
we have more than one regressor we talk about multiple regression analysis. The words “dependent” and
“independent” are not used in their probabilistic meaning here but are merely meant to indicate that xj in
principle may vary freely and that y varies depending on xj . Our task is to 1) estimate the parameters θj in
the model below, and 2) predict the expectation value of y where we consider y as a function of the θjs and
not of the xjs which are considered as constants. For the ith set of observations we have

yi = yi(θ0, θ1, . . . , θp′ ;x1, . . . , xp′) + ei (29)
= yi(θ;x) + ei (30)
= yi(θ) + ei (31)
= (θ0 +) θ1xi1 + · · ·+ θp′xip′ + ei, i = 1, . . . , n (32)

where θ = [θ0 θ1 . . . θp′]
T , x = [x1 . . . xp′]

T , and ei is the difference between the data and the model for
observation i with expectation value E{ei} = 0. ei is termed the residual or the error. The last equation above
is written with the constant or the intercept θ0 in parenthesis since we may want to include θ0 in the model or
we may not want to, see also Examples 3-5. Write all n equations in matrix form

y1
y2
...
yn

 =


1 x11 · · · x1p′

1 x21 · · · x2p′

...
...

1 xn1 · · · xnp′




θ0
θ1
...
θp′

+


e1
e2
...
en

 (33)

Allan Aasbjerg Nielsen 7

or

y = Xθ + e (34)

where

• y is n× 1,

• X is n× p, p = p′ + 1 if an intercept θ0 is estimated, p = p′ if not,

• θ is p× 1, and

• e is n× 1 with expectation E{e} = 0.

If we don’t want to include θ0 in the model, θ0 is omitted from θ and so is the first column of ones in X .

Equations 33 and 34 are termed the observation equations2. The columns in X must be linearly independent,
i.e., X is full column rank. Here we study the situation where the system of equations is over-determined,
i.e., we have more observations than parameters, n > p. f = n − p is termed the number of degrees of
freedom3.

The model is linear in the parameters θ but not necessarily linear in y and xj (for instance y could be replaced
by ln y or 1/y, or xj could be replaced by √

xj , extra columns with products xkxl called interactions could be
added to X or similarly). Transformations of y have implications for the nature of the residual.

Finding an optimal θ given a set of observed data (the ys and the xjs) and an objective function (or a cost or
a merit function, see below) is referred to as regression analysis in statistics. The elements of the vector θ are
also called the regression coefficients. In some application sciences such as geodesy including land surveying
regression analysis is termed adjustment4.

All uncertainty (or error) is associated with y, the xjs are considered as constants which may be reasonable
or not depending on (the genesis of) the data to be analyzed.

1.1 Ordinary Least Squares, OLS

In OLS we assume that the variance-covariance matrix also known as the dispersion matrix of y is propor-
tional to the identity matrix, D{y} = D{e} = σ2I , i.e., all residuals have the same variance and they are
uncorrelated. We minimize the objective function ϵ = 1/2

∑n
i=1 e

2
i = eTe/2 (hence the name least squares:

we minimize (half) the sum of squared differences between the data and the model, i.e., (half) the sum of the
squared residuals)

ϵ = 1/2(y −Xθ)T (y −Xθ) (35)
= 1/2(yTy − yTXθ − θTXTy + θTXTXθ) (36)
= 1/2(yTy − 2θTXTy + θTXTXθ). (37)

The derivative with respect to θ is

∂ϵ

∂θ
= −XTy +XTXθ. (38)

2in Danish “observationsligningerne”
3in Danish “antal frihedsgrader” or “antal overbestemmelser”
4in Danish “udjævning”

8 Least Squares Adjustment

When the columns of X are linearly independent the second order derivative ∂2ϵ/∂θ∂θT = XTX is positive
definite. Therefore we have a minimum for ϵ. Note that the p× p XTX is symmetric, (XTX)T = XTX .

We find the OLS estimate for θ termed θ̂OLS (pronounced theta-hat) by setting ∂ϵ/∂θ = 0 to obtain the
normal equations5

XTXθ̂OLS = XTy. (39)

1.1.1 Linear Constraints

Linear constraints can be build into the normal equations by defining

KTθ = c (40)

where the vector c and the columns of matrix K define the constraints, one constraint per column of K and per element of c. If for
example θ = [θ1 θ2 θ3 θ4 θ5]

T and θ2, θ3 and θ5 are the three angles in a triangle which must sum to 200 gon (with no constraints
on θ1 and θ4), use KT = [0 1 1 0 1] and c = 200 gon.

Also, we must add a term to the expression for ϵ in Equation 35 above setting the constraints to zero

L = ϵ+ λT (KTθ − c) (41)

where λ is a vector of so-called Lagrangian multipliers.

Setting the partial derivatives of Equations 41 and 40 to zero leads to[
XTX K

KT 0

] [
θ̂OLS

λ

]
=

[
XTy
c

]
. (42)

1.1.2 Parameter Estimates

If the symmetric matrix XTX is “well behaved”, i.e., it is full rank (equal to p) corresponding to linearly
independent columns in X a formal solution is

θ̂OLS = (XTX)−1XT y. (43)

For reasons of numerical stability especially in situations with nearly linear dependencies between the columns
of X (causing slight alterations to the observed values in X to lead to substantial changes in the estimated θ̂;
this problem is known as multicollinearity) the system of normal equations should not be solved by inverting
XTX but rather by means of SVD, QR or Cholesky decomposition, see Sections 1.1.5, 1.1.6 and 1.1.7.

If we apply Equation 43 to the simple regression problem in Equations 14-17 of course we get the same
solution as in Equations 25 and 26 (as an exercise you may want to check this).

When we apply regression analysis in other application areas we are often interested in predicting the response
variable based on new data not used in the estimation of the parameters or the regression coefficients θ̂. In
land surveying and GNSS applications we are typically interested in θ̂ and not on this predictive modelling.

(In the linear case θ̂OLS can be found in one go because eTe is quadratic in θ; unlike in the nonlinear case
dealt with in Section 2 we don’t need an initial value for θ and an iterative procedure.)

5in Danish “normalligningerne”

Allan Aasbjerg Nielsen 9

�

��

��

�

�

Figure 2: ŷ is the projection of y onto the hyperplane spanned by the vectors xi in the columns of matrix X
(modified from Hastie, Tibshirani and Friedman (2009) by Jacob S. Vestergaard).

The estimate for y termed ŷ (pronounced y-hat) is

ŷ = Xθ̂OLS = X(XTX)−1XTy = Hy (44)

where H = X(XTX)−1XT is the so-called hat matrix since it transforms or projects y into ŷ (H “puts
the hat on y”). In geodesy (and land surveying) these equations are termed the fundamental equations6. H
is a projection matrix: it is symmetric, H = HT , and idempotent, HH = H . We also have HX = X and
that the trace of H , trH = tr(X(XTX)−1XT) = tr(XTX(XTX)−1) = trIp = p.

The estimate of the error term e (also known as the residual) termed ê (pronounced e-hat) is

ê = y − ŷ = y −Hy = (I −H)y. (45)

Also I −H is symmetric, I −H = (I −H)T , and idempotent, (I −H)(I −H) = I −H . We also have
(I −H)X = 0 and tr(I −H) = n− p.

X and ê, and ŷ and ê are orthogonal: XT ê = 0 and ŷT ê = 0. Geometrically this means that our analysis
finds the orthogonal projection ŷ of y onto the hyperplane spanned by the linearly independent columns of
X . this gives the shortest distance between y and ŷ, see Figure 2.

Since the expectation of θ̂OLS

E{θ̂OLS} = E{(XTX)−1XTy} (46)
= (XTX)−1XTE{y} (47)
= (XTX)−1XTE{Xθ + e} (48)
= θ, (49)

θ̂OLS is unbiased or a central estimator.

Example 3 (from Strang and Borre, 1997, p. 306) Between four points A, B, C and D situated on a straight
line we have measured all pairwise distances AB, BC, CD, AC, AD and BD. The six measurements are
y = [3.17 1.12 2.25 4.31 6.51 3.36]T m. We wish to determine the distances θ1 = AB, θ2 = BC and
θ3 = CD by means of linear least squares adjustment. We have n = 6, p = 3 and f = 3. The six observation

6in Danish “fundamentalligningerne”

10 Least Squares Adjustment

equations are

y1 = θ1 + e1 (50)
y2 = θ2 + e2 (51)
y3 = θ3 + e3 (52)
y4 = θ1 + θ2 + e4 (53)
y5 = θ1 + θ2 + θ3 + e5 (54)
y6 = θ2 + θ3 + e6. (55)

In matrix form we get (this is y = Xθ + e; units are m)

3.17
1.12
2.25
4.31
6.51
3.36


=



1 0 0
0 1 0
0 0 1
1 1 0
1 1 1
0 1 1


 θ1
θ2
θ3

+



e1
e2
e3
e4
e5
e6


. (56)

The normal equations are (this is XTXθ̂ = XTy; units are m) 3 2 1
2 4 2
1 2 3


 θ1
θ2
θ3

 =

 13.99
15.30
12.12

 . (57)

The hat matrix is

H =



1/2 −1/4 0 1/4 1/4 −1/4
−1/4 1/2 −1/4 1/4 0 1/4

0 −1/4 1/2 −1/4 1/4 1/4
1/4 1/4 −1/4 1/2 1/4 0
1/4 0 1/4 1/4 1/2 1/4

−1/4 1/4 1/4 0 1/4 1/2


. (58)

The solution is θ̂ = [3.1700 1.1225 2.2350]T m, see Matlab code in page 12.

Now, let us estimate an intercept θ0 also corresponding to an imprecise zero mark of the distance measuring
device used. In this case we have n = 6, p = 4 and f = 2 and we get (in m)

3.17
1.12
2.25
4.31
6.51
3.36


=



1 1 0 0
1 0 1 0
1 0 0 1
1 1 1 0
1 1 1 1
1 0 1 1




θ0
θ1
θ2
θ3

+



e1
e2
e3
e4
e5
e6


. (59)

The normal equations in this case are (in m)
6 3 4 3
3 3 2 1
4 2 4 2
3 1 2 3



θ0
θ1
θ2
θ3

 =


20.72
13.99
15.30
12.12

 . (60)

Allan Aasbjerg Nielsen 11

The hat matrix is

H =



3/4 0 1/4 1/4 0 −1/4
0 3/4 0 1/4 −1/4 1/4

1/4 0 3/4 −1/4 0 1/4
1/4 1/4 −1/4 1/2 1/4 0
0 −1/4 0 1/4 3/4 1/4

−1/4 1/4 1/4 0 1/4 1/2


. (61)

The solution is θ̂ = [0.0150 3.1625 1.1150 2.2275]T m, see Matlab code in page 12. [end of example]

1.1.3 Dispersion and Significance of Estimates

Dispersion or variance-covariance matrices for y, θ̂OLS , ŷ and ê are

D{y} = σ2I (62)
D{θ̂OLS} = D{(XTX)−1XTy} (63)

= (XTX)−1XTD{y}X(XTX)−1 (64)
= σ2(XTX)−1 (65)

D{ŷ} = D{Xθ̂OLS} (66)
= XD{θ̂OLS}XT (67)
= σ2H , V{ŷi} = σ2Hii (68)

D{ê} = D{(I −H)y} (69)
= (I −H)D{y}(I −H)T (70)
= σ2(I −H) = D{y} − D{ŷ}, V{êi} = σ2(1−Hii). (71)

The ith diagonal element of H , Hii, is called the leverage7 for observation i. We see that a high leverage
gives a high variance for ŷi indicating that observation i is poorly predicted by the regression model. This
again indicates that observation i may be an outlier, see also Section 1.1.4 on residual and influence analysis.

For the sum of squared errors (SSE, also called RSS for the residual sum of squares) we get

êT ê = yT (I −H)y (72)

with expectation E{êT ê} = σ2(n− p). The mean squared error MSE is

σ̂2 = êT ê/(n− p) (73)

and the root mean squared error RMSE is σ̂ also known as s. σ̂ = s has the same unit as ei and yi.

The square roots of the diagonal elements of the dispersion matrices in Equations 62, 65, 68 and 71 are the
standard errors of the quantities in question. For example, the standard error of θ̂i denoted σ̂θi is the square
root of the ith diagonal element of σ2(XTX)−1.

Example 4 (continuing Example 3) The estimated residuals in the case with no intercept are ê = [0.0000

−0.0025 0.0150 0.0175 −0.0175 0.0025]T m. Therefore the RMSE or σ̂ = s =
√
êT ê/3 m = 0.0168 m.

7in Danish “potentialet”

12 Least Squares Adjustment

The inverse of XTX is  3 2 1
2 4 2
1 2 3


−1

=

 1/2 −1/4 0
−1/4 1/2 −1/4

0 −1/4 1/2

 . (74)

This gives standard deviations for θ, σ̂θ = [0.0119 0.0119 0.0119]T m. The case with an intercept gives
σ̂ = s = 0.0177 m and standard deviations for θ, σ̂θ = [0.0177 0.0153 0.0153 0.0153]T m. [end of example]

So far we have assumed only that E{e} = 0 and that D{e} = σ2I , i.e., we have made no assumptions about the distribution of e.
Let us further assume that the eis are independent and identically distributed (written as iid) following a normal distribution. Then
θ̂OLS (which in this case corresponds to a maximum likelihood estimate) follows a multivariate normal distribution with mean θ
and dispersion σ2(XTX)−1. Assuming that θ̂i = ci where ci is a constant it can be shown that the ratio

zi =
θ̂i − ci
σ̂θi

(75)

follows a t distribution with n− p degrees of freedom. This can be used to test whether θ̂i − ci is significantly different from 0. If
for example zi with ci = 0 has a small absolute value then θ̂i is not significantly different from 0 and xi should be removed from
the model.

Example 5 (continuing Example 4) The t-test statistics zi with ci = 0 in the case with no intercept are [266.3 94.31 187.8]T

which are all very large compared to 95% or 99% percentiles in a two-sided t-test with three degrees of freedom, 3.182 and 5.841
respectively. The probabilities of finding larger values of |zi| are [0.0000 0.0000 0.0000]T . Hence all parameter estimates are
significantly different from zero. The t-test statistics zi with ci = 0 in the case with an intercept are [0.8485 206.6 72.83 145.5]T ;
all but the first value are very large compared to 95% and 99% percentiles in a two-sided t-test with two degrees of freedom,
4.303 and 9.925 respectively. The probabilities of finding larger values of |zi| are [0.4855 0.0000 0.0002 0.0000]T . Therefore the
estimate of θ0 is insignificant (i.e., it is not significantly different from zero) and the intercept corresponding to an imprecise zero
mark of the distance measuring device used should not be included in the model. [end of example]

Often a measure of variance reduction termed the coefficient of determination denoted R2 and a version that
adjusts for the number of parameters denoted R2

adj are defined in the statistical literature:

SST0 = yTy (if no intercept θ0 is estimated)
SST1 = (y − ȳ)T (y − ȳ) (if an intercept θ0 is estimated)
SSE = êT ê
R2 = 1− SSE/SSTi

R2
adj = 1− (1−R2)(n− i)/(n− p) where i is 0 or 1 as indicated by SSTi.

Both R2 and R2
adj lie in the interval [0,1]. For a good model with a good fit to the data both R2 and R2

adj

should be close to 1.
Matlab code for Examples 3 to 5

% (C) Copyright 2003
% Allan Aasbjerg Nielsen
% aa@imm.dtu.dk, www.imm.dtu.dk/˜aa

% model without intercept

y = [3.17 1.12 2.25 4.31 6.51 3.36]’;
X = [1 0 0; 0 1 0; 0 0 1; 1 1 0; 1 1 1; 0 1 1];
[n,p] = size(X);
f = n-p;

thetah = X\y;
yh = X*thetah;
eh = y-yh;
s2 = eh’*eh/f;
s = sqrt(s2);
iXX = inv(X’*X);
Dthetah = s2.*iXX;
stdthetah = sqrt(diag(Dthetah));

Allan Aasbjerg Nielsen 13

t = thetah./stdthetah;
pt = betainc(f./(f+t.ˆ2),0.5*f,0.5);

H = X*iXX*X’;
Hii = diag(H);

% model with intercept

X = [ones(n,1) X];
[n,p] = size(X);
f = n-p;

thetah = X\y;
yh = X*thetah;
eh = y-yh;
s2 = eh’*eh/f;
s = sqrt(s2);
iXX = inv(X’*X);
Dthetah = s2.*iXX;
stdthetah = sqrt(diag(Dthetah));
t = thetah./stdthetah;
pt = betainc(f./(f+t.ˆ2),0.5*f,0.5);

H = X*iXX*X’;
Hii = diag(H);

The Matlab backslash operator “\” or mldivide, “left matrix divide”, in this case with X non-square computes the QR factor-
ization (see Section 1.1.6) of X and finds the least squares solution by back-substitution.

Probabilities in the t distribution are calculated by means of the incomplete beta function evaluated in Matlab by the betainc
function.

1.1.4 Residual and Influence Analysis

Residual analysis is performed to check the model and to find possible outliers or gross errors in the data.
Often inspection of listings or plots of ê against ŷ and ê against the columns in X (the explanatory variables
or the regressors) are useful. No systematic tendencies should be observable in these listings or plots.

Standardized residuals

e′i =
êi

σ̂
√
1−Hii

(76)

which have unit variance (see Equation 71) are often used.

Studentized or jackknifed residuals (regression omitting observation i to obtain a prediction for the omitted
observation ŷ(i) and an estimate of the corresponding error variance σ̂2

(i))

e∗i =
yi − ŷ(i)√

V{yi − ŷ(i)}
(77)

are also often used. We don’t have to redo the adjustment each time an observation is left out since it can be
shown that

e∗i = e′i

/√√√√n− p− e
′2
i

n− p− 1
. (78)

For the sum of the diagonal elements Hii of the hat matrix we have trH =
∑n

i=1 Hii = p which means that
the average value H̄ii = p/n. Therefore an alarm for very influential observations which may be outliers

14 Least Squares Adjustment

could be set if Hii > 2p/n (or maybe if Hii > 3p/n). As mentioned above Hii is termed the leverage for
observation i. None of the observations in Example 3 have high leverages.

Another often used measure of influence of the individual observations is called Cook’s distance also known
as Cook’s D. Cook’s D for observation i measures the distance between the vector of estimated parameters
with and without observation i (often skipping the intercept θ̂0 if estimated). Other influence statistics exist.

Example 6 In this example two data sets are simulated. The first data set contains 100 observations with
one outlier. This outlier is detected by means of its residual, the leverage of the outlier is low since the
observation does not influence the regression line, see Figure 3. In the top-left panel the dashed line is from
a regression with an insignificant intercept and the solid line is from a regression without the intercept. The
outlier has a huge residual, see the bottom-left panel. The mean leverage is p/n = 0.01. Only a few leverages
are greater then 0.02, see the top-right panel. No leverages are greater then 0.03.

The second data set contains four observations with one outlier, see Figure 3 bottom-right panel. This outlier
(observation 4 with coordinates (100,10)) is detected by means of its leverage, the residual of the outlier
is low, see Table 1. The mean leverage is p/n = 0.5. The leverage of the outlier is by far the greatest,
H44 ≃ 2p/n. [end of example]

0 0.2 0.4 0.6 0.8 1
−2

0

2

4

6

8

10

12
First simulated example

0 20 40 60 80 100
0

0.005

0.01

0.015

0.02

0.025

0.03

Leverage, H
ii

0 0.2 0.4 0.6 0.8 1
−2

0

2

4

6

8

10

12
Residuals

0 20 40 60 80 100
0

2

4

6

8

10

12
Second simulated example

Figure 3: Simulated examples with 1) one outlier detected by the residual (top-left and bottom-left) and 2)
one outlier (observation 4) detected by the leverage (bottom-right).

Allan Aasbjerg Nielsen 15

1.1.5 Singular Value Decomposition, SVD

In general the data matrix X can be factorized as

X = V ΓUT , (79)

where V is n × p, Γ is p × p diagonal with the singular values of X on the diagonal, and U is p × p with UTU = UUT =
V TV = Ip. This leads to the following solution to the normal equations

XTXθ̂OLS = XTy (80)
(V ΓUT)T (V ΓUT)θ̂OLS = (V ΓUT)Ty (81)

UΓV TV ΓUT θ̂OLS = UΓV Ty (82)
UΓ2UT θ̂OLS = UΓV Ty (83)

ΓUT θ̂OLS = V Ty (84)

and therefore

θ̂OLS = UΓ−1V Ty. (85)

1.1.6 QR Decomposition

An alternative factorization of X is

X = QR, (86)

where Q is n× p with QTQ = Ip and R is p× p upper triangular. This leads to

XTXθ̂OLS = XTy (87)
(QR)TQRθ̂OLS = (QR)Ty (88)

RTQTQRθ̂OLS = RTQTy (89)
Rθ̂OLS = QTy. (90)

This system of equations can be solved by back-substitution.

1.1.7 Cholesky Decomposition

Both the SVD and the QR factorizations work on X . Here we factorize XTX

XTX = CCT , (91)

where C is p× p lower triangular. This leads to

XTXθ̂OLS = XTy (92)
CCT θ̂OLS = XTy. (93)

This system of equations can be solved by two times back-substitution.

Table 1: Residuals and leverages for simulated example with one outlier (observation 4) detected by the
leverage.

Obs x y Residual Leverage
1 1 1 –0.9119 0.3402
2 2 2 0.0062 0.3333
3 3 3 0.9244 0.3266
4 100 10 –0.0187 0.9998

16 Least Squares Adjustment

A Trick to Obtain
√
êT ê with the Cholesky Decomposition XTX = CCT , C is p× p lower triangular

CCT θ̂OLS = XTy (94)
C(CT θ̂OLS) = XTy (95)

so Cz = XTy with CT θ̂OLS = z. Expand p× pXTX with one more row and column to (p+ 1)× (p+ 1)

C̃C̃
T
=

[
XTX XTy

(XTy)T yTy

]
. (96)

With

C̃ =

[
C 0
zT s

]
and C̃

T
=

[
CT z
0T s

]
(97)

we get

C̃C̃
T
=

[
CCT Cz

zTCT zTz + s2

]
. (98)

We see that

s2 = yTy − zTz (99)

= yTy − θ̂
T

OLSCCT θ̂OLS (100)

= yTy − θ̂
T

OLSX
Ty (101)

= yTy − yTXθ̂OLS (102)
= yTy − yTX(XTX)−1XTy (103)
= yTy − yTHy (104)
= yT (I −H)y (105)
= êT ê. (106)

Hence, after Cholesky decomposition of the expanded matrix, the lower right element of C̃ is
√
êT ê. The last column in C̃

T

(skipping s in the last row) is CT θ̂OLS , hence θ̂OLS can be found by back-substitution.

1.2 Weighted Least Squares, WLS

In WLS we allow the uncorrelated residuals to have different variances and assume that D{y} = D{e} =
diag[σ2

1, . . . , σ
2
n]. We assign a weight pi (p for pondus which is Latin for weight) to each observation so that

p1σ
2
1 = · · · = piσ

2
i = · · · = pnσ

2
n = 1 · σ2

0 or σ2
i = σ2

0/pi with pi > 0. σ0 is termed the standard deviation of
unit weight8. Therefore D{y} = D{e} = σ2

0 diag[1/p1, . . . , 1/pn] = σ2
0 P

−1 and we minimize the objective
function ϵ = 1/2

∑n
i=1 pie

2
i = eTPe/2 where

P =


p1 0 · · · 0
0 p2 · · · 0
...

...
0 0 · · · pn

 . (107)

We get

ϵ = 1/2(y −Xθ)TP (y −Xθ) (108)
= 1/2(yTPy − yTPXθ − θTXTPy + θTXTPXθ) (109)
= 1/2(yTPy − 2θTXTPy + θTXTPXθ). (110)

8in Danish “spredningen på vægtenheden”

Allan Aasbjerg Nielsen 17

The derivative with respect to θ is

∂ϵ

∂θ
= −XTPy +XTPXθ. (111)

When the columns of X are linearly independent the second order derivative ∂2ϵ/∂θ∂θT = XTPX is
positive definite. Therefore we have a minimum for ϵ. Note that XTPX is symmetric, (XTPX)T =
XTPX .

We find the WLS estimate for θ termed θ̂WLS (pronounced theta-hat) by setting ∂ϵ/∂θ = 0 to obtain the
normal equations

XTPXθ̂WLS = XTPy (112)

or Nθ̂WLS = c with N = XTPX and c = XTPy.

1.2.1 Parameter Estimates

If the symmetric matrix N = XTPX is “well behaved”, i.e., it is full rank (equal to p) corresponding to
linearly independent columns in X a formal solution is

θ̂WLS = (XTPX)−1XTP y = N−1c. (113)

For reasons of numerical stability especially in situations with nearly linear dependencies between the columns
of X (causing slight alterations to the observed values in X to lead to substantial changes in the estimated θ̂;
this problem is known as multicollinearity) the system of normal equations should not be solved by inverting
XTPX but rather by means of SVD, QR or Cholesky decomposition, see Sections 1.1.5, 1.1.6 and 1.1.7.

When we apply regression analysis in other application areas we are often interested in predicting the response
variable based on new data not used in the estimation of the parameters or the regression coefficients θ̂. In
land surveying and GNSS applications we are typically interested in θ̂ and not on this predictive modelling.

(In the linear case θ̂WLS can be found in one go because eTPe is quadratic in θ; unlike in the nonlinear case
dealt with in Section 2 we don’t need an initial value for θ and an iterative procedure.)

The estimate for y termed ŷ (pronounced y-hat) is

ŷ = Xθ̂WLS = X(XTPX)−1XTPy = Hy = XN−1c (114)

where H = X(XTPX)−1XTP is the so-called hat matrix since it transforms y into ŷ. In geodesy
(and land surveying) these equations are termed the fundamental equations. In WLS regression H is not
symmetric, H ̸= HT . H is idempotent HH = H . We also have HX = X and that the trace of H ,
trH = tr(X(XTPX)−1XTP) = tr(XTPX(XTPX)−1) = trIp = p. Also PH = HTP = HTPH
which is symmetric.

The estimate of the error term e (also known as the residual) termed ê (pronounced e-hat) is

ê = y − ŷ = y −Hy = (I −H)y. (115)

In WLS regression I−H is not symmetric, I −H ̸= (I−H)T . I−H is idempotent, (I−H)(I −H) =
I − H . We also have (I − H)X = 0 and tr(I − H) = n − p. Also P (I − H) = (I − H)TP =
(I −H)TP (I −H) which is symmetric.

18 Least Squares Adjustment

X and ê, and ŷ and ê are orthogonal (with respect to P): XTP ê = 0 and ŷTP ê = 0. Geometrically
this means that our analysis finds the orthogonal projection (with respect to P) ŷ of y onto the hyperplane
spanned by the linearly independent columns of X . This gives the shortest distance between y and ŷ in the
norm defined by P .

Since the expectation of θ̂WLS is

E{θ̂WLS} = E{(XTPX)−1XTPy} (116)
= (XTPX)−1XTPE{y} (117)
= (XTPX)−1XTPE{Xθ + e} (118)
= θ, (119)

θ̂WLS is unbiased or a central estimator.

1.2.2 Weight Assignment

In general we assign weights to observations so that the weight of an observation is proportional to the inverse
expected (prior) variance of that observation, pi ∝ 1/σ2

i,prior.

In traditional land surveying and GNSS we deal with observations of distances, directions and heights. In
WLS we minimize half the weighted sum of squared residuals ϵ = 1/2

∑n
i=1 pie

2
i . For this sum to make sense

all terms must have the same unit. This can be obtained by demanding that pie2i has no unit. This means that
pi has units of 1/e2i or 1/y2i . If we consider the weight definition σ2

0 = p1σ
2
1 = · · · = piσ

2
i = · · · = pnσ

2
n

we see that σ2
0 has no unit. Choosing pi = 1/σ2

i,prior we obtain that σ0 = 1 if measurements are carried out
with the expected (prior) variances (and the regression model is correct). σi,prior depends on the quality of the
instruments applied and how measurements are performed. Below formulas for weights are given, see Jacobi
(1977).

Distance Measurements Here we use

pi =
n

s2G + a2s2a
(120)

where

• n is the number of observations,

• sG is the combined expected standard deviation of the distance measuring instrument itself and on
centering of the device,

• sa is the expected distance dependent standard deviation of the distance measuring instrument, and

• a is the distance between the two points in question.

Directional Measurements Here we use

pi =
n

n s2c
a2

+ s2t
(121)

where

Allan Aasbjerg Nielsen 19

• n is the number of observations,

• sc is the expected standard deviation on centering of the device, and

• st is the expected standard deviation of one observed direction.

Levelling or Height Measurements Here we traditionally choose weights pi equal to the number of mea-
surements divided by the distance between the points in question measured in units of km, i.e., a weight of 1
is assigned to one measured height difference if that height difference is measured over a distance of 1 km.
Since here in general pi ̸= 1/σ2

i,prior this choice of weights does not ensure σ0 = 1. In this case the units for
the weights are not those of the inverse prior variances so σ0 is not unit-free, and also this tradition makes it
impossible to carry out adjustment of combined height, direction and distance observations.

In conclusion we see that the weights for distances and directions change if the distance a between points
change. The weights chosen for height measurements are generally not equal to the inverse of the expected
(prior) variance of the observations. Therefore they do not lead to σ0 = 1. Both distance and directional
measurements lead to nonlinear least squares problems, see Section 2.

Example 7 (from Mærsk-Møller and Frederiksen, 1984, p. 74) From four points Q, A, B and C we have
measured all possible pairwise height differences, see Figure 4. All measurements are carried out twice. Q has
a known height KQ = 34.294 m which is considered as fixed. We wish to determine the heights in points A,
B and C by means of weighted least squares adjustment. These heights are called θ1, θ2 and θ3 respectively.
The mean of the two height measurements are (with the distance di between points in parentheses)

from Q to A 0.905 m (0.300 km),
from A to B 1.675 m (0.450 km),
from C to B 8.445 m (0.350 km),
from C to Q 5.864 m (0.300 km),
from Q to B 2.578 m (0.500 km), and
from C to A 6.765 m (0.450 km).

The weight for each observation is pi = 2/di, see immediately above, resulting in (units are in km−1)

P =



6.6667 0 0 0 0 0
0 4.4444 0 0 0 0
0 0 5.7143 0 0 0
0 0 0 6.6667 0 0
0 0 0 0 4.0000 0
0 0 0 0 0 4.4444


. (122)

The six observation equations are

y1 = θ1 −KQ + e1 (123)
y2 = θ2 − θ1 + e2 (124)
y3 = θ2 − θ3 + e3 (125)
y4 = KQ − θ3 + e4 (126)
y5 = θ2 −KQ + e5 (127)
y6 = θ1 − θ3 + e6. (128)

20 Least Squares Adjustment

Figure 4: From four points Q, A, B and C we measure all possible pairwise height differences (from Mærsk-
Møller and Frederiksen, 1984).

In matrix form we get (units are m)



0.905
1.675
8.445
5.864
2.578
6.765


=



1 0 0
−1 1 0
0 1 −1
0 0 −1
0 1 0
1 0 −1


 θ1
θ2
θ3

+



−34.294
0.000
0.000
34.294

−34.294
0.000


+



e1
e2
e3
e4
e5
e6


(129)

or (with a slight misuse of notation since we reuse the θis and the eis; this is y = Xθ + e; units are mm)



35, 199
1, 675
8, 445

−28, 430
36, 872
6, 765


=



1 0 0
−1 1 0
0 1 −1
0 0 −1
0 1 0
1 0 −1


 θ1
θ2
θ3

+



e1
e2
e3
e4
e5
e6


. (130)

The normal equations are (this is XTPXθ̂ = XTPy; units are mm)

 15.5556 −4.4444 −4.4444
−4.4444 14.1587 −5.7143
−4.4444 −5.7143 16.8254


 θ1
θ2
θ3

 =

 257, 282.22
202, 189.59
111, 209.52

 . (131)

Allan Aasbjerg Nielsen 21

The hat matrix is

H =



0.5807 −0.1985 0.0287 −0.2495 0.1698 0.2208
−0.2977 0.4655 0.2941 −0.0574 0.2403 −0.2367
0.0335 0.2288 0.5452 0.2595 0.2260 0.1953

−0.2495 −0.0383 0.2224 0.5664 −0.1841 0.2112
0.2830 0.2670 0.3228 −0.3069 0.4101 −0.0159
0.3312 −0.2367 0.2511 0.3169 −0.0143 0.4320


(132)

and p/n = 3/6 = 0.5. No observations have high leverages. The solution is θ̂ = [35, 197.8 36, 873.6 28, 430.3]T

mm, see Matlab code in page 22. [end of example]

1.2.3 Dispersion and Significance of Estimates

Dispersion or variance-covariance matrices for y, θ̂WLS , ŷ and ê are

D{y} = σ2
0P

−1 (133)
D{θ̂WLS} = σ2

0(X
TPX)−1 = σ2

0N
−1 (134)

D{ŷ} = σ2
0XN−1XT (135)

D{ê} = σ2
0(P

−1 −XN−1XT) = D{y} − D{ŷ}. (136)

For the weighted sum of squared errors (SSE, also called RSS for the residual sum of squares) we get

êTP ê = yT (I −H)TP (I −H)y (137)
= yT (I −H)T (P − PH)y (138)
= yT (P − PH −HTP +HTPH)y (139)
= yTP (I −H)y (140)

with expectation E{êTP ê} = σ2
0(n− p). The mean squared error MSE is

σ̂2
0 = êTP ê/(n− p) (141)

and the root mean squared error RMSE is σ̂0 also known as s0. σ̂0 = s0 has no unit. For well performed mea-
surements (with no outliers or gross errors), a good model, and properly chosen weights (see Section 1.2.2),
s0 ≃ 1. This is due to the fact that assuming that the eis with variance σ2

0/pi are independent and normally distributed, êTP ê
(with well chosen pi, see Section 1.2.2) follows a χ2 distribution with n − p degrees of freedom which has expectation n − p.
Therefore êTP ê/(n− p) has expectation 1 and its square root is approximately 1.

What if s0 is larger than 1? How much larger than 1 is too large? If we assume that the eis are independent and follow a normal
distribution, êTP ê = (n − p)s20 follows a χ2 distribution with n − p degrees of freedom. If the probability of finding (n − p)s20
larger than the observed value is much smaller than the traditionally used 0.05 (5%) or 0.01 (1%), then s0 is too large.

The square roots of the diagonal elements of the dispersion matrices in Equations 133, 134, 135 and 136
are the standard errors of the quantities in question. For example, the standard error of θ̂i denoted σ̂θi is the
square root of the ith diagonal element of σ2

0(X
TPX)−1.

Example 8 (continuing Example 7) The estimated residuals are ê = [1.1941 −0.7605 1.6879 0.2543 −1.5664

−2.5516]T mm. Therefore the RMSE or σ̂0 = s0 =
√
êTP ê/3 mm/km1/2 = 4.7448 mm/km1/2. The inverse

of XTPX is 15.556 −4.4444 −4.4444
−4.4444 14.159 −5.7143
−4.4444 −5.7143 16.825


−1

=

 0.087106 0.042447 0.037425
0.042447 0.10253 0.046034
0.037425 0.046034 0.084954

 . (142)

22 Least Squares Adjustment

This gives standard deviations for θ, σ̂θ = [1.40 1.52 1.38]T mm.

Although the weighting scheme for levelling is not designed to give s0 = 1 (with no unit) we look into the magnitude of s0 for
illustration. s0 is larger than 1. Had the weighting scheme been designed to obtain s0 = 1 (with no unit) would s0 = 4.7448 be too
large? If the eis are independent and follow a normal distribution, êTP ê = (n− p)s20 follows a χ2 distribution with three degrees
of freedom. The probability of finding (n− p)s20 larger than the observed 3× 4.74482 = 67.5382 is smaller than 10−13 which is
much smaller than the traditionally used 0.05 or 0.01. So s0 is too large. Judged from the residuals, the standard deviations and the
t-test statistics (see Example 9) the fit to the model is excellent. Again for illustration: had the weights been one tenth of the values
used above, s0 would be 4.7448/

√
10 = 1.5004, again larger than 1. The probability of finding (n−p)s20 > 3×1.50042 = 6.7538

is 0.0802. Therefore this value of s0 would be suitably small. [end of example]

If we assume that the eis are independent and follow a normal distribution θ̂WLS follows a multivariate normal distribution with
mean θ and dispersion σ2

0(X
TPX)−1. Assuming that θ̂i = ci where ci is a constant it can be shown that the ratio

zi =
θ̂i − ci
σ̂θi

(143)

follows a t distribution with n− p degrees of freedom. This can be used to test whether θ̂i − ci is significantly different from 0. If
for example zi with ci = 0 has a small absolute value then θ̂i is not significantly different from 0 and xi should be removed from
the model.

Example 9 (continuing Example 8) The t-test statistics zi with ci = 0 are [25, 135 24, 270 20, 558]T which are all extremely
large compared to 95% or 99% percentiles in a two-sided t-test with three degrees of freedom, 3.182 and 5.841 respectively. To
double precision the probabilities of finding larger values of |zi| are [0 0 0]T . All parameter estimates are significantly different
from zero. [end of example]

Matlab code for Examples 7 to 9

% (C) Copyright 2003
% Allan Aasbjerg Nielsen
% aa@imm.dtu.dk, www.imm.dtu.dk/˜aa

Kq = 34.294;
X = [1 0 0;-1 1 0;0 1 -1;0 0 -1;0 1 0;1 0 -1];
[n p] = size(X);
%number of degrees of freedom
f = n-p;
dist = [0.30 0.45 0.35 0.30 0.50 0.45];
P = diag(2./dist); % units [kmˆ(-1)]
%P = 0.1*P; % This gives a better s0
%OLS
%P = eye(size(X,1));
y = [.905 1.675 8.445 5.864 2.578 6.765]’;

%units are mm
y = 1000*y;
Kq = 1000*Kq;

cst = Kq.*[1 0 0 -1 1 0]’;
y = y+cst;
%OLS by "\" operator: mldivide
%thetahat = X’*X\(X’*y)
N = X’*P;
c = N*y;
N = N*X;
%WLS
thetahat = N\c;
yhat = X*thetahat;
ehat = y-yhat;
yhat = yhat-cst;
%MSE
SSE = ehat’*P*ehat;
s02 = SSE/f;
%RMSE
s0 = sqrt(s02);

%Variance/covariance matrix of the observations, y
Dy = s02.*inv(P);
%Standard deviations

Allan Aasbjerg Nielsen 23

stdy = sqrt(diag(Dy));

%Variance/covariance matrix of the adjusted elements, thetahat
Ninv = inv(N);
Dthetahat = s02.*Ninv;
%Standard deviations
stdthetahat = sqrt(diag(Dthetahat));

%Variance/covariance matrix of the adjusted observations, yhat
Dyhat = s02.*X*Ninv*X’;
%Standard deviations
stdyhat = sqrt(diag(Dyhat));

%Variance/covariance matrix of the adjusted residuals, ehat
Dehat = Dy-Dyhat;
%Standard deviations
stdehat = sqrt(diag(Dehat));

%Correlations between adjusted elements, thetahat
aux = diag(1./stdthetahat);
corthetahat = aux*Dthetahat*aux;

% tests

% t-values and probabilities of finding larger |t|
% pt should be smaller than, say, (5% or) 1%
t = thetahat./stdthetahat;
pt = betainc(f./(f+t.ˆ2),0.5*f,0.5);

% probability of finding larger s02
% should be greater than, say, 5% (or 1%)
pchi2 = 1-gammainc(0.5*SSE,0.5*f);

Probabilities in the χ2 distribution are calculated by means of the incomplete gamma function evaluated in Matlab by the gammainc
function.

A Trick to Obtain
√
êTP ê with the Cholesky Decomposition XTPX = CCT , C p× p lower triangular

CCT θ̂WLS = XTPy (144)
C(CT θ̂WLS) = XTPy (145)

so Cz = XTPy with CT θ̂WLS = z. Expand p× pXTPX with one more row and column to (p+ 1)× (p+ 1)

C̃C̃
T
=

[
XTPX XTPy

(XTPy)T yTPy

]
. (146)

With

C̃ =

[
C 0
zT s

]
and C̃

T
=

[
CT z
0T s

]
(147)

we get

C̃C̃
T
=

[
CCT Cz

zTCT zTz + s2

]
. (148)

We see that

s2 = yTPy − zTz (149)

= yTPy − θ̂
T

WLSCCT θ̂WLS (150)

= yTPy − θ̂
T

WLSX
TPy (151)

= yTPy − yTPXθ̂WLS (152)
= yTPy − yTPX(XTPX)−1XTPy (153)
= yTP (I −X(XTPX)−1XTP)y (154)
= êTP ê. (155)

Hence, after Cholesky decomposition of the expanded matrix, the lower right element of C̃ is
√
êTP ê. The last column in C̃

T

(skipping s in the last row) is CT θ̂WLS , hence θ̂WLS can be found by back-substitution.

24 Least Squares Adjustment

1.2.4 WLS as OLS

The WLS problem can be turned into an OLS problem by replacing X by X̃ = P 1/2X and y by ỹ = P 1/2y
with P 1/2 = diag[

√
p1, . . . ,

√
pn] to get the OLS normal equations

XTPXθ̂WLS = XTPy (156)
(P 1/2X)T (P 1/2X)θ̂WLS = (P 1/2X)T (P 1/2y) (157)

X̃
T
X̃θ̂WLS = X̃

T
ỹ. (158)

1.3 General Least Squares, GLS

In GLS the residuals may be correlated and we assume that D{y} = D{e} = Σ. So Σ is the dispersion
or variance-covariance matrix of the residuals possibly with off-diagonal elements. This may be the case for
instance when we work on differenced data and not directly on observed data. We minimize the objective
function ϵ = eTΣ−1e/2

ϵ = 1/2(y −Xθ)TΣ−1(y −Xθ) (159)
= 1/2(yTΣ−1y − yTΣ−1Xθ − θTXTΣ−1y + θTXTΣ−1Xθ) (160)
= 1/2(yTΣ−1y − 2θTXTΣ−1y + θTXTΣ−1Xθ). (161)

Just as in the WLS case we obtain the normal equations

XTΣ−1Xθ̂GLS = XTΣ−1y. (162)

If the symmetric matrix XTΣ−1X is “well behaved”, i.e., it is full rank (equal to p) corresponding to linearly
independent columns in X a formal solution is

θ̂GLS = (XTΣ−1X)−1XTΣ−1 y. (163)

The GLS problem can be turned into an OLS problem by means of the Cholesky decomposition of Σ = CCT

(or of Σ−1)

XTΣ−1Xθ̂GLS = XTΣ−1y (164)
XTC−TC−1Xθ̂GLS = XTC−TC−1y (165)

(C−1X)T (C−1X)θ̂GLS = (C−1X)T (C−1y) (166)

X̃
T
X̃θ̂GLS = X̃

T
ỹ, (167)

i.e., replace X by X̃ = C−1X and y by ỹ = C−1y.

2 Nonlinear Least Squares

Consider y as a general, nonlinear function of the θjs where f can subsume a constant term if present

yi = fi(θ1, . . . , θp) + ei, i = 1, . . . , n. (168)

Allan Aasbjerg Nielsen 25

In the traditional land surveying notation of Mærsk-Møller and Frederiksen (1984) we have (yi ∼ ℓi, fi ∼
Fi, θj ∼ xj, and ei ∼ vi)

ℓi = Fi(x1, . . . , xp) + vi, i = 1, . . . , n. (169)

(Mærsk-Møller and Frederiksen (1984) use −vi; whether we use +vi or −vi is irrelevant for LS methods.)
Several methods are available to solve this problem, see Sections 2.2.1, 2.2.2, 2.2.3 and 2.2.4. Here we use a
linearization method.

If we have one parameter x only we get (we omit the observation index i)

ℓ = F (x) + v. (170)

In geodesy and land surveying the parameters are often called elements. We perform a Taylor expansion of
F around a chosen initial value x∗9

ℓ = F (x∗) + F ′(x∗)(x− x∗) +
1

2!
F ′′(x∗)(x− x∗)2 +

1

3!
F ′′′(x∗)(x− x∗)3 + · · ·+ v (171)

and retain up till the first order term only (i.e., we linearize F near x∗ to approximate v2 to a quadratic near
x∗; a single prime ′ denotes the first order derivative, two primes ′′ denote the second order derivative etc.)

ℓ ≃ F (x∗) + F ′(x∗)(x− x∗) + v. (172)

Geometrically speaking we work on the tangent of F (x) at x∗.

If we have p parameters or elements x = [x1, . . . , xp]
T we get

ℓ = F (x1, . . . , xp) + v = F (x) + v (173)

and from a Taylor expansion we retain the first order terms only

ℓ ≃ F (x∗
1, . . . , x

∗
p) +

∂F

∂x1

∣∣∣∣∣
x1=x∗

1

(x1 − x∗
1) + · · ·+ ∂F

∂xp

∣∣∣∣∣
xp=x∗

p

(xp − x∗
p) + v (174)

or

ℓ ≃ F (x∗) + [∇F (x∗)]T (x− x∗) + v (175)

where ∇F (x∗) is the gradient of F , [∇F (x∗)]T = [∂F/∂x1 . . . ∂F/∂xp]x=x∗ , evaluated at x = x∗ =
[x∗

1, . . . , x
∗
p]

T . Geometrically speaking we work in the tangent hyperplane of F (x) at x∗.

Write all n equations in vector notation
ℓ1
ℓ2
...
ℓn

 =


F1(x)
F2(x)

...
Fn(x)

+


v1
v2
...
vn

 (176)

or

ℓ = F (x) + v (177)

9in Danish “foreløbig værdi” or “foreløbigt element”

26 Least Squares Adjustment

and get

ℓ ≃ F (x∗) +A(x− x∗) + v (178)

where the n× p derivative matrix A is

A =
∂F

∂x
=

[
∂F

∂x1

· · · ∂F

∂xp

]
=


∂F1

∂x1
· · · ∂F1

∂xp

...
∂Fn

∂x1
· · · ∂Fn

∂xp

 (179)

with all Aij = ∂Fi/∂xj evaluated at xj = x∗
j . Therefore we get (here we use “=” instead of the correct “≃”)

k = A∆+ v (180)

where k = ℓ − F (x∗) and ∆ = x − x∗ (Mærsk-Møller and Frederiksen (1984) use k = F (x∗) − ℓ).
ℓ̂ = F (x̂) are termed the fundamental equations in geodesy and land surveying. Equations 177 and 180 are
termed the observation equations. Equation 180 is a linearized version.

2.1 Nonlinear WLS by Linearization

If we compare k = A∆ + v in Equation 180 with the linear expression y = Xθ + e in Equation 34 and
the normal equations for the linear WLS problem in Equation 112, we get the normal equations for the WLS
estimate ∆̂ of the increment ∆

ATPA∆̂ = ATPk (181)

or N∆̂ = c with N = ATPA and c = ATPk (Mærsk-Møller and Frederiksen (1984) use −k and
therefore also −c).

2.1.1 Parameter Estimates

If the symmetric matrix N = ATPA is “well behaved”, i.e., it is full rank (equal to p) corresponding to
linearly independent columns in A a formal solution is

∆̂ = (ATPA)−1ATP k = N−1c. (182)

For reasons of numerical stability especially in situations with nearly linear dependencies between the columns
of A (causing slight alterations to the values in A to lead to substantial changes in the estimated ∆̂; this prob-
lem is known as multicollinearity) the system of normal equations should not be solved by inverting ATPA
but rather by means of SVD, QR or Cholesky decomposition, see Sections 1.1.5, 1.1.6 and 1.1.7.

When we apply regression analysis in other application areas we are often interested in predicting the response
variable based on new data not used in the estimation of the parameters or the regression coefficients x̂. In
land surveying and GNSS applications we are typically interested in x̂ and not on this predictive modelling.

Allan Aasbjerg Nielsen 27

2.1.2 Iterative Solution

To find the solution we update x∗ to x∗+∆̂ and go again. For how long do we “go again” or iterate? Until the
elements in ∆̂ become small, or based on a consideration in terms of the sum of weighted squared residuals

v̂TP v̂ = (k −A∆̂)TP (k −A∆̂) (183)

= kTPk − kTPA∆̂− ∆̂
T
ATPk + ∆̂

T
ATPA∆̂ (184)

= kTPk − kTPA∆̂− ∆̂
T
ATPk + ∆̂

T
ATPA(ATPA)−1ATPk (185)

= kTPk − kTPA∆̂− ∆̂
T
ATPk + ∆̂

T
ATPk (186)

= kTPk − kTPA∆̂ (187)

= kTPk − ∆̂
T
ATPk (188)

= kTPk − ∆̂
T
c (189)

= kTPk − cTN−1c. (190)

Hence

kTPk

v̂TP v̂
= 1 +

cTN−1c

v̂TP v̂
≥ 1. (191)

Therefore we iterate until the ratio of the two quadratic forms on the right hand side is small compared to 1.

The method described here is identical to the Gauss-Newton method sketched in Section 2.2.3 with −A as the Jacobian.

2.1.3 Dispersion and Significance of Estimates

When iterations are over and we have a solution we find dispersion or variance-covariance matrices for ℓ,
x̂, ℓ̂ and v̂ (again by analogy with the linear WLS case; the Qs are (nearly) Mærsk-Møller and Frederiksen
(1984) notation, and again we use “=” instead of the correct “≃”)

Qℓ = D{ℓ} = σ2
0P

−1 (192)
Qx̂ = D{x̂WLS} = σ2

0(A
TPA)−1 = σ2

0N
−1 (193)

Qℓ̂ = D{ℓ̂} = σ2
0AN−1AT (194)

Qv̂ = D{v̂} = σ2
0(P

−1 −AN−1AT) = D{ℓ} − D{ℓ̂} = Qℓ −Qℓ̂. (195)

For the weighted sum of squared errors (SSE, also called RSS for the residual sum of squares) we get

v̂TP v̂ = kTP (I −AN−1ATP)k = kTP (I −H)k (196)

with expectation E{v̂TP v̂} = σ2
0(n− p). H = AN−1ATP . The mean squared error MSE is

σ̂2
0 = v̂TP v̂/(n− p) (197)

and the root mean squared error RMSE is σ̂0 also known as s0. σ̂0 = s0 has no unit. For well performed mea-
surements (with no outliers or gross errors), a good model, and properly chosen weights (see Section 1.2.2),
s0 ≃ 1. This is due to the fact that assuming that the vis with variance σ2

0/pi are independent and normally distributed v̂TP v̂

(with well chosen pi, see Section 1.2.2) follows a χ2 distribution with n − p degrees of freedom which has expectation n − p.
Therefore v̂TP v̂/(n− p) has expectation 1 and its square root is approximately 1.

28 Least Squares Adjustment

The square roots of the diagonal elements of the dispersion matrices in Equations 192, 193, 194 and 195
are the standard errors of the quantities in question. For example, the standard error of x̂i denoted σ̂xi

is the
square root of the ith diagonal element of σ2

0(A
TPA)−1.

The remarks on 1) the distribution and significance of θ̂ ∼ x̂ in Section 1.2.3, and 2) on influence and leverage in Section 1.1.4,
are valid here also.

A and v̂, and k̂ and v̂ are orthogonal (with respect to P): ATP v̂ = 0 and k̂
T
P v̂ = 0. Geometrically

this means that our analysis finds the orthogonal projection (with respect to P) k̂ of k onto the hyperplane
spanned by the linearly independent columns of A. This gives the shortest distance between k and k̂ in the
norm defined by P .

2.1.4 Confidence Ellipsoids

We already described the quality of the estimates in x̂ by means of their standard deviations, i.e., the square roots of the diagonal
elements of D{x̂} = Qx̂. Another description which allows for the covariances between the elements of x̂ is based on confidence
ellipsoids. A confidence ellipsoid or error ellipsoid is described by the equation

(x− x̂)TQ−1
x̂ (x− x̂) = q (198)

yT (V ΛV T)−1y = q (199)
yTV Λ−1V Ty = q (200)

(Λ−1/2V Ty)T (Λ−1/2V Ty) = q (201)

(Λ−1/2z)T (Λ−1/2z) = q (202)

(z1/
√
λ1)

2 + · · ·+ (zp/
√

λp)
2 = q (203)

(z1/
√

q λ1)
2 + · · ·+ (zp/

√
q λp)

2 = 1 (204)

(q ≥ 0) where V is a matrix with the eigenvectors of Qx̂ = V ΛV T in the columns (hence V TV = V V T = I) and Λ is a
diagonal matrix of eigenvalues of Qx̂; y = x − x̂ and z = V Ty, y = V z. This shows that the ellipsoid has semi axes in the
directions of the eigenvectors and that their lengths are proportional to the square roots of the eigenvalues. The constant q depends
on the confidence level and the distribution of the left hand side, see below. Since Qx̂ = σ2

0(A
TPA)−1 with known A and P we

have two situations 1) σ2
0 known and 2) σ2

0 unknown.

σ2
0 known In practice σ2

0 is unknown so this case does not occur in the real world. If, however, σ2
0 were known (x−x̂)TQ−1

x̂ (x−x̂)
would follow a χ2 distribution with p degrees of freedom, (x − x̂)TQ−1

x̂ (x − x̂) ∈ χ2(p), and the semi axes of a, say, 95%
confidence ellipsoid would be

√
q λi where q is the 95% fractile of the χ2(p) distribution and λi are the eigenvalues of Qx̂.

σ2
0 unknown In this case we estimate σ2

0 as σ̂2
0 = v̂TP v̂/(n − p) which means that (n − p)σ̂2

0 ∈ χ2(n − p). Also, (x −
x̂)T (ATPA)(x− x̂) ∈ χ2(p). This means that

(x− x̂)T (ATPA)(x− x̂)/p

σ̂2
0

∈ F (p, n− p) (205)

(since the independent numerator and denominator above follow χ2(p)/p and χ2(n − p)/(n − p) distributions, respectively. As
n goes to infinity the above quantity multiplied by p approaches a χ2(p) distribution so the above case with σ2

0 known serves as
a limiting case.) The semi axes of a, say, 95% confidence ellipsoid are

√
q p λi where q is the 95% fractile of the F (p, n − p)

distribution, p is the number of parameters and λi are the eigenvalues of Qx̂. If a subset of m < p parameters are studied the
semi axes of a, say, 95% confidence ellipsoid of the appropriate submatrix of Qx̂ are

√
q m λi where q is the 95% fractile of

the F (m,n − p) distribution, m is the number of parameters and λi are the eigenvalues of that submatrix, see also Examples 10
(page 31) and 11 (page 38) with Matlab code.

Allan Aasbjerg Nielsen 29

2.1.5 Dispersion of a Function of Estimated Parameters

To estimate the dispersion of some function f of the estimated parameters/elements (e.g. a distance deter-
mined by estimated coordinates) we perform a first order Taylor expansion around x̂

f(x) ≃ f(x̂) + [∇f(x̂)]T (x− x̂). (206)

With g = ∇f(x̂) we get (again we use “=” instead of the correct “≃”)

D{f} = σ2
0 g

T (ATPA)−1g, (207)

see also Example 10 (page 33, example starts on page 31) with Matlab code.

2.1.6 The Derivative Matrix

The elements of the derivative matrix A, Aij = ∂Fi/∂xj , can be evaluated analytically or numerically.

Analytical partial derivatives for height or levelling observations are (zA is the height in point A, zB is
the height in point B)

F = zB − zA (208)
∂F

∂zA
= −1 (209)

∂F

∂zB
= 1. (210)

Equation 208 is obviously linear. If we do levelling only and don’t combine with distance or directional
observations we can do linear adjustment and we don’t need the iterative procedure and the initial values for
the elements. There are very few other geodesy, land surveying and GNSS related problems which can be
solved by linear adjustment.

Analytical partial derivatives for 3-D distance observations are (remember that d(
√
u)/du = 1/(2

√
u) and

use the chain rule for differentiation)

F =
√
(xB − xA)2 + (yB − yA)2 + (zB − zA)2 (211)

= dAB (212)
∂F

∂xA

=
1

2dAB

2(xB − xA)(−1) (213)

= −xB − xA

dAB

(214)

∂F

∂xB

= − ∂F

∂xA

(215)

and similarly for yA, yB, zA and zB.

Analytical partial derivatives for 2-D distance observations are

F =
√
(xB − xA)2 + (yB − yA)2 (216)

= aAB (217)

30 Least Squares Adjustment

∂F

∂xA

=
1

2aAB

2(xB − xA)(−1) (218)

= −xB − xA

aAB

(219)

∂F

∂xB

= − ∂F

∂xA

(220)

and similarly for yA and yB.

Analytical partial derivatives for horizontal direction observations are (remember that d(arctanu)/du =
1/(1 + u2) and again use the chain rule; arctan gives radians, rA is in gon, ω = 200/π gon; rA is related to
the arbitrary zero for the horizontal direction measurement termed the orientation unknown10)

F = ω arctan
yB − yA
xB − xA

− rA (221)

∂F

∂xA

= ω
1

1 + (yB−yA
xB−xA

)2
(− yB − yA

(xB − xA)2
)(−1) (222)

= ω
yB − yA
a2AB

(223)

∂F

∂xB

= − ∂F

∂xA

(224)

∂F

∂yA
= ω

1

1 + (yB−yA
xB−xA

)2
1

xB − xA

(−1) (225)

= −ω
xB − xA

a2AB

(226)

∂F

∂yB
= − ∂F

∂yA
(227)

∂F

∂rA
= −1. (228)

Numerical partial derivatives can be calculated as

∂F (x1, x2, . . . , xp)

∂x1

≃ F (x1 + δ, x2, . . . , xp)− F (x1, x2, . . . , xp)

δ
(229)

∂F (x1, x2, . . . , xp)

∂x2

≃ F (x1, x2 + δ, . . . , xp)− F (x1, x2, . . . , xp)

δ
(230)

...

or we could use a symmetrized form

∂F (x1, x2, . . . , xp)

∂x1

≃ F (x1 + δ, x2, . . . , xp)− F (x1 − δ, x2, . . . , xp)

2δ
(231)

∂F (x1, x2, . . . , xp)

∂x2

≃ F (x1, x2 + δ, . . . , xp)− F (x1, x2 − δ, . . . , xp)

2δ
(232)

...

both with δ appropriately small. Generally, one should be careful with numerical derivatives. There are two
sources of error in the above equations, roundoff error that has to do with exact representation in the computer,

10in Danish “kredsdrejningselement”

Allan Aasbjerg Nielsen 31

and truncation error having to do with the magnitude of δ. In relation to Global Navigation Satellite System
(GNSS) distance observations we are dealing with F s with values larger than 20,000,000 meters (this is the
approximate nadir distance from the GNSS space vehicles to the surface of the earth). In this connection a δ
of 1 meter is small compared to F , it has an exact representation in the computer, and we don’t have to do
the division by δ (since it equals one). Note that when we use numerical partial derivatives we need p + 1
function evaluations (2p for the symmetrized form) for each iteration rather than one.

Example 10 (from Mærsk-Møller and Frederiksen, 1984, p. 86) This is a traditional land surveying example. From point 103
with unknown (2-D) coordinates we measure horizontal directions and distances to four points 016, 020, 015 and 013 (no distance
is measured to point 020), see Figure 5. We wish to determine the coordinates of point 103 and the orientation unknown by means
of nonlinear weighted least squares adjustment. The number of parameters is p = 3.

Points 016, 020, 015 and 013 are considered as error free fix points. Their coordinates are

Point x [m] y [m]
016 3725.10 3980.17
020 3465.74 4268.33
015 3155.96 4050.70
013 3130.55 3452.06

.

Figure 5: From point 103 with unknown coordinates we measure horizontal directions and distances (no distance is measured to
point 020) to four points 016, 020, 015 and 013 (from Mærsk-Møller and Frederiksen, 1984; lefthand coordinate system).

We measure four horizontal directions and three distances so we have seven observations, n = 7. Therefore we have f = 7−3 = 4
degrees of freedom. We determine the (2-D) coordinates [x y]T of point 103 and the the orientation unknown, r so [x1 x2 x3]

T =
[x y r]T . The observation equations are (assuming that arctan gives radians and we want gon, ω = 200/π gon)

ℓ1 = ω arctan
3980.17− y

3725.10− x
− r + v1 (233)

32 Least Squares Adjustment

ℓ2 = ω arctan
4268.33− y

3465.74− x
− r + v2 (234)

ℓ3 = ω arctan
4050.70− y

3155.96− x
− r + v3 (235)

ℓ4 = ω arctan
3452.06− y

3130.55− x
− r + v4 (236)

ℓ5 =
√
(3725.10− x)2 + (3980.17− y)2 + v5 (237)

ℓ6 =
√
(3155.96− x)2 + (4050.70− y)2 + v6 (238)

ℓ7 =
√
(3130.55− x)2 + (3452.06− y)2 + v7. (239)

We obtain the following observations (ℓi)

From To Horizontal Horizontal
point point direction [gon] distance [m]

103 016 0.000 706.260
103 020 30.013
103 015 56.555 614.208
103 013 142.445 132.745

where the directional observations are means of two measurements. As the initial value [x∗ y∗]T for the coordinates [x y]T of
point 103 we choose the mean values for the coordinates of the four fix points. As the initial value r∗ for the direction unknown r
we choose zero. First order Taylor expansions of the observation equations near the initial values give (assuming that arctan gives
radians and we want gon; units for the first four equations are gon, for the last three units are m)

ℓ1 = ω arctan
3980.17− y∗

3725.10− x∗ − r∗ + ω
3980.17− y∗

a21
∆x − ω

3725.10− x∗

a21
∆y −∆r + v1 (240)

ℓ2 = ω arctan
4268.33− y∗

3465.74− x∗ − r∗ + ω
3980.17− y∗

a22
∆x − ω

3725.10− x∗

a22
∆y −∆r + v2 (241)

ℓ3 = ω arctan
4050.70− y∗

3155.96− x∗ − r∗ + ω
3980.17− y∗

a23
∆x − ω

3725.10− x∗

a23
∆y −∆r + v3 (242)

ℓ4 = ω arctan
3452.06− y∗

3130.55− x∗ − r∗ + ω
3980.17− y∗

a24
∆x − ω

3725.10− x∗

a24
∆y −∆r + v4 (243)

ℓ5 = a1 −
3725.10− x∗

a1
∆x − 3980.17− y∗

a1
∆y + v5 (244)

ℓ6 = a3 −
3155.96− x∗

a3
∆x − 4050.70− y∗

a3
∆y + v6 (245)

ℓ7 = a4 −
3130.55− x∗

a4
∆x − 3452.06− y∗

a4
∆y + v7 (246)

where (units are m)

a1 =
√

(3725.10− x∗)2 + (3980.17− y∗)2 (247)

a2 =
√

(3565.74− x∗)2 + (4268.33− y∗)2 (248)

a3 =
√

(3155.96− x∗)2 + (4050.70− y∗)2 (249)

a4 =
√

(3130.55− x∗)2 + (3452.06− y∗)2. (250)

In matrix form we get (k̂ = A∆̂; as above units for the first four equations are gon, for the last three units are m)



0.000− ω arctan 3980.17−y∗

3725.10−x∗ + r∗

30.013− ω arctan 4268.33−y∗

3465.74−x∗ + r∗

56.555− ω arctan 4050.70−y∗

3155.96−x∗ + r∗

142.445− ω arctan 3452.06−y∗

3130.55−x∗ + r∗

706.260− a1
614.208− a3
132.745− a4


=



ω 3980.17−y∗

a2
1

−ω 3725.10−x∗

a2
1

−1

ω 3980.17−y∗

a2
2

−ω 3725.10−x∗

a2
2

−1

ω 3980.17−y∗

a2
3

−ω 3725.10−x∗

a2
3

−1

ω 3980.17−y∗

a2
4

−ω 3725.10−x∗

a2
4

−1

− 3725.10−x∗

a1
− 3980.17−y∗

a1
0

− 3155.96−x∗

a3
− 4050.70−y∗

a3
0

− 3130.55−x∗

a4
− 3452.06−y∗

a4
0



 ∆̂x

∆̂y

∆̂r

 . (251)

Allan Aasbjerg Nielsen 33

The starting weight matrix is (for directions: n = 2, sc = 0.002m, and st = 0.0015gon; for distances: n = 1, sG = 0.005m, and
sa = 0.005m/1000m = 0.000005), see Section 1.2.2 (units for the first four weights are gon−2, for the last three units are m−2)

P =



0.7992 0 0 0 0 0 0
0 0.7925 0 0 0 0 0
0 0 0.7127 0 0 0 0
0 0 0 0.8472 0 0 0
0 0 0 0 0.03545 0 0
0 0 0 0 0 0.03780 0
0 0 0 0 0 0 0.03094


(252)

and after eleven iterations with the Matlab code below we end with (again, units for the first four weights are gon−2, for the last
three units are m−2)

P =



0.8639 0 0 0 0 0 0
0 0.8714 0 0 0 0 0
0 0 0.8562 0 0 0 0
0 0 0 0.4890 0 0 0
0 0 0 0 0.02669 0 0
0 0 0 0 0 0.02904 0
0 0 0 0 0 0 0.03931


. (253)

After the eleven iterations we get [x y r]T = [3, 263.155m 3, 445.925m 54.612gon]T with standard deviations [4.14mm 2.49mm
0.641mgon]T . The diagonal elements of the hat matrix H are [0.3629 0.3181 0.3014 0.7511 0.3322 0.2010 0.7332] and p/n =
3/7 = 0.4286 so no observations have high leverages. The estimated residuals are v̂ = [−0.2352mm 0.9301mm −0.9171mm
0.3638mm −5.2262mgon 6.2309mgon −2.3408mgon]T . The resulting RMSE is s0 = 0.9563. The probability of finding a larger
value for RSS = v̂TP v̂ is 0.4542 so s0 is suitably small.

As an example on application of Equation 207 we calculate the distance between fix point 020 and point 103 and the standard
deviation of the distance. From the Matlab code below we get the distance 846.989 m with a standard deviation of 2.66 mm.

The plots made in the code below allow us to study the iteration pattern of the Gauss-Newton method applied. The last plot
produced, see Figure 6, shows the four fix points as triangles, the initial coordinates for point 103 as a plus, and the iterated
solutions as circles marked with iteration number. The final solution is marked by both a plus and a circle. We see that since there
are eleven iterations the last 3-4 iterations overlap in the plot.

A 95% confidence ellipsoid for [x y r]T with semi axes 18.47, 11.05 and 2.41 (
√
p 6.591 λi where p = 3 is the number of

parameters, 6.591 is the 95% fractile in the F (3, 4) distribution, and λi are the eigenvalues of Qx̂ = σ2
0(A

TPA)−1) is shown in
Figure 7. Since the ellipsoid in the Matlab code in the notation of Section 2.1.4 in page 28 is generated in the z-space we rotate by
V to get to y-space. [end of example]

Matlab code for Example 10

% (C) Copyright 2003-2004
% Allan Aasbjerg Nielsen
% aa@imm.dtu.dk, www.imm.dtu.dk/˜aa

% analytical or numerical partial derivatives?
%partial = ’analytical’;
partial = ’n’;

cst = 200/pi; % radian to gon
eps = 0.001; % for numerical differentiation

% positions of points 016, 020, 015 and 013 in network, [m]
xx = [3725.10 3465.74 3155.96 3130.55]’;
yy = [3980.17 4268.33 4050.70 3452.06]’;

% observations: 1-4 are directions [gon], 5-7 are distances [m]
l = [0 30.013 56.555 142.445 706.260 614.208 132.745]’; % l is \ell (not one)
n = size(l,1);

% initial values for elements: x- and y-coordinates for point 103 [m], and
% the direction unknown [gon]
x = [3263.150 3445.920 54.6122]’;
% play with initial values to check robustness of method

34 Least Squares Adjustment

2.6 2.8 3 3.2 3.4 3.6 3.8 4

x 10
6

2.8

3

3.2

3.4

3.6

3.8

4

4.2

4.4
x 10

6

103 start
016

020

015

013

1

2

3

4

5

67

103 stop

x and y over iterations

Figure 6: Development of x and y coordinates of point 103 over iterations with first seven iterations annotated; righthand
coordinate system.

x = [0 0 -200]’;
x = [0 0 -100]’;
x = [0 0 100]’;
x = [0 0 200]’;
x = [0 0 40000]’;
x = [0 0 0]’;
x = [100000 100000 0]’;
x = [mean(xx) mean(yy) 0]’;
%x = [mean(xx) 3452.06 0]’; % approx. same y as 013
p = size(x,1);

% desired units: mm and mgon
xx = 1000*xx;
yy = 1000*yy;
l = 1000*l;
x = 1000*x;
cst = 1000*cst;

%number of degrees of freedom
f = n-p;

x0 = x;

sc = 0.002*1000;%[mm]
st = 0.0015*1000;%[mgon]
sG = 0.005*1000;%[mm]
sa = 0.000005;%[m/m], no unit
%a [mm]

idx = [];
e2 = [];
dc = [];
X = [];

for iter = 1:50 % iter ---

Allan Aasbjerg Nielsen 35

−15
−10

−5
0

5
10

15 −10

0

10

−2

0

2

y [mm]
x [mm]

r
[m

go
n]

−15 −10 −5 0 5 10 15

−10

−5

0

5

10

x [mm]

y
[m

m
]

Figure 7: 95% ellipsoid for [x y r]T with projection on xy-plane.

% output from atan2 is in radian, convert to gon
F1 = cst.*atan2(yy-x(2),xx-x(1))-x(3);
a = (x(1)-xx).ˆ2+(x(2)-yy).ˆ2;
F2 = sqrt(a);
F = [F1; F2([1 3:end])]; % skip distance from 103 to 020

% weight matrix
%a [mm]
P = diag([2./(2*(cst*sc).ˆ2./a+stˆ2); 1./(sGˆ2+a([1 3:end])*sa.ˆ2)]);
diag(P)’

k = l-F; % l is \ell (not one)

A1 = [];
A2 = [];
if strcmp(partial,’analytical’)

% A is matrix of analytical partial derivatives
error(’not implemented yet’);

else
% A is matrix of numerical partial derivatives
%directions
dF = (cst.*atan2(yy- x(2) ,xx-(x(1)+eps))- x(3) -F1)/eps;
A1 = [A1 dF];
dF = (cst.*atan2(yy-(x(2)+eps),xx- x(1)) - x(3) -F1)/eps;
A1 = [A1 dF];
dF = (cst.*atan2(yy- x(2) ,xx- x(1)) -(x(3)+eps)-F1)/eps;
A1 = [A1 dF];
%distances
dF = (sqrt((x(1)+eps-xx).ˆ2+(x(2) -yy).ˆ2)-F2)/eps;
A2 = [A2 dF];
dF = (sqrt((x(1) -xx).ˆ2+(x(2)+eps-yy).ˆ2)-F2)/eps;
A2 = [A2 dF];
dF = (sqrt((x(1) -xx).ˆ2+(x(2) -yy).ˆ2)-F2)/eps;
A2 = [A2 dF];
A2 = A2([1 3:4],:);% skip derivatives of distance from 103 to 020

36 Least Squares Adjustment

A = [A1; A2];
end

N = A’*P;
c = N*k;
N = N*A;
%WLS
deltahat = N\c;
khat = A*deltahat;
vhat = k-khat;
e2 = [e2 vhat’*P*vhat];
dc = [dc deltahat’*c];
%update for iterations
x = x+deltahat;
X = [X x];

idx = [idx iter];

% stop iterations
itertst = (k’*P*k)/e2(end);
if itertst < 1.000001

break;
end

end % iter ---

%x-x0
% number of iterations
iter

%MSE
s02 = e2(end)/f;
%RMSE
s0 = sqrt(s02)

%Variance/covariance matrix of the observations, l
Dl = s02.*inv(P);
%Standard deviations
stdl = sqrt(diag(Dl))

%Variance/covariance matrix of the adjusted elements, xhat
Ninv = inv(N);
Dxhat = s02.*Ninv;
%Standard deviations
stdxhat = sqrt(diag(Dxhat))

%Variance/covariance matrix of the adjusted observations, lhat
Dlhat = s02.*A*Ninv*A’;
%Standard deviations
stdlhat = sqrt(diag(Dlhat))

%Variance/covariance matrix of the adjusted residuals, vhat
Dvhat = Dl-Dlhat;
%Standard deviations
stdvhat = sqrt(diag(Dvhat))

%Correlations between adjusted elements, xhat
aux = diag(1./stdxhat);
corrxhat = aux*Dxhat*aux

% Standard deviation of estimated distance from 103 to 020
d020 = sqrt((xx(2)-x(1))ˆ2+(yy(2)-x(2))ˆ2);
%numerical partial derivatives of d020, i.e. gradient of d020
grad = [];
dF = (sqrt((xx(2)-(x(1)+eps))ˆ2+(yy(2)- x(2))ˆ2)-d020)/eps;
grad = [grad; dF];
dF = (sqrt((xx(2)- x(1))ˆ2+(yy(2)-(x(2)+eps))ˆ2)-d020)/eps;
grad = [grad; dF; 0];
stdd020 = s0*sqrt(grad’*Ninv*grad)

% plots to illustrate progress of iterations
figure
%plot(idx,e2);
semilogy(idx,e2);

Allan Aasbjerg Nielsen 37

title(’vˆTPv’);
figure
%plot(idx,dc);
semilogy(idx,dc);
title(’cˆTNˆ{-1}c’);
figure
%plot(idx,dc./e2);
semilogy(idx,dc./e2);
title(’(cˆTNˆ{-1}c)/(vˆTPv)’);
for i = 1:p

figure
plot(idx,X(i,:));
%semilogy(idx,X(i,:));
title(’X(i,:) vs. iteration index’);

end
figure
%loglog(x0(1),x0(2),’k+’)
plot(x0(1),x0(2),’k+’) % initial values for x and y
text(x0(1)+30000,x0(2)+30000,’103 start’)
hold
% positions of points 016, 020, 015 and 013 in network
%loglog(xx,yy,’xk’)
plot(xx,yy,’kˆ’)
txt = [’016’; ’020’; ’015’; ’013’];
for i = 1:4

text(xx(i)+30000,yy(i)+30000,txt(i,:));
end
for i = 1:iter
% loglog(X(1,i),X(2,i),’ko’);

plot(X(1,i),X(2,i),’ko’);
end
for i = 1:7

text(X(1,i)+30000,X(2,i)-30000,num2str(i));
end
plot(X(1,end),X(2,end),’k+’);
%loglog(X(1,end),X(2,end),’k+’);
text(X(1,end)+30000,X(2,end)+30000,’103 stop’)
title(’x and y over iterations’);
%title(’X(1,:) vs. X(2,:) over iterations’);
axis equal
axis([2.6e6 4e6 2.8e6 4.4e6])

% t-values and probabilities of finding larger |t|
% pt should be smaller than, say, (5% or) 1%
t = x./stdxhat;
pt = betainc(f./(f+t.ˆ2),0.5*f,0.5);

% probabilitiy of finding larger v’Pv
% should be greater than, say, 5% (or 1%)
pchi2 = 1-gammainc(0.5*e2(end),0.5*f);

% semi-axes in confidence ellipsoid
% 95% fractile for 3 dfs is 7.815 = 2.796ˆ2
% 99% fractile for 3 dfs is 11.342 = 3.368ˆ2
%[vDxhat dDxhat] = eigsort(Dxhat(1:2,1:2));
[vDxhat dDxhat] = eigsort(Dxhat);
%semiaxes = sqrt(diag(dDxhat));
% 95% fractile for 2 dfs is 5.991 = 2.448ˆ2
% 99% fractile for 2 dfs is 9.210 = 3.035ˆ2
% df F(3,df).95 F(3,df).99
% 1 215.71 5403.1
% 2 19.164 99.166
% 3 9.277 29.456
% 4 6.591 16.694
% 5 5.409 12.060
% 10 3.708 6.552
% 100 2.696 3.984
% inf 2.605 3.781
% chiˆ2 approximation, 95% fractile
semiaxes = sqrt(7.815*diag(dDxhat))
figure
ellipsoidrot(0,0,0,semiaxes(1),semiaxes(2),semiaxes(3),vDxhat);
axis equal
xlabel(’x [mm]’); ylabel(’y [mm]’); zlabel(’r [mgon]’);

38 Least Squares Adjustment

title(’95% confidence ellipsoid, \chiˆ2 approx.’)
% F approximation, 95% fractile. NB the fractile depends on df
semiaxes = sqrt(3*6.591*diag(dDxhat))
figure
ellipsoidrot(0,0,0,semiaxes(1),semiaxes(2),semiaxes(3),vDxhat);
axis equal
xlabel(’x [mm]’); ylabel(’y [mm]’); zlabel(’r [mgon]’);
title(’95% confidence ellipsoid, F approx.’)
view(37.5,15)
print -depsc2 confxyr.eps
%clear
%close all

function [v,d] = eigsort(a)
[v1,d1] = eig(a);
d2 = diag(d1);
[dum,idx] = sort(d2);
v = v1(:,idx);
d = diag(d2(idx));

function [xx,yy,zz] = ellipsoidrot(xc,yc,zc,xr,yr,zr,Q,n)
%ELLIPSOID Generate ellipsoid.
%
% [X,Y,Z] = ELLIPSOID(XC,YC,ZC,XR,YR,ZR,Q,N) generates three
% (N+1)-by-(N+1) matrices so that SURF(X,Y,Z) produces a rotated
% ellipsoid with center (XC,YC,ZC) and radii XR, YR, ZR.
%
% [X,Y,Z] = ELLIPSOID(XC,YC,ZC,XR,YR,ZR,Q) uses N = 20.
%
% ELLIPSOID(...) and ELLIPSOID(...,N) with no output arguments
% graph the ellipsoid as a SURFACE and do not return anything.
%
% The ellipsoidal data is generated using the equation after rotation with
% orthogonal matrix Q:
%
% (X-XC)ˆ2 (Y-YC)ˆ2 (Z-ZC)ˆ2
% -------- + -------- + -------- = 1
% XRˆ2 YRˆ2 ZRˆ2
%
% See also SPHERE, CYLINDER.

% Modified by Allan Aasbjerg Nielsen (2004) after
% Laurens Schalekamp and Damian T. Packer
% Copyright 1984-2002 The MathWorks, Inc.
% $Revision: 1.7 $ $Date: 2002/06/14 20:33:49 $

error(nargchk(7,8,nargin));

if nargin == 7
n = 20;
end

[x,y,z] = sphere(n);

x = xr*x;
y = yr*y;
z = zr*z;
xvec = Q*[reshape(x,1,(n+1)ˆ2); reshape(y,1,(n+1)ˆ2); reshape(z,1,(n+1)ˆ2)];
x = reshape(xvec(1,:),n+1,n+1)+xc;
y = reshape(xvec(2,:),n+1,n+1)+yc;
z = reshape(xvec(3,:),n+1,n+1)+zc;
if(nargout == 0)

surf(x,y,z)
% surfl(x,y,z)
% surfc(x,y,z)

axis equal
%shading interp
%colormap gray

else
xx = x;
yy = y;
zz = z;
end

Allan Aasbjerg Nielsen 39

Example 11 In this example we have data on the positions of Navstar Global Positioning System (GPS)
space vehicles (SV) 1, 4, 7, 13, 20, 24 and 25 and pseudoranges from our position to the SVs. We want
to determine the (3-D) coordinates [X Y Z]T of our position and the clock error in our GPS receiver, cdT ,
[x1 x2 x3 x4]

T = [X Y Z cdT]T , so the number of parameters is p = 4. The positions of and pseudoranges
(ℓ) to the SVs given in a data file from the GPS receiver are

SV X [m] Y [m] Z [m] ℓ [m]
1 16,577,402.072 5,640,460.750 20,151,933.185 20,432,524.0
4 11,793,840.229 –10,611,621.371 21,372,809.480 21,434,024.4
7 20,141,014.004 –17,040,472.264 2,512,131.115 24,556,171.0

13 22,622,494.101 –4,288,365.463 13,137,555.567 21,315,100.2
20 12,867,750.433 15,820,032.908 16,952,442.746 21,255,217.0
24 –3,189,257.131 –17,447,568.373 20,051,400.790 24,441,547.2
25 –7,437,756.358 13,957,664.984 21,692,377.935 23,768,678.3

.

The true position is (that of the no longer existing GPS station at Landmålervej in Hjortekær) [X Y Z]T =
[3, 507, 884.948 780, 492.718 5, 251, 780.403]T m. We have seven observations, n = 7. Therefore we have
f = n− p = 7− 4 = 3 degrees of freedom. The observation equations are (in m)

ℓ1 =
√
(16577402.072−X)2 + (5640460.750− Y)2 + (20151933.185− Z)2 + cdT + v1 (254)

ℓ2 =
√
(11793840.229−X)2 + (−10611621.371− Y)2 + (21372809.480− Z)2 + cdT + v2 (255)

ℓ3 =
√
(20141014.004−X)2 + (−17040472.264− Y)2 + (2512131.115− Z)2 + cdT + v3 (256)

ℓ4 =
√
(22622494.101−X)2 + (−4288365.463− Y)2 + (13137555.567− Z)2 + cdT + v4 (257)

ℓ5 =
√
(12867750.433−X)2 + (15820032.908− Y)2 + (16952442.746− Z)2 + cdT + v5 (258)

ℓ6 =
√
(−3189257.131−X)2 + (−17447568.373− Y)2 + (20051400.790− Z)2 + cdT + v6(259)

ℓ7 =
√
(−7437756.358−X)2 + (13957664.984− Y)2 + (21692377.935− Z)2 + cdT + v7 (260)

As the initial values [X∗ Y ∗ Z∗ cdT ∗]T we choose [0 0 0 0]T , center of the Earth, no clock error. First order
Taylor expansions of the observation equations near the initial values give (in m)

ℓ1 = d1 + cdT ∗ (261)

−16577402.072−X∗

d1
∆X − 5640460.750− Y ∗

d1
∆Y − 20151933.185− Z∗

d1
∆Z +∆cdT + v1

ℓ2 = d2 + cdT ∗ (262)

−11793840.229−X∗

d2
∆X − −10611621.371− Y ∗

d2
∆Y − 21372809.480− Z∗

d2
∆Z +∆cdT + v2

ℓ3 = d3 + cdT ∗ (263)

−20141014.004−X∗

d3
∆X − −17040472.264− Y ∗

d3
∆Y − 2512131.115− Z∗

d3
∆Z +∆cdT + v3

ℓ4 = d4 + cdT ∗ (264)

−22622494.101−X∗

d4
∆X − −4288365.463− Y ∗

d4
∆Y − 13137555.567− Z∗

d4
∆Z +∆cdT + v4

ℓ5 = d5 + cdT ∗ (265)

−12867750.433−X∗

d5
∆X − 15820032.908− Y ∗

d5
∆Y − 16952442.746− Z∗

d5
∆Z +∆cdT + v5

40 Least Squares Adjustment

ℓ6 = d6 + cdT ∗ (266)

−−3189257.131−X∗

d6
∆X − −17447568.373− Y ∗

d6
∆Y − 20051400.790− Z∗

d6
∆Z +∆cdT + v6

ℓ7 = d7 + cdT ∗ (267)

−−7437756.358−X∗

d7
∆X − 13957664.984− Y ∗

d7
∆Y − 21692377.935− Z∗

d7
∆Z +∆cdT + v7

where (in m)

d1 =
√
(16577402.072−X∗)2 + (5640460.750− Y ∗)2 + (20151933.185− Z∗)2 (268)

d2 =
√
(11793840.229−X∗)2 + (−10611621.371− Y ∗)2 + (21372809.480− Z∗)2 (269)

d3 =
√
(20141014.004−X∗)2 + (−17040472.264− Y ∗)2 + (2512131.115− Z∗)2 (270)

d4 =
√
(22622494.101−X∗)2 + (−4288365.463− Y ∗)2 + (13137555.567− Z∗)2 (271)

d5 =
√
(12867750.433−X∗)2 + (15820032.908− Y ∗)2 + (16952442.746− Z∗)2 (272)

d6 =
√
(−3189257.131−X∗)2 + (−17447568.373− Y ∗)2 + (20051400.790− Z∗)2 (273)

d7 =
√
(−7437756.358−X∗)2 + (13957664.984− Y ∗)2 + (21692377.935− Z∗)2. (274)

In matrix form we get (k̂ = A∆̂; as above units are m)

20432524.0− d1 − cdT ∗

21434024.4− d2 − cdT ∗

24556171.0− d3 − cdT ∗

21315100.2− d4 − cdT ∗

21255217.0− d5 − cdT ∗

24441547.2− d6 − cdT ∗

23768678.3− d7 − cdT ∗


=



−16577402.072−X∗

d1
−5640460.750−Y ∗

d1
−20151933.185−Z∗

d1
1

−11793840.229−X∗

d2
−−10611621.371−Y ∗

d2
−21372809.480−Z∗

d2
1

−20141014.004−X∗

d3
−−17040472.264−Y ∗

d3
−2512131.115−Z∗

d3
1

−22622494.101−X∗

d4
−−4288365.463−Y ∗

d4
−13137555.567−Z∗

d4
1

−12867750.433−X∗

d5
−15820032.908−Y ∗

d5
−16952442.746−Z∗

d5
1

−−3189257.131−X∗

d6
−−17447568.373−Y ∗

d6
−20051400.790−Z∗

d6
1

−−7437756.358−X∗

d7
−13957664.984−Y ∗

d7
−21692377.935−Z∗

d7
1




∆̂X

∆̂Y

∆̂Z

∆̂cdT

 .(275)

After five iterations with the Matlab code below (with all observations weighted equally, pi = 1/(10m)2)
we get [X Y Z cdT]T = [3, 507, 889.1 780, 490.0 5, 251, 783.8 25, 511.1]T m with standard deviations
[6.42 5.31 11.69 7.86]T m. 25, 511.1 m corresponds to a clock error of 0.085 ms. The difference between the
true position and the solution found is [−4.18 2.70 −3.35]T m, all well within one standard deviation. The
corresponding distance is 6.00 m. Figure 8 shows the four parameters over the iterations including the starting
guess. The diagonal elements of the hat matrix H are [0.4144 0.5200 0.8572 0.3528 0.4900 0.6437 0.7218]
and p/n = 4/7 = 0.5714 so no observations have high leverages. The estimated residuals are v̂ =
[5.80 −5.10 0.74 −5.03 3.20 5.56 −5.17]T m. With prior variances of 102 m2, the resulting RMSE is
s0 = 0.7149.

The probability of finding a larger value for RSS = v̂TP v̂ is 0.6747 so s0 is suitably small. With prior variances of 52 m2 instead
of 102 m2, s0 is 1.4297 and the probability of finding a larger value for RSS = v̂TP v̂ is 0.1054 so also in this situation s0 is
suitably small. With prior variances of 32 m2 instead of 102 m2, s0 is 2.3828 and the probability of finding a larger value for
RSS = v̂TP v̂ is 0.0007 so in this situation s0 is too large.

95% confidence ellipsoids for [X Y Z]T in an earth-centered-earth-fixed (ECEF) coordinate system and in a local Easting-
Northing-Up (ENU) coordinate system are shown in Figure 9. The semi axes in both the ECEF and the ENU systems are 64.92,
30.76 and 23.96 (this is

√
m 9.277 λi where m = 3 is the number of parameters, 9.277 is the 95% fractile in the F (3, 3) distribu-

tion, and λi are the eigenvalues of QXY Z , the upper-left 3× 3 submatrix of Qx̂ = σ2
0(A

TPA)−1); units are metres. The rotation
to the local ENU system is performed by means of the orthogonal matrix (F TF = FF T = I)

F T =

 − sinλ cosλ 0
− sinϕ cosλ − sinϕ sinλ cosϕ
cosϕ cosλ cosϕ sinλ sinϕ

 (276)

Allan Aasbjerg Nielsen 41

0 5
0

2

4

6
x 10

6

0 5
0

5

10
x 10

5

0 5
0

2

4

6

8
x 10

6

0 5
0

5

10

15
x 10

5

Figure 8: Parameters [X Y Z cdT]T over iterations including the starting guess.

where ϕ is the latitude and λ is the longitude. The variance-covariance matrix of the position estimates in the ENU coordinate
system is QENU = F TQXY ZF . Since

QXY Za = λa (277)
F TQXY ZFF Ta = λF Ta (278)

QENU (F
Ta) = λ(F Ta) (279)

we see that QXY Z and QENU have the same eigenvalues and their eigenvectors are related as indicated. Since the ellipsoid in the
Matlab code in the notation of Section 2.1.4 in page 28 is generated in the z-space we rotate by V to get to y-space.

Dilution of Precision, DOP Satellite positioning works best when there is a good angular separation between the space vehicles.
A measure of this separation is termed the dilution of precision, DOP. Low values of the DOP correspond to a good angular
separation, high values to a bad angular separation, i.e., a high degree of clustering of the SVs. There are several versions of DOP.
From Equation 193 the dispersion of the parameters is

Qx̂ = D{x̂WLS} = σ2
0(A

TPA)−1. (280)

This matrix has contributions from our prior expectations to the precision of the measurements (P), the actual precision of the
measurements (σ2

0) and the geometry of the problem (A). Let’s look at the geometry alone and define the symmetric matrix

QDOP = Qx̂/(σ
2
0 σ2

prior) = (ATPA)−1/σ2
prior =


q2X qXY qXZ qXcdT

qXY q2Y qY Z qY cdT

qXZ qY Z q2Z qZcdT

qXcdT qY cdT qZcdT q2cdT

 (281)

where σ2
prior = σ2

i,prior, i.e., all prior variances are equal, see Section 1.2.2. In WLS (with equal weights on all observations) this
corresponds to QDOP = (ATA)−1.

We are now ready to define the position DOP

PDOP =
√

q2X + q2Y + q2Z , (282)

the time DOP

TDOP =
√
q2cdT = qcdT (283)

and the geometric DOP

GDOP =
√
q2X + q2Y + q2Z + q2cdT (284)

which is the square root of the trace of QDOP . It is easily seen that GDOP 2 = PDOP 2 + TDOP 2.

In practice PDOP values less than 2 are considered excellent, between 2 and 4 good, up to 6 acceptable. PDOP values greater than
around 6 are considered suspect.

DOP is a measure of size of the matrix QDOP (or sub-matrices thereof, for PDOP for example the upper left three by three matrix).
As an alternative measure of this size we could use the determinant. Such a DOP measure would allow for off-diagonal elements

42 Least Squares Adjustment

of QDOP , i.e., for covariances between the final estimates of the position. Determinant based DOP measures are not used in the
GNSS literature.

After rotation from the ECEF to the ENU coordinate system which transforms the upper-left 3 × 3 submatrix QXY Z of Qx̂ into
QENU , we can define

QDOP,ENU = QENU/(σ
2
0 σ2

prior) =

 q2E qEN qEU

qEN q2N qNU

qEU qNU q2U

 , (285)

the horizontal DOP

HDOP =
√

q2E + q2N (286)

and the vertical DOP

V DOP =
√

q2U = qU . (287)

We see that PDOP 2 = HDOP 2 + V DOP 2 which is the trace of QDOP,ENU . [end of example]

−20
0

20

−20
0

20

−60

−40

−20

0

20

40

60

X [m]Y [m]

Z
 [m

]

−20
0

20
−20

0
20

−60

−40

−20

0

20

40

60

E [m]N [m]

U
 [m

]

−20 0 20

−30

−20

−10

0

10

20

30

E [m]

N
 [m

]

Figure 9: 95% ellipsoid for [X Y Z]T in ECEF (left) and ENU (middle) coordinate systems with projection on EN-plane (right).

Matlab code for Example 11
Code for functions eigsort and ellipsoidrot are listed under Example 10.

% (C) Copyright 2004
% Allan Aasbjerg Nielsen
% aa@imm.dtu.dk, www.imm.dtu.dk/˜aa

format short g

% use analytical partial derivatives
partial = ’analytical’;
%partial = ’n’;
% speed of light, [m/s]
%clight = 300000000;
clight = 299792458;
% length of C/A code, [m]
%L = 300000;

% true position (Landmaalervej, Hjortekaer)
xtrue = [3507884.948 780492.718 5251780.403 0]’;
% positions of satellites 1, 4, 7, 13, 20, 24 and 25 in ECEF coordinate system, [m]

Allan Aasbjerg Nielsen 43

xxyyzz = [16577402.072 5640460.750 20151933.185;
11793840.229 -10611621.371 21372809.480;
20141014.004 -17040472.264 2512131.115;
22622494.101 -4288365.463 13137555.567;
12867750.433 15820032.908 16952442.746;
-3189257.131 -17447568.373 20051400.790;
-7437756.358 13957664.984 21692377.935];

pseudorange = [20432524.0 21434024.4 24556171.0 21315100.2 21255217.0 ...
24441547.2 23768678.3]’; % [m]

l = pseudorange; % l is \ell (not one)
xx = xxyyzz(:,1);
yy = xxyyzz(:,2);
zz = xxyyzz(:,3);
n = size(xx,1); % number of observations

% weight matrix
sprior2 = 10ˆ2; %5ˆ2; %prior variance [mˆ2]
P = eye(n)/sprior2; % weight = 1/"prior variance" [mˆ(-2)]

% preliminary position, [m]
x = [0 0 0 0]’;
p = size(x,1); % number of elements/parameters
f = n-p; % number of degrees of freedom
x0 = x;

for iter = 1:20 % iter --

range = sqrt((x(1)-xx).ˆ2+(x(2)-yy).ˆ2+(x(3)-zz).ˆ2);
prange = range+x(4);
F = prange;

A = [];
if strcmp(partial,’analytical’)

% A is matrix of analytical partial derivatives
irange = 1./range;
dF = irange.*(x(1)-xx);
A = [A dF];
dF = irange.*(x(2)-yy);
A = [A dF];
dF = irange.*(x(3)-zz);
A = [A dF];
dF = ones(n,1);
A = [A dF];

else
% A is matrix of numerical partial derivatives
dF = sqrt((x(1)+1-xx).ˆ2+(x(2) -yy).ˆ2+(x(3) -zz).ˆ2)+ x(4) -prange;
A = [A dF];
dF = sqrt((x(1) -xx).ˆ2+(x(2)+1-yy).ˆ2+(x(3) -zz).ˆ2)+ x(4) -prange;
A = [A dF];
dF = sqrt((x(1) -xx).ˆ2+(x(2) -yy).ˆ2+(x(3)+1-zz).ˆ2)+ x(4) -prange;
A = [A dF];
dF = sqrt((x(1) -xx).ˆ2+(x(2) -yy).ˆ2+(x(3) -zz).ˆ2)+(x(4)+1)-prange;
A = [A dF];

end

k = l-F; % l is \ell (not one)
%k = -l+F;
N = A’*P;
c = N*k;
N = N*A;
deltahat = N\c;
% OLS solution
%deltahat = A\k;
% WLS-as-OLS solution
%sqrtP = sqrt(P);
%deltahat = (sqrtP*A)\(sqrtP*k)

khat = A*deltahat;
vhat = k-khat;

% prepare for iterations
x = x+deltahat;

% stop iterations

44 Least Squares Adjustment

if max(abs(deltahat))<0.001
break

end
%itertst = (k’*P*k)/(vhat’*P*vhat);
%if itertst < 1.000001
% break
%end

end % iter --

% DOP
SSE = vhat’*P*vhat; %RSS or SSE
s02 = SSE/f; % MSE
s0 = sqrt(s02); %RMSE
Qdop = inv(A’*P*A);
Qx = s02.*Qdop;
Qdop = Qdop/sprior2;
PDOP = sqrt(trace(Qdop(1:3,1:3)));
% must be in local Easting-Northing-Up coordinates
%HDOP = sqrt(trace(Qdop(1:2,1:2)));
% must be in local Easting-Northing-Up coordinates
%VDOP = sqrt(Qdop(3,3));
TDOP = sqrt(Qdop(4,4));
GDOP = sqrt(trace(Qdop));

% Dispersion etc of elements
%Qx = s02.*inv(A’*P*A);
sigmas = sqrt(diag(Qx));
sigma = diag(sigmas);
isigma = inv(sigma);
% correlations between estimates
Rx = isigma*Qx*isigma;

% Standardised residuals
%Qv = s02.*(inv(P)-A*inv(A’*P*A)*A’);
Qv = s02.*inv(P)-A*Qx*A’;
sigmares = sqrt(diag(Qv));
stdres = vhat./sigmares;

disp(’--’)
disp(’estimated parameters/elements [m]’)
x
disp(’estimated clock error [s]’)
x(4)/clight
disp(’number of iterations’)
iter
disp(’standard errors of elements [m]’)
sigmas
%tval = x./sigmas
disp(’s0’)
s0
disp(’PDOP’)
PDOP
%stdres
disp(’difference between estimated elements and initial guess’)
deltaori = x-x0
disp(’difference between true values and estimated elements’)
deltaori = xtrue-x
disp(’--’)

% t-values and probabilities of finding larger |t|
% pt should be smaller than, say, (5% or) 1%
t = x./sigmas;
pt = betainc(f./(f+t.ˆ2),0.5*f,0.5);

% probabilitiy of finding larger s02
% should be greater than, say, 5% (or 1%)
pchi2 = 1-gammainc(0.5*SSE,0.5*f);

% semi-axes in confidence ellipsoid for position estimates
% 95% fractile for 3 dfs is 7.815 = 2.796ˆ2
% 99% fractile for 3 dfs is 11.342 = 3.368ˆ2
[vQx dQx] = eigsort(Qx(1:3,1:3));
semiaxes = sqrt(diag(dQx));

Allan Aasbjerg Nielsen 45

% 95% fractile for 2 dfs is 5.991 = 2.448ˆ2
% 99% fractile for 2 dfs is 9.210 = 3.035ˆ2

% df F(3,df).95 F(3,df).99
% 1 215.71 5403.1
% 2 19.164 99.166
% 3 9.277 29.456
% 4 6.591 16.694
% 5 5.409 12.060
% 10 3.708 6.552
% 100 2.696 3.984
% inf 2.605 3.781
% chiˆ2 approximation, 95% fractile
figure
ellipsoidrot(0,0,0,semiaxes(1)*sqrt(7.815),semiaxes(2)*sqrt(7.815),...

semiaxes(3)*sqrt(7.815),vQx);
axis equal
xlabel(’X [m]’); ylabel(’Y [m]’); zlabel(’Z [m]’);
title(’95% confidence ellipsoid, ECEF, \chiˆ2 approx.’)
% F approximation, 95% fractile. NB the fractile depends on df
figure
ellipsoidrot(0,0,0,semiaxes(1)*sqrt(3*9.277),semiaxes(2)*sqrt(3*9.277),...

semiaxes(3)*sqrt(3*9.277),vQx);
axis equal
xlabel(’X [m]’); ylabel(’Y [m]’); zlabel(’Z [m]’);
title(’95% confidence ellipsoid, ECEF, F approx.’)
print -depsc2 confXYZ.eps
%% F approximation; number of obs goes to infinity
%figure
%ellipsoidrot(0,0,0,semiaxes(1)*sqrt(3*2.605),semiaxes(2)*sqrt(3*2.605),...
% semiaxes(3)*sqrt(3*2.605),vQx);
%axis equal
%xlabel(’X [m]’); ylabel(’Y [m]’); zlabel(’Z [m]’);
%title(’95% confidence ellipsoid, ECEF, F approx., nobs -> inf’)

% To geographical coordinates, from Strang & Borre (1997)
[bb,ll,hh,phi,lambda] = c2gwgs84(x(1),x(2),x(3))

% Convert Qx (ECEF) to Qenu (ENU)
sp = sin(phi);
cp = cos(phi);
sl = sin(lambda);
cl = cos(lambda);
Ft = [-sl cl 0; -sp*cl -sp*sl cp; cp*cl cp*sl sp]; % ECEF -> ENU
Qenu = Ft*Qx(1:3,1:3)*Ft’;
% std.err. of ENU
sigmasenu = sqrt(diag(Qenu));
[vQenu dQenu] = eigsort(Qenu(1:3,1:3));
semiaxes = sqrt(diag(dQenu));

% F approximation, 95% fractile. NB the fractile depends on df
figure
ellipsoidrot(0,0,0,semiaxes(1)*sqrt(3*9.277),semiaxes(2)*sqrt(3*9.277),...

semiaxes(3)*sqrt(3*9.277),vQenu);
axis equal
xlabel(’E [m]’); ylabel(’N [m]’); zlabel(’U [m]’);
title(’95% confidence ellipsoid, ENU, F approx.’)
print -depsc2 confENU.eps
% Same thing, only more elegant
figure
ellipsoidrot(0,0,0,semiaxes(1)*sqrt(3*9.277),semiaxes(2)*sqrt(3*9.277),...

semiaxes(3)*sqrt(3*9.277),Ft*vQx);
axis equal
xlabel(’E [m]’); ylabel(’N [m]’); zlabel(’U [m]’);
title(’95% confidence ellipsoid, ENU, F approx.’)

%PDOP = sqrt(trace(Qenu)/sprior2)/s0;
HDOP = sqrt(trace(Qenu(1:2,1:2))/sprior2)/s0;
VDOP = sqrt(Qenu(3,3)/sprior2)/s0;

% Studentized/jackknifed residuals
if f>1 studres = stdres./sqrt((f-stdres.ˆ2)/(f-1));
end

46 Least Squares Adjustment

function [bb,ll,h,phi,lambda] = c2gwgs84(x,y,z)

% C2GWGS84
% Convertion of cartesian coordinates (X,Y,Z) to geographical
% coordinates (phi,lambda,h) on the WGS 1984 reference ellipsoid
%
% phi and lambda are output as vectors: [degrees minutes seconds]’

% Modified by Allan Aasbjerg Nielsen (2004) after
% Kai Borre 02-19-94
% Copyright (c) by Kai Borre
% $Revision: 1.0 $ $Date: 1997/10/15 %

a = 6378137;
f = 1/298.257223563;

lambda = atan2(y,x);
ex2 = (2-f)*f/((1-f)ˆ2);
c = a*sqrt(1+ex2);
phi = atan(z/((sqrt(xˆ2+yˆ2)*(1-(2-f))*f)));

h = 0.1; oldh = 0;
while abs(h-oldh) > 1.e-12

oldh = h;
N = c/sqrt(1+ex2*cos(phi)ˆ2);
phi = atan(z/((sqrt(xˆ2+yˆ2)*(1-(2-f)*f*N/(N+h)))));
h = sqrt(xˆ2+yˆ2)/cos(phi)-N;

end

phi1 = phi*180/pi;
b = zeros(1,3);
b(1) = fix(phi1);
b(2) = fix(rem(phi1,b(1))*60);
b(3) = (phi1-b(1)-b(2)/60)*3600;
bb = [b(1) b(2) b(3)]’;
lambda1 = lambda*180/pi;
l = zeros(1,3);
l(1) = fix(lambda1);
l(2) = fix(rem(lambda1,l(1))*60);
l(3) = (lambda1-l(1)-l(2)/60)*3600;
ll = [l(1) l(2) l(3)]’;

2.2 Nonlinear WLS by other Methods

The remaining sections describe a few other methods often used for solving the nonlinear (weighted) least squares regression
problem.

2.2.1 The Gradient or Steepest Descent Method

Let us go back to Equation 168: yi = fi(θ) + ei, i = 1, . . . , n and consider the nonlinear WLS case

∥e2(θ)∥ = eTPe/2 =
1

2

n∑
i=1

pi[yi − fi(θ)]
2. (288)

The components of the gradient ∇∥e2∥ are

∂∥e2∥
∂θk

= −
n∑

i=1

pi[yi − fi(θ)]
∂fi(θ)

∂θk
. (289)

From an initial value (an educated guess) we can update θ by taking a step in the direction in which ∥e2∥ decreases most rapidly,
namely in the direction of the negative gradient

θnew = θold − α∇∥e2(θold)∥ (290)

where α > 0 determines the step size. This is done iteratively until convergence.

Allan Aasbjerg Nielsen 47

2.2.2 Newton’s Method

Let us now expand ∥e2(θ)∥ to second order around an initial value θ0

∥e2(θ)∥ ≃ ∥e2(θ0)∥+ [∇∥e2(θ0)∥]T (θ − θ0) +
1

2
[θ − θ0]

TH(θ0)[θ − θ0] (291)

where H = ∂2∥e2(θ)∥/∂θ∂θT is the second order derivative of ∥e2(θ)∥ also known as the Hessian matrix not to be confused
with the hat matrix in Equations 44, 114 and 196. The gradient of the above expansion is

∇∥e2(θ)∥ ≃ ∇∥e2(θ0)∥+H(θ0)[θ − θ0]. (292)

At the minimum ∇∥e2(θ)∥ = 0 and therefore we can find that minimum by updating

θnew = θold −H−1
old∇∥e2(θold)∥ (293)

until convergence.

From Equation 289 the elements of the Hessian H are

Hkl =
∂2∥e2∥
∂θk∂θl

=
n∑

i=1

pi

[
∂fi(θ)

∂θk

∂fi(θ)

∂θl
− [yi − fi(θ)]

∂2fi(θ)

∂θk∂θl

]
. (294)

We see that the Hessian is symmetric. The second term in Hkl depends on the sum of the residuals between model and data,
which is supposedly small both since our model is assumed to be good and since its terms can have opposite signs. It is therefore
customary to omit this term. If the Hessian is positive definite we have a local minimizer and if its negative definite we have a local
maximizer (if its indefinite, i.e., it has both positive and negative eigenvalues, we have a saddle point). H is sometimes termed the
curvature matrix.

2.2.3 The Gauss-Newton Method

The basis of the Gauss-Newton method is a linear Taylor expansion of e

e(θ) ≃ e(θ0) + J(θ0)[θ − θ0] (295)

where J is the so-called Jacobian matrix containing the partial derivatives of e (like A containing the partial derivatives of F in
Equation 179). In the WLS case this leads to

1

2
eT (θ)Pe(θ) ≃ 1

2
eT (θ0)Pe(θ)0 + [θ − θ0]

TJT (θ0)Pe(θ0) +
1

2
[θ − θ0]

TJT (θ0)PJ(θ0)[θ − θ0]. (296)

The gradient of this expression is JT (θ0)Pe(θ0) + JT (θ0)PJ(θ0)[θ − θ0] and its Hessian is JT (θ0)PJ(θ0). The gradient
evaluated at θ0 is JT (θ0)Pe(θ0). We see that the Hessian is independent of θ − θ0, it is symmetric and it is positive definite if
J(θ0) is full rank corresponding to linearly independent columns. Since the Hessian is positive definite we have a minimizer and
since ∇∥e2(θold)∥ = JT (θold)Pe(θold) we get from Equation 293

θnew = θold − [JT (θold)PJ(θold)]
−1JT (θold)Pe(θold). (297)

This corresponds to the normal equations for θnew − θold

[JT (θold)PJ(θold)](θnew − θold) = −JT (θold)Pe(θold). (298)

This is equivalent to Equation 181 so the linearization method described in Section 2.1 is actually the Gauss-Newton method with
−A as the Jacobian.

It can be shown that if the function to be minimized is twice continuously differentiable in a neighbourhood around the solution
θ∗, if J(θ) over iterations is nonsingular, and if the initial solution θ0, is close enough to θ∗, then the Gauss-Newton method
converges. It can also be shown that the convergence is quadratic, i.e., the length of the increment vector (∆̂ in Section 2.1 and h
in the Matlab function below) decreases quadratically over iterations.

Below is an example of a Matlab function implementation of the unweighted version of the Gauss-Newton algorithm. Note, that
the code to solve the positioning problem is a while loop the body of which is three (or four) statements only. This is easily
extended with the weighting and the statistics part given in the previous example (do this as an exercise). Note also, that in the call
to function gaussnewton we need to call the function fJ with the at symbol (@) to create a Matlab function handle.

48 Least Squares Adjustment

Matlab code for Example 11

function x = gaussnewton(fJ, x0, tol, itermax)

% x = gaussnewton(@fJ, x0, tol, itermax)
%
% gaussnewton solves a system of nonlinear equations
% by the Gauss-Newton method.
%
% fJ - gives f(x) and the Jacobian J(x) by [f, J] = fJ(x)
% x0 - initial solution
% tol - tolerance, iterate until maximum absolute value of correction
% is smaller than tol
% itermax - maximum number of iterations
%
% x - final solution
%
% fJ is written for the occasion

% (c) Copyright 2005
% Allan Aasbjerg Nielsen
% aa@imm.dtu.dk, www.imm.dtu.dk/˜aa
% 8 Nov 2005

% Modified after
% L. Elden, L. Wittmeyer-Koch and H.B. Nielsen (2004).

if nargin < 2, error(’too few input arguments’); end
if nargin < 3, tol = 1e-2; end
if nargin < 4, itermax = 100; end

iter = 0;
x = x0;
h = realmax*ones(size(x0));

while (max(abs(h)) > tol) && (iter < itermax)
[f, J] = feval(fJ, x);
h = J\f;
x = x - h;
iter = iter + 1;

end

%%

function [f, J] = fJ(x)

xxyyzz = [16577402.072 5640460.750 20151933.185;
11793840.229 -10611621.371 21372809.480;
20141014.004 -17040472.264 2512131.115;
22622494.101 -4288365.463 13137555.567;
12867750.433 15820032.908 16952442.746;
-3189257.131 -17447568.373 20051400.790;
-7437756.358 13957664.984 21692377.935]; % [m]

l = [20432524.0 21434024.4 24556171.0 21315100.2 21255217.0 24441547.2 ...
23768678.3]’; % [m]

xx = xxyyzz(:,1);
yy = xxyyzz(:,2);
zz = xxyyzz(:,3);

range = sqrt((x(1)-xx).ˆ2 + (x(2)-yy).ˆ2 + (x(3)-zz).ˆ2);
prange = range + x(4);
f = l - prange;

if nargout < 2, return; end

n = size(f,1); % # obs
p = 4; % # parameters
J = zeros(n,p);

% analytical derivatives
J(:,1) = -(x(1)-xx)./range;
J(:,2) = -(x(2)-yy)./range;
J(:,3) = -(x(3)-zz)./range;
J(:,4) = -ones(n,1);

Allan Aasbjerg Nielsen 49

return

% numerical derivatives
delta = 1;
for i = 1:p

y = x;
y(i) = x(i) + delta;
J(:,i) = (fJ(y) - f); %./delta;

end

return

% or symmetrized
delta = 0.5;
for i = 1:p

y = x;
z = x;
y(i) = x(i) + delta;
z(i) = x(i) - delta;
J(:,i) = (fJ(y) - fJ(z)); %./(2*delta);

end

2.2.4 The Levenberg-Marquardt Method

The Gauss-Newton method may cause the new θ to wander off further from the minimum than the old θ because of nonlinear com-
ponents in e which are not modelled. Near the minimum the Gauss-Newton method converges very rapidly whereas the gradient
method is slow because the gradient vanishes at the minimum. In the Levenberg-Marquardt method we modify Equation 298 to

[JT (θold)PJ(θold) + µI](θnew − θold) = −JT (θold)Pe(θold) (299)

where µ ≥ 0 is termed the damping factor. The Levenberg-Marquardt method is a hybrid of the gradient method far from the
minimum and the Gauss-Newton method near the minimum: if µ is large we step in the direction of the steepest descent, if µ = 0
we have the Gauss-Newton method.

Also Newton’s method may cause the new θ to wander off further from the minimum than the old θ since the Hessian may be
indefinite or even negative definite (this is not the case for JTPJ). In a Levenberg-Marquardt-like extension to Newton’s method
we could modify Equation 293 to

θnew = θold − (Hold + µI)−1∇∥e2(θold)∥. (300)

3 Final Comments

In geodesy (and land surveying and GNSS) applications of regression analysis we are often interested in
the estimates of the regression coefficients also known as the parameters or the elements which are often
2- or 3-D geographical positions, and their estimation accuracies. In many other application areas we are
(also) interested in the ability of the model to predict values of the response variable from new values of the
explanatory variables not used to build the model.

Unlike the Gauss-Newton method both the gradient method and Newton’s method are general and not re-
stricted to least squares problems, i.e., the functions to be optimized are not restricted to the form eTe or
eTPe. Many other methods than the ones described and sketched here both general and least squares meth-
ods such as quasi-Newton methods, conjugate gradients and simplex search methods exist.

Solving the problem of finding a global optimum in general is very difficult. The methods described and
sketched here (and many others) find a minimum that depends on the set of initial values chosen for the
parameters to estimate. This minimum may be local. It is often wise to use several sets of initial values to
check the robustness of the solution offered by the method chosen.

50 Least Squares Adjustment

Literature

P.R. Bevington (1969). Data Reduction and Error Analysis for the Physical Sciences. McGraw-Hill.

K. Borre (1990). Landmåling. Institut for Samfundsudvikling og Planlægning, Aalborg. In Danish.

K. Borre (1992). Mindste Kvadraters Princip Anvendt i Landmålingen. Aalborg. In Danish.

M. Canty, A.A. Nielsen and M. Schmidt (2004). Automatic radiometric normalization of multitemporal
satellite imagery. Remote Sensing of Environment 41(1), 4-19.

P. Cederholm (2000). Udjævning. Aalborg Universitet. In Danish.

R.D. Cook and S. Weisberg (1982). Residuals and Infuence in Regression. Chapman & Hall.

K. Conradsen (1984). En Introduktion til Statistik, vol. 1A-2B. Informatik og Matematisk Modellering, Dan-
marks Tekniske Universitet. In Danish.

K. Dueholm, M. Laurentzius and A.B.O. Jensen (2005). GPS. 3rd Edition. Nyt Teknisk Forlag. In Danish.

L. Eldén, L. Wittmeyer-Koch and H.B. Nielsen (2004). Introduction to Numerical Computation - analysis
and MATLAB illustrations. Studentlitteratur.

N. Gershenfeld (1999). The Nature of Mathematical Modeling.

Cambridge University Press.

G.H. Golub and C.F. van Loan (1996). Matrix Computations, Third Edition. Johns Hopkins University Press.

P.S. Hansen, M.P. Bendsøe and H.B. Nielsen (1987). Lineær Algebra - Datamatorienteret. Informatik og
Matematisk Modellering, Matematisk Institut, Danmarks Tekniske Universitet. In Danish.

T. Hastie, R. Tibshirani and J. Friedman (2009). The Elements of Statistical Learning: Data Mining, Infer-
ence, and Prediction. Second Edition. Springer.

O. Jacobi (1977). Landmåling 2. del. Hovedpunktsnet. Den private Ingeniørfond, Danmarks Tekniske Uni-
versitet. In Danish.

A.B.O. Jensen (2002). Numerical Weather Predictions for Network RTK. Publication Series 4, volume 10.
National Survey and Cadastre, Denmark.

N. Kousgaard (1986). Anvendt Regressionsanalyse for Samfundsvidenskaberne. Akademisk Forlag. In Dan-
ish.

K. Madsen, H.B. Nielsen and O. Tingleff (1999). Methods for Non-Linear Least Squares Problems. Infor-
matics and Mathematical Modelling, Technical University of Denmark.

P. McCullagh and J. Nelder (1989). Generalized Linear Models. Chapman & Hall. London, U.K.

E.M. Mikhail, J.S. Bethel and J.C. McGlone (2001). Introduction to Modern Photogrammetry. John Wiley
and Sons.

E. Mærsk-Møller and P. Frederiksen (1984). Landmåling: Elementudjævning. Den private Ingeniørfond,
Danmarks Tekniske Universitet. In Danish.

Allan Aasbjerg Nielsen 51

A.A. Nielsen (2001). Spectral mixture analysis: linear and semi-parametric full and partial unmixing in
multi- and hyperspectral image data. International Journal of Computer Vision 42(1-2), 17-37 and Journal
of Mathematical Imaging and Vision 15(1-2), 17-37.

W.H. Press, S.A. Teukolsky, W.T. Vetterling and B.P. Flannery (1992). Numerical Recipes in C: The Art of
Scientific Computing. Second Edition. Cambridge University Press.

J.A. Rice (1995). Mathematical Statistics and Data Analysis. Second Edition. Duxbury Press.

G. Strang (1980). Linear Algebra and its Applications. Second Edition. Academic Press.

G. Strang and K. Borre (1997). Linear Algebra, Geodesy, and GPS. Wellesley-Cambridge Press.

P. Thyregod (1998). En Introduktion til Statistik, vol. 3A-3D. Informatik og Matematisk Modellering, Dan-
marks Tekniske Universitet. In Danish.

W.N. Venables and B.D. Ripley (1999). Modern Applied Statistics with S-PLUS. Third Edition. Springer.

Index
F distribution, 28
R2, 12
χ2 distribution, 21, 23, 28
σ0, 16, 18
s0, 21, 28
t distribution, 12, 13, 22
t-test, two-sided, 12, 22

adjustment, 7

chain rule, 29, 30
Cholesky, 8, 15–17, 23, 27
coefficient of determination, 12
confidence

ellipsoid, 28, 33, 41
Cook’s distance, 14
coordinate system

ECEF, 41
ENU, 41

damping factor, 49
decomposition

Cholesky, 15
QR, 15
singular value, 15

degrees of freedom, 7
derivative matrix, 26, 29
dilution of precision, 41
dispersion matrix, 11, 21, 27
distribution

F , 28
χ2, 21, 23, 28
t, 12, 13, 22
normal, 12, 21, 22

DOP, 41

ECEF coordinate system, 41
ENU coordinate system, 41
error

ellipsoid, 28
gross, 13
or residual, 6, 7

estimator
central, 9, 18
unbiased, 9, 18

fundamental equations, 9, 17, 26

Gauss-Newton method, 27, 33, 47, 48, 50
Global Navigation Satellite System, 29, 31
Global Positioning System, 39
GNSS, 29, 31

GPS, 39
gradient method, 47

hat matrix, 9, 17
Hessian, 47–49

idempotent, 9, 17
iid, 12
influence, 11, 14, 28
initial value, 25, 29, 47, 50
iterations, 27
iterative solution, 27

Jacobian, 27, 47, 48

least squares
general (GLS), 24
nonlinear (NLS), 24
ordinary (OLS), 7
weighted (WLS), 16
WLS as OLS, 24

levelling, 19
Levenberg-Marquardt method, 49
leverage, 11, 14, 21, 28, 33, 40
linear constraints, 8, 26
linearization, 25, 26

Matlab command mldivide, 13
minimum

global, 50
local, 50

MSE, 11, 21, 28
multicollinearity, 8, 17, 27
multiple regression, 6

Navstar, 39
Newton’s method, 47, 50
normal distribution, 12, 21, 22
normal equations, 8, 17, 24

objective function, 7, 16
observation equations, 7, 26
optimum

global, 50
local, 50

orientation unknown, 30, 31
outlier, 13, 14

partial derivatives
analytical, 29
numerical, 30

precision

52

Allan Aasbjerg Nielsen 53

dilution of, 41
pseudorange, 39

QR, 8, 13, 15, 17, 27

regression, 7
multiple, 6
simple, 4

regressors, 6
residual

jackknifed, 13
or error, 6
standardized, 13
studentized, 13

RMSE, 11, 21, 28
RSS, 11, 21, 27

significance, 12, 22, 28
simple regression, 4
space vehicle, 31, 39
SSE, 11, 21, 27
standard deviation of unit weight, 16
steepest descent method, 47
SVD, 8, 15, 17, 27

Taylor expansion, 25, 29, 47

uncertainty, 7

variable
dependent, 6
explanatory, 6
independent, 6
predictor, 6
response, 6

variance-covariance matrix, 11, 21, 27

weights, 18

