MicroSurvey[®] STAR^{*}NET

Least Squares Adjustment

PRESENTED BY: JAMES M. SHAW, JR., PROF.L.S.

James M. Shaw, Jr.

- MD Professional Land Surveyor
- Reality Capture Manager at JMT
- FAA Certified sUAS Remote Pilot
- Past-President of the MSS
- Education Committee Chair
- Technology Committee Chair
- Contributing Writer, xyHt Magazine
- Email: jshaw@jmt.com

THE PRIME DIRECTIVE

Please silence your communicators.

Objectives

- A brief review of geodesy and datums
- Designing a control network for accuracy
- Configuring STAR*NET for optimal results
- STAR*NET commands, data entry, and data management
- Reviewing the STAR*NET results
- Understanding STAR*NET errors

What is Least Squares?

Definition - a model for the solution of an overdetermined system of equations based on the principle of least squares of observation residuals. It is used extensively in the disciplines of surveying, geodesy, and photogrammetry the field of geomatics, collectively.

Why do we need to adjust our survey data?

Least Squares Adjustment

You Are Seeking Truth, Not Moving Points

- The points are fixed on the ground.
- A geodetic control adjustment <u>does not</u> move the position of the points on the ground.
- A geodetic control adjustment <u>does</u> provide positional answers that should increasingly reflect truth with each set of new data.

Weak Network Geometry – Minimal Ties

Strong Network Geometry – Redundant Ties

Redundancy is Critical to Successful Survey Control Wait! Aren't Other Adjustment Methods Good Enough?

COMAR 09.13.06.03.G. Accuracy Standards.(1) The maximum allowable relative positional precision for boundary surveys shall be 0.07 feet (or 2 centimeters) plus 50 parts per million, based on the direct distance between the two corners being tested.

What control adjustment methods result in a relative positional precision?

MDOT SHA Procedures Manual 2018

The Office of Highway Development Plats and Surveys Division

Field Procedures Manual - 2018 Consultant Version

2. Datums and Adjustments

A. Datums: Unless specifically directed to use a different datum, all work for the MDOT SHA Plats and Surveys Division is to be completed under the following datums.

Horizontal - NAD 83/91 Vertical – NAVD 88 Geoid Model – 12B

B. Adjustments: Least squares adjustment software (StarNet, SurvNet, etc.) shall be used. The project settings, equipment tolerances and files required should follow the guidelines below.

i. Project settings: The following pages contain screen shots of StarNet Project Options settings tabs that identify information that should be included in listings report. If other adjustment software is used, similar parameters should be set. Any deviation from these settings should be reported and approved before project delivery.

ii. Equipment tolerances: Tolerance settings within the software should reflect the equipment manufactures specifications for horizontal and vertical angle accuracies. The correct distance constant and PPM values should also be used. Reasonable centering errors should also be applied in accordance with manufactures specifications.

iii. Files required with project submission: Any RW5 and DAT files both unedited and edited shall be supplied. The listing file and a network plot showing the project should also be included. If GPS data or leveling data is included with the project, all unedited and edited files should also be included.

Coordinates

HOW DO WE GET PLANAR COORDINATES ON AN ELLIPSOIDAL PLANET?

Lambert Conformal Projection

▶ Published in 1772 by Johann Heinrich Lambert.

► The projection minimizes scaling distortions with true scale lying along the two parallels. Scale decreases between the parallels and increases outside the parallels.

Maryland Coordinate System

Aspect	1939 Coordinate System	1987 Coordinate System
Map Projection	Lambert conformal projection of the Clarke spheroid of 1866	Lambert conic conformal projection of the geodetic reference system of 1980
North American Datum	NAD27	NAD83
Latitude of Origin(at the 77th meridian)	37°50' North latitude	37°40 North latitude
Central Meridian	77°00 West longitude	77°00' West longitude
Standard Parallel 1	38°18 North latitude	38°18' North latitude
Standard Parallel 2	39°27 North latitude	39°27' North latitude
False Easting(at the 77th meridian)	800,000 feet	400,000 meters
False Northing(at the latitude of origin)	0 feet	0 meters
Latitude/Longitude at artificial origin (0,0)	37°48' 00.06798" N/ 79°46' 07.35361" W	37°34' 38.14264" N/ 81°31' 45.07877" W

Maryland Coordinate System

Maryland Code, Real Property, §14–401 thru 407

NAD83 is legislatively defined.

Must conform to the coordinates per NGS.

System is based on meters.

▶ Defines the U.S. survey foot for conversion.

Realizations of NAD 1983

- NAD83 (1986) initial release of 1983 tied to GRS80 and WGS84
- NAD83(1991) localized HARN adjustment incorporating GPS observation, first 3D adjustment
- NAD83(CORS96) national adjustment utilizing only CORS data
- NAD83(NSRS2007) epoch 2002.0 national adjustment with GPS data only, fixed to CORS, first velocity-based system
- US National Spatial Reference System NAD 83(2011) epoch 2010.00 velocity based geodetic system with CORS updates

The Future Maryland Coordinate System

Based on NATRF2022 & NAPGD2022

Maryland Code, Real Property, needs revision.

Will rely on NSRS per NGS.

- Will use a single central parallel.
- Will use international feet for conversion.
- Will require an epoch and geoid reference.

National Geodetic Vertical Datum of 1927

Based on Mean Sea Level as observed at 26 tide gauges in the U.S. and 5 in Canada.

66,315 miles of leveling. Assumed mean sea level was consistent around the globe.

North American Vertical Datum of 1988

Continental leveling fixed to a single origin point in Pointe-au-Pere, Rimouski, Quebec, Canada. Mean sea level based on Great Lakes tidal study.

Incorporated over 388,000 miles of leveling and 505,000 permanently monumented benchmarks.

NAVD88 VERSUS NGVD29

Distortion throughout the United States based on a false assumption.

Errors listed in centimeters.

30.48cm = 1.00 USft
100cm = 3.28 USft

GEOID18

An equipotential surface of the Earth's gravity field which best fits global mean sea level.

 In Maryland the typical geoid height is -33.0 meters ± (-108.27 USft ±)

NAVD88 from GEOID18

- GPS/GNSS-derived elevations are only an <u>approximation</u> of NAVD88.
- NAVD88 can only be established through differential leveling from established NGS benchmarks.
- NAGPD2022 will be an equipotential GNSS-based model only.

Planning for Success

What are the project considerations?

- Horizontal Datum
- Vertical Datum
- Accuracy of Locations
- Deliverables
- Availability of control
- Accessibility of control
- Equipment

Building a Solid Foundation

- Horizontal and vertical datums should be established from known control.
- Whenever possible, GNSS locations should be repeated with different satellites and should always begin and end on at least two NGS control points.
- Whenever possible, total station observations should form a loop with at least two known control points.
- If total station observations do not form a loop, at least two known control points should be used at each end of a linear traverse.
- Whenever possible, level runs should be a circuit and should include two known benchmarks.

Preparing Star*Net

CONFIGURING THE SETTINGS TO ENSURE OPTIMAL RESULTS

Opening/Starting a Project

- It is recommended to place Star*Net input and output into its own folder on the disk or network, such as /starnet
- Before adding data always check the project options.

Options -Adjustment

Make sure you understand the data you are adjusting and choose the Adjustment Type and Coordinate System accordingly.

Adjustment Type Units @ 2D Average Project Elevation: 0.000 FeetUS @ 3D Evelling Angular: DMS @ Coordinate System Greate Custom System @ Grid: MD83 Coordinate System Details Create Custom System Average Geoid Height: -33.000 (Meters) @ Local Datum Scheme @ Apply an Average Scale Factor: 1.000000000 @ Reduce to a Common Elevation: 0.000 FeetUS Geoid/Vertical Deflections Using Geoid Modeling @ Using Vertical Deflections To change these options please refer to the Modeling Tab	Hajustment	General	Instrument	Listing File	Other Files	Special	GPS	Modeling
 2D Average Project Elevation: 0.000 FeetUS Angular: OMS ONS ONS ONS ONS ONS ONS ONS ONS ONS Ond Ond	Adjustn	nent Type						Units
Average Project Elevation: 0.000 FeetUS: Angular: DMS 3D Coordinate System Gird: MD83 Coordinate System Details Create Custom System Average Geoid Height: -33.000 (Meters) Local Datum Scheme Apply an Average Scale Factor: 1.000000000 FeetUS Geoid/Vertical Deflections Using Geoid Modeling Using Vertical Deflectionss To change these options please refer to the Modeling Tab 	© 21	D						Linear: FeetUS 🔻
3D Argula. Division of the system GONS Coordinate System Goid: MD83 Coordinate System Details Create Custom System Average Geoid Height: -33.000 (Meters) Local Datum Scheme Apply an Average Scale Factor: 1.0000000000 FeetUS Geoid/Vertical Deflections Using Geoid Modeling Using Vertical Deflections To change these options please refer to the Modeling Tab 		Average P	roject Elevati	on: 0.0	00	FeetUS	5	Angular: O DMS
Coordinate System Gold: MD83 Coordinate System Details Create Custom System Average Geoid Height: -33.000 Average Geoid Height: -33.000 Cocal Datum Scheme @ Apply an Average Scale Factor: 1.0000000000 @ Reduce to a Common Elevation: 0.000 FeetUS Geoid /Vertical Deflections Using Geoid Modeling Using Vertical Deflections To change these options please refer to the Modeling Tab	31	D		Su:		1		
Coordinate System Grid: MD83 Coordinate System Details Create Custom System Average Geoid Height: -33.000 (Meters) Cocal Datum Scheme Apply an Average Scale Factor: 1.0000000000 Reduce to a Common Elevation: 0.000 FeetUS Geoid/Vertical Deflections Using Geoid Modeling Using Geoid Modeling Using Vertical Deflections To change these options please refer to the Modeling Tab	01	10-						O GONS
Coordinate System Grid: MD83 Coordinate System Details Create Custom System Average Geoid Height: -33.000 (Meters) Average Geoid Height: -33.000 (Meters) O Local Datum Scheme Apply an Average Scale Factor: 1.0000000000 Reduce to a Common Elevation: 0.000 FeetUS Geoid/Vertical Deflections Using Geoid Modeling U Using Vertical Deflections To change these options please refer to the Modeling Tab	© L	evelling						
 Grid: MD83 Coordinate System Details Create Custom System Average Geoid Height: -33.000 (Meters) Local Datum Scheme Apply an Average Scale Factor: 1.0000000000 Reduce to a Common Elevation: 0.000 FeetUS Geoid/Vertical Deflections Using Geoid Modeling Using Vertical Deflections To change these options please refer to the Modeling Tab 	Coordin	ate Systen	n					
Average Geoid Height: -33.000 (Meters) • Local Datum Scheme • Apply an Average Scale Factor: 1.0000000000 • Reduce to a Common Bevation: 0.000 FeetUS Geoid/Vertical Deflections ✓ Using Geoid Modeling ✓ Using Vertical Deflections To change these options please refer to the Modeling Tab	Grid	. [MD8	3	Coordinat	e System	Details	Create Custom System
Average Geoid Height: -33.000 (Meters) Local Datum Scheme Apply an Average Scale Factor: 1.0000000000 Reduce to a Common Elevation: 0.000 FeetUS Geoid/Vetical Deflections Using Geoid Modeling Using Vertical Deflections To change these options please refer to the Modeling Tab						120	1	, <u>(</u>
 Local Datum Scheme Apply an Average Scale Factor: 1.000000000 Reduce to a Common Elevation: 0.000 FeetUS Geoid/Vetical Deflections Using Geoid Modeling Using Vertical Deflections To change these options please refer to the Modeling Tab 	A	verage Geo	oid Height:		-33.00	00	(Met	ers)
Datum Scheme Apply an Average Scale Factor: Reduce to a Common Elevation: Geoid/Vertical Deflections Using Geoid Modeling Using Vertical Deflections To change these options please refer to the Modeling Tab	⊚ Loc	al						
	Da	itum Scher	ne					
Reduce to a Common Elevation: 0.000 FeetUS Geoid/Vertical Deflections Using Geoid Modeling Using Vertical Deflections To change these options please refer to the Modeling Tab		0 1 0	verage Scale	e Factor:	1.0000	0000000		
 Geoid/Vertical Deflections ✓ Using Geoid Modeling ✓ Using Vertical Deflections To change these options please refer to the Modeling Tab 	۲	Apply an A	wordgo ocali					
 ✓ Using Geoid Modeling ✓ Using Vertical Deflections To change these options please refer to the Modeling Tab 	0	Appiy an A Reduce to	a Common E	Bevation:	0.000] Feetl	Js
☑ Using Vertical Deflections To change these options please refer to the Modeling Tab	Geoid/	Appiy an A Reduce to Vertical De	a Common E	Bevation:	0.000] Feetl	JS
To change these options please refer to the Modeling Tab	Geoid/	Appiy an A Reduce to Vertical De Ig Geoid M	a Common E flections	Bevation:	0.000] Feetl	JS
	Geoid/	Appiy an A Reduce to Vertical De Ig Geoid M Ig Vertical I	a Common E flections lodeling Deflections	Bevation:	0.000] FeetL	JS
	© ⊂ Geoid/ ♥ Usin ♥ Usin	Apply an A Reduce to Vertical De Ig Geoid M Ig Vertical I	a Common E flections lodeling Deflections To chan	Bevation:	0.000	fer to the] Feett	g Tab
	© Geoid/ √ Usin √ Usin	Apply an A Reduce to Vertical De g Geoid M g Vertical I	a Common E flections odeling Deflections To char	Bevation:	0.000	fer to the] Feett	js g Tab
	© Geoid/ ✓ Usin	Apply an A Reduce to Vertical De g Geoid M g Vertical I	a Common E flections lodeling Deflections To chan	Bevation:	0.000	fer to the] Feetl	js g Tab

Coordinate System Group:	State Planes, NAD83
Coordinate System:	MD83
Projection:	NAD83 Maryland State Plane Zone, Meter
Datum:	North American Datum of 1983
Ellipsoid:	Geodetic Reference System of 1980

Options - General

Default values generally used.

Middle settings will affect the way data files are read.

Options - Instrument

- Instrument errors should be set based on a review of manufacturer specifications.
- Centering errors are an approximation from years of field experience. If these are left at zero the network will be over-constrained.
- Leveling may be set as an error per distance or as a general error per number of turns between points.

djustment G	ieneral	Instrument	Listing File	Other Files	Special	GPS	Mod	eling	
Conventio	nal			- TORE	eveling				
Distance (Constant:	0.030000	Feet	US S	Sections a:	s: 🔘 Le	ngth	Tums	
Distance I	PPM:	2.000		E	Bev Diff:	0.00500	10	FeetUS/Tu	um
Angle:		4.000000	Seco	onds					
Direction:		3.000000	Seco	onds					
Azimuth /	Bearing:	4.000000	Seco	onds					
Zenith:		10.00000	0 Seco	onds					
Elev Diff C	Constant:	0.050000	Feet	US					
Elev Diff F	PM:	25.000							
Centering	Errors:								
Horiz In	strument	0.005000) Fee	tUS					
Horiz Ta	arget:	0.005000) Fee	tUS					
Vertical		0.005000	Fee	tUS					
					ſ	or		C	11-1-

Options – Listing File

- Highly recommend to always include a copy of the input data so the listing file can be a stand-alone product.
- Showing coordinate changes from entered provisionals is a great method to tell how well your adjustment is matching a known datum – particularly in a minimally constrained network
- Sorting by standard residual helps you to identify errors more quickly.

Project Options Adjustment General Instrument Listing File Other Files Special GPS Modeling Unadjusted Contents Copy of Input Data File(s) Vetwork Observations Sideshot Observations Adjusted Contents Observations and Residuals Station Standard Deviations Coordinates Station Error Ellipses Sideshot Coordinates Connection Relative Ellipses Geodetic Positions Coordinate Changes from Entered Provisionals Convergence and Grid Factors Coordinate Changes for Each Iteration Azimuths and Horizontal Distances V File References V Traverse Closures Full Point Names Conventional and Leveling Observations Appearance

Show Azimuths as Bearings Show Solved Direction Set Orientations Show Extended Linear Precision Sort Coordinates by: Input Order
Name Sort Unadjusted Input Observations by: Input Order Name Sort Adjusted Observations and Residuals by: O Input Order O Name O Residual O Std Residual

OK

Cancel

Help

23

Options – Other Files

• The PTS file should be created for importing into CAD/COGO/GIS.

The GND file is optional, but recommended. In areas of high gridto-ground distortion the GND is mandatory.

ustment	General	Instrument	Listing File	Other Files	Special	GPS	Modeling	
🔽 Crea	te Coordii	nate (PTS) Fil	e					
	Format:	Default		•				
🔽 Crea	te Ground	d Scale Coord	linate (GND) f	File				
	Format:	Default		•]		Settings.		
🔽 Crea	te Geode	tic Position (F	OS) File					
Default	Precision	s						
Coord	linates:	6 🚔 G	eodetic Positi	ions: 7	Eleva	tions:	5	

Create Station Information Dump (DMP) File

Include Relative Connection Covariances

Options – Ground File Settings

- It is recommended to always let Star*Net determine a computed average scale factor. This average factor will be listed in the GND file.
- It is recommended that when trying to match ground data to grid data that a central station be held to given coordinates if available, or adjusted coordinates if no known points are centrally located.
- WARNING!!! Always be sure to fully understand the impact of the grid-to-ground factor before using these settings.

📝 Divide by Factor	Apply Rotation	C Apply Translation
Local Jobs		Magan and avera
1.000000000	Given Azimuth or Bearing	Oordinates at Station
CALLER.	From:	Name: STH028
Chausoos Calaboos	To:	() Use Adjusted Coordinate:
1.000000000	Value: N00-00-00.00E	Use Given Coordinates
Computed at Station:	Given Rotation	North: 0.000000
	Value: 0-00-00.00	East: 0.000000
Computed Average		Arbitrary Coordinates
	Angular Units In: DMS	Linear Units In: FeetUS

Options - Special

- COMAR and the 2011 ALTA Standards both establish a standard positional tolerance of 0.07 USft + 50ppm. It is recommended to leave this option on for all adjustments.
- Any redundant measurements to sideshots should be treated as multiobservation network points.

djustment	General	Instrument	Listing File	Other Files	Special	GPS	Modeling	
Position	al Toleran	ce Checking						
D.		-						
V Fe	errorm Che	ck on speci	ied Connecti	ons	000			
lolera	ance: U.L	07000 Fe	etUS Co	nfidence: 95	.000 %			
	50	.000 PF	M					
List:	۲	Tolerance Fa	ailures Only					
	0	All Connectio	ons					
For N	etwork Ma No Checki Issue Wan	atches: ing ning Messag	For Rep No e	eated SS Na Checking ue Warning I	mes: Nessage			
		Message	0 133	de Litor Mes	aye			
Level Lo	oop Check	c						
Pe	erform tole	rance check	on level loop	S				
Stand	dard	Tolerance						
NGS	•	Second Ord	ler Class II	*	0.035 ft v	M		
		- 77						

OK

Cancel

Help

Options - GPS

- Instrument errors should be set based on a review of manufacturer specifications.
- Setting shown here are for the Leica GS12 using the Leica SmartNet RTN.
- ECEF = Earth Centered Earth Fixed

ustment	General	Instrument	Listing File	Other File:	s Special	GPS	Model	ling	
Apph	v Default S	tdErrs to Vect	ors with no	Supplied W	eiahtina (M	eters)			
StdE	Err: 0.0080	00 PPM:	0.500	Alt	Vert StdEr	r: 0.0150	00	PPM: 0.	500
V Facto	or Supplied	StdErrs by:	2.000	Alt	emate Verl	: 3.000	-		
Apph	v Centerina	to StdEms:	0.001500	At	emate Verl	: 0 0000	00	(Meters)	
Top	of competions				Contraction (1987)	10.0000		(
	Solve for Solve for Solve for Solve for R Solve for R Custom	cale and Rota cale Only otations Only	tions	Custom S	ettings	Scale: NRot: ERot: URot:	None None None None		
Listing	Appearan	ce							
List V	ector Weig	hting as:	StdE	п/Corr 🔘	Covarianc	e			
Sort U	Jnadjusted	Vectors by:	Input	Order 🔘	Name	Cengti	h		
Sort A	Adjusted Ve	ectors by:	lnput 🔘	Order 🔘	Name	⊚ Lengt	h	Residual	StdRes
R E	esidual Su CEF Inform	mmary/Sort b ation:	y: 🔘 Adj V	/ect Order dinates) 3D Residu	io 2 als i ∂ B	D oth	© Up	
Opus S	tation								
E Fa	actor Supp	lied StdErrs b	y: 1,000		Altemate	Vert: 1	000		
A	pply Cente	ring to StdEm	s: 0.0000	00	Altemate	Vert: 0	000000) (Me	ters)

Instrument Specification Sheets

- Technical specifications are vital to good adjustments!
- These are the specifications for the Leica GS12.

Technical Specifications

GNSS Technology	Advanced Measurement Engine	
GNSS	Leica patented SmartTrack technology	Jamming resistant measurements High precision pulse aperture multipath correlator Excellent low elevation tracking technology Very low noise GNSS carrier phase measurements with <0.5 mm precision Minimum acquisition time
	No. of channels	120 channels
	Max. simultaneous tracked satellites	Up to 60 Satellites simultaneously on two frequencies
	Reacquisition time	<1 sec
	Position latency	Typically 0.02 sec
	GNSS Measurements	
	Satellite signals tracking	GPS: L1, L2, L2C, L5 (C/A, P, C Code) GLONASS: L1, L2 (C/A, P narrow Code); Galileo: E1, E5a, E5b, Alt-BOC; SBAS: WAAS, EGNOS, GAGAN, MSAS
Measurement Performance	Accuracy (rms) ¹	
	DGPS/RTCM	Typically 25 cm
	Single baseline (< 30 km)	Horizontal: 8 mm + 1 ppm Vertical: 15 mm + 1 ppm
_	Network RTK	Horizontal: 8 mm + 0.5 ppm Vertical: 15 mm + 0.5 ppm
	Post processing (phase) Static with long observations	Horizontal: 3 mm + 0.1 ppm Vertical: 3.5 mm + 0.4 ppm
	Post processing (phase) Rapid static mode	Horizontal: 3 mm + 0.5 ppm Vertical: 5 mm + 0.5 ppm
	On-The-Fly Initialization	
	Reliability ¹	Better than 99,99% using Leica SmartCheck technology
	Time for initialization	Typically 4 sec ²
	RTK baseline range	up to 70 km
	Data Recording	
	Recording rate	Up to 20 Hz
Hardware	User Interface	

Sidenote: Distance between RTN GNSS Points

- Calculations assume the Leica GS12 and the Leica SmartNet RTN
- From SmartNet: "Assuming the standard GPS RTK protocols and best practice methods are employed for maximum precision i.e. good satellite coverage, good geometry of precisions, low multipath environments etc, SmartNet typically achieves an RTK RMS accuracy of 1-2 cm plan and 2-3 cm height, in areas of SmartNet network correction coverage."
- 2 observed points = (2cm network error + 0.8cm instrument error + 0.15cm centering error) * 2 points = 5.90cm or 0.193 USft of potential normal error
- 0.193 0.07 = 0.123 ÷ 50ppm = 0.123 ÷ 0.00005 = 2,460 USft minimal distance between RTN control points

GNSS – Setting Standard Errors

Adjustment	General	Instrument	Listing File	Other Files	Special	GPS	Modeling	
	y Default S	StdErrs to Vec	tors with no	Supplied Wei	g <mark>ht</mark> ing (Me	eters)		
Stdl	Err: 0.008	000 PPM	: 0.500	Alt V	/ert StdErr	0.015	000 PPM	: 0.500
Fact	or Supplied	d StdErrs by:	2.000	Alter	nate Vert:	3.000		
Appl	y Centering	g to StdErrs:	0.001500	Alter	nate Vert:	0.000	000 (Mete	ers)

	שאטא אויאט, נטונטס, מאטאוז, ווושאט
Accuracy (rms) ¹	
DGPS/RTCM	Typically 25 cm
Single baseline (< 30 km)	Horizontal: 8 mm + 1 ppm Vertical: 15 mm + 1 ppm
Network RTK	Horizontal: 8 mm + 0.5 ppm Vertical: 15 mm + 0.5 ppm
Post processing (phase) Static with long observations	Horizontal: 3 mm + 0.1 ppm Vertical: 3.5 mm + 0.4 ppm
Post processing (phase) Rapid static mode	Horizontal: 3 mm + 0.5 ppm Vertical: 5 mm + 0.5 ppm
On-The-Fly Initialization	
Reliability ¹	Better than 99,99% using Leica SmartCheck technology
Time for initialization	Typically 4 sec ²
RTK baseline range	up to 70 km
Data Recording	
Recording rate	Up to 20 Hz
User Interface	

Options -Modeling

- These files we created from the NGS CONUS files.
- It is recommended to create geoid files that cover your region of operation.
- It is helpful to format the same geoid file to work with your GNSS data collection system so that all input is equal.

Models Folder: C:\ProgramData\MicroSurvey\StarNet\V8\Mapping Info Perform Geoid Modeling:	djustment	General	Instrument	Listing File	Other F	les Spe	cial	GPS	Modeling	
 Perform Geoid Modeling: Automatic Selection from Geoid Files Select Specific Geoid File: P:\standards\ROW\MicroSurvey_St; Browse Show Modeled Geoid Heights in Listing File Perform Vertical Deflection Modeling: Automatic Selection from "VDF" Files Select Specific Deflection File: P:\standards\ROW\MicroSurvey_St; Browse Show Modeled Vertical Deflections in Listing File Show Modeled Vertical Deflections in Listing File Apply Constant Deflections Only: N = 0.000 (Seconds) E = 0.000 (Seconds) 	Models	Folder:	C:\ProgramDa	ata\MicroSur	vey\Star	Net\V8\M	lappi	ng		Info
 Automatic Selection from Geoid Files Select Specific Geoid File: P:\standards\ROW\MicroSurvey_St; Browse Show Modeled Geoid Heights in Listing File Perform Vertical Deflection Modeling: Automatic Selection from "VDF" Files Select Specific Deflection File: P:\standards\ROW\MicroSurvey_St; Browse Show Modeled Vertical Deflections in Listing File Apply Constant Deflections Only: N = 0.000 (Seconds) E = 0.000 (Seconds) 	V Per	orm Geoid	Modeling:							
 Select Specific Geoid File: P:\standards\ROW\MicroSurvey_St; Browse Show Modeled Geoid Heights in Listing File Perform Vertical Deflection Modeling: Automatic Selection from "VDF" Files Select Specific Deflection File: P:\standards\ROW\MicroSurvey_St; Browse Show Modeled Vertical Deflections in Listing File Show Modeled Vertical Deflections in Listing File Apply Constant Deflections Only: N= 0.000 (Seconds) E= 0.000 (Seconds) 		O Autom	atic Selection	from Geoid F	Files					
 Show Modeled Geoid Heights in Listing File Perform Vertical Deflection Modeling: Automatic Selection from "VDF" Files Select Specific Deflection File: P:\standards\ROW\MicroSurvey_St: Browse Show Modeled Vertical Deflections in Listing File Apply Constant Deflections Only: N = 0.000 [Seconds] E = 0.000 [Seconds] 		Select	Specific Geo	id File:	P:\stand	lards\RO	M/W	icro Surv	ey_St;	Browse
 Perform Vertical Deflection Modeling: Automatic Selection from "VDF" Files Select Specific Deflection File: P:\standards\ROW\MicroSurvey_St; Browse Show Modeled Vertical Deflections in Listing File Apply Constant Deflections Only: N = 0.000 [Seconds] E = 0.000 [Seconds] 		V 9	Show Modele	d Geoid Heigl	hts in List	ing File				
 Perform Vertical Deflection Modeling: Automatic Selection from "VDF" Files Select Specific Deflection File: P:\standards\ROW\MicroSurvey_St; Browse Show Modeled Vertical Deflections in Listing File Apply Constant Deflections Only: N = 0.000 [Seconds] E = 0.000 [Seconds] 										
 Automatic Selection from "VDF" Files Select Specific Deflection File: P:\standards\ROW\MicroSurvey_St; Browse Show Modeled Vertical Deflections in Listing File Apply Constant Deflections Only: N = 0.000 [Seconds] E = 0.000 [Seconds] 	V Pert	orm Vertica	al Deflection	Modeling:						
 Select Specific Deflection File: P:\standards\ROW\MicroSurvey_St; Browse Show Modeled Vertical Deflections in Listing File Apply Constant Deflections Only: N = 0.000 [Seconds] E = 0.000 [Seconds] 		Automa	atic Selection	from "VDF"	Files					
Show Modeled Vertical Deflections in Listing File Apply Constant Deflections Only: N = 0.000 (Seconds) E = 0.000 (Seconds)		Select	Specific Defl	ection File:	P:\stand	lards\RO	M/M	icro Surv	ey_St;	Browse
Apply Constant Deflections Only: N= 0.000 [Seconds] E= 0.000 (Seconds)		V 9	Show Modele	d Vertical Def	lections i	n Listing F	File			
E= 0.000 (Seconds)		Apply (Constant Defl	ections Only:	N=	0.000		(Seco	onds)	
					E=	0.000		(Seco	onds)	

Using Star*Net

DATA MANAGEMENT, COMMANDS, AND DATA ENTRY

Data Input Files

Data Input Files	▼ ₽ ×
1 II R II R II R II	
	Index
🗹 📄 10114_JMT_master_traverse.dat	1
🗹 📄 10114_RKK_master_gnss.dat	2
✓ ■ 10114_RKK_MASTER_TRAVERSE.DAT	3
🦳 🗹 📄 10114_RKK_master_levels.dat	4
🗹 📄 10114_BaltoCity_traverse.dat	5
🗹 📄 10114_BaltoCity_levels.dat	6
- 🗹 📄 10114_JAR_MASTER_TRAVERSE.DAT	7
🔲 📄 10114_BaltoCity_coords.dat	
🗹 📄 10114_seg3bridge_scan_trav.dat	8
🗹 📄 JMT201.DAT	9
🗹 📄 10090-DANVILLE-MASTER-LEVELS.DAT	10
🗹 📄 10090-DANVILLE-MASTER-TRAV.DAT	11
🗹 📄 10114_170-695_Scans_Control.dat	12
GREENESTREET.DAT	13
GREENESTREET-LEVELS.DAT	14
🗹 📄 WEST BALTIMORE MARC TRAV.dat	15

Data files have a .dat extension.

- Data may be all contained in one file.
- Larger projects might consist of many data files.
- The index number corresponds to the file number in output files.
- There is no significance to the order of the input files.
- Star*Net is a simultaneous leastsquares solution.

Metadata in the .DAT Files

#	Worki	ng Directory :	\\balsrv03\v2010\	2010\10114_1	MTAGEC\Survey\	starnet\
.υ	nits	FeetUS				
.0	nits	DMS				
.0	rder	AtFromTo				
.5	ep	-				
.D	elta	Off				
.3	D					
1-2207						
#	Horiz	ontal Datum: N	AD 83 (NSRS 2007)			
Ŧ	Verti	cal Datum: N	AVD88			
#	Input	Field File : I	:\10114_starnet\f	ield\TR-RED	LINE-122010.RA	N
ŧ.	Job	: TR-REDLINE-12	2010			
#	Date	: 12-20-2010				
.3	D					
М	JMT 5	10-JMT053-RKK84	166-23-46.67	482.2000	90-20-29.17	5.360/5.260
М	RKK8	4-JMT510-RKK85	175-42-50.33	771.1700	90-58-50.67	5.470/5.190
М	RKK8	5-RKK84-RKK86	184-23-26.83	585.9100	89-08-16.33	5.400/5.280
М	RKK8	6-RKK85-RKK87	185-18-35.75	646.3875	91-50-56.25	5.300/5.230

- Anything following a # symbol in a line is ignored by Star*Net
- # designates comments
- Do not be afraid to place many comments in the .DAT file.
- Always include the project and working directory for each and every .DAT file.
- It is a good idea to include information regarding the datum.

Recommended Sequence of Data

Known Control

- ► GNSS/GPS
- Total Station Observations for Traverse
- Level Runs
- Observations for Locations Other Than Traverse

Known Control

- C code for known coordinates:
- C [STATION] [NORTH] [EAST] [ELEVATION] [HELD?] [DESCRIPTION]
- C JV0578 582,058.61 1,430,949.91 30.41 !!! 'CM #NGS 857 4680 TIDAL BASIC
- P code for known latitude and longitude:
- ▶ P [STATION] [LATITUDE] [LONGITUDE] [ELEVATION] [HELD?] [DESCRIPTION]
- ▶ P JV0578 39-15-50.88809 076-34-51.83402 30.41 !!! 'CM #NGS 857 4680 TIDAL BASIC
- ► H code added for Ellipsoid Height, ex: CH or PH

Known Elevations

- ► E code for known elevations:
- ► E [STATION] [ELEVATION] [HELD?] [DESCRIPTION]
- ► E JV0578 30.41 ! 'CM #NGS 857 4680 TIDAL BASIC
- ► H code added for Ellipsoid Height, ex: EH

GPS/GNSS Import

• GNSS data will never be hand entered, but will always be the result of a translation.

Be sure to review the G1 line of the resulting DAT file for common points and misnamed points.

NOTE: Pay attention to imported coordinates within the resulting DAT file.

out DBX Project:			Browse
Output Data File:			< Browse
Jobs:			
Geoid Path: CSCS Path:	P:\standards\ROW\RKK	\RKK-Survey\Leica-Geoids	Browse
Unit Settings		Data Source Options	
Units	Precision	 Survey Traverse Sets of Angles 	 Average Shots in Sets Include All Shots in Sets GPS Coordinates GPS Vectors
Angular DM	<u>s</u> ▼] 2	StakeoutUser Entry	

Total Station Observations for Traverse

- M code for measurements:
- ▶ M [AT-FROM-TO] [ANGLE] [DIST] [ZENITH] [HI/HT] [DESCRIPTION]
- M TR2-TR1-TR3 65-30-15.25 250.75 89-45-30 5.25/5.10 'IP
- > DV code for distance and vertical measurements:
- ► DV [AT-TO] [DISTANCE] [ZENITH] [HI/HT] [DESCRIPTION]
- DV TR2-TR3 250.75 89-45-30 5.25/5.10 'IP
- .3R code will reduce a 3D measurement to a 2D observation; eliminate HI/HT

Level Runs

- ▶ Typically hand-entered data, therefore the most common source of error.
- Error weighting based on distance or number of turns
- L code for differential level observations
- ► L [AT-TO] [ELEV DIFF] [DIST or TURNS] [DESCRIPTION]
- ► L JV0578-TR1 -4.25 2 'TR

Other Total Station Observations

- SS code for sideshots:
- SS [AT-FROM-TO] [ANGLE] [DIST] [ZENITH] [HI/HT] [DESCRIPTION]
- SS TR2-TR1-5001 65-30-15.25 250.75 89-45-30 5.25/5.10 'IP
- SS targets can only have one measurement line. If there is more than one measurement of any type, change the SS to an M.
- T codes stand for Traverse. This can provide a traverse closure report, but makes troubleshooting more difficult. In the Positional Tolerance age, a traverse closure is unnecessary and largely meaningless. Avoid using the T code unless absolutely required.

Reviewing Star*Net

DECIPHERING THE LISTING FILE

Adjustment Statistical Summary

- The Error Factor ranges should be between 0.5 and 1.5
- The larger Error Factor is almost always and indicator as to where the data may have a blunder or be of poor quality.
- Large errors may also indicate unrealistically small standard errors. Be sure your settings are realistic.
- See "Troubleshooting" until the Error Factors are acceptable.

Processing Summary

Network Adjustment with Error Propagation

Loading Network Data ... Checking Network Data ...

Performing Network Adjustment ... Iteration # 1 Iteration # 2 Iteration # 3 Iteration # 4 Iteration # 5 Solution Has Converged in 5 Iterations

Statistical Summary Observation Count Error Factor 122 0.574 Angles Distances 451 0.475 Zeniths 234 0.932 0.547 Level Data 50 GPS Deltas 480 1.387 Total 1337 0.980

Chi-Square Test at 5.00% Level Passed Lower/Upper Bounds (0.952/1.048)

Performing Error Propagation ... Writing Output Files ...

Network Processing Completed Elapsed Time = 00:00:04

Chi-Square Test

- Essentially a test to determine if the resulting residuals are due to random errors.
- If the test fails, the errors are likely systematic errors, blunders, or incorrect standard errors.
- Exceeding the upper bound indicates excessive residuals and/or may be the result of too small of standard errors. THIS MUST ALWAYS BE FIXED!
- Exceeding the lower bounds should be evaluated, but is not a cause for concern.

GPS Deltas	480	1.387
Total	1337	0.980

Chi-Square Test at 5.00% Level Passed Lower/Upper Bounds (0.952/1.048)

Performing Error Propagation ... Writing Output Files ...

Network Processing Completed

Positional Tolerance

- After satisfied with Error Factor in the Adjusted Statistical Summary, move to the end of the Listing File to review the Positional Tolerance.
- Stations that fail the Positional Tolerance test will have an asterisk next to them.
- Evaluate if these stations have redundancy and if the error is acceptable.
- Keep in mind that the positional tolerance should be met for ALTA surveys and boundary surveys.

Positional Tolerance Check (FeetUS) Allowable Tolerance = 0.0700 + 50 PPM Tolerance Check Confidence Region = 95% Listing Failures Only

Stations		Horizontal Semi-		jor-Axis	Ratio
From	To	Distance	Actual	Allowed	Actual/Allowed
450	RKK723	519.9900	0.1104	0.0960	1.1498 *
JU1474	RKK32	328.3911	0.1062	0.0864	1.2288 *
RKK310	RKK400	56.7334	0.0814	0.0728	1.1180 *
RKK723	RKK724	612.0441	0.1283	0.1006	1.2751 *
RKK724	RKK725	665.9312	0.2157	0.1033	2.0885 *
RKK724	RKK731	388.7888	0.1308	0.0894	1.4621 *
RKK725	RKK731	280.3945	0.0981	0.0840	1.1681 *

Connections Checked = 232 Number of Failures = 7

Coordinate Standard Deviations

- Shows the amount of coordinate uncertainty at 67% confidence (one-sigma)
- Fixed stations will be shown with zero deviation.
- High deviations indicate areas that may have errors, weak observations, or may require greater redundancy.

Station Coordinate Standard Deviations (FeetUS)

Station	N	E	Elev
450	0.035296	0.045217	0.051784
451	0.050656	0.042724	0.053124
452	0.055766	0.054876	0.053353
453	0.043255	0.057649	0.053237
5502	0.082016	0.053666	0.274546
13077 RKK1	0.033419	0.030857	0.022132
13077 RKK10	0.048956	0.045716	0.030147
13077 RKK11	0.051935	0.043604	0.031423
13077 RKK12	0.047680	0.046466	0.032234
13077 RKK13	0.044467	0.044197	0.031991
13077 RKK14	0.042132	0.042870	0.030196
13077 RKK15	0.037946	0.040370	0.027945
13077 RKK16	0.036194	0.035562	0.024401
13077 RKK17	0.036878	0.034097	0.023371
13077 RKK18	0.039332	0.037306	0.024217
13077 RKK19	0.040555	0.037149	0.023269
13077 RKK2	0.034631	0.036306	0.018370
13077 RKK3	0.039917	0.036848	0.019960
13077_RKK4	0.042917	0.037034	0.020536

Station Coordinate Error Ellipses

- Similar to the coordinate standard deviations, but with the additional information indicating the direction of the potential error.
- The confidence level may be set, but 95% confidence (two-sigma) is typical.
- If the adjustment fails the Chi-Square test, the deviations are multiplied by the Total Error Factor.

Station Coordinate Error Ellipses (FeetUS) Confidence Region = 95%

Station	Semi-Major	Semi-Minor	Azimuth of	Elev
	Axis	Axis	Major Axis	
450	0.113632	0.082475	109-13	0.101495
451	0.138827	0.083893	145-38	0.104122
452	0.169201	0.089701	135-49	0.104569
453	0.152649	0.088432	117-54	0.104343
5502	0.203780	0.126616	167-21	0.538101
13077 RKK1	0.082067	0.075241	168-23	0.043379
13077 RKK10	0.125537	0.105463	33-20	0.059087
13077 RKK11	0.132084	0.100528	24-45	0.061588
13077 RKK12	0.129992	0.098279	42-17	0.063178
13077 RKK13	0.116598	0.099778	43-52	0.062702
13077 RKK14	0.109681	0.098064	49-29	0.059183
13077 RKK15	0.099216	0.092454	75-41	0.054771
13077 RKK16	0.092518	0.082865	139-37	0.047825
13077 RKK17	0.091941	0.081613	155-38	0.045807
13077 RKK18	0.097669	0.089825	154-37	0.047465
13077 RKK19	0.099431	0.090754	171-57	0.045607
13077 RKK2	0.089503	0.084096	110-20	0.036004
13077 RKK3	0.100266	0.087339	152-48	0.039121
13077 RKK4	0.106002	0.089534	165-32	0.040251
			21 2 20	1 1 2 2 1 1 2 2

Troubleshooting Star*Net

COMMON ERRORS, COMMON SOLUTIONS

Fast Troubleshooting

- Be sure sorting by Std Residual was set in the listing files options.
- Review which data type had the highest Error Factor.
- Navigate to the Adjusted Observations and Residuals for target data type.
- Examine the highest errors against the input data for blunders or inconsistent data.
- Rerun adjustment after each fix and target the next highest error.

From	To	Zenith	Residual	StdErr	StdRes	File:Line
CROSS5	CROSS6	90-14-11.46	-0-00-56.71	13.34	4.3*	1:1257
RKK307	RKK305	90-00-14.13	-0-00-44.87	16.02	2.8	1:1531
RKK305	RKK307	90-05-06.31	-0-00-44.86	16.02	2.8	1:1529
13077 RKK18	13077 RKK19	89-53-49.50	0-00-37.17	13.84	2.7	1:1969
CROSS6	CROSS5	89-46-03.85	-0-00-28.15	13.34	2.1	1:1620
RKK724	450	90-12-47.97	-0-01-10.03	33.23	2.1	1:2267
13077 RKK19	13077 RKK18	90-07-54.58	0-00-24.91	13.84	1.8	1:1970
450 -	RKK724	90-02-31.50	-0-00-59.50	33.23	1.8	1:2263
CROSS5	CROSS6	90-13-09.04	0-00-23.04	13.34	1.7	1:1619
RKK26	RKK27	90-11-59.98	0-00-22.98	14.23	1.6	1:1168
RKK303	RKK302	89-55-16.97	0-00-15.97	10.74	1.5	1:1532
RKK302	RKK303	90-08-25.39	-0-00-15.61	10.74	1.5	1:1360
RKK304	RKK305	90-06-01.20	-0-00-16.80	11.64	1.4	1:1570
13077 RKK6	13077 RKK7	90-05-28.83	0-00-27.16	19.02	1.4	1:1939
13077 RKK8	13077 RKK7	88-43-13.84	-0-00-43.49	30.72	1.4	1:1942
RKK26	RKK25	90-04-20.10	0-00-19.10	13.50	1.4	1:1178
RKK123	RKK122	90-20-37.56	0-00-21.56	15.54	1.4	2:65
13077 RKK13	13077 RKK12	89-53-35.29	-0-00-15.71	11.35	1.4	1:1952
13077 RKK6	13077 RKK7	89-40-41.93	-0-00-25.07	19.02	1.3	1:2020
RKK126	RKK123	89-22-44.51	0-00-16.51	12.94	1.3	2:64
RKK120	RKK918	89-44-45.67	0-00-17.17	13.64	1.3	2:32
RKK32	RKK31	90-39-51.82	-0-00-13.18	10.93	1.2	1:1222
RKK901	RKK900	89-38-51.42	0-00-16.42	13.99	1.2	1:1402
RKK901	RKK900	89-38-51.42	0-00-16.42	13.99	1.2	1:1502
RKK901	RKK900	89-38-51.42	0-00-16.42	13.99	1.2	1:1763

Adjusted Zenith Observations (DMS)

Hand Entered Data

- Often errors are a result of mis-entered information.
- Be sure to carefully review input data that is causing large errors against the original notes.
- If the notes match, see if there is sufficient data to make sure there was not an error in the hand-written notes.

+	HI.		EL.	
7.968	187.647		רו <mark>9רה 1</mark> רו	BM = JMTA 308; REC
2.602	184.009	6.240	181.407	& RKK-31; Mac Nam
2.395	179.369	7,035	176.974	A RKX - 30; Mac Noil
1.249	169.913	10.705	168.664	A RKK - 28 . R &C
6.767	169.858	6.822	163,091	A RKK-25; REC.
6.250	1.920	4.188	165,670	A RKK-27; MAG NAIL

Point Names/Numbers

- Star*Net allows for alpha-numeric naming/numbering.
- Make sure all unique points have unique names.
- Make sure all redundant points use identical names.
- Be sure to always thoroughly review the network plot for points sharing a common position.

Temporary Placeholders

- Sometimes errors occur because there is not enough data for Star*Net to accurately determine where a point should be.
- In these instances, create a temporary coordinate close to the points location, but leave all elements open for adjustment.
- Be sure to clearly denote the file with comments that these points are only to assist with Star*Net processing.

Dutput	
MicroSurvey STAR*NET-PRO Error Log	
ERROR Station Incorrectly Connected to Network: JU1	474
ERROR Station Incorrectly Connected to Network: JU1	470
ERROR Station Incorrectly Connected to Network: JU1	473
WARNING Network Has No Fixed XY Stations	
WARNING Network Has No Fixed Z Stations	
Processing Terminated Due to Errors.	

Sideshots with Redundant Data

- If a point believed to be a sideshot has more than one dataset, it is no longer a sideshot.
- Alter the SS code to an M code.

WARNING [Line: 2046] Duplicate Sides)	hot Name				
SS 13077_RKK5-13077_RKK19-13077_100	346-12-57.50	168.4650	90-21-13.00		'RC
NARNING [Line: 2049] Duplicate Sides)	hot Name				
SS 13077_RKK19-13077_RKK5-13077_101	51-30-40.00	94.4600	87-13-04.00	5.100/0.000	'RC
NARNING [Line: 2051] Duplicate Sides)	hot Name				
35 13077_RKK19-13077_RKK5-13077_102	161-06-52.00	227.6600	90-01-20.00	5.100/0.000	'RC
NARNING [Line: 2053] Duplicate Sides)	not Name				
35 13077_RKK19-13077_RKK5-13077_103	168-17-16.50	362.6800	90-02-09.50	5.100/0.000	'PROP
NARNING [Line: 2070] Duplicate Sides)	hot Name				
SS 13077_RKK7-13077_RKK8-13077_104	4-09-22.50	30.6950	94-16-58.50	5.290/4.920	'IP
NARNING [Line: 2072] Duplicate Sides)	hot Name				
SS 13077 RKK7-13077 RKK8-13077 105	235-34-09.00	58.9800	89-29-24.50	5.290/4.920	'IP

.DATA ON/OFF

Inline command for ignoring data.

- Best used when multiple lines are to be ignored.
- Recommend using comments (#) to help make .data off commands standout in the .dat file.

```
******************************
   *******************************
   #Delaware SPC NAD83/91 from NGS datasheets
      JU1892
              39-40-24.16563
                                                            'HARE 2 RESET #H 2nd / V 1st-I - COMMENTED AS 0.42' OUT
   P
                               75-35-50.31090
                                               70.92
                                                      **1
   P
       JU2203
               39-40-20.64325
                               75-30-08.16123
                                              13.29
                                                      111
                                                            'A 100
                                                                          #H 1st / V 1st-II - NAD83(92) NJ SPC
      AJ8041
               39-48-15.81978
                               75-34-50.74837
                                              263.0
                                                       !!* 'GPS NC 5
                                                                          #H A-ORDER / NO VERI
       JU4112
               39-48-12.02465
                               75-28-48.97155
                                                            'HAR 2
                                                                           #H B-ORDER / V 3rd
                                              207.1
                                                       11*
      DK4426
              39-40-36.24960
                               75-44-34.82881
                                                                          #NO HORZ OR VERT - LEICA SMARTNET BASE 0250 ON 83(2011)
   P
                                                0.00
                                                       ***
                                                             'CORS DENE
       DF8717
               39-46-52.79148
                               75-07-11.25002
                                                96.26
                                                       ***
                                                             'CORS NJGC
                                                                          #LEICA SMARTNET BASE 0252 ON 83 (2011)
               39-47-45.21737
                               75-27-27.67413
                                                       **!
                                                                          #H 2nd / V 1st-II
       JU0786
                                               17.46
                                                            'PRINTZ
       JU4130
               39-43-46.78985
                               75-43-39.98064
                                              276.02
                                                      !!* 'F 42
                                                                          #H 1st / V 2nd-II
              39-43-07.69083
                                                            'MILLSIDE
                                                                          #H 3RD / V 3-4mm - VERT TIE ONLY
      JU1470
                               75-33-18.47074
                                               23.80
                                                      111
      JU1474 39-43-33
                               75-32-46
                                                8.59
                                                      111 'G 22
                                                                          #NO HORZ / V 4-8mm - VERT TIE ONLY
   P
      JU1473
             39-44-12
                               75-33-14
                                               15.89
                                                      111 'E 22
                                                                          #NO HORZ / V 3-4mm - VERT TIE ONLY
   P
59
   *****************************
61
   ****************************
```

60

Problems with Zenith Angles

- Review errors to see if a bad HI/HT is responsible.
- If HI/HT appears to be good or is unknown, the angle and distance measurements can still be used.
- Set 3D Reduce mode with the .3R inline command.
- Comment out the HI/HT
- Be sure to set .3D after the line in question.

TOPO-WILMINGTON(2-7-12).raw-EDIT.rw5

М	T113-T114-RKK902	271-42-24.50	423.8200	89-59-09.33	5.330/6.000	###'TRAV
Μ	T113-T114-RKK903	311-54-36.83	362.8267	90-01-06.00	5.330/6.000	###'TRAV
DV	RKK901-RKK900		298.1700	89-41-39.00	5.360/4.930	### 'CKSHOT
DV	RKK901-RKK900		298.1700	89-38-35.00	5.320/5.140	###'CKSHOT
. 31	2					
DV .31	T113-T114 D		427.9200	89-58-21.00	#5.360/5.020	###'CKSHOT
DV	RKK902-T113		423.8000	89-57-45.00	5.340/5.050	###'CKSHOT
DV	RKK903-T113		362.8300	89-52-12.00	5.380/5.400	###'CKSHOT

Notations for Bad Data

- Some data simply is bad or incorrect.
- Use # at the beginning of lines to be ignored, but do not delete the data.
- Add additional comment lines to explain why the data is being ignored, i.e.:
 - # Bad/unknown rod height.
 - #Misnamed point.
 Actual point unknown.
 - ▶ #High residual errors.

Input Field File : \\balsrv01\v2012\2012\12146_Garasches\SURVEY\Field\TR-GARASCHES(10-5-12)-EDIT.RAW
Job : TR-GARASCHES(10-5-12)

- # Date : 10-05-2012
- # Party Chief: Craig Myers
- # Instrument Man: Stan Carbaugh

#HORIZONTAL ANGLE HIGH RESIDUAL - SHOULD BE REVIEWED

#M	RKK10-RKK8-RKK25	31-58-40.00	321.3900	90-29-43.67	5.280/5.040
М	RKK25-RKK10-RKK26	278-07-52.33	321.8600	90-00-0.00	5.430/5.250
М	RKK26-RKK25-RKK27	158-09-08.83	288.0000	90-11-37.00	5.430/5.120
м	RKK27-RKK26-RKK28	193-19-22.67	322.6067	89-36-14.33	5.370/5.260
м	RKK28-RKK27-RKK29	169-39-01.00	359.4250	90-10-31.67	5.420/5.180
М	RKK29-RKK28-RKK30	171-53-35.33	314.4900	89-44-36.33	5.330/5.180
М	RKK30-RKK29-RKK31	173-52-03.00	303.2000	89-56-58.83	5.350/4.940
М	RKK31-RKK30-RKK32	186-20-26.67	660.4900	89-18-19.83	5.370/5.050

Final Notes

PARTING THOUGHTS

Direct Measurements

- Direct measurements between two points are preferable to indirect measurements.
- It is encouraged to use boundary evidence with a defined point for survey control.
- Using boundary evidence has two primary benefits:
 - It provides direct measurements on the evidence when evaluating the positional tolerance.
 - It reduces the monuments in the ground that might cause confusion for future surveyors.

Future Adjustments of Already Used Control

- The purpose of using Star*Net is to get close to the truth through the elimination/proper distribution of sources of error.
- More data should mean a closer answer to truth.
- Remember: Truth will never actually be known.
- Minor variations, 0.03'±, are not a matter of concern.
- Large variations should be discussed and their cause and merit fully understood before becoming set on the idea of ignoring new input.
- An inconvenient truth is never an excuse for poor procedures!

Conclusion

REMEMBER THAT STAR*NET HAS A VERY EXTENSIVE REFERENCE MANUAL.