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Least tail-trimmed squares for infinite
variance autoregressions

Jonathan B. Hill>*T

We develop a robust least squares estimator for autoregressions with possibly heavy tailed errors. Robustness to
heavy tails is ensured by negligibly trimming the squared error according to extreme values of the error and
regressors. Tail-trimming ensures asymptotic normality and super-\/n-convergence with a rate comparable to the
highest achieved amongst M-estimators for stationary data. Moreover, tail-trimming ensures robustness to heavy
tails in both small and large samples. By comparison, existing robust estimators are not as robust in small samples,
have a slower rate of convergence when the variance is infinite, or are not asymptotically normal. We present a
consistent estimator of the covariance matrix and treat classic inference without knowledge of the rate of
convergence. A simulation study demonstrates the sharpness and approximate normality of the estimator, and we
apply the estimator to financial returns data. Finally, tail-trimming can be easily extended beyond least squares
estimation for a linear stationary AR model. We discuss extensions to quasi-maximum likelihood for GARCH,
weighted least squares for a possibly non-stationary random coefficient autoregression, and empirical likelihood
for robust confidence region estimation, in each case for models with possibly heavy tailed errors.
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1. INTRODUCTION

We develop the least tail-trimmed squares (LTTS) estimator for a stationary autoregression with an error term that may be very heavy
tailed. The model is

p
ye=<¢+ Z diye-i +e(0) = Ox +e(0), p>1, (1

i=1

~—

with parameter set 0 = [£, ¢ € RP*" and regressors x; = [1,¥; 1, ..., Yt p|, and the sample is {y,}!_, with sample size n < 1. We
assume there exists a unique point 0° such that the error ¢; = (0°) is independent and identically distributed (i.i.d.) symmetrically
distributed about zero, and E|e;|' < oo for some 1 > 0. Further, the distribution tails of €, exhibit power law decay:

P(let| > a) =da (1 4+0(1)) whered > 0and k > 0. (2)

We are especially interested in the infinite variance case where the tail index k < 2. Heavy tailed data are widely encountered in
financial, macroeconomic, actuarial, telecommunication network traffic, and meteorological time series (see Leadbetter et al., 1983;
Embrechts et al., 1997; Finkenstadt and Rootzén, 2001; Davis, 2010, for examples and references).

If the AR errors have an infinite second moment E[ef] = oo then M-estimators like least squares (LS) and least absolute deviations
(LAD), and Yule-Walker and linear programming estimators are not asymptotically normal, although super-n'/>-convergence is
achievable. This topic has been thoroughly investigated. Consider Hannan and Kanter (1977) and Gross and Steiger (1979) for classic
treatments, and recently An and Chen (1982); Davis and Resnick (1986); Knight (1987); Cline (1989); Davis et al. (1992); Feigin and
Resnick (1994); Davis (1996) and Davis and Wu (1997). In an important benchmark for model (1), Davis et al. (1992) show a large class
of smooth M-estimators like LS, as well as LAD, are n'/*/L(n)-convergent for some slowly varying function L(n), in particular the LS rate
is (n/ In (n))"* if the distribution tails of ¢, are Paretian (2) (see also An and Chen, 1982; Davis and Resnick, 1986).

Robust M-estimators like least trimmed squares (LTS); (Rousseeuw, 1984; Cizek, 2008), least absolute trimmed deviations (Bassett,
1991; Tableman, 1994), maximum trimmed likelihood (Cizek, 2008) and least weighted absolute deviations (Ling, 2005) are universally
based on trimming or weighting by fix quantiles of criterion equations or the data itself. See also Powell (1986); Ling (2007); Agullé
et al. (2008) and Zhu and Ling (2012) to name a few. In the case of LTS on eqn(1) this entails trimming the squared error
2(0) = (y: — 0'x;)* by a fixed sample proportion of €2(0), or by residuals etz(@,,) from a first-stage regression, or by y; itself. In its
purest one-step form the LTS estimator minimizes > 7, ¢/(0)/(¢f(0) < €f;;, (0)) where I(A)=1 if A is true and O otherwise,
6(21)(9) > 6%2)(9) > --- are the criterion order statistics, 4 € (0,1) is the chosen quantile and [4n] rounds to an integer. See notation
conventions below, and see Cizek (2008) for a review and theory. If the distribution of ¢, is sufficiently smooth then asymptotic
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normality rests on each 1/nY 7, eryeil(e? < Gf[in])) just like LS rests on 1/nY 1, eye—i. Since trimming is based only on ¢, the
regressor y,_; must have a finite variance for asymptotic normality, ruling out autoregressions with infinite variance errors. The
restriction to finite variance data pervades the robust M-estimation literature (e.g. Ruppert and Carroll, 1980; Neykov and Neytchev,
1990; Bassett, 1991; Chen et al., 2001; Agullé et al., 2008).

Ling (2005, 2007; Pan et al. (2007) and Zhu and Ling (2011, 2012) solve the problem for LAD, QML and Exponential QML estimation
of heavy tailed AR, ARMA and ARMA-GARCH models. In each case criterion equations are weighted by a smooth stochastic function,
ostensibly based on the criterion |y,_;| > ¢ for some fixed threshold ¢ > 0, and in the case of model (1) for each lag i = 1,... p. Ling
(2005), for example, presents the least weighted absolute deviations (LWAD) estimator for eqn(1) under the assumption ¢, has a zero
median. Ling (2005) uses a fixed quantile order statistic of |y,| as a plug-in for ¢ in simulations but only proves asymptotic normality
for fixed ¢, while the rate of convergence is n'’? since the weights work like fixed quantile trimming indicators. Further, LWAD does
not remove the most damaging observations (those with a very larger error ¢;), hence it is sensitive to error extremes in small
samples. See the simulation study in Section 6.

In this study, we tail-trim the squared errors ¢2(0) according to extreme values of the error ¢,(0) and regressors y,_;. The resulting
LTTS estimator 0, is consistent for 6° and asymptotically normal provided ¢; has a smooth and bounded distribution, and otherwise
we impose mild regulatory conditions due to trimming (see Section 2).

Tail-trimming to date is used primarily for location estimation (e.g. Csorgo et al., 1986; Hahn et al., 1991) and moment condition
tests (Hill and Aguilar, 2012; Hill, 2012). The same methods can lead to massive efficiency gains in regression model parameter
estimation. Tail-trimming ensures both asymptotic normality and super-n'/?-convergence. Moreover, since we trim €2(0) when ¢,(6) or
y:_i is large, our estimator is robust asymptotically and in small samples since the damaging effects of large errors are reduced.

Our estimator is n'/* /g,-convergent when € [1,2) for any chosen positive sequence {gn},gn — o0 as n—ox, that depends on
the number of trimmed squared errors €?(6). The number trimmed follows simple rules of thumb that come close to LTS: trimming
by the error ¢ should be optimized to nearly a fixed per cent of the sample An, and trimming by the regressors y; ; should be
minimized as long as the amount increases with n. By comparison, under power law (2) with k¥ < 2 least squares and linear
programming estimators are asymptotically non-Gaussian with respective rates (n/ In (nM)"* and n"/* (An and Chen, 1982; Davis and
Resnick, 1986; Davis et al., 1992; Feigin and Resnick, 1994, 1999). Hence when k€ [1,2) LTTS obtains a rate of convergence n‘/"/gn
that is faster than LS since g,—oco can be made arbitrarily slow by controlling the amount of trimming as n increases. If k=2 then 0,
matches LS with rate (n/ In (n))"/*, and if the variance is finite then n'/%-convergence is obtained with the LS asymptotic variance:
there is no loss in efficiency asymptotically due to trimming when ¢, has a finite variance. By contrast, for technical reasons if k < 1
then LTTS has a rate of convergence that is slower than LS but faster than LWAD (see Section 3).

Inference mirrors classic theory although we do not require knowledge of the convergence rate (see Section 4). Although we only
consider t-and Wald tests, the same robust methods extend to tests of serial correlation in the errors, and tests of omitted variables,
GARCH effects and functional form (see Hill and Aguilar, 2012; Hill, 2012).

We do not maintain that by trimming within a linear model have we a universal solution to modelling heavy tailed time series. Our
use of a linear AR model with i.i.d. error and LS is for convenience since they allow us to focus on the pure idea of tail-trimming for
asymptotically Gaussian and therefore robust inference. Indeed, eqn(1) will not be appropriate for some heavy tailed financial and
telecommunication time series given evidence of asymmetry and clustered volatility (see Resnick, 1997; Feigin and Resnick, 1999; Hall
et al., 2002; Tsay, 2002 for references). Nevertheless, causal and recently non-causal AR models are still used to model possibly heavy
tailed time series (Ling, 2005; Aue et al., 2006; Lanne et al., 2012); linear vector autoregressions are de rigueur in macroeconomics
since Sims (1980) and are recently used to model heavy tailed data (Lanne and Litkepohl, 2010; Peters et al., 2011); and if ¢, is
allowed to be a non-i.i.d. martingale difference then eqn(1) also covers ARCH models (Bollerslev, 1986).

There are two major ways to model a heavy tailed stationary time series {y;}. The first assumes a model with an additive heavy tailed
i.i.d. error ¢;. Under linear AR model (1) with power law error (2), for example, y, has the same tail index as ¢, (Brockwell and Cline, 1985).
This property extends to finite Volterra expansions like a Bilinear process (Davis and Resnick, 1996) and to Log-AR Stochastic Volatility
processes (Breidt and Davis, 1998; Hill, 2011a). The second assumes a nonlinear feedback structure that implies power law tail decay and
therefore heavy tails even if an error term has exponentially decaying tails. Consider a stochastic recurrence equation x; = Aix;—1 + B
where x;isa g x 1 vectorforq < 1, and the coefficients {A, B;} are non-degenerate, non-negative, stationary and ergodic g x g matrix
processes that may be independent (Kesten, 1973) or dependent (Roitershtein, 2007). Under mild additional assumptions such
processes {x;} have power law tails, covering linear and nonlinear GARCH and ARMA-GARCH processes (Basrak et al., 2002; Liu, 2006;
Cline, 2007). See also Hall et al. (2002) for non-parametric methods for modeling and forecasting heavy tailed time series.

The methods developed here easily generalize to multivariate models like vector autoregressions, to autoregressions with
additional regressors, and to Yule-Walker estimation for eqn(1). But they also apply to nonlinear models like a random coefficient
autoregression (RCA) and those with a stochastic recurrence representation like GARCH, and in general to nonlinear ARMA models
with nonlinear GARCH errors; to non-stationary models like ARIMA; and to other M-estimators like nonlinear least squares, least
absolute deviations, quasi-maximum likelihood, and non-Gaussian QML; and to estimators that allow over-identification like empirical
likelihood. There is, however, a cost to pay for trimming, even if only a negligible sample portion is actually trimmed. For example,
although our LTTS estimator beats LS when k € (1,2), linear programming has a slightly higher rate, while trimming in other
contexts like QML for GARCH results in a diminished rate. Of course, we gain asymptotic normality hence inference is simple. See
Section 5 for examples concerning Yule-Walker estimation for AR, QML for GARCH, weighted LS for RCA, and Empirical Likelihood for
AR, GARCH and RCA.

Finally, we use tail-trimming solely for robust parameter estimation. The observations y, and postestimation residuals
€& =Y — 9f7xr with the LTTS estimator 9,, are not themselves removed from the sample. All observations are therefore available for
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further study, including tail index estimation based on model residuals ¢; (Resnick and Staricda, 1997), robust model specification tests
that may impose different trimming strategies on ¢; (Hill and Hill, 2012; Aguilar, 2012), or no trimming at all like tests of nonlinear
dependence based on entropy (Robinson, 1991) and indicators (Baek and Brock, 1992).

We complete the article by studying LTTS in a controlled experiment in Section 6, and apply the estimator to financial asset returns
in Section 7. Appendix A contains proofs of the main results, and all tables are relegated to the end.

We use the following notatlon conventions. The indicator function is /(A)=1 if A is true, and otherwise /(A)=0. The L,-norm of a
M x N matrix A is [|A]|, = (3" 11 E\A,J|’)1/’ and the spectral norm is ||A|| = k",m,X(A’A)”2 with Anax(A) the maximum eigenvalue. If z
is a scalar we write (2),:=max{0,z}. K denotes a positive finite constant and : > 0 is a tiny constant, the values of whlch may change
from line to line. x, ~ a, denotes x,/a, — 1; x, = o(a,) denotes x,/a, — 0, and x, = op(a,) means x,/ap £o. € Mg (0,1) states ¢; is
i.i.d. with zero mean and unit variance. A random variable is symmetric if its distribution is symmetric about zero. L(n) is a slowly
varying function that may change with the context (i.e. L(¢n)/L(n)—1 as n—oo for any ¢ > 0).

2. LEAST TAIL-TRIMMED SQUARES

The score 1/n 37, (0)x; governs least squares asymptotics, hence we need to trim €2() when (0) or any regressor y, ; surpasses
a large threshold. Our estimator is constructed as follows. Represent two-tailed observations and order statistics for any random
variable z; by

zr@ :=|z| and ZE%) > > z((Z; > 0.
The determlnatlon of the number of trimmed large errors et(O) and regressors Y¢_i is made by intermediate order sequences
{k } If {k } denotes either sequence then 1 < kY < n, k¥’ — oo and k{f /n — 0 (see Leadbetter et al., 1983). Now define a
comp05|te selection function I, (0):

ne(0) = (10 < ) )xH/(\yr 159,) =10 x

R 1< 5
0, = arg min{— 6?(0)In1(9)}
0o (N4

where ® C RP', is a compact parameter space.

Notice only those observations {y:,x;} with non-extreme error ¢/(0) and regressors y; ; enter the cnterlon Further, each k
represents the number of trimmed criterion equations €2(0) due to large €(0) or y,_; while at most k + pky observations are
trimmed. Negligibility k /n — 0 implies we trim asymptotically a vanishing sample portion of observations.

In post-estimation, however, we have available the untrimmed residuals e;(0,) = y: — 0/ = &(0,) = ¢ — (0, — 0°)'x; which can
be used for model specification tests. Thus, trimming is proposed here solely for parameter estimation, although trimming can be
used for robust model speC|f|cat|on tests as well (see Hill 2012; H|II and Aguﬂar 2012).

Asymptotlc theory for 0, requires the non-random sequences {c,7 (0), o } which the order statistics {e ) (0)7y<"(>y) } estimate. Let
{c ( ), ot } be the exact quantiles defined by ) E

2
=

nt—1-

The LTTS estimator solves

kr(rf) k,(,y)
P(Iee®) > (0)) ==~ and  P(lye| > ) == )

and the composite selection function is
Ine(0) 1= (] (0)] < &)(0)) HI(|yr <) =) x Iy

Distribution continuity ensures the existence of such thresholds {cﬁ,d(é)),cf,”} for any {kﬁf),kf,y)}. See below for all assumptions.

Clearly {e(”()”)(()),y(a) } estimate {cﬁf)(f)),cﬁ,y)}, and under regularity conditions presented below intermediate order statistics are

(k)
uniformly consistent, e.g. supy.e |e e (0 )/cn ) — 1= O,,(1/(k,(f))1/2) (see Appendix B).
Throughout we drop 6° and erte e = e(6°), ¢ = (6°), Int = In¢(0°) and so on.

2.1. Assumptions

The following assumptions ensure stationarity, restrict the distribution of ¢, and restrict the amount of trimming.
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AssumpTion 1 (stationarity). The roots of 1 — P, ¢%7' lie outside the unit circle, and 0° = [&°, ¢”]' lies in the interior of a compact
subset ® C RPTT,

AssumpTion 2 (errors). The distribution of ¢, is absolutely continuous with respect to Lebesgue measure, bounded
SUPLer(0/0a)P(e; < a) < oo, symmetric at zero, and exhibits power-law tail decay (2) with finite scale d > 0 and tail index k > 0.

AssumpTioN 3 (fractiles). a. kf,f)kf,”/n — oo; b. if k € (0,1) then k,(f)k,gw/nzf"/uf"') — 0.

Remark 1:  Power law tail decay, independence, and stationarity imply y, has a power law tail with the same index k¥ > 0 (e.g.
Brockwell and Cline, 1985, cf. Embrechts et al., 1997):

P(lyt| > a) dZ|lﬁ|“ “(M+0(1) asa— (4)

where {y,}:, satisfies > .z = (1 — Y7, ¢%2') " for complex z, =1 and y; = O(p’) for some p € (0,1).

Remark 2: In order to prove con5|stency and therefore asymptotic normality we require a law of large numbers for the
trimmed least squares score 1/n Et 1 €Xtln ¢ LN (cf. Pakes and Pollard, 1989). This follows by independence of the error and
Chebyshev's inequality if we restrict the tail-trimmed variance |E[e2xx/l,¢]|| = o(n). The latter holds when the mean is finite
Kk > 1 or hairline infinite k=1 under Assumption 3a, and otherwise holds under the Assumption 3b fractile restriction. Notice 3a
implies trimming cannot be too light, for example we cannot have both k( N In(n). Further 3b implies more trimming is
required as the error tails become exceptionally thick: if k < 1 then as k0 we require both k /" n. Although more general
fractile conditions can be used, the cost is lengthy proofs of technical results. In practice neither property WI|| reduce generahty
by much smce many time series in economlcs and finance appear to satisfy x > 1, and letting k @~ n/g and ky ~ gy for
sequences {g,, g,7 } that increase gn — 00 as slowly as we choose optimizes the LTTS rate of convergence, while setting

/g — 0 ensures 3a holds (see Section 3).

2.2. Main results

We state the main results here and relegate proofs to Appendix A. Consistency follows from well known arguments for non-
differentiable criteria (e.g. Pakes and Pollard, 1989). We must prove consistency first in order to establish the expansion
VY20, — 0°) = n~122 12570 | exelny for asymptotic normality, where X, := E[e2xX!1 ().

Theorem 1 (consistency).  Under Assumptions 1-3 0, 260,

Asymptotic normality follows by proving the above expansion and showing n”/ZZ;”2 St exelne satisfies a Gaussian central
limit theorem.

Theorem 2 (normality).  Under Assumptions 1-3 VY/2(0, — 0°) % N(0, I,,,) where V, = n(E[2IE) ™" x Epxet?) ).

Remark 1:  Since the error is independent the covariance matrix V' = E[efl,(,fg] X (Elxexy, nr) )" has the classic least squares

form. The exact form of V), in the case of heavy tails is treated in Section 3.

Remark 2:  The matrix E[xyx;/ tn? 1] is positive definite and therefore invertible for sufficiently large n since distribution non-
degeneracy and trimming negligibility imply lim inf,_.. inf,,_, E[(A'x,)? <t 1] > 0where 2 € RPH.
If the errors have a finite variance E[¢?] = g2 < oo then by stationarity and dominated convergence V, ~ nE[xx;]/a?, the classic
least square result. Tail-trimming has no impact on asymptotics if the variance is finite.

CoroLtary 1 (finite variance). Under Assumptions 1-3 and E[e2] = ¢® < oo it follows n'/2(0, — 6°) iN(O, a?(Exex)])) ).

3. RATE OF CONVERGENCE

p+1

Let V;;, denote the (i,j)th component of the matrix V,, thus V, = [V,-J,,,],-J:T Similarly, let @,-‘,7 and 9? be i components of these

vectors. Apply Theorem 2 to deduce under Assumptions 1-3 the component-wise limit
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V200 — 09) LN, 7).

1,1,n

In view of the construction V, = n(E[eflﬁf}])” X E[xtxrl,(,t 1], the rate of convergence V”n of 0, can be easily characterized by

exploiting dominated convergence and Karamata's theorem. First, by construction, I(|y| gcﬁ,”)—ﬂa.s. and
T, 1(ye- ,|<c§,)2<l(|y |<c§,>). Hence for any j=1,...,p by dominated convergence and stationarity

E[Hr (|yt I| < Cn )] =1+ 0( )and
E {yf,- TT/(bed < cé”)]

il y e (I /(i <) (b <) )] 9
=il < )] = 1- ey (i <)

= E[y?1(l <€)] > (1 4 0(1).

1/2 P2

There are, therefore, two rates of convergence: one V”z = V]/fn for the intercept and one V/ iin

where by eqn(5) we have s
1/2 E[y2l<\yt| < C,(q’/))] /
V2 L 5 oand V2o UOT ) (6)
n 1/2 3 ’
(e <)) et <)
Second, by construction of the thresholds (3) and tail decay (2) and (4), the thresholds are

~ 1/k .
o = d”“(n/kff))VK and ¥ =d'* (ZW,") (n/k,(,”)l/ . (7)
i=0

Third, since each z; € {e, y:} has tail (2) or (4) with the same index k and some scale d,, we have by and (7) and Karamata’s theorem
(e.g. Resnick, 1987; Theorem 0.6)"
2/k—1
2 K [ n
(2) (@)} — 2/K
&) p(ial > ) = e (k()) . ®

if Kk =2thenE [zfl(\zr| < cﬁf)ﬂ ~ d, In(n)for any intermediate order{k\¥)}.

for any slope i=2,...p + 1,

if 1 €(0,2) then £[221(Jz] < )] ~ - . - (

Combine eqns(6)-(8) to obtain a complete characterization of the intercept and slope rates. We drop multiplicative constants since
these do not affect the rates.

THEOREM 3 (RATES OF CONVERGENCE). Let Assumptions 1-2 hold.

a. If k > 2 then VV2 Vl)/,ffn 2,

b. If k=2 then V!/ V”Z ~ (n/ In(n))”2 for any intermediate order sequence {kﬁ”}.

S

c. if kK < 2 then V”z 1/Z(k,(f)/n)v"_]/2 and V:b/ﬁ = n”z(k,(f)/k,(,y))”"'_vz.

If the error tail index k¥ < 2 then the slope rate V”Z Kn”z( /k )1/" '/2 depends inversely on error and regressor heavy tails,
and therefore inversely on {k,, , K } Large errors appear as outliers and therefore reduce estimation accuracy, so heavy trimming
(fast k( — 00) augments the rate Leverage points in terms of large regressors y,_; however, help identify 0° and therefore increase
the rate, so light trimming by the regressors (slow ky — 00) is optimal.

Evidently this two-fold logic has never been exploited for the sake of M-estimation, yet remarkably it allows us to obtain a
convergence rate that beats LS and is comparable to the highest pOSSIb|e amongst M-estimators. Keeping in mind that Assumption
3a re urres k ky /n — oo, in general for any positive sequences {g,,),gr7 } where g,,> <1, gn) — o0 as slow as we choose and

g /gi) — 0, simply put
k9 ~n/glY and kY ~ gV

to satisfy Assumption 3a, and when x < 2 to achieve a slope rate

: 1/K=1/2
o)
é, €
n g()g(Y)

n n

Notice we can make gn H oo as slow as we choose and still satisfy Assumption 3a, but not Assumptron 3b in the very heavy tail case
Kk < 1.Thus, the rate V¢ can be made as close to n'/* as we choose when € [1,2), hence V¢ — oo can be made faster that the
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least squares rate (n/ In (n))"/* when k€ [1,2), (cf. Davis et al., 1992). Moreover, for very slow g,(,') — oo the number of trimmed

squared errors €2(0) is very close to a fixed quantile and governed strongly by error extremes, as in LTS. By trimming slightly less than
for LTS and using error and regressor extremes to decide which €2(6) to trim, we can achieve asymptotic normality and not only
super-n'?-convergence, but a rate that beats least squares in the infinite variance case k € [1,2).

In practice if it is assumed x > 1 then we may consider fractile functions of the form k) = [4en/In(n)] and kY = [y (In(n))"™"] for
any 4, 4y € (0,11 and infinitessimal 1 > 0. Assumption 3a holds and if the error variance is infinite ¥ € [1,2) then

1 S\ VK172 1/x
V2 _y N (e I
Von= K(ln(n))(ur)(uxevz) ().y) - K(In(n)) e

The rate can be forced up by increasing trimming by the error AT and decreasing trimming by the regressors /,|. Of course this can
similarly be achieved by using In (In ( )) |nstead of In (n), and so on.

Ifr <1 |s possible then the above k and k; Y do not satisfy Assumption 3b. However Assumptlon 3a and 3b are SatISerd if, for
example, k) = [4.n/(In(n))°] and kY’ = [4yn/(In(n))®] for any 0 < a < b. In this case V = (2e/2) /2012 (In(n)) 6 A(1/x=1/2)
which is superior to n'/? when b > a such that trimming by the error is harsher. In general, in keeping with the Assumption 3b
fractile bound, LTTS will have a rate slower than LS but higher than LWAD when « < 1.

4. INFERENCE

A natural estimator of the scale V), is simply

-1
(i)« (15 )
Notice 1/n>"7_; (6 0n)In:(0,) uses the comp05|te trimming indicator lnt(@) ) rather than the error specific one I,(,Z(G ). The reason is

the squared residual expands as ¢ 2(0,) = € + f((0, — 0°)'x;) where f: R — R is polynomial in its argument: in finite samples large
values of ¢(0,) are caused by ¢ and each y,_;.

Theorem 4 (scale consistency). Under Assumptions 1-3 V'V, LN Ip.

A self-normalized t-ratio #; for a test of the hypothesis Hy : 0° = 0 is simply
&= Vif2 (0 — 7).

As long as Assumptions 1-3 hold, Theorems 2 and 4 imply under the null %,-iN(O, 1), and |7j| — oo with probability one if
0 #0;.

Similarly, we can construct a Wald statistic for a test of linear RO°=q and nonlinear C(0°) = 0 restrictions. Consider the former with
R € R”*P+Y and g € R’ for some J < 1, where R has linearly independent rows. The statistic is

_ (Rén - q)'(szjR’)’1 (Rén - q).

Under the null Wix} a centered chi-squared distribution with J degrees of freedom. A test of white noise Ho : ¢° = 0 against
AR(p) simply uses R=0|l, and g=0 with zero vector 0 € R”. Denote this Wald statistic W,.

5. EXTENSIONS

Tail-trimming can be used for robust estimation of models of nonlinear, non-stationary, and conditionally heteroscedastic processes;
it can be used to robustify M-estimators; and can be used for robust specification tests. In the following we present four examples
covering Yule-Walker estimation of AR, GARCH estimated by QML, a possibly non-stationary random coefficient autoregression
estimated by weighted least squares, and the empirical likelihood method for confidence region computation for AR, GARCH and
RCA. Linear and nonlinear GARCH processes have power law tails under mild assumptions and therefore serve as alternatives to
eqn(1) as models for heavy tailed time series. See Hill (2012) for a robust asymptotic power one test of functional form based on tail-
trimming that can be used to test whether eqn(1) neglects nonlinear traits of the process {y;}. Also consult Hill and Aguilar (2012) for
tail-trimmed moment condition tests that cover robust tests of linear dependence, lag order and omitted variables.

In each case below ¢, is an i.i.d. random variable with a continuous distribution that is positive on R and symmetric about zero, and
Ele|" < oo for some 1 > 0. Symmetry can be easily relaxed at the expense of notation. Let {k,} be an intermediate order sequence
and let the sequence {c,} satisfy P(|e;| > ¢,) = kn/n — 0.
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5.1. Yule-Walker Estimation

Assume for simplicity the intercept in eqn(1) is zero: y, = > %, (b?yr,; + €. If E[er] < oo then the sample autocovariance
S =1/ VeVen is n'-convergent and asymptotically normal. If Ele}] = oo and ¢ belongs to the domain of attraction of
a stable law (e.g. egn (2) holds with k € 0,44]) then under a different scaling 7, is asymptotically a ratio of stable laws
(Davis and Resnick, 1986), hence Yule-Walker equations can be used for non-Gaussian estimation of the autoregression
parameters ¢°.

We can, however, negllglbly trim y, itself for Gaussian inference by way of tail-trimmed Yule-Walker equations. Define trimmed
variables 75 . := ydl(lyi| < yi) and 5 := yil(lye| < c), and trimmed covariances o 1= 1N Sl T and T = )

with displacement h > 1. By domlnated convergence and negligibility Inr x TT7, nr ; — 1 as. hence

Viien (/2?2 < [T - 1)] =y5p % (1+0(1)).

i=1

p
Elyex 16 x H,y —i X y:;‘t—h:| = E[y;‘ty;,r—h] +E
i=0

Similarly, by independence and distribution symmetry E[e,l,(,fgy,’;‘tfh] =0 hence by negligibility and dominated convergence

E[etlnrH, o ,,t Vi nl = E[Etlﬁre‘zy;,tfh] + E[Etlﬁye,l)‘y:;,tfh( folr(ryr) i — D] =o0(1). Now multiply y, and 37, ¢?Yt—i +e& by

,,rH, o nt Vui_n take expectations and repeat the above logic to deduce y;, = >, %y, (1 4+ 0(1)) + o(1) hence the
solution ¢° = (Frmn %) 702, (1 + o(1)). Trimming removes information such that ¢° may not be exactly

([vn.i j]f’J 3)” 1[y,’;,f’ 1+ but even if the variance is infinite we have asymptotic identification by tail-timmed covariances

¢ = limp oo ([75,171= o) [v5i)7-1- Notice in the iid. case 7 , = 0 hence the solution is exactly $°=0. A valid estimator of the limit

¢° is the tail-trimmed Yule-Walker estimator ¢, = (lmi P o) Bl

Consider the AR(1) case for simplicity: g?),, =9p1/Vno If El€?] = oo then assume ¢, has power law tail (2). The theory developed in
the appendices and the fact that y;,/7i,~¢° can be exploited to show n'2(y: /S, ) (¢ — ¢° )—>N(O 1) where
S2:=E(1/n'237 Wathne 1 — E[y;?ty;‘H}}){ The rate of convergence is easy to see for the case $°=0. Since y, is iid. we

have Sﬁ = (y;70)2 hence (f),, is n'/?-convergent, making it inferior to LTTS when ¢, has a tail index x < 2.

5.2. GARCH with tail-trimmed QML

The GARCH(1 1) model is y; =ae where o2 =a® + o2, + 02, @® > 0,4° ° € (0,1),E[e¢] =0, E[¢}]=1, and
Elin(o%e + B%)] < 0. The variable y, is stationary and geometrically f-mixing (Nelson, 1990; Carrasco and Chen, 2002), and
has a power law tail due to a stochastic recurrence type feedback, irrespective of the tail decay of ¢, (Basrak et al, 2002, Section 3).

Now define 62(0) = o + ay? ; + Bo?_,(0), &(0) := y/a?(0) and s¢(0) := (0/90)c?(0)/c?(0) for 0 in ©, a compact subset of
(0,00) x (0,1) x (0,1), and assume 6° is an interior point of © . Write s; = s5:(6°). Since supy ., [|s¢(6)| is square integrable on some
neighbourhood N\ of 0°, the QML score 1/n'/2 37 (2 — 1)s, will be asymptotically normal if ¢, has a finite fourth moment (Francq
and Zakoian, 2004). Although Zhu and Ling’s (2011) double exponential weighted QML (DQML) estimator is asymptotically normal
even when ¢, has an infinite fourth moment, in principle it may be sensitive to error extremes in small samples because large errors
enter the criterion. An estimator that is robust in large and small samples can be constructed by tail-trimming QML equations
according to error extremes, hence 0, = arg mingeo{> 1, (In O’t(O? + €2(0)) x Im(O)}

Asymptotics are governed by the tail-trimmed squared error €; Iﬁ I thus if Elef] = oo then assumefower law (2) applies with index
kK € (24]. Arguments in the appendices can be generalized to show V, 12 (0 0°) SN0, 13) where V, = [Vi,] :=
nEssi] /E[(€2 — 1)%I(Je;] < ¢a)]. Thus, if ¢ has an infinite fourth moment then each V/ = o(n"/?) which is less than the DQML
rate n'/? (Zhu and Ling, 2011). Nevertheless, V,,/7 can be made arbitrarily close to Kn'’? by choosmg k,— o0 as close to /n as we want,
hence tail-trimmed QML can be assured to be faster than QML (see Theorem 2.1 in Hall and Yao, 2003). This is the same error effect
we find with LTTS: by pushing k, arbitrarily close to the fixed quantile rate An we then optimize the convergence rate by minimizing
the negative impact of error extremes. Tail-trimmed QML leads to a better QML estimator just like LTTS trumps LS when tails are
heavy. In both cases, however, there is a cost to pay: trimming reduces the rate below some other estimator, in this case linear
programming for eqn(1) and DQML for GARCH.

5.3. RCA and weighted LTTS

The random coefficient AR(1) model is y; = (qbo + by)yt—1 + €&, where b, is i.i.d. and may be dependent on ¢, and E[btz] is positive
and finite. If £[¢Z] = oo then assume power law (2) applies. It is well known if E[In [¢° + b]] < 0 then a strictly stationary solution
exists (see Aue et al., 2006).

The parameter ¢° can be estimated by weighted least squares with criterion function S, e2(p)Wr1 and weight
Wi :=1/(1 + y?,). The weight W;_; counteracts explosive sample paths hence we only need E[In max{0, 10° + be|}] < o0,
which allows non-stationary cases (Aue et al., 2006; Chan et al,, 2012). The minimand ¢, = 37, yoye ‘Wi 1/ Sor y2 Wiy is
consistent  for ¢° and _asymptotically normal if € is iid. with a zero mean and finite variance since
1/nS Ly W x n'2(¢, — ¢°) =1/n"2 30 by + €)yr1 Wi

Clearly [y;W,| is bounded a.s. In non-stationary cases y?W; 2.1 as t—o0, hence n'"2(¢, — ¢°) =1/n"230 by + 0,(1) is easily
verified (Aue et al., 2006; Chan et al., 2012). Thus, d),, is asymptotically normal even if E[e?] = oc.
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Although non-stationary y; is allowed, if we want to allow a heavy tailed error ¢ and retain Gaussian asymptotic inference in
general, then a robust estimation strategy like tail-trimming is required. The weight W;_; acts to robustlfy against heavy talled Ve,
hence we need only trim by ¢. The Weighted LTTS estimator solves 6, = arg Minger{d req € (P)Weo1 X I(|ee(P)] < € >)(¢))}
where e(¢) :=yr — Pyr. By usmg arguments in the appendlces and in Aue et al. (2006) and Chan et al. (2012) it is
straightforward to show V,/*(¢, — ¢ )iN(O 1) where V, :=n(1/n 30 y2 W) /{1/n S0, y2 W2, x E[El(ler] < cn)]}

5.4. Empirical Likelihood Method

The empirical likelihood method (ELM) allows for computation of confidence regions without estimating a covariance structure, and
allows for over-identifying restrictions. The method requires equations Z; : ® — RY for g > k that identify the parameter of interest
0° € © c R by the moment condition E[Z;(0)] = 0 if and only if 0=6°. If Z, := Z,(0°) is a stationary finite variance martingale
difference then under mild additional assumptions Wilks’ Theorem applies (see Owen, 2001). In the presence of heavy tails Wilks’
theorem will not apply hence the ELM is not valid for asymptotic inference.

Tail-trimming, however, can robustify against heavy tails. In model (1) we may use the LTTS score equation with added
instruments, say et((?)?ﬁ‘_z(é))zrfﬁz_,) where z; = [1,¥¢_1,...,¥t_q-1] for some g > p + 1. In the GARCH case from Section 2 we may use
tail-trimmed QML score equations with added instruments (ef(f))?ﬁf?(@) —1)z:(0) where z(0) € RY for g > 3 contains s,(0) and
possibly added lags s; {(0), .| for finite /<0. In the RCA case we may use the WLTTS score equation
et(P)yeaWeal(ler ()| < f(" ( )) (If over-identifying restrictions are imposed then a weight other than W;_; may be required.)

6. SIMULATION STUDY

We now compare the small sample properties of LS, LTS, LTTS, and Ling’s (2005) LWAD. We draw n € {100,400,800} random
variables y; from an AR(2) model y; =0.2 + 0.8y;_1 — 0.3y;—> + ¢. The errors ¢ are iid. symmetric Pareto distributed
Plee > €)=P(es < —€)=0.5 x (1 +¢€) " with index k € {0.75,1.52.5} spanning infinite mean, finite mean with infinite
variance, and finite variance cases. We simulate 10000 series {y;}_, for each n and K.

We compute the LTTS estimator with fractiles k') = max{1 [.05n/In(n)]} and kY = = max{1,[0.01n/(In(n))?]} in order to satisfy
Assumption 3, and to achieve a rate n‘/z(ln( ))(1/" /2 that |s greater than LWAD's rate n'/? when x < 2. We do not use
convergence rate elevating functlons like k ~ An/In(n) and k ~ Z¢In(n) since this pair does not satisfy Assumption 3b when

k=0.75. Nevertheless, a pair like k.’ = [0.05n/In(n)] and kY ~ max{1,[0.1In(n)]} results in the same trimming amount as our
chosen pair above for sample sizes n € {100,400 800} smce ky is very small in both cases.?
The LTS estimator is argmingeo{> ¢ € (0)I(¢}(0) < €, (0))} with 2=0.05 as in Cizek (2008). The LWAD estimator is

arg mingee{> 1 Wele:(0 )\} W|th Ling’s (2005, eqgn. 2.3) chosen weight Wt based on Huber's (1977) influence function. Define
ar == 5P lyeill(lyei] < y m ) the weight is w,=1 if a,=0 and w; = ( ( ) /a? if a0, and 2=0.05. The parameter space for all
estimators is O=[—1 1]

See Table 1 for the simulation bias, mean-squared-error and Kolmogorov-Smirnov tests of normality for the slope estimator 9,, 3 of
00 —-0.3 (the omitted results being similar). The KS test is based on the standardization (0 53— 00 3)/Sn where s is the empirical
variance of (9,, 3. The empirical mean of each estimator is accurate. LS and LTS estimators fail normality tests when variance is infinite,
as expected. LTTS is closest to normal in general, while LWAD is roughly on par with LS or somewhere between LS and LTTS when
K < 2. Only LTTS is robust in both small and large samples by virtue of trimming observations with large errors. Indeed, although
LWAD is asymptotically robust to error extremes, it exhibits a larger mean-squared-error and KS statistic than LTTS in most cases,
suggesting it is sensitive to large errors in small samples. LS does not weight the errors in any sense, so its mean-squared-error is the
greatest when k < 2.

In a second experiment we simulate a variety of AR(1) and AR(2) models, estimate AR(2) models, and compute
W = (RO, — q)'(RV,"R") "' (RO, — q) for tests of AR(1) against AR(2), hence R=[0,0,1] and g=0. We use the covariance estimator
V, from Section 4. See Table 2 for model descriptions and empirical sizes and powers. Wald tests based on a LTTS plug-in perform
well under either hypothesis. Empirical sizes are near the nominal level, and empirical powers are predominantly above 90%, and
near 100% when the alternative is far from the null or n is large.

7. EMPIRICAL APPLICATION

We now analyze financial returns data. We use the same Hang Seng Index (HSI) stock market data Ling (2005) investigated for the

sake of comparison. The period is 3 June, 1996 to 31 May, 1998 representing 491 daily observations, net of market closures.> Consult
Ling (2005) for details on the HSI.

We generate a log-returns series y; : y; = In(x¢/X;—1) where x, are daily closing values on the HSI. See Figure 1 for a plot of y,. Define

y§ :=|yt]. The case for heavy tails can be made by a plots of the Hill (1975) two-tailed tail index estimator

=/ Y7 In(y /y (o +1) ))_1 over fractiles r, € {5,2,...,200}. Although we assume an AR model with i.i.d. error (1), in fact

as long as r,—oo and r,,—o( ) it is known &, % xand rn (Kr, — K) 7 N(O, v,f), v,f < oo, for a truly vast array of time series, including
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Table 1. AR(2) Estimation Results (05 = —0.3)

Tail Index k = 0.75

n =100 n = 400 n = 800
Bias MSE KS? %° Bias MSE KS % Bias MSE KS %
LS —0.003 0.004 4.75 0.000 —0.001 0.0009 6.50 0.000 0.000 0.0006 6.79 0.000
LTS 0.005 0.001 6.17 0.050 0.003 0.0008 10.0 0.050 0.002 0.0003 10.5 0.050
LTTS 0.000 0.003 3.51 0.030 0.001 0.0016 1.92 0.030 0.001 0.0004 1.08 0.020
LWAD 0.000 0.021 6.17 0.050 0.000 0.0001 2.09 0.050 0.000 0.0001 1.03 0.050

Tail Index k = 1.5

Bias MSE KS % Bias MSE KS % Bias MSE KS %
LS —0.007 0.007 2.52 0.000 0.001 0.0015 3.18 0.000 0.000 0.0007 2.68 0.000
LTS 0.009 0.004 2.85 0.050 —0.002 0.0003 2.50 0.050 0.001 0.0001 242 0.050
LTTS —0.000 0.006 1.64 0.030 0.001 0.0019 0.842 0.031 0.000 0.0008 0.763 0.021
LWAD 0.001 0.040 2.31 0.050 0.000 0.0001 1.61 0.050 0.000 0.0004 1.05 0.050

Tail Index k = 2.5

Bias MSE KS % Bias MSE KS % Bias MSE KS %
LS —0.008 0.008 1.94 0.000 —0.002 0.0020 1.26 0.000 — 0.001 0.0003 1.13 0.000
LTS —0.001 0.004 1.32 0.050 0.001 0.0008 0.868 0.050 0.001 0.0002 0.816 0.050
LTTS —0.001 0.007 0.758 0.030 —0.001 0.0022 0.737 0.032 0.000 0.0008 0.527 0.021
LWAD —0.001 0.050 1.03 0.050 0.001 0.0001 0.842 0.050 0.000 0.0001 0.632 0.050

LTTS = Least Tail-Trimmed Squares; LTS = Least Trimmed Squares; LS = Least Squares; LWAD = Least Weighted Absolute Deviations.

a. Kolmogorov-Smirnov statistic for a test of standard normality on standardized 0, ,, divided by the 5% critical value: values above 1 imply rejection at
the 5% level.

b. The total sample proportion trimmed for LTS and LTTS (Tr% = 0.05 for LTS by construction). In the case of LWAD this represents the percentile used
in the weight or 0.05, cf. Ling (2005).

Table 2. LTTS Wald-test of AR(1) vs. AR(2)?

Tail index k=0.75 Tail index k=1.5 Tail index k=2.5
n=100 n=100 n=100
0 05 10% 0.5% 1% 10% 0.5% 1% 10% 0.5% 1%

0.80 0.00 0.058 0.031 0.008 0.110 0.057 0.012 0.011 .053 012
0.80 -0.20 0.454 0.333 0.165 0.577 0.462 0.225 0.602 0.495 0.283
0.80 -0.30 0.756 0.654 0.442 0.849 0.772 0.571 0.862 0.781 0.582

n=400 n=400 n=400
0° 05 10% 0.5% 1% 10% 0.5% 1% 10% 0.5% 1%
0.80 0.00 0.064 0.041 0.021 0.093 0.054 0.010 0.105 0.051 0.013
0.80 -0.20 0.899 0.812 0.613 0.949 0.897 0.760 0.954 0.912 0.813
0.80 —0.30 0.975 0.944 0.915 0.993 0.993 0.982 0.994 0.994 0.991

n=800 n=800 n=800
0 05 10% 0.5% 1% 10% 0.5% 1% 10% 0.5% 1%
0.80 0.00 0.074 0.049 0.019 0.093 0.049 0.009 0.101 0.049 0.010
0.80 -0.20 0.961 0.938 0.853 0.997 0.991 0.983 0.999 0.994 0.991
0.80 -0.30 0.992 0.985 0.971 0.999 0.998 0.997 0.999 0.998 0.996

9 We simulate AR(2) models y, = 0.2 + G?y,q + 92)/,,2 + ¢, and test the hypothesis (92 =0.

AR with linear or nonlinear GARCH shocks with geometric or hyperbolic memory decay (see Hill, 2010, 2011b and the citations
therein). Further, Hill (2010, Theorem 3) presents a consistent kernel estimator v2 of the asymptotic variance v} of i, ':

(a) (a)
t

1S In . In .

vZ=- E Whsi{ In s ) i Ui — it

n T q KX (@ n @ n
5, t=1 (1)) Vi)

where w,,, is a kernel function. We use a Bartlett kernel w5 = (1 — |s — t|/7,), with bandwidth y, = n®22>. By the mean-value-
theorem the asymptotic 95% confidence band for %, is &,, + 1.96\7,,;%,2"/r,1, 2 (see Figure 3). Values of k < 2 lie in the 95% intervals at
every rp.

Since a benchmark question is whether asset returns are white noise we estimate AR(6), AR(8) and AR(12) models by LTTS and
compute Wald statistics W, for tests that all slopes are zero overp € {6,8,12} . All AR models in this study include an intercept, and
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Figure 1. HSI daily log-returns
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Figure 2. Hill-Plot and robust 95% bands

the LTTS fractiles are kY = [0.05n/In(n)] and kY = max{1,[0.01n/(In(n))?]} as in Section 6. The statistics are W, = 45.02 (0.000),
Wy = 43.99 (0.000), and W;, = 52.58 (0.000) with p-values in parentheses, hence white noise is rejected. We then estimate AR(p)
models over p=1,...,12 and test the residuals ¢; = y; — @;xt for white noise by computing Wi, on &. All AR(p) models, p < 3, have
white noise residuals, where AR(3) y; = 0y + Z,L 0iy:—i + € results in a residuals test Wi, = 9.88 (0.628), while AR(2) W;, = 27.62
(0.006) and AR(1) W;, = 18.45 (0.102). Wald tests of AR(2) against AR(3) and AR(3) against AR(4) lead to the same conclusion: an AR(3)
best describes the data, with LTTS estimates (standard errors in parentheses)

Ve =—0.10+0.25y;_1 — 0.02y;_» +0.11y,_3 .
(0.08) (0.05) (0.05) (0.06)

The result is robust to higher order specifications. An AR(7), for example, is

ye = —0.0740.28y;_1 —0.01y;_» +0.13y;_3 + 0.0Ty;_4 — 0.04y;_5 + 0.04y;_¢ +0.02y; 7
(0.08) (0.05) (0.05) (0.05) (0.05) (0.07) (0.06) (0.09)

Finally, in the AR(3) model we test separately whether the first lag y, 1, or second lag y; », or both {y;_1,y:_»} do not belong. The
resulting Wald statistic values are 28.6 (0.000), 0.165 (0.685) and 28.9 (0.000) suggesting the appropriate model is
Y =00 + Orye1 + O3yr 3 + €.

Ling’s (2005) chosen model by similar Wald tests based on LWAD is also AR(3) but with only the third lag: y; = 0y + 03y:—3 + €.
Further, the two sets of estimates are somewhat different: Ling’s (2005) AR(7) estimates are

yt = —0.07 +0.07y;_1 —0.00y; > +0.11y;_3 +0.03y; 4 — 0.08y; s + 0.02y; ¢ + 0.09y; 7
(0.06) (0.04) (0.04) (0.04) (0.04) (0.04) (0.04) (0.04)

By comparison, we obtain a larger and significant estimate of the first order lag y; 1

8. CONCLUSION

We present the LTTS estimator for possibly very heavy tailed autoregressions where the squared errors are negligibly trimmed
based on large values of the error and regressors. The estimator is consistent for the true parameter and asymptotically normal, and
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super-n"/2-convergent for an appropriate choice of the trimming fractiles when the variance is infinite. We can, moreover, always

choose the fractiles such that our estimator obtains the highest possible convergence rate for M-estimators of stationary data. A
simulation study reveals LTTS dominates LS, LTS and LWAD based on approximate normality, and therefore on small sample
inference based on the asymptotic distribution. Tail trimming extends to a variety of linear and nonlinear models of the conditional
mean and variance, as well to other criteria like QML and Empirical Likelihood. We present brief examples, but deeper results are
left for future research.

APPENDIX A: PROOFS OF MAIN RESULTS

It is helpful to define trimmed normal equations m(0), their short- and long-run variances X,(0) and S,(0), and Jacobian G,(0):

m(0) == e (0)xc = (Ve — O'xc)x:
Mp(0) := me(0) X In¢(0) and my(0) := me(0) x 7,,_,(9)

1L 1L
==Y my(0) and m,(0) === m,(0
23 el0) (0):= > M)

2n(0) == E[mp(0)mpe(0)] and G, := —E[xrxélf,’ft)q}
Sa(0) 1= 13 E[mas(0)mac(0)]

N

As usual we drop 6°. The proofs of consistency and asymptotic normality Theorems 1 and 2 require supporting lemmas. Consistency
requires variance bounds, asymptotic bounds on m,(6) — m, (), and laws of large numbers.

Lemma A1 (asymptotic approximation). (a) n='2X V23" A, — my.} = 0,(1);
(b) supgea{ll1/n 320, (M (0) — Mae(0))]]} = 0p(supgee Ellmn(0)]));

1/"21’ 1€t{lnf ln,f} —op(1)}
d)1/n Zt:1 Xfxr{l e — et = 0p(1).

Lemma A2 (variance bound). X,=o(n).

Lemma A3 (LLN ano ULLN). (@) 1/n >0 mpe = 0p(1);
(b) supgea{ll1/n 21 Mnt(0) — E[mnc(0)]I} = op(supgee Elmn(0)]))-

Asymptotic normality requires an asymptotic Taylor expansion, a central limit theorem, and Jacobian consistency. Define

N 1
(9) = _E;Xf)(;’"f(g) and G = ——ZXtX Inr

Lemma A4 (asymptotic expansion).  Let 9,@ € O be arbitrary:

@ 1/n 320 {mne(0) = mae(0)) = Gn(0) x (0 = 0) + 0p([|Gll x [0 — O])); and
(b) 1/n 3L 1{mm( ) = Mne(0)} = Gn(0) x (0 = 0) + 0p([|Gnll > [|0 — 0]]);

(€ 1/n 3y € (0n){ g(9 ) = Inek = 0p(1);

() 1/n 30 XX {Ine(0n) = Tne} = 0p(1).

Lemma A5 (CLT). n= 221257 mo SN(0, 1)

Lemma A6 (Jacobian properties). (a) (0/00)E[mn¢(0)]|p0 = G x (14 0(1));
(b) suppee Ellmnt(0)[] < KI|Gnll;

(©) Gn(en) =G, X % ( + OP“));

d) 1/n L xiit 1 = =G x (1 4 0p(1).
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See Appendix B for proofs of Lemmas A1-A6. We are now ready to prove Theorems 1 and 2.

Proor ofF THEoREM 1.  The proof of consistency follows an argument in Pakes and Pollard (1989): Theorem 3.1, Corollary 3.2). Define
M, (0) == E[mn+(0)] and e, := supyce E||ma+(0)||. We will first prove for any small 6 > 0.

8):=inf  inf e, x [|[Mu(0)]|} > 0. 9
€)= nf it (! < IMaO)]) ©
o(1)), and by Lemma A6b the Jacobian G,

By the definition of a derivative and Lemma A6a E[m,((0)] = G, x (6 — 6°) x (1
n<N nd some N € N since by distribution non-

satisfies supyceE||Mnt(0)|| < K||Gy||. Further, G, is non-singular for each
degeneracy and trimming negligibility If,r) 1 221 we have

n—00 reRP1rr=1

2
P
liminf inf r’E[xtxtI,gr) 1}r = inf1 E(Z r,-x,-,,l,(,yt)1> >0, (10)
r=t S ’
hence ||G,|| > 0Vn < N. This delivers bound (9):

. Gy, 0
inf inf - {e M||E[mp.( )]H}ZK\OJZHM{HWX (0-10°)

n=N11g—0°)| >

}x(1 +0o(1)) > 0.

In view of eqn(9), since P(||0, — 0°| > &) < P(e;"|[Mn(0,)] > €(8)) it suffices to show [[M,(6,)]| = op(es) to prove
16, — 6°]| 2 0. By Minkowski’s inequality

HM Jen = An(0n) + Ba(0),

MW/en < Hmn 0n)

fea+ [n0n) = Ma(Bn)

say. Consider A,,(A,,) The following utilizes arguments in Clzek (2008, Lemma 2.1 and p. 29). By distribution continuity and
linearity, Q,(0) := 1/n>> &.(0) is differentiable at 0, with probability one, hence up to a scalar constant
(3/39)On(9)|;}" = mn(0,) as. By 0, a minimum Q,(0,) < Q,(0 V0 € © it follows |Mn(0,)]| =0 as., while liminfe, > 0 by
distribution non-degeneracy and trimming negligibility, hence A,(0,) = 0 as. e

Next,  B,(6,) < supgee{Bn(0)}. Combine supgea{|Mn(0) — ma(0)]|/en} = 0p(1) by Lemma Alb and
supgea{llmn(0) — Mnp(0)||/en} = 0p(1) by ULLN Lemma A3b to deduce

”mn(g) 7mn(9)H Hm,,(@) 7Mn(6)“
e A A .

0O

Proor oF THeorRem 2. By the proof of Theorem 1 0, satisfies 1 /n> rﬁn‘r(@n) = 0 a.s. Apply expansion Lemma A4b to deduce

Goll) (B = 0°) + 05 (116l x

H) Zm ) =0a.s. (11)

By Lemma A6c G (0,) = (1 +0,(1)) = —Exexihne] x (1 + 0p(1)), and by trlmmlng ne?hglblllty and error independence
E[xexln ] —E[xrx”,r 1] x (1 + o(1). Further, by error independence X, :E[etl,,t] X Extxtnt 1], hence in view of trimming
negligibility and (10) it foIIows X, is non- smgular Mow multiply both sides of (11) by X 1/2 rearrange terms and use the fact
that V, = nE[xrxt,(”) 1 x (E[e ZI(,)D '~ nG,%,'G, by error independence to deduce

n
V12 (@n - 90) = V2523 i (00) x (14 0,(1)).
t=1

The claim  now follows fron; approximation ~ Lemma Ala and CLT Lemma AS5: V},/z([)n—Oo):
nV2E2S my e x (1 + 0p(1)) = N(0, Iy 1). O

ProoF  oF  THeorem 4. In view of  Jacobian  consistency Lemma A6d we only need to show

1/n S0 (00)Ine(0n) = E[hns] x (1 4 0,(1)). By Lemmas Alc and Adc 1/n 37, €(0n)ine(0n) =1/n S o 4 0p(1), and by
stationarity, ergodicity and the fact that 2l ¢/E[e2l,] is integrable we have 1/n>"7 | €2ly/E[€2lne] — 1.

APPENDIX B: PROOFS OF LEMMAS A1-A6

To reduce notation, in most proofs we only consider the AR(1) case without an intercept. In this case m(0) = €(0)y;—1, 0=a,
19 =1y < )) 5, = E[2I)] x Ely2 1/,,2 1l and G, = E[y? ;! nt) 1] The general AR(p) case is essentially identical.
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Throughout we write w,(0) to denote ¢,(0) or y, and c,(0) to denote cﬁ,‘)((?) or CE,) We repeatedly use the following properties.

Under Assumptions 1 and 2 w(0) is is geometrically f-mixing (Pham and Tran, 1985) and uniformly L,-bounded for tiny 1 > 0. By
Assumption 1 it is easily verified that ¢(0) = e + (0° — O)yr1 = 30 ¥i(0)eri where ;(0) is continuous, differentiable, and
supgee i (0)| = O(p') for some p € (0,1). Therefore by Assumption 2 either w,(0) satisfies (cf. Brockwell and Cline, 1985)

lim sup{|c"P(|w;(0)| > a) — d(0)|} =0
a—=0%0 )cO®

12
inf {d,,(0)} >0 and sup{dy(0)} < o0, (12)
0c® 0c®
and c¢,(0) satisfies
1/k
0(60) = ()" (i) . (13)
kn
Therefore, by eqn(12) and Karamata’s Theorem
. In(n)
if x =2 then sup{ }HKG 0,0
e e 0 < o] € %) ”

2
if x < 2 then sup < (0)

0€®{k Ewz (0)I(|we(0)] < ¢a(0))]

The proofs of Lemmas A1-A6 require two supporting results. First, timming indicators satisfy a uniform law.

}—>K€(O,oo).

Lemma BT (uniform indicator law). Define Z,.(0):= ((n/k)"H) (W (0)] < €n(0))  —E[I(jwe(0)] < ca(0))]}.  Then
{(n V230 T,0(0):0 € ©) =" {Z(0):0 € O} where Z(0) is a Gaussian process with uniformly bounded and uniformly
continuous sample paths with respect to L,-norm, and = denotes weak convergence on a Polish space.

Proor. By construction Z,(0) is Ly-bounded uniformly on 1 <t <n, n <1, and ©, and geometrically f-mixing. Further,
{Znt(0): 0 € O} satisfies the metric entropy with Ly-bracketing bound fo In(Nj1(e, @, - ||,))de < oo with Ly-bracketing
numbers Nj(e, @, | - ||,). This follows since w(0) have absolutely continuous dlstrlbutlons by linearity and Assumption 2, hence
the thresholds ¢n(0) are continuous. Further, w,(f) have bounded distributions uniformly on © by linearity and Assumption 2:
SUPycoSUPacr|(0/D0)P(we(0) < a)| < oc. Therefore T, (0) is Ly-Lipschitz: E[(Z,.(0) — Zn:(0))’] < K||0 — 0]|. Proving the L, -
bracketing numbers satisfy fo In(Nj(e, ®,] - [l,))de < oo is then a classic exercise (Giné and Zinn, 1984; Pollard, 1984). We may
therefore apply Doukhan et aI (1995) Theorem 1; eq. (2.17), Application 4) uniform central limit theorem to deduce
{1/n'23°0  T,:(0): 0 € O =" {Z(0):0 € O}. O

Second, intermediate order statistics are uniformly bounded in probability.

Lemma B2 (uniform order statistic).  Write w\® (0) := |we(0)]. Then sup0E®|w (0)/cn(0) — 1] = Op(kn 1/2).

(F;ROOF. We first prove a pointwise limit, and then the uniform limit. Assume for notational simplicity infycew;(0) < 0 hence
a
w;(0) = wy(0).

Step 1 (pointwise): Drop 0 and deflne In (u/k”z) =1/kn S0 1(We > cev/k’” ) for arbitrary u € R. In view of geometric
f-mixing and power-law tail decay, {k 2] I(we > cre")} satisfies the conditions of Hill's (2009: Theorem 2.1, Lemma 3.1) central limit
theorem. Therefore point-wise ky’ {Z,,(u/k”z) E{Zn(u /k1/2)}—>N 0,v3(u)), where vy : R, — Ry, and sup,-ovi(u) < oc. Since
u/k1 /2, 0 it therefore follows for any u -

K!/2 {zn(u/k;/z) - E{In(u/k;/z)} 4, N(0,v2(0)),  where v;(0) < oo (15)
We will show ky/? In(w,)/cn) —>N(0 vz) for some v3 > 0 follows from eqn(15). By construction ky?In In(wg,)/cn) < uforu € R

(kn
sufficiently |fI,,(u/k1/2) < 1 while I,,(u/k < if

b <In(U/k;/2) - E[I"(u/k’l/z)D <ky? (1 - £P(wt > Cneu/krlw/z))
n

P(W, > cpev/ kl/l)
e B A P

P(w: > ¢p)
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since (n/kn)P(w; > ¢,) = 1. Distribution continuity ensures f(a):=(d/da)P(w, < a) exists and is uniformly bounded by Assumption 2.
Hence by the mean-value-theorem for some |u | < |u]
f (Cn ou' /' > cnet 15 u k)
k1/2
P(we > cp)

f ( c el /" ) el k)

= u.
P(W{ > Cn)

ka2 (Zau/i/) — E[Zalu/ky/®)]) =

By power law tail decay it follows P(w; > c,,e“/" ) =P(w: > cple” "“/k”(l +0o(1)) and coupled with density boundedness
f(cne eu/k” )n /Pgwt > cpe et/kl? ) — ¢ a positive finite constant (cf. Resnick, 1987) Therefore k,/ In(w,)/cn) < u |fIn(u/k ) < 1if
& k;/Z( (u/k ) - E[I (u/k1 2)]) =u + o(1). Thus since & Tk T, (u/k1 >y — EZ (u/k )]}iZa mean-zero normal law with
finite variance v2 := &2y v2(0),

lim P(k”zln( k) /Cn) < u) = lim P(é k1/2< (u/k}?) —E[I,,(u/k:,/z)D < u+o(1))

n—oo n—oo

=P(Z <u).

(16)

Therefore k)/? In(w,)/cn) —>N(0 v3), hence w,)/ch =1 + Op(ky 1/2) by the mean-value-theorem.
Step 2 (unlform) Defme Tn(u,0) :=1/k, Zt WD (0) > cp(0)e%”) and Z,(u, 0) := kn(n/ky)"/*T(u, 0). Invoke uniform tail
properties (12)—(14) and repeat the argument leading to egqn(16) to obtain for any u € R

<k‘/2 In( 1(0)/cn(0 )) < u) - P<5—1n-1/2(zn(u, 0) — E[Zn(u, 0)]) < u+o(1)>.

The claim now follows from uniform indicator law Lemma B1 and the mapping theorem.
The proofs of Lemmas A1-A6 now follow.

Proor of LEmva A1. Claim (a): By Minkowski’s inequality

ZET (Anf,z - Ine,l)‘> X yff1l:(1{/t)—1 Zeflnt X Y- 1<7£1yt) 17 n‘t)—1)
a1 2) s (12— 0|

t=1

We will show the first term is 0,(n'/2Z!/2), the remaining terms being similar.

The indicator /(u):=I(u < 0) can be approximated by a regular sequence {3,(u)},~;, cf. Lighthill (1958). Let {N,} be a
sequence of finite positive numbers, AN, — oo, the rate to be chosen below. Define Tn(u) =
[ (@)SNo(w — u))Nae ™/ Nido where S(&) = e /01-¢)/ [T e /0=w)dw if |¢] < 1 and S(&)=0 if |¢] < 1. The function
S(Nn(w — u)) blots out (@) when @ is outside the open interval (u — 1/ANp,u + 1/N},). The function J,(u) is uniformly
bounded in u, and continuous and differentiable. Also, I(u) is differentiable except at 0 with derivative §(u)=(d/du)l(u)=0 Yu+£0,
the Dirac delta function. Therefore o(u) has a regular sequence D,(u) := (N, /71)1/2 exp{ — N ,u?} (see Lighthill, 1958, p. 22).

Write ¢, = ¢ and k, = k', define &i(a) := || — a and notice by our notation I,(12 =1(&(ek,))) and lnz = 1(&¢(cn)). By the mean
value theorem since \/,, — oo can be made as fast as we choose, it can be set to ensure for some c, |c G| < |e<kn) — Gl

n

> (Sn(Eelewy)) = InlEilcn))) x eyl

t=1

+0p(1)

Z < 6 nr) th71lr(1{t>—1

< ) x etyt,1l,(,’271 X |e) — Cn| +0p(1).
By Lemma B2 €,y — ¢h = ¢ X O,,(1/k,1,/2), hence
= (19 @ v) ; v)
Zﬁr <In€,r - Inft) X yt—1ln),/t—1 < an (Eelcy)) x Efyt—1ln},lt—1 x Op (Cn/k;ﬂ) +0p(1).
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Since distribution continuity implies |e;| # ¢}, a.s. it follows D,(E:(c})) 2,0 as fast as we choose. In particular we always can set
N, — oo sufficiently fast to ensure

n

Z &Dn(Ee(c))) x yt—1l,(1},/t)—1
=

1 n
<>

t=1

x Op <C,,/k,1,/2)

EtYe— 1/,” 1‘ X Op(max{ZD (&(c }c n1/2/k1/2) % n'/?

1 n
gnz

t=1

E€tYe— 1l€l£,y 1‘ XO ( 1/2) +Op(1)

Further, by stationarity, ergodicity and integrability 1/nY |etyr,1ln,t\/E\eryt,1I,,,t|L1, and by Lyapunov's inequality
Eletyr 1Int| < Z1/2. This proves the claim.
Claim (b): Write

1
sup|— {m,,,((?)—m,,,t(e)}‘
0c0 |N =
RN ) (i) RN N 5€) ¢ i)
< _ _ _ _ _
suplo > omnc 1 =IO} + suple S Smi0) (1 - R0 ) {1 =T }
RN 9 () - @ \2
+ségg;§r:1jmn.t<9>{1—/n,fw)/m . +soggn§1)mt<9>( —Iom) |

In view of supyce 122(0)1y2_1 —%5-0 and supyce 7,(,(;2(0)1,9'2 ] 2,0 it follows by dominated convergence with probability approaching
one for some large K > 0

RN (€) y) i€ (gyj) 1) (i)
— — — < —
;gg n r§:1 ’”r(e)(] ln,t(g)ln,r—1> {1 In.,t(e)ln,t—1} < K?)g(g n E my (0 {1 In‘r(e)ln1r71}
RN (€) » )? RN (e) (
—§ m — I ()1 <Ksup|—> m 1—190Y) L.
ZLEJGF)) n - t(9)< (0) nt— ) = ?-)lej(g n — HI(H { (0) nit—1 }

Therefore, by ULLN Lemma A3b and dominated convergence each term is o, (sup E|m,,,t(9)|).
0ec®

Claims (c) and (d): By exploiting the regular sequence {3,(u)},., the proofs are identical to (a).

Proor OF Lemma A2, If E[e?] < oo then Z =0(1)= o(n) If E[€?] = oo consider k=2 and note by independence and two applications of

trimmed moment properties (20) =, = E[e? t] x E[y2. l,,t = (In( )) =o(n). Ifx € [1,2) then by threshold construction (13) and
(14) =, = K(n/KYY N (n kYY" and by Assumption 3.a ki'kY/n — o, hence T, =K(n 2/k )2/" "= o(n¥* 1) = o(n).
Finally, if k€ (0,1) use the Assumption 3.b implication n>=*/(2=*) = o(kﬁ kW) to deduce =, = (n2/(kY'kY' N1 = o(n).

Proor OF Lemma A3. Claim (a): 1/nY 1, my = 0p(1) follows from E[m,,J=0 by distribution symmetry, the Lemma A2a variance
bound X,=o(n) and ChebysheV’s inequality.

Claims (b): Define hy,¢(0) := (mj,(0) — E[mjne(0)])/ supgce EllMmar(0)| foranyi € {1,2,3}. Observe hy,«(0) has a zero mean and
is integrable uniformly on ©. In view of stationarity and ergodicity therefore 1/n> 7, hn¢(6) 2,0. Further, by uniform L;-
boundedness h, (0) it belongs to a separable Banach space, hence the L;-bracketing numbers satisfy Nj(e, ®, [ - [|;) < oo (Dudley,
1999: Proposition 7.1.7). Now combine the pointwise law and Nj(&,®, || - ||;) < oo to deduce supyce [1/n> 7, hnt(0)] = 0p(1) by
Theorem 7.1.5 of Dudley (1999). This proves (b). calQED.

_ Proor oF Lemva A4. Claim (a). Recall we focus on the AR(1) case without an intercept. Choose any 0,0 € ©, and define
Gn(0) := =1/n >0, y2 110t (0). By linearity mp(0) = {m¢(0) — y2 ;(0 — 0)} X Ir¢(0), hence

Mn(0) — ma(0) =Gn(0) Zmr x {I0) - @ h

= Gp(0) x (0 —0) +D:(0,0),

(17)

say. We must show ¢ (0,0) is 0,(/|Ga|| x ||0 — 0])).
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We exploit the regular sequences {3,(u), Dn(u)},-, defined in the proof of Lemma A1 (see that proof for definitions). Write
cn(0) = cﬁ,‘)(é)) and define &,(0) := |e:(0)] — cy(0). Since N, — oo can be made as fast as we choose, by the mean value theorem it
can be set to ensure for some 0, ||0° — 0| < [|6 — 0|

0 (0,0) zmt n(Enc(0) (lee(0)] = [ec(@)] )2

—mer D (Ene(0)IY) 1x(cn(o)—cn(b))+o,,(1)
:An(e,e*,“)Jan(e,e*,é)+o,,(1).

Consider B, (6, 0", 0). By distribution continuity |e ()| # ¢, (0) a.s., by linearity e (0) = (0*) — (0 — 0%)y:—1, and by distribution
continuity c,(0) has a derivative d,(0) := (9/90)c,(0) that is finite for each n. Further |0 — 0] < ||0 — 0]|. Since N, — oo is
arbitrary it can be set to ensure sup,¢g ||dn (0 )H//\/1 /% 5 0 hence by the definition of D, (Ent(07))

1 Nale)] < Elyeal|

yt—1ln,t—1
" e [Nl a0} E

1< Ni
+op| = y? ,, x ||0—0
p(";exp{./\fn(er(ﬂ*ﬂcn( o)} x| H)
= C1,(0,0%,0) + Cy0(0,07,0).

%—1’%4 ‘

(¥)

x [lo—0|
th1ln,r—1‘

1B4(0,07,0)| <o,

By stationarity, ergodicity and integrability 1/”Et 1\ytl r|/E|y,m 1\—>1 and 1/n>7_, y? n,/E[y } E[y ]7 —G, by
construction; by Lyapunov's inequality Ely./,}| = |G, Ik % and by distribution non-degeneracy and trlmmlng negligibility
lim inf,_.«||Gnl| > 0 hence HG,,||1/2 O(||Gy||). Further, by distribution continuity e:(0%) # ¢,(0%) a.s., and E(supgc g |&(0)]") < oo
for some 1 > 0 follows from linearity and E|e;|" < oo. Therefore smce Ny, — oo is arbitrary it follows by Markovs inequality and
dominated convergence Np|e:(0")] exp{—Np(|e(0")] fcn(O*)) 120 and NV, exp{—N,(le(07)] = ca(6°))*} 20 as fast as we
choose. Therefore for N, — oo sufficiently fast both C;,(0, 0 ,0) are 0,(||G,| x |0 — 0])).

Similarly, use |e:(0)| — |e(0)] < ||0 — 0| x |y¢—1] to deduce for A/, — oo sufficiently fast

iy (O,
NS exp{Na(la(0%)] — ca(0%))’
— op(l1Gall x [j0 - 7).

| 4,(0,6%,6)] < }y31/g{21 x |0 — ]|

Claim (b). In view of order statistic consistency Lemma B2, the proof is identical to (a) above, and to Lemma Ala.
(':Iairp (c).A Since €(0,) =¢ — (0n — Oo)yH and 0, Lo by Theorem 2.1, the above argument implies 1/n>",
€{lnt(0n) — Ine} = 0p(1), hence

%Zn;ef(@nﬁ (0r) Zeflm 2(0n - 00)/%12:@, + (0 - 00)%i;y317n,r(0n)(0n = 0°) + 0,(1).

By Lemma Alc 1/n 37, €lpe = 1/n31, €l + 0,(1) and by integrability and ergodicity 1/n >0, €2l ¢ /E[e2ln.] 2.

We now show the second and third terms are o,(1). By Lemmas Ala 1/n> (L Mpe=1/n>7_ mp: + op(||2 /n||"/?) where
1Zn /n|H1/2 =o(1) by Lemma A2 and 1/n Zr 1Mt = 0p(1) by Lemma A3a, hence the second term is 0,(1). Next, invoke Lemma A6b
to obtain 1/n Y7, y2 ,1,+(0,) = — Ga(1 + 0(1)), note 6, — 6° = 0,(V,;"/2) by Theorem 2, and by construction and Lemma A2
V26,2 = Y V282 nt2 o, Hence the third term is 0,(1).

Claim (d). The proof is the same as (c).
ProOF OF Lemma A5. Define z,. := X, '/>m,. By symmetry and error independence E[z,]=0 and E(3 7, z,.)* = n. Since y, is
stationary and geometrically [-mixing it suffices to verify (2.1) and (2.2) in Peligrad (1996, Theorem 2.1), which are
supps1{1/n> 0 E[Z2,]} < oo and 1/n > [ E[z2 /(|zas| > &n'/?)] — OVe > 0. By construction E[z2,] = 1, hence (2.1).

2
' < o for some 1 > 0 hence

The Lindeberg terlaIIy condition (2.2) holds if k > 2 since by distribution continuity E|e|
lim sup,_Elzne*™" < oo.
Now suppose k < 2, and recall m; = ey, 1 has a power law tail with the same index x, and by trimming |e:y; 1l < ¢y'c

Therefore

() )
"
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(€
(e

E[Z I( > ¢ n)] = ZlnE[efyrqu,,,tl(efytz_]/"‘r > SZEHn)] < Kln - u?du
If k=2 then X, ~ K(In(n))* by eqn(14), hence the integral bounds satisfy (cﬁf)cﬁ,”)z < £2X,n as n—oo. This follows since by
threshold construction (13) we have (c\’c¥)? /n— K(n/KYY S (n/kYYY* In = Kn/(K\'kY)) — 0 by Assumption 3b. But this
implies for some N € N and all n < N that f gnn" S u2du = o
Finally, if x < 2 then X, ~ K(c,, o ) ( /n)( ,(,Y)/n) by eqn(14). Hence again the integral bounds (cﬁ,‘)cf,y))z < &2%,n as N—o0
since (c,(q)c,(,y)) /(Zqn) = / (K /n) = Kn/( " f,y)) — 0 by Assumption 3b.

ProoF o Lemma A6.  Claim (a): Recall G, = —E[y? , Iﬁ’ft)q}. By expansion Lemma A.4.a and Jacobian consistency (b), we have

1 n
= Amne(0) = mnc} = - Zyt e x (0= 0°) x (140,(1)) = Gy x (0—0°) x (14 0p(1)).
=1
Invoke dominated convergence and error independence to deduce E[y? ,/n¢] = E[yfqlﬁ,y‘t)q] x (1 + o(1)) and

E[Mne(0)] — E[mn]
07

=Gy x (1+0(1)).

Identically, by the definition of a derivative

Flmatll gl el (- offo - 7)) + i)

Equate (18) and (19) and take |0—0°|—0 to prove the claim. }
Claim (b): By distribution smoothness there exists a pornt 9 € O that satisfies supycg E|mn¢(0)| > E|my,|. Further, since
Mpe(0) = Mne(0) — y2 11 (0)(0 — 0)+mt{l,,[( ) — ( It (0 )}Int 1 11 (0) € {0,1}, and © is compact it follows

1<
nt
sup E[mn(0)] < Elmne(0)] +KE[y? y20-1] + sup E|me{133(0) — 3 0},

By construction E[y? 1/,” 1] = |Gn|, and by the proofs of Lemmas Ala and A4a the term sup.eo E|m,{/,,r( ) — If,f?(é)}l,i{?_ﬁ can be
shown to be (\G,,| x |0 —0]) which is 0(G,) in view of compactness of © . This proves
SUPpee Emn(0)] < Eimn(0)] + K|Gn| x (1 4+ o(1)). Since SUPgee Elmne(0)] > Elmp ] it therefore follows

supgeo Elmat(0)] < K|Gn| x (1 4+ O(1)) < K|Gy| (recall K may be different in different places).

Claim (c) By Lemma Ald and A4d and consistency 0,~>0° under Theorem 1 it follows 1/n>" . y2 I (0,) =
1/n> 1yl tne + 0p(1). Further by trimming negligibility I|m infp_ooEly? 1Int] > 0 , and by integrability and ergodicity
1/ny 1 1yt 1/,,I/E[yr 1/,”]—»1 Moreover Ely? Ine) = Ely2 ;1 1,” 1 x (1 +0(1) by trimming negligibility. This proves
1/n > y2 1ine(0n) /ElY2 1Y) 121 which completes the proof.

Claim (d): The proof is the same as (c) since 1/n> 1, y2 1/,(1"2 1 =1/n3, yfql,(,’,’r)f1 + 0p(1) can be easily shown by the line of
proof of Lemmas A1d and A4d.

NOTES
1. Notlce E[zzl(|zt\ < =K+ f P(|z:| > u'/?)du for frnrte 2> 0 and some K > 0 that depends on a. If k=2 then
=d"2(n/k) )/ and therefore E[ 2I(|zr| < N ~K + d, fc” u~"du ~ 2d; In(c!)) ~ d; In(n).
2. The simulation results for LTTS based on k.’ = [0.05n/ In(n)] and kY ~ max{1,[0.1In(n)]} are qualitatively identical to the results

reported here, and are available upon request.
3. Our data were taken from finance.yahoo.com, which may be slightly different from Ling’s data. Ling reports 497 observations.
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