LEAVING CERTIFICATE

CHEMISTRY NOTES

C. Hurley

2017

DO NOT COPY – COMPLETE SET AVAILABLE FOR PURCHASE ON EBAY						
	<u>PART A</u>					
QUESTION	EXPERIMENT	PAGE				
Question 1	Titrations	1				
Question 2	Organic chemistry experiments	15				
Question 3	Other experiments	26				
	PART B					
UNIT		PAGE				
1 – Periodic table and atomic	1.1 The periodic table	39				
structure	1.2 The Atomic structure	42				
	1.3 Radioactivity	46				
	1.4 Electronic structure of atoms	49				
	1.5 Oxidation and reduction	52				
2 – Chemical bonding	2.1 Chemical compounds	55				
	2.2 Ionic bonding	56				
	2.3 Covalent bonding	58				
	2.4 Electronegativity	60				
	2.5 Shapes of molecules and intermolecular forces	60				
	2.6 Oxidation numbers	64				
3 – Stoichiometry	3.1 States of matter	67				
	3.2 Gas laws	67				
	3.3 The mole	69				
	3.4 Chemical formulae	70				
	3.5 Chemical equations	71				
4 – Volumetric Analysis	4.1 Concentration of solutions	73				
	4.2 Acids and bases	74				
5 – Fuels and heats of reaction	5.1 Sources of hydrocarbons	78				
	5.2 Structure of aliphatic carbons	78				
	5.3 Aromatic hydrocarbons	83				
	5.4 Exothermic and endothermic reactions	83				
	5.5 Oil and its refining products	85				
	5.6 Other chemical fuels	89				

DO NOT COPY – COMPLETE SET AVAILABLE FOR PURCHASE ON EBAY

6 – Rates of reaction	6.1	Reaction rates	90
	6.2	Factors affecting rates of reaction	90
7 – Organic chemistry	7.1	Tetrahedral carbon	95
	7.2	Planar carbon	99
	7.3	Organic chemical reaction types	106
	7.4	Organic natural products	117
8 – Chemical Equilibrium	8.1	Chemical equilibrium	118
	8.2	Le Chatelier's principle	120
9 – Environmental chemistry: water	9.1	pH scale	122
	9.2	Hardness in water	126
	9.3	Water treatment	127
	9.4	Water analysis	130

These notes are compiled based on the State Examinations Commission (SEC) syllabus with reference to teacher guidelines. All areas covered correlate with past exam papers (including 1990s) and some sample pre/mock papers. The "higher order questions" are designed to anticipate future questions which bring together multiple parts of the course to test understanding and reasoning. Marking schemes are also linked in to relevant parts with special attention on common student mistakes and how to achieve full marks in each question.

The complete set of notes can be purchased on eBay

Search: H1 leaving cert chemistry notes

<u>Unit 2 – Chemical Bonding</u>

2.1 Chemical Compounds

A compound: is a pure substance consisting of two or more different chemical elements that can only be separated into similar substances by chemical reactions

Group Ions Formed **Simple Chemical Formulae** 1 +1 Examples: 2 +2 1) Sodium Chloride: Na⁺ → NaCl CI⁻ — 3 +3 4 Al⁺³ 2) Aluminium Oxide: 0⁻² AI_2O_3 -1 5 6 2 **Complex Ions** 7 3 Examples: 8 1) Calcium Carbonate: Ca⁺² CO3²⁻ → CaCO₃ Formula lon CO32-Carbonate NO₃ Fe²⁺ 2) Iron(II) Nitrate: → Fe(NO₃)₂ Hydrogen Carbonate HCO₂ Sulfate SO42-Fe³⁺ NO₃ Iron (III) Nitrate: \rightarrow Fe(NO₃)₃ (ג Sulfite SO32-Nitrate NO₃⁻

Iron, a transitional metal, has varying valencies - iron (II) and iron (III)

Noble Gases

Reference unit 1 for chemical and physical properties

- Group o/8
- All elements have a full outer shell (energy levels)
- As a result of **full energy levels** they are **very stable** and **unreactive (inearth)**

Practical Uses of Noble Gases

Helium and argon do not form any compounds due to their unreactivity

- 1. Helium is a much safer alternative to hydrogen e.g. balloons, blimps (both low densities, helium not flammable)
- 2. Electric light bulbs contain argon

Transition Metals

Elements 21→ 29 (Sc→Cu)

- Variable valency e.g. Iron(II) and iron (III)
- Produced coloured ions
- Often used as catalysts
- Form complex ions e.g. haemoglobin
- 2 electrons in outer shell (4s²) and incomplete 3rd shell

Note:

Zn: 1s² 2s² 2p⁶ 3s² 3p⁶ 4s² 3d¹⁰

Forms Zn^{2+} ions \rightarrow Valency = 2

Element	Valency
Cu	1,2
Cr	2,3,6
Fe	2,3,6
Mg	2,3,4,6,7

6

NO₂

PO₄³⁻

OH⁻

NH4

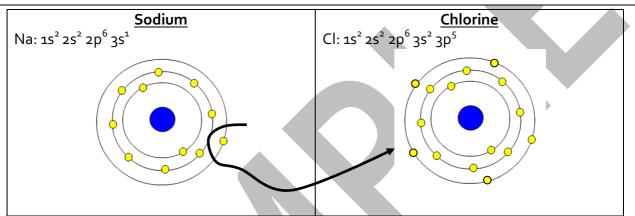
Nitrite

Phosphate

Ammonium

Hydroxyl

Bonding and Valency


Valency: the number of bonds an atom of the element forms when it reacts

> Note: Valency is not the same as oxidation number (no charges)

COMPOUND	FORMULA	VALENCE	OXIDATION STATE
Hydrogen chloride	HCI	H=1 Cl=1	H= +1 Cl= -1
Chlorine	Cl ₂	Cl=1 Cl=1	Cl= +1 Cl= -1

Octet Rule:

Elements combine to form compounds and their atoms react in such a way as to achieve 8 electrons in their outer shell

- Sodium has 1 electron in its outer shell/energy level
- > Chlorine has 7 electrons in its outer shell/energy level
- > When sodium and chlorine react: sodium loses its electron and chlorine gains it

New electronic configurations:

Na⁺¹: $[1s^2 2s^2 2p^6]^+$

Sodium now has 8 electrons in outer shell – stable

 Cl^{-1} : $[1s^{2} 2s^{2} 2p^{6} 3s^{2} 3p^{6}]^{-1}$

Sociom now has 8 electrons in outer shell – stable

⁶ 3s² 3p⁶] ⁻ Chlorine now has 8 electrons in outer shell – stable

Limitations:

- 1. Does not work on the first four elements impossible to gain/loses electrons
- 2. Hydrogen and lithium gain/lose to get to He but they are unlikely gain electrons to reach 8 electrons in the outer shell
- 3. Be and B have few electrons in their outer shell so it is unlikely that they will reach 8 electrons in the outer shell
- 4. "d-block" elements excluded

2.2 Ionic Bonding

Intramolecular Bonding

Bonding within a molecule that holds that atoms together

7

Types of Intramolecular Bonding:

- 1. Ionic
- 2. Pure Covalent
- 3. Polar Covalent

Ionic Bonding

Electrostatic force of attraction between oppositely charged ions

- Ions are formed due to transfer of electrons
- A bond involving transfer (loss <u>and</u> gain) of electrons one molecule loses and electron; one molecule gains an electron
- Minute size of ions

Cations: are positive ions formed when an atom looses electrons (lose of negative charge – more positive)

Anions: are negative ions formed when an atom gains electrons (gain of positive charge – more negative)

Representation of Ionic Bonds Using Dot and Cross Models

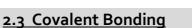
Sodium Chloride (NaCl)	Note: only outer shell electrons are represented!
$ \begin{array}{c} \bullet & x \times x \\ Na & \times & Cl & x \\ & x \times & x \end{array} \qquad \qquad$	Na: $1s^{2} 2s^{2} 2p^{6} 3s^{1}$ Na ⁺¹ : $[1s^{2} 2s^{2} 2p^{6}]^{+1}$ Cl: $1s^{2} 2s^{2} 2p^{6} 3s^{2} 3p^{5}$ Cl ⁻¹ : $[1s^{2} 2s^{2} 2p^{6} 3s^{2} 3p^{6}]^{-1}$
(2,8,1) (2,8,7) (2,8) (2,8,8)	
<u>Sodium Oxide (Na₂O)</u>	
$ \begin{array}{c} X & X \\ Na & Na & X & O & X \\ X & X & X \\ (2,8,1) & (2,8,1) & (2,6) \end{array} \qquad $	$ \begin{pmatrix} X & X \\ X & 0 \\ X & \bullet & X \\ (2,8) \end{pmatrix}^{2^{-}} \begin{cases} Na^{+1} : [1s^{2} 2s^{2} 2p^{6}]^{+} \\ Cl^{-1} : [1s^{2} 2s^{2} 2p^{6} 3s^{2} 3p^{6}]^{-} \\ O^{2^{-}} : [1s^{2} 2s^{2} 2p^{6}]^{2^{-}} \\ All 3 now have full outer "shells" \end{cases} $
$\begin{bmatrix} N_{a^{2}} & 2s^{2} & 2p^{6} & 3s^{1} \\ O: & 1s^{2} & 2s^{2} & 2p^{4} \end{bmatrix} \begin{bmatrix} N_{a^{+1}} & [1s^{2} & 2s^{2} & 2s^{2} & 2s^{2} & 2s^{2} & 2s^{2} \\ O^{2^{-1}} & [1s^{2} & 2s^{2} \\ \end{bmatrix}$	which confers extra stability

Characteristics of Ionic Substances

1. Do not conduct electricity in **solid form** as the ions cannot move

2. Can conduct electricity in liquid/molten form as the ions can move freely

- Most ionic substances dissolve in water
- 3. Solids at room temperature
- 4. High melting and high boiling point
 - Strong forces between ions (intermolecular) mean a lot of energy is required to break them up

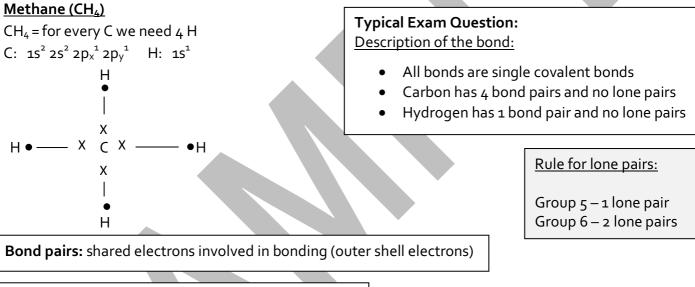

Ionic Materials in Everyday Life

- 1. Salt tablets to replace salt lost by sweat
- 2. Bleach Sodium Hypochlorite

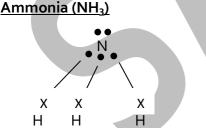
DO NOT COPY - COMPLETE SET AVAILABLE FOR PURCHASE ON EBAY

Sodium Chloride Crystal Structure Between Molecules

- Electrostatic force of attraction between sodium and chloride ions is not just one to one but occurs in all directions around the ion
- Therefore, an ionic compound such as NaCl consists not just of a pair of ions but a network of ions held together in a regular and repeating pattern

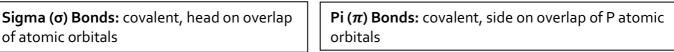

Bond formed due to sharing of electrons

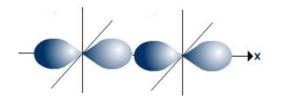
- > No ions formed
- Each pair of electrons shared is a single covalent bond


Molecule: 2 or more atoms chemically combined

Minute size

Representation of Covalent Bonds Using Dot and Cross Models




Lone pairs: shared electrons not involved in bonding

Description of the bond:

- All bonds are single covalent bonds
- Nitrogen has 3 bond pairs and 1 lone pair
- Each Hydrogen has 1 bond pair and no lone pairs

DO NOT COPY - COMPLETE SET AVAILABLE FOR PURCHASE ON EBAY

Nitrogen

 $1s^{2} 2s^{2} 2px^{1} 2py^{1} 2pz^{1}$

Each N shares 3 electrons

1 sigma bond (head on head)

2 pi bonds (side on side – dashed lines, pz on pz and py on pz)

1 lone pair (not shown – 2s²; 1s² 2 electrons not represented as only the outer shell is represented)

Non-Polar (Pure) Covalent Bonding

Bond formed due to equal sharing of electrons

- No partial charges formed
- The majority of non-polar covalent bonds occur in diatomic elements
- Other examples include Methane (CH₄)

Example: O₂

1 bond pairs and 2 lone pairs are on each oxygen (not shown)

Since electronegativity of the 2 oxygen are equal no partial charges are formed and the electrons are shared equally

Polar Covalent Bonding

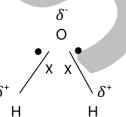
Bond formed due to unequal sharing of bonding electrons

O: $1s^2 2s^2 2p_x^2 2p_y^1 2p_z^1$

Partial positive (δ^+) and partial negative (δ^-) charges formed

<u>H₂O</u>

H: 15¹

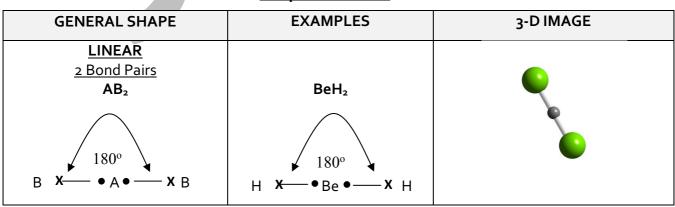


 H^+ , O^{2-} i.e. for every O we need 2 H

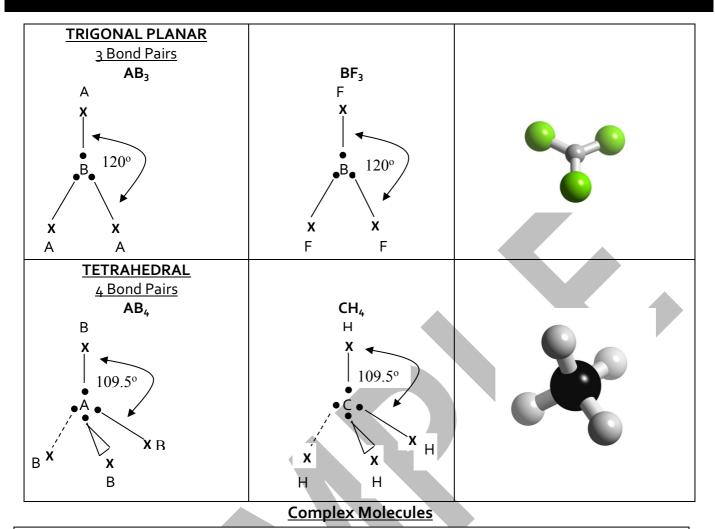
 $N \equiv N$

Н But this representation is not the reality.

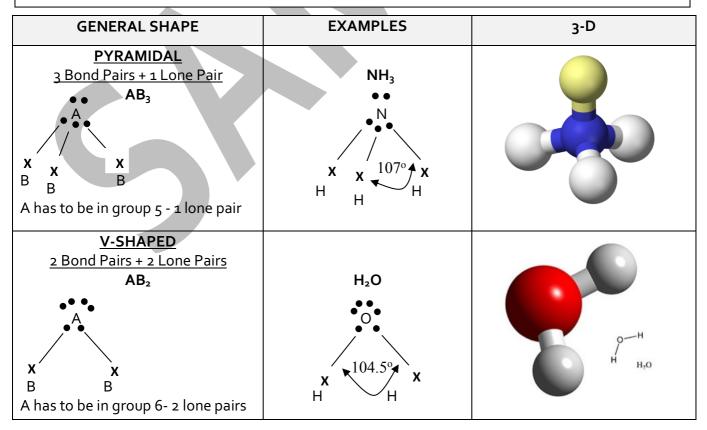
Oxygen has a higher electronegativity value that hydrogen leaving the following representation: see later


[See notes 2.4 for electronegativity]

Characteristics of Covalent Substances


- 1. Gases/Liquids at room temperature
- 2. Low boiling and melting points (due to weak intermolecular forces)
- Do not conduct electricity 3.
- 4. Insoluble in water

DO NOT COPY – COMPLETE SET AVAILABLE FOR PURCHASE ON EBAY


Eve	yday Materials	– Syllabus Exan	nples
	Polar:	<u>Non-Pola</u>	<u>ır:</u>
1.	Petrol	1. Water	
2.	Cooking oil	2. Glucose	
	2.4 Electro	<u>negativity</u>	
The relative attraction of an aton	n for a shared pair	of electrons in a o	covalent bond
	Tre	<u>nds</u>	
Across a period: Increase			Reference: Log Book pg 81
Decreasing atomic radius			
Increase in effective nucle	ar charge (more el	ectrons)	
Down a group: Decrease			
Increasing atomic radius			
 Increase in nuclear charge Bradiction of 			
Prediction of	Bond Type Using	-	
	Value	Bond Type	e
	< 1.7	Polar Covalent	
	> 1.7	lonic	
	≈ 0 (0-0.4)	Non-Polar Cova	alent
Example: H ₂ O			
Electronegativity values: H = 2.2			
O – H (oxygen minus hyd	rogen)	<u>Note:</u>	
3.44 - 2.20		· ·	e atom of each element and
1.24		subtract ther	n from each other
\therefore H ₂ O is Polar Covalent			
δ			
0	V	H₂O is polar co	
1		Unequal sharin	5
	V	Pair of electro	ons closer to the oxygen,
		matching elect	ronegativity values
н н			
2.5 Shape	s of Molecules a	nd Intermolecu	ular Forces
	<u>Simple Mo</u>	lecules	

DO NOT COPY – COMPLETE SET AVAILABLE FOR PURCHASE ON EBAY

Electron pair repulsion theory: the electrons pairs in the valence (outer) shell of the central atom repel each other and end up as far apart as geometrically possible

Using Electron Pair Repulsion Theory to Explain Shapes of Molecules

Typical Exam Question – <u>example: Describe the shape of ammonia</u>

- 1. N has 3 bonding and 1 non-bonding (lone) pair (Each H has 1 bond pair)
- 2. The bond arrangement causes the shape of the molecule to be pyramidal

Electron Pair Repulsion Theory

Bond Angles

- 1. AB_3 with no lone pairs has a bond angle of 120° AB_3 with 1 lone pair has a bond angle of 107°
- 2. AB₂ with no lone pairs has bond angle of 180° AB₂ with 2 lone pairs has bond angle of 104.5°

<u>Theory</u>

- Lone pairs have greater repulsion of each other i.e. lone pair in contact with lone pair will produce the greatest repulsion, followed by lone pair in contact with bond pair and finally the weakest, bond pair in contact with bond pair
- L.P:L.P > L.P:B.P > B.P:B.P (Repulsion) **
- Lone pair wants to get as far apart as geometrically possible from each other pushing bonds closer together **
- ** Both points are required to get full marks

Relationship between Symmetry and Polarity in a Molecule

B – Cl

- Electronegativity difference = 1.12
- Therefore one may assume it is polar
- However, BCl₃ is actually non-polar
- This is due to unequal sharing of electrons between B and Cl (i.e. polarity) cancels due to symmetry of molecule
- Centres of positive and negative charges coincide
- BCl₃ has a trigonal planar shape which has symmetry

Intermolecular Forces

Attractive/Repulsive attractive forces **<u>between</u>** molecules

Types of Intermolecular Forces:

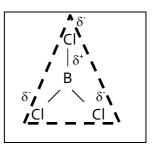
1. Van der Waal's forces

2. Dipole-dipole

3. Hydrogen Bonding

Van der Waal's Forces

Very weak intermolecular forces


Up until now H_2 was represented as:

giving rise to a pure covalent intramolecular bond

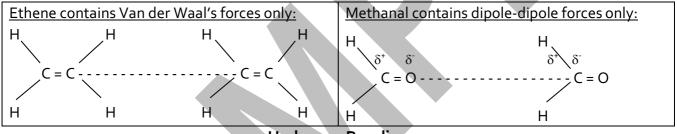
But, in reality the 2 electrons in H₂ are moving from side to side creating temporary charges δ^+ δ^-

H creating temporary polarity, known as **a temporary dipole** within the molecule

$$\begin{array}{c} \delta^{+} & \delta^{-} \\ H \underbrace{\bullet}_{\mathbf{X}} & H \end{array} \begin{array}{c} \delta^{+} & \delta^{-} \\ H \underbrace{\bullet}_{\mathbf{X}} & H \end{array} \begin{array}{c} \delta^{+} & \delta^{-} \\ H \end{array} \begin{array}{c} \delta^{+} & \bullet \end{array} \begin{array}{c} \delta^{+} \\ H \end{array} \end{array} \begin{array}{c} \delta^{+} \\ H \end{array} \begin{array}{c} \delta^{+} \\ H \end{array} \end{array} \begin{array}{c} \delta^{+} \\ H \end{array} \begin{array}{c} \delta^{+} \\ H \end{array} \end{array} \begin{array}{c} \delta^{+} \\ H \end{array} \end{array}$$

The greater number of electrons in a molecule, the greater number of possible temporary dipoles, and therefore the greater intermolecular attraction

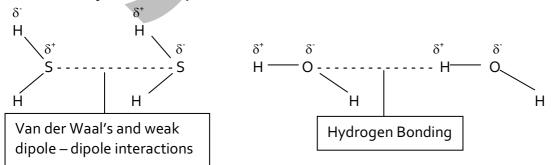
This means that Van der Waal's forces increase with an increasing size of molecule – i.e. bigger molecule has more electrons


These weak intermolecular forces increase the boiling point with the more temporary dipoles

E.g. Oxygen (16 electrons) has a much higher boiling point than Hydrogen (1 electron) – <u>syllabus</u>

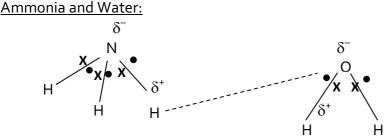
Dipole-dipole

- Intermolecular forces between polar molecules
- Differ from Van der Waal's forces **by permanent dipoles due to the polarity** of the molecule


- Due to permanent dipole the boiling point of molecules with dipole-dipole nteractions are much higher than molecules with Van der Waal
- <u>Syllabus</u>: Ethene C₂H₄ (Mr=28) should have similar boiling point to Methanal HCHO (Mr=30), however Methanal has a much higher boiling point due to stronger intermolecular bonding

Hydrogen Bonding

Intermolecular attraction involving a slightly positive hydrogen atom bonded to a small highly electronegative element such as F, O or N


- Hydrogen bonding is the strongest form of intermolecular bonding
- This is because the molecules are highly polar
- E.g. in water molecules, O H is highly polar (large electronegativity value)
- H₂S should have a higher boiling point to water due to greater relative molecular mass. But since the H – S bond is less polar than the O – H bond in water it has a much lower boiling point than water – *syllabus example*

H₂S has an electronegativity difference of 0.38 which means it is between polar and non-polar

DO NOT COPY - COMPLETE SET AVAILABLE FOR PURCHASE ON EBAY

Application of Knowledge: Dissolving Properties

<u>Process</u>

- > The slightly negative O in water bonds with the H in ammonia
- > The slightly negative N in ammonia bonds with H in water
- > Breaking of hydrogen bonds in water
- > Forming of hydrogen bonds between ammonia and water

Note: Even though both compounds contain hydrogen bonding, water has a much higher boiling

point because of larger electronegativity difference in the OH bond than the NH bond of ammonia

2012: state how bonding in PH₃ differs from NH₃, H₂O, HCl

- PH₃ = non-polar
- NH₃, H₂O, HCl = polar

Reason for this difference in bonding?

- Tiny electronegative different in PH₃
- Large electronegative difference in the others
- As the bonding type gets stronger:
 - o Increase in boiling point
 - o Increase in melting point

2.6 Oxidation Numbers

Oxidation Numbers: The charge that an atom appears to have when the electrons are distributed according to certain rules

Rules for Oxidation Numbers

1. Free elements have oxidation number of o

➢ e.g. N₂

2. The sum of the oxidation numbers is o

2(+1) - 2 = 0

3. The oxidation number of a simple ion is equal to the charge of the ion (see 2.1 for ions)

➢ Cl[−] = − 1

- 4. The sum of the oxidation numbers of all atoms in a complex ion is equal to the charge on the ion
 (NO₃[−]) = −1
- 5. Hydrogen has an oxidation number of +1 in its compounds, except in metallic hydrides (hydrogen + metal) where it is 1

6. Oxygen has an oxidation number of – 2 in its compounds, except in hydrogen peroxide where it is – 1, and when bonded to fluorine, where it is + 2

Can check which element is more electronegative in log tables. The more electronegative element is assigned oxidation numbers first.

Naming of Transition Metal Compounds

> Note: If 2 elements only in a compounds, we use the prefix –ide; –ide ending means no oxygen

Sample questions:

What is the systematic name of FeCl₃?

Iron (II) chloride

What is the formula of iron (III) sulfate-9-water?

Fe³⁺, SO₄²⁻, 9H₂O = Fe₂(SO₄²⁻)₃.9H₂O

Oxidation and Reduction in Terms of Oxidation Numbers

Oxidation: is an increase in oxidation number – loss of electrons	O xidation
Reduction: is a decrease in oxidation number – gain of electrons	ls
	Loss
Oxidising Agent: is a substance that cause reduction	R eduction
Reducing Agent: is a substance that cause oxidation	ls
Bleaches as examples of oxidising agents (e.g. NaOCI) or reducing agents (e.g. SO ₂) Example:	G ain

What is (a) oxidised (b) reduced (c) the oxidising agent (d) the reducing agent in the following redox reaction?

$2MnO_4^{-}$ + 16H ⁺	+ $5C_2O_4^{2-}$ > $2Mn^{2+}$	+ 10CO ₂	+ 8H₂0
+7 -2 +1	+3 -2 +2	+4 -2	+1 -2
\uparrow	\uparrow	\uparrow	\uparrow
<u>+7</u> -8 <u>+1</u>	<u>+6</u> -8 +2	<u>+4</u> -4	<u>+2</u> -2

- 1. Assign oxidation numbers according to previous rules **in bold**
- 2. Now account for number of elements in compounds *in italic* e.g. O₄ oxygen has oxidation number of -2 but since there is 4 of them it becomes -8 (note: ignore number of moles e.g. 4O₄ is still -8)
- Work out oxidation numbers for the rest of the compound noting the overall charge <u>underlined</u>
 e.g. CO₂, O: -2 x 2 = -4 therefore C must have +4 charge as the overall charge of CO₂ is neutral; MnO₄⁻
 , O: -2 x 4 = -8 therefore M must have +7 and not +8 because the overall charge of MnO₄⁻ is -1
- 4. Assign individual molecule oxidation numbers; e.g. H₂O O: -2 x 1 = -2, H: +2 (overall charge is neutral) but since there is 2H (H₂) molecules **each individual H has +1** represented by arrows

Mn: $+7 \rightarrow +2$ Gain of 5 electrons (5 negative charges) – REDUCED therefore OXIDISING AGENT

C: +3 \rightarrow + 4 Loss of 1 electron (1 negative charge) – OXIDISED therefore REDUING AGENT

Balancing Redox Equations Using Oxidation Numbers

We use the "ratio" method to solve equations that cannot be balanced by inspection <u>Example:</u>

MnO ₄ ⁻	+ CH₃OH +	H^{\star}	→ Mn ²⁺	+ HCHO +	H₂O
+7 -2 ↑	-2 +1 -2 +1 ↑ ↑	+1	+2	+1 0 +1 -2 ↑	+1 -2 ↑
+7 -8	-2 +3 -2 +1	+1	+2	+10+1-2	+2 -2

- 1. Assign oxidation numbers according to previous rules in bold
- Now account for number of elements in compounds *in italic* e.g. O₄ oxygen has oxidation number of -2 but since there is 4 of them it becomes -8 (note: ignore number of moles e.g. 4O₄ is still -8)
- 3. Work out oxidation numbers for the rest of the compound noting the overall charge <u>underlined</u> e.g. CO₂, O: -2 x 2 = -4 therefore C must have +4 charge as the overall charge of CO₂ is neutral; MnO₄⁻, O: -2 x 4 = -8 therefore M must have +7 and not +8 because the overall charge of MnO₄⁻ is -1
- 4. Assign individual molecule oxidation numbers; e.g. $H_2O O: -2 \times 1 = -2$, H: +2 (overall charge is neutral) but since there is 2H (H_2) molecules **each individual H has +1** represented by arrows
 - CH₃OH: H: +1×1=+1, H₃: +1×3=+3, O: -2×1=-2 − charge so far is +4 − 2 = +2 → therefore
 C must be -2 to make overall charge o

Mn: $+7 \rightarrow +2$ Gain of 5 electrons (5 negative charges) – REDUCED therefore OXIDISING AGENT C: $-2 \rightarrow 0$ Loss of 2 electron (2 negative charges) – OXIDISED therefore REDUING AGENT

- 5. Assign a ratio Mn : C i.e. for every 2 Mn there is 5 C (reverse numbers to get ratio) 2 : 5
- 6. Fill in equation according to ratio:

2 MnO ₄ ⁻ + 5 CH ₃ OH	+ H ⁺ —	2 Mn ²⁺ +	- 5 HCHO + H₂O
--	--------------------	-----------------------------	-----------------------

7. Balance equation – count each element on each side of the equation:

Mn:	2 = 2	2	= 2		Bala	nced
0: C: H:	8 (2x4) + 5 = 13 5 = 5 21 (3+1 × 5) + 1 = 21	5 (5 X 1) + 1 5 12 (5 X 2)+ 1X2	= 6 = 5 = 12		Bala	nced
2MnO ₄ -	+ 5CH₃OH + H ⁺ −	► 2Mn ²⁺	+	5HCHO	+	8 H ₂ O
8H ₂ O – O no	ow balanced 13 on each side	2				
This changes H - left side remains as 21, right side now is 26						
Finally, bala	ance H (always leave to last!)− 6H ⁺				
2MnO4 -	+ 5CH ₃ OH + 6 H ⁺	→ 2Mn ²⁺	+	5HCHO	+	8H₂O

Now count each element again to ensure all balance)