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Preface

The great challenge in writing a book about a topic of ongoing mathematical research interest lies in
determining who and what. Who are the readers for whom the book is intended? What pieces of the research
should be included?

The topic of Leavitt path algebras presents both of these challenges, in the extreme. Indeed, much
of the beauty inherent in this topic stems from the fact that it may be approached from many different
directions, and on many different levels.

The topic encompasses classical ring theory at its finest. While at first glance these Leavitt path algebras
may seem somewhat exotic, in fact many standard, well-understood algebras arise in this context: matrix
rings and Laurent polynomial rings, to name just two. Many of the fundamental, classical ring-theoretic
concepts have been and continue to be explored here, including the ideal structure, Z-grading, and structure
of finitely generated projective modules, to name just a few.

The topic continues a long tradition of associating an algebra with an appropriate combinatorial structure
(here, a directed graph), the subsequent goal being to establish relationships between the algebra and the
associated structures. In this particular setting, the topic allows for (and is enhanced by) visual, pictorial
representation via directed graphs. Many readers are no doubt familiar with the by-now classical way
of associating an algebra over a field with a directed graph, the standard path algebra. The construction
of the Leavitt path algebra provides another such connection. The path algebra and Leavitt path algebra
constructions are indeed related, via algebras of quotients. However, one may understand Leavitt path
algebras without any prior knowledge of the path algebra construction.

The topic has significant, deep connections with other branches of mathematics. For instance, many of
the initial results in Leavitt path algebras were guided and motivated by results previously known about
their analytic cousins, the graph C∗-algebras. The study of Leavitt path algebras quickly matured to ado-
lescence (when it became clear that the algebraic results are not implied by the C∗ results), and almost
immediately thereafter to adulthood (when in fact some C∗ results, including some new C∗ results, were
shown to follow from the algebraic results). A number of longstanding questions in algebra have recently
been resolved using Leavitt path algebras as a tool, thus further establishing the maturity of the subject.

The topic continues a deep tradition evident in many branches of mathematics in which K-theory plays
an important role. Indeed, in retrospect, one can view Leavitt path algebras as precisely those algebras
constructed to produce specified K-theoretic data in a universal way, data arising naturally from directed
graphs. Much of the current work in the field is focused on better understanding just how large a role the
K-theoretic data plays in determining the structure of these algebras.

Our goal in writing this book, the Why? of this book, simultaneously addresses both the Who? and What?
questions. We provide here a self-contained presentation of the topic of Leavitt path algebras, a presentation
which will allow readers having different backgrounds and different topical interests to understand and
appreciate these structures. In particular, graduate students having only a first year course in ring theory
should find most of the material in this book quite accessible. Similarly, researchers who don’t self-identify
as algebraists (e.g., people working in C∗-algebras or symbolic dynamics) will be able to understand how
these Leavitt path algebras stem from, or apply to, their own research interests. While most of the results
contained here have appeared elsewhere in the literature, a few of the central results appear here for the
first time. The style will be relatively informal. We will often provide historical motivation and overview,
both to increase the reader’s understanding of the subject and to play up the connections with other areas of
mathematics. Although space considerations clearly require us to exclude some otherwise interesting and
important topics, we provide an extensive bibliography for those readers who seek additional information
about various topics which arise herein.

More candidly, our real Why? for writing this book is to share what we know about Leavitt path algebras
in such a way that others might become prepared, and subsequently inspired, to join in the game.
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Chapter 1
The basics of Leavitt path algebras: motivations, definitions
and examples

In this the initial chapter of the book we introduce the Leavitt path algebra LK(E) which arises from
a directed graph E and field K. We begin in Section 1.1 by reviewing a class of algebras defined and
investigated in the early 1960’s by W.G. Leavitt, the now-so-called Leavitt algebra LK(1,n) corresponding
to any positive integer n and field K. The importance of these algebras is that they are the universal examples
of algebras which fail to have the Invariant Basis Number property; to wit, if R = LK(1,n), then the free
left R-modules R and Rn are isomorphic. Once the definition of LK(E) is given for any graph E, we will
recover LK(1,n) as LK(Rn), where Rn is the graph having one vertex and n loops at that vertex.

With the general definition of a Leavitt path algebra presented in Section 1.2 in hand, we give in Section
1.3 the three fundamental examples of Leavitt path algebras: the Leavitt algebras; full matrix rings over K;
and the Laurent polynomial algebra K[x,x−1]. These three types of Leavitt path algebras will provide the
motivation and intuition for many of the general results in the subject.

The subject did not arise in a vacuum. Indeed, there are intimate connections between Leavitt path
algebras and a powerful monoid-realization result of Bergman. As well, there are strong and historically
significant connections between Leavitt path algebras and graph C∗-algebras. We describe both of the
connections in Section 1.4.

As we will see, there are natural modifications to the definition of a Leavitt path algebra which provide
the data to construct a (seemingly) more general class of algebras, the relative Cohn path algebras CX

K (E)
corresponding to a graph E, a subset X of the vertices of E, and field K. Although the class of relative Cohn
path algebras contains as specific examples the class of Leavitt path algebras, we will see in Section 1.5
that every relative Cohn path algebra CX

K (E) is in fact isomorphic to the Leavitt path algebra LK(E(X)) for
some germane graph E(X).

Although the motivating examples of Leavitt path algebras arise from finite graphs, the definition of
LK(E) allows for the construction even when E is infinite. Indeed, much of the interesting work and many
of the applications-related results about Leavitt path algebras arise in the situation where E is infinite. We
show in Section 1.6 that, perhaps surprisingly, every Leavitt path algebra may be viewed as a direct limit
(in an appropriate category) of Leavitt path algebras associated to finite graphs.

We conclude the chapter by presenting in Section 1.7 a brief historical overview of the subject.

1.1 A motivating construction: the Leavitt algebras

A student’s first exposure to the theory of rings more than likely involves a study of various “basic ex-
amples”, typically including fields, Z, matrix rings over fields, and polynomial rings with coefficients in a
field. It is not hard to show that each of these rings R has the Invariant Basis Number (IBN) property :

IBN: If m and m′ are positive integers with the property that
the free left modules Rm and Rm′ are isomorphic, then m = m′.

Less formally, a ring has the IBN property (more succinctly: is IBN) in case any two bases (i.e., linearly
independent spanning sets) of any finitely generated free left R-module have the same number of elements.

1



2 1 The basics of Leavitt path algebras: motivations, definitions and examples

It turns out that many general classes of rings have this property (e.g., noetherian rings and commutative
rings), classes of rings which include all of the basic examples with which the student first made acquain-
tance. (Typically, the student would have encountered the fact that the field of real numbers has the IBN
property in an undergraduate course on linear algebra.)

Unfortunately, since all of the examples the student first encounters have the IBN property, the student
more than likely is left with the wrong impression, as there are many important classes of rings which
are not IBN. Perhaps the most common such example is the ring B = EndK(V ), where V is an infinite
dimensional vector space over a field K. Then B is not IBN (with a vengeance!): it is not hard to show that
the free left B-modules Bm and Bm′ are isomorphic for all positive integers m,m′.

Definition 1.1.1. Suppose R is not IBN. Let m ∈ N be minimal with the property that Rm ∼= Rm′ as left
R-modules for some m′ > m. For this m, let n denote the minimal such m′. In this case we say that R has
module type (m,n).

So, for example, B = EndK(V ) has module type (1,2). We note that in the definition of module type it
is easy to show that the same m,n arise if one considers free right R-modules, rather than left.

As we shall see, there is a perhaps surprising amount of structure inherent in non-IBN rings. To start
with, in the groundbreaking article [112], Leavitt proves the following fundamental result.

Theorem 1.1.2. For each pair of positive integers n > m and field K there exists a unital K-algebra
LK(m,n), unique up to K-algebra isomorphism, such that:

(i) LK(m,n) has module type (m,n), and
(ii) for each unital K-algebra A having module type (m,n) there exists a unit-preserving K-algebra ho-

momorphism φ : LK(m,n)→ A which satisfies certain (natural) compatibility conditions.

Our motivational focus here is on non-IBN rings of module type (1,n) for some n > 1. In particular,
such a ring then has the property that there exist isomorphisms of free modules

φ ∈ HomR(R1,Rn) and ψ ∈ HomR(Rn,R1), for which ψ ◦φ = ιR and φ ◦ψ = ιRn ,

where ι denotes the identity map on the appropriate module. Using the usual interpretation of homomor-
phisms between free modules as matrix multiplications (a description which the student encounters for the
real numbers in an undergraduate linear algebra course, and which is easily shown to be valid for any unital
ring), we see that such isomorphisms exist if and only if there exist 1×n and n×1 R-vectors

(
x1 x2 · · · xn

)
and


y1
y2
...

yn

 ,

for which
(
x1 x2 · · · xn

)
·


y1
y2
...

yn

= (1R) and


y1
y2
...

yn

 · (x1 x2 · · · xn
)
=


1R 0 · · · 0
0 1R · · · 0
...

. . .
...

0 0 · · · 1R

 .

Rephrased,

RR1 ∼= RRn for some n > 1

if and only if there exist 2n elements x1, ...,xn,y1, ...,yn of R for which

n

∑
i=1

xiyi = 1R and yix j = δi j1R (for all 1≤ i, j ≤ n). (1.1)

The relations displayed in (1.1) provide the key idea in constructing the Leavitt algebras, and will play a
central role in motivating the subsequent more general construction of Leavitt path algebras. For example,
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in the ring B = EndK(V ) having module type (1,2), it is straightforward to describe a set x1,x2,y1,y2 of
2 ·2 = 4 elements of B which behave in this way.

Indeed, given n > 1, it is relatively easy to construct an algebra A which contains 2n elements behaving
as do those in (1.1). Specifically, let K be any field, let

S = K〈X1, ...,Xn,Y1, ...,Yn〉

be the free associative K-algebra in 2n non-commuting variables, let I denote the ideal of S generated by
the relations

I = 〈
n

∑
i=1

XiYi−1, YiX j−δi j1 | 1≤ i, j ≤ n〉,

and let
A = S/I.

Then the set {xi = Xi,y j = Yj | 1≤ i, j ≤ n} behaves in the desired way (by construction), so that A1 ∼= An

as left A-modules.
At this point one must be careful: although we have just constructed a K-algebra A for which A1 ∼= An,

we cannot conclude that the module type of A is (1,n) until we can guarantee the minimality of n. (For
instance, it’s not immediately clear that the algebra A = S/I is necessarily nonzero.) But this is precisely
what Leavitt establishes in [112]. Indeed, the K-algebra LK(1,n) of Theorem 1.1.2 is exactly the algebra
A = S/I constructed here. We formalize this in the following.

Definition 1.1.3. Let K be any field, and n > 1 any integer. Then the Leavitt K-algebra of type (1,n),
denoted LK(1,n), is the K-algebra

K〈X1, ...,Xn,Y1, ...,Yn〉 / 〈
n

∑
i=1

XiYi−1, YiX j−δi j1 | 1≤ i, j ≤ n 〉.

Notationally, it is often more convenient to view R = LK(1,n) as the free associative K-algebra on the 2n
variables x1, ...,xn,y1, ...,yn, subject to the relations ∑

n
i=1 xiyi = 1R and yix j = δi j1R (1≤ i, j ≤ n). Specifi-

cally, LK(1,n) is the universal K-algebra of type (1,n).

We summarize our discussion thus far. Although non-IBN rings might seem exotic on first sight, they in
fact occur naturally. Non-IBN rings having module type (1,n) can be constructed with relative ease. The
key ingredient to produce such rings is the existence of elements x1, ...,xn,y1, ...,yn for which the relations
displayed in (1.1) are satisfied.

For those readers curious about the previous “surprising amount of structure” comment, we conclude
this section with the following morsel of supporting evidence, established by Leavitt in [113].

Theorem 1.1.4. For every integer n≥ 2, and for any field K, LK(1,n) is a simple K-algebra.

This remarkable result will in fact follow as a corollary of the more general results presented in Chapter
2.

1.2 Leavitt path algebras

With the construction of the Leavitt algebras LK(1,n) as motivational backdrop, we are nearly in position
to present the central idea of this book, the Leavitt path algebras. We start by setting some basic notation
and definitions.

Notation 1.2.1. If K is a field, then by K× we denote the nonzero elements of K, i.e., the invertible elements.
Z denotes the set of integers; Z+ = {0,1,2, . . .}; N= {1,2,3, . . .}.
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Unless otherwise indicated, an R-module will mean a left R-module. In the sequel we will write our
left-module homomorphisms on the side opposite the scalars; in particular, the composition f g of left R-
module homomorphisms means ’first f , then g’. In all other situations (e.g., for ring homomorphisms, or
lattice maps), composition of functions will be written so that f ◦g means ’first g, then f ’.

Definitions 1.2.2 A (directed) graph E = (E0,E1,r,s) consists of two sets E0,E1 and two functions r,s :
E1→ E0. The elements of E0 are called vertices and the elements of E1 edges. We place no restriction on
the cardinalities of E0 and E1, nor on properties of the functions r and s. Throughout, the word “graph”
will always mean “directed graph”.

If s−1(v) is a finite set for every v∈ E0, then the graph is called row-finite. A vertex v for which s−1(v) =
/0 is called a sink, while a vertex v for which r−1(v) = /0 is called a source. In other words, v is a sink (resp.,
source) if v is not the source (resp., range) of any edge of E. A vertex which is both a source and a sink
is called isolated. A vertex v such that |s−1(v)| is infinite is called an infinite emitter. If v is either a sink
or an infinite emitter, we call v a singular vertex; otherwise, v is called a regular vertex. The expressions
Sink(E), Source(E), Reg(E), and Inf(E) will be used to denote, respectively, the sets of sinks, sources,
regular vertices, and infinite emitters of E.

A path µ in a graph E is a sequence of edges µ = e1,e2, . . . ,en such that r(ei) = s(ei+1) for i = 1, . . . ,n−
1. In this case, s(µ) = s(e1) is the source of µ , r(µ) = r(en) is the range of µ , and n = `(µ) (or n = |µ|) is
the length of µ . We typically denote µ by using the more efficient notation e1e2 · · ·en. We view the vertices
of E as paths of length 0; to streamline notation, we will sometimes extend the functions s and r to E0 by
defining s(v) = r(v) = v for v ∈ E0. If µ = e1e2 · · ·en is a path then we denote by µ0 the set of its vertices,
that is, µ0 = {s(e1),r(ei) | 1 ≤ i ≤ n}. For n ≥ 2 we define En to be the set of paths in E of length n, and
define Path(E) =

⋃
n≥0 En, the set of all paths in E.

Here now are the main objects of our desire.

Definition 1.2.3. (Leavitt path algebras) Let E be an arbitrary (directed) graph and K any field. We define
a set (E1)∗ consisting of symbols of the form {e∗ | e ∈ E1}. The Leavitt path algebra of E with coefficients
in K, denoted LK(E), is the free associative K-algebra generated by the set E0∪E1∪ (E1)∗, subject to the
following relations:

(V) vv′ = δv,v′v for all v,v′ ∈ E0 ,
(E1) s(e)e = er(e) = e for all e ∈ E1 ,
(E2) r(e)e∗ = e∗s(e) = e∗ for all e ∈ E1 ,
(CK1) e∗e′ = δe,e′r(e) for all e,e′ ∈ E1 , and
(CK2) v = ∑{e∈E1|s(e)=v} ee∗ for every regular vertex v ∈ E0.

Phrased another way, LK(E) is the free associative K-algebra on the symbols E0∪E1∪ (E1)∗, modulo
the ideal generated by the five types of relations indicated in the previous list.

Remark 1.2.4. There is a connection between the classical notion of path algebras and the notion of Leavitt
path algebras, which we describe here. As a brief reminder, if K is a field and G = (G0,G1) is a directed
graph then the path K-algebra of G, denoted KG, is defined as the free associative K-algebra generated as
an algebra by the set G0∪G1, with relations given by (V) and (E1) of Definition 1.2.3. Equivalently, KG is
the K-algebra having Path(G) as basis, and in which multiplication is defined by the K-linear extension of
path concatenation (i.e., p ·q = pq if r(p) = s(q), 0 otherwise).

Given a graph E, we define the extended graph of E (also sometimes called the double graph of E)
as the new graph Ê = (E0,E1∪ (E1)∗,r′,s′), where (E1)∗ = {e∗ | e ∈ E1}, and the functions r′ and s′ are
defined as

r′|E1 = r, s′|E1 = s, r′(e∗) = s(e), and s′(e∗) = r(e) for all e ∈ E1.

(In other words, each edge e∗ in (E1)∗ has orientation the reverse of that of its counterpart e ∈ E1.) Then
LK(E) is the quotient of the path K-algebra KÊ by the ideal of KÊ generated by relations given in (CK1)
and (CK2) of Definition 1.2.3.

Remark 1.2.5. (The Universal Property of LK(E)) Suppose E is a graph, and A is a K-algebra which
contains a set of pairwise orthogonal idempotents {av | v ∈ E0}, and two sets {ae | e ∈ E1}, {be | e ∈ E1}
for which
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(i) as(e)ae = aear(e) = ae and ar(e)be = beas(e) = be for all e ∈ E1,
(ii) b f ae = δe, f ar(e) for all e, f ∈ E1, and

(iii) av = ∑{e∈E1|s(e)=v} aebe for every regular vertex v ∈ E0.

We call such a family an E-family in A. By the relations defining the Leavitt path algebra, there exists a
unique K-algebra homomorphism ϕ : LK(E)→ A such that ϕ(v) = av, ϕ(e) = ae, and ϕ(e∗) = be for all
v ∈ E0 and e ∈ E1. We will often refer to this as the Universal Property of LK(E).

Notation 1.2.6. We sometimes refer to the edges in the graph E as the real edges, and the additional edges
of Ê (i.e., the elements of (E1)∗) as the ghost edges. If µ = e1e2 · · ·en is a path in E, then the element
e∗n · · ·e∗2e∗1 of LK(E) is denoted by µ∗.

Remark 1.2.7. Less formally (but no less accurately), one may view the Leavitt path algebra LK(E) as
follows. Consider the standard path algebra KÊ of the extended graph. Then impose on KÊ the following
relations:

(i) If e is an edge of E, we replace any expression of the form e∗e in KÊ by the vertex r(e).
(ii) If e and f are distinct edges in E, then we define e∗ f = 0 in KÊ.

(iii) If v is a regular vertex, then the sum over all terms of the form ee∗ for which s(e) = v is replaced by
v in KÊ.

The resulting algebra is precisely LK(E).

In the standard pictorial description of a directed graph E, we use the notation •v (n) // •w to indicate
that there are n distinct edges ei in E for which s(ei) = v and r(ei) = w; the value of n may be finite or
infinite.

Example 1.2.8. An example will no doubt help clarify the definition of a Leavitt path algebra. Let E be the
graph pictorially described by

•v2
g // •v3

•v1
e 55

f
==

h

!!
•v4

(N) // •v5

Here are some representative computations in LK(E) (for any field K).

v1 f = f = f v2 by (E1), while v2 f ∗ = f ∗ = f ∗v1 by (E2)

f ∗ f = v2, while f ∗h = f ∗e = 0 both by (CK1)

v1 = ee∗+ f f ∗+hh∗ by (CK2)

gg∗ = v2 by (CK2) (the sum contains only one term)

We observe that there is no (CK2) relation at v4 (as v4 ∈ Inf(E)); neither is there a (CK2) relation at the
sinks v3 and v5.

Remark 1.2.9. We note that the construction of the Leavitt path algebra for a graph E over a field K can
be extended in the obvious way to the construction of the Leavitt path ring for a graph E over an arbitrary
unital ring R. (See for example [148], where the author studies Leavitt path algebras with coefficients in a
commutative ring.)

The existence of a multiplicative identity in LK(E) depends on whether or not E0 is finite (see Lemma
1.2.12 below). But even in non-unital situations, there is still much structure to be exploited.
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Definition 1.2.10. An associative ring R is said to have a set of local units F in case F is a set of idempotents
in R having the property that, for each finite subset r1, ...,rn of R, there exists f ∈ F for which f ri f = ri for
all 1 ≤ i ≤ n. Rephrased, a set of idempotents F ⊆ R is a set of local units for R in case each finite subset
of R is contained in a (unital) subring of the form f R f for some f ∈ F .

An associative ring R is said to have enough idempotents in case there exists a set of nonzero orthogonal
idempotents E in R for which the set F of finite sums of distinct elements of E is a set of local units for R.
Note that, when this happens, RR =⊕e∈ERe as left R-modules.

For a ring with local units, an abelian group M is a left R-module in case there is a (standard) module
action of R on M, but with the added proviso that RM = M. (This is the appropriate generalization of the
requirement that 1R ·m = m for all m in a left module M over a unital ring R.)

For a field K, a ring R with local units is said to be a K-algebra in case R is a K-vector space (with scalar
action ·), and (k · r)s = k · (rs) for all k ∈ K, r,s ∈ R.

Remark 1.2.11. In any K-algebra R with local units, every (one-sided, resp., two-sided) ring ideal of R is a
(one-sided, resp., two-sided) K-algebra ideal of R. This is easy to see: for instance, let I be a ring left ideal
of R, let k ∈ K and y ∈ I. Let u ∈ R with y = uy. Then ky = k(uy) = (ku)y ∈ RI ⊆ I.

We give now some basic properties of the elements of LK(E).

Lemma 1.2.12. Let E be an arbitrary graph and K any field. Let γ,λ ,µ,ρ be elements of Path(E).

(i) Products of monomials in LK(E) are computed here:

(γλ
∗)(µρ

∗) =


γκρ∗ if µ = λκ for some κ ∈ Path(E)
γσ∗ρ∗ if λ = µσ for some σ ∈ Path(E)
0 otherwise.

In particular, if `(λ ) = `(µ), then λ ∗µ 6= 0 if and only if λ = µ , in which case λ ∗µ = r(λ ).
(ii) The K-action on the algebra LK(E) is trivial; that is,

(kγλ
∗)(k′µρ

∗) = kk′(γλ
∗
µρ
∗)

for k,k′ ∈ K.
(iii) The algebra LK(E) is spanned as a K-vector space by the set of monomials of the form

{γλ
∗ | γ,λ ∈ Path(E) for which r(γ) = r(λ )}.

In other words, every nonzero element x of LK(E) may be expressed as

x =
n

∑
i=1

kiγiλ
∗
i ,

where ki ∈ K×, and γi,λi ∈ Path(E) with r(γi) = r(λi) for each 1 ≤ i ≤ n. We note that, except for
trivial cases, this representation is not unique; i.e., the displayed monomials do not form a basis of
LK(E).

(iv) The algebra LK(E) is unital if and only if E0 is finite. In this case,

1LK(E) = ∑
v∈E0

v.

(v) For each α ∈ LK(E) there exists a finite set of distinct vertices V (α) for which α = f α f , where
f = ∑v∈V (α) v. Moreover, the algebra LK(E) is a ring with enough idempotents (consisting of the
vertices E0), and thus a ring with local units (consisting of sums of distinct elements of E0).

Proof. (i) By (CK1), any expression of the form e∗ f in LK(E) reduces either to 0 or to the vertex r(e),
from which the statement follows by a straightforward computation.

(ii) follows directly from the definition of LK(E) as the free K-algebra on various generators.
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(iii) follows easily from (i).
(iv) For E0 finite, the indicated element acts as the identity by the representation of elements of LK(E)

given in (iii). If E0 is infinite, then there is no element of LK(E) which acts as an identity on each element
of the set {v | v ∈ E0}.

(v) By the orthogonality given in Definition 1.2.3(V), it is clear that any sum of distinct vertices in LK(E)
yields an idempotent. Now let α = ∑

m
i=1 kiγiλ

∗
i be an arbitrary element of LK(E), and let V (α) denote the

(finite) set of vertices which appear either as s(γi) or as s(λi) for some 1≤ i≤m. If we define f =∑v∈V (α) v,
then an easy computation yields that α = f α f . The additional statements follow in the same manner. ut

Definitions 1.2.13 We say that a graph E is connected if Ê is a connected graph in the usual sense, that is,
if given any two vertices u,v ∈ E0 there exist h1,h2, . . . ,hm ∈ E1∪ (E1)∗ such that η = h1h2 · · ·hm is a path
in Ê such that s(η) = u and r(η) = v. The connected components of a graph E are the graphs {Ei}i∈Λ such
that E is the disjoint union E = ti∈Λ Ei, where every Ei is connected.

We close the section by recording the following observation, which is easily verified utilizing the Uni-
versal Property of LK(E) 1.2.5.

Proposition 1.2.14. Let E be an arbitrary graph and K any field. Suppose E = ti∈Λ Ei is a decomposition
of E into its connected components. Then LK(E)∼=⊕i∈Λ LK(Ei).

1.3 The three fundamental examples of Leavitt path algebras

Part of the beauty of the Leavitt path algebras is that they include many well-known, but seemingly dis-
parate, classes of algebras. To make these connections clear, we introduce some notation which will be
used throughout.

Notation 1.3.1. We let Rn denote the rose with n petals graph having one vertex and n loops:

Rn = •v e1ff

e2

rr

e3

��

en

QQ .

In particular, a special role in the theory is played by the graph R1:

R1 = •v eff .

For any n ∈ N we let An denote the oriented n-line graph having n vertices and n−1 edges:

An = •v1
e1 // •v2

e2 // •v3 •vn−1
en−1 // •vn .

The examples presented in the following three propositions may be viewed as the three primary colors
of Leavitt path algebras. Making good now on a promise offered earlier, we validate our claim that the
Leavitt algebras LK(1,n) are truly motivating examples for the more general notion of Leavitt path algebra.

Proposition 1.3.2. Let n≥ 2 be any positive integer, and K any field. Let LK(1,n) be the Leavitt K-algebra
of type (1, n) presented in Definition 1.1.3, and let Rn be the rose with n petals. Then

LK(1,n)∼= LK(Rn).

Proof. That these two algebras are isomorphic follows directly from the definition of LK(1,n) as a quotient
of the free associative algebra on 2n variables, modulo the relations given in display (1.1). Specifically, we
map xi 7→ ei and yi 7→ e∗i . Then the relations given in (1.1) are precisely the relations provided by the (CK1)
and (CK2) relations of Definition 1.2.3. ut
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The rose with one petal produces a more-familiar (although less-exotic) algebra. Prior to the description
of LK(R1), the following remark is very much in order.

Remark 1.3.3. If E is a graph and e ∈ E1, then the element ee∗ of LK(E) is always an idempotent, since
using (CK1) we have (ee∗)(ee∗) = e(e∗e)e∗ = er(e)e∗ = ee∗. However, ee∗ does not equal s(e) unless e is
the only edge emitted by s(e) (since in that case the (CK2) relation reduces to the equation s(e) = ee∗).

For any field K, the Laurent polynomial K-algebra is the associative K-algebra generated by the two
symbols x and y, with relations xy = yx = 1. For obvious reasons this algebra is denoted by K[x,x−1]. The
elements of K[x,x−1] may be written as ∑

n
i=m kixi (where ki ∈ K and m≤ n ∈ Z); note in particular that the

exponents are allowed to include negative integers. Viewed another way, K[x,x−1] is the group algebra of
Z over K.

Proposition 1.3.4. Let K be any field. Then

K[x,x−1]∼= LK(R1).

Proof. By the (CK1) relation and Lemma 1.2.12(iv) we have x∗x = v = 1 in LK(R1). But since v emits only
the edge x, Remark 1.3.3 yields xx∗ = v = 1 in LK(R1) as well, and the result now follows. ut

The third of the three primary colors of Leavitt path algebras moves us from the less-exotic K[x,x−1] to
the almost-mundane matrix algebras Mn(K).

Proposition 1.3.5. Let K be any field, and n≥ 1 any positive integer. Then

Mn(K)∼= LK(An).

Proof. Let { fi, j | 1≤ i, j≤ n} denote the standard matrix units in Mn(K). We define the map ϕ : LK(An)→
Mn(K) by setting ϕ(vi) = fi,i, ϕ(ei) = fi,i+1, and ϕ(e∗i ) = fi+1,i. Using Remark 1.3.3, it is then easy to
check that ϕ is an isomorphism of K-algebras as desired. ut

The title of this section notwithstanding, we provide a fourth example of a well-known classical algebra
which arises as a specific example of a Leavitt path algebra.

Example 1.3.6. The Toeplitz graph is the graph

ET = e •u
88

f // •v .

Let K be any field. We denote by TK the algebraic Toeplitz K-algebra

TK = LK(ET ).

Proposition 1.3.7. For any field K, the Leavitt path algebra LK(ET ) is isomorphic to the free associative
K-algebra K〈x,y〉, modulo the single relation xy = 1. Rephrased, the algebraic Toeplitz K-algebra TK is
the K-algebra K〈U,V 〉 investigated by Jacobson in [98].

Proof. We begin by noting that in LK(ET ) we have the relations ee∗+ f f ∗ = u and u+v = 1. We consider
the elements X = e∗ + f ∗ and Y = e + f of LK(ET ). Then by (CK1) we have XY = u + v = 1, while
Y X = ee∗ + f f ∗ = u 6= 1 by (CK1) and (CK2). The subalgebra of TK = LK(ET ) generated by X and
Y then contains 1− u = v, which in turn gives that this subalgebra contains e = Yu, f = Y v, e∗ = uX ,
and f ∗ = vX . These observations establish that the map ϕ : K〈U,V 〉 → LK(ET ) given by the extension of
ϕ(U) = e∗+ f ∗,ϕ(V ) = e+ f is a surjective K-algebra homomorphism. The injectivity of ϕ will follow
from results in Section 1.5; see specifically Example 1.5.20. ut
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1.4 Connections and motivations: the algebras of Bergman, and graph C*-algebras

In presenting a description of the Leavitt algebras LK(1,n) in the very first section of this book, our intent
was to provide some sort of “natural” motivation for the relations which define the more general Leavitt
path algebras. In this section we present two additional avenues which lead in a natural way to the descrip-
tion of Leavitt path algebras. The first such avenue takes us through a description of the finitely generated
projective modules over a ring, while the second provides an expedition through the world of C∗-algebras.
These two topics will be explored much more extensively, and in more generality, in Chapters 3 and 5
respectively.

Definition 1.4.1. Let R be any unital ring. We denote by V (R) the semigroup whose elements are the
isomorphism classes of the finitely generated projective left R-modules, with operation given by [P]+[Q] =
[P⊕Q].

Clearly V (R) is a commutative monoid for any ring R, with zero element [{0}]. In addition, it is apparent
that V (R) has the property that

x+ y = [{0}] in V (R) if and only if x = y = [{0}]. (1.2)

Since R is assumed here to be unital (we will relax this requirement later), then each finitely generated
projective left R-module is isomorphic to a direct summand of Rn for some integer n, so it is similarly
apparent that the element I = [R] of V (R) has the property that

∀ x ∈ V (R) ∃ y ∈ V (R) and n ∈ N for which x+ y = nI. (1.3)

In a groundbreaking construction conceived and executed by Bergman in [51], it is shown that, in this
context, anything that can happen in fact does happen. That is, if S is any finitely generated commutative
monoid having the (necessary) properties described in displays (1.2) and (1.3), and K is any field, then there
exists an explicitly constructed unital K-algebra R for which V (R)∼= S. Moreover, this K-algebra is univer-
sal in the sense that, for any unital K-algebra T having V (T ) ∼= S, there exists a nonzero homomorphism
ϕ : R→ T which induces the identity on S.

We now define, for any graph E, an associated semigroup ME ; with the previous three sections in mind,
the relations which describe ME should seem familiar.

Definition 1.4.2. Let E be an arbitrary graph. We denote by ME the free abelian monoid on a set of gener-
ators {av | v ∈ E0}, modulo relations given by

av = ∑
{e∈E1|s(e)=v}

ar(e) (1.4)

for each v ∈ Reg(E).

So to any graph E we can associate the semigroup ME , and to any graph E and field K we can associate
the semigroup V (LK(E)). We will prove the following in Chapter 3; this result shows that these two
semigroups are intimately related.

Theorem 1.4.3. Let E be any row-finite graph and K any field. Then, using the presentation of the monoid
ME given in Definition 1.4.2, LK(E) is precisely the universal K-algebra corresponding to the monoid ME
as constructed by Bergman in [51, Theorem 6.2]. In particular,

V (LK(E))∼= ME .

The upshot of this discussion is that, with the Leavitt algebras LK(1,n) having been presented as our
first motivational offering, there is now a second motivating description of the Leavitt path algebras (arising
from row-finite graphs): they are precisely the universal K-algebras which arise in [51, Theorem 6.2] for
monoids of the form ME . This is no small conclusion, in the sense that for general commutative monoids
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which satisfy displayed conditions (1.2) and (1.3), it is rare that one can so explicitly describe the corre-
sponding universal K-algebras.

In fact, the Leavitt algebras LK(1,n) play a basic role in Bergman’s analysis. Specifically, let Zn−1 be
the standard cyclic group of order n−1, and let S be the semigroup Zn−1∪{z} where z+g = g = g+ z for
all g ∈ S. Then S is a commutative monoid satisfying (1.2) and (1.3) above, and LK(1,n) is the universal
K-algebra corresponding to S. We will investigate this construction much more deeply in Chapter 3.

And now for something completely different. While the next few paragraphs (and various subsequent
portions of this book) discuss the notion of a C∗-algebra, readers may choose to skip these portions while
still gaining an in-focus picture of Leavitt path algebras. In any event, it behooves us to remark that C∗-
algebras are always algebras in the usual ring-theoretic sense over the field of complex numbers C.

Definitions 1.4.4 Let E be an arbitrary graph. (In the following context it is typically assumed that the
sets E0 and E1 are at most countable, but we need not make those assumptions here.) A Cuntz-Krieger
E-family in a C∗-algebra B consists of a set of mutually orthogonal projections {pv | v ∈ E0} and a set of
partial isometries {se | e ∈ E1} satisfying

s∗ese = pr(e) for e ∈ E1, pv = ∑
{e | s(e)=v}

ses∗e whenever v ∈ Reg(E), and ses∗e ≤ ps(e) for e ∈ E1.

It is shown in [105] that there is a C∗-algebra C∗(E), called the graph C∗-algebra of E, generated by a
universal Cuntz-Krieger E-family {se, pv}; in other words, for every Cuntz-Krieger E-family {te,qv} in a
C∗-algebra B, there is a homomorphism π = πt,q : C∗(E)→ B such that π(se) = te and π(pv) = qv for all
e ∈ E1,v ∈ E0.

The relations presented in Definitions 1.4.4 clearly smack of those which generate the Leavitt path
algebras, so it is probably not surprising that there is a strong connection between the structures LC(E) and
C∗(E). In fact, we will show in Chapter 5 that LC(E) embeds as a C-algebra inside C∗(E) in a natural way,
and that C∗(E) may be realized as the completion of LC(E) in an appropriate topology.

The main point to be made here is that the Leavitt path C-algebra LC(E) can be realized and motivated
as an algebraic foundation upon which C∗(E) can be built. We will note often throughout the later chapters
that while there are striking (indeed, compellingly mysterious) similarities amongst some of the results
pertaining to the two structures LC(E) and C∗(E), there are other situations in which perhaps-anticipated
parallels between these structures are indeed different. Further, while the Leavitt path C-algebra LC(E) is
then naturally motivated by the C-algebra C∗(E) in this way, we shall see that the structural properties of
LC(E) typically pass to identical structural properties of LK(E) for any field K.

As of the writing of this book, there is no vehicle which allows one to easily establish results on the
algebra side as direct consequences of results on the analytic side, or vice versa.

1.5 The Cohn path algebras and connections to Leavitt path algebras

In the previous section we focused on two different constructions, both of which naturally led to the con-
struction of Leavitt path algebras: the “realization algebras” of Bergman, and the graph C∗-algebras. In this
section we present a third construction, the relative Cohn path algebras CX

K (E), and in particular the Cohn
path algebras CK(E), which also can be used to produce Leavitt path algebras.

The relative Cohn path algebras will serve two main purposes here. First, it will be trivial to show
that every Leavitt path algebra is a quotient of a relative Cohn path algebra by an appropriately defined
ideal. As will become apparent, the vector space structure of a Cohn path algebra is straightforward (e.g.,
a basis of CK(E) is easy to describe). This structure in turn will allow us to almost seamlessly achieve
various results about Leavitt path algebras simply by appealing to quotient-preserving properties. Second,
the relative Cohn path algebras will allow us to further showcase the ubiquity of the Leavitt path algebras.
Specifically, for any graph E we will show that each relative Cohn path algebra CX

K (E) (including CK(E)
itself) is isomorphic to the Leavitt path algebra LK(F) of some graph F .
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The motivational information given in the previous section was presented almost as an advertising teaser
(“stay tuned for further details!”, the hard work to be confronted in subsequent chapters). In contrast, our
description and use of the relative Cohn path algebras will require us to get our hands dirty right away. We
start with the most important of these.

Definition 1.5.1. Let E be an arbitrary graph and K any field. We define a set (E1)∗ consisting of symbols
of the form {e∗ | e ∈ E1}. The Cohn path algebra of E with coefficients in K, denoted by CK(E), is the free
associative K-algebra generated by the set E0∪E1∪ (E1)∗, subject to the relations given in (V), (E1), (E2),
and (CK1) of Definition 1.2.3.

In other words, CK(E) is the algebra generated by the same symbols as those which generate LK(E),
but on which we do not impose the (CK2) relation. Since by (CK1) we have e∗ f = δe, f r(e) in CK(E)
for e, f ∈ E1 (and the lack of the (CK2) relation in CK(E) notwithstanding), it is easy to show that there
is still some information to be had about expressions of the form ee∗ in CK(E): namely, that the family
{ee∗ | e ∈ E1} is a set of orthogonal idempotents in CK(E). What we do not impose in CK(E) is any
relationship between this family and the set of vertices E0 in CK(E).

Remark 1.5.2. In a manner similar to the explanation given in Remark 1.2.4, another way of looking at
Cohn path algebras is the following: CK(E) is the quotient of the path K-algebra over the extended graph
KÊ by the ideal of KÊ generated by the relations given in (CK1).

In [64], P.M. Cohn introduced and studied the collection of K-algebras {U1,n | n ∈ N} (for any field
K); these have come to be known as the Cohn algebras, and as such we now use the notation CK(1,n)
for these. It is clear that for each n ∈ N we have CK(Rn)∼=CK(1,n). Thus the algebras CK(1,n)∼=CK(Rn)
stand in relation to the more general Cohn path algebras in precisely the same way that the Leavitt algebras
LK(1,n)∼= LK(Rn) stand in relation to the more general Leavitt path algebras.

Remark 1.5.3. As with Leavitt path algebras, we can define analogously the Cohn path ring CR(E) for any
unital ring R and graph E.

Example 1.5.4. The algebra investigated by Jacobson which was presented in Proposition 1.3.7 is the
quintessential example of a Cohn path algebra. Specifically, the free associative K-algebra K〈U,V 〉modulo
the single relation UV = 1 is precisely the Cohn path algebra CK(R1), where R1 is as usual the graph with
one vertex and one loop.

The following result follows directly from the definition of the indicated algebras.

Proposition 1.5.5. Let E be an arbitrary graph and K any field. Let I be the ideal of the Cohn path algebra
CK(E) generated by the set

{v− ∑
e∈s−1(v)

ee∗ | v ∈ Reg(E)}.

Then
LK(E)∼=CK(E)/I

as K-algebras.

Unlike the situation in the Leavitt path algebras, inside the Cohn path algebras every element can be
expressed in a unique way as a linear combination of the terms λν∗, with λ and ν paths in E for which
r(λ ) = r(ν).

Proposition 1.5.6. Let E be an arbitrary graph and K any field. Then

B = {λν
∗ | λ ,ν ∈ Path(E),r(λ ) = r(ν)}

is a K-basis of CK(E).
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Proof. Let A be the K-vector space with basis B. We define a bilinear product on A by the formula

(λ1ν
∗
1 )(λ2ν

∗
2 ) =


λ1λ ′2ν∗2 if λ2 = ν1λ ′2 for some λ ′2 ∈ Path(E)
λ1(ν

′
1)
∗ν∗2 if ν1 = λ2ν ′1 for some ν ′1 ∈ Path(E)

0 otherwise.

To see that this gives the structure of an associative K-algebra on A we only need to check that x = y, where
x = (λ1ν∗1 )((λ2ν∗2 )(λ3ν∗3 )) and y = ((λ1ν∗1 )(λ2ν∗2 ))(λ3ν∗3 ). A tedious computation shows that

x = y =



λ1λ ′2λ ′3ν∗3 if λ3 = ν2λ ′3 and λ2 = ν1λ ′2
λ1λ ′3ν∗3 if λ3 = ν2λ ′′3 λ ′3 and ν1 = λ2λ ′′3
λ1(ν

′
1)
∗ν∗3 if λ3 = ν2λ ′3 and ν1 = λ2λ ′3ν ′1

λ1λ ′2(ν
′
2)
∗ν∗3 if ν2 = λ3ν ′2 and λ2 = ν1λ ′2

λ1(ν
′
1)
∗(ν ′2)

∗ν∗3 if ν2 = λ3ν ′2 and ν1 = λ2ν ′1
0 otherwise.

as desired. This clearly yields the result. ut

Corollary 1.5.7. Let E be an arbitrary graph and K any field. The restriction of the canonical projection
KÊ →CK(E) is injective on the subspace generated by the paths in E and the paths in E∗. In particular
the maps KE→CK(E) and KE∗→CK(E) are injective.

Now we construct certain natural quotient algebras of Cohn path algebras. For v ∈ Reg(E), consider the
following element qv of CK(E):

qv = v− ∑
e∈s−1(v)

ee∗.

Proposition 1.5.8. The elements qv are idempotents of CK(E). Moreover, qvCK(E)qw = δv,wqvK for each
pair v,w ∈ Reg(E).

Proof. A simple computation shows that {qv | v ∈ Reg(E)} is a family of pairwise orthogonal idempotents
in CK(E). Now let v ∈ E0 and f ∈ E1. If f 6∈ s−1(v) then e∗ f = 0 for all e ∈ s−1(v). On the other hand, if
f ∈ s−1(v) then ee∗ f = 0 for e 6= f , while f f ∗ f = f . Thus we see that ∑e∈s−1(v) ee∗ f = v f , and in a similar
way that ∑e∈s−1(v) f ∗ee∗ = f ∗v, for all f ∈ E1. So

f ∗qv = 0 = qv f (1.5)

for all f ∈ E1 and v ∈ Reg(E). This yields that qvCK(E)qw = Kqvqw = δv,wqvK, as desired. ut

Definition 1.5.9. Let E be an arbitrary graph and K any field. Let X be any subset of Reg(E). We denote
by IX the K-algebra ideal of CK(E) generated by the idempotents {qv | v ∈ X}. The Cohn path algebra of
E relative to X , denoted CX

K (E), is defined to be the quotient K-algebra

CK(E)/IX .

Clearly this notion of the relative Cohn path algebra links the Cohn and Leavitt path algebra construc-
tions, as we see immediately that

CK(E) =C /0(E) and LK(E) =CReg(E)
K (E).

Generalizing the Universal Property for Leavitt path algebras 1.2.5, we have the following.

Remark 1.5.10. Suppose E is a graph, X is a subset of Reg(E), and A is a K-algebra which contains a set
of pairwise orthogonal idempotents {av | v ∈ E0}, and two sets {ae | e ∈ E1}, {be | e ∈ E1} for which

(i) as(e)ae = aear(e) = ae and ar(e)be = beas(e) = be for all e ∈ E1,
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(ii) b f ae = δe, f ar(e) for all e, f ∈ E1, and
(iii) av = ∑{e∈E1|s(e)=v} aebe for every vertex v ∈ X .

By the relations defining the relative Cohn path algebra, there exists a unique K-algebra homomorphism
ϕ : CX

K (E)→ A such that ϕ(v) = av, ϕ(e) = ae, and ϕ(e∗) = be for all v ∈ E0 and e ∈ E1. We will often
refer to this as the Universal Property of CX

K (E).

Proposition 1.5.11. Let E be an arbitrary graph and K any field. Let X be a subset of Reg(E). Then a
K-basis of IX is given by the family λqvµ∗, where v ∈ X and λ ,µ ∈ Path(E) with r(λ ) = r(µ) = v. For
v ∈ X let {ev

1, . . . ,e
v
nv} be an enumeration of the elements of s−1(v). Then a K-basis of CX

K (E) is given by
the family

B′′ = B \{λev
nv(e

v
nv)
∗
ν
∗ | r(λ ) = r(ν) = v},

where B = {λν∗ | r(λ ) = r(ν)} is the canonical basis of CK(E) given in Proposition 1.5.6.

Proof. By the displayed equation (1.5), we have that the elements λqvµ∗, for v ∈ X and λ ,µ ∈ Path(E)
with r(λ ) = v = r(µ), generate IX . To show that they are linearly independent, assume that there is an
equation

∑kγ,µ γqvµ
∗ = 0

in CX
K (E), with kγ,µ ∈ K. Expressing the left hand side as a linear combination of monomials λν∗, and

using the linear independence of these monomials (Proposition 1.5.6), we immediately get kγ,µ = 0 for all
γ,µ .

Let B′ be the basis of IX just constructed. To show the second part of the proposition, it is enough to
prove that B′∪B′′ is a basis of CK(E). Clearly every element λν∗ of the basis B of CK(E) can be written
as a linear combination of the elements in B′∪B′′. On the other hand, any nonzero linear combination of
elements in B′ must involve (with a nonzero coefficient) a monomial of the form λev

nv(e
v
nv)
∗ν∗, and so it

cannot be a linear combination of elements in B′′. This shows that B′∪B′′ is a basis of CK(E). ut

As LK(E) =CReg(E)
K (E), Proposition 1.5.11 immediately yields the following.

Corollary 1.5.12. Let E be an arbitrary graph and K any field. Let B = {λν∗ | r(λ ) = r(ν)} be the
canonical basis of CK(E) given in Proposition 1.5.6. For each vertex v ∈ Reg(E), let {ev

1, . . . ,e
v
nv} be an

enumeration of the elements of s−1(v). Then a basis of LK(E) is given by the family

B′′ = B \{λev
nv(e

v
nv)
∗
ν
∗ | r(λ ) = r(ν) = v ∈ Reg(E)}.

Proposition 1.5.11 easily yields the following three consequences as well.

Corollary 1.5.13. Let E be an arbitrary graph and K any field. The restriction of the canonical projection
KÊ → LK(E) is injective on the subspace generated by the paths in E and the paths in E∗. In particular
the maps KE→ LK(E) and KE∗→ LK(E) are injective.

Corollary 1.5.14. Let R and S be unital rings, with R commutative, and suppose there exists a unital ring
homomorphism R→ Z(S) (where Z(S) denotes the center of S). Let E be an arbitrary graph, and suppose
X ⊆ Reg(E). Then there are ring isomorphisms

CX
R (E)⊗R S∼=CX

S (E)∼= S⊗R CX
R (E).

In particular,
LR(E)⊗R S∼= LS(E)∼= S⊗R LR(E).

Proof. We see that the computations made in Propositions 1.5.6 and 1.5.11 are independent of the coeffi-
cient ring, so that we have, for instance, CX

R (E)⊗R S = (
⊕

b∈B′′ bR)⊗R S∼=
⊕

b∈B′′ bS =CX
S (E). ut

Corollary 1.5.15. Let E be an arbitrary graph and K any field. Then any set of distinct elements of Path(E)
is linearly independent in the Cohn path algebra CK(E), as well as in the Leavitt path algebra LK(E).
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One of the nice things about Cohn path algebras is that they turn out, perhaps unexpectedly, to be Leavitt
path algebras. In fact, we will show that any relative Cohn path algebra CX

K (E) is isomorphic to the Leavitt
path algebra of a graph E(X) which is obtained by adding various new vertices and edges to E.

Definition 1.5.16. Let E be an arbitrary graph and K any field. Let X be a subset of Reg(E), and define
Y := Reg(E)\X . Let Y ′ = {v′ | v ∈ Y} be a disjoint copy of Y . For v ∈ Y and for each edge e ∈ r−1

E (v), we
consider a new symbol e′. We define the graph E(X), as follows:

E(X)0 = E0tY ′ and E(X)1 = E1t{e′ | rE(e) ∈ Y}.

For e ∈ E1 we define rE(X)(e) = rE(e) and sE(X)(e) = sE(e), and define sE(X)(e′) = sE(e) and rE(X)(e′) =
rE(e)′ for the new symbols e′.

Less formally, the graph E(X) is built from E and X by adding a new vertex to E corresponding to each
element of Y = Reg(E) \X , and then including new edges to each of these new vertices as appropriate.
Observe in particular that each of the new vertices v′ ∈ Y ′ is a sink in E(X), so that Reg(E) = Reg(E(X)).
In case X = Reg(E), then E = E(X).

Example 1.5.17. Let E be the following graph:

•v f // •u eff

Take X = /0, so that Y = Reg(E) = {u,v}. Then the graph E(X) is the following:

•v f //

f ′

  

•u eff

e′
��

•v′ •u′

For any ring R, if f and g are idempotents of R then it is standard in the literature to write f ≤ g in case
f g = g f = f . (We note, however, that this notation is not consistent with the notation v≤w where v,w∈ E0

and v,w are viewed as idempotent elements of LK(E). This notation will be presented in Definition 2.0.4
below; however, used in context, this should not cause confusion.)

As noted previously, every Leavitt path algebra arises (easily) as a relative Cohn path algebra, to wit,
LK(E) = CReg(E)

K (E). Perhaps more surprising is the following (very useful) result, which shows the con-
verse.

Theorem 1.5.18. Let E be an arbitrary graph and K any field. Let X any subset of Reg(E), and let E(X)
be the graph constructed in Definition 1.5.16. Then

CX
K (E)∼= LK(E(X)).

Proof. We define a K-algebra homomorphism φ : CX
K (E)→ LK(E(X)) as follows. Write Y = Reg(E)\X .

For a vertex v of E define φ(v) = v+ v′ if v ∈ Y , and φ(v) = v otherwise. Moreover, for e ∈ E1, define
φ(e) = e if rE(e) /∈ Y and φ(e) = e+ e′ if rE(e) ∈ Y , and define φ(e∗) = φ(e)∗. Clearly relation (V) is
preserved by φ . To show that relation (E1) is preserved by φ , we consider first the case where rE(e) /∈ Y .
Then φ(e) = e, φ(rE(e)) = rE(e) and sE(X)(e) = sE(e)≤ φ(sE(e)), so

φ(sE(e))φ(e) = sE(e)e = e = erE(e) = φ(e)φ(rE(e)).

If v := rE(e) ∈ Y then φ(e) = e+ e′ and φ(v) = v+ v′, and sE(X)(e) = sE(X)(e′)≤ φ(sE(e)), so that

φ(sE(e))φ(e) = sE(e)(e+ e′) = e+ e′ = φ(e) = (e+ e′)(v+ v′) = φ(e)φ(rE(e)),
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as desired. Relations (E2) follow by applying ∗ to the above. Now we consider relation (CK1). If e 6= f
then clearly φ(e)∗φ( f ) = 0. If rE(e) /∈ Y then φ(e)∗φ(e) = e∗e = rE(e) = φ(rE(e)). If rE(e) ∈ Y then

φ(e)∗φ(e) = (e∗+(e′)∗)(e+ e′) = rE(e)+ rE(e)∗ = φ(rE(e)).

We must check that the (CK2) relation holds for the vertices in X . If v ∈ X then φ(v) = v and s−1
E(X)

(v) =

s−1
E (v)t{e′ | sE(e) = v and rE(e) ∈ Y}, so that

φ(v)− ∑
e∈s−1

E (v)

φ(e)φ(e)∗ = v− ∑
rE (e)/∈Y

ee∗+ ∑
rE (e)∈Y

(e+ e′)(e∗+(e′)∗)

= v− ∑
sE (e)=v

ee∗− ∑
sE (e)=v,rE (e)∈Y

e′(e′)∗ = 0.

So we have shown that φ is a well-defined homomorphism.
Assume that v ∈ Y . Then a similar computation to the one presented above, using this time that φ(v) =

v+ v′, yields that φ(qv) = v′, where qv is defined prior to Proposition 1.5.8. It follows that v,v′ ∈ Im(φ).
Now we have, for e ∈ E1 such that rE(e) = v ∈ Y , that φ(e)v = (e+ e′)v = e and φ(e)v′ = e′, so that
e,e′ ∈ Im(φ). It follows that φ is surjective.

Now we build the inverse homomorphism ψ : LK(E(X))→CX
K (E). This is dictated by the above com-

putations, so that we necessarily must set ψ(v) = v if v /∈ Y , and ψ(v) = v− qv, ψ(v′) = qv if v ∈ Y . For
e ∈ E1, set ψ(e) = e if rE(e) /∈ Y , and set ψ(e) = e(v−qv), ψ(e′) = eqv if rE(e) = v ∈ Y . It is straightfor-
ward to show that all the defining relations of LK(E(X)) are preserved by ψ , so that we get a well-defined
homomorphism from LK(E(X)) to CX

K (E). We check here the preservation of the (CK2) relation, and leave
the others to the reader. Since Reg(E(X)) = Reg(E) we need to consider only the regular vertices of E. Let
v ∈ Reg(E). Relation (CK2) in LK(E(X)) may be presented as

v = ∑
sE (e)=v,rE (e)/∈Y

ee∗+ ∑
sE (e)=v,rE (e)∈Y

ee∗+ ∑
sE (e)=v,rE (e)∈Y

e′(e′)∗.

If v ∈ X then

∑
sE (e)=v,rE (e)/∈Y

ψ(e)ψ(e)∗+ ∑
sE (e)=v,rE (e)∈Y

ψ(e)ψ(e)∗+ ∑
sE (e)=v,rE (e)∈Y

ψ(e′)ψ(e′)∗

= ∑
sE (e)=v,rE (e)/∈Y

ee∗+ ∑
sE (e)=v,rE (e)∈Y

e(rE(e)−qrE (e))e
∗+ ∑

sE (e)=v,rE (e)∈Y
eqrE (e)e

∗

= ∑
sE (e)=v

ee∗ = v = ψ(v).

On the other hand, if v ∈ Y then the same computation as above gives

∑
sE (e)=v,rE (e)/∈Y

ψ(e)ψ(e)∗+ ∑
sE (e)=v,rE (e)∈Y

ψ(e)ψ(e)∗+ ∑
sE (e)=v,rE (e)∈Y

ψ(e′)ψ(e′)∗ = v−qv = ψ(v),

as desired.
It is now straightforward to show that both compositions ψ ◦φ and φ ◦ψ give the identity on the gener-

ators of the corresponding algebras, thus these maps are the identity on their respective domains. It follows
that φ is an isomorphism. ut

Here are two specific consequences of Theorem 1.5.18.

Example 1.5.19. Consider the graphs

E = •v f // •u eff and F = •v f //

f ′

  

•u eff

e′
��

•v′ •u′
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Then CK(E) ∼= LK(F) since CK(E) = C /0
K(E) (this is true for any graph E), and, as observed in Example

1.5.17, F = E(X) for X = /0.

As with the Leavitt path algebras, the “rose with n petals” graphs Rn (n≥ 1) plays an important role in
the context of Cohn path algebras as well. We demonstrate now what the graph Rn(X) looks like for X = /0.
This in particular will demonstrate how the Toeplitz algebra arises naturally from the Cohn path algebra
point of view.

Example 1.5.20. If

Rn = •v e1ff

e2

rr

e3

��

en

QQ

and X = /0, then it is easy to show that

Rn(X) = •v′ •v e1ff

e2

rr

e3

��

en

QQ(n)
oo .

In particular, for E = R1 = •v eff , we get R1(X) = •v′ •v eff
oo = ET , the graph of Example

1.3.6. So Proposition 1.3.7 together with Theorem 1.5.18 give K-isomorphisms

K〈U,V | UV = 1〉 ∼= CK(R1) ∼= LK(ET ) = TK .

We finish the section by making some easily checked, eventually useful observations about the relation-
ship between the graphs E and E(X) for any X ⊆ Reg(E).

Proposition 1.5.21. Let E be any graph, and X any subset of Reg(E). Let Y denote Reg(E)\X.

(i) E is acyclic if and only if E(X) is acyclic.
(ii) E is finite if and only if E(X) is finite.

(iii) E is row-finite if and only if E(X) is row-finite.
(iv) The sinks of E(X) are precisely the sinks of E together with the vertices {v′|v ∈ Y}.
(v) If v is a source in E, then v is also a source in E(X). If moreover v ∈ Y , then v′ is an isolated vertex

in E(X). Any isolated vertex of E is also isolated in E(X).

1.6 Direct limits in the context of Leavitt path algebras

The Leavitt path algebras of finite graphs not only play an historically important role in the theory, they
also quite often provide key information regarding the structure of Leavitt path algebras corresponding
to arbitrary graphs. We show in this section how the Leavitt path algebra LK(E) of any graph E may be
viewed as the direct limit of certain subalgebras of LK(E), where each of these subalgebras is isomorphic
to the Leavitt path algebra of some finite graph.

We start by offering the following cautionary note. It may be tempting to think that if F is a subgraph of
E, then, using the obvious identification, we should have that LK(F) is a subalgebra of LK(E). However, this
is not true in general, as a moment’s reflection reveals that the (CK2) relation at a vertex v viewed in LK(F)
need not be compatible with the (CK2) relation at that same vertex v when viewed as an element of LK(E).
For example, the obvious graph embedding of R2 into R3 does not extend to an algebra homomorphism
from LK(R2) to LK(R3). However, in certain situations a subgraph F embeds in E in a way compatible with
the (CK2) relations, or, more generally, with the (CK2) relations imposed at a given subset Y ⊆ Reg(F).
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This is the motivating idea behind the main concepts of this section. We start by reminding the reader of a
basic idea in graphs, one which we will need to modify and expand upon in order to make it useful in our
context.

Definition 1.6.1. A graph homomorphism ϕ : F = (F0,F1,rF ,sF)→ E = (E0,E1,rE ,sE) is a pair of maps
ϕ0 : F0 → E0 and ϕ1 : F1 → E1 such that rE(ϕ

1(e)) = ϕ0(rF(e)) and sE(ϕ
1(e)) = ϕ0(sF(e)) for every

e ∈ F1.

As the observation made above about the embedding of R2 into R3 demonstrates, a graph homomor-
phism from F to E need not induce a homomorphism of algebras LK(F)→ LK(E). However, the following
additional conditions on a graph homomorphism will allow such an extension to the algebra level.

Definition 1.6.2. We consider the category G , defined as follows. The objects of G are pairs (E,X), where
E is a graph and X ⊆Reg(E). If (F,Y ),(E,X)∈Ob(G ), then ψ = (ψ0,ψ1) : (F,Y )→ (E,X) is a morphism
in G in case

(1) ψ : F → E is a graph homomorphism for which ψ0 : F0→ E0 and ψ1 : F1→ E1 are injective,
(2) ψ0(Y )⊆ X , and
(3) for all v ∈ Y , ψ1 restricts to a bijection ψ1 : s−1

F (v)→ s−1
E (ψ0(v)).

We note that a morphism ψ : (F,Y )→ (E,X) in G depends not only on the underlying graphs F and E,
but on the distinguished sets of vertices Y and X as well.

Lemma 1.6.3. Suppose ψ = (ψ0,ψ1) : (F,Y )→ (E,X) is a morphism in G . Then there exists a homomor-
phism of K-algebras ψ : CY

K(F)→CX
K (E).

Proof. We define ψ : CY
K(F)→CX

K (E) as the extension of ψ on F0 and F1. We define ψ( f ∗) = ψ( f )∗ for
all f ∈ F1. As F0, F1, and (F1)∗ generate CY

K(F) as an algebra, this will yield a K-algebra homomorphism
with domain CY

K(F), once we show that the defining relations on CY
K(F) are preserved.

The idempotent and orthogonality properties of relation (V) are preserved by ψ because ψ0 is injective.
(Note that if v 6= w in F0 then ψ(vw) = ψ(0), while ψ(v)ψ(w) = 0 using injectivity.) That relations (E1)
and (E2) are preserved by ψ follows from the hypothesis that ψ is a graph homomorphism. That (CK1)
is preserved by ψ follows because ψ1 is injective (using an argument similar to the one given for relation
(V)). Finally, the condition that ψ1 restricts to a bijection from s−1

F (v) onto s−1
E (ψ0(v)) for every v ∈ Y

yields the preservation of (CK2) under ψ at the elements of Y . Thus, we get the desired extension of ψ to
an algebra homomorphism ψ : CY

K(F)→CX
K (E). ut

Proposition 1.6.4. The category G has arbitrary direct limits. Moreover, for any field K, the assignment
(E,X) 7→ CX

K (E) extends to a continuous functor from the category G to the category K-alg of not-
necessarily-unital K-algebras.

Proof. We first show that G admits direct limits. Let I be an upward directed partially ordered set, and
let {(Ei,Xi)i∈I ,(ϕ ji)i, j∈I, j≥i} be a directed system in G . (So for each j ≥ i in I, ϕ ji : (Ei,Xi)→ (E j,X j)
is a morphism in G .) For s = 0,1, set Es =

⊔
i∈I Es

i / ∼, where ∼ is the equivalence relation on
⊔

i∈I Es
i

given by the following: For α ∈ Es
i and β ∈ Es

j , set α ∼ β if and only if there is an index k ∈ I such that
i≤ k and j ≤ k and ϕs

ki(α) = ϕs
k j(β ). Observe that E = (E0,E1) is a graph in a natural way, and there are

injective graph homomorphisms ψi = (ψ0
i ,ψ

1
i ) : Ei→ E such that Es =

⋃
i∈I ψs

i (E
s
i ), s = 0,1. Note that Es

is the direct limit of (Es
i ,ϕ

s
ji) in the category of sets. Now define X =

⋃
i∈I ψ0

i (Xi). We see that ψi defines
a graph homomorphism from Ei to E for all i ∈ I, such that ψi = ψ j ◦ϕ ji for all j ≥ i. Clearly ψi satisfies
conditions (1) and (2) in Definition 1.6.2. To check condition (3), take any vertex v in Xi, for i ∈ I. Then
s−1

E (ψ0
i (v)) =

⋃
j≥i ψ1

j (s
−1
E j
(ϕ0

ji(v))). But since for j≥ i the map ϕ1
ji induces a bijection between s−1

Ei
(v) and

s−1
E j
(ϕ0

ji(v)), and ψ1
i = ψ1

j ◦ϕ1
ji, it follows that

ψ
1
j (s
−1
E j
(ϕ0

ji(v))) = ψ
1
j (ϕ

1
ji(s
−1
Ei
(v))) = ψ

1
i (s
−1
Ei
(v)) ,

so that ψ1
i induces a bijection from s−1

Ei
(v) onto s−1

E (ψ0
i (v)). This gives (3) of Definition 1.6.2, and shows

that each ψi is a morphism in the category G .
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We now check that ((E,X),ψi) is the direct limit of the directed system ((Ei,Xi),ϕ ji). Let {γi : (Ei,Xi)→
(G,Z) | i ∈ I} be a compatible family of morphisms in G . Define γ : E→ G by the rule

γ
s(ψi(α)) = γ

s
i (α) ,

for α ∈ Es
i , s = 0,1. It is obvious that γ is the unique graph homomorphism from E to G such that

γi = γ ◦ψi for all i ∈ I. Since, for v ∈ E0
i , ψ1

i induces a bijection from s−1
Ei
(v) onto s−1

E (ψ0
i (v)), and γ1

i

induces a bijection from s−1
Ei
(v) onto s−1

G (γ0
i (v)), it follows that γ1 induces a bijection from s−1

E (ψ0
i (v))

onto s−1
G (γ0

i (v)) = s−1
G (γ0(ψ0

i (v))). This shows that γ defines a morphism in the category G , and clearly γ

is the unique object in the category G such that γi = γ ◦ψi for all i ∈ I, showing that (E,X) is the direct
limit of ((Ei,Xi),ϕ ji).

If ψ : (F,Y ) → (E,X) is a morphism in G , then there is an induced K-algebra homomorphism
ψ : CY

K(F)→CX
K (E) by Lemma 1.6.3, and clearly the assignment ψ 7→ ψ is functorial. Let

((Ei,Xi)i∈I ,(ϕ ji)i, j∈I, j≥i)

be a directed system in G . Let ((E,X),ψi) be the direct limit in G of the directed system ((Ei,Xi),ϕ ji). We
have to check that (CX

K (E),ψi) is the direct limit of the directed system (CXi
K (Ei),ϕ ji). Let γi : CXi

K (Ei)→ A
be a compatible family of K-algebra homomorphisms, where A is a K-algebra. Define γ : CX

K (E)→ A by
the rule

γ(ψs
i (α)) = γi(α) , γ(ψs

i (α)∗) = γi(α
∗) ,

for α ∈ Es
i , i ∈ I, s = 0,1. We have to check that relations (V), (E1), (E2), and (CK1) are preserved by

γ , and that relation (CK2) at all the vertices in X is also preserved by γ . It is straightforward to check
(using appropriate injectivity hypotheses) that relations (V), (E1), (E2) and (CK1) are satisfied. Let w ∈ X .
Then there is v ∈ Xi, for some i ∈ I, such that w = ψ0

i (v). Since ψ1
i induces a bijection from s−1

Ei
(v) onto

s−1
E (ψ0

i (v)) = s−1
E (w), we get

γ(w) = γ(ψ0
i (v)) = γi(v) = ∑

e∈s−1
Ei

(v)

γi(e)γi(e∗) = ∑
e∈s−1

Ei
(v)

γ(ψ1
i (e))γ(ψ

1
i (e)

∗) = ∑
f∈s−1

E (w)

γ( f )γ( f ∗) .

This shows that relation (CK2) at w ∈ X is preserved by γ . It follows that γ is a well-defined K-algebra
homomorphism. For i ∈ I, the maps γi and γ ◦ψi agree on the generators E0

i ∪E1
i ∪ (E1

i )
∗ of CXi

K (Ei), so
we get γi = γ ◦ψi. This shows that (CX

K (E),ψi) is the direct limit of the directed system (CXi
K (Ei),ϕ ji), as

desired. ut

Although morphisms in G give rise to algebra homomorphisms between the associated relative Cohn
path algebras as per the previous result, and although the morphisms in G are injective maps by definition,
the induced algebra homomorphisms need not be injective. For instance, the identity map gives rise to a
morphism ι : (Rn, /0)→ (Rn,{v}) in G , where v is the unique vertex of the rose with n petals graph Rn.
However, the corresponding induced map is the canonical surjection CK(1,n)→ LK(1,n), which is not
injective (as the nonzero element v−∑

n
i=1 eie∗i of CK(1,n) is mapped to zero in LK(1,n)).

However, by adding an additional condition to morphisms in G , we can ensure that the induced algebra
homomorphisms are injective.

Definition 1.6.5. Suppose ψ = (ψ0,ψ1) : (F,Y )→ (E,X) is a morphism in G . We say that ψ is complete
in case, for every v ∈ F0,

if ψ
0(v) ∈ X and s−1

F (v) 6= /0, then v ∈ Y.

That is, ψ is complete in case each of the vertices in X which are in Im(ψ0), and which come from a non-
sink in F , in fact come from Y . Note that a morphism ψ is complete if and only if Y = (ψ0)−1(X)∩Reg(F).

We note that a complete morphism ϕ : (F,Reg(F))→ (E,Reg(E)) is not in general the same as a CK-
morphism as defined in [87], but the two ideas coincide when E is row-finite.

Lemma 1.6.6. Suppose ψ = (ψ0,ψ1) : (F,Y )→ (E,X) is a complete morphism in G . Then the induced
homomorphism ψ : CY

K(F)→CX
K (E) described in Lemma 1.6.3 is a monomorphism of K-algebras.
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Proof. Using Corollary 1.5.12 and the notation there, for every regular vertex v ∈ F0, if {ev
1, . . . ,e

v
nv} is an

enumeration of the elements of s−1(v), then a basis for CY
K(F) is

B′′(F,Y ) = B \{λev
nv(e

v
nv)
∗
ν
∗|r(λ ) = r(ν) = v ∈ Y}.

If v ∈ Y , then the map ψ1 induces a bijection from s−1
F (v) = {ev

1, . . . ,e
v
nv} onto s−1

E (ψ0(v)), so that
s−1

E (ψ0(v)) = {ψ1(ev
1), . . . ,ψ

1(ev
nv)}. We take a corresponding basis B′′(E,X) of CX

K (E) such that, for

v ∈ Y , the enumeration {eψ0(v)
1 , . . . ,eψ0(v)

nv } of the edges in s−1
E (ψ0(v)) is given by eψ0(v)

i = ψ1(ev
i ), for

i = 1, . . . ,nv.
The injectivity conditions on ψ0 and ψ1 give that ψ extends to an injective map from Path(F̂) to

Path(Ê). It is now clear that ψ restricts to an injective map from the basis B′′(F,Y ) of CY
K(F) into a

subset of the basis B′′(E,X) of CX
K (E). Indeed, the role here of the completeness condition is in assuring

that the images of the basis elements λev
i (e

v
i )
∗
ν∗, i = 1, . . . ,nv, for v a regular vertex in F such that v /∈ Y ,

belong to the basis B′′(E,X) of CX
K (E) associated to (E,X). This is so because if v ∈ Reg(F) \Y , then

ψ0(v) /∈ X by the completeness of ψ , and so the elements ψ(λev
i (e

v
i )
∗
ν∗) belong to the basis B′′(E,X).

Therefore ψ is injective, as desired. ut

Definition 1.6.7. We say that a subgraph F of a graph E is complete in case the inclusion map

(F,Reg(F)∩Reg(E))→ (E,Reg(E))

is a (complete) morphism in the category G . Less formally, F is a complete subgraph of E in case for each
v ∈ F0, whenever s−1

F (v) 6= /0 and 0 < |s−1
E (v)| < ∞, then s−1

F (v) = s−1
E (v). In words, a subgraph F of a

graph E is complete in case, whenever v is a vertex in F which emits at least one edge in F and finitely
many in E (and so also finitely many in F , because F is a subgraph of E), then the edges emitted at v in the
subgraph F are precisely all of the edges emitted at v in the full graph E.

By Lemma 1.6.6, if F is a complete subgraph of E then we get an embedding

CReg(F)∩Reg(E)
K (F) ↪→ LK(E) =CReg(E)

K (E).

In case Reg(F)∩Reg(E) = Reg(F) (for instance, in case E is row-finite), then a complete subgraph F of
E yields that the canonical inclusion map F ↪→ E gives rise to an embedding of LK(F) ↪→ LK(E).

In the example given above, R2 is not a complete subgraph of R3. This is because Reg(R3) = {v} =
Reg(R2), so that Reg(R2)∩Reg(R3) = {v}; and the inclusion map from s−1

R2
(v)→ s−1

R3
(v) is not a bijection.

In contrast, the inclusion morphism (R2, /0) ↪→ (R3, /0) is a complete morphism in G . On the other hand,
consider the infinite rose graph R∞, and let Rn be any finite subgraph of R∞. Then Rn is a complete subgraph
of R∞, since Reg(Rn)∩Reg(R∞) = {v}∩ /0 = /0, and the morphism (Rn, /0) ↪→ (R∞, /0) is complete.

The following definition generalizes Definition 1.6.7, and it will be useful later on.

Definition 1.6.8. Let E be a graph and let S be a subset of Reg(E). We say that a subgraph F of a graph E
is S-complete in case the inclusion map

(F,Reg(F)∩S)→ (E,S)

is a complete morphism in the category G . Thus, F is an S-complete subgraph of E in case for each v ∈ S,
we have s−1

F (v) = s−1
E (v) whenever s−1

F (v) 6= /0.

We note that the literature contains alternate definitions of the notion of a complete subgraph of a graph,
see e.g., [12]. However, the notion of completeness is identical across all definitions whenever the given
graph is row-finite.

The notion of a complete morphism in G , and the attendant notion of a complete subgraph, will allow us
to produce homomorphisms from various relative Cohn path algebras over appropriately chosen subgraphs
F of E to the Leavitt path algebra LK(E). This will in turn, by an application of Theorem 1.5.18, allow us
to realize any Leavitt path algebra LK(E) as a direct limit of algebras, each of which is itself the Leavitt
path algebra of a finite graph built from E.
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Lemma 1.6.9. Every object (E,X) of G is a direct limit in the category G of a directed system of the form
{(Fi,Xi) | i ∈ I}, for which each Fi is a finite graph and all the maps (Fi,Xi)→ (E,X) are complete
morphisms in G .

Proof. Clearly, E is the set theoretic union of its finite subgraphs. Let G be a finite subgraph of E. Define
a finite subgraph F of E as follows:

F0 = G0∪{rE(e) | e ∈ E1 and sE(e) ∈ G0∩X}

and
F1 = {e ∈ E1 | sE(e) ∈ G0∩X}.

Now notice that the set of vertices in F0∩X that emit edges in F is precisely the set G0∩X , and if v is one
of these vertices, then s−1

E (v) = s−1
F (v). This shows that the inclusion map (F,Reg(F)∩X) ↪→ (E,X) is a

complete morphism in G . In particular, any finite subgraph G of E gives rise to a finite complete subobject
(F,Reg(F)∩X) of (E,X).

Since the union of a finite number of finite complete subobjects of (E,X) is again a finite complete
subobject of (E,X), it follows that (E,X) is the direct limit in the category G of the directed family of its
finite complete subobjects (F,Reg(F)∩X). ut

Now applying Lemma 1.6.9, Proposition 1.6.4 and Lemma 1.6.6, we have established the following
useful result.

Theorem 1.6.10. Let E be an arbitrary graph and K any field. Let X be any subset of Reg(E). Then as
objects in the category K-alg, we have

CX
K (E) = lim−→

F
{CReg(F)∩X

K (F)},

where (F,Reg(F)∩ X) ranges over all finite complete subobjects of (E,X) (i.e., F ranges over all X-
complete subgraphs of E). Moreover, each of the homomorphisms CReg(F)∩X

K (F)→CX
K (E) is injective. In

particular,
LK(E) = lim−→

F
{CReg(F)∩Reg(E)

K (F)},

where F ranges over all finite complete subgraphs of E, with all homomorphisms CReg(F)∩Reg(E)
K (F)→

LK(E) being injective.

We are now in position to establish the aforementioned result regarding direct limits.

Corollary 1.6.11. Let E be an arbitrary graph and K any field. Let X be any subset of Reg(E). Then
CX

K (E) is the direct limit in the category K-alg of subalgebras, each of which is isomorphic to the Leavitt
path algebra of a finite graph. In particular, LK(E) is the direct limit of unital subalgebras (with not-
necessarily-unital transition homomorphisms), each of which is isomorphic to the Leavitt path algebra of
a finite graph.

Proof. This follows directly from Theorems 1.6.10 and 1.5.18. ut

To clarify the ideas of the previous two results, we present the following examples.

Example 1.6.12. Let CN be the infinite clock graph pictured here.

•u1 •u2

•v

e1

OO
e2

==

e3 //

e4

!!
��

. . .

��

•u3

•u4
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In this example, we have LK(CN)∼= lim−→n∈NCK(Cn), where CK(Cn) =C /0
K(Cn)∼= LK(Cn( /0)) is the Cohn path

algebra of the n-edges clock Cn.

Example 1.6.13. We let RN denote the rose with N petals graph having one vertex and N loops:

RN = •v e3ff

e2

rr

e1

��
.

Here we have LK(RN)∼= lim−→n∈NCK(Rn), where CK(Rn) =C /0
K(Rn)∼= LK(Rn( /0)) is the Cohn path algebra of

the n-edges rose. (See Example 1.5.20 for a description of the graph Rn( /0).)

Example 1.6.14. Let AN be the infinite line graph

AN = •v1
e1 // •v2

e2 // •v3

Here we have LK(AN)∼= lim−→n∈NLK(An), because the graph AN is row-finite (see Corollary 1.6.16 below). In
this situation the transition homomorphisms LK(An)→ LK(An+1) can be identified with the maps Mn(K)→
Mn+1(K) (cf. Proposition 1.3.5) that send an n× n matrix B to the (n+ 1)× (n+ 1) matrix B′ consisting
of B in the upper left n× n corner, and 0 elsewhere. This yields that LK(AN) ∼= MN(K), the (non-unital)
K-algebra of N×N matrices consisting of those matrices having at most finitely many nonzero entries.
(This isomorphism will also follow from Theorem 2.6.14 below.)

As a consequence of the results in this section which will prove to be quite useful later, we offer the
following.

Proposition 1.6.15. Let E be any acyclic graph. Then LK(E) is the direct limit, with injective transition
homomorphisms, of algebras {LK(Fi) | i ∈ I}, where each Fi is a finite acyclic graph.

Proof. As subgraphs of E, the graphs F which arise in Theorem 1.6.10 are necessarily acyclic. But
CReg(F)∩Reg(E)

K (F) ∼= LK(F(Reg(F)∩Reg(E))) by Theorem 1.5.18, and F(Reg(F)∩Reg(E)) is acyclic
by Proposition 1.5.21(i). ut

We conclude this section by noting that the above direct limit construction may be streamlined in the
row-finite case, for in that situation the regular vertices of E are precisely the non-sinks, and the set inter-
sections Reg(F)∩Reg(E) are precisely the sets Reg(F). So by Theorem 1.6.10 we get

Corollary 1.6.16. Let E be any row-finite graph. Then LK(E) is the directed union of unital subalgebras
(with not-necessarily-unital transition homomorphisms), each of which is isomorphic to the Leavitt path
algebra of a finite complete subgraph of E.

1.7 A brief retrospective on the history of Leavitt path algebras

A brief retrospective on the subject’s genesis is in order here. (A much fuller account may be found in
[1].) The accomplishments achieved during the initial investigation by Leavitt in the late 1950’s and early
1960’s into the structure of non-IBN rings were followed up by P.M. Cohn’s work (see e.g., [64]) in the
mid 1960’s on the algebras U1,n (herein denoted CK(1,n)), and by Bergman’s work in the mid 1970’s on
the V -monoid question. The algebras LK(1,n) and CK(1,n) were not again the subject of intense interest
until more than a quarter century later, when they were dusted off and studied anew in [29], [20], and [25].
(Perhaps this hiatus of interest was due to Cohn’s remark in [64] that these algebras “ ... may be regarded
as pathological rings”?) As noted previously, the algebras CK(1,n)∼=CK(Rn) stand in relation to the more
general Cohn path algebras in precisely the same way that the Leavitt algebras LK(1,n)∼= LK(Rn) stand in
relation to the more general Leavitt path algebras.
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Working in a different corner of the mathematical universe, Cuntz in the late 1970’s investigated a class
of C∗-algebras arising from a natural question in physics, the now-so-called Cuntz algebras On (see [68]).
Subsequently, Cuntz and Krieger in [71] realized that the Cuntz algebras are specific cases of a more general
C∗-algebra structure which could be associated with any finite 0/1 matrix, the now-so-called Cuntz-Krieger
C∗-algebras. (The names Cuntz and Krieger give rise to the letters which comprise the notation (CK1) and
(CK2); this notation is now standardly used in both the algebraic and analytic literature to describe the
appropriate conditions on the algebras.) Subsequently, it was realized that the Cuntz-Krieger algebras were
themselves specific cases of an even more general C∗-algebra structure, the graph C∗-algebras defined in
[155] and then initially investigated in depth in [106].

Using the 20/20 vision provided by the passage of a few years’ time, it is fair to say that there were
two seminal papers which served as the launching pad for the study of Leavitt path algebras: [5] and [31].
The work for both of these articles was initiated in 2004, but the two groups of authors did not become
aware of the others’ efforts until Spring 2005, at which time it was immediately clear that the algebras
under study in these two articles were identical. It is interesting to note that although the topic discussed
in both [5] and [31] is the then-newly-described notion of Leavitt path algebras, the results in the two
articles are completely disjoint. Indeed, the former contains results for Leavitt path algebras which mimic
some of the corresponding graph C∗-algebra results (e.g., regarding simplicity of the algebras). In fact,
the construction given in [5] was motivated directly by interpreting the C∗-algebra equations displayed
in Definitions 1.4.4 from a purely algebraic point of view. (The analogous interpretation relating LC(1,n)
and On had already been noted in [29].) On the other hand, [31] contains results describing Bergman’s
construction in the specific setting of graph monoids, as well as theretofore unknown information about the
V -monoid of the graph C∗-algebras. The common, historically appropriate name “Leavitt path algebras”
which now describes these structures was then agreed upon by the two groups of authors while [5] and [31]
were in press.

The results presented in this opening chapter are meant to give the reader both an historical overview
of the subject and a foundation for results which will be presented in subsequent chapters. The results
described in Sections 1.1 through 1.4 have by now resided in the literature for a number of years, and are
for the most part well-known. On the other hand, the main ideas of Sections 1.5 and 1.6 are contributions
to the theory which either make their first appearance in the literature here, or made their appearance in
literature motivated in part by pre-publication versions of this book.

Again donning our historical 20/20 lenses, it seems clear now that Cohn’s aforementioned “pathological
rings” observation missed the mark rather significantly. As we hope will become apparent to the reader
throughout this book, in fact these rings are quite natural, structurally quite interesting, and really quite
beautiful.



Chapter 2
Two-sided ideals

In this chapter we investigate the ideal structure of Leavitt path algebras. In the introductory paragraphs
we present many of the graph-theoretic ideas that will be useful throughout the subject. There is a natural
Z-grading on LK(E), which we discuss in Section 2.1. With this grading so noted, we will see in subsequent
sections that the graded ideals with respect to this grading play a fundamental structural role. In Section
2.2 we consider the Reduction Theorem. Important consequences of this result include the two Uniqueness
Theorems (also presented in Section 2.2), as well as various structural results about Leavitt path algebras
(which comprise Section 2.3). In Section 2.4 we show that the quotient of a Leavitt path algebra by a graded
ideal is itself isomorphic to a Leavitt path algebra. In Section 2.5 we show that the graded ideals of a Leavitt
path algebra arise as ideals generated from data given by prescribed subsets of the graph E. Specifically,
in the Structure Theorem for Graded Ideals (Theorem 2.5.8), we establish a precise relationship between
graded ideals and explicit sets of idempotents. In the row-finite case, these sets of idempotents consist of
hereditary saturated sets of vertices, while in the more general case additional sets of idempotents (arising
from breaking vertices) are necessary. As well, we show that a graded ideal viewed as an algebra in its own
right is isomorphic to a Leavitt path algebra.

With a description of the graded ideals having been obtained, we focus in the remainder of the chapter
on the structure of all ideals. We start in Section 2.6 by considering the socle of a Leavitt path algebra.
Along the way, we achieve a description of the finite dimensional Leavitt path algebras. In Section 2.7
we identify the ideal generated by the set of those vertices which connect to a cycle having no exits. The
denouement of Chapter 2 occurs in Section 2.8, in which we present the Structure Theorem for Ideals
(Theorem 2.8.10), an explicit description of the entire ideal lattice of LK(E) (including both the graded
and non-graded ideals) for an arbitrary graph E and field K. This key result weaves the Structure Theorem
for Graded Ideals together with the analysis of the ideal investigated in the previous section. A number
of ring-theoretic results follow almost immediately from the Structure Theorem for Ideals, including the
Simplicity Theorem; we present those in Section 2.9.

Notation 2.0.1. For a ring or algebra R and subset X ⊆ R, we denote by I(X) the ideal of R generated by
X .

While only very basic graph-theoretic ideas and terminology were needed to define the Leavitt path alge-
bras, additional graph-theoretic concepts will play a huge role in analyzing the structure of these algebras.
We collect many of those in the following.

Definitions 2.0.2. Let E = (E0,E1,r,s) be an arbitrary graph.

(i) Let µ = e1e2 · · ·en ∈ Path(E). If n = `(µ)≥ 1, and if v = s(µ) = r(µ), then µ is called a closed path
based at v.

(ii) A closed simple path based at v is a closed path µ = e1e2 · · ·en based at v, such that s(e j) 6= v for
every j > 1. We denote by CSP(v) the set of all such paths.

(iii) If µ = e1e2 · · ·en is a closed path based at v and s(ei) 6= s(e j) for every i 6= j, then µ is called a cycle
based at v. Note that a cycle is a closed simple path based at any of its vertices, but not every closed
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simple path based at v is a cycle, because a closed simple path may visit some of its vertices (other
than v) more than once.

(iv) Suppose µ = e1e2 · · ·en is a cycle based at the vertex v. Then for each 1 ≤ i ≤ n, the path µi =
eiei+1 · · ·ene1 · · ·ei−1 is a cycle based at the vertex s(ei). (In particular, µ1 = µ .) The cycle of µ is the
collection of cycles {µi} based at s(ei).

(v) A cycle c is a set of paths consisting of the cycle of µ for µ some cycle based at a vertex v.
(vi) The length of a cycle c is the length of any of the paths in c. In particular, a cycle of length 1 is called

a loop. (We note that the definition of the word cycle is somewhat non-standard, but will serve our
purposes well here.)

(vii) A (directed) graph E is said to be acyclic in case it does not have any closed paths based at any vertex
of E, equivalently if it does not have any cycles based at any vertex of E.

Definition 2.0.3. A graph E satisfies Condition (K) if for each v ∈ E0 which lies on a closed simple path,
there exist at least two distinct closed simple paths α,β based at v.

Definition 2.0.4. Let E = (E0,E1,r,s) be a graph. We define a preorder ≤ on E0 given by:

w≤ v in case there is a path µ ∈ Path(E) such that s(µ) = v and r(µ) = w.

(We will sometimes equivalently write v ≥ w in this situation.) If v ∈ E0 then the tree of v, denoted T (v),
is the set

T (v) = {w | w ∈ E0,v≥ w}.

(This notation is standard in the context of Leavitt path algebras; note, however, that T (v) need not be a
“tree” in the sense of undirected graphs, as T (v) may indeed contain closed paths.) If X ⊆ E0, we define
T (X) :=

⋃
v∈X T (v).

Note that T (X) is the smallest hereditary subset of E0 containing X .

Definitions 2.0.5. Let E be a graph, and H ⊆ E0.

(i) We say H is hereditary if whenever v ∈ H and w ∈ E0 for which v≥ w, then w ∈ H.
(ii) We say H is saturated if whenever v ∈ Reg(E) has the property that {r(e) | e ∈ E1,s(e) = v} ⊆ H,

then v ∈ H. (In other words, H is saturated if, for any non-sink vertex v which emits a finite number
of edges in E, if all of the range vertices r(e) for those edges e having s(e) = v are in H, then v must
be in H as well.)

We denote by HE (or simply by H when the graph E is clear) the set of those subsets of E0 which are
both hereditary and saturated.

We refer back to the graph E given in Example 1.2.8. We see that the set S1 = {v3} is hereditary
(trivially), but not saturated, since the vertex v2 emits all of its edges (there is only one) into S1, but v2 itself
is not in S1. However, the set S2 = {v2,v3} is both hereditary and saturated: while v1 emits edges into S2,
not all of the edges emitted from v1 have ranges in S2.

Definition 2.0.6. If X is a subset of E0, then the hereditary saturated closure of X , denoted X , is the
smallest hereditary and saturated subset of E0 containing X . Since the intersection of hereditary (resp.,
saturated) subsets of E0 is again hereditary (resp., saturated), X is well defined.

We denote by S(X) the set of all vertices obtained by applying the saturated condition among the ele-
ments of X , that is,

S(X) := {v ∈ Reg(E) | {r(e) | s(e) = v} ⊆ X}∪X .

For X ⊆ E0, the hereditary saturated closure of X may be inductively constructed as follows.

Lemma 2.0.7. Let X be a nonempty subset of vertices of a graph E. We define X0 := T (X) , and for n≥ 0
we define inductively Xn+1 := S(Xn). Then X =

⋃
n≥0 Xn.
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Proof. It is immediate to see that every hereditary and saturated subset of E0 containing X must contain⋃
n≥0 Xn. Note that every Xn is hereditary (it is easy to show that if Y ⊆ E0 is hereditary, then so is S(Y )),

which implies that
⋃

n≥0 Xn is hereditary as well. We now show that
⋃

n≥0 Xn is saturated. Take v ∈ Reg(E)
such that r(s−1(v)) ⊆

⋃
n≥0 Xn; since Xn ⊆ Xn+1 and r(s−1(v)) is a finite subset, there exists N ∈ N such

that r(s−1(v))⊆ XN , hence v ∈ XN+1 as required. ut

We finish the introduction to this chapter by describing how the path algebra KÊ of K over the extended
graph Ê can be endowed with an involution.

Lemma 2.0.8. Let E be an arbitrary graph and K any field. Let − : K→ K be an involution on K. Then the
following map can be extended to a unique involution ∗ : KÊ→ KÊ:

(i) (kv)∗ = kv for every k ∈ K and v ∈ E0.
(ii) (kγ)∗ = kγ∗ for every k ∈ K and γ ∈ Path(E).

(iii) (kγ∗)∗ = kγ for every k ∈ K and γ ∈ Path(E).

In particular, (KE)∗ = KE∗.

Proof. Define the map ρ : E0 ∪E1 ∪ (E1)∗ → (KÊ)op by setting ρ(v) = v, ρ(e) = e∗, and ρ(e∗) = e for
v ∈ E0 and e ∈ E1. It is easy to see that ρ is compatible with the relations (V), (E1) and (E2) in KÊ,
and hence ρ can be extended in a unique way to a homomorphism of K-algebras ρ : KÊ → (KÊ)op. This
homomorphism ρ is precisely the involution in the statement. ut

Corollary 2.0.9. Let E be an arbitrary graph, let X ⊆ Reg(E), and let K be any field. Let − : K → K be
an involution on K. Then there is a unique involution ∗ : CX

K (E)→CX
K (E) satisfying the three properties of

Lemma 2.0.8.
Consequently, taking the involution on K to be the identity map, we have that CX

K (E) is isomorphic as
K-algebras to its opposite ring CX

K (E)
op. In particular, LK(E)∼= LK(E)op as K-algebras.

2.1 The Z-grading

One of the most important properties of the class of Leavitt path algebras is that each LK(E) is a Z-graded
K-algebra. As we shall see, this grading provides the key ingredient which allows us to achieve many
structural results about Leavitt path algebras, as well as to streamline proofs of additional results.

In this section we will explore the natural Z-grading on LK(E) (the one induced by the length of paths).
Of particular importance will be the structure of the zero component of any Leavitt path algebra relative to
this grading.

Definitions 2.1.1 . Let G be a group and A an algebra over a field K. We say that A is G-graded if there
exists a family {Aσ}σ∈G of K-subspaces of A such that

A =
⊕
σ∈G

Aσ as K-spaces, and Aσ ·Aτ ⊆ Aστ for each σ ,τ ∈ G.

An element x of Aσ is called a homogeneous element of degree σ . An ideal I of a G-graded K-algebra A is
said to be a graded ideal if I ⊆ ∑σ∈G(I∩Aσ ), or, equivalently, if

y = ∑σ∈G yσ ∈ I implies yσ ∈ I for every σ ∈ G.

Remark 2.1.2. Let e denote the identity element of the group G. It is straightforward to show that if A is a
G-graded ring, and X is a subset of Ae, then the ideal I(X) of A generated by X is a graded ideal.

It is easy to prove that the quotient of a G-graded algebra A =
⊕

σ∈G Aσ by a graded ideal I is a G-
graded algebra, with the natural grading induced by that of A. Specifically, consider the projection map A→
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A/I via a 7→ a, and denote A/I by A. Then, using the graded property of I, for any σ ∈G the homogeneous
component Aσ of A of degree σ is Aσ := Aσ . Hence

A =
⊕
σ∈G

Aσ .

In general, not every ideal in a Leavitt path algebra is graded (see, e.g., Examples 2.1.7). It will be shown in
Section 2.4 that graded ideals can be obtained from specified subsets of vertices. Concretely, Leavitt path
algebras all of whose ideals are graded will be shown to coincide with the exchange Leavitt path algebras;
equivalently, to coincide with those Leavitt path algebras whose associated graph satisfies Condition (K).

We recall here that for an arbitrary graph E and field K the Leavitt path algebra LK(E) can be obtained
as a quotient of the Cohn path algebra CK(E) by the ideal I generated by {v−∑e∈s−1(v) ee∗ | v ∈ Reg(E)}
(Proposition 1.5.5). We establish that the Cohn path algebra has a natural Z-grading given by the length
of the monomials, which thereby will induce a Z-grading on LK(E). (Although we derive the grading on
LK(E) from the grading on CK(E), a more direct proof may also be produced.)

Definition 2.1.3. Let E be an arbitrary graph and K any field. For any v∈ E0 and e∈ E1, define deg(v) = 0,
deg(e) = 1 and deg(e∗) = −1. For any monomial kx1 · · ·xm, with k ∈ K and xi ∈ E0 ∪E1∪ (E1)

∗, define
deg(kx1 · · ·xm) = ∑

m
i=1 deg(xi). Finally, for any n ∈ Z define

An := spanK({x1 · · ·xm | xi ∈ E0∪E1∪ (E1)
∗

with deg(x1 · · ·xm) = n}).

Proposition 2.1.4. With the notation of Definition 2.1.3, KÊ =
⊕

n∈ZAn as K-subspaces, and this decom-
position defines a Z-grading on the path algebra KÊ.

Proof. By Remark 2.1.2, the ideal I generated by the relations (V), (E1) and (E2) is graded, hence KÊ,
which is isomorphic to K〈E0∪E1∪ (E1)∗〉/I, is graded as in the indicated decomposition. ut

Corollary 2.1.5. Let E be an arbitrary graph and K any field.

(i) For any subset X of Reg(E), the Cohn path algebra CX
K (E) of E relative to X is a Z-graded K-algebra

with the grading induced by the length of paths.
(ii) CK(E) =

⊕
n∈ZCn, where

Cn := spanK({γλ
∗ | γ,λ ∈ Path(E) and `(γ)− `(λ ) = n}),

defines a Z-grading on the Cohn path algebra CK(E).
(iii) LK(E) =

⊕
n∈ZLn , where

Ln := spanK({γλ
∗ | γ,λ ∈ Path(E) and `(γ)− `(λ ) = n}),

defines a Z-grading on the Leavitt path algebra LK(E).

Proof. Items (ii) and (iii) are particular cases of (i), hence we will prove only this case. By definition
(see Definition 1.5.9), the relative Cohn path algebra CX

K (E) = KÊ/I, where I is the K-algebra ideal of
KÊ generated by relations of the forms (V), (E1), (E2), and (CK1), and by the idempotents {qv | v ∈ X},
where qv = v−∑e∈s−1(v) ee∗. Proposition 2.1.4 establishes that the path algebra KÊ is Z-graded. But I is
generated by homogeneous elements of degree 0, hence it is a graded ideal by Remark 2.1.2; consequently,
the quotient KÊ/I is a Z-graded algebra. ut

Remark 2.1.6. This remark will turn out to be quite useful in understanding the ideal structure of general
Leavitt path algebras. There is a natural Z-grading on the Laurent polynomial algebra A = K[x,x−1], given
by setting Ai = Kxi for all i ∈ Z. Furthermore, it is well-known (and easy to prove) that the set of units in
K[x,x−1] consists of the set {kxi | k ∈ K×, i ∈ Z}. Consequently, the only graded ideals of K[x,x−1] are the
two ideals {0} and K[x,x−1] itself.

Moreover, there are infinitely many non-graded ideals in K[x,x−1], since every nontrivial ideal of
K[x,x−1] is generated by a unique element of the form 1+ k1x+ · · ·+ knxn with kn 6= 0.
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Consider a field K and a group G. Given two G-graded K-algebras A =⊕σ∈GAσ and B =⊕σ∈GBσ , a K-
algebra homomorphism f from A into B is said to be a graded homomorphism if f (Aσ )⊆ Bσ for every σ ∈
G. It is easy to show that Ker( f ) is a graded ideal of A in this case. If there exists a K-algebra isomorphism
f : A→ B for which both f and f−1 are graded homomorphisms, then we say that A and B are graded
isomorphic.

Examples 2.1.7. We demonstrate how the Z-grading on LK(E) manifests in two fundamental cases.
First, let An be the oriented n-line graph • // • • // • of Notation 1.3.1. In Proposition

1.3.5 we established that LK(An) ∼= Mn(K), by writing down an explicit isomorphism ϕ between these
two algebras. For each integer t with −(n−1) ≤ t ≤ n−1 we consider the K-subspace At of A = Mn(K)
consisting of those elements (ai, j) for which ai, j = 0 for each pair i, j having i− j 6= t. (Less formally, At
consists of the elements of the tth-superdiagonal of A.) For |t| ≥ n we set At = {0}. Then it is easy to see
(and well-known) that ⊕t∈ZAt is a Z-grading of Mn(K). Furthermore, ϕ : LK(An)→Mn(K) is a graded
isomorphism with respect to this grading.

Now let R1 be the graph •v e
xx

, also of Notation 1.3.1. In Proposition 1.3.4 we showed that LK(R1)∼=
K[x,x−1], via an isomorphism which takes v to 1 and e to x. With the usual grading on K[x,x−1] (described
in Remark 2.1.6), this isomorphism is clearly graded. This immediately implies that there are infinitely
many non-graded ideals in LK(R1), to wit, any ideal generated by a non-monomial expression in e and/or
e∗. For instance, I(v+ e) is such an ideal. The only graded ideals of LK(R1) are LK(R1) itself, and {0}.

We showed in Chapter 1 that the path K-algebra KE over a graph E, as well as and the path K-algebra
KE∗ over the graph E∗, can be seen as subalgebras of the Cohn path algebra CK(E) (Corollary 1.5.7) and
of the Leavitt path algebra LK(E) (Corollary 1.5.13). In fact, both KE and KE∗ are graded subalgebras of
both CK(E) and LK(E).

Lemma 2.1.8. Let E be an arbitrary graph and K any field.

(i) The canonical map KÊ → CK(E) is a Z-graded K-algebra homomorphism. The restrictions KE →
CK(E) and KE∗→CK(E) are Z-graded K-algebra monomorphisms.

(ii) The canonical map KÊ → LK(E) is a Z-graded K-algebra homomorphism. The restrictions KE →
LK(E) and KE∗→ LK(E) are Z-graded K-algebra monomorphisms.

Proof. The canonical projections given in Corollary 1.5.7 and in Corollary 1.5.13 are K-algebra monomor-
phisms sending homogeneous elements of degree n into elements of the same degree. ut

The proof of the following result is easy, so we omit it.

Lemma 2.1.9. Let E be an arbitrary graph and K any field. Let I be the ideal of the Cohn path algebra
generated by the set {v−∑e∈s−1(v) ee∗ | v ∈ Reg(E)}. Then LK(E) and CK(E)/I are Z-graded isomorphic
K-algebras.

Lemma 2.1.9 is a particular case of

Proposition 2.1.10. Let E be an arbitrary graph and K any field. Let X be any subset of Reg(E). Then
CX

K (E) and LK(E(X)) are Z-graded isomorphic K-algebras.

Proof. By reconsidering the proof of Theorem 1.5.18, it is clear that the given isomorphism indeed respects
the grading. ut

For the remainder of this section we will focus on the structure of the zero components (CK(E))0 of
CK(E) and (LK(E))0 of LK(E) with respect to the grading described above. As we shall see, these subrings
will play important roles in the sequel. Let S be a subset of Reg(E). Given k ∈ Z+, let X be a finite set of
paths of E of length ≤ k. For 0≤ i≤ k, let Xi be the set of initial paths of elements of X of length i, and let
Yi be the set of edges which appear in position i in a path of an element of X . That is,

Xi = {λ ∈ Path(E) | |λ |= i, and there exists λ
′ ∈ Path(E) such that λλ

′ ∈ X}, and
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Yi = {e ∈ E1 | there exists λ ,γ ∈ Path(E) such that |λ |= i−1, and λeγ ∈ X}.

Note that X0 is the set of source vertices of paths in X . For a path λ of length ≥ i, denote by λi the initial
segment of λ of length i, so that λ = λiλ

′, with |λi|= i.

Definitions 2.1.11. Let S, X , Xi, Yi, and k be as above. We say that X is an S-complete subset of Path(E) if
the following conditions are satisfied:

(i) All the paths in X of length < k end in a sink.
(ii) For every λ ∈ X , every i < |λ | such that r(λi) ∈ S and every e ∈ s−1(r(λi)), we have that λie = γi+1

for some γ ∈ X .
(iii) For any λ ∈ Xi (1≤ i < k) and any e ∈ Yi+1 such that r(λ ) = s(e), we have λe ∈ Xi+1.

Recall that we defined the notion of an S-complete subgraph in Chapter 1 (see Definition 1.6.8). This
notion should not be confused with the just defined concept of S-complete subset of paths of a graph.

There is a natural way to build S-complete finite subsets of Path(E) from S-complete finite subgraphs of
E, as follows. The goal is to extend the paths in the S-complete finite subgraph to either paths of length k,
or to paths of length less than k which end in a sink, in a specifically described way.

Proposition 2.1.12. Let F be a finite S-complete subgraph of E and k≥ 1. Then there exists an S-complete
subset of Path(E) of paths of length ≤ k which contains all the paths of length k of F, as well as all the
paths of length < k of F which end in a sink of E. More precisely, there is a finite S-complete subgraph F ′

of E containing F such that X is the set of all paths of F ′ of length k starting at a vertex of F together with
the set of all paths of F ′ of length < k starting at a vertex of F and ending in a sink of E.

Proof. For a vertex v of E with v ∈ (E0 \ (Sink(E)∪S))∩ (Sink(F)∪ (E0 \F0)), we choose and fix some
ev ∈ s−1

E (v).
For each v ∈ E0 and each t ≥ 1, we denote by Γ (v, t) the set of all paths of length ≤ t which satisfy the

following conditions:

1. All paths in Γ (v, t) start at v.
2. The paths in Γ (v, t) either have length t, or have length < t and end in a sink of E.
3. If α1α2 · · ·αs ∈ Path(E) (where each αi ∈ E1) belongs to Γ (v, t), then for each i such that s(αi)∈ (E0 \

S)∩ (Sink(F)∪ (E0 \F0)) we have αi = es(αi). Moreover, for each i such that s(αi) ∈ F0 \Sink(F),
we have αi ∈ F1.

The idea here is that we extend paths of length less than k arbitrarily in vertices of S, by using edges in
F whenever we can; while we extend such paths by a predetermined edge if the vertex does not belong to
S, is not a sink in E, and we cannot extend it by using edges in F . Observe that Γ (v, t) is finite. Now note
the following:

(a) Every path λ in Γ (v,s), with s < t, can be extended to a path τ in Γ (v, t), i.e., there is a path λ ′ such
that λλ ′ ∈ Γ (v, t).

(b) If γ ∈ Γ (v, t) and γ ′ is an initial segment of γ of positive length s, then γ ′ ∈ Γ (v,s).
(c) If γ ∈ Γ (v, t) and γ ′ is a final segment of γ of positive length s, then γ ′ ∈ Γ (s(γ ′),s).

Let Γ (1) denote the set of paths of F of length k together with the paths of F of length < k which end in
a sink of E.

Let Γ (2) denote the set of paths of length ≤ k consisting of all paths of the form λ µ , where λ is a path
of F of length < k which ends in a sink of F which is not a sink in E, and µ ∈ Γ (r(λ ),k−|λ |).

Let X be the (disjoint) union of Γ (1) and Γ (2). To complete the proof, we need to check that X is an
S-complete subset of Path(E). Observe that

X =
⋃

v∈F0

Γ (v,k).

Condition (i) in the definition of S-complete subset is obviously satisfied. For condition (ii), let λ ∈ X ,
i < |λ | such that r(λi) ∈ S, and e ∈ s−1(r(λi)). Note that λie ∈ Γ (s(λie), i+ 1), so by observation (a) λie
can be extended to a path γ ∈ Γ (s(λ ),k). If γ is a path of F then γ ∈ Γ (1). Otherwise we have γ ∈ Γ (2).
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To finish, we check condition (iii). Let λ ∈ X , 1 ≤ i < k, and e ∈ Yi+1 such that r(λi) = s(e). Then
λi ∈ Γ (s(λ ), i), and eµ ∈ Γ (s(e),k− i) for a certain path µ (because e ∈Yi+1). Therefore λieµ ∈ X , so that
λie ∈ Xi+1, as desired.

The final statement is shown as follows. Let v be a vertex of E which appears as a non-final vertex of
a path from X . If v ∈ F0 \Sink(F), then we set s−1

F ′ (v) = s−1
F (v). If v ∈ S, then we set s−1

F ′ (v) = s−1
E (v). If

v ∈ (E0 \ (Sink(E)∪S))∩ (Sink(F)∪ (E0 \F0)), then we set s−1
F ′ (v) = {ev}. The graph F ′ is the smallest

subgraph of E containing F and all these edges. ut

Definition 2.1.13. A matricial K-algebra is a finite direct product of full matrix algebras (of finite size)
over a field K.

Let S be a subset of Reg(E), and let X be an S-complete finite subset of Path(E) consisting of paths of
length ≤ k. We define

G (X) = spanK(λ µ
∗ | λ ,µ ∈ X , |λ |= |µ|).

Proposition 2.1.14. Let E be an arbitrary graph and K any field. Let S be a subset of Reg(E). Let X be
an S-complete finite subset of Path(E) consisting of paths of length ≤ k. For 1 ≤ i ≤ k, we consider the
following K-subspaces Fi(X) of CS

K(E):

Fi(X) is the K− linear span in CS
K(E) of the elements λ (v− ∑

e∈Yi,s(e)=v
ee∗)µ∗,

where λ ,µ ∈ Xi−1, r(λ ) = r(µ) = v /∈ S, and Yi∩ s−1(v) 6= /0. We set

F (X) = G (X)+
k

∑
i=1

Fi(X).

Then F (X) is a matricial K-algebra. Moreover, (CS
K(E))0 is the direct limit of the subalgebras F (X),

where X ranges over all the S-complete finite subsets of Path(E).

Proof. We will show:
(1) for every 1≤ i≤ k, Fi(X) is a matricial K-algebra, and
(2) for i 6= j we have Fi(X) ·F j(X) = 0. In particular, the sum F (X) = ∑

k
i=1 Fi(X) is a direct sum.

To establish these two statements, write an element λ (v−∑e∈Yi,s(e)=v ee∗)µ∗ in F (X) as λτi(v)µ∗, where
τi(v) := v−∑e∈Yi,s(e)=v ee∗. To show (1) for 1 ≤ i ≤ k, observe that if λτi(v)µ∗ and γτi(w)η∗ belong to
Fi(X), and v 6= w then we have

λτi(v)µ∗ · γτi(w)η∗ = 0.

If v = w then
λτi(v)µ∗ · γτi(v)η∗ = δµ,γ λτi(v)η∗.

It follows that Fi(X) =
⊕

v Fi,v(X), where Fi,v(X) is the linear span of the set of elements of the form
λτi(v)µ∗. Moreover Fi,v(X) is a matrix algebra over K of size |Xi−1|. This shows (1).

Now assume that i 6= j and that α = λτi(v)µ∗ and β = γτ j(w)η∗ belong to Fi(X) and F j(X) respec-
tively. Assume for convenience that j > i. Then αβ = 0 unless γ = µγ ′, with |γ ′| = j− i > 0, in which
case

α ·β = λτi(v)γ ′τ j(w)η∗.

Write γ ′ = f γ ′′. Then f ∈ Yi and s( f ) = r(µ) = v and thus

τi(v)γ ′ = (v− ∑
e∈Yi,s(e)=v

ee∗) f γ
′′ = ( f − f )γ ′′ = 0.

It follows that αβ = 0. This shows that ∑
k
i=1 Fi(X) is a direct sum.

The K-vector space G (X) is also a matricial K-algebra, indeed



30 2 Two-sided ideals

G (X) =
[ k−1⊕

i=0

⊕
v∈Sink(E)

Gi,v(X)
]⊕[⊕

v∈E0

Gk,v(X)
]
,

where Gi,v(X) is the K-linear span of the set of elements of the form λ µ∗, where λ ,µ ∈ X , |λ |= |µ|= i and
r(λ ) = r(µ) = v. (This property relies on condition (i) in the definition of an S-complete subset of Path(E).)
It is easy to show that the above sum is direct and also that each Gi,v(X) is a finite matrix K-algebra of size
the number of elements of X with the prescribed conditions on length and range.

The proof that G (X) ·Fi(X) = 0 for all i is similar to the above. Hence we get the direct sum

F (X) = G (X)
⊕

(
k⊕

i=1

Fi(X)).

We now describe the transition homomorphisms F (X)→F (X ′), for appropriate pairs of S-complete
finite subsets X ,X ′ of Path(E). Suppose that X is an S-complete finite subset of paths of length≤ k and that
X ′ is an S-complete finite subset of paths of length ≤ `. Then we write X ≤ X ′ in case k≤ ` and every path
in X can be extended to a path in X ′, that is, for each λ in X there is a path λ ′ such that λλ ′ belongs to X ′.
Observe that only paths of length k can be properly extended. The condition X ≤ X ′ implies that Xi ⊆ X ′i
for 1≤ i≤ k. Also X < X ′ implies k < `.

To describe the transition homomorphism F (X) → F (X ′) for X < X ′, we need to specify a rule
that allows us eventually to write any of the generators of F (X) as a linear combination of the gen-
erators in F (X ′). Let us write τi(v) and τ ′i (v) for the corresponding elements v−∑e∈Yi,s(e)=v ee∗ and
v−∑e∈Y ′i ,s(e)=v ee∗ respectively.

We first describe the map on G (X). Let v be a vertex in E, and suppose that λ ,µ ∈ Xi and r(λ ) = r(µ) =
v. If v is a sink then λ µ∗ belongs to F`(X ′), so the map is the identity in this case. If v ∈ S then i = k and

λ µ
∗ = λ ( ∑

e∈s−1(v)

ee∗)µ∗ = ∑
e∈s−1(v)

(λe)(µe)∗.

Note that, for e ∈ s−1(v), λe and µe can be enlarged to a path in X ′ by the S-completeness of X ′ (condition
(ii)). If v /∈ S then

λ µ
∗ = λ ( ∑

e∈Y ′k+1

ee∗)µ∗+λτ
′
k+1(v)µ

∗.

Note that λτ ′k+1(v)µ
∗ ∈Fk+1(X ′) and that the paths λe,µe, with e ∈ Y ′k+1, can be enlarged to paths in X ′,

again by the S-completeness of X ′ (condition (iii)). In this way, an inductive procedure gives the description
of the transition mapping G (X)→F (X ′).

Now let λτi(v)µ∗ be a generating element of Fi(X), for 1≤ i≤ k. Then

λτi(v)µ∗ = λτ
′
i (v)µ

∗+ ∑
f∈Y ′i \Yi

(λ f )(µ f )∗,

and λτ ′i (v)µ
∗ ∈ Fi(X ′), whilst λ f ,µ f can be enlarged to paths in X ′ for all f ∈ Y ′i \Yi. Thus we can

proceed as above in order to obtain the image of λ f f ∗µ∗ in F (X ′). This allows us to describe the transition
homomorphism Fi(X)→F (X ′).

Finally, let a = ∑λ ,µ∈T,|λ |=|µ| kλ ,µ λ µ∗ be an arbitrary element in (CS
K(E))0, where T is a finite set of

paths in E. By Proposition 2.1.12 There is a finite S-complete subgraph F of E such that all the paths in T
have all their edges in F . Let k be an upper bound for the length of the paths in T . By using Proposition
2.1.12, we can find an S-complete finite subset of Path(E) consisting of paths of length ≤ k such that all
paths in T can be enlarged to paths in X . Now the above procedure enables us to write a as an element of
F (X). This shows that (CS

K(E))0 is the direct limit of the subalgebras F (X), where X ranges over all the
S-complete finite subsets of Path(E), and completes the proof. ut

A foundational reference for the material in the remainder of this section is [89, Section 2.3]. Every
injective K-algebra homomorphism
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φ : A = Mn1(K)×·· ·×Mnr(K)−→ B = Mm1(K)×·· ·×Mms(K)

is conjugate to a block diagonal one, and so it is completely determined by its multiplicity matrix M =
(m ji) ∈ Ms×r(Z+), which has the property that ∑

r
i=1 m jini ≤ m j for j = 1, . . . ,s. If φ is unital, then this

inequality is an equality. Note that the injectivity hypothesis is equivalent to the statement that there is no
zero column in the matrix M. For i∈{1, . . . ,r}, the integers m ji can be computed as follows. Take a minimal
idempotent ei in the component Mni(K) of A. Then φ(ei) can be written as φ(ei) = ∑

s
j=1 ∑

m ji
m=1 g(i)j,m, where,

for each j, {g(i)j,1, . . . ,g
(i)
j,m ji
} are pairwise orthogonal minimal idempotents in the factor Mm j(K) of B.

Definition 2.1.15. Let E be a finite graph. We denote by AE = (av,w) ∈ ME0×E0(Z+) the incidence or
adjacency matrix of E, where av,w = |{e ∈ E1 | s(e) = v,r(e) = w}| . We let Ans denote the matrix AE with
the zero-rows removed; that is, Ans is the (not necessarily square) matrix gotten from AE by removing the
rows corresponding to the sinks of E.

We are now in position to give an explicit description of the zero component of the Leavitt path algebra
of a finite graph.

Corollary 2.1.16. Let E be a finite graph and K any field. For each n ∈ Z+ let L0,n ⊆ LK(E) denote the
K-linear span of elements of the form γη∗, where γ,η ∈ Path(E) for which |γ|= |η |= n and r(γ) = r(η),
together with elements of the form γη∗ where γ,η ∈ Path(E) for which |γ|= |η |< n and r(γ) = r(η) is a
sink in E. Then we have

(LK(E))0 =
⋃

n∈Z+
L0,n.

For each v in E0, and each n ∈ Z+, we denote by P(n,v) the set of paths γ in E such that |γ| = n and
r(γ) = v. Then

L0,n ∼=
[ n−1

∏
m=0

(
∏

v∈Sink(E)
M|P(m,v)|(K)

)]
×
[

∏
v∈E0

M|P(n,v)|(K)
]
.

The transition homomorphism L0,n→ L0,n+1 is the identity on the factors ∏v∈Sink(E) M|P(m,v)|(K), for 0 ≤
m ≤ n− 1, and also on the factor ∏v∈Sink(E) M|P(n,v)|(K) of the right-hand term of the displayed formula.
The transition homomorphism

∏
v∈E0\Sink(E)

M|P(n,v)|(K)→ ∏
v∈E0

M|P(n+1,v)|(K)

has multiplicity matrix equal to At
ns.

Proof. All these facts follow directly from the proof of Proposition 2.1.14. For instance, observe that for
v ∈ E0 \Sink(E) and λ ∈ P(n,v), we have that λλ ∗ is a minimal idempotent in the factor M|P(n,v)|(K) of
L0,n and that by the (CK2) relation

λλ
∗ = ∑

e∈s−1(v)

(λe)(λe)∗ ,

so that, for w ∈ E0, the multiplicity mw,v of the inclusion map

∏
v∈E0\Sink(E)

M|P(n,v)|(K)→ ∏
v∈E0

M|P(n+1,v)|(K)

is precisely av,w, which shows that M = At
ns. ut

We note that the K-subspaces L0,n described in the previous result form a filtration of (LK(E))0, given
by the K-linear span of the paths γν∗ such that |γ|= |ν | ≤ n and r(γ) = r(ν).

Example 2.1.17. Let E = R2, with vertex v and edges e, f . Then for each n ∈ Z+ we have |P(n,v)| = 2n.
There are no sinks in E, so that At

ns = A = (2). Thus L0,n ∼= M2n(K) for each n ∈ Z+, and the transition
homomorphism from L0,n to L0,n+1 takes an element (mi, j) of M2n(K) to the element (mi, jI2) of M2n+1(K),
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where I2 is the 2×2 identity matrix. Thus (LK(R2))0 ∼= lim−→n∈Z+ M2n(K). (See also [2, Section 2] for further
analysis of this direct limit.)

Example 2.1.18. Let ET be the Toeplitz graph as presented in Example 1.3.6, and let T = TK denote the
algebraic Toeplitz K-algebra LK(ET ). Then easily we see that |P(n,u)| = |P(n,v)| = 1 for all n ∈ Z+. In
particular T0,0 ∼= K×K. By Corollary 2.1.16 we have that

T0,n ∼= [
n−1

∏
m=0

K]× [K×K]∼= Kn+2

for each n ∈ N. The transition homomorphism from T0,n to T0,n+1 takes (r0, . . . ,rn−1,rn,rn+1) ∈ Kn+2 to
(r0, . . . ,rn−1,rn,rn+1,rn+1) ∈ Kn+3. Thus T0 is isomorphic to the subring of the direct product ∏m∈Z+ K
consisting of those elements which are eventually constant.

2.2 The Reduction Theorem and the Uniqueness Theorems

The name of this section derives in part from the name given to Theorem 2.2.11, a result which will prove
to be an extremely useful tool in a variety of contexts. For instance, we will see how it yields both Theorems
2.2.15 and 2.2.16 with only a modicum of additional effort. The Reduction Theorem 2.2.11 will also be
key in establishing various ring-theoretic properties of an arbitrary Leavitt path algebra, among other uses.

Notation 2.2.1. For a cycle c based at the vertex v, we will use the following notation:

c0 := v, and c−n := (c∗)n for all n ∈ N.

Definitions 2.2.2. Let E be a graph, let µ = e1e2 · · ·en be a path in E, and let e ∈ E1.

(i) We say that e is an exit for µ if there exists i (1≤ i≤ n) such that s(e) = s(ei) and e 6= ei.
(ii) We say that E satisfies Condition (L) if every cycle in E has an exit.

Examples 2.2.3. Here is how Condition (L) manifests in the fundamental graphs of the subject.

(i) Let E be the graph Rn (n ≥ 2), with edges {e1,e2, . . . ,en}. Each ei is a cycle (of length 1) in E, and
these are the only cycles in E. Moreover, each e j ( j 6= i) is an exit for ei (since s(ei) = s(e j) for all
i, j). In particular, E satisfies Condition (L).

(ii) On the other hand, the cycle e consisting of the unique loop in the graph E = R1 has no exit (and thus
R1 does not satisfy Condition (L)).

(iii) In the oriented n-line graph An, no element of Path(An) has an exit. However, An does satisfy Condtion
(L) vacuously, as An is acyclic.

(iv) In the Toeplitz graph ET of Example 1.3.6, the edge f is an exit for the loop e (which is the unique
cycle in ET ). So ET satisfies Condition (L).

Notation 2.2.4. Let E be an arbitrary graph. We denote by Pc(E) the set of all vertices v of E which are in
cycles without exits; i.e., v ∈ c0 for some cycle c having no exits.

Remark 2.2.5. If e is an edge of a path without exits, then s−1(s(e)) is a singleton (necessarily e itself). As
a result, the (CK2) relation at s(e) reduces to the equation s(e) = ee∗.

We start by exploring the structure of a corner of a Leavitt path algebra at a vertex which lies in a cycle
without exits.

Definition 2.2.6. Let E be an arbitrary graph and K any field. For every cycle c based at a vertex v in E,
and every polynomial p(x) = ∑

n
i=m kixi ∈ K[x,x−1] (m≤ n; m,n ∈ Z), we denote by p(c) the element

p(c) :=
n

∑
i=m

kici ∈ LK(E)



2.2 The Reduction Theorem and the Uniqueness Theorems 33

(using Notation 2.2.1).

Lemma 2.2.7. Let E be an arbitrary graph and K any field. If c is a cycle without exits based at a vertex v,
then

vLK(E)v =

{
n

∑
i=m

kici | ki ∈ K, m≤ n,m,n ∈ Z

}
∼= K[x,x−1],

via an isomorphism that sends v to 1, c to x and c∗ to x−1.

Proof. Write c = e1 · · ·en, where ei ∈ E1. We establish first that any γ ∈ Path(E) such that s(γ) = v is of
the form cmτq, where m ∈ Z+, τq = e1 · · ·eq for 1 ≤ q < n, τ0 = v, and deg(γ) = mn+ q. We proceed by
induction on deg(γ). If deg(γ) = 1 and s(γ) = s(e1) then γ = e1 by Remark 2.2.5. Suppose now that the
result holds for any λ ∈ Path(E) with s(λ ) = v, deg(λ )≤ sn+t, and consider any γ ∈ Path(E) with s(γ) = v
and deg(γ) = sn+ t+1. We can write γ = γ ′ f with γ ′ ∈ Path(E), s(γ ′) = v , f ∈ E1 and deg(γ ′) = sn+ t, so
by the induction hypothesis γ ′ = cse1 · · ·et . Since c has no exits, s( f ) = r(et) = s(et+1) implies f = et+1.
Thus γ = γ ′et+1 = cse1 · · ·et+1.

Now let γ,λ ∈ Path(E) with s(γ) = s(λ ) = v. If deg(γ) = deg(λ ) and γλ ∗ 6= 0, we have γλ ∗ =
cpe1 · · ·eke∗k · · ·e∗1c−p = v (using the result of the previous paragraph together with Remark 2.2.5). On the
other hand, deg(γ) > deg(λ ) and γλ ∗ 6= 0 imply γλ ∗ = cd+qe1 · · ·eke∗k · · ·e∗1c−q = cd , d ∈ N. In a similar
way, from deg(γ)< deg(λ ) and γλ ∗ 6= 0 follows γλ ∗ = cqe1 · · ·eke∗k · · ·e∗1c−q−d = c−d , d ∈ N.

For any α ∈ vLK(E)v, write α = ∑
p
i=1 kiγiβ

∗
i + kv, with ki,k ∈ K and γi,βi ∈ Path(E) such that s(γi) =

s(βi) = v for all 1 ≤ i ≤ p. Then, using what has been established in the previous paragraphs, we get
α = ∑

p
i=0 kicmi , where deg(γiβ

∗
i ) = min for some mi ∈ Z.

Define ϕ : K[x,x−1]→ LK(E) by setting ϕ(1) = v, ϕ(x) = c and ϕ(x−1) = c∗. It is a straightforward
routine to check that ϕ is a monomorphism of K-algebras with image vLK(E)v, so that vLK(E)v is isomor-
phic to the K-algebra K[x,x−1]. ut

We note that the isomorphism ϕ of the previous result is a graded isomorphism precisely when the cycle
c is a loop. Also, we note that Lemma 2.2.7 allows us to easily reestablish Proposition 1.3.4, namely, that
LK(R1) is isomorphic to K[x,x−1].

The following result provides a significant portion of the Reduction Theorem; effectively, it will allow
us to “reduce” various elements of LK(E) to a nonzero scalar multiple of a vertex.

Lemma 2.2.8. Let E be an arbitrary graph and K any field. Suppose that v is a vertex of E for which
T (v)∩Pc(E) = /0; in other words, for every w ∈ E0 for which v≥ w, w does not lie on a cycle without exits.
Let α := kv+∑

n
i=1 kiτi ∈ KE, where n ∈ N, k,ki ∈ K× and τi ∈ Path(E) \ {v} with s(τi) = r(τi) = v, for

which τi 6= τ j. Then there exists γ ∈ Path(E), with s(γ) = v, such that γ∗αγ = kr(γ).

Proof. We may suppose that 0 < deg(τ1) ≤ . . . ≤ deg(τn). Since the τi’s are paths starting and ending at
v, and T (v)∩Pc(E) = /0, there exists γ ∈ Path(E) such that τ1 = γτ ′ (with τ ′ ∈ Path(E)), s(γ) = v and
|s−1(r(γ))| > 1. For those values of i for which there exists τ ′i such that τi = γτ ′i we have γ∗τiγ = τ ′i γ;
otherwise γ∗τiγ = 0. After reordering the subindices we get γ∗αγ = kr(γ)+∑

m
i=1 kiτ

′
i γ , with m ≤ n. Let e

be the initial edge of τ ′1γ . Observe that s(τ ′1) = r(γ), and |s−1(r(γ))|> 1. So there exists f ∈ s−1(r(γ)) such
that f 6= e. We have

f ∗γ∗αγ f = kr( f )+
m

∑
i=2

ki f ∗τ ′i γ f ,

and, as an element of LK(E), f ∗τ ′i γ f is either a path in real edges, or is zero. Moreover, T (r( f ))∩Pc(E) = /0
as r( f ) ≤ v and T (v)∩Pc(E) = /0. Hence we have reached the same initial conditions, but using fewer
summands. So continuing in this way we eventually produce a nonzero multiple of a vertex. ut

Definitions 2.2.9 . A monomial e1 · · ·em f ∗1 · · · f ∗n in a path algebra KÊ over an extended graph Ê, where
ei, f j ∈ E1 and m,n ∈ Z+, is said to have degree in ghost edges (or simply ghost degree) equal to n.
Monomials in KE are said to have degree in ghost edges equal to 0. The degree in ghost edges of an
element of KÊ of the form ∑

n
i=1 kiγiλ

∗
i , with ki ∈ K×, denoted gdeg(∑n

i=1 kiγiλ
∗
i ), is defined to be the

maximum of the degree in ghost edges of the monomials γiλ
∗
i .
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Because the representation of an element α ∈ LK(E) as an element of the form ∑
n
i=1 kiγiλ

∗
i is not

uniquely determined, the direct extension of the notion of “degree in ghost edges” to elements of LK(E)
is not well-defined. However, we define the degree in ghost edges of an element α ∈ LK(E), also denoted
gdeg(α), to be the minimum of the degrees in ghost edges among all the representations of α as an expres-
sion ∑

n
i=1 kiγiλ

∗
i in KÊ as above.

Lemma 2.2.10. Let E be an arbitrary graph and K any field. Let α be an element of LK(E) with positive
degree in ghost edges and let e ∈ E1. Then gdeg(αe)< gdeg(α).

Proof. Let α = ∑
n
i=1 kiγiλ

∗
i , ki ∈ K×, be an expression of α in LK(E) with smallest degree in ghost edges.

Note that if the degree in ghost edges of a monomial γ jλ
∗
j is positive, then gdeg(γ jλ

∗
j e)< gdeg(γ jλ

∗
j ). The

result follows. ut

We now come to the key result of this section. Roughly speaking, this theorem says that any nonzero
element of a Leavitt path algebra may be “reduced”, via multiplication on the left and right by appropriate
paths, to either a nonzero K-multiple of a vertex, or to a monic polynomial in a cycle without exits, or to
both.

Theorem 2.2.11. (The Reduction Theorem) Let E be an arbitrary graph and K any field. For any nonzero
element α ∈ LK(E) there exist µ,η ∈ Path(E) such that either:

(i) 0 6= µ∗αη = kv, for some k ∈ K× and v ∈ E0, or
(ii) 0 6= µ∗αη = p(c), where c is a cycle without exits and p(x) is a nonzero polynomial in K[x,x−1].

Proof. The first step will be to show that for 0 6= α ∈ LK(E) there exists η ∈ Path(E) such that 0 6= αη ∈
KE. Let v∈E0 be such that αv 6= 0 (such a vertex v exists by Lemma 1.2.12(v)). Write αv=∑

r
i=1 αie∗i +α ′,

where αi ∈ LK(E)r(ei), α ′ ∈ (KE)v, ei ∈ E1, ei 6= e j for every i 6= j, and s(ei) = v for all 1≤ i≤ r.
Note that if gdeg(αv) = 0, then we are done.
Suppose otherwise that gdeg(αv) > 0. If αve j = 0 for every j ∈ {1, . . . ,r}, then multiplying the

equation αv = ∑
r
i=1 αie∗i + α ′ on the right by e j gives 0 = αve j = α j + α ′e j, so α j = −α ′e j, and

αv = ∑
r
i=1 (−α ′eie∗i )+α ′ = α ′((∑r

i=1 −eie∗i )+v) 6= 0. In particular, 0 6= (∑r
i=1 −eie∗i )+v and α ′ 6= 0. So

by (CK2) there exists f ∈ s−1(v)\{e1, . . . ,er}. Now, by the structure of KE, αv f = α ′ f ∈ KE \{0}, and
we have finished the proof of the first step.

On the other hand, suppose that there exists j ∈ {1, . . . ,r} such that αve j 6= 0. There is no loss of
generality if we consider j = 1. Then 0 6= αve1 = α1+α ′e1 = (α1+α ′e1)r(e1), where gdeg(α1+α ′e1)<
gdeg(αv) by Lemma 2.2.10. Repeating this argument a finite number of times, we reach η ∈ Path(E) with
αη ∈ KE \{0}.

Now pick 0 6= α ∈ LK(E). By the previous paragraph, we know that there exists η ∈ Path(E) such that
β := αη ∈ KE \{0}. Write β = ∑

s
i=1 kiγi, with ki ∈ K×, γi ∈ Path(E), and with r(γi) = r(η) =: v for every

i. We will prove the result by induction on s.
Suppose s = 1. If deg(γ1) = 0, then there is nothing to prove. If deg(γ1) > 0, then γ∗1 αη = γ∗1 β =

k1γ∗1 γ1 = k1r(γ1) 6= 0.
Now suppose the result is true for any element having at most s−1 summands. Write again β =∑

s
i=1 kiγi,

where ki ∈ K×, γi ∈ Path(E), γi 6= γ j if i 6= j and deg(γi) ≤ deg(γi+1) for every i ∈ {1, . . . ,s− 1}. Then
0 6= γ∗1 β = k1v+∑

s
i=2 kiγ

∗
1 γi.

If γ∗1 γi = 0 for some i ∈ {2, . . . ,s}, then apply the induction hypothesis to get the result. Otherwise,
0 6= µ := γ∗1 β = k1v+∑

s
i=2 kiµi, where the µi are paths starting and ending at v and satisfying 0< deg(µ2)≤

. . .≤ deg(µs). If T (v)∩Pc(E) = /0, then by Lemma 2.2.8 there exists a path τ such that τ∗γ∗1 αητ = τ∗µτ =
k1r(τ), and we are done. If T (v)∩Pc(E) 6= /0, then there is a path ρ starting at v such that w := r(ρ) is a
vertex in a cycle c without exits. In this case, 0 6= ρ∗γ∗1 αηρ = ρ∗µρ ∈ wLK(E)w, and by Lemma 2.2.7 the
proof is complete. ut

We note that both cases in The Reduction Theorem 2.2.11 can occur simultaneously: for instance, in
LK(R1) we have e∗e = v, which is simultaneously a vertex as well as the base of a cycle without exits.

The conclusion we obtained in the first step of the proof of the Reduction Theorem, and a consequence
of it, will be of great use later on, so we note them in the following two results.
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Corollary 2.2.12. Let E be an arbitrary graph and K any field. Let α be a nonzero element in LK(E).

(i) There exists η ∈ Path(E) such that 0 6= αη ∈ KE.
(ii) If α is a homogeneous element of LK(E), then there exists η ∈ Path(E) such that 0 6= αη is a homo-

geneous element of KE.

Corollary 2.2.13. Let E be an arbitrary graph and K any field. Let α be a nonzero homogeneous element
of LK(E). Then there exist µ,η ∈ Path(E), k ∈ K×, and v ∈ E0 such that 0 6= µ∗αη = kv.

In particular, every nonzero graded ideal of LK(E) contains a vertex.

Proof. By Corollary 2.2.12(ii) there exists η ∈ Path(E) for which 0 6= αη is a homogeneous element
in KE. So we may write αη = ∑

n
i=1 kiβi where ki ∈ K×, the βi are distinct paths in E, and the lengths

of the βi are equal. But then β ∗1 β1 = r(β1), while β ∗1 βi = 0 for all 2 ≤ i ≤ n by Lemma 1.2.12(i). Thus
β ∗1 αη = k1r(β1), as desired.

The particular statement follows immediately. ut

We noted in Examples 2.1.7 that the Leavitt path algebra LK(R1) contains infinitely many nontrivial
non-graded ideals. Since the single vertex of R1 acts as the identity element of LK(R1), none of these ideals
contains a vertex. The following result shows that the existence of ideals in LK(R1) which do not contain
any vertices is a consequence of the fact that the graph R1 contains a cycle without exits.

Proposition 2.2.14. Let E be a graph satisfying Condition (L) and K any field. Then every nonzero ideal
of LK(E) contains a vertex.

Proof. Let I be a nonzero ideal of LK(E), and let α be a nonzero element in I. Since E satisfies Condition
(L) then by the Reduction Theorem there exist µ,η ∈ Path(E) such that 0 6= µ∗αη = kv with v ∈ E0 and
k ∈ K×. This implies 0 6= v = k−1µ∗αη ∈ LK(E)ILK(E)⊆ I. ut

The converse of Proposition 2.2.14 is also true, as will be proved in Proposition 2.9.13.
Two results of fundamental importance which are direct consequences of the Reduction Theorem 2.2.11

are the following Uniqueness Theorems. These results can be considered as the analogs of the Gauge-
Invariant Uniqueness Theorem ([129, Theorem 2.2]) and the Cuntz-Krieger Uniqueness Theorem ([129,
Theorem 2.4]) for graph C*-algebras; see Section 5.2 below.

Theorem 2.2.15. (The Graded Uniqueness Theorem) Let E be an arbitrary graph and K any field. If A
is a Z-graded ring, and π : LK(E)→ A is a graded ring homomorphism with π(v) 6= 0 for every vertex
v ∈ E0, then π is injective.

Theorem 2.2.16. (The Cuntz-Krieger Uniqueness Theorem) Let E be an arbitrary graph which satisfies
Condition (L), let K be any field, and let A be any K-algebra. If π : LK(E)→ A is a ring homomorphism
with π(v) 6= 0 for every vertex v ∈ E0, then π is injective.

Proof of Theorems 2.2.15 and 2.2.16. We use the basic fact that the kernel of any ring homomorphism
is an ideal of the domain. For the Graded Uniqueness Theorem, as π is a graded homomorphism we have
that Ker(π) is a graded ideal of LK(E). Thus Ker(π) is either {0} or contains a vertex, by Corollary 2.2.13.
For the Cuntz-Krieger Uniqueness Theorem, we use Proposition 2.2.14 to conclude that Ker(π) is either
{0} or contains a vertex in this situation as well. Since the hypotheses of both statements presume that π

sends vertices to nonzero elements, the only option is Ker(π) = {0} in both cases. 2

We present now the first of many applications of the Uniqueness Theorems. Specifically, we use the
Graded Uniqueness Theorem 2.2.15 to show that any finite matrix ring over a Leavitt path algebra is itself
a Leavitt path algebra.

Definition 2.2.17. Given any graph E and positive integer n, we let MnE denote the graph formed from E
by taking each v ∈ E0 and attaching a “head” of length n−1 at v of the form

•vn−1
ev

n−1 // · · ·
ev

3 // •v2
ev

2 // •v1
ev

1 // •v



36 2 Two-sided ideals

Example 2.2.18. If E is the graph
•

��

•

•

??

// •
��

then M3E is the graph

• // • // •

��

• •oo •oo

• // • // •

??

// •
��

•oo •oo

Proposition 2.2.19. Let E be an arbitrary graph and K any field. Then there is an isomorphism of K-
algebras

LK(MnE)∼= Mn(LK(E)).

Proof. For 1 ≤ i, j ≤ n, we let Ei, j denote the element of Mn(K) having 1 in the (i, j)th position and 0’s
elsewhere. For a ∈ LK(E) we let aEi, j denote the element of Mn(LK(E)) having a in the (i, j)th position
and 0’s elsewhere. Note that (aEi, j)(bEk,l) = abEi, jEk,l in Mn(LK(E)).

For each v ∈ E0,e ∈ E1, and k ∈ {1, . . . ,n−1} define Qv,Qvk ,Te,T ∗e ,Tev
k
, and T ∗ev

k
by setting

Qv = vE1,1, Qvk = vEk+1,k+1, Te = eE1,1, T ∗e = e∗E1,1, Tev
k
= vEk+1,k, and T ∗ev

k
= vEk,k+1.

It is straightforward to verify that {Te,T ∗e ,Tev
k
,T ∗ev

k
| v∈ E0,e∈ E1,1≤ k≤ n−1}∪{Qv,Qvk | v∈ E0,1≤

k ≤ n−1} is an MnE-family in Mn(LK(E)). Thus by the Universal Property 1.2.5 there exists a K-algebra
homomorphism φ : LK(MnE)→Mn(LK(E)) for which

φ(v) = Qv, φ(vk) = Qvk , φ(e) = Te, φ(e∗) = T ∗e , φ(ekv) = Tev
k
, and φ(e∗kv) = T ∗ev

k
.

To see that φ is onto, it suffices to show that vEi, j and eEi, j are in the K-subalgebra of Mn(LK(E))
generated by {Qw,Tf ,T ∗f | f ∈MnE1,w ∈MnE0} for all v ∈ E0, e ∈ E1, and 1 ≤ i, j ≤ n. Straightforward
computations yield that

vEi,i =

{
Qv if i = 1
Qvi−1 if i≥ 2,

that for i > j we have

vEi, j = (vEi,i−1)(vEi−1,i−2) · · ·(vE j+1, j) = Tev
i−1

Tev
i−2
· · ·Tev

j
,

and that for i < j we have

vEi, j = (vEi,i+1)(vEi+1,i+2) · · ·(vE j−1, j) = T ∗ev
i
T ∗ev

i+1
· · ·T ∗ev

j−1
.

So each vEi, j is in the appropriate subalgebra. In addition, for any e ∈ E1 and 1≤ i, j ≤ n we have

eEi, j = (s(e)Ei,1)(eE1,1)(r(e)E1, j) = Tev
i−1
· · ·Tev

1
TeT ∗ev

1
· · ·T ∗ev

j−1
.

Thus φ is onto.
When R is a Z-graded ring, there are a number of ways to use the grading to build a Z-grading on Mn(R).

Here we will use the following grading on Mn(R): for x ∈ Rt , the degree of xEi, j is defined to be t +(i−
j). It is straightforward to establish that, with respect to this grading on Mn(LK(E)), the homomorphism
φ described above is in fact Z-graded. (Note, for example, that in this grading we have deg(φ(ev

k)) =
deg(Tev

k
)= deg(vEk+1,k)= 0+((k+1)−k)= 1= deg(ekv).) Since for each vertex v in MnE we have φ(v) 6=

0, we conclude by the Graded Uniqueness Theorem 2.2.15 that φ is injective, and thus an isomorphism. ut
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The next result is similar in flavor to the two Uniqueness Theorems.

Proposition 2.2.20. Let E be an arbitrary graph and K any field. Let A be a Z-graded K-algebra and let
π : LK(E)→ A be a (not necessarily graded) K-algebra homomorphism for which π(v) 6= 0 for every vertex
v ∈ E0, and for which π maps each cycle without exits in E to a nonzero homogeneous element of nonzero
degree in A. Then π is injective.

Proof. By hypothesis, Ker(π) is an algebra ideal of LK(E) which does not contain vertices. If Ker(π)
is nonzero, then by the Reduction Theorem Ker(π) contains a nonzero element p(c), where p(x) =
∑

n
i=m kixi ∈ K[x,x−1] and c is a cycle without exits. Let q(x) = x−m p(x) ∈ K[x]; then q(c) = c−m p(c) =

∑
n−m
i=0 ki+mci ∈ Ker(π). So 0 = π(q(c)) = q(π(c)) = ∑

n−m
i=0 ki+mπ(c)i. But this is impossible since π(c) is a

nonzero homogeneous element of nonzero degree in A. ut

We finish out the section by giving a direct application of the Graded Uniqueness Theorem, in which
we demonstrate an embedding of Leavitt path algebras corresponding to naturally arising subgraphs F of
a given graph E.

Definition 2.2.21. (The restriction graph) Let E be an arbitrary graph, and let H be a hereditary subset of
E0. We denote by EH the restriction graph:

E0
H := H, E1

H := {e ∈ E1 | s(e) ∈ H},

and the source and range functions in EH are simply the source and range functions in E, restricted to H.

Proposition 2.2.22. Let E be an arbitrary graph and K any field. Let H be a hereditary subset of E0.

(i) Consider the assignment
v 7→ v, e 7→ e, and e∗ 7→ e∗

(for v ∈ E0
H and e ∈ E1

H ), which maps elements of LK(EH) to elements of LK(E). Then this assignment
extends to a Z-graded monomorphism of Leavitt path algebras ϕ : LK(EH)→ LK(E).

(ii) If H is finite, then ϕ(LK(EH)) = pHLK(E)pH , where pH := ∑v∈H v ∈ LK(E).

Proof. (i) Consider these elements of LK(E): av = v, ae = e, and be = e∗ for v ∈ E0
H ,e ∈ E1

H . Then by
definition we have that the set {av,ae,be} is an EH -family in LK(E), so the indicated assignment extends to
a K-algebra homomorphism ϕ : LK(EH)→ LK(E) by the Universal Property 1.2.5. That ϕ is a graded ho-
momorphism is clear from the definition of the grading on LK(EH) and LK(E). That ϕ is a monomorphism
then follows from an application of the Graded Uniqueness Theorem 2.2.15.

(ii) We show that (ii) follows from (i). Since every element in LK(E) is a K-linear combination of
elements of the form γλ ∗ with γ,λ ∈ Path(E), then every element in pHLK(E)pH is a K-linear combination
of elements γλ ∗, with γ,λ ∈ Path(E) having s(γ),s(λ )∈H. Thus γλ ∗ ∈ Im(ϕ). The containment Im(ϕ)⊆
pHLK(E)pH is immediate using that pH is the multiplicative identity of LK(EH). ut

2.3 Additional consequences of the Reduction Theorem

As part of the power of the Reduction Theorem 2.2.11 we will see that every Leavitt path algebra is
semiprime, semiprimitive, and nonsingular. Numerous additional applications of the Reduction Theorem
will be presented throughout the sequel.

Recall that a ring R is said to be semiprime if, for every ideal I of R, I2 = 0 implies I = 0. A ring R is
said to be semiprimitive in case the Jacobson radical J(R) of R is zero.

Proposition 2.3.1. Let E be an arbitrary graph and K any field. Then the Leavitt path algebra LK(E) is
semiprime.
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Proof. Let I be a nonzero ideal of LK(E), and consider a nonzero element α ∈ I. By the Reduction Theorem
2.2.11, there exist γ,λ ∈ Path(E) such that γ∗αλ = kv or γ∗αλ = p(c) ∈ wLK(E)w, where k ∈ K×, v,w ∈
E0, c ∈ Pc(E) and w ∈ c0. Then kv ∈ I or p(c) ∈ I. Observe that since (kv)2 = k2v 6= 0 and (p(c))2 6= 0 (use
that wLK(E)w has no nonzero zero divisors, by Lemma 2.2.7), I2 6= 0 and hence LK(E) is semiprime. ut

Proposition 2.3.2. Let E be an arbitrary graph and K any field. Then the Leavitt path algebra LK(E) is
semiprimitive.

Proof. Denote by J the Jacobson radical of LK(E), and suppose there is a nonzero element α ∈ J. By
the Reduction Theorem 2.2.11, there exist µ,η ∈ Path(E) such that 0 6= µ∗αη = kv or µ∗αη = p(c) ∈
wLK(E)w, where k ∈ K×, v,w ∈ E0, c ∈ Pc(E) and w ∈ c0. In the first case we would have v ∈ J, but this
is not possible, as the Jacobson radical of any ring contains no nonzero idempotents. In the second case,
let u denote s(c). Then µ∗αη is a nonzero element in J ∩ uLK(E)u, which coincides with the Jacobson
radical of uLK(E)u by [99, §III.7, Proposition 1]. But by Lemma 2.2.7 uLK(E)u ∼= K[x, x−1] which has
zero Jacobson radical. In both cases we get a contradiction, hence J = {0}. ut

We note that Proposition 2.3.2 indeed directly implies Proposition 2.3.1, as it is well known that any
semiprimitive ring is semiprime. We have included Proposition 2.3.1 simply to provide an additional ex-
ample of the power of the Reduction Theorem.

We present here a second approach to establishing that every Leavitt path algebra is semiprimitive. This
approach makes use of an extension of an unpublished result of Bergman [50] about the Jacobson radical
of unital Z-graded rings; this extension (the following result) may be of interest in its own right.

Lemma 2.3.3. Let R be a Z-graded ring that contains a set of local units consisting of homogeneous
elements of degree 0. Then the Jacobson radical J(R) of R is a graded ideal of R.

Proof. Given x ∈ J(R), decompose x into its homogeneous components: x = x−n + · · ·+ x−1 + x0 + x1 +
· · ·+xn, where n ∈N (and xi can be zero). Let u be a homogeneous local unit (of degree 0) for each xi, i.e.,
uxiu = xi. Then clearly uxu = x, and we get

x = uxu = ux−nu+ · · ·+ux−1u+ux0u+ux1u+ · · ·+uxnu

is also a decomposition of x into its homogeneous components inside the unital ring uRu, so that xi = uxiu
for every i ∈ {−n, . . . ,−1,0,1, . . .n}. As the corner uRu is also a Z-graded ring, and as J(uRu) = uJ(R)u,
the displayed equation yields a decomposition of the element x in the Jacobson radical of uRu, which is a
graded ideal of the Z-graded unital ring uRu (see [120, 2.9.3 Corollary], or the aforementioned unpublished
result of Bergman). Therefore every xi is in J(uRu), and, consequently, in J(R). ut

A second proof of Proposition 2.3.2. By Lemma 2.3.3 and Corollary 2.2.13, if the Jacobson radical of
LK(E) were nonzero, then it would contain a vertex, hence a nonzero idempotent, which is impossible. 2

Definitions 2.3.4 . Let R be a ring and x ∈ R. The left annihilator of x in R, denoted by lanR(x) (or more
simply by lan(x) if the ring R is understood), is the set {r ∈ R | rx = 0}. A left ideal I of R is said to be
essential if I∩ I′ 6= 0 for every nonzero left ideal I′ of R. In this situation we write I /l

e R. The set

Zl(R) = {x ∈ R | lan(x) /l
e R},

which is an ideal of R (see [108, Corollary 7.4]), is called the left singular ideal of R. The ring R is called
left nonsingular if Zl(R) = {0}. Right nonsingular rings are defined similarly, while nonsingular means
that R is both left and right nonsingular.

A very useful tool to overcome the lack of a unit element in a ring or algebra, and to translate problems
from a non-unital context to a unital one, are local rings at elements. This notion was first introduced in
the context of associative algebras in [80]. We refer the reader to [84] for a fuller account of the transfer of
various properties between rings and their local rings at elements.

Definition 2.3.5. Let R be a ring and let a ∈ R. The local ring of R at a is defined as Ra = aRa, with sum
inherited from R, and product given by axa �aya = axaya.
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Notice that if e is an idempotent in the ring R, then the local ring of R at e is just the corner eRe. The
following result can be found in [84].

Lemma 2.3.6. Let R be a semiprime ring. Then:

(i) If a ∈ Zl(R), then Zl(Ra) = Ra.
(ii) Zl(Ra)⊆ Zl(R).

(iii) R is left nonsingular if and only if Ra is left nonsingular for every a ∈ R.

Proposition 2.3.7. Let E be an arbitrary graph and K any field. Then LK(E) is nonsingular.

Proof. Suppose that the left singular ideal Zl(LK(E)) contains a nonzero element α . By the Reduction
Theorem there exist γ,µ ∈ Path(E) such that 0 6= γ∗αµ ∈ Kv for some vertex v ∈ E0, or 0 6= γ∗αµ ∈
uLK(E)u∼= K[x,x−1] (by Lemma 2.2.7), where u is a vertex in a cycle without exits. Since, for any ring R,
Zl(R) is an ideal of R and does not contain nonzero idempotents, the first case cannot happen.

In the second case, denote by β the nonzero element γ∗αµ ∈ Zl(LK(E)), and for notational convenience
denote LK(E) by L. Then, by Lemma 2.3.6(i) (which can be applied due to Proposition 2.3.1), Zl(Lβ ) = Lβ .
It is not difficult to see that Lβ = (Lu)β

, and therefore, Zl((Lu)β
) = (Lu)β

. Note that Lu ∼= K[x, x−1], which
is a nonsingular ring. This implies, by Lemma 2.3.6(iii), that every local algebra of Lu at an element is left
nonsingular; in particular, Lβ = Zl(Lβ ) = 0. Now the semiprimeness of L yields β = 0, a contradiction.

The right nonsingularity of LK(E) follows from Corollary 2.0.9. ut

2.4 Graded ideals: basic properties and quotient graphs

In this section we present a description of the graded ideals of a Leavitt path algebra. The main goal here
(Theorem 2.4.8) is to show that every graded ideal can be constructed from a hereditary saturated subset of
E0, possibly augmented by a set of breaking vertices (cf. Definition 2.4.4). With this information in hand,
we then proceed to analyze the quotient algebra LK(E)/I for a graded ideal I. Specifically, we show in
Theorem 2.4.15 that there exists a graph F for which LK(E)/I ∼= LK(F) as Z-graded K-algebras.

This introductory analysis of the graded ideal structure will provide a foundation for the remaining
results of Chapter 2. Looking forward, we will use the ideas of this section to explicitly describe the lattice
of graded ideals of LK(E) in terms of graph-theoretic properties; to show how graded ideals of LK(E) are
themselves Leavitt path algebras in their own right; and how the graded ideals, together with various sets of
cycles in E and polynomials in K[x], provide complete information about the lattice of all ideals of LK(E).

We start by presenting a description of the elements in the ideal generated by a hereditary subset of
vertices.

Lemma 2.4.1. Let E be an arbitrary graph and K any field. Let H be a hereditary subset of E0. Then the
ideal I(H) of LK(E) consists of elements of LK(E) of the form

I(H) =

{
n

∑
i=1

kiγiλ
∗
i | n≥ 1, ki ∈ K, γi,λi ∈ Path(E) such that r(γi) = r(λi) ∈ H

}
.

Moreover, if H denotes the saturated closure of H, then I(H) = I(H).

Proof. Let J denote the set presented in the display. To see that J is an ideal of LK(E) we need to show
that for every element of the form αβ ∗, where r(α) = r(β ) = u ∈ H, and for every a,b ∈ LK(E), we
have aαuβ ∗b ∈ J. Taking into account statements (i) and (iii) of Lemma 1.2.12, it is enough to prove that
γλ ∗uµη∗ ∈ J for every γ,λ ,µ,η ∈ Path(E) and u ∈ H.

If γλ ∗uµη∗ = 0 we are done. Suppose otherwise that γλ ∗uµη∗ 6= 0. By Lemma 1.2.12(i), γλ ∗uµη∗ =
γµ ′η∗ if µ = λ µ ′, or γλ ∗uµη∗ = γ(λ ′)∗η∗ if λ = µλ ′. Note that u = s(µ) and H hereditary imply r(µ) ∈
H, therefore, r(µ ′) = r(µ) ∈ H in the first case, and r(λ ′) = r(µ) ∈ H in the second case, which imply
γλ ∗uµη∗ ∈ J in both cases. This shows that J is an ideal of LK(E); as it contains H and must be contained
in every ideal containing H, it must coincide with I(H).
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Now we prove I(H)= I(H). Clearly I(H)⊆ I(H). Conversely, we will show by induction that Hn⊆ I(H)
for every n ∈ Z+ (where the notation Hn is as in Lemma 2.0.7). For n = 0 there is nothing to prove,
as H0 = T (H) = H ⊆ I(H). Suppose Hn−1 ⊆ I(H) and take u ∈ Hn. Then s−1(u) = {e1, . . . ,em}, and so
{r(ei)|1≤ i≤m}= r(s−1(u))⊆Hn−1, which is contained in I(H) by the induction hypothesis. This means
u = ∑

m
i=1 eie∗i = ∑

m
i=1 eir(ei)e∗i ∈ I(H) and the proof is complete. ut

Corollary 2.4.2. Let E be an arbitrary graph and K any field. Let H be a nonempty hereditary subset of
E0. Then for every nonzero homogeneous x ∈ I(H) there exist α,β ∈ Path(E) such that α∗xβ = ku for
some k ∈ K× and u ∈ H.

Proof. Given the nonzero homogeneous element x∈ I(H), apply Corollary 2.2.13 to choose λ ,µ ∈ Path(E)
such that k−1λ ∗xµ = v for some k ∈ K× and v ∈ E0. Since x ∈ I(H) this equation gives that v ∈ I(H). So
by Lemma 2.4.1 we may write v = ∑

m
i=1 k′iλiµ

∗
i with k′i ∈ K× and λi,µi ∈ Path(E) with r(λi) = r(µi) ∈ H.

Then 0 6= r(µ1) = µ∗1 µ1 = µ∗1 vµ1 = k−1µ∗1 λ ∗xµµ1 ∈H, so that r(µ1) = u, µ∗1 λ ∗ = α∗ and µµ1 = β satisfy
the assertion. ut

The following result demonstrates the natural, fundamental connection between the (CK1) and (CK2)
condition on the elements of LK(E) on the one hand, and the ideal structure of LK(E) on the other. Recall
the definition of the set HE of hereditary saturated subsets of E given in Definitions 2.0.5.

Lemma 2.4.3. Let E be an arbitrary graph and K any field. Let I be an ideal of LK(E). Then I∩E0 ∈HE .

Proof. Let v,w ∈ E0 be such that v ≥ w, and v ∈ I. So there exists a path p ∈ Path(E) with v = s(p) and
w = r(p). Then Lemma 1.2.12(i) implies that w = p∗p = p∗vp ∈ I. This shows that I∩E0 is hereditary.

Now let u ∈ Reg(E), and suppose r(e) ∈ I for every e ∈ s−1(u). By (CK2), u = ∑e∈s−1(u) ee∗ =
∑e∈s−1(u) er(e)e∗ ∈ I. Thus I∩E0 is saturated. ut

One eventual goal in our study of the graded ideals in a Leavitt path algebra is the Structure Theorem
for Graded Ideals 2.5.8. The idea is to associate with each graded ideal of LK(E) some data inherent in
the underlying graph. The previous lemma establishes a first connection of this type. The following graph-
theoretic idea will provide a key ingredient in this association.

Definitions 2.4.4. Let E be an arbitrary graph and K any field. Let H be a hereditary subset of E0, and let
v ∈ E0. We say that v is a breaking vertex of H if v belongs to the set

BH := {v ∈ E0 \H | v ∈ Inf(E) and 0 < |s−1(v)∩ r−1(E0 \H)|< ∞}.

In words, BH consists of those vertices of E which are infinite emitters, which do not belong to H, and
for which the ranges of the edges they emit are all, except for a finite (but nonzero) number, inside H. For
v ∈ BH , we define the element vH of LK(E) by setting

vH := v− ∑
e∈s−1(v)∩r−1(E0\H)

ee∗.

We note that any such vH is homogeneous of degree 0 in the standard Z-grading on LK(E). For any subset
S⊆ BH , we define SH ⊆ LK(E) by setting SH = {vH | v ∈ S}.

Of course a row-finite graph contains no breaking vertices, so that this concept does not play a role in
the study of the Leavitt path algebras arising from such graphs.

Remark 2.4.5. Let E be an arbitrary graph. It is easy to show both that B /0 = /0, and that BE0 = /0. The latter
is trivial, while the former follows by noting that |s−1(v)∩ r−1(E0 \ /0)|= ∞ for any v ∈ Inf(E).

To clarify the concept of a breaking vertex, we revisit the infinite clock graph CN of Example 1.6.12.
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Let U denote the set {ui | i ∈ N} = C0
N \ {v}. Let H be a subset of U . Since the elements of H are sinks

in E, H is clearly hereditary. If U \H is infinite, or if H =U , then BH = /0. On the other hand, if U \H is
finite, then BH = {v}, and in this situation, vH = v−∑{i | r(ei)∈U\H} eie∗i .

For any hereditary subset H of a graph E, and for any S ⊆ BH , the ideal I(H ∪SH) of LK(E) is graded,
as it is generated by elements of LK(E) of degree zero (see Remark 2.1.2). We describe more explicitly this
ideal in the following result.

Lemma 2.4.6. Let E be an arbitrary graph and K any field. Let H be a hereditary subset of vertices of E,
and S a subset of BH . Then

I(H ∪SH) = spanK({γλ
∗ | γ,λ ∈ Path(E) such that r(γ) = r(λ ) ∈ H})

+ spanK({αvH
β
∗ | α,β ∈ Path(E) and v ∈ S}).

Moreover, the first summand equals I(H), while the second summand (call it J) is a subalgebra of LK(E)
for which I(SH)⊆ I(H)+ J.

Proof. Clearly I(H ∪SH) = I(H)+ I(SH). Moreover, by virtue of Lemma 2.4.1, the first summand in the
displayed formula of the statement coincides with I(H).

Now we study I(SH). Take v ∈ S, and denote the set s−1(v)∩ r−1(E0 \H) by { f1, . . . , fn}, where n ∈ N.
For each e ∈ E1 we compute e∗vH and vHe. If s(e) 6= v, then e∗vH = vHe = 0. Otherwise, if s(e) = v, we
distinguish two cases. If e = f j for some j, then e∗vH = e∗(v−∑

n
i=1 fi f ∗i ) = f ∗j v− f ∗j f j f ∗j = f ∗j − f ∗j = 0,

and, as well, vHe= (v−∑
n
i=1 fi f ∗i )e= v f j− f j f ∗j f j = f j− f j = 0. If on the other hand e 6∈ { f1, . . . , fm}, then

e ∈ s−1(v)∩ r−1(H), so that r(e) ∈ H, and e∗vH = e∗ = r(e)e∗ ∈ I(H). Similarly, vHe = e = er(e) ∈ I(H).
This means that for α,β ∈ Path(E) we have either α∗vH = 0, or α∗vH = α∗ ∈ I(H); similarly, either
vHβ = 0 or vHβ = β ∈ I(H). In either case the resulting product is in I(H), and so I(SH) ⊆ I(H)+ J. To
see that J is a subalgebra, apply the previous calculation and use that HvH = vHH = 0 for every v ∈ S. This
finishes our proof because I(H)+ J ⊆ I(H)+ I(SH). ut

Here is a useful application of Lemma 2.4.6.

Proposition 2.4.7. Let E be an arbitrary graph and K any field. Let {Hi}i∈Λ be a family of hereditary
pairwise disjoint subsets of a graph E. Then

I
(
t

i∈Λ
Hi

)
= I
(
t

i∈Λ
Hi

)
= ⊕

i∈Λ

I(Hi) = ⊕
i∈Λ

I
(
Hi
)
.

Proof. The final equality follows from Lemma 2.4.1. It is easy to see that the union of any family of
hereditary subsets is again hereditary, hence H := ∪

i∈Λ
Hi is a hereditary subset of E0. Thus the first equality

also follows from Lemma 2.4.1.
By Lemma 2.4.1 every element x in I(H) can be written as x = ∑

n
l=1 klαlβ

∗
l , where kl ∈ K×, αl ,βl ∈

Path(E) and r(αl) = r(βl) ∈ H. Separate the vertices appearing as ranges of the αl’s depending on the
Hi’s they belong to, and apply again Lemma 2.4.1. This gives x ∈ ∑

i∈Λ

I(Hi), so that I(H) ⊆ ∑
i∈Λ

I(Hi). The

containment ∑
i∈Λ

I(Hi)⊆ I(H) is clear.

So all that remains is to show that the sum ∑
i∈Λ

I(Hi) is direct. If this is not the case, there exists j ∈ Λ

such that I(H j)∩ ∑
j 6=i∈Λ

I(Hi) 6= 0. Since for every l, I(Hl) is a graded ideal, we get that I(H j)∩ ∑
j 6=i∈Λ

I(Hi) is
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a graded ideal as well, so there exists a nonzero homogeneous element y∈ I(H j)∩ ∑
j 6=i∈Λ

I(Hi). By Corollary

2.4.2 there exist α,β ∈ Path(E) and k ∈ K× such that 0 6= k−1α∗yβ = w ∈H j. Observe that w also belongs
to I( ∪

j 6=i∈Λ
Hi). Write w = ∑

n
l=1 klαlβ

∗
l , with kl ∈ K×, αl ,βl ∈ Path(E), and r(αl) = r(βl) ∈ ∪

j 6=i∈Λ
Hi. Then

0 6= r(β1) = β ∗1 β1 = β ∗1 wβ1 ∈ ∪
j 6=i∈Λ

Hi. On the other hand, s(α1) = w ∈H j implies (since H j is a hereditary

set) r(α1) ∈ H j; therefore, r(α1) = r(β1) ∈ H j ∩
(
∪

j 6=i∈Λ
Hi

)
, a contradiction. ut

We now deepen the connection between graded ideals of LK(E) and various subsets of E0.

Theorem 2.4.8. Let E be an arbitrary graph and K any field. Then every graded ideal I of LK(E) is gener-
ated by H ∪SH , where H = I∩E0 ∈HE , and S = {v ∈ BH | vH ∈ I}.

In particular, every graded ideal of LK(E) is generated by a set of homogeneous idempotents.

Proof. It is immediate to see that I(H ∪SH)⊆ I. Now we show I ⊆ I(H ∪SH). As I is a graded ideal, it is
enough to consider nonzero homogeneous elements of the form α = αv of I, where v ∈ E0.

We will prove αv ∈ I(H ∪ SH) by induction on the degree in ghost edges of the elements in I (recall
Definitions 2.2.9). Suppose first gdeg(α) = 0. Then, α = ∑

m
i=1 kiγi, with ki ∈ K×, m ∈ N, and γi ∈ Path(E)

with r(γi) = v. As α is a homogeneous element, we may consider those γi’s having the same degree (i.e.,
length) as that of α . Moreover, we may suppose all the γi’s are distinct, hence γ∗i γ j = 0 for i 6= j by Lemma
1.2.12(i). Then for every j, k−1

j γ∗j αv = k−1
j γ∗j (∑

m
i=1 kiγi) = k−1

j k jγ
∗
j γ j = r(γ j) = v∈ I∩E0 = H. This means

αv ∈ I(H)⊆ I(H ∪SH).
We now suppose the result is true for appropriate elements of LK(E) having degree in ghost edges

strictly less than n∈N, and prove the result for gdeg(αv) = n. Write αv = ∑
m
i=1 µie∗i +λ , with µi ∈ LK(E),

ei ∈ E1 and λ ∈ KE, in such a way that this is a representation of αv of minimal degree in ghost edges.
If λ = 0 then for every i we have αvei = µi, which is in I(H ∪SH) by the induction hypothesis, and we

have finished. Hence, we may assume that λ 6= 0.
As α is homogeneous, we may choose µi and λ to be homogeneous as well. Write λ = ∑

n
l=1 klλl for

some kl ∈ K× and λl distinct paths of the same length. We first observe that v cannot be a sink because
e∗i = e∗i v implies v = s(ei) for every i; in particular, s−1(v) 6= /0. Choose f ∈ s−1(v). If e∗i f = 0 for every i,
then αv f = λ f , which is in I(H ∪ SH) by the previous case. Otherwise, suppose e∗j f 6= 0 for some j. By
(CK1) this happens precisely when f = e j, and hence αv f = (∑m

i=1 µie∗i +λ ) f = µ je∗j f +λ f = µ j +λ f ,
which lies in I(H ∪ SH) by the induction hypothesis. (Note that the induction hypothesis can be applied
because gdeg(µ j+λ f )< gdeg(αv).) In any case, αv f ∈ I(H∪SH). Now, if v is not an infinite emitter then
αv=α ∑ f∈s−1(v) f f ∗ ∈ I(H∪SH). If v is an infinite emitter, then either v∈H, in which case αv∈ I(H∪SH),
or v /∈H, in which case v ∈ BH , as follows. For any f ∈ s−1(v)∩ r−1(E0 \H), observe that f must coincide
with some ei because otherwise α f = ∑

m
i=1 µie∗i f +λ f = λ f ∈ I would imply r( f ) = f ∗ f = f ∗k−1

1 λ ∗1 λ f ∈
I∩E0 = H, a contradiction. Thus s−1(v)∩ r−1(E0 \H)⊆ {ei | 1≤ i≤ m}, and so v ∈ BH .

Now write αv = αvH +α ∑{ f∈s−1(v)∩r−1(E0\H)} f f ∗. Since α f ∈ I(H∪SH) for all f ∈ s−1(v)∩r−1(E0 \
H), to show that αv ∈ I(H ∪SH), it is enough to show that v ∈ S. We compute

e∗i vH = e∗i (v− ∑
f∈s−1(v)∩r−1(E0\H)

f f ∗) =

{
0 if ei ∈ s−1(v)∩ r−1(E0 \H)

e∗i v if ei ∈ s−1(v)∩ r−1(H).

In the second of these two cases, s(e∗i ) = r(ei) ∈ H. In either case e∗i vH ∈ I(H).
But αvH ∈ I and e∗i vH ∈ I imply λvH ∈ I, hence k1vH = λ ∗1 (λvH) ∈ I, therefore vH ∈ I and so v ∈ S as

desired. ut

Proposition 2.4.9 is an immediate consequence of Theorem 2.4.8.

Proposition 2.4.9. Let E be a row-finite graph and K any field. Then every graded ideal I of LK(E) is
generated by a hereditary and saturated subset of E0, specifically, I = I(I∩E0).
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Let (A,∗) be an algebra with involution. An ideal I of A is said to be self-adjoint if y∗ ∈ I whenever
y ∈ I. Not every ideal in a Leavitt path algebra is self-adjoint. For instance, consider an arbitrary field K
and let E be the graph R1. Then the ideal I of LK(E) generated by v+ e+ e3 is not self-adjoint, as follows.
Identify LK(R1) and K[x,x−1] via the isomorphism given in Proposition 1.3.4. Our statement rephrased
says that I(1+x+x3) is not a self-adjoint ideal, which is clear as otherwise we would have 1+x−1+x−3 ∈
I(1+x+x3), which would give x3(1+x−1 +x−3) = 1+x2 +x3 ∈ I, which is impossible by an observation
made in Remark 2.1.6.

By observing that any ideal in an arbitrary graded ring with involution which is generated by a set of
self-adjoint elements is necessarily self-adjoint, we record this consequence of Theorem 2.4.8.

Corollary 2.4.10. Let E be an arbitrary graph and K any field. If I is a graded ideal of LK(E), then
I = I(X) for some set X of homogeneous self-adjoint idempotents in LK(E). Specifically, every graded
ideal of a Leavitt path algebra is self-adjoint.

The converse to Corollary 2.4.10 does not hold. For instance, the ideal I = I(v+ e) of LK(R1) is self-
adjoint, as v + e∗ = e∗(v + e) ∈ I. However, I is not graded, as noted in Examples 2.1.7. Indeed, this
same behavior is exhibited by any ideal of LK(R1) of the form I(p(e)), where p(x) ∈ K[x,x−1] is not
homogeneous and has the property that p(x)∗ = xn p(x) for some integer n.

In the next section we will strengthen Theorem 2.4.8 to show that in fact there is a bijection between the
graded ideals of LK(E) and pairs of the form (H,SH). In order to establish that distinct pairs of this form
correspond to distinct graded ideals, we analyze the K-algebras which arise as quotients of a Leavitt path
algebra by graded ideals. As we shall see, such quotients turn out to be Leavitt path algebras in their own
right.

Definition 2.4.11. (The quotient graph by a hereditary subset) Let E be an arbitrary graph, and let H be
a hereditary subset of E0. We denote by E/H the quotient graph of E by H, defined as follows:

(E/H)0 = E0 \H, and (E/H)1 = {e ∈ E1 | r(e) 6∈ H}.

The range and source functions for E/H are defined by restricting the range and source functions of E to
(E/H)1.

We anticipate the following result with a brief discussion. We will show that the quotient algebra
LK(E)/I(H ∪ SH) is isomorphic to a relative Cohn path algebra for the quotient graph E/H (with respect
to an appropriate subset of vertices), and then subsequently apply Proposition 2.1.10. The intuitive idea
underlying Theorem 2.4.12 is as follows. Let H be a hereditary saturated subset of E0. Then the break-
ing vertices BH of H are precisely the infinite emitters in E which become regular vertices in E/H. If
S ⊆ BH , and we consider the ideal I(H ∪ SH) of LK(E), then we are imposing relation (CK2) only on the
vertices corresponding to S in the quotient ring LK(E)/I(H∪SH). So it is natural to expect that the quotient
LK(E)/I(H ∪SH) will be a relative Cohn path algebra with respect to the set X = (Reg(E)\H)∪S.

Theorem 2.4.12. Let E be an arbitrary graph and K any field. Let H ∈HE , S ⊆ BH , and X = (Reg(E)\
H)∪S. Then there exists a Z-graded isomorphism of K-algebras

Ψ : LK(E)/I(H ∪SH)→CX
K (E/H).

Proof. We consider the assignment (which we denote by Ψ ) of elements of the set E0 ∪E1 ∪ (E1)∗ with
specific elements of CX

K (E/H) given as follows: for each v ∈ E0 and e ∈ E1,

Ψ(v) =

{
v if v /∈ H
0 otherwise,

Ψ(e) =

{
e if r(e) /∈ H
0 otherwise,

and Ψ(e∗) =

{
e∗ if s(e∗) /∈ H
0 otherwise.

Using this assignment, a set of straightforward computations yields that the collection

{Ψ(v),Ψ(e),Ψ(e∗) | v ∈ E0,e ∈ E1}
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is an E-family in CX
K (E/H). So by the Universal Property of LK(E) 1.2.5 there is a unique extension of Ψ

to a K-algebra homomorphism
Ψ : LK(E)→CX

K (E/H).

We note that Ψ is indeed a Z-graded homomorphism, as clearly Ψ preserves the grading of each of the
generators of LK(E). By the definition of E/H, it is immediate that Ψ is surjective. As well, Ψ is clearly 0
on I(H). But we also have that Ψ(vH) = 0 for v ∈ S, because S⊆ X . Consequently, there is an induced map

Ψ : LK(E)/I(H ∪SH)→CX
K (E/H).

We now define an inverse map for Ψ . The map Φ is defined as follows: for v ∈ (E/H)0 and e ∈ (E/H)1,
set

Φ(v) = v+ I(H ∪SH), Φ(e) = e+ I(H ∪SH), and Φ(e∗) = e∗+ I(H ∪SH).

By the Universal Property of CX
K (E/H) 1.5.10, Φ extends to a K-algebra homomorphism Φ : CX

K (E/H)→
LK(E)/I(H ∪ SH). It is then straightforward to verify that the compositions Φ ◦Ψ and Ψ ◦Φ give the
identity on the canonical generators, and therefore give the identity on the corresponding algebras. ut

Here are two specific consequences of Theorem 2.4.12.

Corollary 2.4.13. Let K be any field.

(i) Suppose E is a row-finite graph, and H ∈ HE . Then LK(E)/I(H) ∼= LK(E/H) as Z-graded K-
algebras.

(ii) If E is an arbitrary graph and H ∈HE , then

LK(E)/I(H ∪BH
H)
∼= CReg(E/H)

K (E/H) = LK(E/H).

Proof. (i) In this case S = /0, so that X = Reg(E)\H, and thus CX
K (E/H) = LK(E/H). Now apply Theorem

2.4.12.
(ii) We set S = BH . Then X = (Reg(E) \H))∪BH = Reg(E/H), so that Theorem 2.4.12 yields the

isomorphism. ut

Theorem 2.4.12 gives a description of the quotient of a Leavitt path algebra by a graded ideal as a relative
Cohn path algebra. But by defining a new type of quotient graph, we can in fact describe the quotient of a
Leavitt path algebra by a graded ideal as the Leavitt path algebra over this new graph.

Definition 2.4.14. (The quotient graph incorporating breaking vertices) Let E be an arbitrary graph,
H ∈HE , and S⊆ BH . We denote by E/(H,S) the quotient graph of E by (H,S), defined as follows:

(E/(H,S))0 = (E0 \H)∪{v′ | v ∈ BH \S},

(E/(H,S))1 = {e ∈ E1 | r(e) /∈ H}∪{e′ | e ∈ E1 and r(e) ∈ BH \S},

and range and source maps in E/(H,S) are defined by extending the range and source maps in E when
appropriate, and in addition setting s(e′) = s(e) and r(e′) = r(e)′.

We note that the quotient graph E/H given in Definition 2.4.11 is precisely the graph E/(H,BH) in the
context of this broader definition. (In particular, we point out that E/H is not the same E/(H, /0).)

With this definition, and using Theorem 2.4.12 and Theorem 1.5.18, we get the following.

Theorem 2.4.15. Let E be an arbitrary graph and K any field. Then the quotient of LK(E) by a graded
ideal of LK(E) is Z-graded isomorphic to a Leavitt path algebra. Specifically, there is a Z-graded K-
algebra isomorphism

Ψ : LK(E)/I(H ∪SH) → LK(E/(H,S)),

where Ψ is defined as in Theorem 2.4.12.
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Proof. By Theorem 2.4.12, we have LK(E)/I(H ∪ SH) ∼= CX
K (E/H), where X = (Reg(E) \H)∪ S. But

then Reg(E/H) \X = BH \ S. Therefore, the graph (E/H)(X) from Definition 1.5.16 coincides with the
quotient graph E/(H,S), and Theorem 1.5.18 gives that CX

K (E/H)∼= LK(E/(H,S)) naturally, thus yielding
the result. ut

We close this section with another consequence of Theorem 2.4.12.

Corollary 2.4.16. Let E be an arbitrary graph and K any field. Suppose H ∈HE and let S⊆ BH .

(i) I(H ∪SH)∩E0 = H. In particular, I(H)∩E0 = H.
(ii) S = {v ∈ BH | vH ∈ I(H ∪SH)}.

Proof. (i). The containment H ⊆ I(H ∪SH) is clear. Conversely, for v ∈ E0 \H, we observe that Ψ(v) is a
nonzero element in CX

K (E/H), where Ψ is the isomorphism given in Theorem 2.4.12. Thus v /∈ I(H ∪SH).
(ii). The containment S⊆ {v ∈ BH | vH ∈ I(H ∪SH)} is clear. For the reverse containment, observe that

in a manner analogous to that used in the proof of (i) we have Ψ(vH) 6= 0 for any v ∈ BH \ S. This shows
that vH /∈ I(H ∪SH), as required. ut

2.5 The Structure Theorem for Graded Ideals, and the internal structure of graded
ideals

In the previous section we have developed much of the machinery which will allow us to achieve the
main goal of the current section, the Structure Theorem for Graded Ideals (Theorem 2.5.8), which gives a
complete description of the lattice of graded ideals of a Leavitt path algebra in terms of specified subsets
of E0.

Definition 2.5.1. Let E be an arbitrary graph and K any field. Denote by Lgr(LK(E)) the lattice of graded
ideals of LK(E), with order given by inclusion, and supremum and infimum given by the usual operations
of ideal sum and intersection.

Remark 2.5.2. Let E be an arbitrary graph. We define in HE a partial order by setting H ≤ H ′ in case
H ⊆ H ′. Using this ordering, HE is a complete lattice, with supremum ∨ and infimum ∧ in HE given by
setting ∨i∈Γ Hi := ∪i∈Γ Hi and ∧i∈Γ Hi := ∩i∈Γ Hi respectively.

Definition 2.5.3. Let E be an arbitrary graph. We set

S =
⋃

H∈HE

P(BH),

where P(BH) denotes the set of all subsets of BH . We denote by TE the subset of HE ×S consisting of
pairs of the form (H,S), where S ∈P(BH). We define in TE the following relation:

(H1,S1)≤ (H2,S2) if and only if H1 ⊆ H2 and S1 ⊆ H2∪S2.

The following comments, which explain why the relation ≤ in TE has been defined as above, will help
clarify the proof of the upcoming proposition. For a graph E, a hereditary saturated subset H of E0, and a
breaking vertex v ∈ BH , define

A(v,H) := s−1(v)∩ r−1(E0 \H).

Note that A(v,H) is a finite nonempty subset of E1.
Now suppose that H1 and H2 are hereditary saturated subsets of vertices in E, with H1⊆H2. Let v∈BH1 .

Since H1 ⊆ H2 then v ∈ BH2 , unless it happens to be the case that r(s−1(v)) ⊆ H2 (since by definition a
breaking vertex for a set must emit at least one edge whose range is outside the set). If v ∈ BH2 , then write

A(v,H1) = A(v,H2)tB,
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where B = {e ∈ A(v,H1) | r(e) ∈ H2}. In this case we have

vH1 = vH2 −∑
e∈B

ee∗. (2.1)

Proposition 2.5.4. Let E be an arbitrary graph. For (H1,S1),(H2,S2) ∈TE , we have

(H1,S1)≤ (H2,S2) ⇐⇒ I(H1∪S1
H1)⊆ I(H2∪SH2

2 ).

In particular, ≤ is a partial order on TE .

Proof. For notational convenience, set I(Hi,Si) := I(Hi∪SHi
i ) for i = 1,2.

Suppose that I(H1,S1)⊆ I(H2,S2). Then H1 ⊆H2 by Corollary 2.4.16(i). Now let v ∈ S1. We will show
that v ∈ H2∪S2. If on the one hand r(s−1(v))⊆ H2 then we have

v = vH1 + ∑
e∈A(v,H1)

ee∗ ∈ I(H1,S1)+ I(H2)⊆ I(H2,S2),

so that v ∈ H2 (by again invoking Corollary 2.4.16(i)). If on the other hand there is some e ∈ s−1(v) such
that r(e) /∈ H2, then necessarily v /∈ H2 (since H2 is hereditary). So, since we already know that H1 ⊆ H2,
we see that v ∈ BH2 . Moreover, we have, by (2.1),

vH2 = vH1 + ∑
e∈B

ee∗ ∈ I(H1,S1)+ I(H2)⊆ I(H2,S2).

Hence v ∈ S2 by Corollary 2.4.16(ii). So we have shown S1 ⊆H2∪S2, which yields (H1,S1)≤ (H2,S2) by
definition.

Conversely, suppose that (H1,S1) ≤ (H2,S2). This gives in particular that I(H1) ⊆ I(H2), so we only
need to check that vH1 ∈ I(H2,S2) for v ∈ S1. So let v ∈ S1. If on the one hand r(s−1(v))⊆ H2, then v ∈ H2
because S1 ⊆ H2 ∪ S2 and v /∈ S2 (since v /∈ BH2 ). If on the other hand there is some e ∈ s−1(v) such that
r(e) /∈ H2, then v ∈ BH2 and, by (2.1) we have

vH1 = vH2 −∑
e∈B

ee∗ ∈ I(H2,S2)+ I(H2)⊆ I(H2,S2),

showing that vH1 ∈ I(H2,S2). Thus we obtain that I(H1,S1)⊆ I(H2,S2). ut

For the proof of Proposition 2.5.6 we need to introduce a refinement of the definition of saturation which
allows us to consider breaking vertices.

Definition 2.5.5. Let E be an arbitrary graph. Let H be a hereditary subset of E0, and consider a subset
S ⊆ H ∪BH . The S-saturation of H is defined as the smallest hereditary subset H ′ of E0 satisfying the
following properties:

(i) H ⊆ H ′.
(ii) H ′ is saturated.

(iii) If v ∈ S and r(s−1(v))⊆ H ′, then v ∈ H ′.

We denote by HS the S-saturation of H.
To build the S-saturation of H we proceed as in Lemma 2.0.7. Concretely, for every n ∈ Z+ we define

inductively the hereditary subsets Λ S
n (H) as follows. Let Λ S

0 (H) := H. For n≥ 1, we put

Λ
S
n (H) = Λ

S
n−1(H)∪{v ∈ E0 \Λ

S
n−1(H) | v ∈ Reg(E)∪S and r(s−1(v))⊆Λ

S
n−1(H)}.

It can be easily shown that HS
= ∪n≥0Λ S

n (H).

Proposition 2.5.6. Let E be an arbitrary graph. Then with the partial order ≤ on TE given in Definition
2.5.3, (TE , ≤) is a complete lattice, with supremum ∨ and infimum ∧ in TE given by:
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(H1,S1)∨ (H2,S2) = (H1∪H2
S1∪S2 , (S1∪S2)\H1∪H2

S1∪S2) and

(H1,S1)∧ (H2,S2) = (H1∩H2, (S1∩S2)∪ ((S1∪S2)∩ (H1∪H2))).

Proof. The fact that ≤ is a partial order is established in Proposition 2.5.4.
We first verify the displayed formula for the supremum. Observe that (H1∪H2

S1∪S2 , (S1 ∪ S2) \
H1∪H2

S1∪S2) ∈TE , and that it contains (Hi,Si) for i = 1,2.
To show minimality, let (H,S) ∈ TE be such that (Hi,Si) ≤ (H,S) for i = 1,2. In order to show that

H1∪H2
S1∪S2 ⊆H, it suffices, by Definition 2.5.5, to prove that Λ

S1∪S2
n (H1∪H2)⊆H for all n ∈ Z+. We do

this inductively. For n = 0 this is clear by assumption. Now, assume n≥ 1 and that Λ
S1∪S2
n−1 (H1∪H2)⊆ H.

Pick v ∈ Λ
S1∪S2
n (H1 ∪H2). If v ∈ Reg(E), then v belongs to H because H is saturated. Now suppose v ∈

S1∪S2. By definition and the induction hypothesis, we have

r(s−1(v))⊆Λ
S1∪S2
n−1 (H1∪H2)⊆ H.

In particular, this implies v /∈ S. Since v∈ S1∪S2⊆H∪S, we conclude that v∈H, completing the induction
step. The inclusion (S1∪S2)\H1∪H2

S1∪S2 ⊆ H ∪S is immediate.
Now we verify the indicated expression for the infimum, i.e., we will show that (H1 ∩H2, (S1 ∩ S2)∪

((S1∪S2)∩(H1∪H2))) is a lower bound for the pair (H1,S1),(H2,S2), and is the maximal such. First, note
that (H1 ∩H2, (S1 ∩ S2)∪ ((S1 ∪ S2)∩ (H1 ∪H2))) ≤ (Hi,Si) for i = 1,2. To see this, use Hi ∩ Si = /0 for
i = 1,2, so that

(S1∩S2)∪ ((S1∪S2)∩ (H1∪H2)) = (S1∩S2)∪ (S1∩H2)∪ (S2∩H1).

Now, suppose (H,S)≤ (Hi,Si). Then H ⊆ H1∩H2 and S⊆ Hi∪Si and so

S⊆ (H1∪S1)∩ (H2∪S2) = (H1∩H2)∪ (S1∩S2)∪ (S1∩H2)∪ (S2∩H1),

which by the formula above shows (H,S)≤ (H1∩H2, (S1∩S2)∪ ((S1∪S2)∩ (H1∪H2))). ut

The following examples clarify the notion of S-saturation.

Examples 2.5.7.

(i) Let E be the following graph:

v1•

��

(∞) // •v2

•v3

Let H1 = {v2}, S1 = {v1}; H2 = {v3}, S2 = /0. Note that H1∪H2 does not contain the vertex v1, which
is not a breaking vertex for H1 ∪H2 as r(s−1(v1)) ⊆ H1 ∪H2. This is the reason why we have to
consider the S-saturation, which is

Λ
S1
1 (H1∪H2) = {v1,v2,v3},

and, consequently, the formula in Proposition 2.5.6 gives that (H1,S1)∨ (H2,S2) = (E0, /0).

(ii) Let G be the following graph:

v1•

��

(∞) // v2•

v3• w2•oo •w1

(∞)
aa

oo

Let H1 = {v2}, S1 = {v1}; H2 = {v3}, S2 = /0. Then



48 2 Two-sided ideals

Λ
S1
1 (H1∪H2) = {v1,v2,v3,w2} and Λ

S1
2 (H1∪H2) = {v1,v2,v3,w2,w1}.

In this case, again the formula in Proposition 2.5.6 gives that (H1,S1)∨ (H2,S2) = (G0, /0).

We now have all the pieces in place to achieve our previously stated goal, in which we give a precise
description of the graded ideals of LK(E) in terms of specified subsets of E0.

Theorem 2.5.8. (The Structure Theorem for Graded Ideals) Let E be an arbitrary graph and K any
field. Then the map ϕ given here provides a lattice isomorphism:

ϕ : Lgr(LK(E))→TE via I 7→ (I∩E0,S) ,

where S = {v ∈ BH | vH ∈ I} for H = I∩E0 . The inverse ϕ ′ of ϕ is given by:

ϕ
′ : TE →Lgr(LK(E)) via (H,S) 7→ I(H ∪SH).

Proof. By Lemma 2.4.3 and the definition of S, the map ϕ is well defined. The map ϕ ′ is clearly well
defined. By Theorem 2.4.8 we get that ϕ ′ ◦ϕ = IdLgr(LK(E)). On the other hand, Corollary 2.4.16 yields
that ϕ ◦ϕ ′ = IdTE .

Now we prove that ϕ ′ preserves the order. Suppose that (H1,S1),(H2,S2) ∈TE are such that (H1,S1)≤
(H2,S2). Then H1 ⊆ H2 and S1 ⊆ H2 ∪ S2. It is easy to see that H1 ⊆ I(H2 ∪ SH2). Now we prove SH1 ⊆
I(H2 ∪ SH2). Take vH1 ∈ SH1 . Then vH1 = v−∑s(e)=v,r(e)/∈H1

ee∗ for some infinite emitter v ∈ E0. We must
distinguish two cases. First, if v ∈ H2, then vH1 ∈ I(H2)⊆ I(H2∪SH2), while second, if v ∈ S2, then

vH1 = vH2 − ∑
s(e)=v

r(e)∈H2\H1

ee∗ ∈ I(H2∪SH2).

The final step is to show that ϕ preserves the order. To this end, consider two graded ideals I1 and I2 such
that I1 ⊆ I2. Then H1 := I1∩E0 ⊆ H2 := I2∩E0. Now we show S1 ⊆ S2, where Si := {v ∈ BHi | vHi ∈ Ii},
for i = 1,2. Take v ∈ S1. We again must distinguish two cases. Suppose first that for every e ∈ E1 such that
s(e) = v we have r(e) ∈ H2. Then

v = vH1 + ∑
s(e)=v

r(e)∈H2\H1

ee∗ ∈ I1 + I2 = I2,

and thus v ∈ I2 ∩E0 = H2. On the other hand, suppose that there exists e ∈ E1 such that s(e) = v and
r(e) /∈ H2. Then v ∈ BH2 and

vH2 = vH1 + ∑
s(e)=v

r(e)∈H2\H1

ee∗ ∈ I1 + I2 = I2.

This implies v ∈ S2. We obtain that S1 ⊆ H2∪S2 and hence that (H1,S1)≤ (H2,S2). ut

We record the Structure Theorem for Graded Ideals in the situation where the graph is row-finite.

Theorem 2.5.9. Let E be a row-finite graph and K any field. The following map ϕ provides a lattice iso-
morphism:

ϕ : Lgr(LK(E))→HE via ϕ(I) = I∩E0,

with inverse given by
ϕ
′ : HE →Lgr(LK(E)) via ϕ

′(H) = I(H).

Example 2.5.10. The following is a description of all graded ideals of the Leavitt path algebra of the infinite
clock graph CN of Example 1.6.12. Recall that U denotes the set {ui | i ∈ N} of all “non-center” vertices
of CN. It is clear that the hereditary saturated subsets of CN are /0, C0

N, and subsets H of U . (Note that if
v is in a hereditary subset H of CN, then necessarily H = C0

N.) For a subset H of U , there is a breaking
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vertex (namely, v) for H precisely when U \H is nonempty and finite. With this information in hand, we
use Theorem 2.5.8 to conclude that a complete irredundant set of graded ideals of LK(CN) is:

{0}, LK(CN), I(H) for H ⊆U, and I(H ∪{v− ∑
e∈r−1(U\H)

ee∗}) for H $U having U \H finite.

Of interest are the following consequences of the Structure Theorem for Graded Ideals.

Corollary 2.5.11. Let E be an arbitrary graph and K any field. Let J1 and J2 be graded ideals of LK(E).
Then J1 · J2 = J1∩ J2.

Proof. The containment J1 ·J2 ⊆ J1∩J2 holds for any two-sided ideals in any ring. For the reverse contain-
ment, we use Theorem 2.5.8 to guarantee that we can write the graded ideal J1∩ J2 as I(H ∪SH) for some
(H,S) ∈ TE . So it suffices to show that each of the elements in the generating set H ∪ SH of J1 ∩ J2 is in
J1 · J2. But this follows immediately, as each of these elements is idempotent. ut

Recall that a graded algebra A is said to be graded noetherian (resp., graded artinian) in case A satisfies
the ascending chain condition (resp., descending chain condition) on graded two-sided ideals. We need an
observation which will be used more than once in the sequel.

Lemma 2.5.12. Let E be an arbitrary graph. Then the following are equivalent.

(1) The lattice TE satisfies the ascending (resp., descending) chain condition with respect to the partial
order given in Definition 2.5.3.

(2) The lattice HE satisfies the ascending (resp., descending) chain condition (under set inclusion), and,
for each H ∈HE , the corresponding set BH of breaking vertices is finite.

Proof. We prove the ascending chain condition statement; the proof for the descending chain condition
is essentially identical. So suppose the a.c.c. holds in TE . Let H1 ⊆ H2 ⊆ . . . be an ascending chain of
hereditary saturated subsets of vertices in E. Then we get an ascending chain (H1, /0)≤ (H2, /0)≤ . . . in TE .
By hypothesis, there is an integer n such that (Hn, /0) = (Hn+1, /0) = ... . This implies that Hn = Hn+1 = . . . ,
showing that the a.c.c holds in HE . Let H ∈HE . Then the corresponding set BH of breaking vertices of
H must be finite, since otherwise BH would contain an infinite ascending chain of subsets S1 $ S2 $ . . . ,
and this would then give rise to a proper ascending chain (H,S1)� (H,S2)� . . . in TE , contradicting the
hypothesis that a.c.c. holds in TE .

Conversely, suppose the a.c.c. holds in HE , and that BH is a finite set for each H ∈HE . Consider an
ascending chain (H1,S1) ≤ (H2,S2) ≤ . . . in TE . This gives rise to an ascending chain H1 ⊆ H2 ⊆ . . .
in HE , and so there is an integer n such that Hi = Hn = H for all i ≥ n. So from the nth term onwards,
the given chain in TE is of the form (H,Sn) ≤ (H,Sn+1) ≤ . . . , where Sn,Sn+1, . . . are subsets of BH .
Observe that since BH ∩H = /0, it follows from the definition of ≤ on TE that we have an ascending chain
Sn ⊆ Sn+1 ⊆ . . . . Since BH is a finite set, there is a positive integer m such that Sn+m = Sn+m+i for all i≥ 0.
This establishes the a.c.c. in TE . ut

Now combining the Structure Theorem for Graded Ideals with Lemma 2.5.12, we get

Proposition 2.5.13. Let E be an arbitrary graph and K any field. Consider the standard Z-grading on
LK(E).

(i) LK(E) is graded artinian if and only if the set HE satisfies the descending chain condition with respect
to inclusion, and, for each H ∈HE , the set BH of breaking vertices is finite.

(ii) LK(E) is graded noetherian if and only if the set HE satisfies the ascending chain condition with
respect to inclusion, and, for each H ∈HE , the set BH of breaking vertices is finite.

Corollary 2.5.14. Let E be a finite graph and K any field. Then LK(E) is both graded artinian and graded
noetherian.

For another direct consequence of the Structure Theorem for Graded Ideals, recall that a graded algebra
A is said to be graded simple if A2 6= 0, and A has no graded ideals other than 0 and A. Since LK(E) is a
ring with local units for any graph E and field K, we have LK(E)2 6= 0. Thus Theorem 2.5.8 immediately
yields
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Corollary 2.5.15. Let E be an arbitrary graph and K any field. Then LK(E) is graded simple if and only if
the only hereditary saturated subsets of E0 are /0 and E0.

We conclude our discussion of the graded ideals in Leavitt path algebras by establishing that every
graded ideal in LK(E) is itself, up to isomorphism, the Leavitt path algebra of an explicitly-described
graph. Because dealing with breaking vertices makes the proof of the result for arbitrary graded ideals less
“visual”, and because a number of our results in the sequel will rely only on this more specific setting, we
start our analysis by considering graded ideals of the form I(H) for H ∈HE .

Definition 2.5.16. (The hedgehog graph for a hereditary subset) Let E be an arbitrary graph. Let H be
a nonempty hereditary subset of E0. We denote by FE(H) the set

FE(H)= {α ∈Path(E) | α = e1 · · ·en, with s(e1)∈E0\H, r(ei)∈E0\H for all 1≤ i< n, and r(en)∈H}.

We denote by FE(H) another copy of FE(H). If α ∈ FE(H), we will write α to refer to a copy of α in
FE(H). We define the graph HE = (HE0,HE1,s′,r′) as follows:

HE0 = H ∪FE(H), and HE1 = {e ∈ E1 | s(e) ∈ H}∪FE(H).

The source and range functions s′ and r′ are defined by setting s′(e) = s(e) and r′(e) = r(e) for every
e ∈ E1 such that s(e) ∈ H; and by setting s′(α) = α and r′(α) = r(α) for all α ∈ FE(H).

Intuitively, FE(H) can be viewed as H, together with a new vertex corresponding to each path in E
which ends at a vertex in H, but for which none of the previous edges in the path ends at a vertex in H. For
every such new vertex, a new edge is added going into H. So the net effect is that in FE(H), the only paths
entering the subgraph H have common length 1; pictorially, the situation evokes an image of the quills
(edges into H) on the body of a hedgehog or porcupine (H itself), whence the name.

Remark 2.5.17. We note that, by construction, the cycles in the hedgehog graph HE are precisely the cycles
in H. In particular, as H is hereditary, every cycle without exits in HE arises from a cycle without exits in
H.

Example 2.5.18. Let ET be the Toeplitz graph •ue 88
f // •v , and let H denote the hereditary subset

{v}. Then FET (H) = {en f | n ∈ Z+}, and HET is the following graph.
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If I is an ideal of a ring R, then I itself may be viewed as a ring in its own right. (Of course I need not be
unital, nor need it contain a set of local units, e.g., the ideal 2Z of Z.) Similarly, if I is an algebra ideal of a
K-algebra A, then I may be viewed as a K-algebra in its own right. We note in this regard that the K-ideal
I(1+x) of K[x,x−1] does not contain any nonzero idempotents, hence I(1+x) when viewed as a K-algebra
cannot contain a set of local units. Using the identification established between LK(R1) and K[x,x−1], this
implies in particular that the ideal I(v+ e) of LK(R1) cannot be isomorphic to the Leavitt path algebra of
any graph, as any Leavitt path algebra is an algebra with local units. These comments provide context for
the following result.

Theorem 2.5.19. Let E be an arbitrary graph and K any field. Let H be a nonempty hereditary subset of
E. Then I(H), when viewed as a K-algebra, is K-algebra isomorphic to LK(HE).
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Proof. We define a map ϕ : {u | u ∈ HE0}∪{e | e ∈ HE1}∪{e∗ | e ∈ HE1}→ I(H) by the following rule:

ϕ(v)=

{
v if v ∈ H

αα
∗ if v = α ∈ FE(H),

ϕ(e)=

{
e if e ∈ E1

α if e = α ∈ FE(H),
and ϕ(e∗)=

{
e∗ if e ∈ E1

α
∗ if e = α ∈ FE(H).

Note that for α,β distinct elements in FE(H) we have α∗β = 0, so {ϕ(u) | u ∈ HE0} is a set of orthogonal
idempotents in I(H). Moreover, it is not difficult to establish that this set, jointly with {ϕ(e) | e∈ HE1} and
{ϕ(e∗) | e ∈ HE1}, is an HE-family in I(H). So by the Universal Property 1.2.5, ϕ extends to a K-algebra
homomorphism from LK(HE) into I(H).

To see that ϕ is onto, by Lemma 2.4.1 it is enough to show that every vertex of H and every path α of E
with r(α)∈H are in the image of ϕ . For any v∈H, ϕ(v)= v, so that this case is clear. Now, let α =α1 · · ·αn
with αi ∈ E1. If s(α1) ∈ H, then α = ϕ(α1) · · ·ϕ(αn). Suppose that s(α1) ∈ E0 \H and r(αn) ∈ H. Then,
there exists 1 ≤ j ≤ n− 1 such that r(α j) ∈ E0 \H and r(α j+1) ∈ H. Thus, α = α1 · · ·α j+1 ·α j+2 · · ·αn,
where β = α1 · · ·α j+1 ∈ FE(H). Hence, α = ϕ(β )ϕ(α j+2) · · ·ϕ(αn).

To show injectivity, by Remark 2.5.17 we have that any cycle without exits in HE comes from a cycle
without exits in E, where the vertices of the cycle are in H. So every cycle without exits in HE is mapped to
a homogeneous nonzero element of nonzero degree in I(H). The injectivity thereby follows by Proposition
2.2.20. ut

In what follows, we will generalize Theorem 2.5.19 in Theorem 2.5.22 by showing that in fact every
graded ideal in a Leavitt path algebra is isomorphic to a Leavitt path algebra.

Definition 2.5.20. (The generalized hedgehog graph construction, incorporating breaking vertices)
Let E be an arbitrary graph, H a nonempty hereditary subset of E, and S⊆ BH . We define

F1(H,S) := {α ∈ Path(E) | α = e1 · · ·en, r(en) ∈ H and s(en) /∈ H ∪S}, and

F2(H,S) := {α ∈ Path(E) | |α| ≥ 1 and r(α) ∈ S}.

For i = 1,2 we denote a copy of Fi(H,S) by F i(H,S) . We define the graph (H,S)E as follows:

(H,S)E
0 := H ∪S∪F1(H,S)∪F2(H,S), and

(H,S)E
1 := {e ∈ E1 | s(e) ∈ H}∪{e ∈ E1 | s(e) ∈ S and r(e) ∈ H}∪F1(H,S)∪F2(H,S).

The range and source maps for (H,S)E are described by extending r and s to (H,S)E1, and by defining
r(α) = α and s(α) = α for all α ∈ F1(H,S)∪F2(H,S).

Remark 2.5.21. Here are some observations about the construction of the generalized hedgehog graph
(H,S)E.

(i) F1(H,S)∩F2(H,S) = /0.
(ii) Every cycle in E produces a cycle in (H,S)E; moreover, cycles in (H,S)E come from cycles in E. Thus

there is a bijection between the set of cycles in E and the set of cycles in (H,S)E.
(iii) In the particular case S = /0, we get:

F1(H, /0) = {α = e1 · · ·en ∈ Path(E) | r(en) ∈ H and s(en) /∈ H}; F2(H, /0) = /0; and (H, /0)E = HE.

Thus Definition 2.5.20 indeed generalizes the construction of the graph HE given in Definition 2.5.16.

Theorem 2.5.22. Let E be an arbitrary graph and K any field. Suppose H is a hereditary subset of E0 and
S ⊆ BH . Then the graded ideal I(H ∪ SH) of the Leavitt path algebra LK(E) is isomorphic as K-algebras
to the Leavitt path algebra LK((H,S)E).

Proof. Let ϕ : {v | v ∈ (H,S)E0}∪{e | e ∈ (H,S)E1}∪{e∗ | e ∈ (H,S)E1}→ I(H ∪SH) be the map such that:
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ϕ(v) =


v if v ∈ H

vH if v ∈ S

αα
∗ if v = α ∈ F1(H,S)

αr(α)H
α
∗ if v = α ∈ F2(H,S) ,

ϕ(e) =


e if e ∈ E1

α if e = α ∈ F1(H,S) and

αr(α)H if e = α ∈ F2(H,S) ,

ϕ(e∗) =


e∗ if e ∈ E1

α
∗ if e = α ∈ F1(H,S)

r(α)H
α
∗ if e = α ∈ F2(H,S) .

It is not difficult to see that each of the elements ϕ(v), ϕ(e), and ϕ(e∗) is an element of I(H ∪ SH). In a
manner similar to the proof of Theorem 2.5.19, one can show that the set

{ϕ(v) | v ∈ (H,S)E
0}∪{ϕ(e) | e ∈ (H,S)E

1}∪{ϕ(e∗) | e ∈ (H,S)E
1}

is an (H,S)E-family in I(H ∪SH). Consequently, by the Universal Property of LK((H,S)E) 1.2.5, the map ϕ

can be uniquely extended to a K-algebra homomorphism from LK((H,S)E) to I(H ∪SH).
The injectivity of ϕ follows from Proposition 2.2.20. To show surjectivity, recall the description of the

generators of I(H ∪ SH) given in Lemma 2.4.6. Using this, the only two things we must show are that
α ∈ Im(ϕ) for every α ∈ Path(E) such that r(α) ∈ H, and that αvH ∈ Im(ϕ) for every α ∈ Path(E) such
that r(α) = v ∈ S.

To show the first statement, take α = e1 · · ·en as indicated. There are four cases to analyze. First, if
s(e1) ∈ H then s(ei) ∈ H for all i and ei ∈ (H,S)E1. Hence, ϕ(α) = ϕ(e1) · · ·ϕ(en) = e1 · · ·en = α , which
proves α ∈ Im(ϕ). Second, suppose α = f e1 · · ·en with r( f ) = s(e1) ∈ H and s( f ) ∈ S. Then f ∈ (H,S)E1,
s(ei) ∈ H and ei ∈ (H,S)E1 for all i. Therefore, ϕ(α) = ϕ( f )ϕ(e1) · · ·ϕ(en) = f e1 · · ·en = α and so α ∈
Im(ϕ). In the third case, if α = f1 · · · fme1 · · ·en with r( fm) = s(e1) ∈ H and s( fm) /∈ H ∪ S, then β :=
f1 · · · fm ∈F1(H,S) and ei ∈ (H,S)E1 for all i, so ϕ(βe1 · · ·en) =ϕ(β )ϕ(e1) · · ·ϕ(en) = βe1 · · ·en =α and so
α ∈ Im(ϕ). Finally, if α = f1 · · · fmge1 · · ·en with r(g) = s(e)∈H, s(g)∈ S and m≥ 1, then β := f1 · · · fm ∈
F2(H,S), g ∈ (H,S)E1 and ei ∈ (H,S)E1 for all i; therefore, ϕ(βge1 · · ·en) = ϕ(β )ϕ(g)ϕ(e1) · · ·ϕ(en) =
βgee · · ·en = α , which shows again α ∈ Im(ϕ).

Now we verify that αvH ∈ Im(ϕ) for every α ∈ Path(E) such that r(α) = v∈ S. If |α|= 0 then v := α is
a vertex in S and ϕ(v) = vH =αvH so that αvH ∈ Im(ϕ). If |α| ≥ 1 then α ∈ F2(H,S) and ϕ(α) =αr(α)H .
This shows αr(α)H ∈ Im(ϕ), and the proof is complete. ut

Corollary 2.5.23. Let E be an arbitrary graph and K any field. Then every graded ideal of LK(E) is K-
algebra isomorphic to a Leavitt path algebra.

Proof. Apply the Structure Theorem for Graded Ideals 2.5.8 with Theorem 2.5.22. ut

Remark 2.5.24. We note that, except for the obvious trivial cases, the isomorphism established in Theorem
2.5.22 between the graded ideal I(H ∪ SH) of LK(E) and the Leavitt path algebra LK(E/(H,S)) is not a
graded isomorphism with respect to the induced grading on I(H∪SH) coming from LK(E). This is because
if α is a path in FE(H) having |α| ≥ 2, then the equation ϕ(α) = α reveals that ϕ does not preserve the
grading.

In summary, we have now shown that the graded ideals of LK(E) are “natural” in the context of Leavitt
path algebras: by Theorem 2.4.15 every quotient of a Leavitt path algebra by a graded ideal is again a
Leavitt path algebra, and by Theorem 2.5.22 every graded ideal of a Leavitt path algebra is itself a Leavitt
path algebra. In contrast, the quotient of a graded algebra by a non-graded ideal is not a graded algebra with
respect to an induced grading; see the comments subsequent to Remark 2.1.2. Moreover, once we develop
a description of the structure of all ideals in a Leavitt path algebra, we will be able to prove that non-graded
ideals are necessarily not isomorphic to Leavitt path algebras (see Corollary 2.9.11).

We close this section by establishing yet another consequence of the Structure Theorem for Graded
Ideals 2.5.8.
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Proposition 2.5.25. Let {Hi}i∈Λ be a family of hereditary subsets of an arbitrary graph E and K any field.
Then as ideals of LK(E) we have:

(i) I(∩i∈Λ Hi) = ∩i∈Λ I(Hi).
(ii) If Λ is finite, then I(∩i∈Λ Hi) = ∩i∈Λ I(Hi).

Proof. (i) The containment I(∩i∈Λ Hi)⊆∩i∈Λ I(Hi) is clear because I(Hi) = I
(
Hi
)
. Now we show the other

one. Observe first that since the intersection of graded ideals is a graded ideal, by the Structure Theorem for
Graded Ideals 2.5.8 we get ∩i∈Λ I(Hi) = I(H ∪ SH), where H =

(
∩i∈Λ I(Hi)

)
∩E0 = ∩i∈Λ

(
I(Hi)∩E0

)
=

∩i∈Λ Hi. Now, consider v ∈ BH ; we will see that vH /∈ ∩i∈Λ I(Hi). Since v /∈ H, there is an i ∈ Λ such that
v /∈ Hi, hence v ∈ BHi

.

Write ṽ to denote either vHi (in case v ∈ BHi
), or v (in case r(s−1(v))⊆ Hi). Then we may write

ṽ = vH − ∑
s(e)=v

r(e)∈Hi\H

ee∗.

Since ∑{s(e)=v,r(e)∈Hi\H} ee∗ ∈ I(Hi) and vH ∈ I(Hi), then ṽ ∈ I(Hi)∩E0 = Hi, a contradiction. This implies
S = /0, giving the desired result.

(ii) When Λ is finite, then ∩i∈Λ Hi = ∩i∈Λ Hi, and consequently

I(∩i∈Λ Hi) = I(∩i∈Λ Hi) = ∩i∈Λ I(Hi) = ∩i∈Λ I(Hi). ut

2.6 The socle

Because of its importance in the general theory, we present now a description of the socle of a Leavitt path
algebra. Along the way, we will investigate various minimal left ideals of LK(E). This in turn will provide
us with, among other things, an explicit description of the finite dimensional Leavitt path algebras.

Definitions 2.6.1. Let E be an arbitrary graph. Recall that for v ∈ E0, we say that there exists a cycle at v if
v is a vertex lying on some cycle in E. Also, recall that for v ∈ E0, T (v) denotes the set {w ∈ E0 | v≥ w}.

A vertex v ∈ E0 is called a bifurcation vertex (or it is said that there is a bifurcation at v) if |s−1
E (v)| ≥ 2.

A vertex u ∈ E0 is called a line point if there exist neither bifurcations nor cycles at any vertex of T (u).
The set of line points of the graph E will be denoted by Pl(E).

Remark 2.6.2. Vacuously, any sink in E is a line point. The set of line points Pl(E) is always a hereditary
subset of E0, although it is not necessarily saturated.

If u ∈ Pl(E), then T (u) is a sequence T (u) = {u1,u2,u3, . . .}, where u = u1, and where, for all i ∈
N, there exists a unique edge ei ∈ E1 with s(ei) = ui,r(ei) = ui+1. This sequence is finite precisely when
there exists a sink w of E in T (u), in which case w is the last element of the sequence. Intuitively, T (u) is
then essentially just a “directed line starting at u”, from which the name “line point” derives.

Consequently, if u is a line point, then for each pair ui,u j ∈ T (u) with i < j, there exists a unique path
pi, j in E for which s(pi, j) = ui and r(pi, j) = u j. In particular, the lack of bifurcations at any vertex in T (u)
together with the (CK2) relation yields that pi, j p∗i, j = ui for any pair ui,u j ∈ T (u) for which i≤ j.

A key role in the subject is played by rings of the following form.

Notation 2.6.3. Let Γ be an infinite set, and let S be any unital ring. We denote by

MΓ (S)

the ring consisting of those square matrices M, with rows and columns indexed by Γ , with entries from S,
for which there are at most finitely many nonzero entries in M.
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Clearly any such ring MΓ (S) contains a set of enough idempotents, consisting of the matrix units
{ei,i | i ∈ Γ }; this yields the set of local units in MΓ (S) consisting of those matrices which equal 1S in
finitely many entries (i, i), and are 0 otherwise.

A subset {εα,β | α,β ∈ Γ } of an ideal T of a K-algebra R is called a set of matrix units for T in case
T = spanK({εα,β}), and εα,β εγ,κ = δβ ,γ εα,κ for all α,β ,γ,κ ∈ Γ . In this case, T ∼= MΓ (K) as K-algebras,
via an isomorphism sending εα,β to the standard matrix element eα,β (which is 1K in row α , column β , and
0 elsewhere). The following result (which generalizes Proposition 1.3.5) allows us to explicitly describe
the structure of the ideal I(v) generated by a line point v. As a consequence of this description, we will be
able to describe the structure of the socle of any Leavitt path algebra.

Lemma 2.6.4. Let E be an arbitrary graph and K any field. Let v be a line point in E. Let Λv denote the set
FE(T (v)); that is, Λv is the set of paths α ∈ Path(E) for which r(α) meets T (v) for the first time at r(α).
Then

I(v)∼= MΛv(K).

Proof. We construct a set of matrix units in I(v), indexed by Λv, as follows. Write T (v) = {v1,v2, . . .} as
in Remark 2.6.2. By Lemma 2.4.1 and the observations offered in Remark 2.6.2, each element in I(v) is a
K-linear combination of elements of the form αxi, jλ

∗, where α,λ ∈ FE(T (v)), and xi, j = pi, j if i ≤ j, or
xi, j = p∗j,i if j ≤ i. We denote such αxi, jλ

∗ by eα,λ .
Again using Remark 2.6.2, we see that the set {xi, j | i, j ∈ N} has the multiplicative property xi, jxk,` =

δ j,kxi,` for all i, j,k, ` ∈ N. Using this, it is then straightforward to establish that the set {eα,λ | α,λ ∈Λv}
is a set of matrix units for I(v). ut

Corollary 2.6.5. Let E be an arbitrary graph and K any field. Let v be a sink in E. Then I(v) ∼= MΛv(K),
where Λv is the set of paths in E ending at v.

Corollary 2.6.6. Let K be any field. For any set Λ let EΛ denote the graph with

E0
Λ = {v}∪{uλ | λ ∈Λ} and E1

Λ = { fλ | λ ∈Λ},

where s( fλ ) = uλ and r( fλ ) = v for all λ ∈Λ . Then LK(EΛ )∼= MΛ∪{v}(K). In particular, by taking disjoint
unions of graphs of this form, any direct sum of full matrix rings over K arises as the Leavitt path algebra
of a graph. We note that EZ+ is the graph arising in Example 2.5.18.

With Example 1.6.12 in mind, we sometimes refer to EN as the infinite co-clock graph.

Definitions 2.6.7. Let R be a ring. We say that a left ideal I of R is a minimal left ideal if I 6= 0 and I does
not contain any left ideals of R other than 0 and I. (This is equivalent to saying that RI is a simple left
R-module.) An idempotent e ∈ R is called left minimal in case Re is a minimal left ideal of R. The left socle
of R is defined to be the sum of all the minimal left ideals of R (or is defined to be {0} in case R contains no
minimal left ideals). The corresponding notions of right minimal and right socle are defined analogously.

Remark 2.6.8. It is well known that for any ring R, both the left socle and the right socle of R are two-sided
ideals of R. For a semiprime ring R the left and right socles of R coincide; in this case, either of these is
called the socle of R, and is denoted by Soc(R). In particular, for E an arbitrary graph and K any field,
the two-sided ideal Soc(LK(E)) denotes the sum of the minimal left (or right) ideals of LK(E) (when such
exist), or denotes {0} (when LK(E) contains no minimal one-sided left ideals).

The following result is standard (see e.g., [109, Section 3.4]).

Lemma 2.6.9. Let R be a semiprime ring, and e2 = e ∈ R. Then Re is a minimal left ideal of R if and only
if eRe is a division ring.

The structure of left ideals generated by vertices lies at the heart of the description of the socle of a
Leavitt path algebra. Here is a fundamental observation in that regard.

Lemma 2.6.10. Let E be an arbitrary graph and K any field. Let w ∈ E0. If there exists a bifurcation at w
(i.e., if |s−1(w)| ≥ 2), then the left ideal LK(E)w is not minimal.



2.6 The socle 55

Proof. Suppose e 6= f ∈ s−1(w). Then ee∗ and f f ∗ are nonzero elements of LK(E)w. Since ee∗ 6= 0,
LK(E)ee∗ is nonzero submodule of LK(E)w. But f f ∗ 6∈ LK(E)ee∗, since otherwise we would have
f f ∗ = ree∗ for some r ∈ LK(E), which upon multiplication on the right by f f ∗ and using (CK1) would
give f f ∗ = 0, a contradiction. ut

Proposition 2.6.11. Let E be an arbitrary graph and K any field. A vertex v of E is a line point if and only
if LK(E)v is a minimal left ideal of LK(E).

Proof. Suppose first that v is a line point. Since LK(E) is semiprime (Proposition 2.3.1), in order to
show that LK(E)v is a minimal left ideal it suffices to show (by Lemma 2.6.9) that vLK(E)v is a di-
vision ring. To that end, consider an arbitrary nonzero element a ∈ vLK(E)v. Then a will be of the
form a = v(∑n

i=1 kiλiµ
∗
i )v = ∑

n
i=1 ki(vλiµ

∗
i v), for λi,µi ∈ Path(E) such that s(λi) = r(µ∗i ) = v (so that

s(µi) = v = s(λi)), and r(λi) = s(µ∗i ) = r(µi). But v is a line point, so by Remark 2.6.2 these two condi-
tions give λi = µi, and that λiµ

∗
i = v. So we get a = ∑

n
i=1 ki · v ∈ Kv. This shows that vLK(E)v = Kv∼= K.

Conversely, suppose LK(E)v is a minimal left ideal. We will see that no vertex in T (v) has bifurcations,
nor is any vertex in T (v) the base of a cycle. We start by noting the following. For any u ∈ T (v), let µ be a
path such that s(µ) = v and r(µ) = u. Then the map

ρµ : LK(E)v→ LK(E)u av 7→ avµ = aµ

is a nonzero epimorphism of left LK(E)-modules, as for βu ∈ LK(E)u we have β µ∗ ∈ LK(E)v, and
ρµ(β µ∗) = β µ∗µ = βu. The minimality of LK(E)v implies that ρu is an isomorphism, so that LK(E)u
must be minimal as well. In particular, by Lemma 2.6.9 uLK(E)u is a division ring.

With these observations, we conclude first (by Lemma 2.6.10) that there are no bifurcations at w for
every w ∈ T (v), and second (by Lemma 2.2.7) that w is not the base of a cycle without exits in E for every
w ∈ T (v). Thus v is a line point. ut

Definition 2.6.12. For an arbitrary graph E and field K, we call a vertex w ∈ E0 a minimal vertex in case
LK(E)w is a minimal left ideal of LK(E).

Lemma 2.6.13. Let E be an arbitrary graph and K any field. Then there exists a family {Hi}i∈Γ of hered-
itary subsets of E0 such that Pl(E) =

⊔
i∈Γ Hi, and I(Hi) = I(vi) as ideals of LK(E) for every vi ∈ Hi and

i ∈ Γ .

Proof. Define on Pl(E) the following equivalence relation: for u,v∈ Pl(E), we say u≡ v if I(u) = I(v). Let
{Hi}i∈Γ be the set of all ≡ equivalence classes.

We claim that each Hi is a hereditary subset of E0. Indeed, suppose u ∈Hi and v ∈ E0 such that v = r(e)
for some e ∈ s−1(u). Then v ∈ Pl(E), as Pl(E) is hereditary, and by hypothesis, s−1(u) = {e}. This implies,
by Remark 2.6.2 and (CK1), that u = ee∗ = eve∗ ∈ I(v) and v = e∗e = e∗ue ∈ I(u), hence I(u) = I(v),
and so v ∈ Hi. A similar argument holds for any v ∈ T (u). The rest of the conditions in the statement are
obviously fulfilled. ut

We are now in position to describe the socle of a Leavitt path algebra.

Theorem 2.6.14. Let E be an arbitrary graph and K any field. Decompose Pl(E) =
⊔

i∈Γ Hi as in Lemma
2.6.13. Then

Soc(LK(E)) = I(Pl(E))∼=
⊕
i∈Γ

MΛvi
(K),

where for every i ∈ Γ , if vi is an arbitrary element of Hi then I(vi)∼= MΛvi
(K) (with notation as in Lemma

2.6.4).

Proof. We begin by showing I(Pl(E))=Soc(LK(E)). Proposition 2.6.11 gives that I(Pl(E))⊆Soc(LK(E)).
To establish the reverse inclusion note that, since Soc(LK(E)) is generated by the minimal left ideals of
LK(E), it suffices to show that a ∈ I(Pl(E)) for every a for which LK(E)a is a minimal left ideal of LK(E).

Use the Reduction Theorem 2.2.11 to find µ,η ∈ Path(E) such that either 0 6= µ∗aη = kv for some
k ∈ K× and v ∈ E0, or 0 6= µ∗aη ∈ wLK(E)w, where w is a vertex in a cycle without exits. The second
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option is not possible, since wLK(E)w is isomorphic as a K-algebra to K[x,x−1] by Lemma 2.2.7, and so if
the second option were to hold we would have

{0} 6= wSoc(LK(E))w = Soc(wLK(E)w)∼= Soc(K[x,x−1]) = {0},

a contradiction.
Hence for some v ∈ E0 and k ∈ K× we have µ∗aη = kv. By minimality of LK(E)a, we get LK(E)µ∗a =

LK(E)a. Again by minimality, the nonzero surjection ρη : LK(E)µ∗a→ LK(E)v is an isomorphism. Thus
LK(E)v∼= LK(E)a. In particular, LK(E)v is minimal, so that v is a line point by Proposition 2.6.11. But the
isomorphism LK(E)v∼= LK(E)a implies that a = svt for some s, t ∈ LK(E), so that a ∈ I(Pl(E)).

In order to finish the proof of the theorem, we proceed as follows. We have I(Pl(E)) = I(
⊔

i∈Γ Hi) =⊕
i∈Γ I(Hi) by Proposition 2.4.7. Now, use I(Hi)= I(vi) for any vi ∈Hi (by construction), and apply Lemma

2.6.4. ut

As a consequence of Theorem 2.6.14, we get

Corollary 2.6.15. Let E be an arbitrary graph and K any field. The following are equivalent.

(1) E contains no line points.
(2) LK(E) has no minimal idempotents.

Proof. (1) implies (2) follows from the fact that if LK(E) has minimal idempotents, then Soc(LK(E)) 6=
{0}, so that Pl(E) 6= /0 by Theorem 2.6.14. That (2) implies (1) follows from Proposition 2.6.11. ut

Examples 2.6.16. In general, the relative size of Soc(LK(E)) within LK(E) can run the gamut, even among
the fundamental examples of Leavitt path algebras. For instance:

(i) Since for each n ∈ N there are no line points in the graph

Rn = • ddqq
��
QQ ,

we conclude by Theorem 2.6.14 that Soc(LK(Rn)) = {0}. In particular, Soc(LK(1,n)) = {0} for each
of the Leavitt K-algebras LK(1,n). (We also recover the well-known, previously invoked fact that
Soc(K[x,x−1]) = Soc(LK(R1)) = {0}.)

(ii) Since in the graph

An = •v1
e1 // •v2

e2 // •v3 •vn−1
en−1 // •vn

we have that I(vn)= LK(An) for the line point vn, we conclude by Theorem 2.6.14 that Soc(LK(An))=
LK(An). (Of course this result is easy to see from first principles, since LK(An)∼= Mn(K).)

(iii) Since in the Toeplitz graph
ET = •:: // •v

the only line point is the vertex v, we conclude by Theorem 2.6.14 that Soc(LK(ET )) is the ideal I(v)
of LK(ET ) generated by v. We see immediately that {0}$ Soc(LK(ET ))$ LK(ET ).
Indeed, by Theorem 2.5.19, the ideal I(v) is isomorphic to the Leavitt path algebra of the graph in
Example 2.5.18, which in turn is isomorphic to MZ+(K) by Corollary 2.6.6. Moreover, by Corollary
2.4.13(i) the quotient of LK(ET ) by the socle I(v) is isomorphic to LK(E/{v}) ∼= LK( •:: ) ∼=
K[x,x−1].

We finish the section by giving the aforementioned key consequence of our newly developed tools, in
which we describe the structure of all finite dimensional Leavitt path algebras.

Theorem 2.6.17. (The Finite Dimension Theorem) Let E be an arbitrary graph and K any field. The
following conditions are equivalent.
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(1) LK(E) is a finite dimensional Leavitt path K-algebra.
(2) E is a finite and acyclic graph.
(3) LK(E) is K-algebra isomorphic to ⊕m

i=1Mni(K), where m = |Sink(E)|, and, for each 1 ≤ i ≤ m, ni is
the number of different paths ending at the sink vi.

Proof. (1)⇒ (2). Since E0∪E1 is a linearly independent set in LK(E) (apply Corollary 1.5.15), (1) implies
that E must be finite. On the other hand, if c were a cycle in E, then applying Corollary 1.5.15 again would
yield that {cn}n∈N is an independent set, contrary to the finite dimensionality of LK(E).

(2) ⇒ (3). We show that LK(E) = ⊕m
i=1I(vi), where {v1, . . . ,vm} = Sink(E). We note that in a finite

acyclic graph E, there is a positive integer b(E) for which every path in E has length at most b(E). In
addition, such a graph must contain at least one sink. Observe first that {{vi}}m

i=1 is a family of pairwise
disjoint hereditary subsets of E. This implies, by Proposition 2.4.7, that ∑

m
i=1 I(vi) =⊕m

i=1I(vi).
Now consider an element αβ ∗ ∈ LK(E), with α,β ∈ Path(E). If r(α) ∈ Sink(E), then αβ ∗ ∈ I(r(α)),

which is one the I(vi)’s. If this is not the case, then apply the (CK2) relation at r(α) to get

αβ
∗ = αr(α)β ∗ = ∑

{e∈s−1(r(α))}
αee∗β ∗.

If for every e ∈ s−1(r(α)) we have r(e) ∈ Sink(E), then we are done. Otherwise, rewrite every r(e) which
is not a sink as before, using (CK2). Since the graph is finite and acyclic, after at most b(E) steps we have
finished.

Finally, we note that m is exactly the cardinality of Sink(E), while by Corollary 2.6.5, ni is the number
of distinct paths ending in vi.

(3)⇒ (1) is clear. ut

We recall that a matricial K-algebra is a finite direct sum of full finite dimensional matrix algebras over
the field K.

Remark 2.6.18 The Finite Dimension Theorem 2.6.17 yields that the matricial Leavitt path K-algebras
(Definition 2.1.13) coincide precisely with the finite dimensional Leavitt path K-algebras. By Corollary
2.6.6, we see that every matricial K-algebra indeed arises as a Leavitt path K-algebra.

Definition 2.6.19. A locally matricial K-algebra is a direct limit of matricial K-algebras (with not-
necessarily-unital transition homomorphisms).

Proposition 2.6.20. Let E be an acyclic graph and K any field. Then LK(E) is locally matricial.

Proof. Write LK(E) = lim
−→

LK(Fi), as in Proposition 1.6.15, where every Fi is a finite and acyclic graph.

The result then follows, as each LK(Fi) is a matricial algebra by Theorem 2.6.17. ut

Remark 2.6.21. The Finite Dimension Theorem 2.6.17 will play a central role in the theory of Leavitt path
algebras. One immediate consequence is instructive. We see from Theorem 2.6.17 that the only information
required to understand LK(E) up to K-algebra isomorphism when E is a finite acyclic graph is the number
of sinks in E, and the number of paths ending in each of those sinks. In particular, this allows us to construct
isomorphic Leavitt path algebras from non-isomorphic graphs. For example, let

E = • // • // • and F = • // • •oo .

Then E and F are clearly not isomorphic as directed graphs (for instance, F has a vertex of invalence 2,
while E does not). However, by Theorem 2.6.17 we get

LK(E)∼= LK(F)∼= M3(K),

since both E and F contain exactly one sink, and in both E and F there are exactly three paths ending at
that sink.
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2.7 The ideal generated by the vertices in cycles without exits

For an arbitrary ring R, there are a number of ideals within R which merit special attention: the Jacobson
radical of R, the socle of R, and the left singular ideal of R, to mention just a few. We have already identified
these ideals (and others) in the context of Leavitt path algebras. However, there is an ideal that is specific to
the context of Leavitt path algebras which plays a central role in the description of the lattice Lid(LK(E))
of all two-sided ideals of LK(E): the ideal I(Pc(E)) generated by those vertices which lie on a cycle without
exits. We describe I(Pc(E)) in this section.

Just as the ideal generated by the line points has importance (as it coincides with the socle of the cor-
responding Leavitt path algebra), the ideal generated by the vertices which lie on cycles without exits will
also have an important place in the theory. In this case, the cycles without exits will play a role similar to
that of the line points. In addition, we will be able to view this ideal as the ideal generated by the primitive
non-minimal idempotents in LK(E) (such idempotents are discussed further in Section 3.5). Recall from
Notation 2.2.4 that

Pc(E) := {v ∈ E0 | v is the base of some cycle c for which c has no exits}.

Indeed, Pc(E) may be viewed as the disjoint union Pc(E) = ti∈ϒ {c0
i }, where {ci}i∈ϒ is the set of distinct

cycles without exits in E (i.e., for which c0
i 6= c0

j for i 6= j). Note that although Pc(E) is clearly hereditary,
it is not necessarily saturated. For instance, in the graph

•u // •v ff

we have Pc(E) = {v}, which is a hereditary but not saturated subset of E0. Note, however, that I(Pc(E)) =
I(Pc(E)), by Lemma 2.4.1.

Lemma 2.7.1. Let E be an arbitrary graph and K any field. Let v ∈ Pc(E), and let c be the cycle without
exits such that s(c) = v. Let Λv denote the (possibly infinite) set of paths in E which end at v, but which do
not contain all the edges of c. Then

I(c0) = I(v)∼= MΛv(K[x,x−1]).

Proof. That I(c0) = I(v) is clear for any cycle c containing the vertex v: obviously I(c0) ⊇ I(v), and the
reverse containment holds since there is a path p (a portion of the cycle) from v to any vertex w ∈ c0, so
w = p∗vp ∈ I(v).

Consider the family
B := {µck

η
∗ | µ,η ∈Λv,k ∈ Z},

where as usual c0 denotes v and ck denotes (c∗)−k for k < 0. By Corollary 1.5.12, B is a K-linearly
independent set.

By Lemma 2.4.1 we have that every element in I(v) is a K-linear combination of elements of the form
αβ ∗, where r(α) = r(β ) ∈ T (v). But T (v) consists precisely of the vertices in c, as c has no exits. So
α = µc` and β = ηcm for some µ,η ∈Λv, and `,m≥ 0. This shows that B generates I(v), so that B is a
K-basis for I(v).

We define ϕ : I(v)→MΛv(K[x,x−1]) by setting ϕ(µckη∗) = xkeµ,η for each µckη∗ ∈B (where xkeµ,η

denotes the element of MΛv(K[x,x−1]) which is xk in the (µ,η) entry, and zero otherwise). Then one easily
checks that ϕ is a K-algebra isomorphism. ut

We record a consequence of Lemma 2.7.1 which is analogous to a previously noted consequence of
Lemma 2.6.4.

Corollary 2.7.2. Let K be any field. For any set Λ let Ec
Λ

denote the graph with

(Ec
Λ )

0 = {v}∪{uλ | λ ∈Λ} and (Ec
Λ )

1 = { fc}∪{ fλ | λ ∈Λ},
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where s( fλ )= uλ and r( fλ )= v for all λ ∈Λ , and fc is a loop based at v. Then LK(Ec
Λ
)∼=MΛ∪{v}(K[x,x−1]).

In particular, by taking disjoint unions of graphs of this form, any direct sum of full matrix rings over
K[x,x−1] arises as the Leavitt path algebra of a graph.

Now using Proposition 2.4.7 together with Lemma 2.7.1, we have achieved the following.

Theorem 2.7.3. Let E be an arbitrary graph and K any field. Then

I(Pc(E))∼=⊕i∈ϒ MΛvi
(K[x,x−1]),

where {ci}i∈ϒ is the set of distinct cycles without exits in E (i.e., for which c0
i 6= c0

j for i 6= j), and, for each
i ∈ϒ , Λvi is the set of paths in E which end at the base vi of the cycle ci, but do not contain all the edges of
ci.

For the following corollary, we will need to consider vertices for which its tree does not contain infinite
bifurcations.

Definition 2.7.4. Let E be an arbitrary graph.
Denote by Pb∞(E) the set of all vertices v in E0 such that T (v) contains either infinitely many distinct

bifurcation vertices, or at least one infinite emitter.
Denote by Pne(E) the set of vertices whose tree does not contain cycles with exits.

Corollary 2.7.5. Let E be an arbitrary graph and K any field. Denote by H the set Pl(E)∪Pc(E)⊆ E0.

(i) There is an isomorphism of K-algebras

I(H)∼=
(
⊕i∈ϒ1MΛvi

(K)
)
⊕
(
⊕i∈ϒ2MΛvi

(K[x,x−1])
)
,

where ϒ1 is the set of equivalences classes of line points, and ϒ2 is the set of differents cycles without
exits.

(ii) For every v∈Pne(E)\Pb∞(E) for which every path starting at v connects to H, there is an isomorphism
of K-algebras

I(v)∼=
(
⊕i∈ϒ ′1

MΛvi
(K)
)
⊕
(
⊕i∈ϒ ′2

MΛvi
(K[x,x−1])

)
,

where ϒ ′j ⊆ϒj for j = 1,2.

Proof. (i). It is clear that Pl(E) and Pc(E) are disjoint hereditary subsets of E0. By Proposition 2.4.7 we
have that I(H) = I(Pl(E))⊕ I(Pc(E)). Now apply Theorems 2.6.14 and 2.7.3 to establish the result.

(ii). By definition, every vertex in the tree of v is a finite emitter and there are only a finite number
of bifurcations in T (v). We are going to show that v ∈ H by induction on the number of bifurcations in
T (v). If there are no bifurcations in the tree of v, then v ∈ H. Assume that the result is true for vertices
whose tree has less than t bifurcation vertices, where t ≥ 1, and let v be a vertex as in the statement whose
tree has exactly t bifurcation vertices. Clearly, we can assume that v itself is a bifurcation vertex. Using
(CK2) we may write v = ∑e∈s−1(v) ee∗, and now each r(e) for e ∈ s−1(v) has less than t bifurcations in its
tree, and has the property that each path starting at r(e) connects to H. So, by the induction hypothesis,
r(s−1(v)) ⊆ H. Since H is saturated, we get that v ∈ H. This implies that I(v) ⊆ I(H) = I(H). By (i) this
last ideal is isomorphic to

(
⊕i∈ϒ1MΛvi

(K)
)
⊕
(
⊕i∈ϒ2MΛvi

(K[x,x−1])
)

. The grading of I(H) corresponds

to a certain grading in the latter algebra, in such a way that, for each factor MΛvi
(K[x,x−1]), the degree of

xeγ,γ is strictly positive, for each diagonal matrix unit eγ,γ . This is enough to show that these factors are
graded-simple. Now, using this fact and that I(v) is a graded ideal (as it is generated by an element of zero
degree), we get the result. ut

Corollary 2.7.6. Let E be a finite graph and K any field. Let v ∈ Pne(E). Then there exist positive integers
m,n,ri, and si for which

I(v)∼= (⊕m
i=1Mri(K))⊕

(
⊕n

i=1Msi(K[x,x−1])
)
.

In particular, I(v) is a noetherian K-subalgebra of LK(E).
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Proof. Use Corollary 2.7.5(ii) with the fact that E finite implies LK(E) is unital to get that all ϒj and Λv j

must be finite, for j = 1,2. The second statement then follows immediately. ut

The ideal we have described in Theorem 2.7.3 will play an important role in a Leavitt path algebra
because as we now show, it captures all those ideals in the Leavitt path algebra which do not contain
vertices.

Lemma 2.7.7. Let E be an arbitrary graph and K any field. Let J be a nonzero ideal of LK(E) such that
J∩E0 = /0. Then {0} 6= J∩KE ⊆ I(Pc(E)).

Proof. We first show that {0} 6= J∩KE. Let y be a nonzero element in J. By the Reduction Theorem 2.2.11,
either there exist α,β ∈ Path(E) such that α∗yβ = ku for some u ∈ E0 and k ∈ K×, or α∗yβ is a nonzero
polynomial in a cycle without exits. Since J does not contain vertices, the first case cannot happen, and by
multiplying by a power of the cycle without exits (if necessary), we produce a nonzero element in J∩KE.

For such a nonzero element x ∈ J ∩KE, write x = ∑u∈U xu, where U = U(x) is the finite family of
vertices of E such that xu 6= 0. Fix u ∈U , and write xu = ∑

r
i=1 kiαi, with ki ∈ K×, αi = αiu ∈ Path(E) for

every i and αi 6= α j for every i 6= j, and in such a way that deg(αi)≤ deg(αi+1) for every i = 1, . . . ,r−1.
We will prove that xu ∈ I(Pc(E)) by induction on the number r of summands. Note that r 6= 1 as other-

wise we would have xu = k1α1, so k−1
1 α∗1 xu = u ∈ J, a contradiction to the hypothesis. So the base case for

the induction is r = 2.
Suppose first that deg(α1) = deg(α2). In this case, since α1 6= α2, we get α∗1 α2 = 0 so that k−1

1 α∗1 xu =
u ∈ J, a contradiction again. This gives deg(α1) < deg(α2), and then α∗1 xu = k1u+ k2e1 · · ·et for some
e1, · · · ,et ∈ E1. By multiplying on the left and right hand sides by u we get

y1 := uα
∗
1 xu = k1u+ k2ue1 · · ·etu ∈ J∩KE.

Observe that u and e1 · · ·et have different degrees, so since k1u 6= 0 we obtain that y1 6= 0. Moreover, as
J does not contain vertices we have that c := ue1 · · ·etu 6= 0, and thus c is a closed path based at u. We
will prove that c does not have exits. Suppose on the contrary that there exist w ∈ T (u) and e, f ∈ E1

such that e 6= f , s(e) = s( f ) = w, c = aweb = aeb for some a,b ∈ Path(E). Then τ = a f satisfies τ∗c =
f ∗a∗aeb = f ∗eb = 0 so that τ∗y1τ = k1r(τ) ∈ J, again a contradiction. Thus by definition u ∈ Pc(E), so
that, in particular, xu ∈ I(Pc(E)). So the base case r = 2 for the induction has been established.

We now assume the result holds for r ≥ 2 and prove it for r+ 1. Assume then that xu = ∑
r+1
i=1 kiαi; we

distinguish two situations.
For the first case, suppose deg(α j)= deg(α j+1) for some 1≤ j≤ r. The element α∗j xuα j =α∗j xuα ju∈ J

is nonzero, as follows: clearly each monomial remains with positive degree as deg(α∗j αiα j) = deg(αi)≥ 0.
Moreover, at least α j = α∗j α jα j appears in the expression for α∗j xuα j because if we had α j = α∗j αiα j
for some i 6= j, then deg(αi) = deg(α j), which implies α∗j αi = 0 and therefore α j = 0, a contradiction.
This shows that α∗j xuα j has at least one nonzero monomial summand, and because distinct paths of E are
linearly independent (see Corollary 1.5.15), then α∗j xuα j 6= 0. Now, this element has at most r summands
because α∗j α j+1α j = 0 and it satisfies the induction hypothesis, so that u ∈ Pc(E).

The second case is when deg(αi) < deg(αi+1) for every i = 1, . . . ,r. Then 0 6= α∗1 xu = k1u+∑
r+1
i=2 kiβi

with βiu = βi ∈ Path(E). Multiply again as follows:

y2 := uβ
∗
r+1uα

∗
1 xuβr+1u = k1u+

r+1

∑
i=2

kiuβ
∗
r+1uβiuβr+1u ∈ J.

A similar argument to the one used above shows that y2 is nonzero so that, in case some monomial summand
of y2 becomes zero, then y2 satisfies the induction hypothesis, therefore u ∈ Pc(E). If this is not the case,
since βr+1 has maximum degree among the βi, then

y2 = k1u+ k2γ1 + k3γ1γ2 + . . .+ kr+1γ1 · · ·γr,

where γi are closed paths based at u. We focus on γ1. Proceeding in a similar fashion as before, we can
conclude that γ1 cannot have exits, as otherwise there would exist a path δ with s(δ ) = u and δ ∗γ1 = 0,
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which in turn would give 0 6= δ ∗y2δ = k1r(δ ) ∈ J, a contradiction. Thus γ1 is a closed path without exits,
so that r(γ) = u ∈ Pc(E), and finally x = xu ∈ I(Pc(E)).

Since this holds for every u ∈U we get x = ∑u∈U xu ∈ I(Pc(E)). ut

Prior to achieving our main result about I(Pc(E)), we need a general result about path algebras.

Lemma 2.7.8. Let E be an arbitrary graph and K any field.

(i) Let w ∈ E0, let µ ∈ Path(E) with r(µ) = w, and let x ∈ KE for which wx = x. If µx = 0 in KE, then
x = 0.

(ii) Let v∈ E0, let γ ∈ Path(E) with s(γ) = v, and let y∈KE for which yv = y. If yγ = 0 in KE, then y = 0.

Proof. (i) Write x = ∑
n
i=1 kiµi ∈ KE, where ki ∈ K×, and the µi are distinct. Since wx = x, we may assume

that s(µi) = w for all 1≤ i≤ n. In particular, each expression µµi is a path in E. Then from µx = 0 we get
∑

n
i=1 kiµµi = 0, and since all the paths in the set {µµi}n

i=1 are distinct, they are K-linearly independent in
KE (see Remark 1.2.4). Therefore ki = 0 for all 1≤ i≤ n, and so x = 0.

Statement (ii) can be established analogously. ut

Proposition 2.7.9. Let E be an arbitrary graph and K any field. Let J be an ideal of LK(E) such that
J∩E0 = /0. Then J ⊆ I(Pc(E)).

Proof. We may assume that J 6= 0. Let 0 6= x ∈ J, and write x = ∑
n
i=1 xui for the finite set of vertices

{ui | 1 ≤ i ≤ n} for which 0 6= xui. As J is an ideal, 0 6= xui ∈ J, so that we can assume without loss of
generality that 0 6= x = xu for some u ∈ E0.

We will show, by induction on the degree in ghost edges (recall Definitions 2.2.9), that if xu ∈ J, with
u ∈ E0, then xu ∈ I(Pc(E)). If gdeg(xu) = 0, the result follows by Lemma 2.7.7. Suppose the result is true
for elements having degree in ghost edges strictly less than gdeg(xu), and show it for gdeg(xu).

Write x = ∑
r
i=1 βie∗i +β , with βi ∈ LK(E), β = βu ∈ KE and ei ∈ E1, with ei 6= e j for every i 6= j. Then

xuei = βi + βei ∈ J; since gdeg(xuei) < gdeg(xu), by the induction hypothesis βi + βei ∈ I(Pc(E)), for
every i ∈ {1, . . . ,r}.

Suppose first that u is a finite emitter. If u = ∑
r
i=1 eie∗i , then xu = ∑

r
i=1 βie∗i +∑

r
i=1 βeie∗i = ∑

r
i=1(βi +

βei)e∗i ∈ I(Pc(E)), and we have finished. If u = ∑
r
i=1 eie∗i + ∑

s
j=1 f j f ∗j (where f j ∈ E1), then xu f j =

β f j ∈ J ∩KE. By Lemma 2.7.7, β f j ∈ I(Pc(E)) for every j ∈ {1, . . . ,s}, hence xu = ∑
r
i=1(βi +βei)e∗i +

∑
s
j=1 β f j f ∗j ∈ I(Pc(E)).
On the other hand, suppose that u is an infinite emitter. If β = 0 then for every j we have xue j = β j ∈

I(Pc(E)), by the induction hypothesis, and so xu ∈ I(Pc(E)). Now we are going to show by contradiction
that the case β 6= 0 cannot happen, and thereby will complete the proof.

So suppose β 6= 0, and write β = ∑
s
i=1 kiβ

′
i , with ki ∈ K×, and β ′i ∈ Path(E) distinct paths such that

|β ′1| ≤ · · · ≤ |β ′s |. Note that, as u is an infinite emitter, u is not in I(Pc(E)). Since β ′i = β ′i u then β ′i is not
in I(Pc(E)) for any i. (Because Pc(E) contains no infinite emitters (by definition), then neither does Pc(E),
and so neither does I(Pc(E)).) Let f ∈ s−1(u) such that f 6= e j for every j. By Lemma 2.7.8(ii) we have
β f 6= 0; since β f = x f , by the induction hypothesis β f ∈ I(Pc(E)), therefore 0 6= x f = β f ∈ I(Pc(E)).

We shall see that r( f ) ∈ Pc(E). Consider the algebra LK(E)/I(Pc(E)) and denote by x the class of an
element x of LK(E) in this quotient. Note that 0 = β f = ∑

s
i=1 kiβ

′
i f , hence, by Theorem 2.4.15 we have

β ′i f = 0, i.e., β ′i f ∈ I(Pc(E)) for every i and so r( f ) = f ∗(β ′i )
∗
β ′i f ∈ I(Pc(E))∩E0 = Pc(E) by Corollary

2.4.16(i). Then f ∗(β ′1)
∗β f = k1r( f ) +∑

s
i=2 ki f ∗(β ′1)

∗
β ′i f . Note that the second summand must be zero

because otherwise for some j ∈ {2, · · · ,s} we would have β ′j = β ′1 f γ for some γ ∈ Path(E), which is not
possible because we know β ′j /∈ I(Pc(E)). Therefore 0 6= k1r( f ) ∈ J, a contradiction again. Thus β = 0,
which completes the proof of the result. ut

We finish the section by utilizing Lemma 2.7.8 to give a graph-theoretic description of when an ideal
I(H) is an essential ideal of LK(E).

Proposition 2.7.10. Let E be an arbitrary graph and K any field. Let H be a hereditary subset of E. Then
I(H) is an essential (left / right / two-sided) ideal of LK(E) if and only if every vertex of E connects to a
vertex in H (i.e., T (v)∩H 6= /0 for all v ∈ E0).
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Proof. Since LK(E) is semiprime (Proposition 2.3.1), we may invoke [108, (14.1) Proposition] to conclude
that I(H) is essential as a left or right ideal if and only if it is essential as an ideal. Moreover, as I(H) is a
graded ideal, by [119, 2.3.5 Proposition] we have that essentiality and graded-essentiality (i.e., essentiality
with respect to graded ideals) of I(H) are equivalent. Hence, it suffices to show that I(H) is a graded-
essential ideal if and only if every vertex of E0 connects to a vertex in H.

Suppose first that I(H) is a graded essential ideal of LK(E). Let v∈E0. If H∩T (v) = /0, then Proposition
2.5.25(ii) would imply I(H)∩I(T (v)) = 0, but this cannot happen as I(H) is a graded essential ideal. Hence
H ∩T (v) 6= /0. This implies that v connects to a vertex in H.

Conversely, suppose H ∩T (v) 6= /0 for each v ∈ E0. Let J be a nonzero graded ideal and pick a nonzero
homogeneous element x = uxv ∈ J, where u,v ∈ E0. By Corollary 2.2.12(ii), there exists µ ∈ Path(E)
such that 0 6= xµ ∈ KE. Denote r(µ) by w. By hypothesis w connects to a vertex in H, hence there exists
λ ∈ Path(E) such that w = s(λ ) and r(λ )∈H. But xµλ 6= 0 by Lemma 2.7.8(i), hence 0 6= xµλ ∈ I(H)∩J,
which establishes the result. ut

2.8 The Structure Theorem for Ideals, and the internal structure of ideals

Now that we have in hand an explicit description of the lattice of graded ideals of a Leavitt path algebra
(the Structure Theorem for Graded Ideals 2.5.8, we turn our attention to explicitly describing the lattice of
all ideals in a Leavitt path algebra. Although the structure of the field K played no role in the description
of the graded ideals, the field will indeed play a pivotal role in this more general setting. The intuition
which lies at the heart of this description is as follows. The prototypical example of a Leavitt path algebra
which contains non-graded ideals is LK(R1) ∼= K[x,x−1]. The only graded ideals of LK(R1), namely, {0}
and LK(R1) itself, correspond to the two distinct hereditary saturated subsets of R1. On the other hand, the
non-graded ideals correspond to various polynomial expressions in the cycle c of R1, specifically, are in
bijective correspondence with polynomials of the form 1+k1x+ · · ·+knxn ∈K[x], for n > 0 and kn 6= 0. We
will show in the main result of this section (the Structure Theorem for Ideals, Theorem 2.8.10) that such
a bijection, one which associates hereditary saturated subsets of E0 (possibly also with breaking vertices
of such subsets) together with various cycles in E and polynomials in K[x] on the one hand, with ideals of
LK(E) on the other, may be established for arbitrary graphs E and fields K as well. To achieve this general
result we will rely heavily on our previously completed analysis of the graded ideal structure of LK(E),
together with the structure of the ideal I(Pc) investigated in Section 2.7. It is not coincidental in this context
that the loop in R1 is the only closed simple path based at the vertex of R1. Indeed, in general LK(E) will
contain non-graded ideals only when E fails to satisfy Condition (K).

We remind the reader that when we talk about a cycle based at a vertex (say, v), then we mean a specific
path c = e1 · · ·en in E (one for which s(c) = r(c) = v); on the other hand, when we speak about a cycle, we
mean a collection of paths based at the different vertices of the path c (see Definitions 1.2.2).

Notation 2.8.1. Let E be an arbitrary graph. We define

Cu(E) = {c | c is a cycle in E for which |CSP(v)|= 1 for every v ∈ c0}, and

Cne(E) = {c | c is a cycle in E for which c has no exits in E}.

Observe that Cne(E)⊆Cu(E) for any graph E, but not necessarily conversely: in the Toeplitz graph ET ,
the unique cycle has an exit, but there is exactly one closed simple path at the vertex of that cycle.

Notation 2.8.2. Let E be an arbitrary graph. Let H ∈HE . Denote by CH the set

CH = {c | c is a cycle in E such that c0∩H = /0, and for which r(e) ∈ H for every exit e of c}.

We note that CH corresponds precisely to the set of cycles without exits in the quotient graph E/H.

Lemma 2.8.3. Let E be an arbitrary graph, and H ∈HE . Then CH ⊆Cu(E).
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Proof. Let c ∈CH . We must show that c ∈Cu(E), i.e., that |CSP(v)| = 1 for every v ∈ c0. But this holds
because for every exit e of c the vertices in T (r(e)) are in H (because H is hereditary), and because
c0∩H = /0. ut

Recall the preorder ≤ in E0: given v,w ∈ E0, v≤ w if and only if there is a path µ ∈ Path(E) such that
s(µ) = w and r(µ) = v.

Notation 2.8.4. Let E be an arbitrary graph. For u,v ∈ E0 we write u << v in case u ≤ v but v � u. For a
cycle c in E, we define:

c<< := {w ∈ E0 | w << v for every v ∈ c0}.

Roughly speaking, c<< is the tree of the set of vertices which are ranges of exits for the cycle c, but for
which there are no paths from such vertices which return back to the cycle c. For instance, for the Toeplitz
graph ET of Example 1.3.6, we have c<< = {v}.

Proposition 2.8.5. Let E be an arbitrary graph and K any field. Let I be an ideal of E. Denote by H :=
I∩E0 and S := {v ∈ BH |vH ∈ I}. Let J denote I/I(H ∪SH); using Theorem 2.4.15, we view J as an ideal
of the Leavitt path algebra of the quotient graph LK(E/(H,S)). Then:

(i) J ⊆ I(Pc(E/(H,S))).
(ii) There exists a set C ⊆CH and a set P = {pc(x) ∈ K[x] | c ∈C} such that each pc(x) is a polynomial

of the form 1+ k1x+ . . .+ knxn, with n > 0 and kn 6= 0, in such a way that J = ⊕c∈CI(pc(c)). (Note
that C is empty precisely when I is graded, which happens precisely when J = {0}.)

(iii) The sets C and P are uniquely determined by I.

Proof. (i). Consider the ideal J = I/I(H ∪ SH) of LK(E/(H,S)). Recall that the vertices in E/(H,S) are
(E0 \H)∪{v′ | v ∈ BH \ S}, and observe that vertices v′ with v ∈ BH \ S correspond to the classes of the
elements vH through the isomorphism LK(E/(H,S)) ∼= LK(E)/I(H ∪SH). It is clear from this that J does
not contain vertices in the graph E/(H,S). Now (i) follows by Proposition 2.7.9.

(ii) and (iii). By Theorem 2.7.3 we have an isomorphism

I(Pc(E/(H,S)))∼=
⊕
i∈ϒ

MΛi(K[x,x−1]),

where ϒ is the set of cycles without exits in E/(H,S). As observed previously, we may identify this set with
CH . We recall now these two well-known facts: first, that the ideals of a direct sum of matrix rings are direct
sums of matrix rings over ideals of the base rings, and, second, that the Laurent polynomial ring K[x,x−1]
is a principal ideal domain. Applying these two facts, along with (i) and the displayed isomorphism, we get
that there exists a subset C of CH and a set of polynomials P as in the statement, uniquely determined by J,
for which

J ∼=
⊕
c∈C

MΛc(pc(x)K[x,x−1])∼=
⊕
c∈C

I(pc(c)),

as desired. ut

The main result of this section is Theorem 2.8.10, which shows that there is a lattice isomorphism
between ideals in the Leavitt path algebra LK(E) on the one hand, and triples consisting of elements in TE
(see Definition 2.5.3), certain subsets of cycles in E, and families of polynomials in K[x] on the other. We
now describe such triples.

Definition 2.8.6. Let E be an arbitrary graph and K any field. For every pair (H,S) ∈TE , consider a subset
C of CH ; for every element c ∈C, take an arbitrary polynomial pc(x) = 1+ k1x+ · · ·+ knxn ∈ K[x], where
n > 0 and kn 6= 0, and write P = {pc(x) | c ∈C}. We define QE as the set of triples:

QE = {((H,S),C,P)}.
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To show that there is a bijection between Lid(LK(E)) and QE we will assign to every triple ((H,S),C,P)
the ideal generated by H ∪SH ∪PC, where for P = {pc(x) | c ∈C}, PC denotes the subset {pc(c) | c ∈C}
of LK(E).

Definition 2.8.7. Let E be an arbitrary graph and K any field. We define a relation ≤ on QE as follows.
For elements ((H1,S1),C1,P1) and ((H2,S2),C2,P2) of QE , we set Pi := {p(i)c | c ∈Ci} for i = 1,2. We then
define

((H1,S1),C1,P1) ≤ ((H2,S2),C2,P2) in case:

(H1,S1)≤ (H2,S2), C0
1 ⊆ H2∪C0

2 , and p(2)c | p(1)c in K[x] for every c ∈C1∩C2.

Proposition 2.8.8. Let E be an arbitrary graph and K any field. Then the relation ≤ defined on QE in
Definition 2.8.7 is a partial order. Furthermore, using this relation, QE is a lattice, in which the supremum
and infimum operators are described as follows.

For the supremum ∨ of two elements, we have

((H1,S1),C1,P1) ∨ ((H2,S2),C2,P2)

= ((H1∪H2∪C0S1∪S2
,(S1∪S2)\H1∪H2∪C0S1∪S2

), C1∨C2, {g.c.d.(p(1)c , p(2)c )}c∈C1∨C2),

where
C = {c ∈C1∩C2 | g.c.d.(p(1)c , p(2)c ) = 1}, and

C1∨C2 =C1∪C2 \{c ∈C1∪C2 | c0 ⊆ H1∪H2∪C0S1∪S2}.

(We interpret p(i)c as 0 if c /∈Ci for i = 1 or 2.)

For the infimum ∧ of two elements, we have

((H1,S1),C1,P1) ∧ ((H2,S2),C2,P2)

= ((H1,S1)∧ (H2,S2), C1∧C2, {l.c.m.(p(1)c , p(2)c )}c∈C1∧C2),

where
C1∧C2 = (C1∩C2)∪CH2

1 ∪CH1
2 ,

with CH2
1 := {c ∈C1 | c0 ⊆ H2} and CH1

2 := {c ∈C2 | c0 ⊆ H1}.

(We interpret p(i)c as 1 if c /∈Ci for i = 1 or 2.)

Proof. It is immediate to see that ≤ is reflexive. To show the antisymmetric property we use the anti-
symmetric property of ≤ on TE (see Proposition 2.5.6) and the fact that for ((H,S),C,P) ∈QE we have
C0∩H = /0 (because C ⊆CH ).

To prove the transitivity, take three triples in QE such that ((H1,S1),C1,P1) ≤ ((H2,S2),C2,P2) and
((H2,S2),C2,P2) ≤ ((H3,S3),C3,P3). Since (H1,S1) ≤ (H2,S2) and (H2,S2) ≤ (H3,S3), it follows that
(H1,S1) ≤ (H3,S3). In addition, C0

1 ⊆ H2 ∪C0
2 and C0

2 ⊆ H3 ∪C0
3 implies C0

1 ⊆ H2 ∪C0
2 ⊆ H3 ∪C0

3 . Fi-
nally, let c ∈C1∩C3. Note that c ∈C3 implies c0∩H3 = /0, hence c ∈C2 because otherwise c0 ⊆ H2∪C0

2

would imply c0 ⊆ H2 ⊆ H3, a contradiction. Therefore c ∈C1∩C2∩C3, and from the relations p(2)c | p(1)c

and p(3)c | p(2)c in K[x] we get p(3)c | p(1)c in K[x]. Hence ((H1,S1),C1,P1)≤ ((H3,S3),C3,P3).
Now we check that the formula given in the statement corresponds to the supremum. To this end, let

((H1,S1),C1,P1),((H2,S2),C2,P2) ∈QE . Denote the element

((H1∪H2∪C0S1∪S2
,(S1∪S2)\H1∪H2∪C0S1∪S2

), C1∨C2, {g.c.d.(p(1)c , p(2)c )}c∈C1∨C2)

by ((H̃, S̃),C̃, P̃). It is not difficult to show that ((Hi,Si),Ci,Pi)≤ ((H̃, S̃),C̃, P̃) for i = 1,2.
Now take ((H ′,S′),C′,P′) ∈QE such that ((Hi,Si),Ci,Pi)≤ ((H ′,S′),C′,P′) for i = 1,2. First we prove

(H̃, S̃) ≤ (H ′,S′). Note that H1 ∪H2 ⊆ H ′. Now we want to show that C0 ⊆ H ′. We start by showing that
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C∩C′ = /0. Assume c ∈ C∩C′. Then c ∈ C1 ∩C2 and g.c.d.(p(1)c , p(2)c ) = 1 (recall the definition of C).
Since ((Hi,Si),Ci,Pi)≤ ((H ′,S′),C′,P′) and c ∈Ci∩C′ we have p′c|p

(i)
c , for i = 1,2, where P′ = {p′c | c ∈

C′}. Hence p′c = 1, contradicting the choice of p′c (which, by definition, is a non invertible polynomial in
K[x,x−1]). Using that C0 ⊆C0

1 ⊆ H ′∪C′0, and taking into account that C0∩C′0 = /0, we get C0 ⊆ H ′. This
shows H1∪H2∪C0 ⊆ H ′. Since S1∪S2 ⊆ H ′∪S′ the same argument as in Proposition 2.5.6 shows

H1∪H2∪C0S1∪S2 ⊆ H ′.

It is immediate that S1∪S2 \H1∪H2∪C0S1∪S2 ⊆ H ′∪S′, and that (C1∨C2)
0 ⊆C0

1 ∪C0
2 ⊆ H ′∪ (C′)0.

Finally, note that for c ∈ (C1 ∨C2)∩C′ we have that p′c|p
(i)
c for i = 1,2. Hence p′c | g.c.d.(p(1)c , p(2)c ).

This concludes the proof of the formula for the supremum.
We leave to the reader the verification of the formula for the infimum. ut

Lemma 2.8.9. Let E be an arbitrary graph and K any field. For any ideal I of LK(E), let H = I∩E0, and
SH = {v ∈ BH | vH ∈ I} (see Definitions 2.4.4). Then the largest graded ideal of LK(E) contained in I is
precisely I(H ∪SH).

Proof. Clearly I(H ∪ SH) ⊆ I. Now let J be any other graded ideal contained in I. Then by the Structure
Theorem for Graded Ideals 2.5.8, J = I(H ′∪SH ′) for H ′ = J∩E0 ⊆ I∩E0 = H, and SH ′ = {v∈ BH ′ | vH ′ ∈
J} ⊆ SH . ut

We now have all the tools in place to achieve the main result of this section, namely, a description of the
collection of all two-sided ideals of LK(E). Recall that Lid(LK(E)) denotes the lattice of two-sided ideals
of LK(E), under the usual order given by inclusion, and usual lattice operations given by + and ∩.

Theorem 2.8.10. (The Structure Theorem for Ideals) Let E be an arbitrary graph and K any field. Then
the following map is a lattice isomorphism:

ϕ : QE −→ Lid(LK(E))

((H,S),C,P) 7→ I(H ∪SH ∪PC)

with inverse given by
ϕ ′ : Lid(LK(E)) −→ QE

I 7→ ((H,S),C,P)

where H = I∩E0, S = {v ∈ BH | vH ∈ I}, and C and P are as described in Proposition 2.8.5.

Proof. We start by showing that ϕ ′ ◦ϕ is the identity on QE . Take ((H,S),C,P) ∈QE , and denote by I its
image under ϕ , that is, I = I(H ∪SH ∪PC). We show that I∩E0 = H.

Clearly, H ⊆ I ∩E0 ⊆ I. To see the reverse containment, consider I/I(H ∪ SH) = I(PC), where for any
subset X ⊆ LK(E), X denotes the image of X under the epimorphism Ψ : LK(E)→ LK(E/(H,S)) described
in Theorems 2.4.12 and 2.4.15. Observe that for all c ∈C we have c ∈Cne(E/(H,S)) and that I/I(H ∪SH)
is an ideal of LK(E)/I(H ∪SH) contained in I(Pc(E/(H,S))). Concretely, we have

I/I(H,S)∼=
⊕
c∈C

MΛc(pc(x)K[x,x−1]),

using the notation of Theorem 2.7.3. We want to see that there are no nonzero idempotents in I/I(H∪SH).
If e is an idempotent in I/I(H ∪SH), then the ideal J of LK(E)/I(H ∪SH) generated by e is an idempotent
ideal, contained in I/I(H ∪ SH). However, by the structure of the ideal generated by Pc(E/(H,S)) (see
Theorem 2.7.3), the only idempotent ideals of I(Pc(E/(H,S))) are the direct sums of some subset of the
ideals MΛi(K[x,x−1]) appearing in the decomposition of I(Pc(E/(H,S))) given by Theorem 2.7.3. Since
all the polynomials pc, for c ∈C, are not invertible in K[x,x−1], we conclude that J = 0 and so that e = 0.
Hence I∩E0 ⊆ H by Corollary 2.4.16(i), and we have shown our claim.
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We denote the set {v∈BH | vH ∈ I} by S′. Then for v∈ S′ we have that v is an idempotent in I/I(H∪SH);
apply again that this ideal has no nonzero idempotents to get vH ∈ I(H ∪SH). Now, apply Corollary 2.4.16
(ii) to obtain that v ∈ S.

By the proof of Proposition 2.8.5 we see that the sets of cycles and of polynomials associated to the ideal
I = I(H ∪SH)+ I(PC) are precisely the sets C and P. Therefore ϕ ′ ◦ϕ( ((H,S),C,P) ) = ((H,S),C,P).

Now we establish that the composition ϕ ◦ ϕ ′ is the identity on Lid(LK(E)). To this end, consider
I ∈ Lid(LK(E)). Recall from Proposition 2.8.5 that ϕ ′(I) = ((H,S),C,P), where H = I ∩E0, S = {v ∈
BH | vH ∈ I}, and C ⊆CH and P = {pc}c∈C satisfy

I/I(H ∪SH) =
⊕
c∈C

I(pc(c)).

Write J = ϕ(ϕ ′(I)) = I(H ∪SH)+ I(PC) (where PC = {pc(c) | c ∈C}). Since I/I(H ∪SH) = J/I(H ∪SH),
we get I = J as desired. By Lemma 2.8.9, I(H ∪SH) is the largest graded ideal of LK(E) contained in I.

To finish the proof we check that both isomorphisms preserve the partial orders. First, assume that
((H1,S1),C1,P1) ≤ ((H2,S2),C2,P2). Since (H1,S1) ≤ (H2,S2), we get that I(H1 ∪ SH1

1 ) ⊆ I(H2 ∪ SH2
2 ) by

Theorem 2.5.8.
Now we want to show I((P1)C1) ⊆ I(H2 ∪ SH2

2 ∪ (P2)C2). Take c ∈ C1. If c ∈ C2 then p(2)c |p(1)c and so
p(1)c (c) ∈ I((P2)C2). If c /∈C2, then since C0

1 ⊆ H2∪C0
2 we have c0 ⊆ H2 and so p1

c(c) ∈ I(H2). This shows
that ϕ preserves the order.

In what follows we will prove that the map ϕ ′ also preserves the order. So let I and J be in Lid(LK(E))
such that I ⊆ J. Again using Proposition 2.8.5 we have that ϕ ′(I) = ((H1,S1),C1,P1) and ϕ ′(J) =
((H2,S2),C2,P2), where Hi,Si,Ci,Pi, for i = 1,2 are as defined before. Again using Lemma 2.8.9, we have
that the largest graded ideal I(H1∪SH1

1 ) of I is contained in the largest graded ideal I(H1∪SH2
2 ) of J. Hence,

by Theorem 2.5.8, (H1,S1)≤ (H2,S2).
To finish, we must prove C0

1 ⊆C0
2∪H2 and p(2)c |p(1)c for every c∈C1∩C2. First, we claim CH1 ⊆CH2∪H2.

Consider c ∈CH1 . By definition, c0 ∩H1 = /0 and r(e) ∈ H1 for every exit e of c. If c0 ∩H2 6= /0, then we
have finished. If c0∩H2 = /0, we get c ∈CH2 as r(e) ∈ H2. Note that I/I(H1∪SH1

1 ) =
⊕

c∈C1
I(P(1)

c (c)).
Denote by π the canonical homomorphism: π : LK(E)/I(H1∪SH1

1 )−→ LK(E)/I(H2∪SH2
2 ). Recall that

I(Pc(E/(H1,S1))) =
⊕

c∈CH1

MΛc(K[c,c−1])∼=
⊕

c∈CH1

MΛc(K[x,x−1])

by Theorem 2.7.3 (where c denotes the class of c in LK(E)/I(H1∪SH1
1 )), and thus

Ker(π)∩ I(Pc(E/(H1,S1))) =
⊕

{c∈CH1 | c0⊆H2}
MΛc(K[c,c−1]).

Let c̃ denote the class of c in LK(E)/I(H2∪SH2
2 ). Then, by the above,

π

(
I/I(H1∪SH1

1 )
)
=

⊕
{c∈C1 | c0∩H2= /0}

I(p(1)c (c̃))⊆ π

(
J/I(H1∪SH1

1 )
)
= J/I(H2∪SH2

2 ) =
⊕
c∈C2

I(p(2)c (c̃)).

Therefore we have {c∈C1 | c0∩H2 = /0} ⊆C2 and thus c0
1 ⊆H2∪C0

2 . Finally we observe that for every c∈
C1∩C2 we have p(2)c |p(1)c since I(p(1)c (c̃))⊆ I(p(2)c (c̃)). This implies ((H1,S1),C1,P1)≤ ((H2,S2),C2,P2),
and thereby establishes the result. ut

We note that much of the information contained in the Structure Theorem for Ideals 2.8.10 was obtained
in [132].

As we did with the Structure Theorem for Graded Ideals 2.5.8, we now record the Structure Theorem
for Ideals in the case that E is row-finite.

Proposition 2.8.11. Let E be a row-finite graph and K any field. Then every ideal I of LK(E) is of the form
I(H ∪PC), where H = I∩E0, and C and P are as described in Proposition 2.8.5.
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Here is an example of how Theorem 2.8.10 allows us to explicitly describe all the ideals of an important
Leavitt path algebra.

Example 2.8.12. Let K be any field, and let ET be the Toeplitz graph c •u
88

f // •v . Easily we see
that

HET = { /0,{v},{u,v}} and Cu(ET ) = {c}.

Clearly there are no sets of breaking vertices in ET . So by the Structure Theorem for Ideals 2.8.10, the
complete set of ideals of LK(ET ) is given by:

I( /0) = {0}, I({v}), I({u,v}) = LK(ET ), and

{I({v}∪{p(c)}) | p(x) = 1+ k1x+ . . .+ knxn ∈ K[x], with kn 6= 0 and n≥ 1}.

Remark 2.8.13. Let E be an arbitrary graph and K any field. Then there exist natural embeddings of lat-
tices:

HE −→ TE −→ QE

H 7→ (H, /0)

(H,S) 7→ ((H,S), /0, /0) .

We conclude the section by presenting just one general result which follows directly from the explicit
description of the lattice of all two-sided ideals of LK(E) given in the Structure Theorem for Ideals 2.8.10.
We will present numerous additional such results in Section 2.9. First, we introduce a binary operation · on
QE , under which QE becomes a commutative monoid.

Definition 2.8.14. Let E be an arbitrary graph and K any field. We define a binary operation · on QE as
follows. For any q1 = ((H1,S1),C1,P1) and q2 = ((H2,S2),C2,P2) ∈QE , set

q1 ·q2 = ((H1,S1)∧ (H2,S2), C1∧C2, {p(1)c p(2)c }c∈C1∧C2),

where
C1∧C2 = (C1∩C2)∪CH2

1 ∪CH1
2 ,

with CH2
1 = {c ∈C1 | c0 ⊆ H2} and CH1

2 = {c ∈C2 | c0 ⊆ H1}.

(We interpret p(i)c as 1 if c /∈Ci for i = 1 or 2.)
Clearly this operation is associative and commutative, and the neutral element is ((E0, /0), /0, /0).

Remark 2.8.15. We note that the set of idempotent elements of QE is precisely TE .

Using the explicit description of the lattice isomorphism ϕ given in the proof of the Structure Theorem
for Ideals 2.8.10, we get

Proposition 2.8.16. Let ϕ : Lid(LK(E))→QE be the isomorphism of Theorem 2.8.10, and let I and J be
elements of Lid(LK(E)). Then ϕ(IJ) = ϕ(I) ·ϕ(J).

Using Proposition 2.8.16, the fact that the map ϕ therein is a lattice isomorphism, and the obvious
commutativity of the operation · on QE , we achieve the following consequence. This result is perhaps
surprising, in that LK(E) is of course in general far from commutative.

Corollary 2.8.17. Let E be an arbitrary graph and K any field. If I and J are arbitrary ideals of LK(E),
then IJ = JI.
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2.9 Additional consequences of the Structure Theorem for Ideals. The Simplicity
Theorem

The Structure Theorem for Ideals 2.8.10 allows us great insight into various ring-theoretic properties of
Leavitt path algebras. We record a number of those results in this section.

Consistent with our presentation of various consequences of the Structure Theorem for Graded Ideals,
we begin by presenting the (non-graded) versions of results analogous to Proposition 2.5.13 and Corollary
2.5.15, namely, results about the simplicity and two-sided chain conditions of Leavitt path algebras.

Recall that an algebra A is said to be simple if A2 6= 0 and the only two-sided ideals of A are {0} and A.

Theorem 2.9.1. (The Simplicity Theorem) Let E be an arbitrary graph and K any field. Then the Leavitt
path algebra LK(E) is simple if and only if E satisfies the following conditions:

(i) HE = { /0,E0} (i.e., the only hereditary saturated subsets of E0 are /0 and E0), and
(ii) E satisfies Condition (L) (i.e., every cycle in E has an exit).

Proof. The Structure Theorem for Ideals 2.8.10 provides a lattice isomorphism ϕ from the lattice QE to
the lattice of all two-sided ideals of LK(E). In particular, we see immediately that if H is a hereditary
saturated subset of E0 not equal to /0 or E0, then ϕ(((H, /0), /0, /0)) is a nontrivial ideal of LK(E). Similarly,
if c is a cycle in E without an exit, then c ∈C/0 (see Notation 2.8.3), and then ϕ((( /0, /0),{c},1+ x)) gives a
nontrivial ideal of LK(E). Thus the two conditions on E are necessary for the simplicity of LK(E).

Conversely, suppose E satisfies the two properties. First, as noted subsequent to Definition 2.4.4, we have
that both B /0 = /0 and BE0 = /0. Additionally, CE0 = /0, and the hypothesis that every cycle in E has an exit
yields that C/0 = /0 as well. Thus QE consists precisely of the two elements ((E0, /0), /0, /0) and (( /0, /0), /0, /0).
The simplicity of LK(E) now follows from the Structure Theorem for Ideals. ut

Example 2.9.2. Consider once again the graphs Rn consisting of one vertex and n loops. Obviously Con-
dition (i) of the Simplicity Theorem is satisfied for Rn. When n ≥ 2, Condition (ii) is satisfied for Rn as
well. Thus LK(Rn) is simple for n ≥ 2; i.e., the Leavitt algebra LK(1,n) is simple for n ≥ 2. We note that
Condition (ii) is not satisfied for the graph R1, which implies that LK(R1) ∼= K[x,x−1] is not simple. (Of
course this last statement is well known.)

Remark 2.9.3. Note that graphs having infinite emitters may give rise to simple Leavitt path algebras: for
example, the graph RN having one vertex and countably many loops at that vertex satisfies the conditions
of the Simplicity Theorem 2.9.1.

Due to its importance in the general theory of Leavitt path algebras, due to the importance that these
attendant ideas and definitions will play later, and due to its historical significance, we offer now a second
proof of the Simplicity Theorem.

Definitions 2.9.4. Let E be an arbitrary graph. By an infinite path in E we mean a sequence γ = e1,e2, . . .
for which r(ei) = s(ei+1) for all i ∈ N. We often denote such γ by e1e2 · · · . (We note that the terminology
infinite path is perhaps misleading, but standard: despite its name, an infinite path in E is not an element of
Path(E).) By a vertex in an infinite path γ = e1,e2, . . . we mean a vertex of the form s(ei) for some i ∈ N.

We denote by E∞ the set of all infinite paths of E, and by E≤∞ the set E∞ together with the set of finite
paths in E whose range vertex is a singular vertex.

We say that a vertex v ∈ E0 is cofinal if for every γ ∈ E≤∞ there is a vertex w in the path γ such that
v≥ w. We say that a graph E is cofinal if every vertex in E is cofinal.

If c is a closed path in E, then c gives rise to the infinite path ccc · · · of E. Thus if E is cofinal, then in
particular every vertex of E connects to every cycle in E, and to every sink in E.

Lemma 2.9.5. Let E be a cofinal graph, and let v ∈ E0 be a sink.

(i) The only sink of E is v.
(ii) For every w ∈ E0, v ∈ T (w).

(iii) E contains no infinite paths. In particular, E is acyclic.
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Proof.

(i) is obvious.
(ii) Since T (v) = {v}, the result follows from the definition of T (v) by considering the path γ = v ∈ E≤∞.

(iii) If α ∈ E∞, then there exists w ∈ α0 such that v ≥ w, which is impossible. Thus, in particular, E
contains no closed paths.

Lemma 2.9.6. A graph E is cofinal if and only if HE = { /0,E0}.

Proof. Suppose E is cofinal. Let H ∈HE with /0 6=H 6=E0. We choose and fix v∈E0\H, and subsequently
build a path γ ∈ E≤∞ such that γ0∩H = /0, as follows. If v ∈ Sing(E), take γ = v, and we are done. If not,
then v ∈ Reg(E), so 0 < |s−1(v)| < ∞ and r(s−1(v)) * H (otherwise, H saturated implies v ∈ H). Hence,
there exists e1 ∈ s−1(v) such that r(e1) /∈ H. Let γ1 = e1 and repeat this process with r(e1). Continuing in
this way, either we reach a singular vertex, or we have an infinite path γ whose vertices are not in H, as
desired. Now consider w ∈ H (such exists as /0 6= H by hypothesis). By cofinality, there exists z ∈ γ0 such
that w≥ z, and by the hereditariness of H we get z ∈ H, contradicting the construction of γ .

Conversely, suppose that HE = { /0,E0}. Take v ∈ E0 and γ ∈ E≤∞, with v 6∈ γ0 (the case v ∈ γ0 is
obvious). By hypothesis the hereditary saturated subset generated by v is E0, i.e., E0 =

⋃
n≥0 Λn(v) as

described in Lemma 2.0.7. Consider m, the minimum n such that Λn(v)∩ γ0 6= /0, and let w ∈Λm(v)∩ γ0. If
m > 0, then by minimality of m it must be that w is a regular vertex and that r(s−1(w)) ⊆ Λm−1(v). Since
w is a regular vertex and γ = (γn) ∈ E≤∞, there exists i ≥ 1 such that s(γi) = w and r(γi) = w′ ∈ γ0, the
latter meaning that w′ ∈ r(s−1(w)) ⊆ Λm−1(v), contradicting the minimality of m. Therefore m = 0 and
then w ∈Λ0(v) = T (v), as we needed. ut

The previous discussion allows us to re-establish the Simplicity Theorem without the need to invoke the
full power of the Structure Theorem for Ideals 2.8.10.

Theorem 2.9.7. (The Simplicity Theorem, revisited) Let E be an arbitrary graph and K any field. Then
the Leavitt path algebra LK(E) is simple if and only if the graph E satisfies the following conditions:

(i) The graph E is cofinal, and
(ii) E satisfies Condition (L).

Proof. We will use the characterizarion of cofinality given in Lemma 2.9.6. Suppose first that LK(E) is
simple. By Theorem 2.4.8, HE = { /0,E0}. On the other hand, if E does not satisfy Condition (L), then
there exists a cycle c in E which has no exits. This implies that I(Pc(E)) is a nonzero ideal of LK(E), and so
by the simplicity of LK(E), we must have I(Pc(E)) = LK(E). But, by Theorem 2.7.3, the algebra I(Pc(E))
is not simple. This is a contradiction and, therefore, E must satisfy Condition (L).

Now, suppose that the graph E satisfies Conditions (i) and (ii) in the statement, and let I be a nonzero
ideal of LK(E). By Corollary 2.2.14, I∩E0 6= /0. Since I∩E0 ∈HE (by Lemma 2.4.3), the cofinality of E
with Lemma 2.9.6 imply I∩E0 = E0 or, in other words, E0 ⊆ I. This immediately gives I = LK(E).

We now record the two-sided chain condition results for Leavitt path algebras. Since the verifications of
these results follow from the Structure Theorem for Ideals, using arguments similar to those presented in
Theorem 2.9.1 and Lemma 2.5.12, we omit the proofs. We note, however, that with the Structure Theorem
for Ideals in hand, such proofs are significantly shorter than those offered originally in [9, Theorems 3.6
and 3.9].

Proposition 2.9.8. Let E be an arbitrary graph and K any field.

(i) LK(E) is two-sided artinian if and only if E satisfies Condition (K), HE satisfies the descending chain
condition with respect to inclusion, and, for each H ∈HE , the set BH of breaking vertices is finite.

(ii) LK(E) is two-sided noetherian if and only if HE satisfies the ascending chain condition with respect
to inclusion, and, for each H ∈HE , the set BH of breaking vertices is finite.

We comment that, by Proposition 2.5.13(ii), LK(E) is noetherian if and only if LK(E) is graded noetherian
(as the two graph-theoretic conditions on E are identical). The same cannot be said for the artinian condi-
tion: for instance, K[x,x−1] ∼= LK(R1) is graded artinian, but is well known to not be artinian. In addition,
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we note that if E does not satisfy Condition (K), then there is some hereditary saturated subset H of E0

for which the quotient graph E/H contains a cycle without an exit; this is how Condition (K) becomes
incorporated into the Structure Theorem for Ideals.

For the next consequence of the Structure Theorem for Ideals, we record the previously promised result
regarding a characterization of Condition (K) in terms of the graded ideals of LK(E).

Proposition 2.9.9. Let E be an arbitrary graph and K any field. Then every ideal of LK(E) is graded if and
only if E satisfies Condition (K).

Proof. If E satisfies Condition (K), then Cu(E) = /0 and so, by the Structure Theorem for Ideals 2.8.10,
every ideal of LK(E) is of the form I(H ∪SH), and hence is graded.

Conversely, suppose that E does not satisfy Condition (K). Then there exists a cycle c in Cu(E). Let H
denote the saturated closure of the tree of the ranges of the exits of c. Then H ∈HE , c0 ∩H = /0, and the
range of every exit of c belongs to H. Therefore c ∈CH and so, choosing for example p(x) = 1+ x ∈ K[x],
we have that ϕ(((H, /0),{c},{p(x)})) = I(H ∪{1+ c}) is a nongraded ideal of LK(E). ut

Example 2.9.10. As one specific consequence of Proposition 2.9.9, we conclude that the list of graded
ideals of the Leavitt path algebra of the infinite clock graph CN, presented in Example 2.5.10, indeed
represents the list of all ideals of LK(CN).

Yet another immediate application of the Structure Theorem for Ideals is the following result, in which
we present (among other things) the converse of Corollary 2.5.23 regarding the structure of graded ideals
in LK(E).

Corollary 2.9.11. Let E be an arbitrary graph and K any field. For an ideal I of the Leavitt path algebra
LK(E), the following are equivalent.

(1) I is a graded ideal.
(2) I is generated by idempotents.
(3) I = I2.
(4) I is K-algebra isomorphic to a Leavitt path K-algebra.

In particular, by Proposition 2.9.9, E satisfies Condition (K) if and only if every ideal of LK(E) is generated
by idempotents.

Proof. (1) =⇒ (2) follows by Theorem 2.4.8.
(2) =⇒ (3) is trivial.
(3) =⇒ (1) follows from the observation made in Remark 2.8.15.
(1) =⇒ (4) is Corollary 2.5.23.
(4) =⇒ (3) follows because any Leavitt path algebra has local units (Lemma 1.2.12). ut

Corollary 2.9.12. Let E be an arbitrary graph and K any field. If J is an ideal of a graded ideal I of LK(E),
then J is an ideal of LK(E).

Proof. Let a ∈ LK(E) and y ∈ J ⊆ I. By Corollary 2.9.11(4) and Lemma 1.2.12(v) there exists x ∈ I such
that y = xy. Then ay = (ax)y ∈ IJ ⊆ J. ut

We finish Chapter 2 by presenting a result which serves as an appropriate bridge to Chapter 3, in that
this result relates an ideal structure property to a property of idempotents. Rings for which every nonzero
one-sided ideal contains a nonzero idempotent were studied in [121].

Proposition 2.9.13. Let E be an arbitrary graph and K any field. The following are equivalent.

(1) E satisfies Condition (L).
(2) Every nonzero two-sided ideal of LK(E) contains a vertex.
(3) Every nonzero one-sided ideal of LK(E) contains a nonzero idempotent.
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Proof. (1)⇒ (3). Let a be a nonzero element in a left ideal I of LK(E). By Condition (L), an application
of the Reduction Theorem 2.2.11 gives the existence of µ,ν ∈ Path(E), v ∈ E0 and k ∈ K× such that
0 6= µ∗aν = kv. Define e = k−1νµ∗a. Then e ∈ I, e is nonzero (because 0 6= v = v2 = k−2µ∗a(νµ∗a)ν),
and e is an idempotent, as (k−1νµ∗a)(k−1νµ∗a) = k−1νvµ∗a = k−1νµ∗a. An analogous proof, or an
appeal to Corollary 2.0.9, establishes the result for right ideals as well.

(3)⇒ (1). If E does not satisfy Condition (L), then there exists a cycle without exits c in E. Denote by
I the (graded) ideal of LK(E) generated by the vertices of c. Lemma 2.7.1 implies that I is isomorphic to
MΛ (K[x,x−1]) for some set Λ . Since the ideals of I are ideals of LK(E) by Corollary 2.9.12, the hypothesis
implies that every nonzero ideal of MΛ (K[x,x−1]) contains a nonzero idempotent, which is not true. This
shows our claim.

An argument similar to the one given in the previous paragraph also establishes (2)⇒ (1), while (1)⇒
(2) is Corollary 2.2.14. ut





Chapter 3
Idempotents, and finitely generated projective modules

In this chapter we consider various topics related to the structure of the idempotents in LK(E). We start
with a discussion of the purely infinite simplicity of a Leavitt path algebra, a topic which has fueled much
of the investigative effort in the subject. In the subsequent section we analyze the structure of the monoid
V (LK(E)) of isomorphism classes of finitely generated projective modules over LK(E). This will allow us
to more fully describe Bergman’s construction (presented earlier in Section 1.4), which was essential to
the genesis of the subject. In Section 3.3 we remind the reader of the definition of an exchange ring, and
subsequently show that the exchange Leavitt path algebras are exactly those arising from graphs which
satisfy Condition (K). Von Neumann regularity is taken up in Section 3.4; in addition to showing that the
von Neumann regular Leavitt path algebras are precisely those arising from acyclic graphs, we identify
the set of vertices in E which generate the largest von Neumann regular ideal of LK(E). We continue our
discussion of the idempotents in LK(E) in Section 3.5 by identifying the collection of primitive idempotents
which are not minimal.

We consider in Section 3.6 the monoid-theoretic structure of V (LK(E)). While the monoid V (R) for a
general ring R necessarily satisfies certain properties (e.g., V (R) is conical), we will show that when E is
a row-finite graph and R = LK(E) then V (R) enjoys many additional properties, including refinement and
separativity. In the subsequent Section 3.7 we consider the extreme cycles in a graph, and show that the
ideal of LK(E) generated by the vertices in such cycles may be appropriately viewed as the “purely infinite
socle” of LK(E). We conclude the chapter with Section 3.8, in which we remind the reader of the general
notion of a purely infinite (but not necessarily simple) ring, and then identify those graphs E for which
LK(E) is purely infinite.

We start by presenting an easily established but fundamental result regarding isomorphisms between
various left LK(E)-modules. This result expands on the idea presented in Lemma 2.6.10.

Proposition 3.0.1. Let E be an arbitrary graph and K any field. Let µ ∈ Path(E) for which s(µ) = v and
r(µ) = w.

(i) There is a direct sum decomposition

LK(E)v = LK(E)µµ
∗⊕LK(E)(v−µµ

∗)

as left ideals of LK(E).
(ii) There is an isomorphism of left LK(E)-modules

LK(E)w∼= LK(E)µµ
∗.

Consequently, there is an isomorphism LK(E)v∼= LK(E)w⊕T for some left ideal T of LK(E).

Proof. (i) Since µµ∗ is an idempotent which commutes with v, we have that v−µµ∗ is also an idempotent.
But µµ∗(v− µµ∗) = µµ∗− µµ∗ = 0 = (v− µµ∗)µµ∗, which gives easily that LK(E)v = LK(E)µµ∗⊕
LK(E)(v−µµ∗) as left LK(E)-modules. (We note that in general the second summand might be {0}.)

(ii) We define ϕ = ρµ∗ : LK(E)w→ LK(E)µµ∗ to be the right multiplication by µ∗ map, so (rw)ϕ =
rwµ∗ = rµ∗. The observation that µ∗µµ∗ = µ∗ shows that ϕ indeed maps into LK(E)µµ∗. Now define

73
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ψ = ρµ : LK(E)µµ∗ → LK(E)w to be the right multiplication by µ map, so (rµµ∗)ψ = rµµ∗µ = rµ .
Using that µ∗µ = w and that µµ∗µ = µ shows that ϕ and ψ are inverses. The second part of the statement
now follows from (i). ut

3.1 Purely infinite simplicity, and the Dichotomy Principle

In Section 2.9 we identified the simple Leavitt path algebras. Intuitively speaking, such algebras can be
partitioned into two types: those which behave much like full matrix rings over K, and those which behave
much like the Leavitt algebras LK(1,n). The goal of this section is to make this dichotomy precise.

Definitions 3.1.1. (See e.g. [29, Definitions 1.2]) Let R be a ring. An idempotent e in R is said to be infinite
if there exist orthogonal idempotents f ,g ∈ R such that e = f +g, g 6= 0, and Re ∼= R f as left R-modules.
Rephrased, the idempotent e is infinite in case Re is isomorphic to a proper direct summand of itself. In
such a situation we say Re is a directly infinite module.

Remark 3.1.2. We note that if e is an infinite idempotent in a ring R, then the left R-module Re cannot
satisfy either the ascending or the descending chain condition on submodules. In particular, a Noetherian
ring contains no infinite idempotents.

Example 3.1.3. In our context, the quintessential example of an infinite idempotent is provided in the
Leavitt algebra R = LK(R2) ∼= LK(1,2). We show that 1R is an infinite idempotent. If e, f are the loops
based at v in R2, then by (CK2) we have v = 1R = ee∗+ f f ∗. By Proposition 3.0.1(i) we get LK(R2) =
LK(R2)1R = LK(R2)ee∗⊕LK(R2)(v− ee∗) = LK(R2)ee∗⊕LK(R2) f f ∗ (where each of the two summands
is clearly nonzero), and by Proposition 3.0.1(ii) we have that LK(R2)1R ∼= LK(R2)ee∗. A similar conclusion
can be drawn in any of the Leavitt algebras LK(1,n). (Indeed, we will show in Example 3.2.6 that every
nonzero idempotent of LK(1,n) is infinite.)

Remark 3.1.4. Suppose e is an infinite idempotent in a ring R, and suppose that g is an idempotent of
R such that Rg ∼= Re⊕Q for some left R-module Q. Then g is infinite as well. This is easy to see, as
by hypothesis, Re ∼= Re⊕P for some nonzero left R-module P, so that Rg ∼= Re⊕Q ∼= (Re⊕P)⊕Q ∼=
(Re⊕Q)⊕P∼= Rg⊕P.

There is a strong connection between infinite idempotents in LK(E) and cycles having exits in E.

Lemma 3.1.5. Let E be an arbitrary graph and K any field. Suppose c is a cycle based at w, and suppose
e is an exit for c with s(e) = w. Then LK(E)w = P⊕Q, where P and Q are nonzero left ideals of LK(E),
and LK(E)w∼= P as left LK(E)-modules. In particular, w is an infinite idempotent of LK(E).

Proof. By Proposition 3.0.1(i), we get a decomposition LK(E)w = LK(E)cc∗⊕LK(E)(w− cc∗). But since
r(c) = w, we get by Proposition 3.0.1(ii) that LK(E)w∼= LK(E)cc∗. Since e is an exit for c we have c∗e = 0
(by (CK1)). This yields that w−cc∗ 6= 0, since, if otherwise w−cc∗ = 0, then multiplying on the right by e
would give e = 0 in LK(E), violating Corollary 1.5.13. Thus P = LK(E)cc∗ and Q = LK(E)(w− cc∗) give
the desired result. ut

We now identify those vertices of E which are infinite idempotents of LK(E).

Proposition 3.1.6. Let E be an arbitrary graph and K any field. Let v∈ E0. Then v is an infinite idempotent
in LK(E) if and only if v connects to a cycle with exits in E.

Proof. Suppose first that v connects to a cycle with exits. Specifically, suppose there exists a cycle c in E
with an exit e to which v connects. Let w denote s(e). Since v connects to c, there exists µ ∈ Path(E) with
s(µ) = v and r(µ) = w. By Proposition 3.0.1(i) we have LK(E)v ∼= LK(E)w⊕T for some left ideal T of
LK(E). But LK(E)w is infinite by Lemma 3.1.5, so that Remark 3.1.4 yields the result.

Conversely, assume that T (v) does not contain any cycle with exits. By Theorem 1.6.10, it suffices to
consider the case of a finite graph E. (Observe that if F is a finite complete subgraph of E containing a
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cycle c which has no exits in E, then c is also a cycle without exits in the graph F(Reg(E)∩Reg(F)) built
in Definition 1.5.16, because the vertices in c are regular both in E and in F .)

Now, by Corollary 2.7.6, we have

I(v)∼= Mr1(K)⊕·· ·⊕Mrk(K)⊕Ms1(K[x,x−1])⊕·· ·⊕Ms`(K[x,x−1]),

and by Remark 3.1.2 this ring contains no infinite idempotents. ut

We now utilize a result which we will discuss in further detail in Section 3.8 below.

Proposition 3.1.7. Let R be a (not necessarily unital) ring. Then the following are equivalent.

(1) For each nonzero x ∈ R there exist elements s, t ∈ R such that sxt is an infinite idempotent.
(2) Every nonzero one-sided ideal of R contains an infinite idempotent.

Proof. (1)⇒ (2). Let a be a nonzero element of R. By (1) there are s, t ∈ R such that e := sat is an infinite
idempotent. Observe that we can assume that s = es and t = te. It then follows that a(ts) is an infinite
idempotent in aR, because (ats)R∼= (sat)R. The proof for left ideals is similar.

(2) ⇒ (1). Let x be a nonzero element in R. Then, for some t ∈ R we have that e := xt is an infinite
idempotent. Hence e = ext is an infinite idempotent. ut

Definition 3.1.8. A simple ring R which satisfies the equivalent conditions of Proposition 3.1.7 is called a
purely infinite simple ring.

Remark 3.1.9. We will show below that for simple unital rings, the conditions of Proposition 3.1.7 are
equivalent to: R is not a division ring, and for every nonzero x ∈ R there exists elements s, t ∈ R with
sxt = 1R. It is of historical importance to note that the proof given by Leavitt of the simplicity of LK(1,n)
for each n ≥ 2 [113, Theorem 2] in fact demonstrates that LK(1,n) has this property, and thus is purely
infinite simple.

We now have all the tools necessary to characterize the purely infinite simple Leavitt path algebras in
terms of properties of the associated graph.

Theorem 3.1.10. (The Purely Infinite Simplicity Theorem) Let E be an arbitrary graph and K any field.
Then the Leavitt path algebra LK(E) is purely infinite simple if and only if E satisfies the following condi-
tions:

(i) HE = { /0,E0},
(ii) E satisfies Condition (L), and

(iii) every vertex in E0 connects to a cycle.

Equivalently, (iii) may be replaced by:
(iii’) E contains at least one cycle.

Proof. Suppose first that conditions (i), (ii) and (iii) are satisfied. By the Simplicity Theorem 2.9.1, (i) and
(ii) together imply that LK(E) is a simple ring. Note that (ii) and (iii) together give that every vertex connects
to a cycle with exits. So by Proposition 3.1.6 we get that all the vertices of E are infinite idempotents in
LK(E). Now let 0 6= α ∈ LK(E). Since E satisfies Condition (L), by the Reduction Theorem 2.2.11 there
exist µ,κ ∈ Path(E) and k ∈ K× with k−1µ∗ακ = v for some vertex v. Since v is an infinite idempotent by
the previous paragraph, we see from Proposition 3.1.7(1) that LK(E) is purely infinite.

Conversely, suppose that LK(E) is purely infinite simple. Again invoking the Simplicity Theorem 2.9.1,
the graph E satisfies conditions (i) and (ii) in the statement. Now we will show that condition (iii) holds as
well. By Proposition 3.1.6, it suffices to show that every vertex v of E is an infinite idempotent in LK(E).
By hypothesis (using Proposition 3.1.7(2)), the nonzero left ideal LK(E)v contains an infinite idempotent
y; write y = rv for some r ∈ LK(E). As y is infinite, necessarily y 6= 0. Then, since rv · rv = rv, it is easy
to show that x = vrv is an idempotent as well; moreover, x 6= 0, as otherwise x = 0 would give rx = 0,
which would give rvrv = rv = 0, contrary to the choice of y = rv. Thus x is a nonzero idempotent in
LK(E)v which commutes with v, and so LK(E)v = LK(E)x⊕ LK(E)(v− x). But LK(E)vrv = LK(E)rv;
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the inclusion ⊆ is clear, while ⊇ follows from rv = rvrv. Rephrased, LK(E)x = LK(E)y. Thus LK(E)v =
LK(E)y⊕LK(E)(v− x). As y is infinite, we get that v must be infinite as well, using Remark 3.1.4.

We finish by showing that conditions (iii) and (iii’) are equivalent in the presence of conditions (i) and
(ii). By Theorem 2.9.7, condition (i) may be replaced by the condition that E is cofinal. In particular, every
vertex of E must connect to every cycle of E (as each cycle gives rise to an infinite path in E). So the
existence of at least one cycle suffices to give (iii), and conversely. ut

With both the Simplicity Theorem 2.9.7 and Purely Infinite Simplicity Theorem 3.1.10 now established,
Proposition 2.6.20 immediately yields the following.

Theorem 3.1.11. (The Dichotomy Principle for simple Leavitt path algebras) Let E be an arbitrary
graph and K any field. If LK(E) is simple, then either LK(E) is locally matricial or LK(E) is purely infinite
simple.

Example 3.1.12. Any algebra of the form MΛ (K) (for any set Λ ) is an example of a locally matricial
simple Leavitt path algebra (see Corollary 2.6.6). Additional such examples exist as well, for instance, let
E denote the “doubly infinite line graph”

•
��
?? •

��
?? •

��
?? • · · · · · ·

The corresponding Leavitt path algebra LK(E) is simple, but is not isomorphic to MΛ (K) for any set Λ , as
Soc(LK(E)) = {0} by Theorem 2.6.14.

Remark 3.1.13. We note that as a result of condition (iii) in Theorem 3.1.10, if E is a graph for which
LK(E) is purely infinite simple, then necessarily E contains no sinks.

Indeed, the cofinality condition yields a version of the Dichotomy Principle with respect to graded
simplicity.

Proposition 3.1.14. (The Trichotomy Principle for graded simple Leavitt path algebras) Let E be an
arbitrary graph and K any field. If LK(E) is graded simple, then exactly one of the following occurs:

(i) LK(E) is locally matricial, or
(ii) LK(E)∼= MΛ (K[x,x−1]) for some set Λ , or

(iii) LK(E) is purely infinite simple.

Proof. By Corollary 2.5.15 and Lemma 2.9.6, the graded simplicity of LK(E) is equivalent to the cofinality
of E. The three possibilities given in the statement correspond precisely to whether: (i) E contains no
cycles; resp., (ii) contains exactly one cycle; resp., (iii) contains two or more cycles.

If E contains no cycles then (i) follows by Proposition 2.6.20. If E contains at least two cycles then by
cofinality each cycle in E must connect to each of the other cycles in E. Consequently, each cycle in E has
an exit, and (iii) follows by the Purely Infinite Simplicity Theorem 3.1.10. Now suppose that E contains
exactly one cycle c. Then c has no exits (otherwise, if e were an exit for c then by cofinality r(e) would
connect to c, and would thus produce a second cycle in E). So Pc(E) is nonempty, which yields that I(Pc(E))
is a nonzero (necessarily graded) ideal of LK(E). But then graded simplicity gives that LK(E) = I(Pc(E)),
from which Theorem 2.7.3 yields the desired result. ut

3.2 Finitely generated projective modules: the V -monoid

The goal of this section is to establish Theorem 1.4.3, the fundamental result which was presented (without
proof) in the first chapter. This result provided one of the main springboards from which the entire subject
of Leavitt path algebras was launched. We restate the result below as Theorem 3.2.5. We recall now the
definitions of its two main ingredients.
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Definition 3.2.1. Let R be a unital ring. We denote by V (R) the set of isomorphism classes (denoted using
[ ]) of finitely generated projective left R-modules. We endow V (R) with the structure of a commutative
monoid by defining

[P]+ [Q] := [P⊕Q]

for [P], [Q] ∈ V (R).
Suppose more generally that R is a not-necessarily-unital ring. We consider any unital ring S containing

R as a two-sided ideal, and denote by FP(R,S) the class of finitely generated projective left S-modules
P for which P = RP. In this situation, V (R) is defined as the monoid of isomorphism classes of objects
in FP(R,S). This definition of V (R) does not depend on the particular unital ring S in which R sits as a
two-sided ideal, as can be seen from the following alternative description: V (R) is the set of equivalence
classes of idempotents in MN(R), where e ∼ f in MN(R) if and only if there are x,y ∈MN(R) such that
e = xy and f = yx. (See [117, page 296].)

For an idempotent e ∈ R we will sometimes denote the element [Re] of V (R) simply by [e].

We note that if R is a ring with local units, then the well-studied Grothendieck group K0(R) of R is
the universal group corresponding to the monoid V (R), see [117, Proposition 0.1]. We will study the
Grothendieck group of Leavitt path algebras in great depth throughout Chapter 6.

For any graph E one can associate a monoid ME ; this monoid will play a central role in the topic of
Leavitt path algebras. We recall the description of the monoid ME associated to a graph given in Definition
1.4.2. Specifically, ME is the free abelian monoid (written additively), having generating set {av | v ∈ E0},
and with relations given by setting av =∑e∈s−1(v) ar(e) for every v∈Reg(E). For notational clarity, we often
denote the zero element of ME by z.

Examples 3.2.2.
Some examples of the construction of the monoid ME will be helpful.

(i) As noted in Section 1.4, if Rn is the rose with n petals graph (n≥ 2), then

MRn = {z,av,2av, . . . ,(n−1)av}, with relation nav = av.

Although perhaps counterintuitive at first glance, we have that the subset MRn \{z} of MRn is not only
closed under + (and thereby forms a subsemigroup of MRn ), MRn \{z} is in fact a group, isomorphic
to Z/(n−1)Z, with identity element (n−1)av.

(ii) For the graph R1 having one vertex v and one loop, we see that MR1 is the monoid {z,av,2av, . . .} ∼=
Z+.

(iii) For the oriented line graph An (n ≥ 1), MAn is generated by the n elements av1 ,av2 , . . . ,avn , with
relations avi = avi+1 for 1≤ i≤ n−1. Thus MAn = {z,avn ,2avn , . . .} ∼= Z+.

(iv) For the Toeplitz graph ET of Example 1.3.6, MET is the free abelian monoid generated by {au,av},
modulo the single relation au = au +av.

Definition 3.2.3. The category RG is defined to be the full subcategory of the category G (given in Def-
inition 1.6.2) whose objects are the pairs (E,Reg(E)), where E is a row-finite graph. We identify the
objects of RG with the row-finite graphs. Note that the morphisms between two objects E and F of RG
are precisely the complete homomorphisms ψ : E → F , that is, the graph homomorphisms ψ : E → F
such that ψ0 and ψ1 are injective and such that, for each v ∈ Reg(E), the map ψ1 induces a bijection
from s−1

E (v) onto s−1
F (ψ0(v)). The subcategory RG of G is closed under direct limits, and the assignment

E 7→ LK(E) (= CReg(E)
K (E)) extends to a continuous functor from RG to the category of K-algebras (cf.

Proposition 1.6.4).

Lemma 3.2.4. The assignment E 7→ME can be extended to a continuous functor from the category RG of
row-finite graphs and complete graph homomorphisms to the category of abelian monoids. Moreover, this
assignment commutes with direct limits. It follows that every graph monoid ME arising from a row-finite
graph E is the direct limit of graph monoids corresponding to finite graphs.

Proof. Every complete graph homomorphism f : E→ F induces a natural monoid homomorphism
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M( f ) : ME →MF ,

and so we get a functor M from the category RG to the category of abelian monoids. The fact that M
commutes with direct limits is established in the same way as in Proposition 1.6.4. ut

We recall that a unital ring R is called left hereditary in case every left ideal of R is projective. We are
ready to prove Theorem 1.4.3, slightly restated and expanded here.

Theorem 3.2.5. Let E be a row-finite graph and K any field. Then there is a natural monoid isomorphism
V (LK(E))∼= ME . Moreover, if E is finite, then LK(E) is hereditary.

Proof. Because of the defining relations used to build ME , for each row-finite graph E there is a unique
monoid homomorphism γE : ME→ V (LK(E)) such that γE(av) = [LK(E)v]. Clearly these homomorphisms
induce a natural transformation from the functor M to the functor V ◦LK ; that is, if f : E→ F is a complete
graph homomorphism, then the following diagram commutes.

ME
γE−−−−→ V (LK(E))

M( f )
y yV (LK( f ))

MF
γF−−−−→ V (LK(F))

We need to show that γE is a monoid isomorphism for every row-finite graph E. By Lemma 3.2.4 and
Corollary 1.6.16, we see that it is enough to show that γE is an isomorphism for any finite graph E.

So let E be a finite graph, and let {v1, . . . ,vm}= Reg(E) (i.e., the non-sinks of E). We start by defining
the algebra

B0 = ∏
v∈E0

K.

In B0 we clearly have a family {pv : v ∈ E0} of orthogonal idempotents such that ∑v∈E0 pv = 1. Now we
consider the two finitely generated projective left B0-modules P = B0 pv1 and Q = ⊕{e∈E1|s(e)=v1}B0 pr(e).
By a beautiful (and delicate) construction of Bergman (see [51, page 38]), there exists an algebra B1 :=
B0〈i, i−1 : P∼= Q〉 which admits a universal isomorphism i : P := B1⊗B0 P→Q := B1⊗B0 Q. By examining
the construction, we see that this algebra is precisely the algebra LK(X1), where X1 is the graph having X0

1 =
E0, and where v1 emits the same edges as it does in E, but all other vertices do not emit any edges. More
explicitly, the row (xe : s(e) = v1) implements an isomomorphism P=B1 pv1→Q=⊕{e∈E1|s(e)=v1}B1 pr(e),
with inverse given by the column (ye : s(e) = v1)

T , which is clearly universal. By [51, Theorem 5.2], the
monoid V (B1) is obtained from V (B0) by adjoining the relation [P] = [Q]. Because in our situation we
have that V (B0) is the free abelian monoid on generators {av | v∈ E0}, where av = [pv], we get that V (B1)
is given by generators {av | v ∈ E0} and a single relation

av1 = ∑
{e∈E1|s(e)=v1}

ar(e).

Now we proceed inductively. For n ≥ 1, let Bn be the Leavitt path algebra Bn = LK(Xn), where Xn is
the graph with the same vertices as E, but where only the first n vertices v1, . . . ,vn emit edges, and these
vertices emit the same edges as they do in E. We assume by induction that V (Bn) is the abelian monoid
given by generators {av | v ∈ E0} and relations

avi = ∑
{e∈E1|s(e)=vi}

ar(e),

for i = 1, . . . ,n. Let Xn+1 be the analogous graph, corresponding to vertices v1, . . . ,vn,vn+1. Then we have
Bn+1 = Bn〈i, i−1 : P ∼= Q〉 for P = Bn pvn+1 and Q = ⊕{e∈E1|s(e)=vn+1}Bn pr(e), and so we can again apply
[51, Theorem 5.2] to deduce that V (Bn+1) is the monoid with the same generators as before, and with
relations corresponding to those given in the displayed equations. This establishes the desired isomorphism
of monoids.
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It follows from a related result of Bergman ([51, Theorem 6.2]) that the global dimension of LK(E) is at
most 1, i.e., that LK(E) is hereditary. ut

Example 3.2.6. By Theorem 3.2.5 and Examples 3.2.2(i), we see that, for n≥ 2,

V (LK(Rn))∼= {z,av,2av, . . . ,(n−1)av}, with relation nav = av.

In particular, V (LK(Rn)) \ {z} is isomorphic to the group Z/(n− 1)Z (with neutral element (n− 1)av).
We note that this conclusion regarding the explicit description of the V -monoid of the Leavitt algebras
LK(1,n) ∼= LK(Rn) is quite non-trivial; we do not know of a “direct” or “first principles” proof of this
statement.

Further, this property implies that every nonzero finitely generated projective module over LK(1,n) is
necessarily infinite, as the regular module LK(1,n) itself is infinite.

Of course we may also apply Theorem 3.2.5 to the graphs R1 and An to get the well-known facts that
the V -monoid of each of the algebras LK(R1)∼= K[x,x−1] and LK(An)∼= Mn(K) is isomorphic to Z+.

Examples 3.2.7. Let E denote the following graph.

•u
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Then ME is the monoid generated by {au,av,aw}, modulo the relations au = av; av = au + av + aw; and
aw = au + av. By some tedious computations, it is not hard to show that ME = {z,au,2au,3au}. (We will
give a streamlined approach to the computation of ME in Section 6.3.) We note that, as was the case with
the MRn examples (n≥ 2), this monoid ME has the property that ME \{z} is a group (isomorphic to Z/3Z).

Below are some additional examples of the descriptions of the V -monoids of the Leavitt path algebras
of various graphs. For each of these graphs, the Leavitt path algebra is purely infinite simple by Theorem
3.1.10. Thus, as one consequence of these examples, we see that there are many purely infinite simple Leav-
itt path algebras which are not isomorphic to the classical Leavitt algebras LK(1,n), because the nonzero
elements of the V -monoid of these algebras is not isomorphic to a finite cyclic group (see Example 3.2.6).
(For each of these as well, we will give a streamlined approach to the computation of associated graph
monoid M in Section 6.3.)

First, let F be the graph
•88

%% • %%
ee •ee ff .

Then LK(F) is (unital) purely infinite simple by Theorem 3.1.10, and V (LK(F))\{z} ∼= Z.
Next, let G be the following graph.

•

����
•

??

;; •oo

ll

Then LK(G) is (unital) purely infinite simple, and V (LK(G))\{z} ∼= (Z/2Z)⊕ (Z/2Z).
A final example is that associated with the graph H

(5) •88

(2)
%% •

(4)
ee (3)ff .
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(Recall that the notation •v (n) // •w indicates that |{e ∈ E1 | s(e) = v,r(e) = w}| = n.) denotes the
number of parallel edges). Here again LK(H) is (unital) purely infinite simple, and V (LK(H)) \ {z} ∼=
Z⊕ (Z/2Z).

Remark 3.2.8. Of all the specific examples of graphs presented in this section, the Rn graphs of Examples
3.2.2(i), and the graphs of Examples 3.2.7, are precisely the graphs which have the property that the corre-
sponding Leavitt path algebra is purely infinite simple (by Theorem 3.1.10). That these are also precisely
the graphs for which ME \{z} is a group is not coincidental, as we will show in Proposition 6.1.12 below.

Recall the category G presented in Definition 1.6.2, whose objects are the pairs (E,X), where E is a
directed graph and X is a subset of Reg(E).

We now describe the monoid ME corresponding to an arbitrary graph E. Indeed, we do more than this:
we describe the monoid corresponding to any object (E,X) in the category G investigated in Chapter 1.
As the reader likely has guessed, this assignment will be extended to a continuous functor from G to the
category of abelian monoids. (A complete treatment in the more general framework of separated graphs
appears in [27].)

Definition 3.2.9. Let (E,X) be an object of the category G . We define the graph monoid M(E,X) as the
abelian monoid given by the set of generators

E0t{q′Z | Z ⊆ s−1(v), v ∈ E0, 0 < |Z|< ∞},

modulo relations we now describe. First, for notational convenience, we denote, for each finite subset Y of
E1,

r(Y ) := ∑
e∈Y

r(e).

Now impose on the indicated generators the following relations:

(i) v = r(Z)+q′Z for every v ∈ E0 and Z ⊆ s−1(v) for which 0 < |Z|< ∞,
(ii) q′Z1

= r(Z2 \Z1)+q′Z2
for every v ∈ E0 and every pair of finite nonempty subsets Z1 and Z2 of s−1(v)

for which Z1 $ Z2, and
(iii) q′Z = 0 for Z = s−1(v) when v ∈ X .

Informally, the elements q′Z of M(E,X) are intended to represent the equivalence classes of the idempo-
tents v−∑e∈Z ee∗ in CX

K (E), for Z a finite nonempty subset of s−1(v), v ∈ E0.
Clearly we see that M(E,Reg(E)) = ME when E is a row-finite graph, so these monoids M(E,X) gen-

eralize the monoids ME defined above for row-finite graphs.
In order to simplify notation, we will denote elements in the monoid M(E,X) corresponding to vertices

v ∈ E0 simply by using the same symbol v. Of course these correspond to the elements denoted by av in
the monoid ME = M(E,Reg(E)). Due to the various descriptions of the generators of M(E,X), we think
this simplification will be helpful for the reader.

There is some redundancy among these generators and relations. In particular, we could omit the gen-
erators q′Z for nonempty proper subsets Z of s−1(v) for v ∈ Reg(E), since relation (ii) gives q′Z in terms of
q′s−1(v), and relation (i) for Z follows from the corresponding relation for s−1(v) in light of (ii). In general,
(i) may be viewed as a form of (ii) with Z1 = /0, except that the notation q′/0 would not be well-defined.

Taking into account these comments, an alternative definition of the monoid M(E,X) is as follows: the
monoid M(E,X) is the abelian monoid given by the set of generators

E0t{qv | v ∈ Reg(E)\X}t{q′Z | Z ⊆ s−1(v), v ∈ Inf(E), 0 < |Z|< ∞}

and the following relations:

(i′) v = r(Z)+q′Z for v ∈ Inf(E), Z ⊆ s−1(v), and 0 < |Z|< ∞,
(ii′) q′Z1

= r(Z2 \Z1)+q′Z2
for finite nonempty subsets Z1 and Z2 of s−1(v), v ∈ Inf(E), with Z1 $ Z2,

(iii′) v = r(s−1(v)) for each v ∈ X , and
(iv′) v = r(s−1(v))+qv for each v ∈ Reg(E)\X .
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Informally, the elements qv for v ∈ Reg(E) \X are intended to represent the equivalence classes of the
idempotents v−∑e∈s−1(v) ee∗ in CX

K (E), and correspond to the elements qs−1(v) in the above notation.
Although this alternate definition might seem intuitively clearer, the reason to work instead with the

first definition becomes apparent when we look for the natural definition of the morphism associated to
a map in G . Consider a morphism φ : (F,Y )→ (E,X) in G . There is a unique monoid homomorphism
M(φ) : M(F,Y )→ M(E,X) sending v 7→ φ 0(v) for v ∈ F0, and sending q′Z 7→ q′

φ1(Z) for nonempty finite

sets Z ⊆ s−1(v), v ∈ E0. The latter assignments are well-defined because if Z is a nonempty finite subset
of s−1(v) for some v ∈ E0, then φ 1(Z) is a nonempty finite subset of s−1(φ 0(v)). Moreover, the conditions
(2) and (3) in Definition 1.6.2 make clear that relation (iii) above is preserved by M(φ). The assignments
(E,X) 7→ M(E,X) and φ 7→ M(φ) define a functor M from G to the category of abelian monoids. It is
easily checked (just as for the functor CX

K in Proposition 1.6.4) that M is continuous.

We denote by Mon the category of abelian monoids.

Theorem 3.2.10. Let E be an arbitrary graph and K any field. Let G be the category presented in Definition
1.6.2. For each object (E,X) of G , define

Γ (E,X) : M(E,X)→ V (CX
K (E))

to be the monoid homomorphism sending v 7→ [v] for v ∈ E0, and, for each w ∈ X, q′Z 7→ [w−∑e∈Z ee∗] for
each finite nonempty subset Z ⊆ s−1(w). Then Γ : M→ V ◦CK is an isomorphism of functors G →Mon.

Proof. It is easily seen that the maps Γ (E,X) are well-defined monoid homomorphisms, and that Γ defines
a natural transformation from M to V ◦CK .

We have observed that M is continuous, as is V ◦CK (by taking into account that V is continuous, and
invoking Proposition 1.6.4). Thus, by Theorem 1.6.10, we see that it is sufficient to show that Γ (E,X) is
an isomorphism in the case where E is a finite graph.

We use induction on |Reg(E)| (i.e., the number of non-sinks in E) to establish the result for finite objects
(E,X) in G . The result is trivial if |Reg(E)|= 0 (i.e., if there are no edges in E). Assume that Γ (F,Y ) is an
isomorphism for all finite objects (F,Y ) of G for which |Reg(F)| ≤ n−1 for some n≥ 1, and let (E,X) be
a finite object in G such that |Reg(E)|= n. Select v ∈ E0 such that s−1(v) 6= /0. We can apply induction to
the object (F,Y ) obtained from (E,X) by deleting all the edges in s−1(v), and leaving intact the structure
corresponding to the remaining vertices (keeping F0 = E0).

Assume first that v ∈ X . Then M(E,X) is obtained from M(F,Y ) by factoring out the relation v =
r(s−1(v)). On the other hand, the algebra CX

K (E) is the Bergman algebra obtained from CY
K(F) by ad-

joining a universal isomorphism between the pair of finitely generated projective modules CY
K(F)v and⊕

e∈s−1(v)C
Y
K(F)r(e). Accordingly, it follows from [51, Theorem 5.2] that V (CX

K (E)) is the quotient of
V (CY

K(F)) modulo the relation [v] = [r(s−1(v))]. Since Γ (F,Y ) : M(F,Y )→ V (CY
K(F)) is an isomorphism

by the induction hypothesis, we obtain that Γ (E,X) is an isomorphism in this case. (The proof in this case
is indeed similar to the proof of Theorem 3.2.5.)

Assume now that v /∈ X . In this case, M(E,X) is obtained from M(F,Y ) by adjoining a new generator
qv and factoring out the relation v = r(s−1(v))+ qv. On the K-algebra side, we shall make use of another
of Bergman’s constructions, namely “the creation of idempotents”. Write s−1(v) = {e1, . . . ,em}. Let R be
the algebra obtained from CY

K(F) by adjoining m+1 pairwise orthogonal idempotents g1, . . . ,gm,q′v with

v = g1 + · · ·+gm +q′v.

It follows from [51, Theorem 5.1] that V (R) is the monoid obtained from V (CY
K(F)) by adjoining m+ 1

new generators z1, . . . ,zm,q′′v , and factoring out the relation [v] = ∑
m
j=1 z j +q′′v .

It is then clear that CX
K (E) is isomorphic to the Bergman algebra obtained from R by consecutively

adjoining universal isomorphisms between the left modules generated by the idempotents r(ei) and gi, for
i= 1, . . . ,m. It follows that V (CX

K (E)) is the monoid obtained from V (CY
K(F)) by adjoining a new generator

q′′v and factoring out the relation [v] = [r(s−1(v))] + q′′v . Therefore, applying the induction hypothesis to
(F,Y ), we again conclude that Γ (E,X) is an isomorphism. ut
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We can now obtain the description of V (LK(E)) for an arbitrary graph E. To match the notation utilized
in the row-finite case, we set ME := M(E,Reg(E)). From Definition 3.2.9 we see that ME is the abelian
monoid given by the set of generators

E0t{q′Z | Z ⊆ s−1(v), v ∈ Inf(E), 0 < |Z|< ∞},

and the following relations:

(i) v = r(Z)+q′Z for v ∈ Inf(E), Z ⊆ s−1(v), and 0 < |Z|< ∞,
(ii) q′Z1

= r(Z2 \Z1)+q′Z2
for finite nonempty subsets Z1 and Z2 of s−1(v), v ∈ Inf(E), with Z1 $ Z2, and

(iii) v = r(s−1(v)) for each v ∈ Reg(E).

Consequently, Theorem 3.2.10 yields the following.

Corollary 3.2.11. Let E be an arbitrary graph and K any field. Then V (LK(E))∼= ME .

3.3 The exchange property

Our next excursion into the idempotent structure of Leavitt path algebras brings us to the notion of an ex-
change ring. The exchange property for modules was introduced by Crawley and Jónsson in [67]. Roughly
speaking, it is the suitable condition which yields a version of the Krull Schmidt Theorem even in situations
where the modules do not decompose as direct sums of indecomposables. Following [154], the (unital) ring
R is an exchange ring if RR has the property that for every left R-module M and any two decompositions of
M as M = M′⊕N and M =

⊕n
i=1 Mi, for which M′ ∼= RR, then there exist submodules M′i ⊆Mi such that

M = M′⊕ (
⊕n

i=1 M′i) .
A multiplicative characterization of unital exchange rings was obtained independently by Goodearl [88]

and by Nicholson [122]. Concretely, R is an exchange ring if and only if for every element a ∈ R there
exists an idempotent e ∈ R such that e ∈ Ra and 1− e ∈ R(1− a). The appropriate generalization of the
notion of exchange ring to not-necessarily-unital rings was provided in [15]: R is exchange in case there
is a unital ring S containing R as an ideal, for which, for every x ∈ R, there exists an idempoten e ∈ R for
which e− x ∈ S(x− x2).

Many classes of rings are exchange rings. In the following three results we identify how the exchange
property plays out for the three primary colors of Leavitt path algebras.

Because the exchange property in a ring can be formulated as the existence of a solution to a specific
type of equation in the ring, and because it is easy to show that any finite dimensional matrix algebra Mn(K)
is an exchange ring, we get the following.

Proposition 3.3.1. The direct limit of exchange rings is an exchange ring. In particular, let K be a field.
Then any locally matricial K-algebra is an exchange ring. Specifically, MΛ (K) is an exchange ring for any
set Λ .

In the current context, the most important class of exchange rings is the following.

Theorem 3.3.2. [17, Corollary 1.2] Let R be a purely infinite simple ring. Then R is an exchange ring.

On the other hand, the K-algebra R = K[x,x−1] is not an exchange ring, as follows. Since the only
idempotents in R are 0 and 1, and a = 1+ x+ x2 is not invertible in R, and 1− a = −x− x2 is also not
invertible in R, the exchange condition fails for the element a. More generally,

Proposition 3.3.3. For any field K, and for any set Λ , the matrix algebra MΛ (K[x,x−1]) is not an exchange
ring.

We will need the following additional property of exchange rings (which we state here in less than its
full generality).
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Theorem 3.3.4. ([15, Lemma 3.1(a) and Theorem 2.2]) Let R be a ring and let I be an ideal of R. Then R
is an exchange ring if and only if I and R/I are exchange rings, and the natural map V (R) 7→ V (R/I) is
surjective.

Having given this background information, we now focus on our goal of identifying those Leavitt path
algebras LK(E) which are exchange rings. Recall that for X ⊆ E0, we denote by X the hereditary saturated
closure of X .

Proposition 3.3.5. Let E be a graph and suppose that c is a cycle with exits such that, for every v ∈ c0, c is
the only cycle based at v. Let v ∈ c0, and consider the set

X = {w ∈ E0 | v≥ w and w� v}.

Then X is a hereditary subset of E0 and H := X is a hereditary saturated subset of E0 for which c0∩H = /0.
In particular, c is a cycle without exits in the quotient graph E/H.

Proof. Clearly X is a hereditary subset of E0 with X ∩ c0 = /0. Since the hypotheses yield that no vertex in
X \X can be contained in a cycle, we see that X ∩ c0 = /0 as well. ut

Lemma 3.3.6. Let E be an arbitrary graph. If E does not satisfy Condition (K), then there exists a heredi-
tary saturated subset H in E0 such that E/H does not satisfy Condition (L).

Proof. Since E does not satisfy Condition (K), then there exists u ∈ E0 which is the base of a unique
closed simple path, hence of a unique cycle; denote it by c. As in Proposition 3.3.5, the hereditary set
X = {w ∈ E0 | v≥ w,w� v} has the property that X ∩ c0 = /0. Set H := X . Then c is a cycle without exits
in E/H, so that E/H does not satisfy Condition (L). ut

Lemma 3.3.7. Let E be an arbitrary graph and K any field. If LK(E) is an exchange ring, then E satisfies
Condition (L).

Proof. Suppose on the contrary that E does not satisfy Condition (L). Then there exists a cycle c in E which
has no exits. Denote by I the ideal of LK(E) generated by c0. Then Lemma 2.7.1 gives that I is isomorphic
to MΛ (K[x,x−1]) for some set Λ , which is not an exchange ring by Proposition 3.3.3. But every ideal of an
exchange ring is exchange (Theorem 3.3.4), so I must be exchange, a contradiction. ut

Lemma 3.3.7, together with relationships between Condition (K) and Condition (L), will help us reach
the main goal in this section, namely, to show that the exchange Leavitt path algebras are precisely those
arising from graphs having Condition (K). One of the fundamental steps in the proof of that result is the
following graph theoretic property.

Lemma 3.3.8. Let E be a graph satisfying Condition (K), and let X be a finite subgraph of E. Then there
is a finite complete subgraph F of E, containing X, such that F satisfies Condition (K).

Proof. By Theorem 1.6.10 there is a finite complete subgraph G of E such that X ⊆G. The goal is to embed
G in a finite complete subgraph F of E such that F satisfies Condition (K). Let∼E be the symmetric closure
of the relation ≥ on E0: that is, for v,w ∈ E0, v ∼E w in case either v = w, or there is a closed path in E
containing both v and w.

We claim that if v ∼E w then |CSPE(v)| > 1 if and only if |CSPE(w)| > 1. Indeed, it suffices to show
one of the implications. Assume that |CSPE(v)| > 1 and that v 6= w and v ∼E w. Since v ∼E w, one can
easily show that there is a closed simple path e1e2 · · ·en ∈ CSPE(v) such that s(ei) = w for exactly one i
with 1 < i≤ n. By hypothesis, there is a distinct path γ = f1 f2 · · · fm in CSPE(v). If γ0 does not contain w,
then eiei+1 · · ·ene1e2 · · ·ei−1 and eiei+1 · · ·enγe1e2 · · ·ei−1 are distinct elements of CSPE(w). If γ0 contains
w, and e1e2 · · ·ei−1 6= f1 f2 · · · fi−1, then taking j such that s( f j) = w, we obtain that eiei+1 · · ·en f1 f2 · · · f j−1
and eiei+1 · · ·ene1e2 · · ·ei−1 are distinct elements of CSPE(w). Similarly, if γ0 contains w, fm−(n−i) · · · fm 6=
ei · · ·en, and j is as above, then f j · · · fme1 · · ·ei−1 and ei · · ·ene1 · · ·ei−1 are distinct elements of CSPE(w).
Finally if both e1e2 · · ·ei−1 = f1 f2 · · · fi−1 and fm−(n−i) · · · fm = ei · · ·en, then eiei+1 · · ·ene1e2 · · ·ei−1 and
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fi fi+1 · · · f j−1 are two different elements of CSPE(w), where j is the first index for which j > i and s( f j) =
w. This establishes the claim.

There is a finite number of cycles c1, . . . ,cr in G, based at v1, . . . ,vr respectively, for which |CSPG(vi)|=
1 for all i. We form a new graph G′ by adding to G the vertices and edges in a closed simple path γi 6= ci
based at vi, for i = 1, . . . ,r. Let F be the completion of G′ in E, so that F is formed by adding the edges
departing from vertices v ∈ (G′)0 such that v ∈ Reg(E) and s−1

G′ (v) 6= /0, together with the corresponding
range vertices (in case these edges were not already in G′).

We show now that F satisfies Condition (K). First, we see that for v ∈ (G′)0, either |CSPG′(v)| ≥ 2 or
|CSPG′(v)|= 0, as follows. If v ∈ G0 and |CSPG(v)|= 1 then v ∈ ∪r

i=1c0
i and thus |CSPG′(v)| ≥ 2. If v ∈ γ0

i
for some i then v ∼G′ vi and so |CSPG′(v)| ≥ 2, because |CSPG′(vi)| ≥ 2, using the observation above.
Finally if v ∈ G0, |CSPG(v)|= 0 and |CSPG′(v)| 6= 0, then v∼G′ vi for some i, and so |CSPG′(v)| ≥ 2.

Since all vertices in F0 \ (G′)0 are sinks in F , it therefore suffices to show that |CSPF(w)| 6= 1 for all
w ∈ (G′)0 having |CSPG′(w)| = 0. Suppose that there is a cycle c = e1e2 · · ·em based at w in F and that
|CSPG′(w)| = 0. If w /∈ G0, then w ∈ γ0

i for some i, and so |CSPG′(w)| ≥ 2, because w ∼G′ vi. Therefore,
w∈G0. Let p be the smallest index with ep /∈G1. Then we have s(ep)∈G0. Since G is complete, the vertex
s(ep) is a sink in G, and is not a sink in G′. It follows that s(ep) ∈ γ0

i for some i, and so |CSPG′(s(ep))| ≥ 2
as before. Hence

|CSPF(s(ep))| ≥ |CSPG′(s(ep))| ≥ 2.

Since w∼F s(ep), we get that |CSPF(w)| ≥ 2, as desired. ut

Lemma 3.3.9. Let E be a graph and K a field for which the ideal lattice Lid(LK(E)) of LK(E) is finite.
Then E satisfies Condition (K).

Proof. By Lemma 3.3.6, it suffices to show that the quotient graph E/H satisfies Condition (L) for every
H ∈HE . Suppose on the contrary that there exists a hereditary saturated subset H of E0 such that E/H does
not satisfy Condition (L). This means that E/H contains a cycle without exits, say c. Since LK(E/H) ∼=
LK(E)/I(H ∪BH

H) (see Theorem 2.4.15) thus has a finite number of ideals, we may assume that H = /0.
Denote by I the ideal of LK(E) generated by c0. By Lemma 2.7.1 the ideal I is isomorphic to

MΛ (K[x,x−1]) for some set Λ , so that I has infinitely many ideals. Since I is a graded ideal, the ideals
of I are also ideals of LK(E) (by Lemma 2.9.12), so LK(E) has infinitely many ideals, a contradiction. ut

We note that the converse of Lemma 3.3.9 is clearly not true, with any graph having infinitely many
vertices and no edges providing a counterexample.

Although at first glance the following result might seem to be quite limited in its scope, it will indeed
provide the basis of the key theorem of this section.

Proposition 3.3.10. Let E be a row-finite graph for which the ideal lattice Lid(LK(E)) is finite. Then LK(E)
is an exchange ring.

Proof. Observe first that Lemma 3.3.9 implies that the graph E satisfies Condition (K). Since Lid(LK(E))
is finite, we can build an ascending chain of ideals

0 = I0 ⊆ I1 ⊆ ·· · ⊆ In = LK(E)

such that, for every i ∈ {1, . . . ,n−1}, the ideal Ii is maximal among the ideals of LK(E) contained in Ii+1.
Now we prove the result by induction on n.

If n = 1, then LK(E) is a simple ring. By the Dichotomy Principle 3.1.11, LK(E) is either locally matri-
cial or purely infinite simple. But then Proposition 3.3.1 together with Theorem 3.3.2 imply that LK(E) is
an exchange ring.

Now suppose the result holds for any Leavitt path algebra in which there are a finite number of ideals,
and a maximal chain of two-sided ideals has length k < n. Since the graph satisfies Condition (K) (by
Lemma 3.3.9), Proposition 2.9.9 can be applied to get that every ideal of LK(E) is graded. Since E is
row-finite, by Theorem 2.5.9 there exist Hi ∈HE , for i ∈ {1, . . . ,n}, such that:

(i) Ii = I(Hi) for every 1≤ i≤ n,
(ii) Hi & Hi+1 for every i ∈ {1, . . . , n−1}, and
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(iii) for every i ∈ {1, . . . , n−1}, there is no hereditary and saturated set T such that Hi & T & Hi+1.

At this point we may apply the induction hypothesis to In−1, which is the Leavitt path algebra of a
row-finite graph by Proposition 2.5.19, and has finitely many ideals by Corollary 2.9.12. Thus we have that
In−1 is an exchange ring. But LK(E)/In−1 ∼= LK(E/Hn−1) (as E is row-finite, so we may invoke Corollary
2.4.13(i)), and thus is a simple Leavitt path algebra (by the maximality of In−1 inside LK(E)). By the first
step of the induction, LK(E)/In−1 ∼= LK(E/Hn−1) is an exchange ring. Since V (LK(E/Hn−1)) is generated
by the isomorphism classes arising from its vertices (by Theorem 3.2.5), we obviously have that the natural
map V (LK(E))→V (LK(E)/In−1) is surjective. So Theorem 3.3.4 can be applied, which finishes the proof.

ut

We are now in position to present the main result of the section.

Theorem 3.3.11. Let E be an arbitrary graph and K any field. Then the following are equivalent.

(1) LK(E) is an exchange ring.
(2) E/H satisfies Condition (L) for every hereditary saturated subset H of E0.
(3) E satisfies Condition (K).
(4) Lgr(LK(E)) = Lid(LK(E)); that is, every two-sided ideal of LK(E) is graded.
(5) The graphs EH and E/H both satisfy Condition (K) for every hereditary saturated subset H of E0.
(6) The graphs EH and E/H both satisfy Condition (K) for some hereditary saturated subset H of E0.

Proof. (1) ⇒ (2). Consider a hereditary saturated subset H ∈HE . By Corollary 2.4.13(ii) we have that
LK(E)/I(H ∪BH

H) is isomorphic to the Leavitt path algebra LK(E/H). Since the quotient of an exchange
ring by an ideal is an exchange ring (Theorem 3.3.4), Lemma 3.3.7 applies to give (2).

(2)⇒ (3) is Lemma 3.3.6.
(3)⇒ (1). By Lemma 3.3.8 and Theorem 1.6.10, we can write

LK(E)∼= lim−→
F∈F

CXF
K (F)∼= lim−→

F∈F
LK(F(XF)),

where F is the family of finite complete subgraphs of E satisfying Condition (K), and F(XF) is the finite
graph obtained from F by applying Theorem 1.5.18. Recalling Definition 1.5.16, we see that the graph
F(XF) satisfies Condition (K) if F satisfies Condition (K), because both graphs contain the same closed
paths, and the new vertices added to F in order to form F(XF) are sinks. Since the class of exchange rings
is closed under direct limits (Proposition 3.3.1), it suffices to prove the result for finite graphs.

Let E be a finite graph with Condition (K). Then all the ideals of LK(E) are graded by Proposition
2.9.9, and so, by Theorem 2.5.9, the lattice of ideals of LK(E) is finite. The result follows therefore from
Proposition 3.3.10.

(3)⇔ (4) is Proposition 2.9.9.
(3)⇔ (5)⇔ (6). It is easy to see that for every H ∈HE we have CSPE(v) = CSPEH (v) for all v ∈ H,

and CSPE(w) = CSPE/H(w) for all w ∈ E0 \H. This gives the result. ut

We close the section by giving another characterization of the exchange Leavitt path algebras. Recall
that an ideal I of LK(E) is self-adjoint in case α∗ ∈ I for every α ∈ I.

Proposition 3.3.12. Let E be an arbitrary graph and K any field. Then E satisfies Condition (K) if and
only if every two-sided ideal of LK(E) is self-adjoint.

Proof. Suppose E satisfies Condition (K). Then by Theorem 3.3.11 every ideal of LK(E) is graded, and by
Corollary 2.4.10 every such ideal is self-adjoint.

Conversely, suppose every ideal of LK(E) is self-adjoint. Let H be a hereditary saturated subset of E0.
We will show that E/H satisfies Condition (L), and thus Theorem 3.3.11 will yield the desired result.
On the contrary, if E/H does not satisfy Condition (L), then there exists a cycle without exits c in E/H.
By Lemma 2.7.1 the ideal I of LK(E/H) generated by c0 is isomorphic to MΛ (K[x,x−1]) for some set
Λ . By Corollary 2.4.10 I(H ∪BH

H) is a self-adjoint ideal, hence the hypothesis implies that every ideal of
LK(E)/I(H∪BH

H) is self adjoint. Since LK(E/H)∼= LK(E)/I(H∪BH
H) (by Corollary 2.4.13(ii)), we get that
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every ideal of LK(E/H) is self-adjoint. But every ideal of I is an ideal of LK(E/H) (by Lemma 2.9.12),
hence every ideal of I, and consequently of MΛ (K[x,x−1]), is self adjoint. But this is a contradiction, as can
easily be seen by using the same ideas as presented in the |Λ |= 1 case given prior to Corollary 2.4.10. ut

3.4 Von Neumann regularity

In this section we will show that the Leavitt path algebras arising from acyclic graphs are precisely the von
Neumann regular Leavitt path algebras. Subsequently, we will give an explicit description of the largest
von Neumann regular ideal of a Leavitt path algebra.

Recall that an element a in a ring R is said to be von Neumann regular if there exists b ∈ R such
that aba = a. The ring R is called a von Neumann regular ring if every element in R is von Neumann
regular. Note that in this situation the element x = ba is idempotent. Indeed, von Neumann regular rings
are characterized as those rings for which every finitely generated left ideal is generated by an idempotent,
so that the topic of von Neumann regularity fits well with the theme of this chapter.

Theorem 3.4.1. Let E be an arbitrary graph and K any field. Then the following are equivalent.

(1) LK(E) is von Neumann regular.
(2) E is acyclic.
(3) LK(E) is locally K-matricial.

Proof. (1)⇒ (2). Suppose that there exists a cycle c in E; denote s(c) by v. We will prove that the element
v− c cannot be von Neumann regular. Suppose otherwise that there exists an element β ∈ LK(E) such that
(v− c)β (v− c) = (v− c). Replacing β by vβv if necessary, there is no loss of generality in assuming that

β = vβv. We write β as a sum of homogeneous elements β =
n
∑

i=m
βi, where m,n ∈ Z, βm 6= 0, βn 6= 0, and

deg(βi) = i for all nonzero βi with m≤ i≤ n. Since deg(v) = 0, we have vβiv = βi for all i. Then

v− c = (v− c)

(
n

∑
i=m

βi

)
(v− c).

Equating the lowest degree terms on both sides, we get βm = v. Since deg(v) = 0, we conclude that m = 0,

and that β0 = v. Thus β =
n
∑

i=0
βi. Suppose deg(c) = s > 0. By again equating terms of like degree in the

displayed equation, we see that βi = 0 whenever i is nonzero and not a multiple of s, so that

n

∑
i=m

βi = v+
n/s

∑
t=1

βts.

So upon rewriting the equation above, we have

v− c = (v− c)v(v− c)+(v− c)

(
k

∑
t=1

βts

)
(v− c), which gives 0 =−c+ c2 +(v− c)

(
k

∑
t=1

βts

)
(v− c).

By equating the degree s components on both sides we obtain βs = c. Similarly, by equating the degree 2s
components, we get 0 = c2−cβs−βsc+β2s. But substituting βs = c yields β2s = c2, and continuing in this
manner we get βts = ct , for every t ∈ N. But this is not possible, as βts = 0 for t > n/s.

(2)⇒ (3) is Proposition 2.6.20.
(3) ⇒ (1). It is well known that every matricial K-algebra is a von Neumann regular ring, and hence

easily so too is any direct union of such algebras. ut

Every ring R contains a largest von Neumann regular ideal (see e.g., [86, Proposition 1.5]), which we
denote here by U(R). Specifically, U(R) is an ideal of R, which is von Neumann regular as a ring, with the
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property that if J is any ideal of R which is von Neumann regular as a ring, then J ⊆U(R). This ideal is
often called the Brown-McCoy radical of R. It is not hard to show that R/U(R) contains no nonzero von
Neumann regular ideals.

Remark 3.4.2. It is clear that if R is matricial, then U(R) = R. On the other hand, using an idea which
amounts to a special case of the idea used in the proof of Theorem 3.4.1, it is easy to show that
U(K[x,x−1]) = {0}. This in turn can be used to show that U(R) = {0} for any K-algebra R of the form
which arises in Theorem 2.7.3. In particular, U(I(Pc(E)) = {0}, where Pc(E) is the set of vertices in E0

which lie in a cycle without exits (cf. Notation 2.2.4).

We begin by showing that every von Neumann regular ideal of a Leavitt path algebra is graded.

Lemma 3.4.3. Let E be an arbitrary graph and K any field. Then every von Neumann regular ideal of
LK(E) is a graded ideal.

Proof. Clearly the result holds for the zero ideal, so let I be a nonzero von Neumann regular ideal of
LK(E). By the Structure Theorem for Ideals 2.8.10 we have that I = I(H ∪SH ∪PC), where H, SH and PC
are as described therein. If I were not graded, then necessarily PC 6= /0, and the ideal I/I(H ∪ SH) of the
Leavitt path algebra LK(E)/I(H ∪SH) would be isomorphic to

⊕
c∈C MΛc(pc(x)K[x,x−1]). But algebras of

the latter form contain no nonzero von Neumann regular elements, which contradicts the von Neumann
regularity of I/I(H∪SH) (which is a consequence of it being the quotient of the von Neumann regular ring
I). Therefore I must be graded, as required. ut

In the context of Leavitt path algebras, we are able to describe the Brown-McCoy radical of LK(E) in
terms of a specific subset of E0.

Definition 3.4.4. For a graph E, we denote by Pnc(E) the set of all vertices in E0 which do not connect to
any cycle in E.

It is clear from the definition that Pnc(E) is both hereditary and saturated.

Proposition 3.4.5. Let E be an arbitrary graph and K any field. Let H denote Pnc(E). Then U(LK(E)) =
I(H ∪BH

H).

Proof. We first establish that I(H ∪BH
H) is a von Neumann regular ideal of LK(E). Indeed, by Theorem

2.5.22, this ideal (viewed as a ring) is isomorphic to the Leavitt path algebra of the graph (H,BH )E. Since
none of the vertices in H connects to a cycle in E then it is straightforward from the definition of (H,BH )E
that this graph is necessarily acyclic. So by Theorem 3.4.1, LK((H,BH )E), and hence I(H ∪BH

H), is a von
Neumann regular ring. Thus I(H ∪BH

H)⊆U(LK(E)).
To establish the reverse inclusion, we first invoke Lemma 3.4.3 to get that U(LK(E)) is a graded ideal.

So by the Structure Theorem for Graded Ideals 2.5.8 we have U(LK(E)) = I(H ′∪SH ′) for some S ⊆ BH ′ ,
where H ′ = U(LK(E))∩E0. We claim that H ′ ⊆ H; to establish the claim, we consider the ideal I(H ′).
By Theorem 2.5.19, I(H ′) is isomorphic to LK(H ′E). On the other hand, I(H ′)⊆ I(H ′∪SH ′) =U(LK(E)),
so that I(H ′) is von Neumann regular (as it is an ideal of the von Neumann regular ring U(LK(E))). Thus
Theorem 3.4.1 applies to yield that H ′E is acyclic and, consequently, that H ′ has no cycles. By definition,
this gives that H ′ ⊆ Pnc(E) = H, which establishes the claim.

Now, use that H ′ ⊆ H implies BH ′ ⊆ H ∪BH and, consequently, that SH ′ ⊆ H ∪BH
H , to get U(LK(E)) =

I(H ′∪SH ′)⊆ I(H ∪BH
H). ut

Remark 3.4.6. Since Pnc(E) ∈HE , we have I(Pnc(E)) = LK(E) if and only if Pnc(E) = E0. But by defini-
tion, the latter statement is equivalent to E being acyclic. So Proposition 3.4.5 can be viewed as a general-
ization of Theorem 3.4.1.

We recall the following subset of E0 given in Definitions 2.6.1: the set of line points of E, denoted Pl(E),
is the set of those vertices of E which connect neither to bifurcations nor to cycles. In particular, Pl(E)
contains all the sinks of E. Additionally, by definition we have Pl(E)⊆Pnc(E), so that I(Pl(E))⊆ I(Pnc(E))
for any graph E.
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Corollary 3.4.7. Let E be a finite graph and K any field. Then Soc(LK(E)) =U(LK(E)); that is, the socle
coincides with the Brown-McCoy radical for the Leavitt path algebra of a finite graph.

Proof. Using Theorem 2.6.14 and Proposition 3.4.5, we need only show that I(Pl(E)) = I(Pnc(E)). As
noted immediately above, the containment I(Pl(E))⊆ I(Pnc(E)) holds for any graph E. Conversely, recall
that for a finite graph E, each vertex connects either to a cycle or to a sink. So v ∈ Pnc(E) and the finiteness
of E implies that there is an integer N for which every path starting at v ends in a sink in at most N steps.
But then using the (CK2) relation as many times as necessary at each of these N steps (together with the
finiteness of the graph), we see that v is in the saturated closure of the sinks of E, and hence v ∈ I(Pl(E)).
So I(Pnc(E))⊆ I(Pl(E)), completing the proof. ut

Example 3.4.8. In the particular case of the Toeplitz algebra TK = LK(ET ) (see Example 1.3.6), the largest
von Neumann regular ideal U(TK) is the ideal generated by the sink, which by Corollary 3.4.7 is precisely
Soc(TK).

Remark 3.4.9. Corollary 3.4.7 does not extend to infinite graphs, not even to infinite acyclic graphs. This
can already be seen in Example 3.1.12, in which the graph E given there is acyclic (so that U(LK(E)) =
LK(E) by Theorem 3.4.1), but has zero socle. As an additional example (in which the socle of the Leavitt
path algebra is nonzero), let F denote the graph

•v1 //

��

•v2 //

��

•v3 //

��

•v4 //

��•w1 •w2 •w3

Then Pl(F)= {wn}n∈N. It is easy to see that I(Pl(F)) is not all of LK(F) (since vi /∈ I(Pl(F)) for all i∈N), so
that by Theorem 2.6.14 we have Soc(LK(F)) 6= LK(F). But as above we have that LK(F) is von Neumann
regular, so that U(LK(F)) = LK(F).

Remark 3.4.10. There are a number of additional general ring-theoretic properties which are related to von
Neumann regularity, including π-regularity and strong π-regularity, to name just two. It was established in
[12, Theorem 1] that in the context of Leavitt path algebras, the three properties von Neumann regularity,
π-regularity, and strong π-regularity are equivalent.

3.5 Primitive non-minimal idempotents

We continue our presentation of idempotent-related topics by considering the primitive, non-minimal idem-
potents of LK(E). We focus first on the ideal generated by these elements; this ideal will play a role similar
to that played by Soc(LK(E)), but with respect to the vertices which lie on cycles without exits. We will
utilize the following general ring-theoretic result.

Proposition 3.5.1. ([108, Proposition 21.8]) Let e be an idempotent in a (not-necessarily-unital) ring R.
The following are equivalent.

(1) Re is an indecomposable left R-module (equivalently, eR is an indecomposable right R-module).
(2) eRe is a ring without nontrivial idempotents.
(3) e cannot be decomposed as a+b, where a,b are nonzero orthogonal idempotents in R.

A nonzero idempotent of R which satisfies these conditions is called a primitive idempotent.

Clearly (by (1)) any minimal idempotent of R (Definitions 2.6.7) is necessarily primitive.

Proposition 3.5.2. Let E be an arbitrary graph and K any field. Let v∈E0. Then v is a primitive idempotent
of LK(E) if and only if T (v) has no bifurcations.
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Proof. Suppose that T (v) has bifurcations; say T (v) has its first bifurcation at w, with µ being the shortest
path which connects v to w. Since there are no bifurcations in µ , the (CK2) relation at each non-final vertex
of µ yields µµ∗ = v. Hence we get LK(E)v = LK(E)µµ∗. Let e and f be two different edges emitted by w;
then ee∗ 6= w (as otherwise w− ee∗ = 0, which on right multiplication by f would give f = 0), and so by
Proposition 3.0.1(i) we get LK(E)w = LK(E)ee∗⊕LK(E)(w− ee∗) is a decomposition of the desired type.

Conversely, suppose that T (v) has no bifurcations. Two cases can occur. First, suppose T (v) does not
contain vertices in cycles. In this case, v ∈ Pl(E), which means that v is minimal by Proposition 2.6.11,
and so necessarily primitive. On the other hand, suppose T (v)∩Pc(E) 6= /0. Since T (v) has no bifurcations,
there can be only one cycle c ∈ LK(E) such that T (v)∩ c0 6= /0, which in addition can have no exits.
Furthermore, every vertex of T (v) is either in c0 or connects to a vertex w in c0 via a path µ , where there
are no bifurcations at any of the vertices of µ . Since then µµ∗ = v, we get LK(E)v ∼= LK(E)w as left
LK(E)-modules by Proposition 3.0.1(ii). Since w is in a cycle without exits, by Proposition 2.2.7 we have
wLK(E)w∼= K[x,x−1], which is a ring without nontrivial idempotents. Now Proposition 3.5.1 gives that w
and v are both primitive, and completes the proof. ut

Remark 3.5.3. If vLK(E)v is a ring with no nontrivial idempotents, then v is a primitive idempotent and,
as a consequence of the proof of Proposition 3.5.2, we have either vLK(E)v ∼= K (if v is minimal) or
vLK(E)v∼= K[x,x−1] (if v is not minimal).

We have found a graphical relationship between the primitive and the minimal vertices of the Leavitt
path algebra of any graph: the minimal vertices are those whose trees do not contain bifurcations nor
connect to cycles, while the primitive vertices see this second condition suppressed. In particular,

Remark 3.5.4. A vertex v ∈ E0 is a primitive non-minimal idempotent of LK(E) if and only if vLK(E)v∼=
K[x,x−1]. In particular, the vertices in Pc(E) are primitive non-minimal.

Proposition 3.5.2 provides us with a tool to distinguish between those cycles with exits and those cycles
without exits in a graph, giving us a characterization of Condition (L) in terms of primitive vertices.

Corollary 3.5.5. Let E be an arbitrary graph and K any field. Then E satisfies Condition (L) if and only if
every primitive vertex in LK(E) is minimal.

In particular, if every vertex in LK(E) is infinite, then E satisfies Condition (L).

Proof. By Proposition 3.5.2 and Remark 3.5.4, LK(E) contains a primitive non-minimal vertex if and only
if E contains a cycle without exits. The additional statement follows vacuously. ut

In Theorem 3.5.7 we extend Corollary 3.5.5 from the primitive non-minimal vertices to the primitive
non-minimal idempotents of a Leavitt path algebra. As one consequence, this will show (Corollary 3.5.8)
that Condition (L) is a ring isomorphism invariant of Leavitt path algebras.

Proposition 3.5.6. Let E be an arbitrary graph and K any field. If z ∈ LK(E) is a primitive idempotent and
we can write αzβ = kv for α,β ∈ LK(E), k ∈ K×, and v ∈ E0, then LK(E)z ∼= LK(E)v. If, moreover, z is
primitive non-minimal, then zLK(E)z∼= K[x,x−1].

Proof. We may assume α = vα and β = βv. Define a = k−1αz and b = zβ . Then ab = v, and e := ba =
k−1zβαz is in zLK(E)z. Moreover, e2 = baba = bva = ba = e and thus LK(E)e∼= LK(E)v as left ideals of
LK(E) by a standard ring theory result. (The maps ρb : LK(E)e→ LK(E)v and ρa : LK(E)v→ LK(E)e give
the isomorphisms.) Note in particular that this implies LK(E)e 6= {0}. Since z is a primitive idempotent,
zLK(E)z is a ring without nontrivial idempotents, so that e ∈ {0,z}; since e 6= 0, we have z = e, so that
LK(E)z∼= LK(E)v as desired. If in addition z is primitive non-minimal, then so necessarily is v, and hence
zLK(E)z∼= vLK(E)v∼= K[x,x−1] by Remark 3.5.4. ut

We are now in position to establish a result similar to Corollary 3.5.5, but with respect to all idempotents
in LK(E).

Theorem 3.5.7. Let E be an arbitrary graph and K any field. Then E satisfies Condition (L) if and only if
every primitive idempotent in LK(E) is minimal.
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Proof. If LK(E) has no primitive non-minimal idempotents, in particular it has no primitive non-minimal
vertices, so that by Corollary 3.5.5, E satisfies Condition (L).

Now suppose E satisfies Condition (L), and let x be a primitive non-minimal idempotent of LK(E). By
the Reduction Theorem 2.2.11 there exist v ∈ E0, k ∈ K×, and µ,κ ∈ Path(E) such that µ∗xκ = kv. Note
that, by Corollary 3.5.5, v cannot be primitive non-minimal. But this is a contradiction since by Proposition
3.5.6, LK(E)v∼= LK(E)x. ut

Because Theorem 3.5.7 yields a characterization of Condition (L) in E as a ring-theoretic condition on
LK(E), we immediately get the next result (which can also be derived from Proposition 2.9.13 as well).

Corollary 3.5.8. Let E,F be arbitrary graphs and K any field, and suppose LK(E)∼= LK(F) as rings. Then
E satisfies Condition (L) if and only if F satisfies Condition (L).

The tools developed above will allow us to reformulate, in terms of idempotents, the Simplicity and
Purely Infinite Simplicity Theorems. By the Simplicity Theorem 2.9.1, LK(E) is simple if and only if
HE = { /0,E0}, and E satisfies Condition (L). The condition HE = { /0,E0} is equivalent to the nonexistence
of nontrivial two-sided ideals of LK(E) generated by idempotents (see Theorem 2.5.8 and Corollary 2.9.11).
So Theorem 3.5.7 yields the following.

Corollary 3.5.9. Let E be an arbitrary graph and K any field. Then LK(E) is simple if and only if every
primitive idempotent in LK(E) is minimal, and LK(E) contains no nontrivial two-sided ideals generated by
idempotents.

By the Purely Infinite Simplicity Theorem 3.1.10, LK(E) is purely infinite simple if and only if LK(E)
is simple, and every vertex of E connects to a cycle. If E is finite, then the latter condition may be replaced
by the condition that there are no minimal idempotents in LK(E), as follows. On the one hand, if every
vertex connects to a cycle (necessarily with an exit), then there are no minimal vertices in E (indeed, by
Proposition 3.1.6, every vertex is infinite in this case). On the other hand, if there are no minimal vertices
then there are no sinks, and since E is finite, this yields that every vertex must connect to a cycle. But
Soc(LK(E)) = I(Pl(E)) (Theorem 2.6.14), and Pl(E) = /0 (because E is finite and there are no sinks), so
that Soc(LK(E)) = {0}. Specifically, there are no minimal idempotents in LK(E). So we have established

Corollary 3.5.10. Let E be a finite graph and K any field. Then LK(E) is purely infinite simple if and only
if LK(E) contains no primitive idempotents and no nontrivial two-sided ideals generated by idempotents.

3.6 Structural properties of the V -monoid

For a ring R with enough idempotents, the monoid V (R) of isomorphism classes of finitely generated
projective left R-modules was discussed in Section 3.2. The monoid V (R) is clearly conical; that is, if
p,q ∈ V (R) have p+q = 0, then p = q = 0. In the specific case of a Leavitt path algebra LK(E), we show
in this section that the monoid V (LK(E)) satisfies some additional monoid-theoretic properties (properties
which, unlike the conical property, fail for some monoids of the form V (S) for some rings S). These prop-
erties arise in various contexts associated with decomposition and cancellation properties among finitely
generated projective left LK(E)-modules.

Definitions 3.6.1. Let (M,+) denote an abelian monoid.

(i) M is called a refinement monoid if whenever a+ b = c+ d in M, there exist x,y,z, t ∈ M such that
a = x+ y and b = z+ t, while c = x+ z and d = y+ t.

(ii) There is a canonical preorder on any abelian monoid M (the algebraic preorder), defined by setting
x ≤ y if and only if there exists m ∈M such that y = x+m. Following [28], M is called a separative
monoid in case M satisfies the following condition: if a,b,c ∈M satisfy a+c = b+c, and c≤ na and
c≤ nb for some n ∈ N, then a = b.

There are analogous definitions from a ring-theoretic point of view.
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Definitions 3.6.2. Let R be a ring with enough idempotents. The class of finitely generated projective left
R-modules is denoted by FP(R).

(i) We say that FP(R) satisfies the refinement property if whenever A1,A2,B1,B2 ∈ FP(R) satisfy A1⊕
A2 ∼= B1⊕B2, then there exist decompositions Ai = Ai1⊕Ai2 for i = 1,2 such that A1 j⊕A2 j ∼= B j for
j = 1,2.

(ii) We say that R is separative if whenever A,B,C ∈ FP(R) satisfy A⊕C ∼= B⊕C and C is isomorphic
to direct summands of both nA and nB for some n ∈ N, then A∼= B.

Remark 3.6.3. We note that, while the monoid V (R) of isomorphism classes of finitely generated projec-
tive left R-modules has been, and will continue to be, a key player in the subject of Leavitt path algebras, it
is more common in the literature to focus on the class of all finitely generated projective left R-modules in
a discussion of the properties of R presented in Definitions 3.6.2.

The following is then clear.

Proposition 3.6.4. Let R be a ring with enough idempotents.

(i) V (R) is a refinement monoid if and only if FP(R) satisfies the refinement property.
(ii) V (R) is separative if and only if R is separative.

We will show in this section that V (LK(E)) is both separative and a refinement monoid for every graph
E and field K. The approach will be to first establish these results for row-finite graphs, and subsequently
invoke appropriate direct limit theorems from Chapter 1. For context, we note that it has been shown [28,
Proposition 1.2] that every exchange ring satisfies the refinement property. On the other hand, as of 2017 it
is an outstanding open question to determine whether every exchange ring is separative.

We recall again the definition of the monoid ME (Definition 1.4.2), but here stated in the context of
row-finite graphs: ME denotes the abelian monoid given by the generators {av | v ∈ E0}, with the relations:

av = ∑
{e∈E1|s(e)=v}

ar(e) for every v ∈ E0 that emits edges. (M)

We introduce some helpful notation. Let E be a row-finite graph, and let FE (or simply F when E is
clear) be the free abelian monoid on the set E0. Each of the nonzero elements of FE can be written in a
unique form (up to permutation) as ∑

n
i=1 xi, where xi ∈ E0 (and repeats are allowed). Now we will give a

description of the congruence on FE generated by the relations (M). For x ∈ Reg(E), write

r(x) := ∑
{e∈E1|s(e)=x}

r(e) ∈ F.

(This notation is consistent with that given in Definition 3.2.9; in the current notation, the expression r(x)
is being used to more efficiently denote set r(r(s−1(x)).) With this notation, the relations (M) are expressed
more efficiently as x = r(x) for every x ∈ Reg(E).

Definition 3.6.5. Let F = FE be the free abelian monoid on the set of vertices E0 of a row-finite graph E.
Define a binary relation →1 on F \ {0} as follows. Let ∑

n
i=1 xi be an element in F \ {0} as above and let

j ∈ {1, . . . ,n} be an index such that x j emits edges. In this situation we write

n

∑
i=1

xi →1 ∑
i6= j

xi + r(x j).

Let→ be the transitive and reflexive closure of→1 on F\{0}, that is, α→ β if and only if there is a finite
sequence α = α0→1 α1→1 · · · →1 αt = β . Let ∼ be the congruence on F\{0} generated by the relation
→1 (or, equivalently, by the relation →). Namely α ∼ α for all α ∈ F \ {0} and, for α,β 6= 0, we have
α ∼ β if and only if there is a finite sequence α = α0,α1, . . . ,αn = β , such that, for each i = 0, . . . ,n−1,
either αi →1 αi+1 or αi+1 →1 αi. The number n above will be called the length of the sequence. The
congruence ∼ on F\{0} is extended to F by adding the single pair 0∼ 0.

It is clear that ∼ is the congruence on F generated by relations (M), and so ME = F/∼.



92 3 Idempotents, and finitely generated projective modules

The support of an element γ in F, denoted supp(γ) ⊆ E0, is the set of basis elements appearing in the
canonical expression of γ .

Lemma 3.6.6. Let→ be the binary relation on F given in Definition 3.6.5. Suppose α,β ,α1,β1 ∈ F\{0}
with α = α1 +α2 and α → β . Then β can be written as β = β1 +β2 with α1→ β1 and α2→ β2.

Proof. By induction, it is enough to show the result in the case where α→1 β . In this situation, there is an
element x in the support of α such that β = (α− x)+ r(x). The element x belongs either to the support of
α1 or to the support of α2. Assume, for instance, that the element x belongs to the support of α1. Then we
set β1 = (α1− x)+ r(x) and β2 = α2. The case where x is in the support of α2 is similar. ut

Note that the elements β1 and β2 in Lemma 3.6.6 are not uniquely determined by α1 and α2 in general,
because the element x ∈ E0 considered in the proof could belong to both the support of α1 and the support
of α2.

The following lemma gives the important “confluence” property of the congruence∼ on the free abelian
monoid FE .

Lemma 3.6.7. (The Confluence Lemma) Let α and β be nonzero elements in FE . Then α ∼ β if and only
if there is γ ∈ FE \{0} such that α → γ and β → γ .

Proof. Assume that α ∼ β . Then there exists a finite sequence α = α0,α1, . . . ,αn = β , such that, for
each i = 0, . . . ,n− 1, either αi →1 αi+1 or αi+1 →1 αi. We proceed by induction on n. If n = 0, then
α = β and there is nothing to prove. Assume the result is true for sequences of length n− 1, and let
α = α0,α1, . . . ,αn = β be a sequence of length n. By the induction hypothesis, there is λ ∈ F such that
α → λ and αn−1→ λ . Now there are two cases to consider. If β →1 αn−1, then β → λ and we are done.
Assume that αn−1→1 β . By definition of→1, there is a basis element x ∈ E0 in the support of αn−1 such
that αn−1 = x+α ′n−1 and β = r(x)+α ′n−1. By Lemma 3.6.6, we have λ = λ (x)+ λ ′, where x→ λ (x)
and α ′n−1→ λ ′. If the length of the sequence from x to λ (x) is positive, then we have r(x)→ λ (x) and so
β = r(x)+α ′n−1→ λ (x)+λ ′ = λ . On the other hand, if x = λ (x), we define γ = r(x)+λ ′. Then λ →1 γ

and so α → γ , and also β = r(x)+α ′n−1→ r(x)+λ ′ = γ . This concludes the proof. ut

We are now ready to show the refinement property of ME .

Proposition 3.6.8. The monoid ME associated with any row-finite graph E is a refinement monoid.

Proof. We use the identification ME = F/∼. Let α = α1 +α2 ∼ β = β1 +β2, with α1,α2,β1,β2 ∈ F. By
the Confluence Lemma 3.6.7, there is γ ∈ F such that α → γ and β → γ . By Lemma 3.6.6, we can write
γ = α ′1 +α ′2 = β ′1 +β ′2, with αi→ α ′i and βi→ β ′i for i = 1,2. Since F is a free abelian monoid, F has the
refinement property and so there are decompositions α ′i = γi1 + γi2 for i = 1,2 such that β ′j = γ1 j + γ2 j for
j = 1,2. The result follows. ut

Our next goal is to establish a lattice isomorphism between the lattice HE of hereditary saturated subsets
of E0, and the lattice of order-ideals of the associated monoid ME , in case E is row-finite. This in turn can
be interpreted as a lattice isomorphism with the graded ideals of LK(E) (Theorem 2.5.9), and thereby also
an isomorphism with the lattice of the ideals of LK(E) generated by idempotents (Corollary 2.9.11).

An order-ideal of a monoid M is a submonoid I of M such that, for each x,y ∈M, if x+ y ∈ I then x ∈ I
and y ∈ I. An order-ideal can also be described as a submonoid I of M which is hereditary with respect to
the canonical preorder ≤ on M: x≤ y and y ∈ I imply x ∈ I. (Recall that the preorder ≤ on M is defined by
setting x≤ y if and only if there exists m ∈M such that y = x+m.)

The set L (M) of order-ideals of M forms a (complete) lattice
(
L (M),⊆,∑,∩

)
. Here, for a family of

order-ideals {Ii}, we denote by ∑Ii the set of elements x ∈M such that x ≤ y for some y belonging to the
algebraic sum ∑ Ii of the order-ideals Ii. Note that ∑ Ii = ∑Ii whenever M is a refinement monoid.

Recall again that FE is the free abelian monoid on E0, and ME = FE/∼. For γ ∈ FE we will denote by
[γ] its class in ME . Note that any order-ideal I of ME is generated as a monoid by the set {[v] | v ∈ E0}∩ I.

The set HE of hereditary saturated subsets of E0 is also a complete lattice (HE ,⊆,∪,∩) (Remark 2.5.2).
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Proposition 3.6.9. Let E be a row-finite graph. Then there are order-preserving mutually inverse maps

ϕ : HE −→L (ME) and ψ : L (ME)−→HE ,

where, for H ∈ HE , ϕ(H) is the order-ideal of ME generated by {[v] | v ∈ H}, and, for I ∈ L (ME),
ψ(I) = {v ∈ E0 | [v] ∈ I}.

Proof. The maps ϕ and ψ are obviously order-preserving. We claim that to establish the result it suffices
to show

(i) for I ∈L (ME), the set ψ(I) is a hereditary saturated subset of E0, and
(ii) if H ∈HE then [v] ∈ ϕ(H) if and only if v ∈ H.

To see this, if (i) and (ii) hold, then ψ is well-defined by (i), and ψ(ϕ(H)) = H for H ∈HE , by (ii). On the
other hand, if I is an order-ideal of ME , then obviously ϕ(ψ(I))⊆ I, and since I is generated as a monoid
by {[v] | v ∈ E0}∩ I = [ψ(I)], it follows that I ⊆ ϕ(ψ(I)).

Proof of (i). Let I be an order-ideal of ME , and set H := ψ(I) = {v ∈ E0 | [v] ∈ I}. To see that H is
hereditary, we have to prove that, whenever we have γ = e1e2 · · ·en in Path(E) with s(e1) = v and r(en) = w
and v ∈ H, then w ∈ H. If we consider the corresponding sequence v→1 γ1→1 γ2→1 · · · →1 γn in FE , we
see that w belongs to the support of γn, so that w≤ γn in FE . This implies that [w]≤ [γn] = [v], and so [w]∈ I
because I is hereditary.

To show saturation, take a non-sink v ∈ E0 such that r(s−1(v)) ⊆ H. We then have supp(r(v)) ⊆ H, so
that [r(v)] ∈ I because I is a submonoid of ME . But [v] = [r(v)], so that [v] ∈ I and v ∈ H.

Proof of (ii). Let H be a hereditary saturated subset of E0, and let I := ϕ(H) be the order-ideal of
ME generated by {[v] | v ∈ H}. Clearly [v] ∈ I if v ∈ H. Conversely, suppose that [v] ∈ I. Then [v] ≤ [γ],
where γ ∈ FE satisfies supp(γ)⊆H. Thus we can write [γ] = [v]+ [δ ] for some δ ∈ FE . By the Confluence
Lemma 3.6.7, there exists β ∈ FE such that γ→ β and v+δ → β . Since H is hereditary and supp(γ)⊆H,
we get supp(β ) ⊆ H. By Lemma 3.6.6, we have β = β1 + β2, where v→ β1 and δ → β2. Observe that
supp(β1) ⊆ supp(β ) ⊆ H. Using that H is saturated, it is a simple matter to check that, if α →1 α ′ and
supp(α ′)⊆ H, then supp(α)⊆ H. Using this and induction, we obtain that v ∈ H, as desired. ut

We now show that the monoid ME associated with a row-finite graph E is always a separative monoid.
Recall (Definitions 3.6.1) this means that for elements x,y,z ∈ME , if x+ z = y+ z and z ≤ nx and z ≤ ny
for some positive integer n, then x = y.

The separativity of ME follows from results of Brookfield [53] on primely generated monoids; see
also [157, Chapter 6]. Indeed the class of primely generated refinement monoids satisfies many other nice
cancellation properties. We will highlight unperforation later, and refer the reader to [53] for further infor-
mation.

Definition 3.6.10. Let M be a monoid. An element p ∈M is prime if for all a1,a2 ∈M, p≤ a1+a2 implies
p≤ a1 or p≤ a2. A monoid is primely generated if each of its elements is a sum of primes.

Proposition 3.6.11. ([53, Corollary 6.8]) Any finitely generated refinement monoid is primely generated.

It follows from Propositions 3.6.8 and 3.6.11 that, for a finite graph E, the monoid ME is primely
generated. Note that the primely generated property does not extend in general to row-finite graphs, as is
demonstrated by the following graph G:

•p0 //

��

•p1 //

}}

•p2 //

vv

•p3 //

tt

· · ·

•a

The corresponding monoid MG has generators a, p0, p1, . . . , and relations given by pi = pi+1 + a for all
i≥ 0. One can easily see that the only prime element in M is a, so that M is not primely generated.

Theorem 3.6.12. Let E be a row-finite graph. Then the monoid ME is separative.
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Proof. By Lemma 3.2.4, we get that ME is the direct limit of monoids MXi corresponding to finite graphs
Xi. Therefore, in order to check separativity, we can assume that the graph E is finite. In this situation,
we have that ME is generated by the finite set E0 of vertices of E, and thus ME is finitely generated. By
Proposition 3.6.8, ME is a refinement monoid, so it follows from Proposition 3.6.11 that ME is a primely
generated refinement monoid. By [53, Theorem 4.5], the monoid ME is separative. ut

As remarked previously, primely generated refinement monoids satisfy many nice cancellation proper-
ties, as shown in [53]. Some of these properties are preserved in direct limits, so they are automatically
true for the graph monoids corresponding to any row-finite graph (and, as we will show below in Theorem
3.6.21, turn out to be true for arbitrary graphs). Especially important in several applications is the property
of unperforation.

Definition 3.6.13. The monoid (M,+) is said to be unperforated in case, for all elements a,b ∈M and all
positive integers n, we have na≤ nb =⇒ a≤ b.

Proposition 3.6.14. Let E be a row-finite graph. Then the monoid ME is unperforated.

Proof. As in the proof of Theorem 3.6.12, we can reduce to the case of a finite graph E. In this case, the
result follows from [53, Corollary 5.11(5)]. ut

Corollary 3.6.15. Let E be a row-finite graph. Then FP(LK(E)) satisfies the refinement property, and
LK(E) is a separative ring. Moreover, the monoid V (LK(E)) is unperforated.

Proof. By Theorem 3.2.5, we have V (LK(E))∼=ME . So the result follows from Proposition 3.6.8, Theorem
3.6.12 and Proposition 3.6.14. ut

Another useful technique to deal with graph monoids of finite graphs consists of considering composi-
tion series of order-ideals in the monoid. These composition series correspond via Proposition 3.6.9 and
Theorem 2.5.9 to composition series of graded ideals in LK(E). (Using [47, Theorem 4.1(b)], they also
correspond to composition series of closed gauge-invariant ideals of the graph C∗-algebra C∗(E); this ap-
proach will be used in the proof of Theorem 5.3.5 below.) The composition series approach can be used
to achieve a different proof of the separativity of ME (Theorem 3.6.12), an approach we sketch in Remark
3.6.19.

Definition 3.6.16. Given an order-ideal S of a monoid M we define a congruence∼S on M by setting a∼S b
if and only if there exist e, f ∈ S such that a+ e = b+ f . Let M/S be the factor monoid obtained from the
congruence ∼S (see e.g., [28]). We denote by [x]S the class of an element x ∈M in M/S.

In particular, If I is any ideal of a ring R, the monoid V (I) is an order-ideal of V (R). Using the con-
struction of the factor monoid given in Definition 3.6.16, it can be shown that for a large class of rings R,
one has V (R/I)∼= V (R)/V (I) for any ideal I of R (see e.g., [28, Proposition 1.4]). We present here some
useful general facts about V -monoids.

Proposition 3.6.17. Let R be any ring with local units.

(i) Assume that V (R) is a refinement monoid. Then the map

I 7→ V (I)

gives a lattice isomorphism between the lattice Lidem(R) consisting of those ideals of R which are
generated by idempotents, and the lattice L (V (R)) of order-ideals of V (R).

(ii) If I is an ideal of R generated by idempotents, then there is a canonical injective map

ω : V (R)/V (I)→ V (R/I),

such that ω([e]V (I)) = [e+ I] for every idempotent e in R.
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Proof. (i) Since R has local units and V (R) is a refinement monoid, every idempotent in MN(R) is equiv-
alent to an idempotent of the form e1⊕·· ·⊕ en for some idempotents e1, . . . ,en of R. (See Definition 3.8.2
below.) It follows that the set of trace ideals considered in [27, Definition 10.9] is exactly the set of ideals of
R generated by idempotents. Therefore the bijective correspondence follows from [27, Proposition 10.10]
(see [78, Theorem 2.1(c)] for the unital case).

(ii) Since R has local units, the proof of [24, Proposition 5.3(c)] can be easily adapted to get that the
map ω is injective. Note that ω is just the map induced by the canonical projection π : R→ R/I. ut

Observe that, by combining Theorem 2.5.9, Corollary 2.9.11, Theorem 3.2.5 and Theorem 3.6.8, Propo-
sition 3.6.9 can be re-established by using Proposition 3.6.17(i). A similar route can also be used to show
the following result.

Lemma 3.6.18. Let E be a row-finite graph. For a hereditary saturated subset H of E0, consider the order-
ideal S = ϕ(H) of ME associated with H, as in Proposition 3.6.9. Let E/H be the quotient graph (recall
Definition 2.4.11). Then there are natural monoid isomorphisms

ME/S∼= V (LK(E))/V (I(H))∼= V (LK(E)/I(H))∼= V (LK(E/H))∼= ME/H .

Proof. By Theorem 3.2.5 we have ME ∼= V (LK(E)). By Proposition 3.6.17(ii), the map

ω : V (LK(E))/V (I(H))→ V (LK(E)/I(H)) defined by ω([e]V (I(H))) = [e+ I(H)]

is injective. Moreover, there is an isomorphism LK(E)/I(H) ∼= LK(E/H), given in Corollary 2.4.13(i).
Since V (LK(E/H))∼= ME/H , the monoid V (LK(E/H)) is generated by the classes of vertices v in E0 \H,
so we get that the map ω is surjective. The result follows. ut

Remark 3.6.19. We sketch a proof of the separativity of ME , different from the one presented in Theorem
3.6.12, using the theory of order-ideals. For a row-finite graph E, we call ME simple in case the only
order-ideals of ME are trivial. This corresponds by Proposition 3.6.9 to the situation where the hereditary
saturated subset generated by any vertex of E is all of E0. By Lemma 2.9.6, this happens if and only if E is
cofinal (Definition 2.9.4).

As in the proof of Theorem 3.6.12, we can assume that E is a finite graph. In this case it is obvious
that E0 has a finite number of hereditary saturated subsets, so ME has a finite number of order-ideals.
Take a finite chain 0 = S0 ≤ S1 ≤ ·· · ≤ Sn = ME such that each Si is an order-ideal of ME , and all the
quotient monoids Si/Si−1 are simple. By Proposition 3.6.9 we have Si ∼= MHi for some finite graph Hi, and
by Lemma 3.6.18 we have Si/Si−1 ∼= MGi for some cofinal finite graph Gi. By Proposition 3.6.8, Si is a
refinement monoid for all i, so the Extension Theorem for refinement monoids ([28, Theorem 4.5]) tells us
that Si is separative if and only if so are Si−1 and Si/Si−1. It follows by induction that it is enough to show
the case where E is a cofinal finite graph.

So let E be a cofinal finite graph. We distinguish three cases. First, suppose that E is acyclic. Then
necessarily there is a sink v in E, and by cofinality for every vertex w of E there is a path from w to v. It
follows that ME is a free abelian monoid of rank one (i.e., isomorphic to Z+), generated by av. In particular
ME is a separative monoid. Secondly, assume that E has a cycle without exits, and let v be any vertex in
this cycle. By using the cofinality condition, it is easy to see that there are no other cycles in E, and that
every vertex in E connects to v. It follows again that ME is a free abelian monoid of rank one, generated by
av. Finally, we consider the case where every cycle in E has an exit. By cofinality, every vertex connects
to every cycle. Using this and the property that every cycle has an exit, it is easy to show that for every
nonzero element x in ME there is a nonzero element y in ME such that x = x+y. It follows that ME \{0} is
a group; see for example [28, Proposition 2.4]. In particular ME is a separative monoid. ut

Example 3.6.20. This example will be useful later on. Consider the following graph E:

•a
��
XX •boo // •c

��
XX

// •d .
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Then ME is the monoid generated by a,b,c,d with defining relations a = 2a, b = a+c, c = 2c+d. A com-
position series of order-ideals for ME is obtained from the graph monoids corresponding to the following
chain of hereditary saturated subsets of E:

/0$ {d}$ {c,d}$ {a,b,c,d}= E0.

By Lemma 3.6.18, the corresponding simple quotient monoids are the graph monoids corresponding to the
following graphs:

•d , •c
��
XX , •a

��
XX •boo .

It is a relatively straightforward matter to generalize the previously established structural results about
graph monoids of row-finite graphs to arbitrary graphs, using the direct limit machinery from Section 1.6.
We complete this section by providing the details.

Theorem 3.6.21. Let E be an arbitrary graph, let K be a field, and let X be a subset of Reg(E). Then the
monoid V (CX

K (E)) is an unperforated, separative, refinement monoid. In particular, the monoid V (LK(E))
is an unperforated, separative, refinement monoid.

Proof. Since the properties in the statement are preserved under direct limits, and since the functor V
is continuous, we see from Theorem 1.6.10 that it suffices to show the result for a finite graph E. So
suppose that E is a finite graph and that X is a finite subset of Reg(E). By Theorem 1.5.18, we have that
CX

K (E) ∼= LK(E(X)) for a certain finite graph E(X). By Proposition 3.6.8, Theorem 3.6.12, Proposition
3.6.14 and Theorem 3.2.5, V (LK(E(X)) is an unperforated, separative, refinement monoid, and thus so is
V (CX

K (E)). ut

Remark 3.6.22. For a refinement monoid, unperforation implies separativity. This follows immediately
from [59, Theorem 1], and it was noted independently in [156, Corollary 2.4].

Theorem 3.6.23. Let E be an arbitrary graph and K any field.

(i) The map
I 7→ V (I)

gives a lattice isomorphism between the lattice Lgr(LK(E)) of graded ideals of LK(E) and the lattice
L (V (LK(E))) of order-ideals of V (LK(E)).

(ii) Let I be a graded ideal of LK(E). Then there is a natural monoid isomorphism

ω :
V (LK(E))

V (I)
−→ V (LK(E)/I).

Proof. (i) Since V (LK(E)) is a refinement monoid (Theorem 3.6.21) and the graded ideals of LK(E) are
precisely the idempotent-generated ideals (Corollary 2.9.11), the result follows directly from Proposition
3.6.17(i).

(ii) Again by Corollary 2.9.11, we have that I is an idempotent-generated ideal, so the map ω is injective
by Proposition 3.6.17(ii). Now by Theorem 2.5.8 there exist H ∈HE and S⊆ BH such that I = I(H ∪SH).
Therefore, by using Theorem 2.4.15 and Corollary 3.2.11, we get

V (LK(E)/I) = V (LK(E)/I(H ∪SH))∼= V (LK(E/(H,S)))∼= ME/(H,S).

It follows that V (LK(E)/I) is generated by elements of the form [v−∑ f∈Z f f ∗], where v ∈ E0 \H and Z is
a finite (possibly empty) subset of s−1

E (v) such that r( f ) /∈H for every f ∈ Z. Thus the map ω is surjective,
and consequently a monoid isomorphism. ut
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3.7 Extreme cycles

In Chapter 1 we described the three “primary colors” of Leavitt path algebras: n×n matrix rings Mn(K)∼=
LK(An), Laurent polynomials K[x,x−1] ∼= LK(R1), and Leavitt algebras LK(1,n) ∼= LK(Rn) (for n ≥ 2). In
Theorem 2.6.14 we showed that the ideal of LK(E) generated by the set of line points Pl(E) yields a piece
of LK(E) similar in appearance to the first color, while in Theorem 2.7.3 we showed that the ideal of LK(E)
generated by the vertices that lie on cycles without exits Pc(E) is similar in appearance to the second color.
Intuitively, in this section we complete the picture by describing the piece of LK(E) which most resembles
the third color. Specifically, we identify sets of vertices which generate ideals in LK(E) which are purely
infinite simple as a K-algebra.

Definitions 3.7.1. Let E be a graph and c a cycle in E. We say that c is an extreme cycle if c has exits and,
for every path λ starting at a vertex in c0, there exists µ ∈ Path(E) such that r(λ ) = s(µ), and r(λ µ) ∈ c0.
We will denote by Pec(E) the set of vertices which belong to extreme cycles. Intuitively, c is an extreme
cycle in case every path which leaves c can be lengthened in such a way that the longer path returns to c.

Let X ′ec be the set of all extreme cycles in a graph E. We define in X ′ec the following relation: given c,d ∈
X ′ec, we write c∼ d whenever c and d are connected, that is, T (c0)∩d0 6= /0, equivalently, T (d0)∩ c0 6= /0.
It is not difficult to see that ∼ is an equivalence relation. The set of all ∼ equivalence classes is denoted by
Xec = X ′ec/ ∼. When we want to emphasize a specific graph E under consideration we will write X ′ec(E)
and Xec(E) for X ′ec and Xec, respectively.

For c ∈ X ′ec, we let c̃ denote the class of c. We write c̃0 to represent the set of all vertices which are in
the cycles belonging to c̃.

Examples 3.7.2. Consider the following graphs.

E = •ve
&& f // •w

g

ss

h

QQ and F = •v′e′
(( f ′

** •w′

g′
ii

h′1

tt

h′2

QQ .

Then straightforward computations yield that Pec(E) = {w}, X ′ec(E) = {g,h}, and Xec(E) = {g̃}. Similarly,
Pec(F) = {v′,w′}, X ′ec(F) = {e′, f ′g′,g′ f ′,h′1,h

′
2}, and Xec(F) =

{
ẽ′
}

.

Example 3.7.3. Let ET be the Toeplitz graph e •u
88

f // •v . Then clearly Pec(ET ) = /0.

Remark 3.7.4. Let E be an arbitrary graph. These two observations are straightforward to verify.

(i) For any c ∈ X ′ec, c̃0 = T (c0). Consequently, c̃0 is a hereditary subset of E0, which in turn yields that
Pec(E) is a hereditary subset of E0.

(ii) Given c,d ∈ X ′ec, c̃ 6= d̃ if and only if c̃0∩ d̃0 = /0.

We analyze the structure of the ideal generated by Pec(E). Recall the construction of the hedgehog graph
HE given in Definition 2.5.16.

Lemma 3.7.5. Let E be an arbitrary graph and K any field. For every cycle c such that c ∈ X ′ec, the ideal
I(c̃0) is isomorphic to a purely infinite simple Leavitt path algebra. Concretely, I(c̃0) ∼= LK(HE), where
H = c̃0.

Proof. Observing that H is a hereditary subset of E0, we may use Theorem 2.5.19 and Remark 2.5.21(iii)
to get that I(c̃0) is isomorphic to the Leavitt path algebra LK(HE). We will show that this Leavitt path
algebra is purely infinite simple by invoking the Purely Infinite Simplicity Theorem 3.1.10.

To show that every vertex of HE connects to a cycle, take v ∈ HE0. If v ∈ H then it connects to c by the
definition of H = c̃0. If v /∈ H then there is f ∈ (HE)1 such that s( f ) = v and r( f ) ∈ H. Hence v connects
to c in this case as well.
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Next, we show that every cycle in HE has an exit. Pick such a cycle d; then necessarily by the definition
of HE, d is a cycle in H. Since by construction we have d̃ = c̃, this means that d connects to c and hence it
has an exit in E, which is also an exit in HE.

Finally, to show that the only hereditary saturated subsets of (HE)0 are /0 and (HE)0, let /0 6= H ′ ∈HH E ,
and consider v ∈ H ′. Note that every pair of vertices in H is connected by a path, and that (HE)0 is the
saturation of H in HE. Hence, if v ∈ H then H ′ = (HE)0. If v /∈ H then there exists f ∈ (HE)1 such that
v = s( f ) and r( f ) ∈ H. This implies (HE)0 ⊆ H ′, as desired. ut

Theorem 3.7.6. Let E be an arbitrary graph and K any field. Then

I(Pec(E)) =⊕c̃∈Xec I(c̃0).

Furthermore, I(c̃0) is isomorphic to a purely infinite simple Leavitt path algebra for each c̃ ∈ Xec.

Proof. The hereditary set Pec(E) can be partitioned as Pec(E) = tc̃∈Xec c̃0. By Remark 3.7.4(ii) and Propo-
sition 2.4.7, I(Pec(E)) = I(tc̃∈Xec c̃0) = ⊕c̃∈Xec I(c̃0). Finally, each I(c̃0) is isomorphic to a purely infinite
simple Leavitt path algebra by Lemma 3.7.5. ut

Lemma 3.7.7. Let E be an arbitrary graph and K any field. Then the hereditary sets Pl(E), Pc(E) and
Pec(E) are pairwise disjoint. Consequently, the ideal of LK(E) generated by their union is I(Pl(E))⊕
I(Pc(E))⊕ I(Pec(E)).

Proof. By the definition of Pl(E), Pc(E) and Pec(E), they are pairwise disjoint. To get the result, apply
Proposition 2.4.7. ut

The ideal described in Lemma 3.7.7 will be of use later on, so we name it here.

Definition 3.7.8. Let E be an arbitrary graph and K any field. We define the ideal Ilce of LK(E) by setting

Ilce := I(Pl(E))⊕ I(Pc(E))⊕ I(Pec(E)).

As mentioned at the start of this section, the ideal Ilce captures the essential structural properties of the
three primary colors of Leavitt path algebras, a statement we now make more precise.

Theorem 3.7.9. Let E be an arbitrary graph and K any field. Consider Ilce, the ideal of LK(E) presented
in Definition 3.7.8. Then

Ilce ∼=
(
⊕i∈Γ1MΛi(K)

)
⊕
(
⊕ j∈Γ2MΛ j(K[x,x−1])

)
⊕
(
⊕l∈Γ3 I(c̃0

l )
)

where:
Γ1 is the index set of the decomposition of Pl(E) into disjoint hereditary sets (i.e., Pl(E) = ti∈Γ1Hi as in

Lemma 2.6.13), and, for every i ∈ Γ1, Λi denotes the set {µµ∗ | µ ∈ Path(E), r(µ) ∈ Hi};
Γ2 is the index set of the cycles without exits in E, and for every j ∈ Γ2, Λ j is the set of distinct paths

ending at the basis of cycle without exits c j and not containing all the edges of c j; and
Γ3 is the index set of Xec(E).

Proof. This follows directly from Theorems 2.6.14, 2.7.3, and 3.7.6. ut

In general the ideal Ilce of LK(E) need not be “large” in LK(E). For example, let F denote the “doubly
infinite line graph” of Example 3.1.12. Since there are no cycles in F , we get vacuously that Pec(F) = /0 =
Pc(F). Since there are no line points in F , we have Pl(F) = /0, so that, by definition, Ilce(F) = {0}. So we
have produced an example of the desired type. However, when E0 is finite, we show below that the ideal
Ilce is in fact essential in LK(E). The key is the following.

Lemma 3.7.10. Let E be a graph for which E0 is finite. Let v ∈ E0. Then v connects to at least one of: a
sink, a cycle without exits, or an extreme cycle.
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Proof. Recall the preorder ≥ on E0 presented in Definition 2.0.4. Consider the partial order ≥′ resulting
from the antisymmetric closure of≥. The statement will be proved once we show that the minimal elements
in (E0,≥′) are sinks, vertices in cycles without exits, and vertices in extreme cycles.

Indeed, let v ∈ E0 be a minimal element. If v is a sink, we are done. Otherwise, there exists w ∈ E0 such
that v≥ w. The minimality of v implies w≥′ v, hence there is a closed path c in E such that v,w ∈ c0. If c
has no exits, we are done. Otherwise, let µ be a path in E of length≥ 1 such that the first edge appearing in
µ is an exit for c. Then v≥ s(µ). Again by the minimality of v we have s(µ)≥′ v. This implies that every
path starting at a vertex of c0 returns to c0 and so c is an extreme cycle as required. ut

Proposition 3.7.11. Let E be a graph for which E0 is finite. Then Ilce is an essential ideal of LK(E).

Proof. Let v ∈ E0. Since E0 is finite then Lemma 3.7.10 ensures that v connects to a line point, or to a
cycle without exits, or to an extreme cycle. This means that every vertex of E connects to the hereditary
set Pl(E)∪Pc(E)∪Pec(E) and, consequently, to its hereditary saturated closure, which we denote by H.
By Proposition 2.7.10 this means that I(H) is an essential ideal of LK(E), and by Lemma 3.7.7 it coincides
with Ilce. ut

We note that although Ilce is an essential ideal of LK(E) when E0 is finite, Ilce need not equal all of
LK(E). We see this behavior in LK(ET ), where ET is the Toeplitz graph as discussed in Example 3.7.3.
Here we have Pec(ET ) = /0 = Pc(ET ), and Pl(ET ) is the sink v. So Ilce(ET ) = I({v}); but I({v}) 6= LK(ET ),
since {v} is hereditary saturated.

3.8 Purely infinite without simplicity

We conclude Chapter 3 by presenting a description of the purely infinite (but not necessarily simple) Leavitt
path algebras arising from row-finite graphs. As happened in the purely infinite simple case (Section 3.1),
an in-depth analysis of the idempotent structure of LK(E) will be required. Roughly speaking, the first half
of this section (through Lemma 3.8.10) will be a discussion of the purely infinite notion for general rings,
while the second half will be taken up in considering this notion in the specific context of Leavitt path
algebras. Many of the fundamental ideas in this section can be found in the seminal paper [39].

The general theory of purely infinite rings works smoothly for s-unital rings, defined here.

Definition 3.8.1. A ring R is said to be s-unital in case for each a∈R there exist b∈R such that a= ab= ba.
By [18, Lemma 2.2], if R is s-unital then for each finite subset F ⊆ R there is an element u ∈ R such that
ux = x = xu for all x ∈ F .

Of course all rings with local units are s-unital, so that all Leavitt path algebras fall under this umbrella.
For an example of an s-unital ring without nonzero idempotents, consider the algebra Cc(R) of those
continuous functions on the real line having compact support.

We start by recalling the definitions of the properties properly purely infinite and purely infinite in a
general non-unital, non-simple ring, introduced in [39]. We will then specialize to the simple case.

Definition 3.8.2. Let R be a ring, and suppose x and y are square matrices over R, say x ∈ Mk(R) and
y ∈Mn(R) for k,n ∈ N. We use ⊕ to denote block sums of matrices; thus,

x⊕ y =
(

x 0
0 y

)
∈Mk+n(R),

and similarly for block sums of more than two matrices.
We define a relation - on matrices over R by declaring that x- y if and only if there exist α ∈Mkn(R)

and β ∈Mnk(R) such that x = αyβ .

Recall that the set of idempotent elements of a ring R is endowed with a partial order≤ given by e≤ f if
and only if e = e f = f e. It is not hard to show that if x and y are idempotent matrices in MN(R), then x- y
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if and only if x∼ f , where f is an idempotent such that f ≤ y. (The relation ∼ on idempotent matrices has
been defined in Section 3.2.)

For any ring R and element a ∈ R, the expression RaR denotes the set of all finite sums ∑
n
i=1 ziati, where

zi, ti ∈ R. In case R is s-unital, then RaR is precisely the ideal I(a) of R generated by a.

Definitions 3.8.3. Let R be any ring.

(i) We call an element a ∈ R properly infinite if a 6= 0 and a⊕a- a.
(ii) We call R purely infinite if the following two conditions are satisfied:

(1) no quotient of R is a division ring, and
(2) whenever a ∈ R and b ∈ RaR, then b- a (i.e., b = xay for some x,y ∈ R).

(iii) We call R properly purely infinite if every nonzero element of R is properly infinite.

Remark 3.8.4. Suppose R is a simple unital ring. Then we see easily that R is purely infinite (simple) if
and only if R is not a division ring, and for all 0 6= a ∈ R there exist x,y ∈ R for which 1R = xay.

Lemma 3.8.5. Let R be an s-unital ring.

(i) If R is properly purely infinite, then R is purely infinite.
(ii) If M2(R) is purely infinite, then R is properly purely infinite.

Proof. (i) Suppose first that R/I is a division ring for some ideal I of R. Take a nonzero element a of
R/I. Then a is a nonzero element in R, and thus by hypothesis is properly infinite. So there exist elements
α1,α2,β1,β2 ∈ R such that (

a 0
0 a

)
=

(
α1 0
α2 0

)(
a 0
0 0

)(
β1 β2
0 0

)
.

But then in R/I we have that (
a 0
0 a

)
=

(
α1aβ 1 α1aβ 2
α2aβ 1 α2aβ 2

)
.

Since a 6= 0, it follows that α1,α2,β 1,β 2 are all nonzero. Now, since R/I is a division ring, α1aβ 2 = 0
implies a = 0, a contradiction. This shows that no quotient of R is a division ring, so that Condition (1) of
Definitions 3.8.3(ii) holds.

By using that R is s-unital, one can easily see that r1+r2+ · · ·+rt - r1⊕r2⊕·· ·⊕rt for all r1, . . . ,rt ∈R,
cf. [39, Lemma 2.2]. Now let a∈R be properly infinite and b∈RaR. Write b=∑

n
i=1 xiayi for some xi,yi ∈R.

We have xiayi - a for all 1≤ i≤ n, whence by the above, we have

b =
n

∑
i=1

xiayi - x1ay1⊕ x2ay2⊕·· ·⊕ xnayn - a⊕a⊕·· ·⊕a- a,

with the final - being a consequence of a⊕a - a. This establishes Condition (2) of Definitions 3.8.3(ii),
and yields the result.

(ii) As R is s-unital, given a ∈ R there exists u ∈ R such that ua = au = a. Hence,

a⊕a =

(
a 0
0 a

)
=

(
u 0
0 0

)(
a 0
0 0

)(
u 0
0 0

)
+

(
0 0
u 0

)(
a 0
0 0

)(
0 u
0 0

)
∈M2(R) ·a⊕0 ·M2(R).

Since M2(R) is assumed to be purely infinite, it follows that a⊕a- a⊕0, and so a⊕a- a. Therefore a is
either zero or properly infinite. ut

For notational convenience, we will often write various square matrix expressions as sums and products

of non-square matrices; for instance, a⊕a =

(
a
0

)
(1 0)+

(
0
a

)
(0 1).

The concepts of properly purely infinite and purely infinite agree for simple s-unital rings. Moreover,
in this case we can relate these conditions to the existence of infinite idempotents in all nonzero right (or
left) ideals, see Proposition 3.8.8 below. (However, there exist simple non-s-unital rings which are purely
infinite but not properly purely infinite, see e.g., [39, Example 3.5].)



3.8 Purely infinite without simplicity 101

We first show, in the next few lemmas, that every simple s-unital purely infinite ring contains nonzero
idempotents.

Lemma 3.8.6. Let R be a not-necessarily-unital ring, and suppose that R contains nonzero elements
x,y,u,v satisfying the relations

vu = uv = u, yu = y, vx = x, v = yx. (3.1)

Then R contains a nonzero idempotent.

Proof. Let R̃ denote a ring obtained by adjoining a unit to R. Then in R̃ we have

(y+(1− v))(x+(1−u)) = yx+ y(1−u)+(1− v)x+(1− v)(1−u) = v+0+0+(1− v) = 1.

It follows that e = (x+(1−u))(y+(1−v)) is an idempotent in R̃, whence 1−e is an idempotent which is
easily seen to belong to R.

If e 6= 1, then 1− e is the desired nonzero idempotent in R. If e = 1, then y = yeu = y(x+(1−u))(y+
(1− v))u = yxy ∈ R, which shows that v = yx is a (nonzero) idempotent in R. ut

Lemma 3.8.7. If R is s-unital, simple, and purely infinite then R contains a nonzero idempotent.

Proof. Let 0 6= x ∈ R, so (as R is s-unital) there exists a ∈ R with ax = xa = x. Then 0 6= x = xa = xa2,
so that a2 6= 0. Now using twice the s-unitality, we see that there are b,c ∈ R such that ab = ba = a and
bc = cb = b. Since R is purely infinite, there exist s, t ∈ R such that c = sa2t. So we have

ab = ba = a, bc = cb = b, and c = sa2t.

Define x = at, y = sa, v = c, and u = b. Then vu = uv = u , yx = sa2t = v , vx = cat = cbat = bat = at = x ,
and yu = sab = sa = y. So x,y,u,v are nonzero elements of R satisfying the relations (3.1), and thus it
follows from Lemma 3.8.6 that R contains a nonzero idempotent. ut

We now obtain the promised characterization of purely infinite simple s-unital rings. In particular all the
conditions below are equivalent for a simple Leavitt path algebra.

Proposition 3.8.8. Let R be a simple s-unital ring. Then the following are equivalent:

(1) R is properly purely infinite.
(2) R is purely infinite.
(3) For every nonzero a ∈ R there exist s, t ∈ R such that sat is a nonzero, infinite idempotent.
(4) Every nonzero one-sided ideal of R contains a nonzero infinite idempotent.

Proof. (1)⇒ (2) follows from Lemma 3.8.5(i).
(2)⇒ (3). By Lemma 3.8.7 R contains a nonzero idempotent w. By simplicity of R, w ∈ RaR, so by R

purely infinite there exist s, t in R such that w = sat.
We show that every nonzero idempotent in R is infinite, which will complete the argument. Let e be

such. Assume first that e is a unit for R. Then, since R is not a division ring, there is a nonzero a in R
such that a is not left invertible in R. Again invoking the simplicity and purely infiniteness of R, there exist
s, t ∈ R be such that sat = e. Then f := tsa is an idempotent in R with e∼ f and f 6= e, which implies that
e is infinite. Finally assume that e is not a unit for R. We may assume that (1− e)x 6= 0 for some x ∈ R,
where here 1 ∈ R̃ if R is not unital. As before we can find an idempotent f ∈ (1−e)xR such that f ∼ e. But
now g := f (1− e) is an idempotent in R orthogonal to e, and equivalent to e. Since e+ g = uev for some
u,v ∈ R, there is an idempotent h≤ e such that h∼ e+g∼ e⊕e, showing indeed that e is properly infinite.
This completes the argument.

(3)⇒ (4) is contained in Proposition 3.1.7.
(4) ⇒ (1). First observe that, as R is a simple ring, every infinite idempotent in R is indeed properly

infinite. Now let a be a nonzero element in R. By assumption, there is a properly infinite idempotent e in R
such that e- a. Since R is simple there exists n≥ 1 such that a- n · e = e⊕ e⊕·· ·⊕ e. Thus we get
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a⊕a- n · e⊕n · e- e- a,

showing that a is properly infinite. ut

Lemma 3.8.9. Let I be an ideal of an arbitrary ring R.

(i) If R is (properly) purely infinite, then so is R/I.
(ii) Suppose that I is s-unital when viewed as a ring. If R is (properly) purely infinite, then so is I.

Proof. (i) It is clear that proper pure infiniteness passes from R to R/I. Now assume only that R is purely
infinite. Since any quotient of R/I is also a quotient of R, no quotient of R/I is a division ring. Consider
a,b ∈ R such that b ∈ (R/I)a(R/I). Then there is some c ∈ RaR such that c = b. By hypothesis, c = xay for
some x,y ∈ R, and therefore b = c = xay.

(ii) Assume first the specific case in which R is properly purely infinite, and let 0 6= a ∈ I. Then there

exist α1,α2,β1,β2 ∈ R such that
(

a 0
0 a

)
=

(
α1
α2

)
a
(
β1 β2

)
. Since I is s-unital, we also have a = ua = au

for some u ∈ I. Then (
a 0
0 a

)
=

(
α1u
α2u

)
a
(
uβ1 uβ2

)
with α1u,α2u,uβ1,uβ2 ∈ I. This proves that I is properly purely infinite.

Now assume the general case, so we assume only that R is purely infinite. Suppose first that I has an
ideal J such that I/J is a division ring. Since I is s-unital, J is an ideal of R. Since R/J is purely infinite by
(i), it suffices to find a contradiction working in R/J. Thus, there is no loss of generality in assuming that
J = 0. If e is the unit of I, then I = eI = Ie, and so I = eR = Re. It follows that er = ere = re for all r ∈ R,
whence e is a central idempotent of R. But then the annihilator of e in R is an ideal T such that R = I⊕T ,
and R/T ∼= I is a division ring, contradicting the assumption that R is purely infinite. Therefore no quotient
of I is a division ring.

Secondly, if a ∈ I and b ∈ IaI, then we at least have b = xay for some x,y ∈ R. Since also a = ua = au
for some u ∈ I, we have b = (xu)a(uy) with xu,uy ∈ I. Thus I satisfies the two required conditions, and is
therefore purely infinite. ut

Lemma 3.8.10. Let e be an idempotent in a ring R. If R is (properly) purely infinite, then so is eRe.

Proof. Assume first that R is properly purely infinite. Any nonzero element a ∈ R is properly infinite in R,

and so
(

a 0
0 a

)
=

(
α1
α2

)
a
(
β1 β2

)
for some α1,α2,β1,β2 ∈ R. Then

(
a 0
0 a

)
=

(
eα1e
eα2e

)
a
(
eβ1e eβ2e

)
,

which shows that a is properly infinite in eRe. Therefore eRe is properly purely infinite in this case.
Now assume only that R is purely infinite. We first show that a prime purely infinite ring does not

contain idempotents e such that eRe is a division ring. To do so, suppose that R is a prime purely infinite
ring, and we have an idempotent e ∈ R such that eRe is a division ring. Since R is prime, eR is a simple
right R-module.

If eR = R, then (R(1− e))2 = 0 and so R(1− e) = 0 because R is prime. (Here we are writing R(1− e)
for the left ideal {r− re | r ∈ R}.) But then R = eRe and R is a division ring, contradicting the hypothesis
that R is purely infinite. Thus, eR 6= R and so (1− e)R 6= 0. Now (1− e)ReR 6= 0 because R is prime, and
hence there exists a nonzero element a ∈ (1− e)Re. Note that aR is a nonzero homomorphic image of eR,
whence aR is a simple right R-module. Since R is prime, aR = gR for some idempotent g, and eg = 0
because ea = 0. Observe that g−ge is an idempotent which generates gR, so we can replace g by g−ge.
Hence, there is no loss of generality in assuming that eg = ge = 0.

Now f = e+g is an idempotent such that f R = eR⊕aR, and f ∈ ReR because gR = aR⊆ ReR. Since R
is purely infinite, f = xey for some x,y ∈ R. But then f R is a homomorphic image of eR, implying that f R
is simple or zero, which is impossible in light of f R = eR⊕aR. This contradiction establishes our claim.
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Suppose now that I is an ideal of eRe such that eRe/I is a division ring. In this case I is a maximal ideal
of eRe. Moreover, e /∈ (eRe)I(eRe) = eRIRe, and so e /∈ RIR. Consequently, e is a nonzero idempotent in
R/RIR, and in particular, e cannot be in the Jacobson radical of R/RIR. Hence, there exists a (left) primitive
ideal P of R such that e /∈ P and RIR⊆ P. Now I ⊆ P∩ eRe$ eRe, and by maximality of I in eRe we have
I = P∩ eRe. This yields eRe/I = eRe/(P∩ eRe) ∼= e(R/P)e. But this means that the purely infinite prime
ring R/P has a corner which is a division ring, contradicting the claim above. Therefore no quotient of eRe
is a division ring.

Establishing the second condition is easier. Suppose that a ∈ eRe and b ∈ (eRe)a(eRe)⊆ RaR. Since R
is purely infinite, there exist x,y ∈ R such that b = xay, and hence b = (exe)a(eye) with exe,eye ∈ eRe. This
shows that eRe is purely infinite. ut

Now that the general theory of purely infinite rings has been described, we use this information in the
context of Leavitt path algebras. Our first goal is to characterize the properly infinite vertices of a Leavitt
path algebra. Recall that a characterization of the infinite vertices has been given in Proposition 3.1.6.

Lemma 3.8.11. Let E be an arbitrary graph and K any field. If v ∈ E0 and |CSP(v)| ≥ 2, then v is a
properly infinite idempotent in LK(E).

Proof. Let e1 · · ·em and f1 · · · fn be two distinct closed simple paths in E based at v. Then there is some
positive integer t such that ei = fi for i = 1, . . . , t− 1 while et 6= ft . Thus, we have at least two different
edges leaving the vertex r(et−1) = r( ft−1). We compute that

v = s(e1) & r(e1) & · · ·& r(et−1) & r(et)⊕ r( ft) & r(et+1)⊕ r( ft+1) & · · ·& r(em)⊕ r( fn) = v⊕v.

Therefore v is properly infinite. ut

Recall that for X ⊆ E0, we denote by X the hereditary saturated closure of X .

Proposition 3.8.12. Let E be an arbitrary graph and K any field. Let v ∈ E0. Then v is a properly infinite
idempotent in LK(E) if and only if there are vertices w1, . . . ,wn in T (v) such that |CSP(wi)| ≥ 2 for all i
and v ∈ {w1, . . . ,wn}.

Proof. Assume that v is properly infinite. Let W be the set of vertices w in T (v) such that |CSP(w)| ≥ 2. If
I(v) = I(W ) then there is a finite number w1, . . . ,wn of elements of W such that I(v) = I({w1, . . . ,wn}). It
then follows that v ∈ {w1, . . . ,wn}. It suffices therefore to show that I(v) = I(W ). On the contrary, suppose
I(W ) is strictly contained in I(v). Then by Zorn’s Lemma there exists a hereditary saturated subset H
properly contained in T (v) and containing W . Then LK(E)/I(H ∪BH

H)
∼= LK(E/H), and X := T (v) \H

is a hereditary saturated subset of E/H not containing any non-trivial hereditary saturated subsets. By
Theorem 2.5.19 we have I(v)/I(H ∪BH

H)
∼= LK(X (E/H)), and LK(X (E/H)) is graded simple. Moreover,

v is a properly infinite idempotent in LK(X (E/H)), and it follows from the Trichotomy Principle 3.1.14
that LK(X (E/H)) is purely infinite simple. Therefore there exists w ∈ TE/H(v) such that |CSPE/H(w)| ≥ 2.
Thus we obtain w ∈ T (v)\H and |CSPE(w)| ≥ 2, so that w ∈W \H, which is a contradiction, and thereby
establishes one direction.

Conversely, assume that there are distinct vertices w1, . . . ,wn in T (v) such that |CSP(wi)| ≥ 2 for all i
and v∈ {w1, . . . ,wn}. By Lemma 3.8.11, e :=w1+w2+ · · ·+wn is a properly infinite idempotent of LK(E).
We claim that e. v. If w j ∈ T (wi) for i 6= j, then wi⊕w j . w j⊕w j . w j and so we can eliminate such wi.
Thus we may assume without loss of generality that wi /∈ T (w j) for all i 6= j. For each i, let γi ∈ Path(E)
with s(γi) = v and r(γi) = wi. Since wi /∈ T (w j) for all i, we see that the paths γ1,γ2, · · · ,γn are pairwise
incomparable, so that γ∗i γ j = 0 if i 6= j, and thus

g := γ1γ
∗
1 + γ2γ

∗
2 + · · ·+ γnγ

∗
n

is an idempotent such that g≤ v, and such that

e = w1 +w2 + · · ·+wn ∼ g.
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It follows that w1 + w2 + · · ·+ wn . v. Since I(v) = I({w1, . . . ,wn}) = I(w1 + · · ·+ wn), we have v .
` · (w1 + · · ·wn) = ` · e for some ` ∈ N. Finally we have

v⊕ v. 2` · (w1 + · · ·+wn). w1 + · · ·+wn . v ,

which shows that v is properly infinite. ut

Remark 3.8.13. It follows easily from Proposition 3.8.12 that, for a vertex v of an arbitrary graph E, if v is
a properly infinite idempotent in LK(E), then |CSP(v)| is either 0 or ≥ 2.

Definition 3.8.14. An element a of a ring R is said to be an infinite element in case a⊕ b - a for some
nonzero element b ∈ R. Obviously, a properly infinite element of R is an infinite element of R.

Lemma 3.8.15. Let E be an arbitrary graph and K any field. Suppose that every nonzero ideal of every
quotient of LK(E) contains an infinite element. Then E satisfies Condition (K), and BH = /0 for every
H ∈HE .

Proof. To show that E satisfies Condition (K), we have to check that CH = /0 for every H ∈ HE (see
the proof of Corollary 2.9.9). If CH 6= /0 for some H ∈ HE , then by the Structure Theorem for Ideals
2.8.10 there is a subquotient of LK(E) isomorphic to MΛ (p(x)K[x,x−1]), for some set Λ , where p(x) is a
polynomial of the form 1+ a1x+ · · ·+ anxn, with n > 0 and an 6= 0. Since K[x,x−1] embeds into a field,
rank considerations show immediately that there are no infinite elements in the ring MΛ (p(x)K[x,x−1]).
Therefore our hypothesis implies that CH = /0 for all H ∈HE .

Now suppose that, for some H ∈HE , we have BH 6= /0. Then the algebra LK(E)/I(H)∼= LK(E/(H, /0))
has a nonzero socle, indeed the ideal I(H ∪BH

H)/I(H) is a nonzero ideal of LK(E)/I(H) contained in the
socle of LK(E)/I(H) (see Theorem 2.4.15). Since clearly the socle (of any semiprime ring) cannot contain
infinite elements, we obtain a nonzero subquotient of LK(E) with no infinite elements, contradicting our
hypothesis. ut

Recall that a nonzero element u of a conical monoid V is said to be irreducible in case u cannot be
written as a sum of two nonzero elements ([39, Definitions 6.1]). Observe that, for an idempotent e of a
ring R, we have that [e] is irreducible in V (R) if and only if e is a primitive idempotent of R.

We are now in position to present the main result of this section, in which we characterize the purely
infinite Leavitt path algebras.

Theorem 3.8.16. Let E be an arbitrary graph and K any field. The following are equivalent.

(1) Every nonzero ideal of every quotient of LK(E) contains an infinite vertex, i.e., if I $ J are ideals of
LK(E), then there exists v ∈ E0 such that v ∈ J \ I and such that v+ I is an infinite idempotent of
LK(E)/I.

(2) Every nonzero right ideal of every quotient of LK(E) contains an infinite idempotent.
(3) Every nonzero left ideal of every quotient of LK(E) contains an infinite idempotent.
(4) LK(E) is properly purely infinite.
(5) LK(E) is purely infinite.
(6) Every vertex v ∈ E0 is properly infinite as an idempotent in LK(E), and BH = /0 for all H ∈HE .

Proof. We recall that LK(E) has local units (cf. Lemma 1.2.12(v)), so that all previously established results
about s-unital rings apply here.

(1)⇒ (2) and (3). Observe that Lemma 3.8.15 gives that E satisfies Condition (K) and that BH = /0 for
every H ∈HE . Therefore, by Theorem 3.3.11 and the Structure Theorem for Ideals 2.8.10, all the ideals
of LK(E) are of the form I(H) for some H ∈HE . So a nonzero quotient of LK(E) will be of the form
LK(E/H). Moreover, by Theorem 3.3.11, each such E/H necessarily satisfies Condition (L).

Let v be a vertex of E/H. If v does not connect to any cycle in E/H, then TE/H(v) is an acyclic graph,
and thus the ideal generated by v in LK(E/H) does not contain any infinite vertex, by Proposition 3.1.6,
contradicting (1). Therefore every vertex of E/H connects to a cycle with exits, and again by Proposition
3.1.6, we get that every vertex is infinite.
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By Proposition 2.9.13, every nonzero one-sided ideal of LK(E/H) contains a nonzero idempotent.
By Corollary 3.2.11, it only remains to show that every idempotent of the form v−∑e∈Z ee∗, where
v ∈ Inf(E/H) and Z is a nonempty finite subset of s−1

E/H(v), is infinite. But in this situation we can choose

f ∈ s−1
E/H(v) \ Z, and f f ∗ ≤ v−∑e∈Z ee∗, with f f ∗ ∼ f ∗ f = r( f ), which is an infinite idempotent in

LK(E/H) by the above. It follows that every nonzero idempotent of LK(E/H) is infinite, and so every
nonzero one-sided ideal of LK(E/H) contains an infinite idempotent.

(2) or (3)⇒ (4). This holds in any s-unital ring, see e.g., [39, Proposition 3.13].
(4)⇒ (5). This implication also holds in any s-unital ring, by Lemma 3.8.5(i).
(5)⇒ (6). Let v be a vertex in E. By Proposition 3.6.21, V (LK(E)) is a refinement monoid. Hence, by

[39, Theorem 6.10], in order to show that v is properly infinite as an idempotent of LK(E), it suffices to
show that [v] is not irreducible in any quotient of V (LK(E)).

By Theorem 3.6.23(i), any order-ideal I of V (LK(E)) is of the form V (I(H∪SH)), where H is a heredi-
tary saturated subset of E0 and S⊆ BH . Moreover, it follows from Theorem 3.6.23(ii) that we have monoid
isomorphisms

V (LK(E))/I ∼= V (LK(E)/I(H ∪SH))∼= V (LK(E/(H,S))).

Since there is nothing to do if [v] ∈ I, we may assume that v /∈ H. By Lemma 3.8.9(i), LK(E/(H,S)) ∼=
LK(E)/I(H∪SH) is purely infinite, and so for this part of the proof we may replace LK(E) by LK(E/(H,S)).
Thus, we need only show that [v] is not irreducible in V (LK(E)), or equivalently, that v is not a primitive
idempotent.

By Proposition 3.5.2, if v is a primitive idempotent then there cannot be any bifurcations in T (v). So
either v is a line point, or there is a unique shortest path connecting v to a cycle without exits. So we get that
either vLK(E)v ∼= K, or vLK(E)v ∼= K[x,x−1]. In any case vLK(E)v is not properly infinite, contradicting
Lemma 3.8.10.

We now show that BH = /0 for every H ∈HE . Let H ∈HE . Then LK(E)/I(H)∼= LK(E/(H, /0)) is prop-
erly infinite by Lemma 3.8.9(i), so by the preceeding argument every vertex of LK(E/(H, /0)) is properly
infinite. But if v ∈ BH then the idempotent v′ in the graph E/(H, /0) (which corresponds to the class of vH )
belongs to the socle of LK(E/(H, /0)) and so cannot be properly infinite. This shows that BH = /0.

(6)⇒ (1). By Proposition 3.8.12, for every v ∈ E0 there exist w1, . . . ,wn ∈ T (v) such that |CSP(wi)| ≥ 2
for all i such that I(v) = I({w1, . . . ,wn}). It follows in particular that E satisfies Condition (L). Since the
same is true for every graph E/H, where H is a hereditary saturated subset of E0, we conclude that E
satisfies Condition (K) by Theorem 3.3.11. It follows from Proposition 2.9.9 that every ideal of LK(E) is
a graded ideal. Since BH = /0 for every H ∈HE , it follows from the Structure Theorem for Graded Ideals
2.5.8 that every ideal of LK(E) is of the form I(H) for some H ∈HE . Thus every nonzero ideal of every
quotient LK(E)/I(H)∼= LK(E/H) of LK(E) contains a vertex (by Proposition 2.9.13), which is necessarily
(properly) infinite. ut

As a result of Proposition 3.8.12, Condition (6) of Theorem 3.8.16 provides a characterization of purely
infinite Leavitt path algebras LK(E) which depends solely on properties of the graph E, which we record
here.

Corollary 3.8.17. Let E be an arbitrary graph and K any field. The following are equivalent.

(1) LK(E) is purely infinite.
(2) BH = /0 for all H ∈HE , and for every v ∈ E0 there exist w1, . . . ,wn ∈ T (v) for which: |CSP(wi)| ≥ 2

(1≤ i≤ n), and v ∈ {w1, . . . ,wn}.

Example 3.8.18. We present an example of a purely infinite non-simple Leavitt path algebra. Consider the
following graph E:

u•
��
WW •voo // •w

��
WW .

By Corollary 3.8.17 we see that LK(E) is purely infinite; note in particular that v ∈ {w1,w2}. On the other
hand, LK(E) is non-simple because {u} and {w} are nontrivial hereditary saturated subsets of E.
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We close the chapter by recording the following consequence of Theorem 3.8.16. Because Condition
(2) of Corollary 3.8.17 easily gives that no vertex v of E can have |CSP(v)|= 1, Theorem 3.3.11 gives

Corollary 3.8.19. Let E be an arbitrary graph and K any field. If LK(E) is purely infinite then LK(E) is an
exchange ring.

It is not known as of 2017 whether Corollary 3.8.19 can be extended to all purely infinite rings.



Chapter 4
General ring-theoretic results

In the first three chapters we have explored a number of ideas and constructions which yield ring-theoretic
information about Leavitt path algebras. In this chapter we continue this line of investigation. Specifically,
in the first three sections we identify those graphs E for which the Leavitt path algebra LK(E) satisfies
various standard ring-theoretic properties, including primeness, primitivity, one-sided chain conditions,
semisimplicity, and self-injectivity. In the final section we explore the the stable rank of Leavitt path alge-
bras.

4.1 Prime and primitive ideals in Leavitt path algebras of row-finite graphs

The prime spectrum Spec(R) and the primitive spectrum Prim(R) of a ring R have played key roles in the
history of ring theory, initially in the commutative setting, but importantly in the non-commutative setting
as well. In this section we identify both the prime and primitive ideals of a Leavitt path algebra in terms of
the graph E, in case E is row-finite. In this setting, much of this work was completed in [41]. The prime
ideal structure for Leavitt path algebras of arbitrary graphs has been given in [131], while the primitive
Leavitt path algebras are described in [10]; further discussion of the latter algebras appears in Section 7.2
below.

We recall a few ring-theoretic definitions. A two-sided ideal P of a ring R is prime in case P 6= R and
P has the property that for any two-sided ideals I,J of R, if IJ ⊆ P then either I ⊆ P or J ⊆ P. The ring R
is called prime in case {0} is a prime ideal of R. It is easily shown that P is a prime ideal of R if and only
if R/P is a prime ring. The set of all prime ideals of R is denoted by Spec(R). If R is a group-graded ring,
a graded ideal P is graded prime in case P satisfies the condition IJ ⊆ P⇒ I ⊆ P or J ⊆ P for all graded
two-sided ideals I,J of R. We denote the set of graded prime ideals of R by gr-Spec(R). It is shown in [119,
Proposition II.1.4] that for a Z-graded ring R, if P is a graded ideal of R, then P is prime if and only if P is
graded prime; we shall make use of this result throughout this section without explicit mention.

The prime ideals of the principal ideal domain K[x,x−1]∼= LK(R1) provide a model for the prime spectra
of general Leavitt path algebras. The key property of R1 in this setting is that it contains a unique cycle
without exits. Specifically, Spec(K[x,x−1]) consists of the ideal {0}, together with ideals generated by the
irreducible polynomials of K[x,x−1]. These irreducible polynomials are in turn the polynomials of the form
xn f (x), where f (x) is an irreducible polynomial in the standard polynomial ring K[x], and n∈Z. (Note that
xn is a unit in K[x,x−1] for all n ∈ Z.) In particular, there is exactly one graded prime ideal (namely, {0}) in
LK(R1). Moreover, all the remaining prime ideals of LK(R1) are nongraded, (obviously) contain the graded
ideal, and correspond to irreducible polynomials in K[x,x−1].

In [41], a correspondence is established between the prime spectrum Spec(LK(E)) of a Leavitt path
algebra on the one hand, and a relatively simple set (built from the underlying graph together with
Spec(K[x,x−1])) on the other. To construct this set, we recall a few basic definitions.

Definition 4.1.1. A subgraph F of a graph E is called full in case for each v,w ∈ F0,
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{ f ∈ F1 | s( f ) = v, r( f ) = w}= {e ∈ E1 | s(e) = v, r(e) = w}.

In other words, the subgraph F is full in case whenever two vertices of E are in the subgraph, then all of
the edges connecting those two vertices in E are also in F .

Recall that for vertices v,w in E0, we write v≥ w in case there is a path p ∈ Path(E) for which s(p) = v
and r(p) = w.

Definition 4.1.2. Let E be an arbitrary graph. A nonempty full subgraph M of E is a maximal tail if it
satisfies the following properties:

(MT1) If v ∈ E0, w ∈M0, and v≥ w, then v ∈M0;
(MT2) if v ∈M0 and s−1

E (v) 6= /0, then there exists e ∈ E1 such that s(e) = v and r(e) ∈M0; and
(MT3) if v,w ∈M0, then there exists y ∈M0 such that v≥ y and w≥ y.

Condition (MT3) is now more commonly called downward directedness.

In order to identify maximal tails, the result that follows will be very useful.

Lemma 4.1.3. Let E be an arbitrary graph and let M be a full subgraph of E. Then M satisfies Conditions
(MT1) and (MT2) if and only if H = E0 \M0 ∈HE .

Proof. Suppose first that M is a maximal tail. Consider v ∈ H and w ∈ E0 such that v ≥ w. If w 6∈ H then
w ∈M0, and by Condition (MT1) we get v ∈M0 = E0 \H, a contradiction. This shows that H is hereditary.
Now, let v ∈ E0 with 0 < |s−1(v)|< ∞, and suppose that r(s−1(v))⊆H. If v 6∈H then by Condition (MT2),
there exists e ∈ s−1(v) such that r(e) 6∈ H, a contradiction. This proves that H is saturated.

Let us see the converse. Take v ∈ E0 and w ∈M0 such that v≥ w. If v 6∈M0 then, as H is hereditary, we
get that w∈H. Consider now v∈M0 with 0 < |s−1(v)|< ∞. If for every e∈ s−1(v) we have that r(e) 6∈M0,
then r(s−1(v))⊆ H, and by saturation we obtain v ∈ H, a contradiction. ut

In Example 4.1.7 below we present some specific computations regarding maximal tails. The following
result gets us off the ground in our investigation of the prime ideals of LK(E). (A description of the quotient
graph E/H, which plays a key role in this discussion, is given in Definition 2.4.11.)

Proposition 4.1.4. ([40, Proposition 5.6]) Let E be a row-finite graph and K any field. Let H be a hereditary
saturated subset of E0. Then the (graded) ideal I(H) of LK(E) is prime if and only if M =E/H is a maximal
tail in E, if and only if M is downward directed.

In particular, LK(E) is a prime ring if and only if E is downward directed.

Proof. By Lemma 4.1.3, Conditions (MT1) and (MT2) on the graph M = E/H are equivalent to having
H ∈HE .

So we show that I(H) is prime if and only if M = E/H is downward directed. This is equivalent to
showing that I(H) is graded prime. So suppose M is downward directed, and suppose I(H) ⊇ I1I2 for
some graded ideals I1, I2 of LK(E). By Proposition 2.4.9 there exist H1,H2 ∈HE for which I1 = I(H1) and
I2 = I(H2). If H1⊆H then we are done. Otherwise, there exists v∈M0∩H1. Now take any w∈H2. If w /∈H
then by downward directedness there exists y ∈M0 for which v≥ y and w≥ y, which gives y ∈H1∩H2, so
that y ∈ I(H1∩H2), which in turn by Corollary 2.5.11 gives y ∈ I(H1)I(H2)⊆ I(H). But this is impossible,
since y ∈M0 = E0 \H. Thus w ∈ H, so that H2 ⊆ H as desired.

The converse is established in a similar manner.
The final statement is clear, as {0}= I( /0), and E = E/ /0. ut

The analysis of prime ideals for Leavitt path algebras of non-row-finite graphs requires heavier machin-
ery than that utilized in Proposition 4.1.4, owing to the existence of prime ideals arising from sets which
include breaking vertices. See [131] for a complete description of this situation. However, the generaliza-
tion of the final statement of Proposition 4.1.4 does in fact hold in case {0} is a prime ideal. Since the proof
for the {0} ideal is similar to that given above, we simply state that generalization.

Proposition 4.1.5. Let E be an arbitrary graph and K any field. Then LK(E) is prime if and only if E is
downward directed.
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For the remainder of this section, H will denote a hereditary saturated subset of E0, and M will denote the
quotient graph E/H. We will analyze below the prime ideals which arise in each of these three partitioning
subsets of Spec(LK(E)):

• the graded prime ideals I(H) for which M has Condition (L);
• the graded prime ideals I(H) for which M does not have Condition (L); and
• the non-graded prime ideals.

Definition 4.1.6. Let E be an arbitrary graph.

(i) We let M (E) denote the set of maximal tails in E.
(ii) We let Mγ(E)⊆M (E) denote the set of those maximal tails in E which satisfy Condition (L).

(iii) We let Mτ(E) denote the complement M (E)\Mγ(E).

When the graph E is clear from context, we will sometimes simply write Mγ (resp., Mτ ) for Mγ(E) (resp.,
Mτ(E)).

We note that by downward directedness, if M ∈Mτ (so that M contains some cycle having no exit),
then there is a unique cycle c in M which has no exit. It is this property of the elements of Mτ which will
produce a behavior in the prime ideal structure of LK(E) which is analogous to the previously described
behavior of the prime ideal structure of LK( • dd )∼= K[x,x−1].

Example 4.1.7. Let E denote the graph pictured here.

E = •v1c1 88
// •v2 •v3 c3ff
oo

•v4

aa OO ==

44 jj

It is straightforward to see that there are four hereditary saturated subsets whose complements in E0 are
maximal tails: H1 = /0, H2 = {v1,v2}, H3 = {v2,v3}, and H4 = {v1,v2,v3}. We note that there are two
additional hereditary saturated subsets of E: the set H5 = E0, and the set H6 = {v2}. Since E/E0 is empty,
E does not qualify as a maximal tail (by definition). Also, E/{v2} is not downward directed, since there is
no vertex y in E/{v2} for which v1 ≥ y and v3 ≥ y. So the two ideals I(H5) = LK(E) and I(H6) are graded,
but not prime.

Thus by Proposition 4.1.4 the four ideals I(H1), I(H2), I(H3), and I(H4) are precisely the graded prime
ideals in LK(E). Furthermore, it is easy to see that the corresponding maximal tails have M1,M4 ∈Mγ ,
while M2,M3 ∈Mτ .

Recast, Proposition 4.1.4 gives a description of the graded prime ideals in terms of various subsets of
E0, to wit, that there is a bijective correspondence

gr-Spec(LK(E)) −→ M (E) = Mγ(E)tMτ(E),

given by
P 7→ E/P∩E0,

with inverse given by
M 7→ I(E0 \M0).

With this description of gr-Spec(LK(E)) in hand, we now analyze the set nongr-Spec(LK(E)) of non-
graded prime ideals of LK(E).

Theorem 4.1.8. Let E be a row-finite graph and K any field. Then there is a bijection

nongr-Spec(LK(E)) −→ Mτ(E) × nongr-Spec(K[x,x−1])

given by
P 7→ (E/H, I(PC)),
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where H = P∩E0, P = I(H ∪PC), PC = {pc|c ∈ C} where c is a cycle having all exits inside H with
c0∩H = /0, and pc is an irreducible polynomial in K[x,x−1].

The inverse of this bijection is the map

Mτ(E) × nongr-Spec(K[x,x−1]) −→ nongr-Spec(LK(E))

given by
(M, I(p)) 7→ I((E0 \M0)∪ pc(c)),

where c is the only cycle in M which has no exit in M.

Proof. Take first a prime ideal P in LK(E). By Proposition 2.8.11 the ideal P is the ideal generated by
H ∪PC, for H as presented in the statement. We claim that C contains only one cycle. Note that C 6= /0 as
P is a nongraded ideal. By Proposition 2.8.5(ii) we have that P/I(H) =⊕c∈CI(pc(c)). This combined with
the fact that

LK(E/H)/(P/I(H))∼= (LK(E)/I(H))/(P/I(H))∼= LK(E)/P, (4.1)

which gives that P/I(H) is a prime ideal of LK(E/H), implies that C has only one element, call it c. More-
over, pc must be irreducible, because P/I(H) is a prime ideal in an algebra isomorphic to MΛc(K[x,x−1])
(see the proof of parts (ii) and (iii) of Proposition 2.8.5).

Now consider M ∈Mτ(E) and a cycle c as described in the statement, and let p be an irreducible
polynomial generating the prime ideal I(p). We use (4.1) to conclude that I((E0 \M0)∪ p(c)) is a prime
ideal, which, clearly, is not graded.

Finally, we leave the reader to prove that the two maps are inverses of each other. ut

Example 4.1.9. We return to the graph E presented in Example 4.1.7. We have now built the machinery to
explicitly describe Spec(LK(E)), as pictured here.

{I({v1,v2, p(c3)}) | p ∈ Irred(K[x,x−1])} I({v1,v2,v3}) {I({v2,v3, p(c1)}) | p ∈ Irred(K[x,x−1])}

I({v1,v2})

44

I({v2,v3})

jj

{0}

jj 44

An important subset of the set of prime ideals of a ring R is the set Prim(R) of primitive ideals. As a
reminder, a two-sided ideal P in a ring R is left primitive in case there exists a simple left R-module S for
which P = AnnR(S). The ring R is left primitive in case {0} is a left primitive ideal of R. It is easy to show
that the two-sided ideal P is left primitive in R if and only if R/P is a left primitive ring. Although left
primitivity and its obvious analogous notion of right primitivity do not coincide in general, the two notions
do coincide for Leavitt path algebras (since LK(E)∼= LK(E)op by Corollary 2.0.9, or simply by using that
LK(E) has an involution), so we will simply talk of primitive Leavitt path algebras. It is easy to show that
for any ring R, any primitive ideal is necessarily prime. Similarly, it is straightforward to establish that the
only commutative primitive rings are fields (so that, in particular, K[x,x−1] is not primitive), and that, if R
is primitive, then eRe is primitive for any nonzero idempotent e ∈ R.

We begin by identifying those row-finite graphs E for which LK(E) is a primitive ring, that is, for which
{0} is a primitive ideal of LK(E).

Theorem 4.1.10. Let E be a row-finite graph and K any field. Then R = LK(E) is primitive if and only if

(i) E is downward directed, and
(ii) E satisfies Condition (L).

Proof. First, suppose E satisfies the two conditions. By Proposition 4.1.4, downward directedness yields
that LK(E) is prime. Now invoking [110, Lemmas 2.1 and 2.2] and the primeness of LK(E), we embed
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LK(E) as a two-sided ideal in a unital prime K-algebra (which we denote by LK(E)1) in such a way that the
primitivity of LK(E) follows by establishing the primitivity of LK(E)1. By [107, Lemma 11.28], a unital
ring A is left primitive if and only if there is a left ideal M 6= A of A such that for every nonzero two-sided
ideal I of A, M+ I = A. Using this, we now establish the primitivity of LK(E)1.

To that end, let v be any vertex in E, and let T (v) = {u ∈ E0 | v≥ u} as usual. Since E is row-finite, the
set T (v) is at most countable. So we may label the elements of T (v) as {v1,v2, ...}. We define a sequence
λ1,λ2, ... of paths in E having these two properties for each i ∈ N: λi is an initial subpath of λ j whenever
i≤ j, and vi ≥ r(λi). To do so, define λ1 = v1. Now suppose λ1, ...,λn have been defined with the indicated
properties for some n ∈ N. By downward directedness, there is a vertex un+1 in E for which r(λn)≥ un+1
and vn+1 ≥ un+1. Let pn+1 be a path from r(λn) to un+1, and define λn+1 = λn pn+1. Then the inductively
defined set {λi | i ∈ N} is clearly seen to have the two desired properties.

We easily get that λiλ
∗
i λtλ

∗
t = λtλ

∗
t for each pair of positive integers t ≥ i, since then λi is a subpath of

λt . Now define the left LK(E)1-ideal M by setting

M =
∞

∑
i=1

LK(E)1(1−λiλ
∗
i ).

We first claim that M 6= LK(E)1. On the contrary, suppose 1 ∈ M. Then there exist n ∈ N and r1, ...,rn ∈
LK(E)1 for which 1 = ∑

n
i=1 ri(1− λiλ

∗
i ). Multiplying this equation on the right by λnλ ∗n , and using the

previous observation, yield λnλ ∗n = 0 and so λn = λnλ ∗n λn = 0, a contradiction. Thus M is indeed a proper
left ideal of LK(E)1.

We now show that M+ I = LK(E)1 for all nonzero two-sided ideals I of LK(E)1. Since LK(E)1 is prime
and LK(E) embeds in LK(E)1 as a two-sided ideal, we have I ∩ LK(E) is a nonzero two-sided ideal of
LK(E). So Condition (L) on E, together with Proposition 2.9.13, implies that I contains some vertex, call it
w. By downward directedness there exists u ∈ E0 for which v≥ u and w≥ u. But v≥ u gives by definition
that u = vn for some n ∈ N, so that w ≥ vn. By the construction of the indicated sequence of paths we
have vn ≥ r(λn), so that there is a path q in E for which s(q) = w and r(q) = r(λn). Since w ∈ I this gives
r(λn)∈ I, so that λnλ ∗n = λn ·r(λn) ·λ ∗n ∈ I. But then 1= (1−λnλ ∗n )+λnλ ∗n ∈M+I, so that M+I = LK(E)1
as desired. Thus the left ideal M of LK(E)1 possesses the two required properties, which establishes the
primitivity of LK(E)1, and thus the primitivity of LK(E).

Conversely, suppose R = LK(E) is primitive. Since R is then in particular a prime ring, E is downward
directed by Proposition 4.1.4. We argue by contradiction that E has Condition (L) as well, for, if not, there is
a cycle c based at a vertex v in E having no exits. But then by Lemma 2.2.7, the corner ring vRv∼= K[x,x−1]
is not primitive. Since a nonzero corner of a primitive ring must again be primitive, we reach the desired
contradiction, and the result follows. ut

With the previous result in hand, we are now in position to identify the primitive ideals of a row-finite
Leavitt path algebra LK(E).

Theorem 4.1.11. Let E be a row-finite graph and K any field.

(i) Let P be a graded prime ideal of LK(E), and let M = E/P∩E0. Then P is primitive if and only if M
satisfies Condition (L); i.e., if and only if M ∈Mγ(E).

(ii) Every non-graded prime ideal of LK(E) is primitive.

Proof. (i) Let H = P∩E0. Then M = E/H is downward directed, as P is prime. Since P is graded and
E is row-finite we have P = I(H) by Theorem 2.5.9. But then LK(E)/P = LK(E)/I(H) ∼= LK(E/H) =
LK(M), with the isomorphism following from Corollary 2.4.13(i). So LK(E)/P∼= LK(M), where M satisfies
Condition (L) and is downward directed. Thus LK(M) (and hence P) is primitive by Theorem 4.1.10.

On the other hand, if M does not have Condition (L) then let c be the (necessarily unique) cycle without
exits in M, and suppose c is based at the vertex v. By Lemma 2.2.7 we obtain that K[x,x−1] ∼= vLK(E)v,
which is not primitive. As nonzero corners of primitive rings are primitive, we then get the result.

(ii) Let P be a prime non-graded ideal of LK(E). By Theorem 4.1.8, we have

P = I((P∩E0)∪ pc(c)),
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for pc as explained therein. Take w = s(c) and let u denote the nonzero idempotent w+P in the prime
ring LK(E)/P, let ϕ : K[x,x−1]→ wLK(E)w denote the isomorphism described in Lemma 2.2.7 (so that
ϕ(x) = c), and let

ϕ : K[x,x−1]→ (wLK(E)w+P)/P = u(LK(E)/P)u

denote the quotient map. But the description of P yields that Ker(ϕ)⊇ I(pc) for the irreducible polynomial
pc, and since ϕ is not the zero map (as w /∈ Ker(ϕ)), the maximality of I(pc) gives Ker(ϕ) = I(pc). So the
nonzero corner u(LK(E)/P)u of the prime ring LK(E)/P is isomorphic to K[x,x−1]/I(pc), and hence is a
field, and so in particular is primitive. We now apply [110, Theorem 1] to conclude that P is a primitive
ideal of LK(E). ut

We conclude this section by returning again to the graph E presented in Example 4.1.7. By Theorem
4.1.11, the primitive ideals of LK(E) consist of

{0}, I({v1,v2,v3}),

{I({v1,v2, f (c3)}) | f ∈ Irred(K[x,x−1])}, and {I({v2,v3, f (c1)})| f ∈ Irred(K[x,x−1])},

while the prime ideals I({v1,v2}) and I({v2,v3}) are nonprimitive. The graded primitive ideals are {0} and
I({v1,v2,v3}).

4.2 Chain conditions on one-sided ideals

In this section we consider the one-sided chain conditions (artinian and noetherian) in the context of Leavitt
path algebras. As one consequence of this investigation we will obtain a characterization of the semisimple
Leavitt path algebras. Much of the discussion in this section follows the presentation made in [7].

In the context of unital rings, the one-sided chain conditions are unambiguously described. Specifically,
a unital ring R is left artinian (resp., left noetherian) if, for every chain of left ideals I1 ⊇ I2 ⊇ . . . (resp.,
I1 ⊆ I2 ⊆ . . . ) of R, there exists an integer n for which In = It for all t ≥ n. It is well known that, for unital
rings, R is left artinian (resp., noetherian) if and only if every finitely generated left R-module is artinian
(resp., noetherian), if and only if every corner eRe of R is left artinian (resp., noetherian).

There are natural notions of the artinian and noetherian conditions for rings with enough idempotents,
in particular, notions which apply to Leavitt path algebras LK(E) for arbitrary graphs E and fields K. Here
we choose to cast all definitions and results for left modules; by Corollary 2.0.9, appropriately symmetric
results hold for right modules as well. We recall (Definition 1.2.10) that a left R-module M over a ring with
enough idempotents R is a module in the usual sense, but with the ordinary unitary condition replaced by
the condition that RM = M.

If R is a non-unital ring with a (necessarily infinite) set of enough idempotents E, then the decomposition
R =⊕e∈ERe shows that R can never be left artinian (resp., noetherian) in the usual sense. Thus the standard
definition of a left artinian ring is not the germane one in this context. However, the following definition
gives a natural recasting of this notion which appropriately extends the chain conditions from the unital
case.

Definition 4.2.1. Let R be a ring with enough idempotents. We say R is categorically left artinian (resp.,
categorically left noetherian) in case every finitely generated left R-module is artinian (resp., noetherian).

Using the fact that the left regular module R is a generator for the category R−Mod for any ring R with
enough idempotents E, it is easy to verify that R is categorically left artinian (resp., noetherian) if and only
if each Re is a left artinian (resp., noetherian) R-module for each e ∈ E. In particular, if R is a unital ring,
then R is left artinian (resp., noetherian) if and only if R is categorically left artinian (resp., noetherian).

Let Λ be any set. For any i ∈Λ and unital ring S let e = eii denote the standard matrix idempotent in the
matrix ring R = MΛ (S) (Notation 2.6.3). As any field K is (left) artinian, and as the Laurent polynomial
algebra K[x,x−1] is (left) noetherian for any field K, we get
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Lemma 4.2.2. Let K be any field.

(i) Any ring of the form
⊕

i∈ϒ MXi(K), where ϒ and Xi are arbitrary sets, is categorically left artinian.
(ii) Any ring of the form

(⊕
i∈ϒ1

MXi(K)
)
⊕
(⊕

j∈ϒ2
MY j(K[x,x−1])

)
, where ϒ1, ϒ2, Xi, and Yj are arbitrary

sets, is categorically left noetherian.

A second germane notion in the context of extending chain conditions to rings with enough idempotents
is the following.

Definition 4.2.3. The ring R is called locally left artinian (resp., locally left noetherian) if for any finite
subset X of R there exists e = e2 ∈ R for which X ⊆ eRe, and eRe is left artinian (resp., left noetherian).

By the definition of a set of enough idempotents, it is easy to see that a ring R is locally left artinian
(resp., noetherian) precisely when R has a set of enough idempotents E for which eRe is left artinian (resp.,
noetherian) for each e ∈ E.

Clearly if R is unital, then R is locally left artinian if and only if R is left artinian; it was noted above that
in this situation R is equivalently categorically left artinian as well. However, in the non-unital setting the
categorically artinian and locally artinian properties need not be the same. For instance, let T = TN(K) ⊆
MN(K) denote the K-subalgebra of MN(K) consisting of lower triangular matrices. Clearly T contains a set
of enough idempotents (the same set as in MN(K), the matrix units {eii | i∈N}). Then T is locally artinian,
since for each matrix idempotent f = ∑

m
i=1 eii the algebra f T f is finite dimensional. However, the finitely

generated left T -module Te11 is not left artinian, since it is easy to check that Te11 % Te21 % Te31 ) . . . .
We do, however, get the converse.

Lemma 4.2.4. Let R be a ring with enough idempotents. If R is categorically left artinian (resp., noethe-
rian), then R is locally left artinian (resp., noetherian).

Proof. Let E be a set of enough idempotents for R. We prove the artinian case, the noetherian case being
virtually identical. It suffices to show that eRe is left artinian for every e ∈ E. By hypothesis the finitely
generated left ideal Re is artinian. Now consider a decreasing sequence of left eRe-ideals I1 ⊇ I2 ⊇ . . . .
Then RI1 ⊇ RI2 ⊇ . . . is a decreasing sequence of R-submodules of Re, and hence stabilizes, so that RIk =
RIk+1 = . . . for some integer k, which in turn yields eRIk = eRIk+1 = . . . . But for each positive integer j we
have eRI j = I j (because I j ⊆ eRe gives eI j = I j, whence eRI j = eReI j = I j), so that we get Ik = Ik+1 = . . . ,
as desired. ut

Definitions 4.2.5 . Let E be any graph. Recall (Definitions 2.9.4) that by an infinite path in E we mean a
sequence γ = e1,e2, . . . of edges of E for which r(en) = s(en+1) for all n ∈ N. In this situation we typically
write γ = e1e2 · · · , or γ = (en)

∞
n=1.

(i) An infinite path γ = (en)
∞
n=1 is called an infinite sink in E if γ has neither bifurcations nor cycles; that

is, in case γ0 ⊆ Pl(E), the set of line points of E.
(ii) An infinite path (en)

∞
n=1 ends in a sink if there exists m ≥ 1 such that the infinite path (en)n≥m is an

infinite sink in E.
(iii) An infinite path (en)

∞
n=1 ends in a cycle if there exists m ≥ 1 and a cycle c in E such that the infinite

path (en)
∞
n=m equals the infinite path ccc · · · .

If E contains an infinite emitter v, emitting edges {ei | i ∈ I}, then LK(E) cannot be categorically left ar-
tinian, nor categorically left noetherian. This is clear, as the finitely generated left ideal LK(E)v contains the
infinite collection of independent submodules LK(E)eie∗i . (The obvious analogous conditions hold on the
right as well.) Thus any Leavitt path algebra satisfying a one-sided categorical chain condition must neces-
sarily be row-finite. This observation allows us to anticipate at least one of the graph-theoretic conditions
given in the theorem below.

As we will see, paths with exits (including cycles with exits) will play a significant role in this discussion.
We establish the following result, whose proof will provide the template for a number of related results in
the sequel.
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Lemma 4.2.6. Let E be an arbitrary graph and K any field. Suppose c is a cycle in E based at v, and
suppose f is an exit for c with s( f ) = v. Then

LK(E)cc∗ % LK(E)c2(c∗)2 % LK(E)c3(c∗)3 % . . .

is a non-stabilizing chain of left ideals of LK(E).

Proof. The inclusions follow from the observation that ci+1(c∗)i+1 = ci+1(c∗)i+1 · ci(c∗)i for all i ∈ N.
Note that, since f is an exit for c, we have c∗ f = 0 in LK(E). That the inclusions are proper is then

established as follows. Assume otherwise; then cn(c∗)n = rcn+1(c∗)n+1 for some r ∈ LK(E) and n ∈ N.
Multiplying this equation on the right by cn f yields cn f = rcn+1(c∗) f = 0. But cn f 6= 0 in LK(E) by
Corollary 1.5.13. ut

We now have all the necessary ingredients in hand to prove the following one-sided chain condition
result, in which we characterize the left artinian Leavitt path algebras by describing them in categorical,
ring-theoretic, graph-theoretic, and explicit terms. In addition, we give a characterization of these algebras
which utilizes properties of their finitely generated projective modules.

Theorem 4.2.7. Let E be an arbitrary graph and K any field. The following are equivalent.

(1) LK(E) is semisimple; that is, every left LK(E)-module is isomorphic to a direct sum of simple left
LK(E)-modules.

(2) LK(E) is categorically left artinian.
(3) LK(E) is locally left artinian.
(4) E is acyclic, row-finite, and every infinite path in E ends in a sink.
(5) LK(E) = I(Pl(E)); that is, the ideal generated by the set of line points of E is all of LK(E).
(6) LK(E)∼=

⊕
i∈ϒ MXi(K) for some (possibly infinite) sets ϒ and {Xi | i ∈ϒ}.

(7) LK(E) is von Neumann regular and V (LK(E))∼= (Z+)(ϒ ) for some set ϒ ; that is, V (LK(E)) is a direct
sum of card(ϒ ) copies of the monoid Z+.

Proof. (1)⇒ (2) is clear (since every finitely generated left LK(E)-module is a direct sum of simples).
(2)⇒ (3) follows from Lemmas 4.2.4 and 1.2.12(v).
(3)⇒ (4). We prove all three conditions by contradiction. Suppose first that E contains a cycle; let c be

such, based at the vertex v. There are two cases. If c has no exit, then by Lemma 2.2.7 vLK(E)v∼= K[x,x−1],
which is not left artinian, violating the hypothesis. On the other hand, if c has an exit, then (by an argument
identical to that used in the proof of Lemma 4.2.6) the following is a non-stabilizing sequence of left ideals
in vLK(E)v:

vLK(E)vcc∗ % vLK(E)vc2(c∗)2 % vLK(E)vc3(c∗)3 % . . . ,

again violating the hypothesis that vLK(E)v is left artinian.
Next, suppose that E contains an infinite emitter; let v be such, and pick some countably infinite subset

{ei | i ∈ N} of s−1(v). Then the following is a non-stabilizing sequence of left ideals in vLK(E)v:

⊕∞
i=1vLK(E)veie∗i v%⊕∞

i=2vLK(E)veie∗i v%⊕∞
i=3vLK(E)veie∗i v% . . . ,

violating the hypothesis that vLK(E)v is left artinian.
Finally, suppose that there exists an infinite path γ in E which does not end in a sink. Let v = s(γ). Since

E is row-finite and acyclic, γ0 must contain infinitely many bifurcation vertices. We decompose γ as an
infinite sequence of paths γ = γ1γ2γ3 · · · in such a way that there exists a bifurcation at r(γi) for every i. But
then

vLK(E)vγ1γ
∗
1 v% vLK(E)vγ1γ2γ

∗
2 γ
∗
1 v% vLK(E)vγ1γ2γ3γ

∗
3 γ
∗
2 γ
∗
1 v% . . .

is a non-stabilizing chain of left ideals of vLK(E)v, as can be established easily using the same ideas as in
the proof of Lemma 4.2.6.

(4) ⇒ (5). By Theorem 2.6.14 it is enough to show that E0 = Pl(E), the saturated closure of the set
of line points of E. Suppose on the contrary that there exists v1 ∈ E0 with v1 6∈ Pl(E). Then v1 is not a
line point, and as such cannot be a sink, so that s−1(v1) 6= /0. Now, using the hypothesis that E is row-finite
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together with the saturated condition on Pl(E), v1 6∈Pl(E) yields that r(s−1(v1)) 6⊆Pl(E), so that there exists
e1 ∈ E1 with s(e1) = v1 and r(e1) = v2 6∈ Pl(E). We repeat this process, starting now with v2, and obtain
some e2 ∈ E1 for which s(e2) = v2 and r(e2) = v3 6∈ Pl(E). Since E is acyclic by hypothesis, the vertices
{v1,v2,v3, . . .} are distinct. In other words, using this process we can build an infinite path γ = e1e2e3 · · ·
for which all the vertices appearing in the path are distinct, and there is a bifurcation at each vertex in the
path. But then γ is an infinite path which does not end in a sink, contrary to hypothesis.

(5)⇒ (6) is immediate from Theorem 2.6.14.
(6)⇒ (1) is well known.
Thus we have established the equivalence of statements (1) through (6). The implication (6) ⇒ (7)

is well known. (Indeed, the sets denoted by ϒ which appear in statements (6) and (7) are equal.) So to
complete the proof of the theorem it suffices to show that (7)⇒ (4).

(7) ⇒ (4). Assuming (7), have that the von Neumann regularity of LK(E) yields that E is acyclic by
Theorem 3.4.1.

To establish the other two properties of E, we start by making this observation: in the monoid M =
(Z+)(ϒ ), each nonzero element x has the property that there is a bound on the size of the set Nx = {n∈N | x
can be written as a sum of n nonzero elements of M}. Using this, we now show by contradiction that the
other two properties hold. If E is not row-finite then there exist a vertex v and some countably infinite
subset {ei | i ∈ N} of s−1(v). But then in V (LK(E)) we have

[v] = [v− e1e∗1]+ [e1e∗1] = [v− e1e∗1]+ [e1e∗1− e2e∗2]+ [e2e∗2] = . . . .

Since each expression is nonzero in V (LK(E)) we have violated the indicated property.
On the other hand, suppose E has an infinite path γ which does not end in a sink, and write v = s(γ).

We proceed as in the proof of (3)⇒ (4); using that E has been shown to be acyclic, we may write γ as an
infinite sequence of paths γ = γ1γ2γ3 · · · in such a way that we have a bifurcation at r(γi) for every i. For
each n ∈N, define gn = γ1γ2 . . .γnγ∗n . . .γ

∗
2 γ∗1 v ∈ LK(E). Using the previously described properties of the set

{gn | n∈N}, we see that gn−gn+1 is an idempotent for each n∈N, and that we get the following equations
in V (LK(E)) for each m ∈ N:

[g1] = [g2]+ [g1−g2] = [g3]+ [g2−g3]+ [g1−g2] = · · ·= [gm]+ [gm−1−gm]+ · · ·+[g2−g3]+ [g1−g2].

This violates the indicated property of V (LK(E)), and establishes the Theorem. ut

Using properties of V (LK(E)), we show that statement (7) of Theorem 4.2.7 may be replaced by a
seemingly much weaker statement. An element x in an abelian monoid (M,+) is an atom in case x 6= 0,
and if x = m+m′ in M then m = 0 or m′ = 0. M is called atomic in case there exists a subset A of M for
which A consists of atoms of M, and every element of M is a (finite) sum of elements taken from A.

Recall from Section 3.6 that an abelian monoid (M,+) is called conical in case for any x,y∈M, x+y= 0
if and only if x = y = 0. The definition of a refinement monoid is given in Definitions 3.6.1. (We note that
in the current section we will use 0 to denote the neutral element of (M,+); in the previous discussion we
had used z for this element.)

Lemma 4.2.8. Let (M,+) be an abelian, atomic, conical, refinement monoid. Then each nonzero element
m∈M has the property that there is a bound on the size of the set Nm = {n∈N |m can be written as the sum
of n nonzero elements of M}. In this case, |Nm| is the number of terms which appear in the representation
of m as a sum of atoms of M.

Proof. Suppose a is an atom in M, and suppose a = ∑
t
i=1 zi is the sum of nonzero elements of M. Then

using the conical property of M, we necessarily get a = z j for some 1≤ j ≤ t, and zi = 0 for all i 6= j. Now
let m 6= 0 in M, and write m = ∑

N
i=1 ai with each ai an atom. Suppose also that m = ∑

t
i=1 mi in M. Since M

is a refinement monoid, we have a refinement matrix of the form:
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m1 · · · mt
a1 z1,1 · · · z1,t
...

...
. . .

...
aN zN,1 · · · zN,t

.

By the previous observation, each row contains exactly one nonzero entry. Thus there are exactly N nonzero
entries in the table. We conclude that at most N of the expressions {m j | 1 ≤ j ≤ t} can be nonzero, thus
establishing the result. ut

Corollary 4.2.9. Let E be an arbitrary graph and K any field. Then LK(E) is semisimple if and only if
LK(E) is von Neumann regular and V (LK(E)) is atomic.

Proof. Suppose LK(E) is semisimple. Then LK(E) is clearly von Neumann regular. In addition, if LK(E) =
⊕i∈ITi is a decomposition of LK(E) into a direct sum of simple left ideals, then it is well-known that
V (LK(E))∼= (Z+)(ϒ ) for some ϒ , which is clearly atomic.

Conversely, by Theorem 4.2.7, it suffices to show that if LK(E) is von Neumann regular and V (LK(E))
is atomic, then E is row-finite, acyclic, and every infinite path in E ends in a sink. The acyclic property of E
follows from the hypothesis that LK(E) is von Neumann regular, by Theorem 3.4.1. For any ring R we have
that the monoid V (R) is conical. By Theorem 3.6.21 we have that the monoid V (LK(E)) is a refinement
monoid. Thus, together with the atomic hypothesis, we have that V (LK(E)) satisfies the hypotheses of
Lemma 4.2.8. Using this, we now argue exactly as in the proof of (7)⇒ (4) of Theorem 4.2.7 to conclude
both that E is row-finite, and that every infinite path in E ends in a sink. ut

Remark 4.2.10. We note that K-algebras of the form
⊕

i∈ϒ MXi(K) (where ϒ , Xi are sets of arbitrary size)
which appear in Theorem 4.2.7 do in fact arise as Leavitt path algebras, see Corollary 2.6.6.

The second part of this section is devoted to the characterization of categorically left noetherian Leavitt
path algebras, equivalently, of locally left noetherian Leavitt path algebras, in terms of the underlying graph.
Moreover, we will describe them up to K-algebra isomorphism. We note that if v is an infinite emitter, with
{ei|i ∈ N} an infinite subset of s−1(v), then

LK(E)e1e∗1 $ LK(E)e1e∗1⊕LK(E)e2e∗2 $ LK(E)e1e∗1⊕LK(E)e2e∗2⊕LK(E)e3e∗3 $ · · ·

is a strictly increasing chain of submodules of the cyclic left ideal LK(E)v; thus any categorically noetherian
(or locally noetherian) Leavitt path algebra must be row-finite. The other conditions that the graph must
satisfy are that the cycles have no exits, and that every infinite path ends in a sink or in a cycle.

Definition 4.2.11. We say that a graph E satisfies Condition (NE) if no cycle in E has an exit.

Theorem 4.2.12. Let E be an arbitrary graph and K any field. The following are equivalent.

(1) LK(E) is categorically left noetherian.
(2) LK(E) is locally left noetherian.
(3) E is row-finite, satisfies Condition (NE), and every infinite path in E ends either in a sink or in a cycle.
(4) LK(E) = I(Pl(E)∪Pc(E)), the ideal generated by the line points together with the vertices which lie on

cycles without exits.
(5) LK(E) ∼=

⊕
i∈ϒ1

MXi(K)⊕
⊕

j∈ϒ2
MY j(K[x,x−1]), where ϒ1 and Xi are the sets Γ and Λvi (respectively)

described in Theorem 2.6.14, and ϒ2 and Yj are the sets ϒ and Λvi (respectively) described in Theorem
2.7.3.

Proof. (1)⇒ (2) follows by Lemma 4.2.4.
(2)⇒(3). Assume that c is a cycle in E based at a vertex v, and that c has an exit at v. It is not difficult

to check (again using the idea in the proof of Lemma 4.2.6) that

vLK(E)v(v− cc∗)$ vLK(E)v(v− c2(c∗)2)$ . . .

is an infinite ascending chain of left ideals of vLK(E)v. But this contradicts the locally noetherian hypoth-
esis, and thus shows that E satisfies Condition (NE). Suppose now that γ is an infinite path which does not
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end either in a sink or in a cycle. In this situation γ cannot contain any closed path, as follows. Assume to
the contrary that γ = γ1 pγ2, with p being a closed path; then, as E has been shown to satisfy (NE), p must
be in fact a cycle and γ2 = ppp · · · , so that γ does end in a cycle, contrary to hypothesis. Now, since γ does
not end in a sink either (and does not contain cycles), γ0 contains infinitely many bifurcation vertices, so
that we can write γ = γ1γ2γ3 · · · for γi paths such that r(γi) is a bifurcation vertex for all i. Then by again
using an argument analogous to that given in Lemma 4.2.6, we have the non-stabilizing chain of left ideals
of vLK(E)v given by

vLK(E)v(v− γ1γ
∗
1 )$ vLK(E)v(v− γ1γ2γ

∗
2 γ
∗
1 )$ . . .

(3)⇒ (4). We will use Lemma 2.4.1, which describes the form of elements in the ideal generated by a
hereditary subset of vertices. Denote by H := Pl(E)∪Pc(E). We want to show that LK(E) = I(H). Assume
that this is not the case, and consider an element x = ∑

m
i=1 kiγiλ

∗
i ∈ LK(E) \ I(H). Let j ∈ {1, . . . ,m} be

such that γ jλ
∗
j /∈ I(H). Denote by v1 := r(γ j). Then v1 /∈ H. In particular, v1 is neither a sink, nor is in a

cycle without exits. But as E satisfies Condition (NE), this is equivalent to saying that v1 is neither a sink,
nor is in any cycle. If s−1(v1) ⊆ I(H), then by the row-finiteness of E we have v1 = ∑e∈s−1(v) ee∗ ∈ I(H),
implying γ jλ j = γ jv1λ j ∈ I(H), a contradiction. Therefore, there exists e1 ∈ s−1(v) such that s(e1) = v1
and v2 := r(e2) /∈ I(H). Again we get v2 /∈ H, which implies as before that v2 is neither a sink nor is in a
cycle. Repeating this process we find an infinite path e1e2 · · · which does not end either in a sink or in a
cycle, contrary to hypothesis. This proves (4).

(4)⇒ (5). Since LK(E) = I(Pl(E)∪Pc(E)), apply Proposition 2.4.7 to get I(Pl(E)∪Pc(E)) = I(Pl(E))⊕
I(Pc(E)). Then Theorems 2.6.14 and 2.7.3 yield (5).

(5)⇒ (1) is immediate from Lemma 4.2.2. ut

We continue this section by noting separately the description of left artinian (resp., left noetherian)
Leavitt path algebras for finite graphs; these follow easily from Theorems 4.2.7 and 4.2.12. Much of the
artinian result has already been presented in the Finite Dimension Theorem 2.6.17.

Corollary 4.2.13. Let E be an arbitrary graph and K any field. The following are equivalent.

(1) LK(E) is unital and semisimple.
(2) LK(E) is left artinian.
(3) LK(E) is finite dimensional.
(4) E is finite and acyclic.
(5) LK(E)∼=

⊕
i∈ϒ Mni(K), where ϒ is a finite set and ni ∈N. (Specifically, |ϒ | is the number of sinks in E,

and for each i ∈ϒ , ni is the number of paths in E which end in the sink corresponding to i.)

Corollary 4.2.14. Let E be an arbitrary graph and K any field. The following are equivalent.

(1) LK(E) is left noetherian.
(2) E is finite and satisfies Condition (NE).
(3) LK(E) ∼=

⊕
i∈ϒ1

Mni(K)⊕
⊕

j∈ϒ2
Mm j(K[x,x−1]), where ϒ1, ϒ2, Xi, and Yj are finite sets. (Specifically,

|ϒ1| is the number of sinks in E, |ϒ2| is the number of (necessarily disjoint) cycles in E, for each i ∈ϒ1
ni is the number of paths which end in the sink corresponding to i, and for each j ∈ϒ2 m j is the number
of paths which end in the cycle corresponding to j.)

Condition (3) in Corollary 4.2.13 has an appropriate analog which may be added to Corollary 4.2.14, a
discussion of which takes up much of the remainder of this section.

Definition 4.2.15. Let K be a field. We say that a Z-graded K-algebra A =
⊕

n∈ZAn is locally finite in case
dimK(An) is finite for all n ∈ Z.

Of course any finite dimensional graded K-algebra is locally finite; clearly too are the algebras K[x] and
K[x,x−1].

Lemma 4.2.16. Suppose E is a finite graph which satisfies Condtion (NE). Then the saturated closure Λ

of the set Pl(E)tPc(E) is all of E0.
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Proof. Recall that Pl(E) is the set of line points in E, and that Pc(E) is the set of vertices which lie on cycles
without exits. Suppose to the contrary that there is some vertex v ∈ E0 which is not in Λ . Then v cannot
be a sink (because every sink is a line point). So s−1(v) is nonempty. By the saturation of Λ , there then
necessarily exists some e1 ∈ s−1(v) for which r(e1) /∈ Λ . Now repeat the argument to produce a sequence
of edges e1,e2, . . . in E for which r(ei) /∈ Λ for all i ≥ 1. There are two possibilities. If r(ei) = r(e j) for
some i 6= j, then there is a closed path ei+1 · · ·e j; but E has Condition (NE), so that each of r(ei) and r(e j)
must lie on some cycle without exits, and thus are in Pc(E) ⊆ Λ , a contradiction. On the other hand, if
r(ei) 6= r(e j) for all i, j then E would have infinitely many distinct vertices, contrary to hypothesis. ut

We now add the aforementioned fourth equivalent condition to Corollary 4.2.14.

Theorem 4.2.17. ([8, Theorems 3.8 and 3.10]) Let E be an arbitrary graph and K any field. The following
are equivalent.

(1) LK(E) is locally finite.
(2) LK(E) is left noetherian.
(3) E is finite and satisfies Condition (NE).
(4) LK(E)∼=

(⊕
i∈ϒ1

Mni(K)
)
⊕
(⊕

j∈ϒ2
Mm j(K[x,x−1])

)
, where ϒ1, ϒ2, Xi, and Yj are finite sets.

Proof. We establish (1)⇔ (2). To see (2)⇒ (1), we have by Lemma 4.2.16 that the saturated closure of
Pl(E)tPc(E) is all of E0. Then Corollary 2.7.5(i) gives the result.

We now establish (1)⇒ (2). If LK(E) is locally finite, then E0 must be finite because otherwise E0 would
be a linearly independent set of elements in LK(E)0. Moreover, E must be row-finite because if v∈ E0 were
an infinite emitter, then the set {ee∗ | e∈ s−1(v)}would be a linearly independent set of elements in LK(E)0.
Finally, we show that E satisfies Condition (NE). Assume that there exists a cycle c = e1 · · ·em based at
a vertex v which has an exit, say f , at v. We claim that {cn(c∗)n | n ∈ N} is a linearly independent set of
elements in LK(E)0. Indeed, let k1, . . . ,km ∈ K be such that ∑

m
i=1 kici(c∗)i = 0. Multiply on the right hand

side by c f to get k1c f +∑
m
i=2 kici(c∗)i−1 f = 0. But then k1c f = 0, as c∗ f = 0 in LK(E). This then gives

k1 = 0 by Corollary 1.5.13. Reasoning in a similar way we get ki = 0 for every i, establishing the result. ut

4.3 Self-injectivity

In this section we establish the perhaps-surprising result that the self-injective Leavitt path algebras are
precisely the semisimple one.

Definitions 4.3.1 . A left R-module A is called injective if for every pair of left R-modules M,N, every
R-homomorphism η : M→ A, and every R-monomorphism f : M→ N, there exists an R-homomorphism
h : N→ A such that the following diagram is commutative.

M

η

��

� � f // N
h

~~
A

A ring R is said to be left (respectively right) self-injective if RR (respectively RR) is an injective left
(respectively right) R-module.

Because LK(E) is isomorphic to its opposite algebra (Corollary 2.0.9), the notions of left self-injectivity
and right self-injectivity coincide in the context of Leavitt path algebras. (See also the introductory remarks
in [16].) Accordingly, we will use only the phrase “self-injective” in this discussion; we will continue as in
previous sections to present results in terms of left modules.

Remark 4.3.2. Definitions 4.3.1 of course agree with the usual notion of an injective object in any abelian
category. We note that although a module over a non-unital ring R can be viewed as a module over its
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unitization R1, injectivity is not necessarily preserved in this process. As a quick example, let K be a field
and let R =⊕∞

i=1Ri, with each Ri = K. Clearly R is a non-unital ring with enough idempotents. Since RR is
a direct sum of simple left R-modules, every left R-module M (which, by definition, satisfies RM = M), and
in particular R itself, is injective as a left R-module. But R1R is not injective, since otherwise the embedding
R1R→ R1R1 would split, which would yield the contradiction that the non-finitely-generated module R1R is
a direct summand of the finitely generated module R1R1.

(This Remark shows in particular that a comment made in [79, p. 67] is not valid.)

Following a proof similar to one used in the context of unital rings (e.g., [137, Theorem 3.30]), one can
show that the Baer Criterion for injectivity is valid for rings with local units. For completeness, we include
a proof of that result. We remind the reader that we write homomorphisms of left R-modules on the right
(e.g., (m) f ).

Proposition 4.3.3. (The Baer Criterion for rings with local units) Let R be a ring with local units. The
left R-module A is injective if and only if for any left ideal I of R and any R-homomorphism η : I→ A there
is an R-homomorphism h : R→ A such that h|I = η . (In other words, to verify the injectivity of A, it suffices
to show that the appropriate extension property is satisfied with respect to the embedding monomorphism
I ⊆ R for each left ideal I of R.)

Proof. We need only prove the “if” part. We start by noting that if N is a left R-module, then by definition
we have RN = N, so if n ∈ N then n = ∑

t
i=1 rini ∈ RN. But since R has local units, we in fact have n ∈ Rn,

which is easily seen by choosing e ∈ R for which eri = ri for 1≤ i≤ t.
Suppose f : M→ N is an R-monomorphism from a submodule M of an R-module N in R-Mod, and let

η : M→ A be an R-homomorphism. Consider the family

F = {(Mi,hi) | (M) f ⊆Mi ⊆ N, and hi ∈ HomR(Mi,A) with (m) f hi = (m)η for all m ∈M}.

Since f is a monomorphism, f−1 is well-defined on (M) f ; thus ((M) f , f−1η) ∈F . By defining a partial
order on F by setting (Mi,hi) ≤ (M j,h j) in case Mi ⊆M j and h j |Mi

= hi, we appeal to Zorn’s Lemma to

obtain a maximal element (M∗,h∗) in F . We claim that M∗ = N. Suppose, by way of contradiction, that
there is an element n ∈ N such that n /∈M∗. Let I = {r ∈ R | rn ∈M∗}; then I is easily seen to be a left ideal
of R. Consider the homomorphism ϕ : I → A given by (i)ϕ = (in)h∗. By hypothesis, ϕ has an extension
ϕ : R→ A. As noted at the outset of the proof we have n ∈ Rn, and so M∗+Rn % M∗. Now define the
map h : M∗+Rn→ A by setting (m∗+ rn)h = (m∗)h∗+(r)ϕ . It is a straightforward computation to show
that h is well-defined; once established, h is evidently an R-homomorphism. But clearly h|M∗ = h∗, so that
(M∗+Rn,h) violates the maximality of (M∗, h∗) in F . Hence M∗ = N, and thus A is injective. ut

We will use the Baer Criterion now to establish that corners of a class of left/right self-injective rings
are left/right self-injective rings.

Lemma 4.3.4. Let R be a ring with local units which is semiprime and left self-injective. Then for every
nonzero idempotent ε ∈ R, the corner εRε is a (unital) left self-injective ring.

Proof. We will see that the Baer Criterion is satisfied by εRε εRε . Let T be a left ideal of εRε and assume
that η : T → εRε is a homomorphism of left εRε-modules. Let RT denote the left ideal of R generated by
T .

Consider the map: η : RT → R defined by ∑i riyi 7→ ∑i ri(yi)η . We show that η is well-defined.
Indeed, assume ∑i riyi = ∑ j s jz j, for ri,s j ∈ R and yi,z j ∈ T . In particular, since T ⊆ εRε we have
(∑i riyi)ε = ∑i riyi and (∑i s jz j)ε = ∑i s jz j. Now for every a ∈ R we have εa∑i riyi = εa∑ j s jz j, that
is, ∑i εariyi = ∑ j εas jz j, which are elements in T because εariyi = εari(εyi) ∈ εRεT ⊆ T , and simi-
larly εas jz j ∈ T . Apply η to get (∑i εariyi)η = (∑ j εas jz j)η . Now, use that η is a homomorphism of left
εRε-modules to obtain εa∑i riε(yi)η = εa∑ j s jε(z j)η , that is, εa∑i ri(yi)η = εa∑ j s j(z j)η . Equivalently,
εa
(
∑i ri(yi)η−∑ j s j(z j)η

)
= 0.

Denote ∑i ri(yi)η −∑ j s j(z j)η by b; we claim that b = 0. We have shown that bε = b, and εRb = 0.
Now consider the two-sided ideal RbR of R, and note that (RbR)2 ⊆ RbRbR ⊆ RbεRbR = {0}. So the
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semiprimeness of R yields that RbR = {0}, and so b = 0 as R has local units. That is, b = ∑i ri(yi)η −
∑ j s j(z j)η = 0, which gives that η is well-defined.

Since R is self-injective, by the Baer Criterion for rings with local units 4.3.3 there exists a homomor-
phism of left R-modules h : R→ R extending η . Define h : I → εRε by setting (y)h = (y)h. Then h is a
homomorphism of left εRε-modules which extends η . This shows that the corner εRε is a left self-injective
(unital) ring. ut

Proposition 4.3.5. Let E be an arbitrary graph and K any field. If LK(E) is self-injective then LK(E) is von
Neumann regular. In particular, E is necessarily acyclic.

Proof. We show that for every nonzero idempotent ε ∈ LK(E), the corner εLK(E)ε is a von Neumann
regular ring. Let ε be such an element. By Lemma 4.3.4 the ring εLK(E)ε is left self-injective. By
[108, Corollary 13.2(2)] the ring εLK(E)ε/J(εLK(E)ε) is von Neumann regular, where J(εLK(E)ε)
is the Jacobson radical of εLK(E)ε . By [99, Proposition 1] (which holds for not-necessarily-unital
rings), J(εLK(E)ε) = εJ(LK(E))ε . Since by Proposition 2.3.2 we have J(LK(E)) = {0}, and thereby
J(εLK(E)ε) = {0}, we thus conclude that εLK(E)ε is a von Neumann regular ring.

Now since LK(E) is a ring with local units, for every a ∈ LK(E) there is an idempotent ε ∈ LK(E) such
that a = εaε . Since a ∈ εLK(E)ε , by the previous paragraph there exists b ∈ εLK(E)ε such that aba = a.
Hence LK(E) is von Neumann regular. By Theorem 3.4.1, this yields that the graph E is acyclic. ut

With Proposition 4.3.5 in hand, in order to establish that the self-injectivity of LK(E) implies semisim-
plicity, we need only show (by the implication (4)⇒ (1) of Theorem 4.2.7) that E is row-finite, and that
every infinite path in E ends in a sink. There are two possible approaches one may utilize in establishing
both of these statements: a “first principles” approach, and a “counting dimensions” approach. For com-
pleteness of exposition, we use one approach to establish the first condition, and the other approach to
establish the second.

We use the first principles approach to establish the following.

Proposition 4.3.6. Let E be an arbitrary graph and K any field. If LK(E) is self-injective then E is row-
finite.

Proof. Since LK(E) is self-injective then so too is the corner vLK(E)v for any v ∈ E0, by Lemma 4.3.4.
Suppose otherwise that v ∈ E0 is an infinite emitter, and let {en | n ∈ N} be an infinite subset of s−1(v).
Then {ene∗n | n ∈ N} is an infinite orthogonal set of idempotents in vLK(E)v. Consider the left ideal I =
⊕n∈NvLK(E)vene∗n of vLK(E)v. Define ϕ : I→ vLK(E)v to be the identity map on even-indexed summands,
and zero on the odds; that is, ϕ is defined by setting (ene∗n)ϕ = ene∗n if n is even, and (ene∗n)ϕ = 0 if n is
odd, and extending to all of I.

Since vLK(E)v is left self-injective, there exists an extension ϕ : vLK(E)v→ vLK(E)v of ϕ to all of
vLK(E)v. Since vLK(E)v is unital, there exists x ∈ vLK(E)v for which (i)ϕ = i ·x for all i ∈ I. In particular,

(i) ene∗n · x = ene∗n when n is even, and
(ii) ene∗n · x = 0 when n is odd.

We argue that this is impossible. For let x = ∑
t
j=1 k jα jβ

∗
j ∈ vLK(E)v, where α j and β j are paths in E

with s(α j) = s(β j) = v, and r(α j) = r(β j). Let S′ denote the subset of {1,2, . . . , t} consisting of those j for
which `(α j) ≥ 1, and let S = {1,2, . . . , t} \ S′. So S is the set of those j ∈ {1,2, . . . , t} for which α j = v.
Note that for j ∈ S′ we have ene∗nα j = 0 for all n ≥ M j (for some M j ∈ N). Let M be the maximum of
{M j | j ∈ S′}. Write x = y+ y′, where

y = ∑
j∈S

k jα jβ
∗
j = ∑

j∈S
k jvβ

∗
j = ∑

j∈S
k jβ

∗
j ∈ vKE∗,

and y′ = ∑ j∈S′ k jα jβ
∗
j . Then for all n≥M we have ene∗n · y = ene∗n · x, i.e.,

(i) ene∗n · y = ene∗n when n≥M is even, and
(ii) ene∗n · y = 0 when n≥M is odd.
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Let P ≥ M be a fixed odd integer. Then by (ii) we have ePe∗P · y = 0, which by left multiplication by
e∗P gives e∗P · y = 0. But since r(e∗P) = v, this product together with y ∈ vLE∗ yields y = 0 by Lemma 2.7.8
(applied to the path algebra KE∗), a contradiction to (i). ut

Remark 4.3.7. The counting dimensions approach to the proof of Proposition 4.3.6 is a rather deep analysis
of the K-dimensions of various sets of homomorphisms. Specifically, one shows that the existence of an
infinite emitter v in E leads to a submodule S = ⊕n∈NLK(E)ene∗n of LK(E)v; the injectivity of LK(E)v
then gives an epimorphism of K-vector spaces φ ∗ : HomLK(E)(LK(E)v,LK(E)v)→HomLK(E)(S,LK(E)). In
addition, HomLK(E)(S,S) embeds in HomLK(E)(S,LK(E)).

On the other hand, by keeping track of various homomorphisms in the indicated sets, one shows that
there exists an infinite cardinal σ for which the K-dimension of HomLK(E)(S,S) is at least 2σ , while the
K-dimension of HomLK(E)(LK(E)v,LK(E)v)∼= vLK(E)v is at most σ . This contradicts the existence of the
epimorphism φ ∗.

Definitions 4.3.8. Let R be a (not-necessarily-unital) ring. For a left ideal I of R, the uniform dimension of
I, denoted u-dim(I), is defined to be the maximum of the set

{|Λ | | Λ is a set for which there exists a family of left ideals {Ii}i∈Λ of R such that ⊕i∈Λ Ii ⊆ I}.

For an element a ∈ R, the left uniform dimension of a, denoted by u-diml(a), is the uniform dimension of
the left ideal Ra.

The key observation in utilizing the counting dimensions approach to establish Proposition 4.3.10 is the
following.

Proposition 4.3.9. Let E be an arbitrary graph and K any field. If the Leavitt path algebra LK(E) is self-
injective, then every element of LK(E) has finite left uniform dimension. In particular, for every v ∈ E0, the
left ideal LK(E)v cannot contain an infinite set of nonzero orthogonal idempotents.

Proof. By Proposition 4.3.6, the graph E is row-finite. Let a ∈ LK(E). Since LK(E) has local units,
there exists an idempotent ε ∈ LK(E) such that a = aε , hence LK(E)a ⊆ LK(E)ε . We want to prove that
u-diml(ε)< ∞, from which the statement will follow.

Write ε = ∑k jα jβ
∗
j , where α j and β j are paths in E and k j ∈ K×. Let v1, . . . ,vm be the vertices that

appear as s(α j) or s(β j) of the finitely many paths α j and β j. Then every element of εLK(E)ε is of the
form ∑

t
i=1 k′iλiµ

∗
i where k′i ∈ K×, λi,µi ∈ Path(E), and s(λi) = s(µi) ∈ {v1, . . . ,vm}. Since E is row-finite,

the cardinality of paths of a fixed length n beginning with any of the vertices v1, . . . ,vm is finite, and
hence the cardinality of the set of all paths of finite length beginning at any of the vertices v1, . . . ,vm is at
most countable. Since expressions of the form αβ ∗ where α and β start at one of these vertices forms a
generating set for εLK(E)ε as a K-vector space, we then conclude that the K-dimension of εLK(E)ε is at
most countable.

Suppose on the contrary LK(E)ε contains an infinite family of left LK(E)-ideals {Ak | k ∈ Λ} of the
indicated type. So

⊕
k∈Λ Ak is a left ideal of LK(E) contained in LK(E)ε . We see that there are uncount-

ably many K-linearly independent homomorphisms in HomLK(E)(
⊕

k∈Λ Ak,
⊕

k∈Λ Ak), since for each of
the (uncountably many) subsets T of Λ , let ϕT ∈ HomLK(E)(

⊕
k∈Λ Ak,

⊕
k∈Λ Ak) be the function which

is the identity on Ak if k ∈ T , and is 0 otherwise. Since the direct summand LK(E)ε of LK(E) is an
injective LK(E)-module, the inclusion map ι :

⊕
k∈Λ Ak → LK(E)ε yields an epimorphism of K-vector

spaces ι∗ : HomLK(E)(LK(E)ε,LK(E)ε)→ HomLK(E)(
⊕

k∈Λ Ak,
⊕

k∈Λ Ak). But this is not possible, since
HomLK(E)(LK(E)ε,LK(E)ε) ∼= εLK(E)ε has countable K-dimension by the previous paragraph. Hence
LK(E)ε , and so too LK(E)a, must have finite uniform dimension. ut

Proposition 4.3.10. Let E be an arbitrary graph and K any field. If LK(E) is self-injective, then every
infinite path in E ends in a line point.

Proof. Suppose that γ is an infinite path in E. Since by Proposition 4.3.5 we have that E is acyclic, if γ is
an infinite path in E which does not end in a sink then necessarily γ can be written as γ0γ1γ2γ3 · · · , where γi
is a path of length at least 1 and r(γi) is a bifurcation vertex for each i ∈ N. Let vi denote s(γi) for i ∈ Z+;
let v denote v0.
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For each n ∈ N let fn denote an edge in E for which s( fn) = vn, but fn is not the first edge of γn. (Such
exists by the bifurcation property.) For each n ∈ Z+ define Γn = γ0γ1 · · ·γn. It is then easy to show that the
set {Γn fn f ∗n Γ ∗n | n ∈N} is an orthogonal set of nonzero idempotents in LK(E)v. (The orthogonality follows
from the bifurcation property.) But this violates Proposition 4.3.9. Therefore no such γ exists, and the result
follows. ut

Remark 4.3.11. The first principles approach to establishing Proposition 4.3.10 proceeds in much the same
way as the proof of Proposition 4.3.6: specifically, one uses the set {Γn fn f ∗n Γ ∗n | n ∈N} in a manner similar
to the way the set {ene∗n | n ∈N} was used, and then subsequently shows that an element which induces the
indicated homomorphism via right multiplication cannot exist. Completing the first principles proof in this
case requires some additional work, but in the end contains essentially the same ideas as in its counterpart.

We now have all the necessary tools in hand to get the main result of this section.

Theorem 4.3.12. Let E be an arbitrary graph and K any field. Then LK(E) is semisimple if and only if
LK(E) is self-injective.

Proof. It is well-known that for a ring R, if RM is a semisimple left R-module then every R-submodule of
M is a direct summand of M. (The standard Zorn’s Lemma argument used for modules over unital rings
holds verbatim in the more general setting of modules over rings with local units.) So the Baer Criterion
4.3.3 is automatically satisfied for semisimple rings with local units, which yields one implication.

Conversely, assume that LK(E) is self-injective. Then E is acyclic (Proposition 4.3.5), E is row-finite
(Proposition 4.3.6), and every infinite path in E ends in a sink (Proposition 4.3.10). Now implication (4)⇒
(1) of Theorem 4.2.7 gives the result. ut

4.4 The stable rank

The notion of the stable rank of a ring was introduced by H. Bass [43] in order to study stabilization prob-
lems in algebraic K-theory. Later Vaserstein [150] showed several important properties of the stable rank,
and related it with dimension theory through the determination of the stable rank of rings of continuous
functions. Stable rank also has important connections with cancellation conditions on modules [153].

It this section we will prove that the only possible values of the stable rank for a Leavitt path algebra are
1, 2 or ∞, and that it is possible to determine this value by looking at the graph. Indeed, it is known (and
we will re-establish) that these three values appear as the stable ranks of the three primary colors of Leavitt
path algebras: the stable rank of K is 1, the stable rank of K[x,x−1] is 2, and the stable rank of LK(1,n) is
∞. Later, in Chapter 5, we will see that 1, 2 and ∞ are also the only possible values of the stable rank of a
graph C∗-algebra, and they too can be read from the underlying graph. However, for a given graph E, the
stable ranks of LC(E) and C∗(E) may differ. Historically, stable rank was one of the first properties that
was shown to differ in the contexts of Leavitt path algebras and of graph C∗-algebras.

We will focus on verifying these results about the stable rank of Leavitt path algebras in the situation
where the graph E is row-finite, but without restriction on the cardinality of E0. Along the way, we will
include some general results about the stable rank of arbitrary rings with local units, including Lemmas
4.4.6 and 4.4.9, and Corollary 4.4.17. Most of the results contained in this section, including the results
about stable rank for arbitrary rings with local units, appear in [32].

The following definitions can be found in [150].

Definitions 4.4.1 . Let R be a ring and suppose that S is a unital ring containing R as an ideal. A column
vector b = (bi)

n
i=1 in Sn is called R-unimodular if b1− 1 ∈ R, bi ∈ R (2 ≤ i ≤ n), and there exists a row

vector a = (ai)
n
i=1 in Sn with a1− 1 ∈ R, ai ∈ R (2 ≤ i ≤ n) such that ∑

n
i=1 aibi = 1. The stable rank of

R (denoted by sr(R)) is the least natural number m for which, for any R-unimodular vector (bi)
m+1
i=1 , there

exist vi ∈ R (1≤ i≤ m) such that the vector (bi + vibm+1)
m
i=1 is R-unimodular. If such a natural number m

does not exist we say that the stable rank of R is infinite, and write sr(R) = ∞.
It can be shown that the definition of the stable rank of R does not depend on the choice of the unital

overring S.
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We will use the following elementary lemma, due to Vaserstein.

Lemma 4.4.2. ([149, Lemma 2.0]) Let b1− 1 ∈ R and bi ∈ R for 2 ≤ i ≤ n, where R is a ring and S is a
unital ring containing R as a two-sided ideal. The following are equivalent.

(1) The vector b = (bi)
n
i=1 is R-unimodular.

(2) ∑
n
i=1 Sbi = S.

(3) ∑
n
i=1 Rbi = R.

Proof. (1)=⇒ (2)=⇒ (3) are clear. To show that (3) implies (1), take elements ui ∈R such that ∑
n
i=1 uibi =

−b1 +1. Then we have

(1+u1)b1 +
n

∑
i=2

uibi = 1,

so that b is R-unimodular. ut

Some properties which will be very useful for us, and whose proofs (except for one) can be found in
[150], are the following.

Theorem 4.4.3. Let R be a ring.

(i) For any set of rings {Ri | i ∈Λ}, if R = ∏i∈Λ Ri then sr(R) = maxi∈Λ{sr(Ri)}.
(ii) For every m ∈N, sr(Mm(R)) = d(sr(R)−1)/me+1, where dae denotes the smallest integer ≥ a. This

includes the statement that if sr(R) = ∞, then sr(Mm(R)) = ∞ for all m ∈ N.
(iii) For any ideal I of R,

max{sr(I),sr(R/I)} ≤ sr(R)≤max{sr(I),sr(R/I)+1}.

(iv) Let {Ri,ϕi j}i, j∈I be a directed system in the category of not-necessarily-unital rings. Then

sr(lim−→
i∈I

Ri)≤ liminf
i∈I

(sr(Ri)).

Proof. (i), (ii), and (iii) are shown in [150], and (iv) follows from the definitions.

Examples 4.4.4.

(i) If K is a field, then its stable rank is 1. Moreover, by Theorem 4.4.3(ii), the stable rank of Mn(K) is 1
for every n ∈ N.

(ii) If R is a purely infinite simple unital ring, then its stable rank is ∞ (see [35, Proposition 3.10]).

Lemma 4.4.5. Let E be an acyclic graph and K any field. Then the stable rank of LK(E) is 1.

Proof. Suppose first that the graph E is finite. Then, by the Finite Dimension Theorem 2.6.17, LK(E) is
isomorphic to ⊕m

i=1Mni(K), where m,ni ∈ N. Whence, by Theorem 4.4.3(i) and Examples 4.4.4, the stable
rank of LK(E) is 1. Now suppose E is infinite. By Theorem 3.4.1, the algebra LK(E) is locally K-matricial,
that is, LK(E) = lim−→i∈I

LK(Fi), where each Fi is a finite and acyclic graph. By Theorem 4.4.3(iv), we have

sr(LK(E))≤ liminf
i∈I

(sr(LK(Fi))).

Now use the first step of the proof and the displayed inequality to yield the desired result. ut

We recall here the definitions of the relations ≤, ∼ and - for idempotents of a ring, which were in-
troduced in Chapter 3. The partial order ≤ on idempotents is defined by declaring e ≤ f if and only if
e = e f = f e. The equivalence relation ∼ is defined by e ∼ f if and only if there are elements x,y ∈ R
(which indeed can be chosen so that x ∈ eR f and y ∈ f Re) such that e = xy and f = yx. The pre-order - is
defined by e- f if and only if there are elements x ∈ eR f and y ∈ f Re such that e = xy. Note that the latter
condition implies that yx is an idempotent such that yx≤ f .
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A set of local units E for a ring R is called an ascending local unit in case there is an upward directed
set Λ for which E = {pα | α ∈ Λ}, such that pα ≤ pβ whenever α ≤ β in Λ . Any ring with local units
contains an ascending local unit: simply take as Λ the set of all the idempotents of R, and define the order
induced from the order of idempotents (i.e., e≤ f in case e f = f e = e). Then define pα = α for α ∈Λ .

Lemma 4.4.6. Let R be a ring with ascending local unit {pα}α∈F . If for every α ∈F there exists β > α

such that pα - pβ − pα , then sr(R)≤ 2.

Proof. Fix a unital ring S which contains R as a two-sided ideal. Let a1,a2,a3,b1,b2,b3 ∈ S such that
a1−1,a2,a3,b1−1,b2,b3 ∈ R, while a1b1 +a2b2 +a3b3 = 1. By hypothesis, there exists α ∈F such that
a1− 1,a2,a3,b1− 1,b2,b3 ∈ pα Rpα . Let β > α such that pα - pβ − pα . Then there exists q ∼ pα with
q≤ pβ − pα . In particular, qpα = pα q = 0. Now, there exist u∈ pα Rq, v∈ qRpα such that uv = pα , vu = q,
u = pα u = uq and v = qv = vpα .

Fix v1 = 0, v2 = u, c1 = b1, and c2 = b2 + vb3. Notice that (a1 + a3v1)− 1,c1− 1,(a2 + a3v2),c2 ∈ R.
Also, a3uvb3 = a3 pnb3 = a3b3, a3ub2 = a3uqn pnb2 = 0, and a2vb3 = a2 pnqnvb3 = 0. Hence,

(a1 +a3v1)c1 +(a2 +a3v2)c2 = a1b1 +a2b2 +a3b3 = 1.

Thus, any unimodular 3-row is reducible, whence the result holds. ut

Definition 4.4.7. Let E be a graph. For every v ∈ E0, we define

M(v) = {w ∈ E0 | w≥ v}.

We say that v ∈ E0 is left infinite if card(M(v)) = ∞.

Proposition 4.4.8. Let E be a row-finite graph and K any field. Suppose that X ⊆ E0 is a set of vertices
with |CSP(v)| ≥ 2 for all v ∈ X, and that E = X. If each v ∈ X is left infinite, then sr(LK(E)) = 2.

Proof. We are going to check the condition in Lemma 4.4.6. Let F be the directed family of all the finite
subsets of E0. For A ∈F , set pA = ∑v∈A v ∈ LK(E). Then {pA}A∈F is an ascending local unit for LK(E).

Observe that all vertices in X are properly infinite, by Lemma 3.8.11. If A is a finite subset of T (X),
then for each v ∈ A there is w ∈ X such that v- w. Using that the vertices in X are properly infinite, we see
that there are distinct w1, . . . ,wm ∈ X such that pA - ∑

m
i=1 wi. Now if v ∈ S(T (X)) (the saturated closure of

T (X), see Definition 2.0.6), there is a finite number of vertices v1, . . . ,vr in T (X) such that

v- k1 · v1⊕·· ·⊕ kr · vr

for some positive integers k1, . . . ,kr. As before we deduce the existence of a finite number of distinct
vertices z1, . . . ,zs in X such that v - ∑

s
i=1 zi. By induction, one shows a similar result for any vertex v

in Sn(T (X)), for all n, and therefore for any vertex of E. Using again that the vertices in X are properly
infinite, we conclude that given A ∈F , there exists a finite subset B of X such that pA - pB.

It therefore suffices to check that given finite subsets A and B of E0 with B⊆ X there exists C ∈F such
that C∩ (A∪B) = /0 and pB - pC. Write B = {v1, . . . ,vn}. Since by hypothesis M(v1) is infinite there is
w1 ∈M(v1) such that w1 /∈ A∪B. Then v1 - w1. Assume that for i≥ 1 we have chosen distinct w1, . . . ,wi
in E0 such that {w1, . . . ,wi}∩ (A∪B) = /0. Since M(vi+1) is infinite, we can choose wi+1 in M(vi+1) such
that wi+1 /∈ {w1, . . . ,wi}∪ (A∪B). Using this inductive procedure we get distinct w1, . . . ,wn in E0 so that,
with C = {w1, . . . ,wn}, we have C∩ (A∪B) = /0. Note that

pB = v1 + · · ·+ vn - w1 + · · ·+wn = pC ,

as desired.
Hence by Lemma 4.4.6, we get sr(LK(E))≤ 2. Since all idempotents in a ring with stable rank one are

finite (see [151, Theorems 2.6 and 3.9]), we conclude that sr(LK(E)) = 2. ut

Lemma 4.4.9. Let R be a ring, and let I �R be an ideal with local units. If there exists an ideal J � I such
that I/J is a unital simple ring, then there exists an ideal M�R such that R/M ∼= I/J.
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Proof. Given a ∈ J, there exists x ∈ I such that a = ax = xa. Thus, J ⊆ JI, and J ⊆ IJ. Hence, J�R.
By hypothesis, there exists an element e ∈ I such that e ∈ I/J is the unit. Consider the set C of ideals

L of R such that J ⊆ L and e 6∈ L. If we order C by inclusion, it is easy to see that it is inductive. Thus, by
Zorn’s Lemma, there exists a maximal element of C , say M. Then, J ⊆M∩ I $ I, whence J = M∩ I by the
maximality of J in I. Thus,

I/J = I/(M∩ I)∼= (I +M)/M�R/M.

Suppose that R 6= I+M. Clearly, e∈ (I+M)/M is a unit. Thus, e is a central idempotent of R/M generating
(I +M)/M. So, L = {a−ae | a ∈ R/M} is an ideal of R/M, and

R/M = e(R/M)+L,

the sum being an internal direct sum. If π : R� R/M is the natural projection map, then π−1(L) = M +
{a−ae | a∈ R} is an ideal of R containing M (and so J). If e∈ π−1(L), then L = R/M, which is impossible.
Hence, π−1(L) ∈ C , and strictly contains M, contradicting the maximality of M in C . Thus, I +M = R,
and so R/M ∼= I/J, as desired. ut

Corollary 4.4.10. Let E be an arbitrary graph and K any field. Let H ∈HE . If there exists J � I(H) such
that I(H)/J is a unital simple ring, then there exists an ideal M�LK(E) such that LK(E)/M ∼= I(H)/J.

Proof. By Theorem 2.5.19, I(H)∼= LK(HE), whence I(H) has local units. Thus, the result holds by Lemma
4.4.9. ut

Proposition 4.4.11. Let E be a row-finite graph and K any field. Let J be a maximal ideal of LK(E). If
LK(E)/J is a unital purely infinite simple ring, then J is a graded ideal of LK(E). Concretely, J = I(J∩E0).

Proof. We show first that we may assume that E has a finite number of vertices. Let α be an el-
ement of LK(E) such that α + J is the unit element in LK(E)/J. Let v1, · · · ,vn ∈ E0 be such that
α ∈ (∑n

i=1 vi)LK(E)(∑n
i=1 vi). Since αv = vα = 0 for every v ∈ E0 \{v1, . . . ,vn}, it follows that the hered-

itary saturated set H = J ∩ E0 satisfies that E/H has a finite number of vertices, and so (by the row-
finiteness of E) we get that E/H is finite. Since LK(E)/I(H) ∼= LK(E/H) by Corollary 2.4.13(i), and
(LK(E)/I(H))/(J/I(H)) ∼= LK(E)/J, the Leavitt path algebra LK(E/H) has a unital purely infinite quo-
tient. Passing to LK(E)/I(H)∼= LK(E/H), we can assume that E is a finite graph and that E0∩ J = /0.

Since E is finite, the lattice Lgr(LK(E)) of graded ideals (equivalently, the lattice of idempotent-
generated ideals, by Corollary 2.9.11) of LK(E) is finite by Theorem 2.5.9, so that there exists a nonempty
H ∈HE such that I = I(H) is minimal as a graded ideal. Since I + J = LK(E) by our assumption that
J∩E0 = /0, we have

I/(I∩ J)∼= LK(E)/J,

so that I has a unital purely infinite simple quotient. Since I ∼= LK(HE) (see Theorem 2.5.19) and J∩ I does
not contain nonzero idempotents, it follows from our previous argument that HE is finite and so I is unital.
So I = eLK(E) for a central idempotent e in LK(E). Since I is (unital) graded-simple (by the minimality
of I, together with Corollary 2.9.12), and E is finite, the Trichotomy Principle for graded simple Leavitt
path algebras 3.1.14 implies that I is isomorphic to either Mn(K), or isomorphic to Mn(K[x,x−1]) for some
n≥ 1, or is purely infinite simple. Since I has a quotient algebra which is purely infinite simple, it follows
that I ∩ J = {0}, and J = (1− e)LK(E) is a graded ideal. Indeed we get e = 1, because we are assuming
that J does not contain nonzero idempotents. ut

Next, we characterize in terms of graph conditions when a Leavitt path algebra has a unital purely
infinite simple quotient (i.e., satisfies the hypotheses of Proposition 4.4.11).

Corollary 4.4.12. Let E be an arbitrary graph and K any field. Then LK(E) has a unital purely infinite
simple quotient if and only if there exists H ∈HE such that the quotient graph E/H is nonempty, finite,
cofinal, contains no sinks, and satisfies Condition (L).

Proof. Apply Proposition 4.4.11 and the Purely Infinite Simplicity Theorem 3.1.10. ut
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Lemma 4.4.13. Let E be an arbitrary graph and K any field. If there exists a unital purely infinite simple
quotient of LK(E), then the stable rank of LK(E) is ∞.

Proof. If there exists a maximal ideal M � LK(E) such that LK(E)/M is a unital purely infinite simple
ring, then sr(LK(E)/M) = ∞ (Examples 4.4.4(ii)). Since sr(LK(E)/M) ≤ sr(LK(E)) (Theorem 4.4.3(iii)),
we conclude that sr(LK(E)) = ∞. ut

We adapt the following terminology from [72]: we say that a graph E has isolated cycles if whenever
e1e2 · · ·en and f1 f2 · · · fm are closed simple paths in E such that s(ei) = s( f j) for some i, j, then ei = f j.
Notice that, in particular, if E has isolated cycles, then the only closed simple paths E can contain are
cycles.

Lemma 4.4.14. (cf. [72, Lemma 3.2]) Let E be a row-finite graph and K any field. If LK(E) does not have
any unital purely infinite simple quotients, then there exists a graded ideal J �LK(E) with sr(J) ≤ 2 such
that LK(E)/J is isomorphic to the Leavitt path algebra of a graph with isolated cycles. Moreover, sr(J) = 1
if and only if J = {0}.

Proof. Set
X0 = {v ∈ E0 | ∃ e 6= f ∈ E1 with s(e) = s( f ) = v, r(e)≥ v, r( f )≥ v},

and let X be the hereditary saturated closure of X0. Consider J = I(X). Then J is a graded ideal of LK(E)
and LK(E)/J ∼= LK(E/X) by Corollary 2.4.13(i). It is clear from the definition of X0 that E/X is a graph
with isolated cycles. Observe that |CSP(v)| ≥ 2 for all v ∈ X0. Assuming that X0 6= /0, we will show that
sr(J) = 2.

By Proposition 2.5.19, J ∼= LK(X E). We will show that every vertex lying on a closed simple path of X E
is left infinite. Suppose that there exists a closed simple path α in X E such that the set Y of vertices of X E
connecting to the vertices of α0 is finite. It is not difficult to see that α0∪Y is a maximal tail in X E. Let M
be a maximal tail of smallest cardinality contained in α0 ∪Y . Observe that M∩X0 6= /0; otherwise X \M,
which is a proper hereditary saturated subset of X , would contain X0, which is impossible. Denote by M̃ the
quotient graph of X E by the hereditary saturated set H = X E0 \M, i.e., M̃ = X E/H. Then, since M is finite,
LK(M̃) is a unital ring. Further, since M does not contain smaller maximal tails, LK(M̃) is graded-simple.
If v ∈ M ∩X0, then |CSPM̃(v)| ≥ 2, and so, as LK(M̃) is graded-simple, it must be purely infinite simple.
Thus, LK(M̃)∼= LK(X E)/I is a unital purely infinite simple ring, where I is the ideal of LK(X E) generated
by H. By Corollary 4.4.10, LK(E) has a unital purely infinite simple quotient, contradicting the hypothesis.
Hence, every vertex lying on a closed simple path in X E is left infinite. Thus, sr(J) = sr(LK(X E)) = 2 by
Proposition 4.4.8, as desired. ut

Definition 4.4.15. Let A be a unital ring with stable rank n. We say that A has stable rank closed by exten-
sions in case for any unital ring extension

0 −−−−→ I −−−−→ B −−−−→ A −−−−→ 0

of A with sr(I)≤ n, we have sr(B) = n.

A unital ring R is said to have elementary rank n, denoted by writing by er(R) = n, in case, for every
t ≥ n+ 1, the elementary group Et(R) acts transitively on the set Uc(t,R) of t-unimodular columns with
coefficients in R, see [116, 11.3.9]. In the next lemma we collect some properties of elementary rank that
we will need in the sequel.

Lemma 4.4.16. Let A be a unital ring. Assume that sr(A) = n < ∞.

(i) If er(A)< n then Mm(A) has stable rank closed by extensions for every m≥ 1.
(ii) Let D be any (commutative) euclidean domain such that sr(D) > 1 and let m be a positive integer.

Then sr(Mm(D)) = 2 and er(Mm(D)) = 1. In particular Mm(D) has stable rank closed by extensions.
(iii) Let

0 −−−−→ I −−−−→ B −−−−→ A −−−−→ 0

be a unital extension of A. If er(A)< n and I has a set of local units {gi} such that sr(giIgi)≤ n and
er(giIgi)< n for all i, then sr(B) = n and er(B)< n.



4.4 The stable rank 127

(iv) For unital rings R and S, we have

er(R×S) = max{er(R),er(S)}.

Proof. (i) This is essentially contained in [150]. We include a sketch of the proof for the convenience
of the reader. Assume that we have a unital extension B of A with sr(I) ≤ n. Let a = (a1, . . . ,an+1)

t ∈
Uc(n+1,B). Then a = (a1, . . . ,an+1)

t ∈Uc(n+1,A). Since sr(A) = n, there exists b1, . . . ,bn ∈ B such that
(a1 +b1an+1, . . . ,an +bnan+1)

t ∈Uc(n,A). Replacing a with (a1 +b1an+1, . . . ,an +bnan+1,an+1), we can
assume that (a1, . . . ,an)

t ∈Uc(n,A).
Since er(A) ≤ n− 1, there exists E ∈ E(n,B) such that E · (a1, . . . ,an)

t = (1,0, . . . ,0)t . Since a is re-
ducible if and only if diag(E,1) · a is reducible, we can assume that (a1, . . . ,an)

t = (1,0, . . . ,0)t . Finally,
replacing an+1 with an+1− a1an+1, we can assume that a = (1,0, . . . ,0)t , that is, a ∈Uc(n+ 1, I) (using
Lemma 4.4.2). Now, as sr(I)≤ n, a is reducible in I, and so in B, as desired.

For any m ∈ N, sr(Mm(A)) = d(sr(A)− 1)/me+ 1 by Theorem 4.4.3(ii), and er(Mm(A)) ≤ der(A)/me
by [116, Theorem 11.5.15]. So, it is clear that er(A) < sr(A) implies er(Mm(A)) < sr(Mm(A)). Hence, by
the first part of the proof, Mm(A) has stable rank closed by extensions, as desired.

(ii) It is well known that a Euclidean domain has stable rank less than or equal to 2, and that it has
elementary rank equal to 1, see e.g., [116, Proposition 11.5.3]. So, the result follows from part (i).

(iii) Since sr(I) ≤ n, the fact that sr(B) = n follows from part (i). Now, take m ≥ n, and set a =
(a1, . . . ,am)

t ∈ Uc(m,B). Since er(A) < n, there exists E ∈ E(m,B) such that E · a = (1,0, . . . ,0)t . So,
b := E ·a≡ (1,0, . . . ,0)t(mod I). Let g ∈ I be an idempotent in the local unit such that b1−1,b2, . . . ,bm ∈
gIg. Since er(gIg)< n by hypothesis, there exists G∈ E(m,gIg) such that (G+diag(1−g, . . . ,1−g)) ·b =
(1,0, . . . ,0)t .

(iv) This follows from the fact that Et(R×S) = Et(R)×Et(S), for t ≥ 2. ut

Given any K-algebra R, we define the unitization of R to be the ring R1 = R×K, with product given by

(r,a) · (s,b) = (rs+as+ rb,ab).

Corollary 4.4.17. Let A be a unital K-algebra with sr(A) = n ≥ 2 and er(A) < sr(A). Then, for any (not-
necessarily-unital) K-algebra B and two-sided ideal I of B such that B/I ∼= A and sr(I) ≤ n, we have
sr(B) = n.

Proof. Consider the unital extension

0 −−−−→ I −−−−→ B1 −−−−→ A1 −−−−→ 0.

Notice that A1 ∼= A×K, because A is unital. So, sr(A1) = sr(A) (Theorem 4.4.3(i)), and er(A1) = er(A)
(Lemma 4.4.16(iv)). Now, by Lemma 4.4.16(i), sr(B1) ≤ n. Since n ≤ sr(B) ≤ sr(B1) ≤ n, the conclusion
follows. ut

Proposition 4.4.18. Let E be a finite graph with isolated cycles and K any field. Then sr(LK(E)) ≤ 2 and
er(LK(E)) = 1. Moreover, sr(LK(E)) = 1 if and only if E is acyclic.

Proof. We proceed by induction on the number of cycles of E. If E has no cycles then sr(LK(E)) = 1 by
Lemma 4.4.5, so that er(LK(E)) = 1 by [116, Proposition 11.3.11]. Assume that E has cycles C1, . . . ,Cn.
Define a preorder on the set of cycles by setting Ci ≥C j iff there exists a finite path α such that s(α) ∈C0

i
and r(α)∈C0

j . Since E is a graph with isolated cycles,≥ is easily seen to be a partial order. Since the set of
cycles is finite, there exists a maximal one, say C1. Set A = {e ∈ E1 | s(e) ∈C1 and r(e) 6∈C1}, and define
B = {r(e) | e ∈ A}∪Sink(E)∪

⋃n
i=2 C0

i . Let H be the hereditary saturated closure of B. By construction
of H, C1 is the unique cycle in E/H, and it has no exits. Moreover, E/H coincides with the hereditary
saturated closure of C1. Note too that any vertex not connecting to C1 must be in the hereditary saturated
set generated by the sinks and C0

i for i = 2, . . . ,n, which implies that there are no sinks in E/H. So we may
apply Corollary 4.2.14 to get that LK(E/H)∼= Mk(K[x,x−1]) for some k ≥ 1.

Consider the extension
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0 −−−−→ I(H) −−−−→ LK(E) −−−−→ LK(E/H) −−−−→ 0.

Now, by Lemma 4.4.16(ii), sr(LK(E/H)) = 2 and er(LK(E/H)) = 1. Consider the local unit (pX ) of
LK(HE)∼= I(H) consisting of idempotents pX = ∑v∈X v where X ranges over the set of vertices of HE con-
taining H. Since these sets are hereditary in (HE)0, we get that pX I(H)pX = pX LK(HE)pX = LK((HE)X )
is a Leavitt path algebra of a graph with isolated cycles, containing exactly n− 1 cycles. By the induc-
tion hypothesis, sr(pX I(H)pX ) ≤ 2 and er(pX I(H)pX ) = 1. So, by Lemma 4.4.16(iii), we conclude that
sr(LK(E)) = 2 and er(LK(E)) = 1. Hence, the induction step works, so we are done. ut

We are now ready to obtain our main result.

Theorem 4.4.19. Let E be a row-finite graph and K any field. Then the values of the stable rank of LK(E)
are determined as follows.

(i) sr(LK(E)) = 1 if E is acyclic.
(ii) sr(LK(E)) = ∞ if there exists H ∈HE such that the quotient graph E/H is nonempty, finite, cofinal,

contains no sinks, and satisfies Condition (L).
(iii) sr(LK(E)) = 2 otherwise.

Proof. (i) derives from Lemma 4.4.5, while (ii) derives from Corollary 4.4.12 and Lemma 4.4.13. We can
thus assume that E contains cycles and, using Lemma 4.4.13, that LK(E) does not have any unital purely
infinite simple quotients.

By Lemma 4.4.14, there exists a hereditary saturated subset X of E0 such that sr(I(X))≤ 2, while E/X is
a graph having isolated cycles. By Corollary 1.6.16 there is an upward directed set {Ei | i∈Λ} of complete
finite subgraphs of E/X such that E/X =

⋃
i∈Λ Ei. So, by Theorem 1.6.10, LK(E/X)∼= lim−→i∈Λ

LK(Ei). For
each i ∈Λ , there is a natural graded K-algebra homomorphism φi : LK(Ei)→ LK(E/X). The kernel of φi is
a graded ideal of LK(Ei) whose intersection with E0

i is empty, so φi is injective by the Graded Uniqueness
Theorem 2.2.15, and thus the image Li of LK(Ei) through φi is isomorphic to LK(Ei). It follows from
Proposition 4.4.18 that, for every i ∈ Λ , sr(Li) ≤ 2 and er(Li) = 1. If π : LK(E)→ LK(E/X) denotes the
natural epimorphism (see Corollary 2.4.13(i)), then given any i ∈Λ , we have

0 −−−−→ I(X) −−−−→ π−1(Li) −−−−→ Li −−−−→ 0.

If sr(Li) = 1, then sr(π−1(Li))≤ 2 by [150, Theorem 4].
If sr(Li) = 2, then it follows from Corollary 4.4.17 that sr(π−1(Li)) = 2. Since LK(E) =

⋃
i∈Λ π−1(Li)

we get that sr(LK(E))≤ 2. Since E contains cycles we have that either I(X) 6= 0 or E/X contains cycles. If
I(X) 6= 0 then sr(I(X)) = 2 by Lemma 4.4.14 and so sr(LK(E)) = 2 by [150, Theorem 4]. If I(X) = 0, then
E has isolated cycles. Take a vertex v in a cycle C of E and let H be the hereditary subset of E generated
by v. Then LK(EH) = pLK(E)p for the idempotent p = ∑w∈H0 w ∈M (LK(E)), where M (LK(E)) denotes
the multiplier algebra of LK(E); see [36]. Let I be the ideal of pLK(E)p generated by all the idempotents
of the form r(e), where e ∈ E1 is such that s(e) ∈ C and r(e) /∈ C. Since E has isolated cycles it follows
that I is a proper ideal of pLK(E)p and moreover pLK(E)p/I ∼= Mk(K[x,x−1]), where k is the number of
vertices in C. We get

sr(pLK(E)p)≥ sr(pLK(E)p/I) = 2.

It follows that 1 < sr(LK(E))≤ 2 and thus sr(LK(E)) = 2, as desired. ut

Remark 4.4.20. The result in Theorem 4.4.19 remains valid for arbitrary graphs, as was shown by Larki
and Riazi in [111].

Some remarks on the relationship between the stable rank of Leavitt path algebras and the stable rank
of graph C∗-algebras will be given at the end of Section 5.6.

We present below several examples of Leavitt path algebras, and we compute their stable rank by using
Theorem 4.4.19.

Examples 4.4.21. The basic examples to illustrate Theorem 4.4.19 coincide with those given in Chapter 1.
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(i) The Leavitt path algebra associated with the acyclic graph An

•v1 // •v2 // •v3 •vn−1 // •vn

satisfies LK(An)∼= Mn(K) (see Proposition 1.3.5). Thus, sr(LK(An)) = 1 by Theorem 4.4.19(i). (This
is of course well-known, see Examples 4.4.4(i).)

(ii) If E is a finite graph for which LK(E) is purely infinite simple, then by the Purely Infinite Simplicity
Theorem 3.1.10 we have that LK(E) satisfies the conditions of Theorem 4.4.19(ii) (with H = /0), so
that sr(LK(E)) = ∞. In particular, for n≥ 2, the Leavitt path algebra of the graph Rn

• f1dd

f2

qq

f3

��

fn

QQ. . .

has sr(LK(Rn)) = ∞, i.e., sr(LK(1,n)) = ∞. (In this particular case, one can also recover this conclu-
sion using [133, Proposition 6.5].) For additional examples of purely infinite simple unital Leavitt
path algebras (and so, additional examples of Leavitt path algebras having infinite stable rank), see
Examples 3.2.7.

(iii) Finally, the Leavitt path algebra of the graph G

•88

has sr(LK(G)) = 2 by Theorem 4.4.19(iii). In other words, by Proposition 1.3.4, we recover the fact
that sr(K[x,x−1]) = 2. In a similar manner, we get that sr(TK) = 2 as well (where TK is the Toeplitz
algebra of Example 1.3.6), which in turn yields by Proposition 1.3.7 that sr(K〈X ,Y |XY = 1〉) = 2.

Example 4.4.22. We present an additional example that illustrates an interesting phenomenon arising in
the discussion of stable rank in the context of Leavitt path algebras. On one hand, stable rank 2 examples
can be obtained (more or less) as extensions of the ring of Laurent polynomials, as we can see with the
Leavitt path algebra of the graph E

•88 •oo ��
XX

oo •voo hh .

Here the ideal I in Lemma 4.4.14 is I = I(E0 \ {v}); we see LK(E)/I ∼= K[x,x−1]. Notice that, because
of Lemma 4.4.14, sr(I) = 2, while sr(LK(E)) = sr(LK(E)/I) = 2 as well by Theorem 4.4.19(iii). The
remarkable fact behind Theorem 4.4.19 is that in the context of Leavitt path algebras, extensions of stable
rank 2 rings by stable rank 2 ideals cannot attain stable rank 3. (This statement is not true for more general
algebras.)

Remark 4.4.23. Stable rank is not a Morita invariant in general, but in the case of Leavitt path alge-
bras some interesting phenomena arise. Suppose that E,F are finite graphs such that LK(E) and LK(F)
are Morita equivalent. Thus, LK(E) ∼= P ·Mn(LK(F)) · P for some n ∈ N and some full idempotent
P∈Mn(LK(F)). Since the values 1 and ∞ of stable rank are preserved by passing to matrices [150, Theorem
4] and full corners [26, Theorem 7 and Theorem 8], Theorem 4.4.19 implies that sr(LK(E)) = sr(LK(F)).
So, stable rank is a Morita invariant for unital Leavitt path algebras.

However, this conclusion no longer necessarily follows in case E and/or F is infinite. For instance, let
Rn be the usual “rose with n petals” graph, and let F∞ be the graph
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· · · · · ·• // • // • // • f1dd

f2

qq

f3

��

fn

QQ

i.e., Rn with an infinite tail added. As we noted in Examples 4.4.21, sr(LK(Rn)) = ∞. On the other hand,
an easy induction argument using [6, Proposition 13] shows that LK(F∞) ∼= MN(LK(Rn)), which gives
in particular that LK(F∞) and LK(Rn) are Morita equivalent. Now observe that LK(F∞) is simple by the
Simplicity Theorem 2.9.1, and non-unital (because the graph F∞ has infinitely many vertices), so that
LK(F∞) has no unital purely infinite simple quotients, and thus sr(LK(F∞)) = 2 by Theorem 4.4.19(iii).

Moreover, the graph F∞ is a direct limit of the graphs Em
n

•vm // •vm−1 •v3 // •v2 // •v1 f1ff

f2

tt

f3

��

fn

QQ

i.e., Rn with a tail of length m− 1 added. Since LK(Em
n )
∼= Mm(LK(1,n)) (see Proposition 2.2.19), we get

sr(LK(Em
n )) = ∞ by Examples 4.4.21(i) and Theorem 4.4.3(ii). Since LK(F∞)∼= lim−→m∈NLK(Em

n ), we have

2 = sr(LK(F∞)) = sr( lim−→
m∈N

LK(Em
n ))< liminf

m∈N
sr(LK(Em

n )) = ∞.

In particular, the inequality invoked in Theorem 4.4.3(iv) may indeed be strict.



Chapter 5
Graph C∗-algebras, and their relationship to Leavitt path
algebras

There is a close, fundamental relationship between the Leavitt path algebra LC(E) and an analytic structure
known as a graph C∗-algebra. In the first section of this chapter we give a very general overview of some
of the basic properties of C∗-algebras. In the following section we then present the definition of the graph
C∗-algebra C∗(E), and establish that LC(E) embeds (as a dense ∗-subalgebra) inside C∗(E) (Theorem
5.2.9). Further into that section, we present the appropriate analogs of the two “Uniqueness Theorems”,
namely, the the Gauge-Invariant Uniqueness Theorem and Cuntz-Krieger Uniqueness Theorem for graph
C∗-algebras. In Section 5.3 we investigate what was, historically, the first structural connection established
between LC(E) and C∗(E), to wit, that the V -monoids of these two C-algebras are in fact isomorphic
(Theorem 5.3.5). The remainder of Section 5.3, as well as all of Sections 5.4 and 5.5, are taken up with
a description of the closed ideals of a graph C∗-algebra. As we will see, their structure mimics to a great
extent (but not completely) the structure of the ideals of LC(E) established in Section 2.8. Finally, in
Section 5.6, we present a number of results which bring to the foreground the extremely tight (but not yet
completely understood) relationships between the complex algebra LC(E), the graph C∗-algebra C∗(E),
and the directed graph E.

5.1 A brief overview of C∗-algebras

In this section, we present some basic material on C∗-algebras and pre-C∗-algebras. The presentation is
biased by our interest in paying close attention to the relationship between Leavitt path algebras and graph
C∗-algebras. The reader is referred to the book [129] by Raeburn for the theory of graph C∗-algebras, and
to Murphy’s book [118] and Goodearl’s book [85] for the general basic theory of C∗-algebras. Section 1.2
in Ara-Mathieu’s book [30] can serve as a guide to the most important facts on operator algebras.

Most of the results in this section can be generalized to semi-pre-C∗-algebras, see [139], [140], [123].
A complex ∗-algebra is an algebra A over C endowed with an involution ∗ such that (λx)∗ = λx∗, for

all λ ∈ C and x ∈ A, where λ denotes the complex conjugate of λ .
A C∗-seminorm on a complex ∗-algebra A is a function ‖·‖ : A→R+ satisfying the following properties

for all a,b ∈ A and λ ∈ C:

(i) ‖ab‖ ≤ ‖a‖ · ‖b‖,
(ii) ‖a+b‖ ≤ ‖a‖+‖b‖,

(iii) ‖aa∗‖= ‖a‖2 = ‖a∗‖2, and
(iv) ‖λa‖= |λ |‖a‖ for λ ∈ C.

If, in addition, ‖a‖= 0 implies a = 0, then we say that ‖ ·‖ is a C∗-norm . It follows easily that if ‖ ·‖ is
a nonzero C∗-seminorm then ‖0‖= 0, and ‖1A‖= 1 if A is unital. A pre-C∗-algebra is a complex ∗-algebra
A endowed with a C∗-norm ‖·‖. A C∗-algebra is a pre-C∗-algebra A such that A is complete with respect to
the norm topology. If A is a pre-C∗-algebra, then the completion A of A with respect to the norm topology
is a C∗-algebra and the natural map A −→ A is an isometry. We are interested in this Chapter in studying
the Leavitt path algebra LC(E) from an analytic point of view. Note that LC(E) is a complex ∗-algebra.

131
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For a locally compact subset X of C, C(X) denotes the C∗-algebra of bounded continuous functions
from X to C, while C0(X) denotes the C∗-algebra of continuous functions from X to C that disappear at ∞,
i.e., those functions f for which for all ε > 0 there is a compact subset S of X such that | f |< ε outside S.
If X is compact then C(X) =C0(X).

A complex ∗-algebra may admit more than one C∗-norm, contrasting with the fact that a C∗-algebra
admits only one C∗-norm, complete or not. As an illustrative example, consider the ∗-algebra C[z,z−1] ∼=
C[Z] of Laurent polynomials. If K is a compact subset of

T := {z ∈ C : |z|= 1}

having nonempty interior, then the composition C[z,z−1]→C(T)→C(K), where C[z,z−1]→C(T) is the
natural embedding, and C(T)→ C(K) is the natural projection, is an injective ∗-homomorphism, and so
induces a C∗-norm ‖ · ‖K on C[z,z−1]. Observe that ‖ · ‖K 6= ‖ · ‖K′ if K 6= K′.

It may also happen that a complex ∗-algebra admits no nonzero C∗-seminorms. This is the case for
the Weyl algebra, which is the C-algebra W generated by Q,P subject to the relation QP−PQ = 1. If
follows easily by induction that QnP−PQn = nQn−1 in W . Suppose that ‖·‖ is a nonzero submultiplicative
seminorm on W . Then, using the above equations one gets ‖Qn‖ 6= 0 for all positive integers n. Moreover,

n‖Qn−1‖ ≤ 2‖Q‖‖Qn−1‖‖P‖.

Since ‖Qn−1‖ 6= 0 we get ‖P‖‖Q‖ ≥ n
2 for all n, which is impossible.

Definitions 5.1.1 Let A be a complex ∗-algebra. An element b ∈ A is called a partial isometry in case
b = bb∗b, and a projection in case b = b2 = b∗. (Clearly then any projection is a partial isometry, and b is a
partial isometry precisely when bb∗ is a projection.) In case A is unital, then b ∈ A is called an isometry in
case b∗b = 1A, and a unitary in case bb∗ = b∗b = 1A. (Clearly then any unitary is an isometry.)

An obvious necessary algebraic condition for a complex ∗-algebra to admit a C∗-norm is that A is
positive definite, as defined here.

Definitions 5.1.2 ([152], [90]) We say that a complex ∗-algebra A is positive definite in case, for x1, . . . ,xn ∈
A, if ∑

n
i=1 x∗i xi = 0 then xi = 0 for all i = 1, . . . ,n. In case A is positive definite, we define the positive cone

A++ of A as the set of elements of A of the form ∑
n
i=1 x∗i xi. In this situation, there is a partial order defined

on A, where for a,b ∈ A,
a≤ b in case b−a ∈ A++.

Assume now that A is unital. An element a in A is said to be bounded in case a∗a≤ λ1A for some positive
real number λ . The set Ab of bounded elements of A is a ∗-subalgebra of A, cf. [152], [90, p. 339], or
[49, Proposition 54.1]. A C∗-seminorm ‖ · ‖ is defined on Ab by using the partially ordered structure on A,
namely

‖x‖= inf{λ ∈ R+ : x∗x≤ λ
2 ·1};

cf. [152], or [90, p. 342]. Observe that Ab contains all the partial isometries of A, so that A = Ab if A is
generated as ∗-algebra by its partial isometries.

Let A be a positive definite unital complex ∗-algebra. A state of A is a linear functional φ : A→ C such
that φ(x∗x)≥ 0 for any x∈A, and φ(1)= 1. Given a state φ of A, one has automatically that φ(x∗y)= φ(y∗x)
for all x,y ∈ A, and that the Cauchy-Schwarz inequality holds: for all x,y ∈ A,

|φ(x∗y)|2 ≤ φ(x∗x)φ(y∗y).

It follows that Lφ := {x ∈ A | φ(x∗x) = 0} is a left ideal of A and that the quotient A/Lφ has the structure of
a pre-Hilbert space given by 〈x+Lφ ,y+Lφ 〉= φ(x∗y). There is a ∗-representation πφ : A→L (A/Lφ ), the
GNS-representation associated to the state φ . Here L (A/Lφ ) denotes the ∗-algebra of adjointable operators
on the pre-Hilbert space A/Lφ . The above representation πφ extends to a ∗-representation πφ : A→ B(Hφ ),
where Hφ := A/Lφ is the Hilbert space completion of A/Lφ , if and only if for each a ∈ A there is a positive
constant K(a) such that
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φ(b∗a∗ab)≤ K(a)φ(b∗b)

for all b ∈ A. We call a state as above a bounded state . Let S(A) be the set of bounded states of A. Define

‖a‖max = sup{φ(a∗a)1/2 | φ ∈ S(A)} ∈ [0,+∞].

Lemma 5.1.3. There is a maximal C∗-seminorm on A if and only if ‖a‖max < ∞ for all a ∈ A, and in this
case the maximal C∗-seminorm on A is precisely ‖ · ‖max.

Proof. Assume first that ‖a‖max < ∞ for all a ∈ A. Since each φ ∈ S(A) defines a ∗-representation

πφ : A−→ B(Hφ )

such that φ(a∗a) = ‖πφ (a)‖2, it follows that ‖ · ‖max is a C∗-seminorm on A. Now let ρ be an arbitrary
C∗-seminorm on A. Let I be the set of elements a in A such that ρ(a) = 0. Then I is a ∗-ideal of A, and
A/I is a pre-C∗-algebra under ρ(a+ I) = ρ(a). Let B be the completion of A/I with respect to the norm
ρ . Then B is a C∗-algebra, and there is a canonical ∗-homomorphism τ : A→ B. Let a be an element of A.
By [101, Theorem 4.3.4(iv)], there is a state φ ′ of B such that φ ′(τ(a∗a)) = ρ(a)2. Then φ := φ ′ ◦ τ is a
bounded state of A, and so

ρ(a)2 = φ(a∗a)≤ ‖a‖2
max.

This shows that ρ ≤ ‖ ·‖max and so ‖ · ‖max is the maximal C∗-seminorm on A.
Conversely, assume there is a maximal C∗-seminorm ρ on A. For a ∈ A we have

‖a‖2
max = sup{φ(a∗a) | φ ∈ S(A)}

= sup{‖πφ (a∗a)‖ | φ ∈ S(A)}
≤ sup{‖π(a∗a)‖ | π is a ∗ -representation on a Hilbert space}
= ρ(a) .

This shows that ‖a‖max < ∞ for all a ∈ A. ut

Definition 5.1.4. We say that a complex ∗-algebra A is a universal pre-C∗-algebra if there is a C∗-norm ρ

on A such that each ∗-homomorphism ψ : A→ B from A to a C∗-algebra B extends to a ∗-homomorphism
ψ : A→ B, where A is the completion of A with respect to ρ .

We establish the following useful result.

Proposition 5.1.5. Let A be a unital complex ∗-algebra.

(i) A is a universal pre-C∗-algebra if and only if A is positive definite and

0 < ‖a‖max < ∞

for all nonzero a in A. In this case, A is a universal pre-C∗-algebra with respect to the norm ‖ · ‖max.
(ii) If A is positive definite and A = Ab then all the states of A are automatically bounded and the C∗-

seminorm ‖ · ‖ on A defined by using the partially ordered structure as in Definition 5.1.2 coincides
with the maximal C∗-seminorm, so that

‖x‖= ‖x‖max = sup{‖π(x)‖ | π : A→ B(H ) is a ∗ -representation}.

In particular, there is a maximal C∗-seminorm on A.

Proof. (i) follows from Lemma 5.1.3.
(ii) Assume that A is positive definite and A = Ab. If φ is a state of A and a ∈ A, then since a ∈ Ab there

is a positive constant K(a) and elements x1, . . . ,xn in A such that

a∗a+
n

∑
i=1

x∗i xi = K(a) ·1A.
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For b ∈ A we have b∗a∗ab+∑
n
i=1(xib)∗(xib) = K(a)b∗b, and since φ is positive we get

φ(b∗a∗ab)≤ K(a)φ(b∗b).

This shows that all states of A are bounded.
If a is an element of A and a∗a+∑

n
i=1 x∗i xi = λ ·1A for some xi ∈A and λ ∈R+, then we have φ(a∗a)≤ λ

for all φ ∈ S(A). It follows that
‖a‖max ≤ ‖a‖.

In particular we see from Lemma 5.1.3 that ‖ · ‖max is the maximal C∗-seminorm on A. Since ‖ · ‖ is a
C∗-seminorm on A we get that ‖ · ‖ ≤ ‖ · ‖max as well, and so ‖ · ‖= ‖ · ‖max, as desired. ut
Remark 5.1.6. Assume that (A,‖ · ‖max) is a (unital) universal pre-C∗-algebra, so that ‖ · ‖max is a C∗-
norm on A. In this situation it is not necessarily true that the positive cone A++ described in Definitions
5.1.2 coincides with the positive cone A+ = A+ ∩ A obtained by considering A as an operator system.
The positive cone A+ can be intrinsically described in terms of A in each one of the following equivalent
alternative ways:

(1) A+ = {x ∈ A : φ(x)≥ 0 ∀ φ ∈ S(A)};
(2) For x ∈ A, we have

x ∈ A+ ⇐⇒ x = lim
n→∞

xn for a sequence (xn) in A++; or

(3) x = x∗ and x+ ε1 ∈ A++ for all ε > 0 (see e.g, [123, Theorem 1]).

Remark 5.1.7. Now assume that A is a non-unital complex ∗-algebra. We denote by Ã the C-algebra
unitization of A (see the proof of Corollary 4.4.17), and observe that it is a unital ∗-algebra, with
(a,λ )∗ = (a∗,λ ), for a ∈ A and λ ∈ C. Now every ∗-representation π : A→ B(H ) on a Hilbert space
H can be uniquely extended to a unital ∗-representation π̃ : Ã→ B(H ). It is easy to check that A is pos-
itive definite if and only if so is Ã. Moreover if A is generated by partial isometries, then clearly so is Ã.
Therefore if A is positive definite and generated by partial isometries and if ‖a‖max > 0 for all nonzero
a ∈ A then it follows from Proposition 5.1.5 that A is a universal pre-C∗-algebra with respect to the norm

‖a‖max = ‖a‖= inf{λ ∈ R+ | a∗a≤ λ
2 ·1Ã} ,

where ≤ is the order induced by the positive cone Ã++ on Ã.

The following corollary uses a result of Tomforde [147], one which we will prove in Section 5.2.

Corollary 5.1.8. Let E be an arbitrary graph. Then the Leavitt path algebra LC(E) is a universal pre-C∗-
algebra with respect to the C∗-norm

‖a‖max = ‖a‖= inf{λ ∈ R+ | a∗a≤ λ
2 ·1

L̃C(E)
} ,

where ≤ is the order induced by the positive cone L̃C(E)++ on L̃C(E).

Proof. By [147, Theorem 7.3], LC(E) is a pre-C∗-algebra. Therefore LC(E) is positive definite and
‖a‖max > 0 for every nonzero a ∈ LC(E). Moreover it is clear by definition that LC(E) is generated by
partial isometries. The result follows from Remark 5.1.7. ut

We note that, more generally, it has been proved in [42, Proposition 3.4] that if K is a field with positive
definite involution, then the induced involution on LK(E) is positive definite.

5.2 Graph C∗-algebras, and connections to Leavitt path algebras

Let E be an arbitrary graph. We are going to consider an enveloping C∗-algebra of the complex ∗-
algebra LC(E). Following the standard procedure (cf. [129, page 13] and Section 5.1), we consider ∗-
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representations π of LC(E) into Hilbert spaces H . Observe that for a ∈ LC(E) there exists K = K(a) such
that for any ∗-representation π we have

‖π(a)‖ ≤ K.

Indeed if a = ∑aλ ,µ λ µ∗ ∈ LC(E) with aλ ,µ ∈ C and λ ,µ ∈ Path(E), then

‖π(a)‖ ≤∑ |aλ ,µ |‖π(λ µ
∗)‖ ≤∑ |aλ ,µ |,

because π(λ µ∗) is a partial isometry, and ‖w‖ ≤ 1 for any partial isometry w. Therefore ‖ ·‖1 is an algebra
seminorm satisfying ‖a∗a‖1 = ‖a‖2

1. This puts us in position to define the central focus of this chapter.

Definition 5.2.1. Let J be the ∗-ideal of LC(E) consisting of those elements a such that ‖a‖1 = 0. Then
LC(E)/J is a ∗-algebra, and the quotient norm ‖ · ‖0 defined by ‖a+ J‖0 = inf{‖a+ j‖1 | j ∈ J} is a
C∗-norm. So the completion of LC(E)/J is a C∗-algebra, which we denote by

C∗(E),

and which we call the graph C∗-algebra of E.

Observe that any ∗-representation of LC(E) extends uniquely to a representation of C∗(E). We will show
later that the ∗-ideal J is trivial (Theorem 5.2.9). As shown in Corollary 5.1.8, this implies that LC(E) is a
universal pre-C∗-algebra (in the sense of Definition 5.1.4).

Remark 5.2.2. There are two distinct notations which have arisen when describing the multiplication in
the graph C∗-algebra C∗(E). The notation we have chosen to use here is consistent with the notation used
in describing multiplication within Leavitt path algebras; it is the “left to right” notation. On the other hand,
viewing the elements of C∗(E) as operators on a Hilbert space, it also makes sense to view multiplication in
C∗(E) as function composition, in which case the “right to left” notation is quite natural. The “left to right”
notation is almost universally utilized in the context of Leavitt path algebras, while the notation used in the
graph C∗-algebra literature is not universally agreed-upon; for example, Tomforde [147] uses left-to-right,
while Raeburn [129] uses right-to-left.

Example 5.2.3. Let E = R1 (i.e., E has exactly one vertex and one edge). Then C∗(E) = C(T) (recall
T= {z∈C | |z|= 1}). In this case the canonical map LC(R1)→C∗(R1) is precisely the canonical inclusion
C[x,x−1]→C(T) which sends x to z, where z denotes the inclusion mapping T→ C.

Example 5.2.4. Let E = Rn (n≥ 2) be the rose with n-petals. A central role is played by the Cuntz algebra

On =C∗(Rn).

The Cuntz algebras {On | n≥ 2} were first introduced in Cuntz’ seminal paper [68].

Definitions 5.2.5 Let E be an arbitrary graph. A Cuntz-Krieger E-family on a Hilbert space H consists of
a set {Pv | v ∈ E0} of mutually orthogonal projections of H and a set {Se | e ∈ E1} of partial isometries
on H satisfying relations:

(CK1) S∗eSe′ = δe,e′Pr(e) for all e,e′ ∈ E1,
(CK2) Pv = ∑{e∈E1|s(e)=v} SeS∗e for every regular vertex v ∈ E0, and
(CK3) SeS∗e ≤ Ps(e) for all e ∈ E1.

We note that the (CK3) condition can be shown to follow from (CK2) in case s(e) is a regular vertex. We
will denote by pv and se the images of v ∈ E0 and e ∈ E1 through LC(E)→C∗(E), respectively.

Clearly C∗(E) is the C∗-algebra generated by a universal Cuntz-Krieger E-family. As well, we note that
the (CK1) and (CK2) conditions given here mimic exactly the identically-named conditions in a Leavitt
path algebra, see Definition 1.2.3.

There is a natural ∗-representation of LC(E), as follows.
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Example 5.2.6. Let E be an arbitrary graph. Select (nonzero) Hilbert spaces Hv, all of the same Hilbertian
dimension. For each v ∈ E0 \Sink(E), define Hv =

⊕
e∈s−1(v)He, where He is a Hilbert space of the same

dimension as Hv. Of course if E is countable we can select all the Hilbert spaces to be separable infinite-
dimensional. If E is uncountable we can always select a big enough cardinality for the dimension of the
Hilbert spaces, so that the above decomposition exists. Set

H =
⊕
v∈E0

Hv.

For v ∈ E0, let Pv be the orthogonal projection onto Hv, and for each e ∈ E1 select a partial isometry Se
with initial space Hr(e) and final space He. This collection of projections and partial isometries defines a
representation π : C∗(E)→ B(H ). In particular this shows that pv 6= 0 in C∗(E) for all v ∈ E0.

We are now going to describe the gauge action, which is a fundamental tool in the theory of graph
C∗-algebras. See [129, Proposition 2.1] for a proof of the following result.

Proposition 5.2.7. Let E be an arbitrary graph. Then there is an action γ of T on C∗(E) such that γz(se) =
zse and γz(pv) = pv for all z ∈ C, v ∈ E0, and e ∈ E1.

Lemma 5.2.8. Let c be a cycle without exits and let a= a1 · · ·ar be a representative of c, with s(a) = r(a) =
v. Then pvC∗(E)pv =C∗(a)∼=C(T). In particular, the map vLC(E)v→ pvC∗(E)pv is injective.

Proof. Observe that a is a unitary element in pvC∗(E)pv. By [118, Theorem 2.1.13], to show that C∗(a)∼=
C(T), it is enough to show that the spectrum of a is T. Choose λ in the spectrum of a. Then for each z ∈ T,
γz(a−λ pv) is not invertible in pvC∗(E)pv. Since

γz(a−λ pv) = zra−λ pv = zr(a− z−r
λ pv),

we see that any element in T belongs to the spectrum of a.
Recall that C[x,x−1] ∼= vLC(E)v (by Lemma 2.2.7); then the map C[x,x−1] ∼= vLC(E)v→ pvC∗(E)pv

has dense image, and its image is contained in C∗(a) ∼= C(T). Since C∗(a) is complete it follows that
pvC∗(E)pv =C∗(a). This shows the result. ut

We are now ready to obtain the following result, whose original proof is due to Tomforde [147]. The
proof presented here is different.

Theorem 5.2.9. For any graph E the natural map LC(E)→C∗(E) is injective.

Proof. The result follows from Example 5.2.6, Lemma 5.2.8, and the Reduction Theorem 2.2.11. ut

From now on we will identify LC(E) with its image in C∗(E). In particular we will write λ µ∗ instead
of Sλ S∗µ , when λ and µ are paths of E with r(λ ) = r(µ), and we will write v instead of pv for v ∈ E0.

Following, e.g., [77, Definition 16.2], given a discrete group Γ , we define a Γ -graded C∗-algebra as a
C∗-algebra B with a family {Bt | t ∈ Γ } of closed subspaces Bt of B such that: BtBs ⊆ Bts and B∗t = Bt−1

for all t,s ∈ Γ ; the sum
⊕

t∈Γ Bt is a direct sum; and

B =
⊕
t∈Γ

Bt .

Let B⊆ A be an inclusion of C∗-algebras. A conditional expectation from A onto B is a map φ : A→ B
such that

(i) φ is a positive map, that is, φ(a)≥ 0 for a≥ 0,
(ii) ‖φ(a)‖ ≤ ‖a‖ for a ∈ A,

(iii) φ(b) = b for b ∈ B, and
(iv) φ(ba) = bφ(a) and φ(ab) = φ(a)b for all a ∈ A and b ∈ B.
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A conditional expectation φ : A→ B is faithful if, for all a≥ 0 in A, φ(a) = 0 =⇒ a = 0.

The following result gives the relationship between actions of T on a C∗-algebra and Z-gradings.

Lemma 5.2.10. Let α : T→ A be an action of T on a C∗-algebra A. Then there is a faithful conditional
expectation Φ : A→ Aα , given by

Φ(a) =
∫
T

αz(a)dz.

For n ∈ Z, define

An = {a ∈ A |
∫
T

z−n
αz(a)dz = a}.

Then {An | n ∈ Z} are closed subspaces of A such that AnAm ⊆ An+m and A∗n = A−n for all m,n ∈ Z.
Moreover, ∑n∈ZAn is a direct sum, so that the C∗-subalgebra

⊕
n∈Z An of A is a Z-graded C∗-algebra.

Proof. The proof that Φ is a faithful conditional expectation is given in [129, Proposition 3.2]. Let an ∈ An
and am ∈ Am. We have

anam =
∫
T

z−n
αz(an)dz ·

∫
T

w−m
αw(am)dw

=
∫
T

z−n−m
αz(an)αz

(∫
T
(z−1w)−m

αz−1w(am)dw
)

dz

=
∫
T

z−n−m
αz(an)αz(am)dz

=
∫
T

z−(n+m)
αz(anam)dz,

showing that anam ∈ An+m. Similarly one checks that A∗n = A−n.
Assume now that a ∈ An with n 6= 0. Then we have

Φ(a) =
∫
T

αz(a)dz =
∫
T

αz

(∫
T

w−n
αw(a)dw

)
dz

=
∫
T

zn
(∫

T
(zw)−n

αzw(a)dw
)

dz

=
∫
T

znadz = 0.

Thus Φ(a) = 0 for a ∈ An with n 6= 0. Now if ∑
N
i=−N ai = 0, with ai ∈ Ai, we have

0 = Φ(
N

∑
i=−N

a∗jai) =
N

∑
i=−N

Φ(a∗jai) = Φ(a∗ja j)

using the previous observation, so that a j = 0 because Φ is faithful. It follows that ∑n∈ZAn is a direct sum,
as claimed. ut

Proposition 5.2.11. Let E be an arbitrary graph. Then C∗(E) is a Z-graded C∗-algebra:

C∗(E) =
⊕
n∈Z

C∗(E)n ,

with C∗(E)0 =C∗(E)γ , the fixed-point algebra with respect to the gauge action. Moreover there is a faithful
conditional expectation Φ : C∗(E)→C∗(E)0, and C∗(E)n = LC(E)n for all n ∈ Z.

Proof. For n ∈ Z define

C∗(E)n = {a ∈C∗(E) |
∫
T

z−n
γz(a)dz = a}.

Everything follows from Lemma 5.2.10 once we show that C∗(E)n = LC(E)n for all n ∈ Z. Observe that
if λ µ∗ ∈ LC(E) with |λ | − |µ| = n then γz(λ µ∗) = znλ µ∗ so that

∫
T z−nγz(λ µ∗)dz =

∫
Tλ µ∗dz = λ µ∗.
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So we get that LC(E)n ⊆ C∗(E)n. Observe also that C∗(E)n is a closed subspace of C∗(E) and that the
map Φn : C∗(E)→C∗(E)n given by Φn(a) =

∫
T z−nγz(a)dz is norm-decreasing and projects onto C∗(E)n.

Moreover, Φn(LC(E)m) = 0 for m 6= n. Since LC(E) is dense in C∗(E), it follows that C∗(E)n = LC(E)n.
ut

We are now in position to obtain the two so-called Uniqueness Theorems; these are the graph C∗-algebra
analogs of Theorems 2.2.15 and 2.2.16.

Theorem 5.2.12. (The Gauge-Invariant Uniqueness Theorem) Let E be an arbitrary graph. Let
π : C∗(E)→ B be a ∗-homomorphism from C∗(E) to a C∗-algebra B such that π(v) 6= 0 for all v ∈ E0.
Assume that there is an action β : T→ Aut(B) such that βz(π(a)) = π(γz(a)) for all a in C∗(E) and all
z ∈ T. Then π is injective.

Proof. By Lemma 5.2.10, B′ :=
⊕

n∈ZBn is a Z-graded C∗-algebra. Replacing B with B′, we may as-
sume that B is Z-graded. Moreover π is a graded ∗-homomorphism and π(Φ(a)) = Φ ′(π(a)) for all
a ∈ C∗(E), where Φ ′ : B→ B0 is the conditional expectation corresponding to β : T→ Aut(B). It fol-
lows from Theorem 2.2.15 that π|LC(E) is injective. In particular π|LC(E)0 is injective. By Proposition 2.1.14
we have that LC(E)0 is an algebraic direct limit of finite-dimensional C∗-algebras. Hence, since any injec-
tive ∗-homomorphism between C∗-algebras is isometric, we get that π is isometric on LC(E)0 and so on
C∗(E)0 =C∗(E)γ = LC(E)0.

Let a be a positive element in the kernel of π . Then

π(Φ(a)) = Φ
′(π(a)) = 0,

and so Φ(a) = 0. Since Φ is faithful we get that a = 0. This shows that π is injective, as desired. ut

Lemma 5.2.13. Let E be an arbitrary graph. Assume that λ ,ν ,τ are paths of E with s(λ ) = r(τ) = r(ν),
with |τ| < |ν | and |λ | > |ν | − |τ|. Then λ ∗ν∗τλ 6= 0 in LC(E) if and only if there is a decomposition
λ = (ν ′)r ·λ ′, r ≥ 1, such that ν = τν ′ and ν ′ = λ ′λ ′′.

Proof. Assume first that λ = (ν ′)rλ ′, with ν = τν ′ and ν ′ = λ ′λ ′′. Then

λ
∗
ν
∗
τλ = λ

∗(ν ′)∗λ = (λ ′)∗(ν ′∗)r+1(ν ′)r
λ
′ = (λ ′)∗(ν ′)∗λ ′ = (λ ′)∗(λ ′′)∗(λ ′)∗λ ′ = (λ ′′λ ′)∗ 6= 0.

Conversely, assume that λ ∗ν∗τλ 6= 0. Write ν = τν ′. Then λ ∗ν∗τλ = λ ∗(ν ′)∗λ . Since |λ | > |ν ′|, we
can write λ = (ν ′)rλ ′ with r ≥ 1 and such that λ ′ does not start with ν ′. Now 0 6= (λ ′)∗(ν ′)∗λ ′ and since
ν ′ is not an initial segment of λ ′, we get ν ′ = λ ′λ ′′, as desired. ut

Lemma 5.2.14. Let E be an arbitrary graph satisfying Condition (L), and let v ∈ E0. Then for any n ∈ N
there is a path λ of E such that s(λ ) = v, and λ ∗ν∗τλ = 0 for all ν ,τ such that 0 < | |ν |− |τ| |< n.

Proof. Assume first that all paths starting at v have length < n. Then vν∗τv = 0 for all paths ν ,τ such
that |ν | 6= |τ| so we can take λ = v. Now assume that there is a path λ of length n such that s(λ ) = v. If
λ ∗ν∗τλ 6= 0 for some ν ,τ such that, say, 0 < |ν |− |τ|< n, then by Lemma 5.2.13 we have

λ = (λ ′λ ′′)r
λ
′,

with r ≥ 1, where ν = τν ′ and ν ′ = λ ′λ ′′. Note that either |λ ′| ≥ 1 or r ≥ 2. It follows from this that
ν ′ = λ ′λ ′′ is a closed path in E based at v, of positive length. Thus there is a cycle β in E based at v.
By the Condition (L) hypothesis there is an exit for β , call it e, and denote by β ′ the path from v to
s(e). Then it follows from Lemma 5.2.13 that ρ = β nβ ′e satisfies ρ∗(ν ′)∗τ ′ρ = 0 for all ν ′,τ ′ such that
0 < | |ν ′|− |τ ′| |< n. ut

It is worth to remark that only relations (V), (E1), (E2) and (CK1) have been used in the proof of the
above two lemmas, which are purely algebraic.

We are now ready to establish the second of the two Uniqueness Theorems.
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Theorem 5.2.15. (The Cuntz-Krieger Uniqueness Theorem) Let E be a graph satisfying Condition (L).
Let π : C∗(E)→ B be a ∗-homomorphism from C∗(E) to a C∗-algebra B such that π(v) 6= 0 for every
v ∈ E0. Then π is injective.

Proof. By Theorem 2.2.16, we know that π|LC(E) is injective, and in particular that π|LC(E)0 is injective. As
in the proof of the Gauge-Invariant Uniqueness Theorem 5.2.12, we get that π|C∗(E)γ is an isometry.

We will show that
‖π(Φ(a))‖ ≤ ‖π(a)‖ ∀a ∈C∗(E). (5.1)

From this inequality and the faithfulness of Φ we will conclude that π is injective, just as in the proof of
Theorem 5.2.12. By continuity it suffices to show (5.1) for elements of the form a = ∑(µ,ν)∈F cµ,ν µν∗ in
LC(E), where F is a finite set of pairs (µ,ν) in Path(E) with r(µ) = r(ν). We will find a projection Q in
LC(E)0 which satisfies

‖QΦ(a)Q‖= ‖Φ(a)‖, and (5.2)

Qµν
∗Q = 0 when (µ,ν) ∈ F and |µ| 6= |ν |. (5.3)

Let F ′ be the set of paths that appear as a first or second component of a pair in F . Let k =max{|γ| : γ ∈F ′},
and let X be a finite complete subset of Path(E) consisting of paths of length ≤ k such that Φ(a) ∈F (X)
(see Definition 2.1.11). By Proposition 2.1.12, we can find a finite complete subgraph E ′ of E and a subset
of vertices V of E ′ such that X is precisely the set of all paths of length k from E ′ which start at a vertex in
V , together with the set of all paths in E ′ of length < k starting in a vertex in V and ending in a sink of E.
Observe that by the construction of X , the elements τi(v) considered in the proof of Proposition 2.1.14 do
not depend on i, only on v, and we will denote this element by τ(v). Indeed we have

τ(v) = v− ∑
e∈(E ′)1,s(e)=v

ee∗,

and so τ(v)γ = 0 = γ∗τ(v) for every path γ in E ′ of positive length.
Since F (X) is a matricial C-algebra there is a simple component S of it such that ‖Φ(a)‖ = ‖a′‖,

where a′ is the projection of Φ(a) onto the simple component S . There are various possibilities for this
component. If S = Gi,v(X) where v is a sink, then let Q = ∑τ∈G ττ∗ be the unit of Gi,v(X), where G is the
set of paths in E ′ of length i starting at V and ending at v. Then we have that (5.2) is obviously satisfied.
To show (5.3) we consider any element of the form µν∗, where |µ|> |ν | and µ,ν are paths in E ′ starting
at V , of length ≤ k. Assume that ττ∗µν∗τ1τ∗1 6= 0 for some τ,τ1 ∈ G. Then |τ| ≥ |µ|, because τ ends in a
sink, and similarly |τ1| ≥ |ν |. Writing τ = µτ ′ and τ1 = ντ ′1, we get 0 6= τ(τ ′)∗τ ′1(τ1)

∗, and since

|τ ′|= i−|µ|< i−|ν |= |τ ′1|,

we get that 0 6= τρ(τ1)
∗ for a path ρ of positive length starting at the sink v, which is a contradiction. This

shows (5.3) in this case.
Assume now that S = Fi,v(X), where i≤ k, and let Q = ∑λ∈G λτ(v)λ ∗ be the unit of Fi,v(X), where

G is the set of paths in E ′ of length i−1 starting at V and ending at v, and v is an infinite emitter in E such
that s−1

E ′ (v) 6= /0.
In this case we obviously have (5.2). By using that γτ(v) = 0 = τ(v)γ∗ for every path γ in E ′ of positive

length, we easily obtain (5.3) as well.
Finally, assume that S = Gk,v(X), and that v is not a sink in E. By Lemma 5.2.14 there is a path λ in E

such that s(λ ) = v and λ ∗µ∗νλ = 0 for all paths µ,ν in E ′ of length ≤ k such that |µ| 6= |ν |. Let G be the
set of paths in E ′ of length k starting at V and ending at v. Consider

Q = ∑
τ∈G

τλλ
∗
τ
∗.

Observe that the set {τλλ ∗τ∗1 | τ,τ1 ∈ G} is a set of matrix units, generating a matrix algebra G λ
i,v(X), and

that x 7→ QxQ defines a ∗-isomorphism (and thus an isometry) from Gi,v(X) onto G λ
i,v(X). Hence (5.2) is

also established in this case.



140 5 Graph C∗-algebras, and their relationship to Leavitt path algebras

We now note that if τ,τ1 ∈G and τλλ ∗τ∗µν∗τ1λλ ∗(τ1)
∗ 6= 0 for (µ,ν)∈F with |µ| 6= |ν |, then τ = µτ ′

and τ1 = ντ ′1, with |τ ′| 6= |τ ′1|, so that

λ
∗
τ
∗
µν
∗
τ1λ = λ

∗(τ ′)∗τ ′1λ = 0,

because τ ′ and τ ′1 are paths in E ′ of length ≤ k, with different lengths. This gives a contradiction, and so
we must have that

Qµν
∗Q = ∑

τ,τ1∈G
τλλ

∗
τ
∗
µν
∗
τ1λλ

∗(τ1)
∗ = 0,

showing (5.3) in this case.
Observe that (5.2) and (5.3) together give

‖Φ(a)‖= ‖QΦ(a)Q‖= ‖QaQ‖,

so that, recalling that π|LC(E)0 is an isometry, we get

‖π(Φ(a))‖= ‖Φ(a)‖= ‖QaQ‖= ‖π(QaQ)‖ ≤ ‖π(a)‖,

as desired. ut

We will need later the following immediate consequence of Theorem 5.2.15.

Corollary 5.2.16. Let E be a graph satisfying Condition (L) and let J be a nonzero closed two-sided ideal
of C∗(E). Then there exists some v ∈ E0 such that the projection v belongs to J.

Proof. Apply Theorem 5.2.15 to the ∗-homomorphism π : C∗(E)→C∗(E)/J given by the canonical pro-
jection map.

5.3 Projections in graph C∗-algebras

The goal of this section is to establish an isomorphism between the monoids V (LC(E)) and V (C∗(E))
for a row-finite graph E. This gives in particular that every projection P in Mn(C∗(E)) is equivalent to a
diagonal projection diag(v1, . . . ,vn) for some vertices v1, . . . ,vn in E. We draw a nice consequence of this
relationship in Corollary 5.3.7. (The proof of Lemma 5.4.1 will also make use of this fact.)

In order to downsize the level of technicalities, we will work in the rest of this chapter only with row-finite
graphs; however, many of the results presented here have an adaptation to arbitrary graphs.

We start by establishing the relationship between hereditary saturated subsets of E0 and gauge-invariant
ideals of the graph C∗-algebra C∗(E). This is completely analogous to what we know for Leavitt path
algebras about the relationship between hereditary saturated subsets of E0 and graded ideals of LC(E) (see
Chapter 2).

For a subset X of E0, denote by I(X) the closed ideal of C∗(E) generated by X . Consistent with the
notation employed elsewhere in this book, we will denote by I(X) the ideal of LC(E) generated by X .

Lemma 5.3.1. Let E be a row-finite graph, and let H be a hereditary saturated subset of E. Then
C∗(E)/I(H)∼=C∗(E/H).

Proof. This only uses the universal property of the graph C∗-algebra. The proof is left to the reader. ut

A closed ideal I of C∗(E) is said to be gauge-invariant if γz(I) = I for all z ∈ T. In that case the quotient
C∗-algebra C∗(E)/I admits a gauge action: γz(a+ I) = γz(a)+ I.

Theorem 5.3.2. Let E be a row-finite graph. Then there is a bijective correspondence between the set of
hereditary saturated subsets of E and the set of gauge-invariant ideals of C∗(E). This correspondence
sends H ∈HE to I(H), and sends I to E0∩ I (for a gauge-invariant ideal I).
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Proof. We have that I(H) is a graded ideal of LC(E), with I(H)n = I(H)0LC(E)n = LC(E)nI(H)0. Since
γz(an) = znan for a ∈C∗(E)n, we get that I(H) is γz-invariant for all z ∈ T, and so I(H) = I(H) is gauge-
invariant. Note also that Lemma 5.3.1 gives that the set of vertices v such that v ∈ I(H) is exactly H.

Let I be a gauge-invariant ideal of C∗(E), and let H be the set of vertices v in E0 such that v ∈ I. Then
H is hereditary and saturated, as in Lemma 2.4.3. We obviously have I(H) ⊆ I. Consider the quotient
map π : C∗(E)/I(H)→C∗(E)/I. By Lemma 5.3.1 we have C∗(E)/I(H) ∼=C∗(E/H) in the natural way,
so we get a quotient map π ′ : C∗(E/H)→ C∗(E)/I. Observe that π ′(v) 6= 0 for all v ∈ E0 \H and that
γz(π

′(a))= π ′(γz(a)) for all a∈C∗(E/H). It follows from the Gauge-Invariant Uniqueness Theorem 5.2.12
that π ′ is an isomorphism, and so we get I = I(H). ut

We note the following, which is an immediate consequence of Theorems 2.5.9 and 5.3.2.

Corollary 5.3.3. Let E be a row-finite graph and K any field. Then there is a lattice isomorphism between
the lattice of graded ideals of LK(E) and the lattice of gauge-invariant ideals of C∗(E).

We need a lemma whose proof is similar to that of Corollary 1.6.16, and so is omitted.

Lemma 5.3.4. The assignment E 7→ C∗(E) can be extended to a continuous functor from the category
RG of row-finite graphs and complete graph homomorphisms to the category of C∗-algebras and ∗-
homomorphisms. Every graph C∗-algebra C∗(E) is the direct limit of graph C∗-algebras associated with
finite graphs.

In order to achieve the main result of this section (Theorem 5.3.5), we will need to utilize two ideas
which will not be formally introduced until Chapter 6. The first is the general notion of the Grothendieck
group K0(A) of an algebra A; this can be defined as the universal group of the monoid V (A), see Definition
6.1.4. The second is a specific result about K0(A) in case A is purely infinite simple. In this situation
K0(A) = V (A)\{[0]}, see Proposition 6.1.3.

Theorem 5.3.5. ([31, Theorem 7.1]) Let E be a row-finite graph. Then the natural inclusion ψ : LC(E)→
C∗(E) induces a monoid isomorphism V (ψ) : V (LC(E))→ V (C∗(E)).

In particular, the monoid V (C∗(E)) is naturally isomorphic to the monoid ME .

Proof. The algebra homomorphism ψ : LC(E)→C∗(E) induces the following commutative square.

V (LC(E))
V (ψ)−−−−→ V (C∗(E))

ϕ1

y yϕ2

K0(LC(E))
K0(ψ)−−−−→ K0(C∗(E))

The map K0(ψ) is an isomorphism, by Theorem 6.1.9 together with [130, Theorem 3.2]. Using Lemma
1.6.16 and Lemma 5.3.4, we see that it is enough to show that V (ψ) is an isomorphism for a finite graph
E.

Assume that E is a finite graph. We first show that the map V (ψ) : V (LC(E))→ V (C∗(E)) is injective.
Suppose that P and Q are idempotents in MN(LC(E)) such that P ∼ Q in C∗(E). By Theorem 3.2.5, we
can assume that each of P and Q are equivalent in MN(LC(E)) to direct sums of “basic” projections, that
is, projections of the form v, with v ∈ E0. Let J be the closed ideal of C∗(E) generated by the entries of P.
Since P ∼ Q, the closed ideal generated by the entries of P agrees with the closed ideal generated by the
entries of Q, and indeed it agrees with the closed ideal generated by the projections of the form w, where w
ranges over the hereditary saturated subset H of E0 generated by {v ∈ E0 | P =⊕v} (see Theorem 5.3.2).
It follows from Theorem 2.5.9 that P and Q generate the same ideal I0 in LC(E). There is a projection
e ∈ LC(E), which is the sum of the basic projections w, where w ranges in H, such that I0 = LC(E)eLC(E)
and eLC(E)e= LC(H) is also a Leavitt path algebra. Note that P and Q are full projections in LC(H), and so
[1H ]≤m[P] and [1H ]≤m[Q] in V (LC(H)) for some m≥ 1. Now consider the map ψH : LC(H)→C∗(H).
Since V (ψH)([P]) = V (ψH)([Q]) in V (C∗(H)) we get K0(ψH)(ϕ1([P])) = K0(ψH)(ϕ1([Q])), and since
K0(ψH) is an isomorphism we get ϕ1([P]) = ϕ1([Q]). This means that there exists k ≥ 0 such that [P] +
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k[1H ] = [Q]+k[1H ]. But since V (LC(E)) is separative (Theorem 3.6.12) and [1H ]≤m[P] and [1H ]≤m[Q],
we get [P] = [Q] in V (LC(E)).

Now we will establish that the map V (ψ) : V (LC(E))→ V (C∗(E)) is surjective. It suffices to show
that any projection P in MN(C∗(E)) is equivalent to a finite sum of basic projections (corresponding to
vertices of E).

By Theorem 5.3.2, there is a natural isomorphism between the lattice of hereditary saturated subsets of
E0 and the lattice of closed gauge-invariant ideals of C∗(E). Thus, since E is finite, the number of closed
gauge-invariant ideals of C∗(E) is finite, and there is a finite chain I0 = {0} ≤ I1 ≤ ·· · ≤ In = C∗(E) of
closed gauge-invariant ideals such that each quotient Ii+1/Ii is gauge-simple. We proceed by induction on
n.

If n = 1 we have the case in which C∗(E) is gauge-simple. So by [47], we conclude that C∗(E) is either
purely infinite simple, or AF , or Morita-equivalent to C(T). In any of the three cases the result follows.
Note that in the purely infinite case, we use that V (C∗(E)) = K0(C∗(E))t{[0]} = K0(LC(E))t{[0]} =
V (LC(E)); see also Proposition 6.1.3.

Now assume that the result is true for graph C∗-algebras of (gauge) length n− 1 and let A = C∗(E)
be a graph C∗-algebra of length n. Let H be the hereditary saturated subset of E0 corresponding to the
gauge-simple ideal I1. Note that H is a minimal hereditary saturated subset of E0, and thus H is cofinal.
Set B = A/I1. By Lemma 5.3.1, we have B ∼= C∗(E/H). Observe that by the induction hypothesis we
know that every projection in B is equivalent to a finite orthogonal sum of basic projections of the form
v, where v ranges in (E/H)0 = E0 \H. Let π : A→ B denote the canonical projection. Since I1 is the
closed ideal generated by its projections, there is an embedding V (A)/V (I1)→ V (B). (This follows from
[24, Proposition 5.3(c)], taking into account that every closed ideal generated by projections is an almost
trace ideal.) By the induction hypothesis, V (B) = V (C∗(E/H)) is generated as a monoid by {[v] | v ∈
E0\H}, and so the map V (A)/V (I1)→V (B) is also surjective, so that V (B)∼=V (A)/V (I1). In particular,
π(P) ∼ π(Q) for two projections P,Q ∈MN(A) if and only if there are projections P′,Q′ ∈MN(I1) such
that P⊕P′ ∼ Q⊕Q′ in MN(A).

We now deal simultaneously with the two cases where I1 is either AF or Morita equivalent to C(T);
these correspond to the case where I1 has stable rank 1. Note that in this case either H contains a sink v, or
we have a unique cycle without exits, in which case we select v as a vertex in this cycle. Note that, by the
cofinality of H, any projection in I1 is equivalent to a projection of the form k · v for some k ≥ 0. Now take
any projection P in MN(A). Since π(P)∼ π(v1⊕·· ·⊕vr) for some vertices v1, . . . ,vr in E0 \H, there exist
a,b ∈ Z+ such that

P⊕a · v∼ v1⊕·· ·⊕ vr⊕b · v.

Since the stable rank of vAv is 1, the projection v cancels in direct sums [133], and so, if b≥ a, we get

P∼ v1⊕·· ·⊕ vr⊕ (b−a)v,

so that P is equivalent to a finite orthogonal sum of basic projections. If b < a, then we have P⊕ (a−b)v∼
v1⊕ ·· ·⊕ vr. We claim that there is some 1 ≤ i ≤ r such that v is in T (vi), the tree of vi. For, assume to
the contrary that v /∈

⋃r
i=1 T (vi). We will see that v is not in the hereditary saturated subset of E generated

by v1, . . . ,vr. Note that the set D =
⋃r

i=1 T (vi) is hereditary, and that the hereditary saturated subset of E
generated by v1, . . . ,vr is D =

⋃
j∈N S j(D) (see Lemma 2.0.7). Observe also that, since v is either a sink

or belongs to a cycle without exits, and H is cofinal, v belongs to the tree of any vertex in H, whence
D∩H = /0. Let v′ be a vertex in H. If v′ ∈ S(D) then s−1(v′) 6= /0 and r(s−1(v′))⊆D∩H. Since D∩H = /0,
this is impossible. So S(D)∩H = /0. Indeed, an easy induction shows that Si(D)∩H = /0 for all i, and so
D∩H = /0. But as v is equivalent to a subprojection of v1⊕·· ·⊕ vr, the projection v belongs to the closed
ideal of A generated by v1, . . . ,vr, and so v belongs to D. This contradiction shows that v belongs to the tree
of some vi, as claimed.

Now, the fact that v belongs to the tree of vi implies that there is a projection Q which is a finite orthog-
onal sum of basic projections such that vi ∼ v⊕Q. Therefore we get

P⊕ (a−b)v∼ (v1⊕·· ·⊕ vi−1⊕ vi+1⊕·· ·⊕ vr⊕Q)⊕ v.
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Since v can be cancelled in direct sums, we get

P⊕ (a−b−1)v∼ (v1⊕·· ·⊕ vi−1⊕ vi+1⊕·· ·⊕ vr⊕Q),

and so, using induction, we obtain that P is equivalent to a finite orthogonal sum of basic projections.
We consider now the third possibility for I1, namely, the case where I1 is a purely infinite simple C∗-

algebra. Recall that in this case I1 has real rank zero [56], and that V (I1) \ {0} is a group. So there is a
nonzero projection e in I1 such that e∼ e⊕e, and such that for every nonzero projection p in MN(I1) there
exists a nonzero projection q ∈ I1 such that p⊕ q ∼ e. Let P be a nonzero projection in Mk(A), for some
k ≥ 1, and denote by I the closed ideal of A generated by the entries of P. If I · I1 = 0, then I ∼= (I + I1)/I1,
so that I is a closed ideal in the quotient C∗-algebra B = A/I1. It follows then by our assumption on B that
P is equivalent to a finite orthogonal sum of basic projections. Assume now that I · I1 6= 0. Then there is a
nonzero column C =(a1,a2, . . . ,ak)

t ∈Ak such that C =PCe. Consider the positive element c=C∗C, which
belongs to eAe. Since e ∈ I1 and I1 has real rank zero, the C∗-algebra eAe also has real rank zero, so that
we can find a nonzero projection p ∈ cAc. Take x ∈ A such that p = cxc. By using standard techniques (see
e.g., [136]), we can now produce a projection P′ ≤ P such that p ∼ P′. Namely, consider the idempotent
F = CpC∗CxC∗ in PMk(A)P. Then p and F are equivalent as idempotents, and F is equivalent to some
projection P′ in PMk(A)P; see [136, Exercise 3.11(i)]. Since p and P′ are equivalent as idempotents, they
are also Murray-von Neumann equivalent (see e.g., [136, Exercise 3.11(ii)]), as desired. We have thus
shown that there is a nonzero projection p in I1 such that p is equivalent to a subprojection of P. Since I1 is
purely infinite simple, every projection in I1 is equivalent to a subprojection of p, and so every projection
in I1 is equivalent to a subprojection of P.

Now we are ready to conclude the proof. There is a projection q in I1 such that P⊕ q is equivalent to
a finite orthogonal sum of basic projections. Let q′ be a nonzero projection in I1 such that q⊕q′ ∼ e, and
observe that

P⊕ e∼ (P⊕q)⊕q′,

so that P⊕e is also a finite orthogonal sum of basic projections. By the above argument, there is a projection
e′ such that e′ ≤ P and e∼ e′. Write P = e′+P′. Then we have

P⊕ e∼ P′⊕ e′⊕ e∼ P′⊕ e⊕ e∼ P′⊕ e∼ P.

It follows that P ∼ P⊕ e and so P is equivalent to a finite orthogonal sum of basic projections. This
completes the proof. ut

We note that an extension of Theorem 5.3.5 to countable (but not necessarily row-finite) graphs has been
achieved in [91].

Corollary 5.3.6. Let E be a row-finite graph. Then the monoid V (C∗(E)) is a refinement monoid, and
C∗(E) is separative. Moreover, V (C∗(E)) is an unperforated monoid and K0(C∗(E)) is an unperforated
group.

Proof. By Theorem 5.3.5, V (C∗(E))∼=ME , and so V (C∗(E)) is a refinement monoid by Proposition 3.6.8.
It follows from Theorem 3.6.12 that V (C∗(E)) is a separative monoid. The statements about unperforation
follow from Proposition 3.6.14. ut

By [31, Proposition 2.1], a C∗-algebra is separative if and only if it has stable weak cancellation, a
property studied by Brown [55] and Brown and Pedersen [57]. The interested reader can consult these
articles for more information about this class of C∗-algebras.

Corollary 5.3.7. Let E be a row-finite graph and let I be a closed ideal of C∗(E) generated by projections.
Then I is a gauge-invariant ideal and I = I∩LC(E). Moreover, if I and J are closed ideals of C∗(E)
generated by projections then

I∩LC(E) = J∩LC(E) =⇒ I = J.

Proof. If p is a projection in C∗(E) then it follows from Theorem 5.3.5 that p ∼ v1⊕ ·· · ⊕ vn for some
v1, . . . ,vn ∈ E0. This yields that the ideal generated by p coincides with the ideal generated by v1, . . . ,vn.
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So I is a closed ideal generated by a set of vertices of E, and thus it is a gauge-invariant ideal. Since I is
generated by a family of elements of LC(E), we see that I = I∩LC(E).

If I and J are closed ideals of C∗(E) generated by projections and I ∩ LC(E) = J ∩ LC(E) then I =
I∩LC(E) = J∩LC(E) = J, as desired. ut

The above property does not necessarily hold for arbitrary closed ideals of C∗(E). An example can be
found by considering C∗(R1) = C(T), with LC(R1) being the algebra C[z,z−1] of Laurent polynomials.
Indeed for any proper compact subset K of T with nonempty interior, we have that the ideal

I = { f ∈C(T) : f (K) = 0}

satisfies I ∩LC(R1) = {0}, but of course I 6= {0}. There are also different ∗-ideals I and J of LC(E) such
that I = J, for instance take I = LC(R1) and J the ideal generated by any polynomial p(z) for which the
ideals generated by p(z) and by p(z−1) are equal, e.g., p(z) = 1+4z+ z2.

5.4 Closed ideals of graph C∗-algebras containing no vertices

In this section we consider ideals of C∗(E) which stand on the opposite end of the spectrum from the ideals
considered in the previous section. To wit, we investigate the structure of the closed ideals of C∗(E) which
contain no nonzero projections. We again remind the reader of our standing hypothesis throughout this
chapter that E is always assumed to be a row-finite graph.

We recall that for a subset X of E0, I(X) denotes the closed ideal of C∗(E) generated by X .

Lemma 5.4.1. Let H be a hereditary saturated subset of E0. Then projections from C∗(E)/I(H) lift to
C∗(E), that is, if x ∈C∗(E) is such that x+I(H) is a projection then there is a projection p in C∗(E) such
that x− p ∈ I(H).

Proof. Assume that x := x+I(H) is a projection in C∗(E)/I(H) ∼=C∗(E/H). Then there are (not neces-
sarily distinct) vertices v1, . . . ,vm such that

x∼ v1⊕·· ·⊕ vm.

Assume first that m = 1, so that x∼ v for v ∈ E0. Then we can write

v = z∗z+α, x = zz∗+β ,

where z,α,β ∈C∗(E), zv = z, α = vαv, and α,β ∈ I(H). Since I(H) is the norm closure of the ideal I(H)
of LC(E), it follows that there are distinct paths τ1, . . . ,τn ∈ FE(H) (see Definition 2.5.16 and Theorem
2.5.19) such that s(τi) = v for all i and

‖α−
n

∑
i, j=1

τiai jτ
∗
j ‖< 1,

where ai j ∈ LC(EH), that is, ai j belong to the subalgebra of LC(E) generated by all the terms γν∗, where
γ,ν are paths of E starting at vertices of H. Obviously we can assume that v /∈ H.

Define g := ∑
n
i=1 τiτ

∗
i . By the structure of FE(H) we have τ∗i τ j = δi jr(τi), so that g is a projection.

Observe that g≤ v and that g ∈ I(H). Moreover

g · (
n

∑
i, j=1

τiai jτ
∗
j ) =

n

∑
i, j=1

τiai jτ
∗
j = (

n

∑
i, j=1

τiai jτ
∗
j ) ·g,

and thus

‖(v−g)α(v−g)‖= ‖(v−g)(α−
n

∑
i, j=1

τiai jτ
∗
j )(v−g)‖< 1. (5.4)
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Now, multiplying the equation v = z∗z+α by v−g on both sides and using (5.4) we get

‖(v−g)− (v−g)z∗z(v−g)‖< 1,

from which we conclude that (v−g)z∗z(v−g) is invertible in (v−g)C∗(E)(v−g) (see e.g., [118, Theorem
1.2.2]); denote its inverse by w. Now p := z(v−g)w(v−g)z∗ is a projection, and since w+I(H)= v+I(H),
it follows that x− p ∈ I(H) as desired.

Now assume that m > 1. Write x = x1 + · · ·+ xm, where xi are orthogonal projections with xi ∼ vi. By
the case m = 1 there exists a projection p1 in C∗(E) such that p1 +I(H) = x1 +I(H). Now assume that
1 ≤ i < m and that we have constructed orthogonal projections p1, . . . , pi in C∗(E) such that p j +I(H) =
x j +I(H) for j = 1, . . . , i. Write Pi := p1 + · · ·+ pi. Then there are elements zi+1,αi+1,βi+1 such that

vi+1 = z∗i+1zi+1 +αi+1, xi+1 = zi+1z∗i+1 +βi+1,

with (1−Pi)zi+1vi+1 = zi+1, αi+1 = vi+1αi+1vi+1, and αi+1,βi+1 ∈ I(H). The same proof as in the m = 1
case allows us to build a projection pi+1 = zi+1(vi+1−gi+1)wi+1(vi+1−gi+1)z∗i+1 such that pi+1 +I(H) =
xi+1 +I(H). Observe that p1, . . . , pi+1 are orthogonal projections.

Following this procedure, we eventually arrive at a sequence p1, . . . , pm of orthogonal projections in
C∗(E) such that pi +I(H) = xi +I(H) for all i. So p := p1 + · · ·+ pm is a projection in C∗(E) such that
p+I(H) = x+I(H), and the result is proved. ut

The following result follows from Theorems 5.3.2 and 2.7.3, together with Lemma 5.2.8.

Proposition 5.4.2. Let E be a row-finite graph. Let K be the closed ideal of C∗(E) generated by the vertices
in cycles without exits. Then K is isomorphic to the C∗-algebraic direct sum⊕

C

KC⊗C(T),

where KC is the algebra of compact operators on some (finite dimensional or separable infinite dimen-
sional) Hilbert space HC, and C ranges over all the cycles without exits in E.

Proposition 5.4.3. Let E be a finite graph and let J be a closed ideal of C∗(E) containing no nonzero
projections. Then J is contained in the closed ideal of C∗(E) generated by the vertices in cycles without
exits.

Proof. We proceed by induction on the number of cycles of E. If E is acyclic then C∗(E) is a finite-
dimensional (and so matricial) C∗-algebra, and it is well known that every closed ideal in such a C∗-algebra
is generated by its projections.

Now let n≥ 1 and assume that the result is true for finite graphs with less than n cycles. Let E be a finite
graph containing exactly n cycles. If every cycle of E has an exit (i.e., if E satisfies Condition (L)), then
every nonzero closed ideal contains a nonzero projection by Corollary 5.2.16. Thus we may assume that
there is at least one cycle without exits in E. Let H be the hereditary saturated closure of the set of vertices
of E belonging to cycles without exits. It is clear that the only cycles contained in H are the cycles without
exits. Consider the quotient C∗-algebra C∗(E)/I(H)∼=C∗(E/H) (Lemma 5.3.1).

Claim: The ideal J+I(H)/I(H) does not contain nonzero projections.
Proof of Claim. We proceed by way of contradiction. Assume that x+I(H) is a nonzero projection in

C∗(E)/I(H)∼=C∗(E/H), where x∈ J. By Lemma 5.4.1 there is a projection p in C∗(E) such that p+α = x
for some α ∈ I(H). Now there are vertices v1, . . . ,vr ∈ E0 with v1 /∈ H such that

p∼ v1⊕·· ·⊕ vr.

Write p = p1 + · · ·+ pr, where pi are orthogonal projections with pi ∼ vi for i = 1, . . . ,r. Then

p1 + p1α p1 = p1xp1 ∈ J. (5.5)
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Set p1 = ww∗, v1 = w∗w for some partial isometry w in C∗(E). Multiplying (5.5) on the left by w∗ and on
the right by w we get

v1 +w∗αw = w∗xw ∈ v1Jv1.

As in the proof of Lemma 5.4.1, there is a projection g in I(H) such that g≤ v1 and

‖(v1−g)w∗αw(v1−g)‖< 1.

Now since
‖(v1−g)− (v1−g)w∗xw(v1−g)‖= ‖(v1−g)w∗αw(v1−g)‖< 1,

by again invoking [118, Theorem 1.2.2] we get that (v1−g)w∗xw(v1−g) is invertible in (v1−g)C∗(E)(v1−
g), and hence v1−g ∈ J, contradicting the fact that J does not contain nonzero projections. This proves the
Claim.

Since E/H has less than n cycles, it follows from the induction hypothesis that J + I(H)/I(H) is
contained in the ideal K of C∗(E/H) generated by the vertices in E/H belonging to cycles without exits in
E/H. By Proposition 5.4.2, the ideal K is isomorphic (as a C∗-algebra) to the C∗-algebraic direct sum⊕

C

KC⊗C(T),

where KC is the algebra of compact operators on a finite dimensional or a separable infinite-dimensional
Hilbert space, and C ranges over all the cycles without exits in E/H. It follows that J+I(H)/I(H) contains
a nonzero positive element of the form f (c), where f ∈C(T)+ and c = e1e2 · · ·er is a cycle without exits
in E/H.

Consider now the cycle c seen in E, and the element f (c) seen as an element in C∗(E). Note that c is a
cycle with exits in E, and that if e is an exit of c then r(e) ∈ H. Since

e∗1 f (c)e1 = f (e2 · · ·ere1)

we may assume without loss of generality that there is an exit ẽ of c such that s(ẽ) = v0 := s(e1). Observe
that Φ( f (c)) = λ · v0, where λ > 0 (and where Φ is as defined in Lemma 5.2.10).

Since f (c) ∈ J+I(H), there exists α ∈ I(H) such that

f (c)−α ∈ J,

and we may assume that v0αv0 = α . As before, since I(H) is the norm closure of the ideal I(H) of LC(E),
it follows that there are distinct paths τ1, . . . ,τn ∈ FE(H) such that s(τi) = v0 for all i and

‖α−
n

∑
i, j=1

τiai jτ
∗
j ‖< λ ,

where ai j ∈ LC(EH). Observe that {τi}n
i=1 must be a subset of the set of edges e ∈ s−1

E (v0) such that e 6= e1,
because r(e) ∈ H for all such edges e.

Set β := ∑
n
i, j=1 τiai jτ

∗
j . Consider

g := ∑
e∈s−1(v0),e6=e1

ee∗.

Observe that v0−g = e1e∗1 by relation (CK2) at v0. Since (v0−g)β (v0−g) = 0 we get e∗1βe1 = 0 and so

‖e∗1αe1‖< λ .

We have c∗ f (c)c = f (c) and ‖c∗αc‖< λ . As well,

ẽ∗ f (c)ẽ = λ · r(ẽ).

We get
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λ · r(ẽ)− ẽ∗c∗αcẽ = ẽ∗c∗( f (c)−α)cẽ = y,

where y ∈ r(ẽ)Jr(ẽ), so that r(ẽ)−λ−1y = λ−1ẽ∗c∗αcẽ. Since

‖r(ẽ)−λ
−1y‖= ‖λ−1ẽ∗c∗αcẽ‖ ≤ λ

−1‖c∗αc‖< λ
−1 ·λ = 1,

we conclude (yet again by [118, Theorem 1.2.2]) that λ−1y is invertible in r(ẽ)C∗(E)r(ẽ) and so r(ẽ) ∈ J.
But this contradicts the fact that J does not contain nonzero projections, and thus concludes the proof of
the proposition. ut

Proposition 5.4.3 now puts us in position to achieve the following result, which is the main goal of this
section. The result is the analog for graph C∗-algebras of Proposition 2.7.9.

Theorem 5.4.4. Let E be a row-finite graph and let J be a closed ideal of C∗(E) containing no nonzero
projections. Then J is contained in the closed ideal of C∗(E) generated by the vertices in cycles without
exits.

Proof. We have C∗(E) = lim−→C∗(F), where F runs over the family of finite complete subgraphs of E (see
Lemma 5.3.4). Consequently J = lim−→(J∩C∗(F)), and by Proposition 5.4.3, J∩C∗(F) is contained in the
closed ideal of C∗(F) generated by the vertices in cycles without exits in F . Since F is a complete subgraph
of E, the cycles without exits of F cannot have exits in E, and so J∩C∗(F) is contained in the closed ideal
of C∗(E) generated by the vertices in cycles without exits in E. This shows that J is contained in the closed
ideal generated by the cycles without exits in E. ut

5.5 Structure of closed ideals of graph C∗-algebras of row-finite graphs

In this section we will describe all the closed ideals of C∗(E) for a row-finite graph E, Theorem 5.5.3.
The description is similar to that given in the Structure Theorem for Ideals 2.8.10, and its consequence for
row-finite graphs, Proposition 2.8.11. We use here terminology analogous to that given in Section 2.8.

Definition 5.5.1. For any graph E, define LHSK(E) as the set of all triples of the form (H,S ,{Kc}c∈S ),
where H is a hereditary saturated subset of E0, S is a subset of Cu(E) such that S 0∩H = /0 and S <<⊆H,
and for each c ∈S , Kc is a compact nonempty proper subset of T.

Lemma 5.5.2. Let E be a row-finite graph. Then LHSK(E) := {(H,S ,{Kc}c∈S )} is a lattice, with the
order ≤ given by:

(H1,S1,{K(1)
c }c∈S 1)≤ (H2,S2,{K(2)

c }c∈S 2) if:

(i) H1 ⊆ H2,
(ii) S 0

1 ⊆ H2∪S 0
2 , and

(iii) K(2)
c ⊆ K(1)

c for every c ∈S1∩S2.

Proof. It is very easy to see that ≤ is reflexive and antisymmetric. To prove the transitivity, take three
triples in LHSK(E) such that (H1,S1,{K(1)

c }c∈S 1) ≤ (H2,S2,{K(2)
c }c∈S 2) and (H2,S2,{K(2)

c }c∈S 2) ≤
(H3,S3,{K(3)

c }c∈S 3).
Since H1 ⊆H2 and H2 ⊆H3, it follows H1 ⊆H3. On the other hand, S 0

1 ⊆H2∪S 0
2 and S 0

2 ⊆H3∪S 0
3

implies S 0
1 ⊆ H2∪S 0

2 ⊆ H3∪S 0
3 .

Finally, let c ∈S1 ∩S3. Note that c ∈S3 implies c0 ∩H3 = /0, hence c ∈S2 because otherwise c0 ⊆
H2 ∪S 0

2 would imply c0 ⊆ H2 ⊆ H3, a contradiction. Therefore c ∈ S1 ∩S2 ∩S3 and by the relations
K(2)

c ⊆K(1)
c and K(3)

c ⊆K(2)
c we get K(3)

c ⊆K(1)
c . Hence (H1,S1,{K(1)

c }c∈S 1)≤ (H3,S3,{K(3)
c }c∈S 3). ut
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Now we describe how to attach to every closed ideal of a graph C∗-algebra C∗(E) of a row-finite graph
E an element of LHSK(E). Let I be a closed ideal of C∗(E). Define H := I∩E0. Since H ⊆ I then I(H)⊆
I. Let us consider the ideal I/I(H) of C∗(E)/I(H). By Lemma 5.3.1, there is a natural isomorphism
C∗(E)/I(H)∼=C∗(E/H). Let J denote the image of I/I(H) through this isomorphism. We claim that J is
a closed ideal of C∗(E/H) which does not contain vertices. Indeed, if v ∈ J ∩ (E/H)0, then v ∈ I/I(H),
where v denotes the image of v by the canonical map π : C∗(E)→ C∗(E)/I(H). But this gives v ∈ I, a
contradiction. Hence, by Theorem 5.4.4, J is contained in the closed ideal of C∗(E/H) generated by the
vertices in cycles without exits.

Let S I be the set of cycles in E/H such that for every cycle d ∈ E/H we have J ∩I(d0) 6= {0}, and
define SI as the set of cycles of S I seen as cycles of E. Then SI is a subset of Cu(E) such that SI

0∩H = /0
and SI

<< ⊆ H.
For every c ∈S I we have J ∩I(c0) is a nonzero proper ideal of I(c0), which is isomorphic to Kc⊗

C(T). It follows that there is a unique nonempty proper compact subset Kc of T such that

J∩I(c0)∼= Kc⊗C0(T\Kc).

We associate to the closed ideal I the triple (H,SI ,{Kc}c∈SI ), and will prove in Theorem 5.5.3 that we can
recover the ideal I from this data.

Before stating the theorem that gives the correspondence between closed ideals of a graph C∗-algebra
of a row-finite graph and elements of LHSK(E,K), we introduce the following notation: L (C∗(E)) will
stand for the lattice of closed ideals of C∗(E), with the order given by inclusion.

Theorem 5.5.3. Let E be a row-finite graph. Then the following maps are mutually inverse lattice isomor-
phisms.

ϕ : LHSK(E) −→ L (C∗(E))
(H,S ,{Kc}c∈S ) 7→ < {H,{ f (c) | f ∈C0(T\Kc)}c∈S }>,

ϕ ′ : L (C∗(E)) −→ LHSK(E)
I 7→ (I∩E0,SI ,{Kc}c∈SI ).

Proof. We start by showing that ϕ ′ ◦ϕ = idLHSK(E). Take (H,S ,{Kc}c∈S ) ∈LHSK(E) and denote by I
its image under ϕ . We show that I∩E0 = H. Clearly H ⊆ I∩E0. To see the reverse containment, consider
I/I(H) =< { f (c) | f ∈C0(T\Kc)}c∈S >. We thus obtain

I/I(H)∼=
⊕
c∈S

Kc⊗C0(T\Kc), (5.6)

and since Kc 6=T for all c∈S , we get that I/I(H) does not contain nonzero projections. Hence I∩E0 = H
and we have shown our claim.

Now, for each c ∈ Cne(E/H) we have I(c0) ∼= Kc ⊗C(T), and it follows from (5.6) that I(c0) ∩
I/I(H) 6= {0} only if c ∈S . On the other hand, since Kc 6= T for c ∈S we see that I/I(H)∩I(c0) 6= {0}
for all c ∈S . This implies that SI = S . Finally (5.6) shows that we also recover the compact sets Kc for
c ∈S .

We now establish that ϕ ◦ϕ ′ = idL (C∗(E)). To this end, let I ∈L (C∗(E)). Then we have ϕ ◦ϕ ′(I) =
ϕ( (I∩E0,SI ,{Kc}c∈SI ) ), where SI and Kc are defined as above. Denote H := I∩E0, which is a heredi-
tary saturated subset of E0.

Set J = ϕ(ϕ ′(I)). Then I(H)⊆ I and I(H)⊆ J. Moreover by construction we have

J/I(H) = I/I(H)∼=
⊕

Kc⊗C0(T\Kc).

Using these facts we get that I = J, and the proof is complete. ut

We conclude this section by discussing aspects of the relationship between ideals of C∗(E) and those of
LC(E). For emphasis, for a graph E we define
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LHSP(E,C)

to be the lattice QE given in Definition 2.8.6, where the field K is the complex numbers C.

Corollary 5.5.4. Let E be a row-finite graph, and let I = I(H) be a gauge-invariant closed ideal of C∗(E),
where H is a hereditary saturated subset of E0. Then I ∩LC(E) = I(H), the ideal of LC(E) generated by
H.

Proof. Write J = I(H)∩LC(E), and observe that J = I(H). Clearly I(H)⊆ J and J∩E0 = H = I(H)∩E0.
If J 6= I(H) then by Proposition 2.8.11, there is a nonempty set S and Laurent polynomials {pc}c∈S such
that (H,S ,{pc}c∈S ) belongs to LHSP(E,C) and J = I(H ∪{pc}c∈S ). Now J is a closed ideal of C∗(E)
which strictly contains I(H), because it will contain more vertices than I(H) in case some pc(z) does not
have zeros in T, or otherwise it will correspond to a triple in LHSK(E) of the form (H,S ,{Kc}c∈S ) where
Kc is the (finite) set of zeros of pc(z) in T. This would contradict the fact that J = I(H). ut

We indeed can generalize the above corollary in the following way. We consider the extension map

e : Lid(LC(E))→L (C∗(E)), e(I) = I

and the restriction map

r : L (C∗(E))→Lid(LC(E)), r(I) = I∩LC(E).

These maps define a (monotone) Galois connection, and one can determine the effect of them on the
corresponding isomorphic lattices LHSP(E,C) and LHSK(E) respectively, as follows.

Corollary 5.5.5. Let E be a row-finite graph, and denote by

e : LHSP(E,C)→LHSK(E) and r : LHSK(E)→LHSP(E,C)

the maps induced by extension and restriction of ideals (closed ideals).

(i) For (H,S ,{pc}c∈S ) ∈LHSP(E,C), we have e(H,S ,{pc}c∈S ) = (H ′,S ′,{Kc}c∈S ′), where S ′ is
the set of those elements c in S such that pc has at least one root in T, H ′ is the hereditary saturated
closure of H ∪{c0 | c ∈S \S ′}, and Kc is the finite nonempty subset of T consisting of the roots of
pc lying in T, for c ∈S ′.

(ii) For (H,S ,{Kc}c∈S ) ∈LHSK(E), we have r(H,S ,{Kc}c∈S ) = (H,S ′′,{pc}c∈S ′′), where S ′′ is
the set of those elements c in S such that Kc is a finite subset of T, and for each c ∈S ′′, pc is the
unique admissible polynomial having as roots all the elements of Kc (with multiplicity one).

In particular, e and r restrict to an isomorphism between these two partially ordered sets: the poset of
triples (H,S ,{pc}c∈S ) ∈LHSP(E,C) such that each pc, for c ∈S , is a polynomial with simple roots,
all of them in T; and the poset of triples (H,S ,{Kc}c∈S ) ∈LHSK(E) such that each Kc, for c ∈S , is a
finite nonempty subset of T.

Proof. This follows easily from the correspondences we have established previously, together with Corol-
lary 5.5.4. ut

5.6 Comparing properties of Leavitt path algebras and graph C∗-algebras

Now that a description and discussion of graph C∗-algebras is in hand, we conclude this chapter by describ-
ing a clearly very strong, but still very mysterious, connection between various structural properties of the
algebras LC(E) and C∗(E). Our goal here is not to present all currently-known connections, but rather only
enough such connections to convince the reader that additional investigation would be both interesting and
merited. Specifically, we will focus on these connections in the context of finite graphs. In particular, both
LC(E) and C∗(E) are thereby unital algebras, and, in addition, C∗(E) is separable.
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We have already seen an example of one such connection in Theorem 5.3.5, namely, that the monoids
V (LK(E)) and V (C∗(E)) are isomorphic, and that each is isomorphic to the graph monoid ME . Moreover,
by Corollary 5.3.3, the lattice of graded ideals of a Leavitt path algebra is identical to the lattice of closed
gauge-invariant ideals of the corresponding graph C∗-algebra. On the other hand, the relationship between
the corresponding lattices of all ideals is not as tight, and this is mainly due to the differences arising in the
case of the graph E = R1; see Corollary 5.5.5.

Some historical perspective is in order here. While there were a number of articles predating it which
discussed structures of a similar nature, the article [47] is generally recognized as the starting point for the
study of graph C∗-algebras. By the time Leavitt path algebras made their appearance in the literature in
2005, many of the structural properties of graph C∗-algebras had already been established, including the
properties discussed below. One of the two foundational articles on Leavitt path algebras ([31]) included
the description of the V -monoid of both LC(E) and C∗(E); the information about C∗(E) had theretofore
been unknown. On the other hand, the second of the two foundational articles on Leavitt path algebras ([5])
included the Simplicity Theorem for Leavitt path algebras; both algebraists and analysts took note that the
conditions for the simplicity of LC(E) were identical to the conditions for the simplicity of C∗(E) given
in [47]. Indeed, some (but definitely not all) of the subsequent results established for Leavitt path algebras
had as their bases the analogous previously-proved results for graph C∗-algebras. It is fair to say that there
has been a very satisfactory and fruitful exchange of ideas between the algebraists and analysts, owing to
the similarities of some of these results. On the other hand, although many of the results are similar in
appearance, there is currently no known vehicle by which the results about one of the structures directly
implies the results about the other.

Any C∗-algebra A can be considered from two different points of view: not only is A a ring, but A
comes equipped with a topology as well, so that one may also view the ring-theoretic structure of A from
a topological/analytic viewpoint. For instance, one may define the (algebraic) simplicity of a C∗-algebra
either as a ring (no nontrivial two-sided ideals), or the (topological) simplicity as a topological ring (no
nontrivial closed two-sided ideals). In general, the algebraic and topological properties of a given C∗-
algebra A need not coincide.

Parts of the following discussion appear in [1].

Isomorphism and Morita equivalence. Perhaps the most basic possible connection between Leavitt
path algebras and graph C∗-algebras is this: if E and F are graphs for which the two Leavitt path algebras
LC(E) and LC(F) are “the same”, must the corresponding graph C∗-algebras C∗(E) and C∗(F) also be
“the same”? Here “the same” could potentially take on many meanings, for example: isomorphic as rings,
isomorphic as C-algebras, isomorphic as ∗-algebras, isomorphic as Z-graded algebras, Morita equivalent,
etc. As a first attempt to answer a question of this type, it was established [13, Theorem 8.6] that if E and
F are row-finite graphs such that LC(E) and LC(F) are simple rings, and if LC(E)∼= LC(F) as rings, then
C∗(E) ∼= C∗(F) as ∗-algebras. It was conjectured in [13] both that a similar conclusion should hold for
all Leavitt path algebras over countable graphs, and that a similar conclusion should hold with isomorphic
replaced by Morita equivalent. Five years after the appearance of [13], using deep, powerful tools from
both symbolic dynamics and ordered, filtered K-theory, the following significant advance was achieved in
this regard.

Theorem. ([76, Theorem 14.7]) Let E and F be graphs with finitely many vertices and at most countably
many edges.

(i) If LC(E)∼= LC(F) as rings, then C∗(E)∼=C∗(F) as ∗-algebras.
(ii) If LC(E) and LC(F) are Morita equivalent, then C∗(E) and C∗(F) are (strongly) Morita equivalent.

Simplicity. A ring A is called simple in case A has no nontrivial two-sided ideals; a topological ring is
called simple in case A has no nontrivial closed two-sided ideals.

By The Simplicity Theorem 2.9.7, LC(E) is simple if and only if E is cofinal and has Condition (L).
On the other hand, by [47, Proposition 5.1] (for the case without sources), and [129] (for the general case),
C∗(E) is (topologically) simple if and only if E is cofinal and has Condition (L). (It is worth noting here
that, by [69, p. 215], for any unital C∗-algebra A, A is topologically simple if and only if A is algebraically
simple.) Consequently, we get that these are equivalent for any finite graph E:
(1) LC(E) is simple.
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(2) C∗(E) is (topologically) simple.
(3) C∗(E) is (algebraically) simple.
(4) E is cofinal and satisfies Condition (L).

Purely infinite simplicity. A simple ring R is called purely infinite simple in case every nonzero left
ideal of R contains an infinite idempotent; a simple C∗-algebra A is called purely infinite (simple) if for
every positive x ∈ A, the subalgebra xAx contains an infinite projection.

By [29, Theorem 1.6] (see also Remark 3.8.4), (algebraic) purely infinite simplicity for unital rings is
equivalent to: R is not a division ring, and for all nonzero x ∈ R there exist α,β ∈ R for which αxβ = 1. On
the other hand, by [52, Proposition 6.11.5], (topological) purely infinite simplicity for unital C∗-algebras is
equivalent to: A 6=C and for every x 6= 0 in A there exist α,β ∈ A for which αxβ = 1. (Remark: Blackadar
defines purely infinite simplicity this way, and then shows this definition is equivalent to Cuntz’ definition
given in [70].) Easily, for any graph E, C∗(E) is a division ring if and only if E is a single vertex, in which
case C∗(E) = C. Thus we have, for graph C∗-algebras, C∗(E) is (algebraically) purely infinite simple if
and only if C∗(E) is (topologically) purely infinite simple.

By the Purely Infinite Simplicity Theorem 3.1.10, LC(E) is purely infinite simple if and only if LC(E) is
simple, and E has the property that every vertex connects to a cycle. On the other hand, by [47, Proposition
5.3], C∗(E) is (topologically) purely infinite simple if and only if C∗(E) is simple, and E has the property
that every vertex connects to a cycle. Consequently, we get that these are equivalent for any finite graph E:
(1) LC(E) is purely infinite simple.
(2) C∗(E) is (topologically) purely infinite simple.
(3) C∗(E) is (algebraically) purely infinite simple.
(4) E is cofinal, every cycle in E has an exit, and every vertex in E connects to a cycle.

The Exchange Property. A ring R is an exchange ring if for any a ∈ R there exists an idempotent
e ∈ R for which e ∈ Ra and 1− e ∈ R(1−a). (Note: The original definition of exchange ring was given by
Warfield, in terms of a property on direct sum decomposition of modules; this property clarifies the genesis
of the name exchange. The definition given here is equivalent to Warfield’s; this equivalence was shown
independently by Goodearl and Warfield in [88, discussion on p. 167], and by Nicholson in [122, Theorem
2.1].) On the other hand, a topological ring A is said to have the exchange property in case for every x > 0
there exists a projection p such that p ∈ Ax and 1− p ∈ A(1− x). (We call this condition “topological
exchange”; there does not seem to be an explicit definition of “topological exchange ring” in the literature.)

By Theorem 3.3.11, LC(E) is an exchange ring if and only if E satisfies Condition (K). On the other
hand, by [100, Theorem 4.1] C∗(E) has real rank zero if and only if E satisfies Condition (K). Furthermore,
by [28, Theorem 7.2], for a unital C∗-algebra A, A has real rank zero if and only if A is a topological
exchange ring if and only if A is an exchange ring. Consequently, we get that these are equivalent for any
finite graph E:
(1) LC(E) is an exchange ring.
(2) C∗(E) is a (topological) exchange ring.
(3) C∗(E) is an (algebraic) exchange ring.
(4) E satisfies Condition (K).

Primitivity. A ring R is (left) primitive if there exists a simple faithful left R-module; a topological ring
A is (topologically) primitive if there exists an irreducible faithful ∗-representation of A. (That is, there is
a faithful irreducible representation π : A→ B(H ) for a Hilbert space H .) It is shown in Theorem 4.1.10
that (for row-finite E) LC(E) is left (and / or right) primitive if and only if E is downward directed and
satisfies Condition (L). On the other hand, it is shown in [45, Proposition 4.2] that C∗(E) is (topologically)
primitive if and only if E is downward directed and satisfies Condition (L). It is shown in [74, Corollary
to Theorem 2.9.5] that a C∗-algebra is algebraically primitive if and only if it is topologically primitive.
Consequently, we get that these are equivalent for any finite graph E:
(1) LC(E) is primitive.
(2) C∗(E) is (topologically) primitive.
(3) C∗(E) is (algebraically) primitive.
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(4) E is downward directed and satisfies Condition (L).
(We note that the first three properties have been shown to be equivalent for arbitrary graphs as well,

with the fourth condition being replaced by: E is downward directed, satisfies Condition (L), and has the
Countable Separation Property. See Theorems 7.2.5 and 7.2.7 below.)

It is interesting to observe that for the properties discussed above (simplicity, purely infinite simplicity,
exchange, and primitivity), the algebraic and topological conditions on C∗(E) are identical. Perhaps there
is something in this observation which will lead to a deeper understanding of why there seems to be such a
strong relationship between these properties of LC(E) and C∗(E).

There are situations where the analogies between the Leavitt path algebras and graph C∗ algebras are
not as tight as those presented above. We have already mentioned one: the comparison of the ideal lattice
of LC(E) with the (closed) ideal lattice of C∗(E). We discuss two more of those now: primeness and stable
rank. We will discuss others in Chapter 6, including questions about tensor products (see Section 6.4).

Even in these situations, much similarity between the algebras LC(E) and C∗(E) remains. Indeed, of-
tentimes the only differences in the relationships occur with respect to graphs containing cycles without
exits, e.g., the graph R1.

Primeness. A ring R is called prime in case {0} is a prime ideal of R; that is, in case for any two-sided
ideals I,J of R, I ·J = {0} if and only if I = {0} or J = {0}. A C∗-algebra A is prime in case {0} is a prime
ideal of A; that is, in case for any closed two-sided ideals I,J of R, I · J = {0} if and only if I = {0} or
J = {0}.

By Proposition 4.1.5, LC(E) is prime if and only if E is downward directed. But by [73, Corollaire 1],
any separable C∗-algebra is (topologically) prime if and only if it is (topologically) primitive. So (for finite
E) C∗(E) is prime if and only if C∗(E) is primitive, which as mentioned directly above happens if and only
if E is downward directed and satisfies Condition (L). (We note that since I · J = {0} implies I · J = {0}, it
is straightforward to show that A is algebraically prime if and only if A is analytically prime.)

So for example if E = R1 is the graph with one vertex and one loop, then LC(E) ∼= C[x,x−1] is prime
(clearly, as it’s an integral domain), but C∗(E)∼=C(T) is not prime (as it’s not hard to write down nonzero
orthogonal continuous functions on the unit circle T.)

Specifically, we see that in situations where E satisfies Condition (L), then primeness of LC(E) is equiv-
alent to primeness of C∗(E) (because in each case these are equivalent to primitivity).

Stable rank. The definition of the stable rank sr(R) of a ring R is given in Definitions 4.4.1. The
topological stable rank of Banach algebras was introduced by Rieffel in his seminal paper [133]. It was
shown by Herman and Vaserstein [95] that the topological stable rank tsr(A) coincides with the ring-
theoretic (a.k.a. ’Bass’) stable rank sr(A).

The value of the stable rank of LC(E) for all possible configurations of the graph E is given in Theorem
4.4.19. On the other hand, the value of the stable rank of C∗(E) for all possible configurations of the graph
E is given in [72, Proposition 3.1 and Theorem 3.4], to wit:

- sr(C∗(E)) = 1 if no cycle in E has an exit (i.e., has Property (NE));
- sr(C∗(E)) = ∞ if there exists H ∈HE such that the quotient graph E/H is nonempty, finite,

cofinal, contains no sinks and each cycle has an exit; and
- sr(C∗(E)) = 2 otherwise.

Consequently, if E is not acyclic and has property (NE), then sr(LC(E)) = 2 by Theorem 4.4.19, but
sr(C∗(E)) = 1 by the above-quoted result from [72]. As in the Primeness discussion above, the simplest
example of this situation is the graph E = R1. As noted in Example 4.4.21(iii), LC(R1) ∼= C[z,z−1] has
sr(LC(R1)) = 2. To explicitly show why sr(LC(R1))> 1, observe that (1+ z)C[z,z−1]+(1+ z2)C[z,z−1] =
C[z,z−1]. It is straightforward to see that there is no element v ∈ C[z,z−1] such that (1+ z)+ v(1+ z2) is
invertible in C[z,z−1], i.e., that there is a 2-unimodular row which is not reducible. On the other hand, the
completion C∗(R1) ∼= C(T) of LC(R1) has stable rank 1. So necessarily there exists v ∈ C∗(E) such that
(1+ z)+ v(1+ z2) is invertible in C(T). Since a (continuous) function in C(T) is invertible if and only if it
has no zeroes in T, we see that we can take v = 1.



Chapter 6
K-theory

In this chapter we focus on a number of K-theoretic properties of LK(E). In Section 6.1 we focus on the
relationship between the monoid V (LK(E)) and the Grothendieck group K0(LK(E)); in particular, we re-
alize K0(LK(E)) as the cokernel of an appropriate linear transformation between free abelian groups. In the
subsequent Section 6.2 we describe the Whitehead group K1(LK(E)), and show that its description is quite
closely related to the description of K0(LK(E)). In Section 6.3 we present in great detail the Restricted
Algebraic Kirchberg Phillips Theorem, and the still open (as of 2017) Algebraic Kirchberg Phillips Ques-
tion. It is not hyperbolic to say that this question has been, and continues to be, at the heart of a substantial
portion of the research effort in the subject. We finish the chapter with Section 6.4, in which we describe
various properties of tensor products of Leavitt path algebras in the larger context of Hochschild homology.

For additional background on K-theoretic concepts, see e.g., [159].

6.1 The Grothendieck group K0(LK(E))

In this first section of Chapter 6 we completely describe the group K0(LK(E)), where E is a row-finite
graph and K is any field. We start the section by giving an overview of the groups K0(R) for a general ring
R, and then subsequently focus on the case R = LK(E).

Let M be an abelian monoid, written additively; that is, (M,+) is a set with an associative, commutative
binary operation +, for which there is an element 0 having 0+m = m+ 0 = m for all m ∈ M. The goal
is to associate M with an abelian group G = G(M) in a natural, universal way. Intuitively, this should be
done by “adding inverses when necessary”; for instance, if M =Z+, then the appropriate group G is simply
Z. Moreover, if M is already a group, then G(M) should just be M itself. The main issue that arises in
this process is in the situation where M is not cancellative (i.e., there exist a,b,c ∈M for which a 6= b but
a+ c = b+ c). In this situation M clearly cannot be embedded in a group.

Formally, for any abelian monoid M there exists a universal (abelian) group G(M), having the following
property: there exists a monoid homomorphism ϕ : M→ G(M) such that, for every abelian group G′, and
every monoid homomorphism ψ : M → G′, there exists a unique group homomorphism δ : G(M)→ G′

for which ψ = δ ◦ϕ . In general ϕ need not be an injection. There is an explicit construction of G(M),
as follows. Define an equivalence relation ∼ on M×M by setting (m1,m2) ∼ (n1,n2) in case there exists
k ∈ M for which m1 + n2 + k = m2 + n1 + k. Let G(M) denote the equivalence classes in M×M under
∼ (we denote an individual class by [ ]0), and define + on G(M) as expected: [(m1,m2)]0 +[(n1,n2)]0 =
[(m1 +n1,m2 +n2)]0. It is straightforward to check that this operation is well defined, and that (G(M),+)
is indeed an abelian group. Specifically, the identity of G(M) is [(m,m)]0 (for any m ∈M); the inverse of
[(m,n)]0 ∈G(M) is [(n,m)]0; and the monoid homomorphism ϕ : M→G(M) is given by ϕ(m) = [(m,0)]0.
The image of ϕ is called the positive cone of G(M). Effectively, the construction of the group G(M) takes
care of any lack of cancellation in M by ensuring that if a+ c = b+ c in M for a 6= b, then ϕ(a) = ϕ(b) in
G(M).
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Example 6.1.1. If M = (Z+)n (the direct sum of n copies of Z+), then it is easy to show directly that
G(M)∼= Zn.

Remark 6.1.2. Of special importance in the context of Leavitt path algebras is the following example (cf.
Examples 3.2.2(i)). Consider the monoid M = {0,x,2x, ...,(n−1)x} with obvious operation + and relation
nx = x. Then the subset S = M \{0} is closed under +. But, since x+(n−1)x = nx = x in S, we see that S
is indeed a group under + (with identity element (n−1)x), specifically, S ∼= Z/(n−1)Z. In this situation,
it is not hard to show that S∼= G(M).

This phenomenon happens more generally.

Proposition 6.1.3. Suppose (M,+) is an abelian monoid with the property that S = M \ {0} is a group
(under the same operation +). Then S∼= G(M).

Proof. Let e ∈ S denote the presumed identity element in S.
We claim that for each element (m1,m2) ∈ M ×M there exists a unique element x ∈ S for which

[(m1,m2)]0 = [(x,0)]0. There are three cases to establish the existence. First, if m2 ∈ S then, because S
is a group, there exists s ∈ S with s+m2 = e. Defining x = s+m1 ∈ S, we have x+m2 = s+m1 +m2 =
e+m1 = m1 in S, so that (m1,m2) ∼ (x,0) (using any element k of M in the definition of ∼). Second, if
m2 = 0 and m1 6= 0 then the result is clear. Finally, (0,0) ∼ (e,0), as 0+0+ e = 0+ e+ e in S (since e is
the identity element of S).

For uniqueness, if x,y ∈ S with (x,0) ∼ (y,0) then x+ 0+ k = y+ 0+ k for some k ∈M. If k = 0 then
x = y; if on the other hand k ∈ S then by hypothesis there exists ` ∈ S with k+ ` = e; and by adding ` to
both sides we get x+0+ e = y+0+ e, so that again x = y. ut

We note that in the above situation that the monoid homomorphism ϕ : M→ G(M) = M \{0} is given
by ϕ(m) = [(m,0)]0 for m ∈ S, and ϕ(0) = [(e,0)]0.

Definition 6.1.4. Recall that, as noted in Section 3.2, for any unital ring R we denote by V (R) the monoid
of isomorphism classes of finitely generated projective left R-modules, with operation⊕. The Grothendieck
group K0(R) of a unital ring R is the universal group G(V (R)).

As is standard, in case R is unital we denote the equivalence class of the left regular module R in K0(R)
by [1R]0.

Notation 6.1.5. In the construction of K0(R) as the universal group of the monoid V (R) there are two
equivalence relations in play: the isomorphism relation in V (R), and the relation described above which
yields the equivalence classes in K0(R). We distinguish these two types of equivalence classes notationally,
by writing [ ] to denote elements of V (R), and writing [ ]0 to denote elements of K0(R).

Combining the previous observations with Example 3.2.6, we get

Corollary 6.1.6. Let K be any field, and 2≤ n ∈N. Then K0(LK(Rn))∼= Z/(n−1)Z. Moreover, under this
isomorphism, [1LK(Rn)]0 7→ 1.

In general, from a slightly different point of view, when R is unital then K0(R) is the group F/S, where
F is the free abelian group (written additively) generated by the isomorphism classes of finitely generated
projective left R-modules, and S is the subgroup of F generated by symbols of the form [P⊕Q]0− [P]0−
[Q]0. From this perspective, one can show that [A]0 = [B]0 as elements of K0(R) (where A and B are finitely
generated projective left R-modules) precisely when A and B are stably isomorphic, i.e, when there exists
a positive integer n for which A⊕Rn ∼= B⊕Rn.

We briefly remind the reader of some basic properties of K0 for general (unital) rings. (See [86, Chapter
15] for a discussion of these, and additional properties.)

(i) K0(K)∼= Z for any division ring K.
(ii) If R is a unital ring with Jacobson radical J, then the maps V (R)→ V (R/J) and K0(R)→ K0(R/J)

are both injective. This follows from Bass’ Theorem [107, Lemma 19.27]. In particular it follows that
V (R)∼= Z+ and K0(R)∼= Z for any local ring R.



6.1 The Grothendieck group K0(LK(E)) 155

(iii) K0 is preserved under Morita equivalence; that is, if R and S are Morita equivalent rings, then K0(R)∼=
K0(S).

(iv) K0 preserves direct sums: for rings {Ri|i ∈ I}, K0(⊕i∈IRi)∼=⊕i∈IK0(Ri).
(v) Generalizing the previous item, if ({Ri|i ∈ I},{ϕi, j}) is a direct system of rings and ring homomor-

phisms, then K0(lim−→(Ri,ϕi, j)) = lim−→(K0(Ri),K0(ϕi, j)).

If I is a non-unital ring, then K0(I) is defined as the kernel of the canonical map K0(π) : K0(I1)→K0(Z),
where π : I1 → Z is the projection from the unitization I1 = I⊕Z of I onto Z. In this case, the monoid
V (I) has already been defined in Section 3.2 as the monoid of isomorphism classes of finitely generated
projective modules in FP(I,R), where R is any unital ring containing I as an ideal. (For instance, we can
take R = I1.) There is a natural map G(V (I))→ K0(I), which is neither injective nor surjective in general.
However, as already remarked in Section 3.2, this map is an isomorphism if I is a ring with local units.
In particular K0(LK(E))∼= G(V (LK(E))) for any graph E. Property (v) above holds also in the context of
non-unital rings.

Remark 6.1.7. We now remind the reader of some additional properties of K0, especially those that are
most relevant in the current context.

(i) For unital K-algebras T and T ′, if T and T ′ are isomorphic then there exists an induced isomorphism
ϕ : K0(T )→ K0(T ′) for which ϕ([1T ]0) = [1T ′ ]0.

(ii) Let S denote the K-algebra LK(Rn). We note that in the isomorphism K0(S)∼= Z/(n−1)Z established
in Corollary 6.1.6, the identity element of the group K0(S) is the element [S(n−1)]0. On the other hand,
the element [S]0 of K0(S) corresponds to the generator 1 of Z/(n−1)Z.

(iii) More generally, let d be any positive integer, and T any unital ring. Let T ′ denote the matrix ring
Md(T ). Since T is Morita equivalent to T ′ we necessarily have K0(T )∼= K0(T ′). However, in general
this isomorphism need not take [T ]0 to [T ′]0; indeed, the element [T ]0 of K0(T ) is taken to the element
[T ′e1,1]0 of K0(T ′), while [T ′]0 corresponds to d[T ′e1,1]0 in K0(T ′).

(iv) In a situation which will be of interest in the sequel, we consider T = LK(1,n) and T ′ = Md(LK(1,n)).
Then K0(LK(1,n)) ∼= K0(Md(LK(1,n))), via an isomorphism which takes 1 of Z/(n− 1)Z to d
of Z/(n− 1)Z. From this, we see that there exists some group isomorphism from K0(LK(1,n))
to K0(Md(LK(1,n))) which takes [LK(1,n)]0 to [Md(LK(1,n))]0 if and only if d is a generator of
Z/(n−1)Z, i.e., if and only if g.c.d.(d,n−1) = 1.

In Theorem 3.2.5 we established the following. Let E be a row-finite graph. Let ME be the abelian
monoid with generators {av|v ∈ E0}, and with relations given by setting, for each non-sink v of E,
av = ∑e∈s−1(v) ar(e). Then V (LK(E)) ∼= ME . Specifically, we have an explicit description of the monoid
V (LK(E)) as the monoid ⊕v∈E0Z+, modulo the indicated relations, where av ∈ V (LK(E)) corresponds to
the element zv of ⊕v∈E0Z+ consisting of 1 in the v-coordinate, 0 elsewhere. We consider now the factor
group (⊕v∈E0Z)/T , where T is the subgroup of⊕v∈E0Z generated by the elements {zv−∑e∈s−1(v) zr(e) | v∈
Reg(E)}. It is clear that whenever we have an abelian monoid defined by a presentation with generators
and relations, then its universal group is the group defined by the same presentation. Using this observation,
we immediately obtain the following result.

Theorem 6.1.8. Let E be a row-finite graph and K any field. Let T denote the subgroup of ⊕v∈E0Z gener-
ated by the set {zv−∑e∈s−1(v) zr(e) | v ∈ Reg(E)}. Consider the monoid homomorphism

ϕ : V (LK(E))→ (⊕v∈E0Z)/T

given by sending av to zv +T for each v ∈ E0. Then

(⊕v∈E0Z)/T ∼= G(V (LK(E))) = K0(LK(E)),

and ϕ can be identified with the canonical map V (LK(E))→ K0(LK(E)).

We now present the standard matrix interpretation of Theorem 6.1.8. As usual, let AE = (ai, j) denote
the adjacency matrix of E. We let Ans(E) (or more compactly Ans when E is clear) denote the matrix AE
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with the zero-rows removed; that is, Ans is the (non-square) matrix gotten from AE by removing the rows
corresponding to the sinks of E. Similarly, we denote by Ins the matrix gotten by taking the E0×E0 identity
matrix I and deleting the rows corresponding to the sinks of E. A moment’s reflection yields that, for each
element of ⊕v∈E0Z (viewed as a column vector) of the form zv−∑e∈s−1(v) zr(e) where v ∈ Reg(E), we have

zv− ∑
e∈s−1(v)

zr(e) = (Ins−Ans)
tzv ,

where as usual ( )t denotes the transpose of a matrix. The upshot is that the subgroup T may be realized
as the image of the linear transformation (Ins−Ans)

t :⊕v∈Reg(E)Z→⊕v∈E0Z, viewed as left multiplication
on columns. In other words, we may restate Theorem 6.1.8 as follows.

Theorem 6.1.9. Let E be a row-finite graph. Then

K0(LK(E))∼= Coker((Ins−Ans)
t :⊕v∈Reg(E)Z→⊕v∈E0Z).

Corollary 6.1.10. Let E be a finite graph containing no sinks. (As a specific case, by Theorem 3.1.10, we
may suppose LK(E) is purely infinite simple unital.) Let |E0|= n. Then

K0(LK(E))∼= Coker(In−At
E :⊕v∈E0Z→⊕v∈E0Z).

Examples 6.1.11.

(i) Let E be a finite acyclic graph having s sinks. In Theorem 2.6.17 it is shown that LK(E) is isomorphic
to a direct sum of s rings, each of which is a full matrix ring over K. Thus, using the aforementioned
basic properties of K0, we get that K0(LK(E))∼= Zs.

(ii) It is well-known that K0(K[x,x−1])∼= Z. (Indeed, this result also follows from an application of The-
orem 3.2.5, since in this case we get V (K[x,x−1]) = Z+.) Similarly, let E be a finite graph having
Condition (NE). Let m denote the number of (necessarily disjoint) cycles of E, and let s denote the
number of sinks of E. Then K0(LK(E))∼= Zm+s.

(iii) Let E3 denote the (sink-free) graph •
$$ (( • ((
hh • ddhh . Then AE =

1 1 0
1 0 1
0 1 1

 , so that

I3−At
E3

=

 0 −1 0
−1 1 −1

0 −1 1

. Using this description, it is easy to show that the image of the linear

transformation from Z3 to Z3 given by left multiplication by I3−At
E3

is generated by the column

vectors

 0
1
0

 and

 1
0
1

, which in turn easily yields that the cokernel of this transformation is iso-

morphic to Z. By Corollary 6.1.10 this gives that K0(LK(E3))∼=Z. Moreover, under this isomophism,
[1LK(E3)]0 ∈ K0(LK(E3)) 7→ 0 ∈ Z.

(iv) Let E4 denote the (sink-free) graph •
$$ (( •

�� ((
hh •

�� ((
hh • ddhh . Then AE4 =


1 1 0 0
1 1 1 0
0 1 1 1
0 0 1 1

 ,

so that I4−At
E4

=


0 −1 0 0
−1 0 −1 0

0 −1 0 −1
0 0 −1 0

. Using this description, it is easy to show that the image of

the linear transformation from Z4 to Z4 given by left multiplication by I4−At
E4

is all of Z4, so that
the cokernel of the transformation is {0}, which gives by Corollary 6.1.10 that K0(LK(E4))∼= {0}.
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We conclude this section by demonstrating a close connection between the semigroup V (LK(E))\{[0]}
and the purely infinite simplicity of LK(E).

Proposition 6.1.12. Let E be a finite graph and K any field. Then LK(E) is purely infinite simple if and
only if V (LK(E))\{[0]} is a group. Moreover, in this situation we have V (LK(E))\{[0]}= K0(LK(E)).

Proof. (⇒) This follows for any unital ring R by [29, Proposition 2.1]. Indeed, the result is proved by
observing that for any purely infinite simple ring R, given any two elements x,y in V (R)\{[0]}, there exist
a,b in V (R)\{[0]} such that x = y+a and y = x+b. It is easy to show that this implies that V (R)\{[0]}
is a group.

(⇐) Let g be a nonzero idempotent in LK(E). Then g is infinite, as follows. We have [LK(E)g] ∈
V (LK(E))\{[0]}, and by hypothesis there exists a nonzero finitely generated projective left LK(E)-module
P (specifically, the identity element of the presumed group V (LK(E)) \ {[0]}), for which [LK(E)g] =
[LK(E)g]⊕ [P], so that LK(E)g∼= LK(E)g⊕P as left R-modules.

In particular, this shows that every vertex v of E0 is infinite, so by Corollary 3.5.5 we conclude that
E satisfies Condition (L). So Proposition 2.9.13 gives that every nonzero left ideal of LK(E) contains a
nonzero idempotent. But every nonzero idempotent of LK(E) is infinite by the previous observation. So
every nonzero left ideal of LK(E) contains an infinite idempotent.

To conclude the proof we need only show that LK(E) is a simple ring. Pick any nonzero two-sided
ideal I of LK(E); we show that I = LK(E). Arguing as above, we get that I contains a nonzero idempotent
(call it g), and that there exists a nonzero finitely generated projective left LK(E)-module Q for which
LK(E)g∼= LK(E)⊕Q. In particular there is an element r ∈ LK(E) and a left LK(E)-module homomorphism
ϕ : LK(E)g→ LK(E) for which (rg)ϕ = 1LK(E). But then by standard arguments this yields that there exists
x ∈ gLK(E) for which rgx = 1LK(E). So we have RgR = R, so that R is simple, as desired.

The final statement follows from Proposition 6.1.3. ut

Remark 6.1.13. Suppose R is a purely infinite simple ring. Then Proposition 6.1.12 together with Propo-
sition 6.1.3 imply that we may view K0(R) as a submonoid of V (R). In particular, in this situation, if
[A]0 = [B]0 as elements of K0(R), and neither A nor B is the zero module, then [A] = [B] as elements of
V (R)\{[0]}, i.e., A∼=B as (nonzero) left R-modules. (In other words, in this situation, “stable isomorphism
implies isomorphism”.)

Thus when R is a purely infinite simple ring and A is a nonzero finitely generated projective left R-
module, we have the choice to denote the element [A]0 of K0(R) either using the [A]0 notation, or the [A]
notation. For convenience we will typically use the latter.

We note that the ’only if’ part of Proposition 6.1.12 does not hold for general rings. For instance,
consider the ring B(H ) of bounded operators on a separable Hilbert space H , and let R be the ring
B(H )/F(H ), where F(H ) denotes the ideal of finite rank operators. Then R is not simple, because the
Jacobson radical of R is the nonzero ideal K(H )/F(H ), where K(H ) denotes the compact operators.
Since the natural map η : V (R)→ V (B(H )/K(H )) is injective, and V (B(H )/K(H )) = {0}∪{[1R]},
it follows that η is indeed an isomorphism. Thus R is a non-simple ring for which V (R)\{0} is a group.

6.2 The Whitehead group K1(LK(E))

Having established an explicit description of the Grothendieck group K0(LK(E)) of a Leavitt path algebra
in the previous section, we now turn our attention to the Whitehead group K1(LK(E)).

Definition 6.2.1. For each unital ring R and positive integer n we consider GLn(R), the group of invertible

n×n matrices over R. Clearly GLn(R) embeds in GLn+1(R), via the assignment M 7→
(

M 0
0 1

)
. In this way

we may form the group lim−→n∈NGLn(R), which is denoted by GL(R). For any group G (written multiplica-
tively), the commutator subgroup [G,G] is the (necessarily normal) subgroup of G generated by elements
of the form xyx−1y−1 for x,y ∈ G.
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We define K1(R) to be the abelian group

K1(R) = GL(R)/[GL(R),GL(R)].

K1(R) is often called the Whitehead group of R. In case R is non-unital, we let R1 = R⊕Z be the standard
unitization of R, and define K1(R) to be the kernel of the map K1(π) : K1(R1)→ K1(Z) induced by the
canonical projection π : R1→ Z.

Recall that for any unital ring R we denote the group of units of R by R×.

Examples 6.2.2. Although the indicated definition of K1(R) is relatively straightforward, computing K1(R)
in specific situations is typically a highly nontrivial task.

(i) If K is a field, then K1(K)∼= K×. There are a number of ways to establish this result (none of which
is immediate), including the utilization of an old linear algebra result of Dickson which shows that
(except for two specific exceptions) we have, for each n, [GLn(K),GLn(K)] = SLn(K) (where SLn(K)
denotes the n×n matrices over K of determinant 1). The generalization of this result to division rings
D was established by Dieudonné: K1(D) = D×/[D×,D×].

(ii) If R is a purely infinite simple unital ring, then by [29, Theorem 2.3] we have K1(R)∼= R×/[R×,R×].
We will show below, in case R = LK(E) is a purely infinite simple Leavitt path algebra, how to
describe this group explicitly in terms of E and K. Recall (Remark 3.8.4) that if R is a unital ring
having the property that for each 0 6= r ∈ R there exist x,y ∈ R with xry = 1, then R is either a division
ring or R is purely infinite simple. So the result [29, Theorem 2.3] can in a sense be viewed as an
extension of Dieudonné’s result for division rings mentioned in the previous item.

(iii) Of clear interest in the current context is K1(K[x,x−1]). As shown originally by Bass, Heller and Swan
[44, Corollary 3 to Theorem 2], K1(K[x,x−1])∼= K×⊕Z. A generalized version of this result will be
utilized to achieve Theorem 6.2.4.

If M = (mi, j) is an m×n integer-valued matrix and R is any unital ring, then M induces a homomorphism
of groups

M :
n

∏
i=1

R×→
m

∏
i=1

R×

given by exponentiation. Specifically, if M = (mi, j) ∈ Mm×n(Z) and ρ = (rt) ∈ ∏
n
i=1 R×, then for each

1≤ i≤ m the ith entry in M ·ρ is given by

(M ·ρ)i =
n

∏
j=1

r
mi, j
j .

This group homomorphism will play an important role in the description of K1(LK(E)), where M will be
the matrix (Ins−Ans)

t described in the previous section.

Remark 6.2.3. (i) There is an alternate definition of K1(R) which starts by considering a category with
objects equal to the elements of the monoid V (R), and with appropriately defined morphisms. It
follows almost immediately from this alternate definition that if R and S are Morita equivalent rings,
then K1(R) ∼= K1(S). (See e.g., [159, Proposition III.1.6.4]. This isomorphism may also be shown
using Definition 6.2.1 as a starting point, but the required argument is more intricate.) In particular,
by Examples 6.2.2(1), if K is a field then K1(Mm(K))∼= K×.

(ii) It is not hard to see that K1 preserves direct sums: for rings {Ri|i ∈ I}, K1(⊕i∈IRi) ∼= ⊕i∈IK1(Ri). In
particular, K1(⊕n

i=1Mmi(K))∼= ∏
n
i=1 K×.

We describe now the steps which will allow us to achieve a description of K1(LK(E)) in the situation
where E is a finite graph having no sources. (We will subsequently comment on the situation for more
general graphs.) For a Leavitt path algebra LK(E), the structure of the zero-component LK(E)0 was explic-
itly given in Corollary 2.1.16. To wit, LK(E)0 is built as a direct limit of K-algebras, each of which is a
direct sum of full matrix rings over K. By Remark 6.2.3(ii), we therefore would anticipate that achieving
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an explicit description of K1(LK(E)0) is plausible, and that the group K× should play a key role. We then
show that K1(LK(E)) can be built from K1(LK(E)0) and K0(LK(E)0) by viewing LK(E) as a skew Laurent
polynomial ring over LK(E)0 (see [25]).

Specifically, we have from [25, Lemma 2.4] that, if E has no sources, then LK(E) is a skew Laurent
polynomial ring over LK(E)0, as follows. For each vertex vi (1 ≤ i ≤ d) of E let ei denote an edge for
which r(ei) = vi (that such ei exist requires the no-source hypothesis). Let t+ denote ∑

d
i=1 ei, and let t−

denote t∗+ = ∑
d
i=1 e∗i . It follows easily that t−t+ = ∑

d
i=1 vi = 1LK(E), and that p = t+t− is an idempotent in

LK(E). Then LK(E) = LK(E)0[t+, t−,φ ], where φ : LK(E)0→ pLK(E)0 p is the corner isomorphism given
by φ(b) = t+bt− for all b ∈ LK(E)0.

Let A be a unital K-algebra with automorphism α . There is an elegant result of Siebenmann [141] which
connects various K-theoretic information of A to K-theoretic information of the skew-ring (A,α):

K1(A)
1−α∗−→ K1(A)

j−→ K1(A,α)
p−→ K0(A)

1−α∗−→ K0(A).

(The group homomorphism α∗ is induced by the ring automorphism α in an easily described way.) The
group K1(A,α) is the class-torsion group of the pair (A,α), defined in [141]; see also [124, Definition
2.15].

As presented in [20, Corollary 4.5], in case A has some additional properties (in particular, if A is von
Neumann regular), this result may be modified to yield the following exact sequence:

K1(A)
1−α∗−→ K1(A)

j−→ K1(A[t+, t−,α])
p−→ K0(A)

1−α∗−→ K0(A),

where α is assumed to be a corner isomorphism α : A→ pAp, and α∗ : Ki(A)→ Ki(A) is the map in-
duced by the composition A α→ pAp ↪→ A. Specifically, since LK(E)0 is locally matricial it satisfies the
aforementioned hypotheses, so that we get an exact sequence

K1(LK(E)0)
1−φ∗−→ K1(LK(E)0)→ K1(LK(E)0[t+, t−,φ ])→ K0(LK(E)0)

1−φ∗−→ K0(LK(E)0). (†)

Using the description of the connecting homomorphisms of the directed union LK(E)0 =
⋃

n∈NL0,n
(Corollary 2.1.16) and the arguments in the proof of [23, Theorem 5.10], one gets that the cokernel of the

map K1(LK(E)0)
1−φ∗−→ K1(LK(E)0) and the kernel of the map K0(LK(E)0)

1−φ∗−→ K0(LK(E)0) are given by
Coker(Ins−Ans)

t :⊕v∈Reg(E)Z→⊕v∈E0Z and Ker(Ins−Ans)
t : ∏v∈Reg(E) K×→∏v∈E0 K× respectively.

Using all these facts, we obtain the following description of the Whitehead group of LK(E).

Theorem 6.2.4. Let E be a finite graph without sources, and K any field. Then K1(LK(E)) is isomorphic to
the direct sum of abelian groups(

Coker(Ins−Ans)
t : ∏

v∈Reg(E)
K×→ ∏

v∈E0

K×
) ⊕ (

Ker(Ins−Ans)
t :

⊕
v∈Reg(E)

Z→
⊕
v∈E0

Z
)
.

Proof. By the displayed sequence (†) and the above remarks, we have an exact sequence of abelian groups

0−→ C −→ K1(LK(E))−→K −→ 0 ,

where
C = Coker(Ins−Ans)

t : ∏
v∈Reg(E)

K×→ ∏
v∈E0

K×

and
K = Ker(Ins−Ans)

t :
⊕

v∈Reg(E)

Z→
⊕
v∈E0

Z.

Since K is a free abelian group, the sequence splits, and the result follows. ut

We note that when A ∈Mn(Z), then (In−A)t = In−At , a fact we will often use (for notational clarity)
throughout the sequel.
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Example 6.2.5. Let n ≥ 2, and let Rn be the rose with n petals graph. Then the adjacency matrix AE of E
is (n), so the matrix I1−At

E is (1−n). In particular, Ker((1−n) : Z1→ Z1) = {0}, while Coker((1−n) :
(K×)1 → (K×)1) ∼= K×/(K×)(n−1), where (K×)(n−1) denotes the nonzero elements of K which can be
written as (n−1)st powers. Thus by Theorem 6.2.4 we get

K1(LK(Rn))∼= K×/(K×)(n−1).

From this, we note that, unlike the situation for K0, in general the structure of the field K plays a role
in the description of K1(LK(E)). In particular, we see that K1(LK(R2)) is trivial for any field K. As well,
K1(LK(Rn)) is trivial for all n≥ 2 whenever K is algebraically closed.

Example 6.2.6. Let E = R1 be the graph having one vertex and one loop, as usual. Thus the adjacency
matrix AE of E is (1), so the matrix I1−AE is (0). In particular, Ker((0) :Z1→Z1) =Z, while Coker((0) :
(K×)1→ (K×)1) = K×. So by Theorem 6.2.4 we get

K1(LK(R1)) ∼=
(
Coker((0) : (K×)1→ (K×)1)

)
⊕
(
Ker((0) : Z1→ Z1)

)
= K×⊕Z.

Since LK(R1)∼=K[x,x−1], we have recovered the Bass-Heller-Swan result mentioned in Examples 6.2.2(iii).

With some minor adjustment, we can use Theorem 6.2.4 to achieve the description alluded to in Exam-
ples 6.2.2(ii). Let E be a finite graph for which LK(E) is purely infinite simple. Let v be a source in E, and
let Ev denote the subgraph of E obtained by eliminating v and all edges in s−1(v). (See Definition 6.3.26
below.)

Corollary 6.2.7. Let E be a finite graph for which LK(E) is purely infinite simple. Let F be a source-
free graph gotten from E by repeated applications of the source elimination process. Let AF denote the
adjacency matrix of F, and let m = |F0|. Then

K1(LK(E)) ∼=
(

Coker((Im−AF)
t : ∏

v∈F0

K×→ ∏
v∈F0

K×)
) ⊕ (

Ker((Im−AF)
t :
⊕
v∈F0

Z→
⊕
v∈F0

Z)
)
.

Proof. As we will show below in Proposition 6.3.28, when LK(E) is simple then the source elimination
process preserves Morita equivalence. In particular, if F is gotten from E by repeated applications of the
source elimination process, then LK(F) is Morita equivalent to LK(E). So by Remark 6.2.3(i) we get that
K1(LK(F)) ∼= K1(LK(E)). In addition, since LK(F) is then purely infinite simple, by Theorem 3.1.10 we
see that F has no sinks. Now apply Theorem 6.2.4. ut

As is evident from Theorems 6.1.9 and 6.2.4, the matrix (Ins−Ans)
t plays a pivotal role in the description

of both K0(LK(E)) and K1(LK(E)). Indeed, information about the structure of K0(LK(E)) is often sufficient
to understand the structure of K1(LK(E)), as shown here.

Proposition 6.2.8. Let E and F be finite graphs having neither sinks nor sources, for which |E0|= |F0|. If
K0(LK(E))∼= K0(LK(F)), then K1(LK(E))∼= K1(LK(F)).

Proof. Let m denote |E0| = |F0|. Since neither graph has sinks, the matrices Ins and Ans are the square
matrices Im and AE (resp., AF ). By Theorem 6.1.9, Coker(Im−At

E)
∼=Coker(Im−At

F), where these matrices
are viewed as linear transformations from Zm to Zm. This in turn implies (by the Fundamental Theorem of
Finitely Generated Abelian Groups) the existence of invertible matrices P,Q ∈Mm(Z) such that Im−At

F =
P(Im−At

E)Q. Thus Ker(Im−At
F)
∼= Ker(Im−At

E), as these are thereby subgroups of Zm having equal rank.
Moreover, the PAQ-equivalence of Im−At

E and Im−At
F also yields by a standard argument that the abelian

groups Coker(Im−At
E : ∏

m
i=1 K×→∏

m
i=1 K×) and Coker(Im−At

F : ∏
m
i=1 K×→∏

m
i=1 K×) are isomorphic

as well. Now use Theorem 6.2.4. ut

Remark 6.2.9. The result of Theorem 6.2.4 holds verbatim for all row-finite graphs, even those graphs
with sources, where we interpret n as ∞ whenever appropriate. (See e.g., [23, Theorem 7.7]. In particular,
a general “source elimination process” is described in [23, Lemma 6.1].)
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Remark 6.2.10. Having given in Sections 6.1 and 6.2 a detailed description of the K-theoretic groups
K0(LK(E)) and K1(LK(E)), one might be led to inquire about a description of the higher K-theoretic groups
for Leavitt path algebras. Indeed, such a description of all of the algebraic K-theoretic groups Ki(LK(E))
(i ≥ 2) is achieved in [23] for any row-finite graph E, to which we refer the interested reader. We note
that, in general, one cannot determine Kn(LK(E)) from the groups Ki(LK(E)) (0≤ i≤ n−1). In particular,
unlike in the situation for graph C∗-algebras, Bott periodicity does not hold for Leavitt path algebras.

6.3 The Algebraic Kirchberg Phillips Question

We start this section with the following basic question: If two Leavitt path algebras LK(E) and LK(F)
are ring-theoretically related (e.g., if they are isomorphic, or if they are Morita equivalent), is there some
connection between the graphs E and F? On one level the answer must of course be yes: for instance,
using results from previous chapters, ring-theoretic information such as simplicity, chain conditions, etc.,
is encoded in the graph, so that if E has a germane property, then so must F .

But one may ask for a tighter connection between E and F ; for instance, if LK(E) and LK(F) are
isomorphic, is it possible to realize the graph F as some sort of “transformed” version of the graph E? That
is, does there exist some sequence of “graph transformations” which starts at E and ends at F?

There is no clear understanding of whether this is necessarily the case for an arbitrarily chosen pair of
graphs E and F . However, there is one very important context in which many isomorphisms or Morita
equivalences between Leavitt path algebras can in fact be realized as arising from such a sequence of graph
transformations, specifically, when the Leavitt path algebras are purely infinite simple. Moreover, in this
case, the existence of isomorphisms and Morita equivalences is guaranteed by a coincidence of elementary
information about the adjacency matrices of the two graphs, including information about the K0 groups of
the algebras.

One of the major lines of investigation in the theory of C∗-algebras, ongoing since the 1970’s, is known
as the “Elliott program”, which refers to the search for user-friendly invariants for various classes of C∗-
algebras. More to the point, suppose A and B are C∗-algebras in a specified class. If certain K-theoretic
information about A and B matches up, can we conclude that A and B are related in some essential way?
Of interest here is the following important result of this type.

Theorem 6.3.1. (The Kirchberg Phillips Theorem in the context of graph C∗-algebras) Suppose E and
F are countable row-finite graphs for which C∗(E) and C∗(F) are purely infinite simple. Suppose also
that K0(C∗(E))∼= K0(C∗(F)); in case E and F are finite, assume furthermore that this isomorphism takes
[1C∗(E)] to [1C∗(F)]. Assume in addition that K1(C∗(E))∼= K1(C∗(F)). Then C∗(E)∼=C∗(F) homeomorphi-
cally as C∗-algebras.

Remark 6.3.2. The result we have presented as Theorem 6.3.1 is a specific consequence of a much more
general result about C∗-algebras, proved independently by both Phillips and Kirchberg in 2000; see e.g.,
[128] and [103]. The hypotheses required to apply [128, Theorem 4.2.4] include not only information
about the purely infinite simplicity and K-theory of the algebras, but additional structural information as
well. However, these additional requirements are always satisfied for the graph C∗-algebras of countable
row-finite graphs (see [146, Remark A.11.13] for a discussion). We note that only the existence of an
isomorphism between C∗-algebras is ensured by [128, Theorem 4.2.4]; the isomorphism is not explicitly
constructed. Also, Rørdam had previously established a related version of Theorem 6.3.1 in [135, Theorem
6.5], where it is shown that, using the same hypotheses, a homeomorphism C∗(E) ∼= C∗(F) necessarily
follows in case E and F are finite graphs having neither sinks nor sources; and, indeed, in this situation, the
existence of an isomorphism between the K1 groups is not required as part of the hypotheses.

With the above discussion in mind, and given the close connection between purely infinite simple uni-
tal graph C∗-algebras and purely infinite simple unital Leavitt path algebras described in Chapter 5, it is
reasonable to ask whether there might be an algebraic result analogous to Theorem 6.3.1.
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Question 6.3.3. (The Algebraic Kirchberg Phillips Question for Leavitt path algebras of finite graphs)
Let K be any field. Suppose E and F are finite graphs for which LK(E) and LK(F) are purely infinite simple,
and suppose that K0(LK(E)) ∼= K0(LK(F)) via an isomorphism which takes [1LK(E)] to [1LK(F)]. Are the
Leavitt path K-algebras LK(E) and LK(F) necessarily isomorphic?

We remind the reader that for a purely infinite simple ring R, we have chosen to denote the (stable
equivalence classes [ ]0 of) elements in K0(R) using the notation of (isomorphism classes [ ] of) elements
in V (R)\{[0]}; see Remark 6.1.13.

Throughout the section K denotes an arbitrary field, and all indicated ring isomorphisms are in fact K-
algebra isomorphisms. For the remainder of this section we describe the current (as of 2017) state of affairs
regarding the resolution of the Algebraic Kirchberg Phillips Question 6.3.3.

We start by presenting a computational tool which proves to be quite useful in this discussion. Let M ∈
Mn(Z), and view M as a linear transformation M :Zn→Zn via left multiplication on columns. As indicated
earlier, if P,Q are invertible in Mn(Z), then Coker(M) ∼= Coker(PMQ). Consequently, if N ∈Mn(Z) is a
matrix which is constructed by performing any sequence of Z-elementary row and/or column operations
starting with M, then Coker(M) ∼= Coker(N) as abelian groups. (A Z-elementary row operation is one of:
switch two rows; multiply a row by −1; add an integer-multiple of a row to another row. An analogous
description holds for Z-elementary column operations.)

Definition 6.3.4. Let M ∈Mn(Z). The Smith normal form of M is the diagonal matrix S ∈Mn(Z) having
the following two properties.

(i) The diagonal entries of S consist of non-negative integers s1,s2, . . . ,sn for which: (1) if t denotes the
number of entries on this list which equal 0, then the list is written so that s1,s2, . . . ,st = 0; and (2) si
is a divisor of si+1 for all t +1≤ i≤ n−1.

(ii) There is a sequence of Z-elementary row and/or column operations which starts at M and ends at S.

It can easily be shown that for any M ∈ Mn(Z), the Smith normal form of M exists and is unique. If
D∈Mn(Z) is diagonal, with diagonal entries d1,d2, . . . ,dn, then, viewing D as a linear transformation from
Zn toZn, we obviously have Coker(D)∼=Z/d1Z⊕Z/d2Z⊕·· ·⊕Z/dnZ. (In this context we interpretZ/1Z
as the trivial group {0}.) This observation, with the previous discussion, immediately gives the following.

Proposition 6.3.5. Let M ∈Mn(Z), and let S denote the Smith normal form of M. Suppose the diagonal
entries of S are s1,s2, . . . ,sn. Then

Coker(M)∼= Z/s1Z⊕Z/s2Z⊕·· ·⊕Z/snZ.

As a result, by the Fundamental Theorem of Finitely Generated Abelian Groups, if M and M′ are square
matrices (not necessarily of the same size) for which Coker(M) ∼= Coker(M′), then the sequence of “not
equal 1” entries in the Smith normal form S of M equals the sequence of “not equal 1” entries in the Smith
normal form S′ of M′.

As an example, if M =

(
0 −3
−1 −1

)
, then it is straightforward to show that the Smith normal form of M is

S =

(
1 0
0 3

)
, so that by Proposition 6.3.5 we conclude that Coker(M)∼= Z/3Z.

Combining Corollary 6.1.10 with Proposition 6.3.5, we get the following useful result.

Corollary 6.3.6. Suppose E is a finite graph having no sinks, and let |E0| = n. Let S be the Smith normal
form of the matrix In−At

E , with diagonal entries s1,s2, . . . ,sn. Then

K0(LK(E))∼= Z/s1Z⊕Z/s2Z⊕·· ·⊕Z/snZ.

Examples 6.3.7. We refer to the graphs E, F , G, and H presented in Examples 3.2.7. By the Purely Infinite
Simplicity Theorem 3.1.10, each of these is readily seen to have that its corresponding Leavitt path algebra
is purely infinite simple. So by Proposition 6.1.12, we have that the nonzero elements of the V -monoid
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form a group, isomorphic to the Grothendieck group of the algebra. Now apply Corollary 6.3.6 to establish
the following previously-mentioned isomorphisms.

I3−At
E =

 1 −1 −1
−1 0 −1
0 −1 1

, whose Smith Normal Form is

 1 0 0
0 1 0
0 0 3

, so that K0(LK(E))∼= Z/3Z.

I3−At
F =

 0 −1 0
−1 1 −1
0 −1 0

, whose Smith Normal Form is

 0 0 0
0 1 0
0 0 1

, so that K0(LK(F))∼= Z.

I3−At
G =

 1 −1 −1
−1 1 −1
−1 −1 1

, whose Smith Normal Form is

 1 0 0
0 2 0
0 0 2

, so that K0(LK(G))∼= Z/2Z⊕Z/2Z.

I2−At
H =

(
−4 −4
−2 −2

)
, whose Smith Normal Form is

(
0 0
0 2

)
, so that K0(LK(H))∼= Z⊕ (Z/2Z).

Remark 6.3.8. (i) It is easy to see that if M′ is a matrix obtained from M ∈Mn(Z) by applying any of the
three Z-elementary row (resp., column) operations, then det(M′) = det(M) or det(M′) = −det(M).
Consequently, if S is the Smith normal form of M, then either det(S) = det(M) or det(S) =−det(M).

(ii) Proposition 6.3.5 yields that Coker(M) is infinite if and only if si = 0 for some i, which clearly happens
if and only if det(S) = 0.

Much of the following discussion is taken from [11]. The key results which have been utilized in the
investigation of the Algebraic Kirchberg Phillips Question are provided by deep work in the theory of
symbolic dynamics. We assemble some of the relevant facts in the next few results, then state as Proposi-
tion 6.3.15 the conclusion appropriate for our needs. In the following discussion, if A is any non-negative
integer-valued matrix, then EA denotes the directed graph whose adjacency matrix is A.

Definition 6.3.9. We call a graph transformation standard if it is one of these six types: in-splitting, in-
amalgamation, out-splitting, out-amalgamation, expansion, or contraction. (These six types of graph trans-
formations will be defined below.) Analogously, we call a function which transforms a non-negative integer
matrix A to a non-negative integer-valued matrix B standard if the corresponding graph operation from EA
to EB is standard.

Definition 6.3.10. If E and F are graphs having no sources and no sinks, a flow equivalence from E to F
is a sequence E = E0→ E1→ ·· · → En = F of graphs and standard graph transformations which starts at
E and ends at F . We say that E and F are flow equivalent in case there is a flow equivalence from E to F .
Analogously, a flow equivalence between matrices A and B is defined to be a flow equivalence between the
graphs EA and EB.

The notion of flow equivalence can be described in topological terms (see e.g., [114]). The definition
given in Definition 6.3.10 agrees with the topologically-based definition for source-free, sink-free graphs
by an application of [126, Theorem], [160, Corollary 4.4.1], and [114, Corollary 7.15]. Although the graphs
which appear in our main result will be allowed to have sources (but not sinks), this particular definition of
flow equivalence will serve us most efficiently.

Definition 6.3.11. A graph E is called

(i) irreducible if, given any two vertices v, w of E, there exists a path µ with s(µ) = v and r(µ) = w,
(ii) nontrivial if E does not consist solely of a single cycle, and

(iii) essential if E contains no sources and no sinks.

An irreducible (resp., nontrivial, essential) non-negative integer-valued matrix A is one whose correspond-
ing graph EA is irreducible (resp., nontrivial, essential).



164 6 K-theory

For a finite graph E (excepting the graph E = R0 = •), it is not hard to see that if E is irreducible, then E
is essential. Consequently, in a number of the results below, one may replace the pair of hypotheses “E is
irreducible” and “E is essential” with the single hypothesis “E 6=R0 is irreducible”. However, from the point
of view of symbolic dynamics, the concepts “irreducible” and “essential” have broader interpretations; in
these broader contexts, the two ideas are quite distinct one from the other. The results we will utilize here
from symbolic dynamics were developed in this broader framework. Thus in order to more clearly focus on
the connection between Leavitt path algebras and symbolic dynamics, we choose to use the two hypotheses
“E is irreducible” and “E is essential” in various results, rather than the seemingly more efficient “E 6= R0
is irreducible”.

The following deep, powerful theorem of Franks provides most of the heavy lifting in the context of the
current discussion.

Theorem 6.3.12. (Franks’ Theorem) ([81, Theorem]) Suppose that A and B are nontrivial irreducible
essential square non-negative integer matrices, of sizes n× n and m×m, respectively. Then A and B are
flow equivalent if and only if

det(In−A) = det(Im−B) and Coker(In−A)∼= Coker(Im−B),

where In and Im denote the identity matrices of sizes n×n and m×m, respectively.

Recasting Franks’ Theorem in the context of graphs, we get

Corollary 6.3.13. Suppose E and F are finite, irreducible, nontrivial, essential graphs with |E0| = n and
|F0| = m. Then there exists a sequence of standard graph transformations which starts with E and ends
with F if and only if

det(In−AE) = det(Im−AF) and Coker(In−AE)∼= Coker(In−AF).

Clearly there is a relationship between the notions which appear in Franks’ Theorem, and notions which
play a role in the theory of Leavitt path algebras. Specifically, it is a straightforward graph-theory exercise
to establish the equivalence of the first pair of statements of this next result. The equivalence of the second
pair constitutes the heart of the Purely Infinite Simplicity Theorem 3.1.10.

Lemma 6.3.14. Let E be a finite graph and K any field. The following are equivalent.
(1) E is irreducible, essential, and nontrivial.
(2) E contains no sources, E is cofinal, E satisfies Condition (L), and E contains at least one cycle.
(3) E contains no sources, and LK(E) is purely infinite simple.

By examining the Smith normal form of each matrix (recall Definition 6.3.4), it is easy to show that
Coker(In−A)∼= Coker(In−At) for any square matrix A. As well, it is clear that det(In−A) = det(In−At).
So, by Corollary 6.1.10, we see that Corollary 6.3.13 and Lemma 6.3.14 combine to yield

Proposition 6.3.15. Let E and F be finite graphs having no sources, and for which LK(E) and LK(F) are
purely infinite simple. Suppose det(In−At

E) = det(Im−At
F) and K0(LK(E))∼= K0(LK(F)). Then there is

a sequence of standard graph transformations which starts at E and ends at F.

In summary, Franks’ Theorem yields that when LK(E) and LK(F) are purely infinite simple, if the K0
groups of these Leavitt path algebras are isomorphic, and the determinants of the appropriate matrices are
equal, and E and F are source-free, then in fact there is a connection between the graphs E and F .

We now establish that, perhaps remarkably, the connection between the graphs ensured by Franks’
Theorem 6.3.12 produces a Morita equivalence between the corresponding Leavitt path algebras. (In fact,
we will also be able to drop the “source-free” requirement in this context.) We now explicitly define the
six aforementioned standard graph transformations, and show that each preserves Morita equivalence of
the corresponding Leavitt path algebras. The key tool is the following lemma, which is straightforward to
establish using standard ring-theoretic techniques.
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Lemma 6.3.16. ([11, Lemma 1.1]) Suppose R and S are simple unital rings. Let π : R→ S be a nonzero,
not-necessarily-identity-preserving ring homomorphism, and let g denote the idempotent π(1R) of S. If
gSg = π(R), then there exists a Morita equivalence Φ : R−Mod→ S−Mod.

Moreover, the equivalence Φ restricts to a monoid isomorphism ΦV : V (R)→ V (S) with the property
that for any idempotent e ∈ R, ΦV ([Re]) = [Sπ(e)].

Definition 6.3.17. Let E = (E0,E1,r,s) be a directed graph, and let v ∈ E0. Let v∗ and f be symbols not in
E0∪E1. We form the expansion graph Ev from E at v as follows:

E0
v = E0∪{v∗} , E1

v = E1∪{ f} , sEv(e) =

 v if e = f
v∗ if sE(e) = v
sE(e) otherwise

, and rEv(e) =
{

v∗ if e = f
rE(e) otherwise .

Conversely, if E and G are graphs, and there exists a vertex v of E for which Ev = G, then E is called a
contraction of G.

Example 6.3.18.
If E = •v

��

  
•

OO

•oo

then Ev = •v f ** •v∗ii

��
•

OO

•oo

Proposition 6.3.19. Let E be a row-finite graph such that LK(E) is simple and unital, and let v ∈ E0. Then
LK(E) is Morita equivalent to LK(Ev), via a Morita equivalence

Φ
exp : LK(E)−Mod→ LK(Ev)−Mod

for which Φ
exp
V ([LK(E)w]) = [LK(Ev)w] for all vertices w of E.

Proof. We begin by noting that, as an easy application of the Simplicity Theorem 2.9.1, LK(E) is simple
and unital if and only if LK(Ev) is simple and unital.

For each w ∈ E0 we set Qw = w; for each e ∈ s−1(v) we set Te = f e and T ∗e = e∗ f ∗; and for each
e ∈ E1 \ s−1(v) we set Te = e and T ∗e = e∗. We claim that {Qw,Te,T ∗e | w ∈ E0,e ∈ E1} is an E-family in
LK(Ev). The Qw’s are mutually orthogonal idempotents because the w’s are. The elements Te for e ∈ E1

clearly satisfy T ∗e Tf = 0 whenever e 6= f . For e ∈ E1, it is easy to check that T ∗e Te = Qr(e). Note that

∑e∈s−1
Ev (v)

TeT ∗e = f
(

∑e∈s−1
Ev (v

∗) ee∗
)

f ∗ = f f ∗ = v = Qv (we utilize here that, as s−1
Ev
(v) = { f}, we have

f f ∗ = v by the CK2 relation at v). The same property holds immediately for all w ∈ E0 having w 6= v,
thereby establishing the claim.

Therefore, by the Universal Property of LK(E) 1.2.5, there is a K-algebra homomorphism π : LK(E)→
LK(Ev) that maps w 7→ Qw, e 7→ Te, and e∗ 7→ T ∗e . Note that π maps w to Qw 6= 0, so π is nonzero. We now
claim that π(LK(E)) = π(1LK(E))LK(Ev)π(1LK(E)), where π(1LK(E)) = ∑w∈E0 w, viewed as an element of
LK(Ev). The inclusion π(LK(E)) ⊆ π(1LK(E))LK(Ev)π(1LK(E)) is immediate. For the other direction, it
suffices to consider arbitrary nonzero terms in π(1LK(E))LK(Ev)π(1LK(E)) of the form µ1µ∗2 , where µ1 and
µ2 are paths in Ev, s(µ1),s(µ2) 6= v∗, and r(µ1) = r(µ2).

Let α be the path in E obtained by removing the edge f from µ1 any place that it occurs, and similarly
let β be the path obtained by removing f from µ2. We claim that π(αβ ∗) = µ1µ∗2 . There are two cases. If
r(µ1) 6= v∗ 6= r(µ2), then µ1 = π(α) and µ2 = π(β ), and the result follows. Otherwise, r(µ1) = v∗ = r(µ2).
But because µ1 and µ2 both begin at a vertex other than v∗, and the only edge entering v∗ is f , we must
have µ1 = ν1 f and µ2 = ν2 f , for paths ν1,ν2 in Ev, where r(ν1) = v = r(ν2). But then µ1µ∗2 = ν1 f f ∗ν∗2 =
ν1vν∗2 = ν1ν∗2 , and thus we are back in the first case, so π(αβ ∗) = µ1µ∗2 , completing the argument.

Applying Lemma 6.3.16, we conclude that LK(E) is Morita equivalent to LK(Ev), and that the Morita
equivalence restricts to the map on the corresponding V -monoids given above. ut

If F is a contraction of E (i.e., if there exists a vertex v of F for which E = Fv), then we denote by
Φcont = (Φexp)−1 the Morita equivalence LK(F)−Mod→ LK(E)−Mod.
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The remaining four standard graph operations require somewhat more cumbersome machinery to build
than did the expansion and contraction operations. The following definition is presented in [46, Section 5].

Definition 6.3.20. Let E = (E0,E1,r,s) be a directed graph. For each v ∈ E0 with r−1(v) 6= /0, partition the
set r−1(v) into disjoint nonempty subsets E v

1 , . . . ,E
v
m(v) where m(v)≥ 1. (If v is a source then set m(v) = 0.)

Let P denote the resulting partition of E1. We form the in-split graph Er(P) from E using the partition
P as follows:

Er(P)0 = {vi | v ∈ E0,1≤ i≤ m(v)}∪{v | m(v) = 0},
Er(P)1 = {e j | e ∈ E1,1≤ j ≤ m(s(e))}∪{e | m(s(e)) = 0},

and define rEr(P),sEr(P) : Er(P)1→ Er(P)0 by

sEr(P)(e j) = s(e) j and sEr(P)(e) = s(e)

rEr(P)(e j) = r(e)i and rEr(P)(e) = r(e)i where e ∈ E
r(e)
i .

Conversely, if E and G are graphs, and there exists a partition P of E1 for which Er(P) = G, then E is
called an in-amalgamation of G.

Example 6.3.21. Let E be the graph •ve
&& f )) •w

gii . Denote by P the partition of E1 that places each
edge in its own singleton partition class. Then

Er(P) = •v1e1
))

f1 // •w1

g1
vv•v2

e2

OO
f2
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Using tools similar to those used in the proof of Proposition 6.3.19, one may establish the following.

Proposition 6.3.22. ([11, Proposition 1.11]) Let E be a directed graph with no sources or sinks, such that
LK(E) is simple and unital. Let P be a partition of E1 as in Definition 6.3.20, and Er(P) the in-split
graph from E using P . Then LK(E) is Morita equivalent to LK(Er(P)), via a Morita equivalence

Φ
ins : LK(E)−Mod→ LK(Er(P))−Mod

for which Φ ins
V ([LK(E)v]) = [LK(Er(P))v1] for all vertices v of E.

If F is an in-amalgamation of E (i.e., if there exists a vertex partition P of F for which E = Fr(P)),
then we denote by Φ inam = (Φ ins)−1 the Morita equivalence LK(F)−Mod→ LK(E)−Mod.

We now utilize a definition from [46, Section 3].

Definition 6.3.23. Let E = (E0,E1,r,s) be a directed graph. For each v ∈ E0 with s−1(v) 6= /0, partition the
set s−1(v) into disjoint nonempty subsets E 1

v , . . . ,E
m(v)
v where m(v)≥ 1. (If v is a sink then set m(v) = 0.)

Let P denote the resulting partition of E1. We form the out-split graph Es(P) from E using the partition
P as follows:

Es(P)0 = {vi | v ∈ E0,1≤ i≤ m(v)}∪{v | m(v) = 0},
Es(P)1 = {e j | e ∈ E1,1≤ j ≤ m(r(e))}∪{e | m(r(e)) = 0},

and define rEs(P),sEs(P) : Es(P)1→ Es(P)0 for each e ∈ E i
s(e) by

sEs(P)(e
j) = s(e)i and sEs(P)(e) = s(e)i

rEs(P)(e
j) = r(e) j and rEs(P)(e) = r(e).
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Conversely, if E and G are graphs, and there exists a partition P of E1 for which Es(P) = G, then E is
called an out-amalgamation of G.

Example 6.3.24. Let E again be the graph •ve
&& f )) •w

gii given in Example 6.3.21, and again denote

by P the partition of E1 that places each edge in its own singleton partition class. Then

Es(P) = •v1

e2

��

e1
))

•w1

g2

ww

g1oo

•v2

f 1

88

The following result may be established by (again) using tools similar to those used in the proof of
Proposition 6.3.19. (We note that for the “out-split” and “out-amalgamation” operations we in fact get an
isomorphism of the corresponding Leavitt path algebras; this property does not hold in general for the other
four standard graph operations.)

Proposition 6.3.25. ([11, Proposition 1.14]) Let E be a row-finite graph, P a partition of E1 as in Def-
inition 6.3.23, and Es(P) the out-split graph from E using P . Then LK(E) is K-algebra isomorphic to
LK(Es(P)). This isomorphism yields a Morita equivalence

Φ
outs : LK(E)−Mod→ LK(Es(P))−Mod

for which Φouts
V ([LK(E)v]) = [LK(Es(P))∑

m(v)
i=1 vi] for every vertex v of E.

If F is an out-amalgamation of E (i.e., if there exists a vertex partition P of F for which E = Fs(P)),
then we denote by Φoutam = (Φouts)−1 the Morita equivalence LK(F)−Mod→ LK(E)−Mod.

We note that the three Propositions 6.3.19, 6.3.22, and 6.3.25 may be extended to wider classes of
graphs, see [11, Section 3].

The six standard graph transformations have now been presented; each preserves Morita equivalence
classes of the corresponding Leavitt path algebras (at least in the case where the algebras are purely infinite
simple). We now show that we may remove the “source-free” hypothesis in this context.

Definition 6.3.26. Let E = (E0,E1,r,s) be a directed graph with at least two vertices, and let v ∈ E0 be a
source. We form the source elimination graph E\v of E as follows:

E0
\v = E0\{v} , E1

\v = E1\s−1(v) , sE\v = s|E1
\v
, and rE\v = r|E1

\v
.

Example 6.3.27. Let E be the graph • (( •hh •voo . Then E\v = • (( •hh .

It is easy to see that as long as the graph E contains a cycle, repeated source elimination can be used to
convert E into a graph with no sources. The following result may be established by (yet again) using tools
similar to those used in the proof of Proposition 6.3.19.

Proposition 6.3.28. ([11, Proposition 1.4]) Let E be a finite graph containing at least two vertices such
that LK(E) is simple, and let v ∈ E0 be a source. Then LK(E\v) is Morita equivalent to LK(E), via a Morita
equivalence

Φ
elim : LK(E\v)−Mod→ LK(E)−Mod

for which Φelim
V ([LK(E\v)w]) = [LK(E)w] for all vertices w of E\v.

Consequently, let E be a finite graph for which LK(E) is purely infinite simple. Then there exists a graph
E ′ which contains no sources, with the property that LK(E) is Morita equivalent to LK(E ′) via a Morita
equivalence

Φ
ELIM : LK(E ′)−Mod→ LK(E)−Mod

for which ΦELIM
V ([LK(E ′)w]) = [LK(E)w] for all vertices w of E ′.
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Since purely infinite simplicity is a Morita invariant, one consequence of the previous discussion is the
following.

Corollary 6.3.29. Let E and F be finite graphs. If there is a sequence of standard graph transformations
and/or source eliminations which starts at E and ends at F, then LK(E) is purely infinite simple if and only
if LK(F) is purely infinite simple.

Since our interest here will be in graphs E and F for which det(In−At
E)= det(Im−At

F) and K0(LK(E))∼=
K0(LK(F)), the following notation will prove convenient.

Definition 6.3.30. Let E and G be finite graphs with |E0|= n and |G0|= m. We write

E ≡det G

in case there is an abelian group isomorphism K0(LK(E))∼= K0(LK(G)), and det(In−At
E) = det(Im−At

G).

Lemma 6.3.31. Let E be a finite graph for which LK(E) is purely infinite simple, and let v be a source in
E. Then E ≡det E\v.

Proof. Let n= |E0|. Since v is a source, AE contains a column of zeros. Then a straightforward determinant
computation by cofactors along this column gives det(In−At

E) = det(In−1−At
E\v

). But LK(E) and LK(E\v)
are Morita equivalent by Proposition 6.3.28, so that their K0 groups are necessarily isomorphic. ut

Now we are ready to prove the first of two main results of this section.

Theorem 6.3.32. ([11, Theorem 1.25]) Let E and F be finite graphs such that LK(E) and LK(F) are purely
infinite simple. Let |E0|= n and |F0|= m. Suppose that E ≡det F ; that is, suppose

K0(LK(E))∼= K0(LK(F)), and det(In−At
E) = det(Im−At

F).

Then LK(E) is Morita equivalent to LK(F).

Proof. By Proposition 6.3.28 there exist graphs E ′ and F ′ such that E ′ and F ′ contain no sources, for which
LK(E) is Morita equivalent to LK(E ′), and for which LK(F) is Morita equivalent to LK(F ′). By hypothesis,
and by applying Lemma 6.3.31 at each stage of the source elimination process, we have that

det(I−At
E ′) = det(I−At

E) = det(I−At
F) = det(I−At

F ′),

and that
K0(LK(E ′))∼= K0(LK(E))∼= K0(LK(F))∼= K0(LK(F ′)).

Furthermore, LK(E ′) and LK(F ′) are each purely infinite simple unital by Corollary 6.3.29. So Proposition
6.3.15 applies, and we conclude that there exists a finite sequence of standard graph transformations which
starts at E ′ and ends at F ′. By Corollary 6.3.29, since LK(E ′) is purely infinite simple unital with no sources,
each time such an operation is applied the resulting graph has no sources, and has corresponding Leavitt
path algebra which is purely infinite simple unital. Thus, at each step of the sequence, we may apply the
appropriate result from among Propositions 6.3.19, 6.3.22, and 6.3.25, from which we conclude that each
step in the sequence preserves Morita equivalence of the corresponding Leavitt path algebras. Combining
these Morita equivalences at each step then yields the Morita equivalence of LK(E ′) and LK(F ′).

As a result, we have a sequence of Morita equivalences from LK(E) to LK(E ′) to LK(F ′) to LK(F), and
the theorem follows. ut

Having now established a result which yields Morita equivalence between various Leavitt path algebras,
we now turn to the main task of the section, namely, answering in the affirmative the Algebraic Kirchberg
Phillips Question for a large collection of various pairs of purely infinite simple unital Leavitt path algebras.
We introduce some additional notation.
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Definition 6.3.33. For finite graphs E and G we write

E ≡[1] G

in case there exists an abelian group isomorphism ϕ : K0(LK(E))→ K0(LK(G)) for which ϕ([1LK(E)]) =
[1LK(G)].

We will show that, in the case of Morita equivalent purely infinite simple Leavitt path algebras LK(E)
and LK(G) of finite graphs E and G, if E ≡[1] G, then LK(E)∼= LK(G). (That is, we will answer the Alge-
braic Kirchberg Phillips Question in the affirmative in the situation where we have added the hypothesis
that the algebras are Morita equivalent.) The argument relies on the adaptation to this context of a deep
result of Huang [97, Theorem 1.1].

Definition 6.3.34. Let E = (E0,E1,sE ,rE) be a directed graph. The transpose graph of E, denoted Et , is
the graph F for which F0 = E0, F1 = E1, and, for each e ∈ F1, sF(e) = rE(e) and rF(e) = sE(e).

So Et is simply the graph E, but with the orientation of the edges reversed.

Suppose E has LK(E) purely infinite simple unital, and has no sources. Then using Lemma 6.3.14 (and
recalling that in this case E has no sinks), it is straightforward to see that Et has these same properties. Let
Et be denoted both by H0 and Hn, and let

H0
m1 // H1

m2 // H2 · · · · · ·
mn // Hn

be a finite sequence of standard graph transformations which starts and ends with Et . We write Hi = Gt
i

(where Gi = Ht
i ), and so we have a finite sequence of graph transformations

Gt
0

m1 // Gt
1

m2 // Gt
2 · · · · · ·

mn // Gt
n

from Et to Et .
For any graph G let τG : G→ Gt be the graph function which is the identity on vertices, but switches

the direction of each of the edges. (This is simply the transpose operation on the corresponding adjacency
matrices.) In particular, any one of the standard graph transformations m : Gt

i → Gt
i+1 yields a graph trans-

formation
m′ = τ

−1
Gi+1
◦m◦ τGi : Gi→ Gi+1.

Lemma 6.3.35. If m : Gt
i→Gt

i+1 is a standard graph transformation, then m′ = τ
−1
Gi+1
◦m◦τGi : Gi→Gi+1

is also standard.

Proof. It is tedious but straightforward to check each of the following.
(i) If m is an expansion (resp. contraction), then m′ is an expansion (resp. contraction).
(ii) If m is an in-splitting (resp. out-splitting), then m′ is an out-splitting (resp. in-splitting).
(iii) If m is an in-amalgamation (resp. out-amalgamation), then m′ is an out-amalgamation (resp. in-

amalgamation). ut

As a consequence of Lemma 6.3.35, if we start with any finite sequence of standard graph transformations

H0
m1 // H1

m2 // H2 · · · · · ·
mn // Hn

which starts and ends with Et , then we get a corresponding finite sequence of standard graph transforma-
tions

G0
m′1 // G1

m′2 // G2 · · · · · ·
m′n // Gn

which starts and ends with E.

When the size of the m×m identity matrix is clear from context, we will often write I rather than Im.
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By [97, Lemma 3.7], for any graphs E and F , any standard graph transformation m : E → F yields the
so-called induced isomorphism ϕm : Coker(I−AE)→ Coker(I−AF). For each of the six types of standard
graph transformations, the corresponding induced isomorphism is explicitly described in [97, Lemma 3.7].
(See [11, Section 2] for an explicitly presented example.) Here now is the connection between the Morita
equivalences described above and the induced isomorphisms given by Huang.

Proposition 6.3.36. Let Gi and Gi+1 be graphs, and K any field. Suppose Gi has LK(Gi) purely infinite
simple unital, and has no sources. Suppose mi : Gt

i→Gt
i+1 is a standard graph transformation, and let ϕmi :

Coker(I−AGt
i
)→ Coker(I−AGt

i+1
) be the induced isomorphism. Let m′i : Gi→Gi+1 be the corresponding

graph transformation, which, by Lemma 6.3.35, is also a standard transformation. Let Φm′i : LK(Gi)−
Mod → LK(Gi+1)−Mod be the Morita equivalence induced by m′i as described in Propositions 6.3.19,
6.3.22, and 6.3.25. Then, using the previously described identification between K0(LK(Gi)) and Coker(I−
At

Gi
) (resp., between K0(LK(Gi+1)) and Coker(I−At

Gi+1
)), we have Φ

m′i
V = ϕmi .

Proof. Each of the six types of isomorphisms Φ
m′i
V : K0(LK(Gi)) → K0(LK(Gi+1)) have been explic-

itly described previously, and each of the six types of induced isomorphisms ϕmi : Coker(I − AGt
i
) →

Coker(I−AGt
i+1

) have been explicitly described in [97, Lemma 3.7]. By definition we have AGt
i
= At

Gi

(resp. AGt
i+1

= At
Gi+1

). It is now a tedious but completely straightforward check to verify that, in all six
cases, these isomorphisms agree. ut

We are finally in position to adapt the result of Huang to this context. For a purely infinite simple ring
R, and an automorphism α of K0(R) = V (R)\{0}, we say a Morita equivalence Φ : R−Mod→ R−Mod
restricts to α in case ΦV = α.

Proposition 6.3.37. Suppose LK(E) is purely infinite simple unital, and let α be any automorphism of
K0(LK(E)). Then there exists a Morita equivalence Φ : LK(E)−Mod→ LK(E)−Mod which restricts to
α .

Proof. If E contains sources, then Proposition 6.3.28 guarantees the existence of a Morita equivalence
ΦELIM : LK(E ′)−Mod→ LK(E)−Mod, where E ′ has no sources. If Ψ : LK(E ′)−Mod→ LK(E ′)−Mod
is a Morita equivalence which restricts to the automorphism (ΦELIM

V )−1 ◦α ◦ΦELIM
V of K0(LK(E ′)), then

ΦELIM ◦Ψ ◦ (ΦELIM)−1 is a Morita equivalence from LK(E)−Mod to LK(E)−Mod which restricts to α .
Therefore, it suffices to consider graphs E with no sources.

Since LK(E) is purely infinite simple, and E has no sources, then E is essential, irreducible, and non-
trivial by the Purely Infinite Simplicity Theorem 3.1.10, and hence so is Et . Since K0(LK(E)) is identified
with Coker(I−At

E), we may view α as an automorphism of Coker(I−At
E) = Coker(I−AEt ). Therefore,

by [97, Theorem 1.1] (details in [96, Theorem 2.15]), there exists a flow equivalence F from Et to itself
which induces α . Such a flow equivalence can be written as a finite sequence

H0
m1 // H1

m2 // H2 · · · · · ·
mn // Hn

which starts and ends with Et . But this then yields a corresponding finite sequence of standard graph
transformations

G0
m′1 // G1

m′2 // G2 · · · · · ·
m′n // Gn

which starts and ends with E, as described in Lemma 6.3.35. This sequence of standard graph transforma-
tions in turn yields a sequence of Morita equivalences (using Propositions 6.3.19, 6.3.22, and 6.3.25) which
starts and ends at LK(E)−Mod. But by Proposition 6.3.36, at each stage of the sequence the restriction of
the Morita equivalence to the appropriate K0 group agrees with the induced map coming from the standard
graph transformation. If we denote by Φ : LK(E)−Mod→ LK(E)−Mod the composition of these Morita
equivalences, then Φ restricts to the same automorphism of K0(LK(E)) as does F , namely, the prescribed
automorphism α. ut

Here now is the second main result of this section.
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Theorem 6.3.38. Let E and G be finite graphs such that LK(E) and LK(G) are purely infinite simple unital
Leavitt path algebras. Suppose E ≡[1] G; in other words,

suppose K0(LK(E))∼= K0(LK(G)) via an isomorphism which sends [1LK(E)] to [1LK(G)].

Suppose also that LK(E) is Morita equivalent to LK(G). Then LK(E)∼= LK(G).

Proof. Let ϕ : K0(LK(E))→ K0(LK(G)) be an isomorphism with ϕ([1LK(E)]) = [1LK(G)]. Since LK(E)
and LK(G) are Morita equivalent by hypothesis, there exists a Morita equivalence Γ : LK(E)−Mod →
LK(G)−Mod. Thus we have the induced isomorphism ΓV : K0(LK(E))→ K0(LK(G)).

Now consider the group automorphism ϕ ◦Γ
−1

V : K0(LK(G))→K0(LK(G)). By Proposition 6.3.37, there
exists a Morita equivalence Ψ : LK(G)−Mod → LK(G)−Mod such that ΨV = ϕ ◦Γ

−1
V . Thus, we get a

Morita equivalence
H :=Ψ ◦Γ : LK(E)−Mod→ LK(G)−Mod

with
HV = (Ψ ◦Γ )V =ΨV ◦ΓV = ϕ ◦Γ

−1
V ◦ΓV = ϕ.

In particular, HV ([1LK(E)]) = ϕ([1LK(E)]) = [1LK(G)].
(To paraphrase: Huang’s result allows us to establish that if there is some Morita equivalence between

LK(E) and LK(G), and there is some given isomorphism between K0(LK(E)) and K0(LK(G)), then in fact
there is a (perhaps different) Morita equivalence between LK(E) and LK(G) which restricts to the given
isomorphism between the K0 groups.)

Since LK(E) and LK(G) are purely infinite simple rings, Remark 6.1.13 gives that [1LK(E)] ∈ K0(LK(E))
consists of the finitely generated projective left LK(E)-modules isomorphic (as left LK(E)-modules) to
the progenerator LK(E)LK(E), and analogously [1LK(G)] ∈ K0(LK(G)) consists of the finitely generated pro-
jective left LK(G)-modules isomorphic (as left LK(G)-modules) to the progenerator LK(G)LK(G). Thus the
equation HV ([1LK(E)]) = [1LK(G)] yields that H(LK(E)LK(E))∼= LK(G)LK(G). Since Morita equivalences pre-
serve endomorphism rings, we get ring isomorphisms

LK(E)∼= EndLK(E)(LK(E))∼= EndLK(G)(H(LK(E)))∼= EndLK(G)(LK(G))∼= LK(G),

and the theorem is established. ut

Definition 6.3.39. For finite graphs E and G having |E0|= n and |G0|= m, we write

E ≡triple G

in case there exists an abelian group isomorphism ϕ : K0(LK(E))→ K0(LK(G)) for which ϕ([1LK(E)]) =
[1LK(G)], and det(In−At

E) = det(Im−At
G).

Theorem 6.3.38 now yields the following important consequence, which provides an affirmative answer
to the Algebraic Kirchberg Phillips Question in the presence of additional hypotheses.

Theorem 6.3.40. (The Restricted Algebraic Kirchberg Phillips Theorem) Let E and G be finite graphs
such that LK(E) and LK(G) are purely infinite simple Leavitt path algebras. Let |E0| = n and |G0| = m.
Suppose E ≡triple G; in other words, suppose K0(LK(E)) ∼= K0(LK(G)) via an isomorphism which sends
[1LK(E)] to [1LK(G)], and that det(In−At

E) = det(Im−At
G). Then LK(E)∼= LK(G).

Proof. Since E ≡triple G, we have in particular that E ≡det G, so that LK(E) and LK(G) are Morita equivalent
by Theorem 6.3.32. At the same time we also have E ≡[1] G, which together with Theorem 6.3.38 gives the
isomorphism we seek. ut

Indeed, we may draw the same conclusion as in Theorem 6.3.40, using (seemingly) weaker hypotheses.

Corollary 6.3.41. Let E and G be finite graphs such that LK(E) and LK(G) are purely infinite simple Leav-
itt path algebras. Let |E0|= n and |G0|= m. Suppose E ≡[1] G; that is, suppose K0(LK(E))∼= K0(LK(G))
via an isomorphism which sends [1LK(E)] to [1LK(G)]. Suppose also that the integers det(In − At

E) and
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det(Im−At
G) have the same sign (i.e., are either both non-negative or both non-positive). Then LK(E) ∼=

LK(G).

Proof. Since K0(LK(E))∼=K0(LK(G)) we have by Corollary 6.1.10 that Coker(In−At
E)
∼=Coker(Im−At

G),
whence by Proposition 6.3.5 the sequences of “not equal 1” entries in the Smith normal forms of the two
matrices In−At

E and Im−At
G are the same. By Remark 6.3.8, this yields |det(In−At

E)| = |det(Im−At
G)|.

So det(In−At
E) and det(Im−At

G) having the same sign implies equality of these two integers, whence the
result follows from Theorem 6.3.40. ut

So we have answered the Algebraic Kirchberg Phillips Question in the affirmative, under the additional
hypotheses that the determinants of the two germane matrices have the same sign. In particular,

Corollary 6.3.42. Let E and G be finite graphs such that LK(E) and LK(G) are purely infinite simple
Leavitt path algebras having infinite K0 groups. Suppose K0(LK(E)) ∼= K0(LK(G)) via an isomorphism
which sends [1LK(E)] to [1LK(G)]. Then LK(E)∼= LK(G).

Proof. Let |E0|= n and |G0|= m. By Remark 6.3.8, the condition that LK(E) and LK(G) have infinite K0
groups yields that det(In−At

E) = 0 = det(Im−At
G), and Theorem 6.3.40 then applies. ut

Although this next result follows as a consequence of Theorem 6.3.40, the result was first established
in [4] (in which the isomorphism is described explicitly), and then re-established in [3] using different
techniques. The current approach to establishing the next result hinges on the following observation.

Remark 6.3.43. It is well-known (and not hard to prove) that for positive integers d,d′, and n≥ 2, there is
an automorphism of Z/(n−1)Z which takes d to d′ if and only if g.c.d.(d,n−1) = g.c.d.(d′,n−1).

Corollary 6.3.44. Let n,n′,d,d′ be positive integers, and K any field. Then there is an isomorphism of
K-algebras

Md(LK(1,n))∼= Md′(LK(1,n′))

if and only if n = n′ and g.c.d.(d,n− 1) = g.c.d.(d′,n− 1). In particular, LK(1,n) ∼= Md(LK(1,n)) if and
only if g.c.d.(d,n−1) = 1.

Proof. Throughout the proof we utilize various properties mentioned in Remark 6.1.7.
(⇒) Since LK(1,n) and LK(1,n′) are not Morita equivalent for n 6= n′ (as their K0-groups are the

nonisomorphic groups Z/(n−1)Z and Z/(n′−1)Z respectively), an isomorphism of the indicated algebras
necessarily implies n = n′. Furthermore, the element [1Md(LK(1,n))] of K0(Md(LK(1,n))) ∼= Z/(n− 1)Z
corresponds to d inZ/(n−1)Z; analogously, the element [1Md′ (LK(1,n))] of K0(Md′(LK(1,n)))∼=Z/(n−1)Z
corresponds to d′ in Z/(n− 1)Z. Since any isomorphism of K-algebras induces an isomorphism of K0
groups which preserves the position of the regular module, we utilize Remark 6.3.43 to conclude that
g.c.d.(d,n−1) = g.c.d.(d′,n−1).

(⇐) The hypotheses together with Remark 6.3.43 yield the existence of an automorphism ofZ/(n−1)Z
which takes d to d′. For integers d,n≥ 2, we define the graph Rd

n pictured here

Rd
n = •v

(d−1)
// •w (n)ff .

(So there are d−1 edges from v to w, and n loops at w.) It is easily seen by the Purely Infinite Simplicity
Theorem 3.1.10 that LK(Rd

n) is purely infinite simple. Furthermore, it is established in [3, Lemma 5.1] that
LK(Rd

n)
∼= Md(LK(1,n)). (This isomorphism can also be verified by utilizing a proof similar to that given in

Proposition 2.2.19.) So we have a sequence of group isomorphisms which preserve the indicated elements:

(K0(LK(Rd
n)), [1LK(Rd

n)
]) ∼= (K0(Md(LK(1,n))), [1Md(LK(1,n))])

∼= (Z/(n−1)Z,d)

∼= (Z/(n−1)Z,d′) ∼= (K0(Md′(LK(1,n))), [1Md′ (LK(1,n))])
∼= (K0(LK(Rd′

n )), [1LK(Rd′
n )
]).
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Clearly ARd
n
=

(
0 d−1
0 n

)
, so that I2−At

Rd
n
=

(
1 0

1−d 1−n

)
, which gives det(I2−At

Rd
n
) = 1−n. But an

analogous computation yields det(I2−At
Rd′

n
) = 1−n as well.

Thus we have all the ingredients required to invoke The Restricted Algebraic Kirchberg Phillips The-
orem 6.3.40, and thereby conclude that LK(Rd

n)
∼= LK(Rd′

n ), which in turn yields the desired isomorphism
between matrix rings over LK(1,n). ut

Here is another situation in which the Restricted Algebraic Kirchberg Phillips Theorem may be invoked.

Example 6.3.45. Let E6 denote the graph pictured here:

E6 = •v1
)) ** •v2

�� **
jj •v3

�� **
jj •v4

�� **
jj •v5

�� **
jj •v6 ffjj

We have that LK(E6) is purely infinite simple by Theorem 3.1.10. Further,

AE6 =


1 1 0 0 0 0
1 1 1 0 0 0
0 1 1 1 0 0
0 0 1 1 1 0
0 0 0 1 1 1
0 0 0 0 1 1

 , so that I6−At
E6

=


0 −1 0 0 0 0
−1 0 −1 0 0 0

0 −1 0 −1 0 0
0 0 −1 0 1 0
0 0 0 −1 0 −1
0 0 0 0 −1 0

 ,

which by a tedious computation is seen to have Smith normal form equal to I6. Thus we get by Corollary
6.3.6 that K0(LK(E6)) = {0}, which trivially then forces [1K0(LK(E6))] = 0 in K0(LK(E6)). Furthermore,
another tedious computation yields that det(I6−At

E6
) = −1. But the purely infinite simple Leavitt path

algebra LK(R2) ∼= LK(1,2) has this same data: as AR2 = (2), we have I1−At
R2

= (−1), which gives (as
previously established) that K0(LK(R2))= {0} (necessarily then with [1K0(LK(R2))] = 0), and det(I1−At

R2
)=

−1. We conclude by The Restricted Algebraic Kirchberg Phillips Theorem 6.3.40 that LK(R2) ∼= LK(E6)
as K-algebras; in particular, LK(E6)∼= LK(1,2).

Question 6.3.46. We finish this section by presenting a question which has been the subject of significant
investigative effort, but remains unresolved as of 2017. We consider the Leavitt path algebras LK(E) and
LK(F), where E and F are given by

E = •v1
)) ** •v2 ffjj and F = •v1

)) ** •v2
�� **

jj •v3
�� **

jj •v4 ffjj .

By the Purely Infinite Simplicity Theorem 3.1.10 we see immediately that both LK(E) and LK(F) are
purely infinite simple Leavitt path algebras. It is easy to show that the Smith normal form of I2 − At

E
is I2. Since F is the graph E4 of Examples 6.1.11, we have already shown that K0(F) = {0}. (This can
also be established by a tedious computation which yields that the Smith normal form of I4−At

F is I4.)
Consequently, (K0(LK(E)), [1LK(E)]) = ({0},0) = (K0(LK(F)), [1LK(F)]). But det(I2−At

E) = −1, while
det(I4−At

F) = +1. So the two Leavitt path algebras LK(E) and LK(F) share the same K0-data, but the
signs of the germane determinants are different, so that Theorem 6.3.40 does not apply here.

It is not known whether the Leavitt path algebras LK(E) and LK(F) are isomorphic. (Further discussion
of this question is presented below in Section 7.3.)

6.4 Tensor products and Hochschild homology

In this section, we compute the graded structure of the Hochschild homology groups HHn(Lk(E)) of a
Leavitt path algebra of a finite graph E. We use this computation to get some non-isomorphism results. In
particular we show that Lk(1,2)⊗Lk(1,2) is not isomorphic to Lk(1,2). This contrasts with the isomor-
phism O2⊗O2 ∼= O2 of C∗-algebras, first established by George Elliott (see e.g., [134]).

Throughout this section we fix a field k. (We use k here rather than K for notational clarity, since many
of the results herein will involve the letter K in the context of K-theoretic data.) All vector spaces, tensor
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products and algebras are over k. If R and S are unital k-algebras, then by an (R,S)-bimodule we understand
a left module over R⊗Sop. By an R-bimodule we shall mean an (R,R)-bimodule, that is, a left module over
the enveloping algebra Re = R⊗Rop. Hochschild homology of k-algebras is always taken over k. If M is
an R-bimodule, we write

HHn(R,M) = TorRe

n (R,M)

for the Hochschild homology of R with coefficients in M; we abbreviate HHn(R) = HHn(R,R).

Definitions 6.4.1. Let R be a k-algebra and M an R-bimodule. The Hochschild homology HH∗(R,M) of R
with coefficients in M is computed by the Hochschild complex HH(R,M) which is given in degree n by

HH(R,M)n = M⊗R⊗n .

It is equipped with the Hochschild boundary map b defined by

b(a0⊗a1⊗·· ·⊗an) =
n−1

∑
i=0

(−1)ia0⊗·· ·⊗aiai+1⊗·· ·⊗an +(−1)nana0⊗·· ·⊗an−1 .

If R and M happen to be Z-graded, then HH(R,M) splits into a direct sum of subcomplexes

HH(R,M) =
⊕
m∈Z

mHH(R,M) .

The homogeneous component of degree m of HH(R,M)n is the linear subspace of HH(R,M)n generated
by all elementary tensors a0 ⊗ ·· · ⊗ an with ai homogeneous and ∑

n
i=1 |ai| = m. One of the first basic

properties of the Hochschild complex is that it commutes with filtering colimits. Thus we have

Lemma 6.4.2. Let I be a filtered ordered set and let {(Ri,Mi) : i ∈ I} be a directed system of pairs (Ri,Mi)
consisting of an algebra Ri and an Ri-bimodule Mi, with algebra maps Ri → R j and Ri-bimodule maps
Mi→M j for each i≤ j. Let (R,M) = colimi(Ri,Mi). Then HHn(R,M) = colimiHHn(Ri,Mi) (n≥ 0).

Let Ri be a k-algebra and Mi an Ri-bimodule (i = 1,2). The Künneth formula [158, 9.4.1] establishes a
natural isomorphism

HHn(R1⊗R2,M1⊗M2)∼=
n⊕

p=0

HHp(R1,M1)⊗HHn−p(R2,M2) .

Another fundamental fact about Hochschild homology which we shall need is Morita invariance. Let R and
S be Morita equivalent algebras, and let P ∈ R⊗Sop−Mod and Q ∈ S⊗Rop−Mod implement the Morita
equivalence. Then ([158, Thm. 9.5.6])

HHn(R,M) = HHn(S,Q⊗R M⊗R P) . (6.1)

Lemma 6.4.3. Let R1, . . . ,Rn and S1, . . . ,Sm, . . . be a finite and an infinite sequence of algebras, and let
R =

⊗n
i=1 Ri, S≤m =

⊗m
j=1 S j, and S =

⊗
∞
j=1 S j. Assume that

(i) HHq(Ri) 6= 0 6= HHq(S j) for q = 0,1, 1≤ i≤ n, 1≤ j,
(ii) HHp(Ri) = HHp(S j) = 0 for p≥ 2, 1≤ i≤ n, 1≤ j, and

(iii) n 6= m.

Then no two of R, S≤m and S are Morita equivalent.

Proof. By the Künneth formula, we have

HHn(R) =
n⊗

i=1

HH1(Ri) 6= 0, while HHp(R) = 0 for p > n.
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By the same argument, HHp(S≤m) is nonzero for p = m, and zero for p > m. Hence if n 6= m, R and
S≤m do not have the same Hochschild homology and therefore they cannot be Morita equivalent, by (6.1).
Similarly, by Lemma 6.4.2, we have

HHn(S) =
⊕

J⊂N,|J|=n

(⊗
j∈J

HH1(S j)
)
⊗
(⊗

j/∈J

HH0(S j)
)
,

so that HHn(S) is nonzero for all n≥ 1, and thus it cannot be Morita equivalent to either R or S≤m. ut

Let R be a unital algebra and G a group acting on R by algebra automorphisms. Form the crossed-product
algebra S = RoG, and consider the Hochschild complex HH(S). For each conjugacy class ξ of G, the
graded submodule HHξ (S)⊂HH(S) generated in degree n by the elementary tensors a0og0⊗·· ·⊗anogn
with g0 · · ·gn ∈ ξ is a subcomplex, and we have a direct sum decomposition HH(S) =

⊕
ξ HHξ (S). The

following theorem of Lorenz describes the complex HHξ (S) corresponding to the conjugacy class ξ = [g]
of an element g ∈ G as hyperhomology over the centralizer subgroup Zg ⊂ G.

Theorem 6.4.4. ([115]) Let R be a unital k-algebra, G a group acting on R by automorphisms, g ∈ G and
Zg ⊂G the centralizer subgoup. Let S = RoG be the crossed product algebra, and HH〈g〉(S)⊂HH(S) the
subcomplex described above. Consider the R-submodule Sg =Rog⊂ S. Then there is a quasi-isomorphism

HH [g](S) ∼→H(Zg,HH(R,Sg)) .

In particular we have a spectral sequence

E2
p,q = Hp(Zg,HHq(R,Sg))⇒ HH [g]

p+q(S) .

Remark 6.4.5. Lorenz formulates his result in terms of the spectral sequence alone, but his proof shows
that there is a quasi-isomorphism as stated above; an explicit formula is given for example in the proof of
[66, Lemma 7.2].

Let A be a not-necessarily-unital k-algebra, and denote by Ã its unitization. Recall from [161] that A is
called H-unital if the groups TorÃ

n (k,A) vanish for all n≥ 0. Wodzicki proved in [161] that A is H-unital if
and only if for every embedding ACR of A as a two-sided ideal of a unital ring R, the map

HH(A)→ HH(R : A) = ker(HH(R)→ HH(R/A))

is a quasi-isomorphism.

Lemma 6.4.6. Theorem 6.4.4 still holds if the condition that R be unital is replaced by the condition that it
be H-unital.

Proof. Follows from Theorem 6.4.4 and the fact, proved in [66, Prop. A.6.5], that RoG is H-unital if R
is. ut

Let R be a unital algebra, and φ : R→ pRp a corner isomorphism. As in Section 6.2 (or see [25]), we
consider the skew Laurent polynomial algebra R[t+, t−,φ ]; recall that this is the R-algebra generated by
elements t+ and t−, subject to the relations: t+a = φ(a)t+; at− = t−φ(a); t−t+ = 1; and t+t− = p. The
algebra S = R[t+, t−,φ ] is Z-graded by setting deg(r) = 0, deg(t±) =±1. The homogeneous component of
R[t+, t−,φ ] of degree n is given by

R[t+, t−,φ ]n =

t−n
− R if n < 0
R n = 0

Rtn
+ if n > 0 .

Proposition 6.4.7. Let R be a unital ring, φ : R→ pRp a corner isomorphism, and S = R[t+, t−,φ ]. Con-
sider the weight decomposition HH(S) =

⊕
m∈Z mHH(S). There is a quasi-isomorphism

mHH(S) ∼→ Cone(1−φ : HH(R,Sm)→ HH(R,Sm)) . (6.2)
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Proof. If φ is an automorphism, then for S=Roφ Z, the right hand side of (6.2) computesH(Z,HH(R,Sm)),
and the proposition becomes the particular case G = Z of Theorem 6.4.4. In the general case, let A be the
colimit of the inductive system

R
φ // R

φ // R
φ // · · · .

Note that φ induces an automorphism φ̂ : A→A. Now A is H-unital, since it is a filtering colimit of unital al-
gebras, and thus the assertion of the proposition is true for the pair (A, φ̂), by Lemma 6.4.6. Hence it suffices
to show that for B = Ao

φ̂
Z the maps HH(S)→ HH(B) and Cone(1−φ : HH(R,Sm)→ HH(R,Sm))→

Cone(1−φ : HH(A,Bm)→ HH(A,Bm)) (m ∈ Z) are quasi-isomorphisms. The analogous property for K-
theory is shown in the course of the third step of the proof of [23, Thm. 3.6]. Since the proof in loc. cit.
uses only that K-theory commutes with filtering colimits and is matrix invariant on those rings for which it
satisfies excision, it applies verbatim to Hochschild homology. This concludes the proof. ut

Let E be a finite graph. Recall that the algebra L = Lk(E) is equipped with a Z-grading, see Section
2.1. The grading is determined by |v| = 0 for v ∈ E0, and |α| = 1, |α∗| = −1, for α ∈ E1. Recall that
L0,n denotes the linear span of all the elements of the form γν∗, where γ and ν are paths with r(γ) = r(ν)
and |γ| = |ν | = n. Recall from Corollary 2.1.16 the description of the algebras L0,n and of the transition
homomorphisms L0,n→ L0,n+1, for n≥ 0.

Assume E has no sources. For each i ∈ E0, choose an edge αi such that r(αi) = i. Consider the elements
of Lk(E)

t+ = ∑
i∈E0

αi and t− = t∗+ .

As in Section 6.2, we have that t−t+ = 1. Thus, since |t±|=±1, the endomorphism

φ : L→ L, φ(x) = t+xt− (6.3)

is homogeneous of degree 0 with respect to the Z-grading. In particular it restricts to an endomorphism of
L0. By [25, Lemma 2.4], we have

L = L0[t+, t−,φ ]. (6.4)

As in the previous sections of this chapter, the adjacency matrix AE of the finite graph E plays a major
role.

We list the vertex set E0 = v1,v2, . . . ,vn in such a way that the first e′0 vertices are the sinks of E.
Accordingly, the first e′0 rows of the matrix AE are 0. We let NE denote the matrix obtained from AE by
deleting these first e′0 rows. The matrix that enters the computation of the Hochschild homology of the
Leavitt path algebra is (

0
1e0−e′0

)
−Nt

E : Ze0−e′0 −→ Ze0 .

By a slight abuse of notation, we will write 1−Nt
E for this matrix. Note that I−Nt

E ∈Me0×(e0−e′0)
(Z). Of

course NE = AE in case E has no sinks.

Theorem 6.4.8. Let E be a finite graph without sources, and k any field. For each i ∈ Reg(E), and m≥ 1,
let Vi,m be the vector space generated by all closed paths c of length m with s(c) = r(c) = i. Let Z=< σ >
act on

Vm =
⊕

i∈Reg(E)

Vi,m

by rotation of closed paths. We have:

mHHn(Lk(E)) =


Coker(1−σ : V|m|→V|m|) n = 0,m 6= 0

Coker(1−Nt
E) n = m = 0

ker(1−σ : V|m|→V|m|) n = 1,m 6= 0
ker(1−Nt

E) n = 1,m = 0
0 n /∈ {0,1} .
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Proof. Let P = KE ⊆ Lk(E) be the path algebra of E, and let Wm ⊂ P be the subspace generated by all
paths of length m. For each fixed n≥ 1, and m ∈ Z, consider the following L0,n-bimodule

Lm,n =

{
L0,nWmL0,n if m > 0

L0,nW ∗−mL0,n if m < 0.

For notational simplicity we denote Lk(E) by L. The homogeneous part Lm of L of degree m is then

Lm =
⋃
n≥1

Lm,n

If m is positive, then there is a basis of Lm,n consisting of the products αθβ ∗ where each of α , β and θ is
a path in E, r(α) = s(θ), r(β ) = r(θ), |α|= |β |= n and |θ |= m. Hence the formula

π(αθβ
∗) =

{
θ if α = β

0 else

defines a surjective linear map Lm,n→Vm. One checks that π induces an isomorphism

HH0(L0,n,Lm,n)∼=Vm (for m > 0).

Similarly
HH0(L0,n,Lm,n) =V ∗|m| ∼=V−m (for m < 0).

Next, by Corollary 2.1.16, we have

HH0(L0,n) = k[Reg(E)]⊕
⊕

i∈Sink(E)

kr(i,n),

where
r(i,n) = max{r ≤ n | P(r, i) 6= /0}.

Now note that, because L0,n is a product of matrix algebras, it is separable, and thus HH1(L0,n,M) = 0
for any bimodule M. As observed in (6.4), for the automorphism (6.3) we have L = L0[t+, t−,φ ]. Hence
in view of Proposition 6.4.7 and Lemma 6.4.2, it only remains to identify the maps HH0(L0,n,Lm,n)→
HH0(L0,n+1,Lm,n+1) induced by inclusion and by the homomorphism φ . One checks that for m 6= 0, these
are respectively the cyclic permutation and the identity V|m| → V|m|. The case m = 0 is dealt with in the
same way as in [23, Proof of Theorem 5.10]. ut

Corollary 6.4.9. Let E be a finite graph containing at least one nontrivial closed path, and k any field.

(i) HHn(Lk(E)) = {0} for n /∈ {0,1}.
(ii) mHH∗(Lk(E))∼= −mHH∗(L(E)) for all m ∈ Z.

(iii) There exists m ∈ N such that mHH0(Lk(E)) and mHH1(Lk(E)) are both nonzero.

Proof. We first reduce to the case where the graph does not have sources. By the proof of [23, Theorem
6.3], there is a finite complete subgraph F of E such that F has no sources, F contains all the non-trivial
closed paths of E, Sink(F) = Sink(E), and Lk(F) is a full corner in Lk(E) with respect to the homogeneous
idempotent ∑v∈F0 v. It follows that HH∗(Lk(E)) and HH∗(Lk(F)) are graded-isomorphic. Therefore we
can assume that E has no sources.

The first two assertions are already part of Theorem 6.4.8. For the last assertion, let α be a cycle in E,
and let m = |α|. Let σ be the cyclic permutation; then {σ iα | i = 0, . . . ,m− 1} is a linearly independent
set in LK(E). Hence N(α) = ∑

m−1
i=0 σ iα is a nonzero element of V σ

m = mHH1(Lk(E)). Since on the other
hand N vanishes on the image of 1−σ : Vm → Vm, it also follows that the class of α in mHH0(Lk(E)) is
nonzero. ut

Theorem 6.4.10. Let E1, . . . ,En and F1, . . . ,Fm be finite graphs, and k any field. Assume that n 6=m and that
each of the Ei and the Fj has at least one non-trivial closed path. Then the k-algebras Lk(E1)⊗·· ·⊗Lk(En)
and Lk(F1)⊗·· ·⊗Lk(Fm) are not Morita equivalent.
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Proof. Immediate from Lemma 6.4.3 and Corollary 6.4.9(iii). ut

Example 6.4.11. It follows in particular from Theorem 6.4.10 that the algebras Lk(1,2) ∼= Lk(R2) and
Lk(1,2)⊗ Lk(1,2) are not Morita equivalent for any field k. In particular, these two k-algebras are not
isomorphic.

Here is another way of proving that these two algebras are not Morita equivalent, due to Jason Bell
and George Bergman [48]. Since the weak global dimension of a tensor product of algebras over a field is
at least the sum of their global dimensions, it suffices to show that Lk(1,2) has weak dimension 1. Since
Lk(1,2) has global dimension 1 (i.e., is hereditary, see Theorem 3.2.5), it suffices to show it is not von
Neumann regular. But this follows immediately from Theorem 3.4.1.

Remark 6.4.12. The observation made in Example 6.4.11 provides another situation in which analogous
statements about Leavitt path algebras and graph C∗-algebras need not yield idential outcomes. Recall
(Example 5.2.4) that for n≥ 2, the Cuntz algebra On is defined as C∗(Rn). It is well-known that the tensor
product O2⊗O2 is isomorphic to O2 as C∗-algebras (see e.g. [134]). (In the C∗-algebra setting, in general
the notion of tensor product is not uniquely determined; however, in this case, as O2 is nuclear, all notions
of tensor product here coincide.)

We denote by L∞ the unital algebra
L∞ = Lk(RN)

presented in Example 1.6.13. So L∞ is generated by elements x1,x∗1,x2,x∗2, . . . , subject to the relations
x∗i x j = δi, j1 for all i, j ∈ N.

Proposition 6.4.13. Let E be any finite graph having at least one non-trivial closed path, and k any field.
Then L∞⊗Lk(E) and Lk(E) are not Morita equivalent. Similarly L∞⊗L∞ and L∞ are not Morita equivalent.

Proof. We have
L∞ = lim−→

n∈N
Ck(1,n) , (6.5)

where Ck(1,n) is the Cohn algebra of Section 1.5. But Ck(1,n)∼= Lk(Rn( /0)) as described in Example 1.5.20.
It follows from Theorem 6.4.8 and (6.5) that the formulas in Theorem 6.4.8 for mHHn(L∞), m 6= 0, hold,
taking as Vi,m the vector space generated by all the words in x1,x2, . . . of length m, and that 0HH0(L∞) = k
and 0HHn(L∞) = 0 for n≥ 1. As before, Lemma 6.4.3 gives the result. ut

Theorem 6.4.14. Let E1, . . . ,En and F1, . . . ,Fm, . . . be a finite and an infinite sequence of finite graphs, and
k any field. Assume that the number of indices i such that Fi has at least one non-trivial closed path is
infinite. Then the algebras Lk(E1)⊗·· ·⊗Lk(En) and

⊗
∞
i=1 Lk(Fi) are not Morita equivalent.

Proof. Immediate from Lemma 6.4.3 and Corollary 6.4.9(iii). ut

Example 6.4.15. Let L(∞) denote the infinite tensor product
⊗

∞
i=1 Lk(1,2), and let E be any graph having

at least one nontrivial closed path. Then L(∞)⊗Lk(E) and Lk(E) are not Morita equivalent.

To conclude the section we note that algebraic K-theory cannot distinguish between Lk(1,2) and
Lk(1,2)⊗ Lk(1,2), nor between L∞ and L∞⊗ L∞. For this we need a lemma, which may be of indepen-
dent interest. A unital ring R is said to be regular supercoherent in case all the polynomial rings R[t1, . . . , tn]
are regular coherent in the sense of [83].

Lemma 6.4.16. Let E be a finite graph and k any field. Then Lk(E) is regular supercoherent.

Proof. Let kE be the usual path algebra of E. It was observed in the proof of [22, Lemma 7.4] that the alge-
bra kE[t] is regular coherent. The same proof gives that all the polynomial algebras kE[t1, . . . , tn] are regular
coherent. This shows that kE is regular supercoherent. By [22, Proposition 4.1], the universal localization
kE → Lk(E) = Σ−1kE is flat on the left. It follows that Lk(E) is left regular supercoherent (see [23, page
23]). Since Lk(E)⊗ k[t1, . . . , tn] admits an involution, it follows that Lk(E) is regular supercoherent. ut
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Proposition 6.4.17. Let R be a regular supercoherent k-algebra. Then the algebraic K-theories of Lk(1,2)
and of Lk(1,2)⊗R are both trivial.

Proof. Let E = R2 be the graph with one vertex and two loops, as usual. Then Lk(1,2) ∼= Lk(E), and by
Corollary 1.5.14 we have

Lk(1,2)⊗R∼= LR(E).

Applying [23, Theorem 7.6] we obtain that K∗(LR(E)) = K∗(Lk(E)) = {0}. The result follows. ut

In our final result of this section, we obtain a K-absorbing result for Leavitt path algebras of finite graphs,
indeed for any regular supercoherent algebra.

Proposition 6.4.18. Let R be a regular supercoherent k-algebra. Then the natural inclusion R→ R⊗L∞

induces an isomorphism Ki(R)→ Ki(R⊗L∞) for all i ∈ Z.

Proof. Using the notation of the proof of Proposition 6.4.13, we see that it is enough to show that the
natural map R→ R⊗ Lk(Rn( /0)) induces isomorphisms Ki(R)→ Ki(R⊗ Lk(Rn( /0)) for all i ∈ Z and all
n ≥ 1. Since R is regular supercoherent the K-theory of R⊗Lk(Rn( /0)) ∼= LR(Rn( /0)) can be computed by

using [23, Theorem 7.6]. By the explicit form of the graph E = Rn( /0), we see that AE =

(
0 0
n n

)
, so that

NE = (n n), and I−Nt
E =

(
−n

1−n

)
. We thus obtain that

Ki(R⊗L(Rn(X)))∼= (Ki(R)⊕Ki(R))/(−n,1−n)Ki(R).

The natural map R→ LR(Rn(X)) factors as

R→ Rv⊕Rw→ LR(Rn(X)) .

The first map induces the diagonal homomorphism Ki(R)→ Ki(R)⊕Ki(R) sending x to (x,x). The second
map induces the natural surjection

Ki(R)⊕Ki(R)→ (Ki(R)⊕Ki(R))/(−n,1−n)Ki(R).

Therefore the natural homomorphism R→ LR(Rn(X)) induces an isomorphism

Ki(R)
∼=−→ Ki(LR(Rn(X))).

This concludes the proof. ut

Corollary 6.4.19. The natural maps k→ L∞→ L∞⊗L∞ induce K-theory isomorphisms K∗(k) = K∗(L∞) =
K∗(L∞⊗L∞).

Proof. A first application of Proposition 6.4.18 gives K∗(k) = K∗(L∞). A second application shows that for
Rn(X) as above, the inclusion Lk(Rn(X))→ Lk(Rn(X))⊗L∞ induces a K-theory isomorphism; passing to
the limit, we obtain the result. ut





Chapter 7
Generalizations, applications, and current lines of research

In the first six chapters of this book we have introduced and subsequently described various properties of
Leavitt path algebras. Our goal in this final chapter is to round out the presentation by providing the reader
with a sense of how the subject fits into the broader mathematical landscape. In Section 7.1 we present the
descriptions of various constructions which have grown out of, or were motivated by, Leavitt path algebras.
In Section 7.2 we describe a few longstanding questions (including questions in seemingly unrelated fields)
which were resolved (wholly or partially) by using Leavitt path algebras as a tool. These include a question
of Higman about infinite, finitely presented simple groups; a question of Kaplansky about prime, non-
primitive von Neumann regular algebras; a question about the realization of various monoids as the V -
monoid of a von Neumann regular ring; and others. We then conclude the book with Section 7.3, in which
we sketch some of the open problems which are, at the time of the book’s completion, driving much of the
research energy in the subject. For additional information, see [1].

7.1 Generalizations of Leavitt path algebras

Leavitt path algebras were first defined and investigated in the setting of row-finite graphs in [5] and [31].
With this observation as historical context, it is fair to say that two concepts which may be viewed as
generalizations of this original notion have already been discussed herein: namely, the Leavitt path algebras
for arbitrary graphs (i.e., relax restrictions on the graph E), and relative Cohn path algebras (i.e., relax the
restriction that the (CK2) relation be imposed at all elements of Reg(E)).

The goal of the current section is to briefly present a number of additional generalizations of the notion
of a Leavitt path algebra which have been taken up in the literature.

Leavitt path algebras of separated graphs

The (CK2) condition imposed at any regular vertex in a Leavitt path algebra may be modified in various
ways. Such is the motivation for the discussion in this subsection. All of these ideas appear in [27].

In the (CK2) condition, the edges emanating from a given regular vertex v are treated as a single entity,
and the single relation v = ∑e∈s−1(v) ee∗ is imposed. More generally, one may partition the set s−1(v) into
disjoint nonempty subsets, and then impose a (CK2)-type relation corresponding exactly to those subsets.
More formally, a separated graph is a pair (E,C), where E is a graph, C = tv∈E0Cv, and, for each v ∈
E0 \Sink(E), Cv is a partition of s−1(v) into pairwise disjoint nonempty subsets. In case v ∈ Sink(E), Cv is
taken to be the empty family of subsets of s−1(v).

Definition 7.1.1. Let E be any graph and K any field. C = tv∈E0Cv as above. Let Ê denote the extended
graph of E, and KÊ the path K-algebra of Ê. The Leavitt path algebra of the separated graph (E,C) with
coefficients in K is the quotient of KÊ by the ideal generated by these two types of relations:

(SCK1) for each X ∈C, e∗ f = δe, f r(e) for all e, f ∈ X , and
(SCK2) for each non-sink v ∈ E0, v = ∑e∈X ee∗ for every finite X ∈Cv.

181
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So the usual Leavitt path algebra LK(E) is exactly LK(E,C), where each Cv is defined to be the subset
{s−1(v)} if v is not a sink, and /0 otherwise. Leavitt path algebras of separated graphs include a much wider
class of algebras than those which arise as Leavitt path algebras in the standard construction. For instance,
the algebras of the form LK(m,n) for m ≥ 2 originally studied by Leavitt in [112] do not arise as LK(E)
for any graph E. On the other hand, as shown in [27, Proposition 2.12], LK(m,n) (m≥ 2) appears as a full
corner of the Leavitt path algebra of an explicitly described separated graph (having two vertices and m+n
edges). In particular, LK(m,n) is Morita equivalent to the Leavitt path algebra of a separated graph.

Of significantly more importance is the following Bergman-like realization result, which shows that the
collection of Leavitt path algebras of separated graphs is extremely broad.

Theorem 7.1.2. ([27, Section 4]) Let M be any conical abelian monoid. Then there exists a graph E, and
partition C = tv∈E0Cv, for which V (LK(E,C))∼= M.

Consequently, V (LK(E,C)) need not share the separativity nor the refinement properties of the standard
Leavitt path algebras LK(E) (see Section 3.6). Furthermore, the ideal structure of LK(E,C) is in general
significantly more complex than that of LK(E). Nonetheless, a description of the idempotent-generated
ideals of LK(E,C) can be achieved (solely in terms of graph-theoretic information).

Kumjian-Pask algebras

Any directed graph E = (E0,E1,s,r) may be viewed as a category ΓE ; the objects of ΓE are the vertices
E0, and, for each pair v,w∈E0, the morphism set HomΓE (v,w) consists of those elements of Path(E) having
source v and range w. Composition is concatenation. As well, the set Z+ may be viewed as the category
ΓZ+ having one object, and morphisms given by the elements of Z+, where composition is addition. At
this level of abstraction, the length map ` : Path(E)→ Z+ yields a functor Φ` : ΓE → ΓZ+ , which satisfies
the following factorization property on morphisms: if λ ∈ Path(E) and `(λ ) = m+ n, then there exist
unique µ,ν ∈ Path(E) such that `(µ) = m, `(ν) = n, and λ = µν . Conversely, we may view a category
as the morphisms of the category, where the objects are identified with the identity morphisms. Then any
category Λ which admits a functor d : Λ → ΓZ+ having the factorization property can be viewed as a
directed graph EΛ in the expected way.

With these observations as motivation, one defines a higher rank graph, as follows.

Definition 7.1.3. Let k be a positive integer. View the additive monoid (Z+)k as a category with one object,
and view a category as the morphisms of the category, where the objects are identified with the identity
morphisms. A graph of rank k (or simply a k-graph) is a countable category Λ , together with a functor
d : Λ→ (Z+)k, which satisfies the factorization property: if λ ∈Λ and d(λ ) =m+n for some m,n∈ (Z+)k,
then there exist unique µ,ν ∈Λ such that d(µ) = m,d(ν) = n, and λ = µν . (So the usual notion of a graph
is a 1-graph in this more general context.)

Given any k-graph (Λ ,d) and field K, one may define the Kumjian-Pask K-algebra KPK(Λ ,d). (We omit
the somewhat lengthy details of the construction; see [37] for the complete description.)

In case k = 1, and d is the usual length function, the Kumjian-Pask algebra KPK(Λ ,d) is precisely the
Leavitt path algebra LK(EΛ ).

Steinberg algebras; the groupoid approach

A groupoid G is a small category in which every morphism has an inverse. Notationally, if f is a
morphism in G with domain x and codomain y, then we denote x = s( f ) and y = r( f ); so a groupoid G has
the property that for each morphism f : s( f )→ r( f ) there exists g : r( f )→ s( f ) for which f ◦g = 1r( f ) and
g◦ f = 1s( f ). A topological groupoid is a groupoid in which the underlying set is equipped with a topology,
in which both the product (i.e., composition) and inversion functions are continuous (where the set of pairs
of composable morphisms is given the induced topology from the product topology).

In [144], Steinberg introduced, for any topological groupoid G satisfying various additional topological
conditions (Hausdorff and ample), and any commutative unital ring K, the K-algebra of the groupoid G ,
denoted KG . Formally, KG is the K-module spanned by the functions from G to K which have compact
open support and which are continuous on their support (where K has the discrete topology). The algebra
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KG is now known as the Steinberg K-algebra of the groupoid; in addition, the more common notation for
KG has become AK(G ).

In [104], Kumjian and Pask build a groupoid GΛ corresponding to any given k-graph Λ . In particular,
for a directed graph (i.e., 1-graph) E, a groupoid GE is associated to E. The construction of GE is explicitly
described in [63, Section 2]; we refer the reader to that article for the details. In [61, Proposition 4.3], Clark,
Farthing, Sims and Tomforde show that for a row-finite k-graph (Λ ,d) with no sources, then AC(GΛ ) ∼=
KPC(Λ ,d), the Kumjian-Pask algebra described above. In particular ([61, Remark 4.4]), if Λ is a row-finite
directed graph with no sources, then AC(GE) ∼= LC(E). Subsequently, in [63, Example 3.2], Clark and
Sims establish that this isomorphism indeed holds for arbitrary directed graphs. While the two conditions
(CK1) and (CK2) are of course not explicitly included in the general definition of a Steinberg algebra, it
turns out that these are natural consequences of the Steinberg algebra construction in case G = GE ; for
instance, the (CK2) condition follows from the trivial observation that for a regular vertex v of E, the set
{p ∈ Path(E) | s(p) = v} equals the finite disjoint union

⊔
e∈s−1(v) Qe, where Qe = {α ∈ Path(E) |α =

eβ for some β ∈ Path(E)}.
The importance of being able to interpret Leavitt path algebras as Steinberg algebras is twofold. First,

the notion of a groupoid C∗-algebra has been investigated by a number of authors; in the specific case of
a graph-groupoid GΛ , the groupoid C∗-algebra is isomorphic to the graph C∗-algebra C∗(Λ). For any
groupoid G , it has been shown that AC(G ) is dense in the groupoid C∗-algebra C∗(G ) (see e.g., [61,
Proposition 4.2]). Consequently, the groupoid approach provides a context in which both Leavitt path
algebras over C and graph C∗-algebras live, and thus provides a more general set of tools which are helping
to begin to explain the compelling connections between LC(E) and C∗(E) (see Section 5.6).

Secondly, a number of results have been established for various types of Steinberg algebras (i.e., those
associated to various types of groupoids). Many of these results have thereby been used to re-establish
known results about Leavitt path algebras, and provide some new results as well. For example:

- The groupoids for which the corresponding Steinberg algebra is simple are described in [54]. This in
turn yields The Simplicity Theorem 2.9.1 as a direct consequence.

- Results established in [61] (for coefficients in C) and [60] (for coefficients in an arbitrary commutative
ring) give both the Graded and Cuntz-Krieger Uniqueness Theorems 2.2.15 and 2.2.16 as consequences.

- Steinberg establishes in [145, Theorem 4.10] necessary and sufficient conditions which give the primi-
tivity of AK(G ) in terms of the structure of G . In the case where G = GE is the graph groupoid of the graph
E, then the effectiveness of GE corresponds to Condition (L) in E, while the existence of a dense orbit in E
corresponds to the downward directedness of E. In fact, the dense orbit condition turns out to automatically
yield the (CSP) condition on E in case E is not row-finite (see Definition 7.2.3 below), so that Theorem
7.2.5 below can be re-established as well from the groupoid perspective.

- Using the tools provided by the Steinberg algebra model of Leavitt path algebras, in [62, Theorems
3.6 and 3.11] the authors describe completely the center of LR(E) for an arbitrary graph E and commuta-
tive ring R. The groupoid model is quite powerful here, as the results of [62] simultaneously yield some
previously established descriptions of the center in specific situations; see e.g., [38] and [65].

Non-field coefficients

We finish this section by noting that while a great deal of the energy expended on understanding LK(E)
has focused on the graph E, one may also relax the requirement that the coefficients be taken from a field
K. For a commutative unital ring R and graph E one may form the path ring RE of E with coefficients in
R in the expected way; it is then easy to see how to subsequently define the Leavitt path ring LR(E) of E
with coefficients in R. (This idea was utilized in Section 6.4 without explicit mention.) While some of the
results given herein when R is a field do not hold verbatim in the more general setting (e.g., the Simplicity
Theorem), one can still understand much of the structure of LR(E) in terms of the properties of E and R; see
e.g., [148]. A situation in which there are results about Leavitt path algebras LZ(E), but for which there are
no (currently) known corresponding results about Leavitt path algebras LK(E) for K a field, is discussed
below, see Theorem 7.3.3.
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7.2 Applications of Leavitt path algebras

In this section we present a number of instances in which Leavitt path algebras, or their close cousins, have
been used to answer various general ring-theoretic questions, questions which on the surface might seem
to have little to do with Leavitt path algebras.

Isomorphisms between matrix rings over Leavitt algebras: applications to Higman-Thompson groups

We reconsider the Leavitt algebras LK(1,n) for n≥ 2, the motivating examples of Leavitt path algebras.
Fix n ∈N and K any field, and let R denote LK(1,n). By construction we have RR∼= RRn as left R-modules;
so by taking endomorphism rings and using the standard representation of these as matrix rings, we get
R∼= Mn(R) as K-algebras. Furthermore, by repeatedly invoking the module isomorphism RR∼= RRn, we get
RR ∼= RRs for any s = 1+ j(n−1) (for all j ∈ N), which similarly yields R ∼= Ms(R) as K-algebras for all
such s. By standard matrix computations, this then also gives R ∼= Mst (R) for all t ∈ N, where s is of the
indicated form.

It is not difficult to show that isomorphisms of this form do not represent all possible isomorphisms
between LK(1,n) and a matrix ring over itself. For instance, one can show (by explicitly writing down
matrices which multiply correctly) that R = LK(1,4) has R ∼= M2(R), and 2 is clearly not of the form
1+ j(4−1) for j ∈ N. But an analysis of this particular case leads easily to the general observation that if
d | st for some t ∈ N, then R∼= Md(R) (by an explicitly described isomorphism).

An upshot of the previous remarks is the natural question: Given n ∈ N, for which d ∈ N is LK(1,n)∼=
Md(LK(1,n)) as K-algebras? The analogous question was posed by Paschke and Salinas for matrix rings
over the Cuntz algebras On in [127]: given n ∈ N, for which d ∈ N is On ∼= Md(On) as C∗-algebras? The
resolution of this analogous question required many years of effort. In the end, the solution may be obtained
as a consequence of the Kirchberg Phillips Theorem 6.3.1: On ∼= Md(On) if and only if g.c.d.(d,n−1) = 1.
So while the C∗-algebra question was resolved for matrices over the Cuntz algebras, the solution did not
shed any light on the analogous Leavitt algebra question, both because the C∗-algebra solution required
analytic tools, and because it did not produce an explicit isomorphism between the germane algebras.

An easy consequence of a result of Leavitt [112, Theorem 5] is that, when g.c.d.(d,n− 1) > 1, then
LK(1,n) 6∼= Md(LK(1,n)). With this and the Cuntz algebra result in hand, it is reasonable to conjecture that
LK(1,n)∼=Md(LK(1,n)) if and only if g.c.d.(d,n−1) = 1. Clearly if d | nt for some t ∈N then g.c.d.(d,n−
1) = 1, so that by a previous remark the conjecture is validated in this situation. The key idea which led to
Theorem 7.2.1 below was to explicitly produce an isomorphism in situations more general than this. The
method of attack was clear: one reaches the desired conclusion by finding a subset of Md(LK(1,n)) of size
2n which both behaves as in the appropriate LK(1,n) relations (1.1), as well as generates Md(LK(1,n)) as
a K-algebra.

The smallest pair d,n for which g.c.d.(d,n− 1) = 1 but d6 | nt for any t ∈ N is the case d = 3,n = 5.
Finding subsets of M3(LK(1,5)) of size 2 ·5 = 10 which behave as in (1.1) is not hard. However, the sets of
matrices one is led to by slightly modifying the process used in the aforementioned d | nt case yields sets
of matrices in M3(LK(1,5)) which do not generate M3(LK(1,5)) as a K-algebra. Nonetheless, an alternate
and eventually successful approach arose from a process which involves viewing matrices over Leavitt
algebras as Leavitt path algebras for various graphs, and then manipulating the underlying graphs appro-
priately. Specifically, various graph operations as described in Section 6.3 were used to produce a sequence
of explicitly-described isomorphisms which starts with LK(R5) and ends with LK(M3R5) (see Definition
2.2.17). By explicitly tracing through this sequence, and then using the isomorphisms LK(R5) ∼= LK(1,5)
and LK(M3R5)∼= M3(LK(1,5)), an appropriate specific set of ten generating matrices in M3(LK(1,5)) was
identified. This in turn led in a relatively natural way to a method for generalizing the same process and
corresponding result to arbitrary d,n.

Theorem 7.2.1. ([4, Theorems 4.14 and 5.12]) Let 2≤ n ∈ N, and let K be any field. Then
LK(1,n)∼= Md(LK(1,n)) ⇐⇒ g.c.d.(d,n−1) = 1.
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More generally,
Md(LK(1,n))∼= Md′(LK(1,n)) ⇐⇒ g.c.d.(d,n−1) = g.c.d.(d′,n−1).

Moreover, when g.c.d.(d,n−1) = g.c.d.(d′,n−1), an isomorphism (indeed, many isomorphisms)
Md(LK(1,n))→Md′(LK(1,n)) can be explicitly described.

There are two historically important consequences of the explicit construction of the isomorphisms
which yield Theorem 7.2.1. First, when K = C and g.c.d.(d,n− 1) = 1, the explicit nature of an iso-
morphism LC(1,n) ∼= Md(LC(1,n)) constructed in the proof of the theorem allows (by a straightforward
completion process) for the explicit construction of an isomorphism On ∼= Md(On); such an explicit iso-
morphism between these C∗-algebras was thentofore unknown. Second, the explicit construction led to the
resolution of a longstanding question in group theory. In the mid 1970’s, G. Higman produced, for each
pair r,n ∈ N with n≥ 2, an infinite, finitely presented simple group, the now-so-called Higman-Thompson
group G+

n,r. A complete classification up to isomorphism of these groups eluded Higman and others for
over four decades. However, E. Pardo was able to use the construction given in the proof of Theorem 7.2.1
to settle the question.

Theorem 7.2.2. ([125, Theorem 3.6] ) G+
n,r
∼=G+

m,s if and only if m= n and g.c.d.(r,n−1) = g.c.d.(s,n−
1).

Sketch of Proof. The forward implication was already known by Higman. Conversely, one first shows that
G+

n,` can be realized as an appropriate subgroup of the invertible elements of M`(LC(1,n)) for any ` ∈ N.
Then one verifies that the explicit isomorphism from Mr(LC(1,n)) to Ms(LC(1,n)) provided in the proof
of Theorem 7.2.1 takes G+

n,r onto G+
n,s. 2

Primitive Leavitt path algebras: a systematic answer to a question of Kaplansky

In Theorem 4.1.10 the primitive Leavitt path algebras LK(E) arising from row-finite graphs are classified
as those for which E is downward directed and satisfies Condition (L). The extension of this primitivity
result to arbitrary graphs requires an extra condition.

Definition 7.2.3. The graph E has the Countable Separation Property (CSP) in case there exists a countable
set S⊆ E0 with the property that for every v ∈ E0 there exists s ∈ S for which v≥ s.

Remark 7.2.4. For instance, any graph E for which E0 is at most countable has CSP. On the other hand,
let X be any nonempty set, and let F (X) denote the collection of nonempty finite subsets of X . The graph
EF (X) is defined by setting E0

F (X) =F (X), E1
F (X) = {eA,A′ | A,A′ ∈F (X), and A$ A′}, s(eA,A′) = A, and

r(eA,A′) = A′ for each eA,A′ ∈ E1
F (X). Clearly EF (X) is acyclic. It is a standard exercise to show that EF (X)

has CSP if and only if X is at most countable.

The equivalent ideal-theoretic conditions provided in the previously-cited [107, Lemma 11.28] which
ensure the primitivity of an algebra may again be invoked in this more general setting: to wit, a relatively
technical argument presented in [10] establishes that if E does not have CSP, then the unitization of LK(E)
cannot admit an ideal of the appropriate form (see Section 4.1).

Theorem 7.2.5. ([10, Theorem 5.7]) Let E be an arbitrary graph and K any field. Then the Leavitt path
algebra LK(E) is primitive if and only if E is downward directed, E satisfies Condition (L), and E has the
Countable Separation Property.

The structure of prime and primitive algebras has long been a focus of attention. The spark for much of
the interest in such structures was a question posed in 1970 by Kaplansky [102, p. 2]: “Is a regular prime
ring necessarily primitive?” Kaplansky continued: “It seems unlikely that the answer is affirmative, but
a counter-example may have to be weird.” An example of such a ring (a very clever although somewhat
ad hoc construction of a specific group algebra) was first given in 1977 by Domanov [75]. But the use of
Theorem 7.2.5, together with Theorem 3.4.1 and Remark 7.2.4, allows for the construction of the following
infinite class of prime, non-primitive, von Neumann regular algebras.
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Corollary 7.2.6. Let X be any uncountable set and K any field. Then the Leavitt path algebra LK(EF (X))
is a prime, non-primitive, von Neumann regular K-algebra.

In a similar manner, infinite classes of graphs other than those of the form EF (X) which are acyclic (and
so vacuously satisfy Condition (L)), are downward directed, and do not have CSP may be constructed,
thereby leading to additional examples of algebras which answer Kaplansky’s question in the negative.

The analysis which inspired Theorem 7.2.5 led to a similar result about C∗-algebras.

Theorem 7.2.7. ([14, Theorem 3.8]) Let E be an arbitrary graph. Then the graph C∗-algebra C∗(E) is
primitive if and only if E is downward directed, E satisfies Condition (L), and E has the Countable Sepa-
ration Property.

Theorem 7.2.7 thereby gave a general approach to producing C∗-algebras of a type whose existence was
put into question by Dixmier in the 1960’s. (In addition, this result along with Theorem 7.2.5 furthered the
tight connection between certain aspects of Leavitt path algebras and their graph C∗-algebra counterparts,
see also Section 5.6.)

The regular algebra of a graph: the Realization Problem for von Neumann regular rings

The “Realization Problem for von Neumann Regular Rings” asks whether every countable conical re-
finement monoid can be realized as the monoid V (R) for some von Neumann regular ring R. As the only
von Neumann regular Leavitt path algebras are those associated to acyclic graphs (see Theorem 3.4.1),
it would initially seem that Leavitt path algebras would not be fertile ground in the context of the Real-
ization Problem. Nonetheless, Ara and Brustenga developed an elegant construction which provides the
key connection. Using the algebra of rational power series on E, and appropriate localization techniques
(inversion), they showed how to construct a K-algebra QK(E) (the regular algebra of E), which has the
following properties.

Theorem 7.2.8. ([21, Theorem 4.2]) Let E be a finite graph and K any field. Then there exists a K-algebra
QK(E) for which:

(i) there is an embedding of K-algebras LK(E) ↪→ QK(E),
(ii) QK(E) is unital von Neumann regular, and
(iii) V (LK(E))∼= V (QK(E)).

Consequently, using Bergman’s Theorem 1.4.3, Theorem 7.2.8 yields that any monoid which arises as
the graph monoid ME for a finite graph E has a positive solution to the Realization Problem. This result
represented (at the time) a significant broadening of the class of monoids for which the Realization Problem
had a positive solution. Theorem 7.2.8 extends relatively easily to row-finite graphs (see [21, Theorem 4.3]),
with the proviso that QK(E) need not be unital in that generality.

Although significant progress has been made in resolving the Realization Problem for von Neumann
regular rings, there is not as of 2017 a complete answer. In particular, a characterization of graph monoids
amongst finitely generated conical refinement monoids has been achieved in [34]. A survey of the main
ideas relevant to this endeavor can be found in [19].

7.3 Current lines of research in Leavitt path algebras

In this final section of our book we consider some of the important current research problems in the field.
For additional information, see “The graph algebra problem page”:

www.math.uh.edu/∼tomforde/GraphAlgebraProblems/ListOfProblems.html
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This website was built and is being maintained by Mark Tomforde of the University of Houston.

The Classification Question for purely infinite simple Leavitt path algebras, a.k.a. “The Algebraic
Kirchberg Phillips Question”

In Section 6.3 we established the Restricted Algebraic Kirchberg Phillips Theorem 6.3.40, which asserts
that if E and F are finite graphs for which LK(E) and LK(F) are purely infinite simple, for which there is
an isomorphism ϕ : K0(LK(E))→ K0(LK(F)) having ϕ([1LK(E)]) = [1LK(F)], and for which det(I−At

E) =
det(I−At

F), then LK(E)∼= LK(F) as K-algebras.
What is generally agreed to be the most compelling unresolved question in the subject of Leavitt path

algebras (as of 2017) may then be stated concisely as:

Question 7.3.1. (The Algebraic Kirchberg Phillips (KP) Question) Can the hypothesis on the determi-
nants in the Restricted Algebraic Kirchberg Phillips Theorem 6.3.40 be dropped?

More formally, the Algebraic KP Question is the following “Classification Question”. Let E and F
be finite graphs, and K any field. Suppose LK(E) and LK(F) are purely infinite simple. If K0(LK(E)) ∼=
K0(LK(F)) via an isomorphism for which [LK(E)] 7→ [LK(F)], is it necessarily the case that LK(E) ∼=
LK(F)?

With the Restricted Algebraic Kirchberg Phillips Theorem 6.3.40 having been established, there are
three possible answers to the Algebraic Kirchberg Phillips Question:

No. That is, if the two graphs E and F have det(I−At
E) 6= det(I−At

F), then LK(E) 6∼=
LK(F) for any field K.

Yes. That is, the existence of an isomorphism of the indicated type between the K0
groups is sufficient to yield an isomorphism of the associated Leavitt path algebras, for
any field K.

Sometimes. That is, for some pairs of graphs E and F , and/or for some fields K, the
answer is No, and for other pairs the answer is Yes.

One of the elegant aspects of the Algebraic KP Question is that its answer will be interesting, regardless
of which of the three possibilities turns out to be correct. If the answer is No, then isomorphism classes
of purely infinite simple unital Leavitt path algebras will match exactly the flow equivalence classes of the
germane set of graphs, which would suggest that there is some deeper, as-of-yet-not-understood connection
between the Leavitt path algebras and symbolic dynamics. If the answer is Yes, this would yield further
compelling evidence for an as-yet-not-discovered direct connection between various Leavitt path algebra
results and the corresponding C∗-algebra results. If the answer is Sometimes, then this would likely require
the development and utilization of a completely new set of tools in the subject. (Indeed, the Sometimes
answer might be the most interesting of the three.)

The analogous Kirchberg Phillips Question regarding Morita equivalence asks whether or not the deter-
minant hypothesis in Theorem 6.3.32 can be dropped. But the two questions will have the same answer: if
isomorphic K0 groups yields Morita equivalence of the Leavitt path algebras, then the Morita equivalence
together with the previously invoked Huang’s Theorem [96, Theorem 1.1] will yield isomorphism of the
algebras.

Suppose E is a finite graph for which LK(E) is purely infinite simple. There is a way to associate with E
a new (finite) graph E−, for which LK(E−) is purely infinite simple, for which K0(LK(E))∼= K0(LK(E−)),
and for which det(I−AE) =−det(I−AE−). This is called the “Cuntz splice” process, which appends to a
vertex V ∈ E0 two additional vertices and six additional edges, as shown here pictorially:

V (( •
��

hh
(( • ddhh

Although the indicated isomorphism between K0(LK(E)) and K0(LK(E−)) need not in general send
[1LK(E)] to [1LK(E−)], the Cuntz splice process allows for an easy way to produce many specific examples of
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pairs of Leavitt path algebras to analyze in the context of the Algebraic KP Question. The most basic pair
of such algebras arises from the following two graphs:

E2 = •u
'' )) •v

��
ii and E4 = •u

'' )) •v
�� ((

ii •
�� ((

ii • ddhh .

We note that E4 = (E2)−. These two graphs are precisely those mentioned in Question 6.3.46.
There is an alternate approach to establishing the (analytic) Kirchberg Phillips Theorem 6.3.1 in the

limited context of graph C∗-algebras. Using the same symbolic dynamics techniques as those used to es-
tablish Theorem 6.3.40, one can establish the C∗-version of the Restricted Algebraic Kirchberg Phillips
Theorem (i.e., one which involves the determinants). One then “crosses the determinant gap” for a single
pair of algebras, by showing that C∗(E2)∼=C∗(E4); this is done using a powerful analytic tool (KK-theory).
Finally, again using analytic tools, one shows that this one particular crossing of the determinant gap allows
for the crossing of the gap for all germane pairs of graph C∗-algebras. But neither KK-theory, nor the tools
which yield the extension from one crossing to all crossings, seem to accommodate analogous algebraic
techniques.

The pair {E2,E4} can appropriately be viewed as the smallest pair of graphs of interest in this context,
as follows. A graph has Condition (Sing) in case there are no parallel edges in the graph (i.e., that the
incidence matrix AE consists only of 0’s and 1’s). It can be shown that, up to graph isomorphism, there
are 2 (resp., 34) graphs having two (resp., three) vertices, and having Condition (Sing), and for which the
corresponding Leavitt path algebras are purely infinite simple; see [3] for an explicit description of these.
For each of these 36 graphs E, det(I−At

E)≤ 0. So finding an appropriate pair of graphs having Condition
(Sing) and having unequal (signs of the) determinants requires at least one of the two graphs to contain at
least four vertices.

Tensor products

We noted in Example 6.4.11 that for any field K, the algebras LK(1,2) and LK(1,2)⊗LK(1,2) are not
Morita equivalent, so of course cannot be isomorphic. But the relationship between these two algebras
remains the focus of significant interest. In particular,

Question 7.3.2. For a field K, does there exist a unital homomorphism φ : LK(1,2)⊗LK(1,2)→ LK(1,2)?

Although Question 7.3.2 remains open as of 2017, there have been some related results achieved. In
particular, using some very powerful techniques (an analysis of the Thompson group), Brownlowe and
Sørensen in [58] have established:

Theorem 7.3.3. There is no unital ∗-embedding of LZ(1,2)⊗LZ(1,2) into LZ(1,2).

There are a number of additional unresolved questions regarding tensor products of Leavitt path alge-
bras, for example:

Question 7.3.4. Is LK(1,2)⊗K LK(1,3) isomorphic to LK(1,2)⊗K LK(1,2) as K-algebras?

The Classification Question for graphs with finitely many vertices and infinitely many edges

We consider now the collection S of those graphs E having finitely many vertices, but (countably)
infinitely many edges, and for which LK(E) is (necessarily unital) purely infinite simple. The Purely Infinite
Simplicity Theorem 3.1.10 extends to this generality, so we can fairly easily determine whether or not a
given graph E is in S . Unlike the case for finite graphs, a description of K0(LK(E)) for E ∈S cannot be
given in terms of the cokernel of an integer-valued matrix transformation from Z|E0| to Z|E0|. Nonetheless,
there is still a relatively easy way to determine and describe K0(LK(E)), so that this group remains a very
useful tool in this context.

Recall that Sing(E) denotes the set of singular vertices of the graph E, i.e., the set of vertices which are
either sinks, or infinite emitters. Ruiz and Tomforde in [138] achieved the following.
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Theorem 7.3.5. Let E,F ∈ S . If K0(LK(E)) ∼= K0(LK(F)) and |Sing(E)| = |Sing(F)|, then LK(E) is
Morita equivalent to LK(F).

So, while “the determinant of I−At
E” is clearly not defined here in the usual sense (because there is at

least one pair of vertices v,w in E for which there are infinitely many edges from v to w), the isomorphism
class of K0 together with the number of singular vertices is enough information to determine Morita equiv-
alence. Although this is quite striking, it is not completely satisfying, because it is not clear whether or not
|Sing(E)| is an algebraic property of LK(E).

Continuing the search for a Classification Theorem which is cast completely in terms of algebraic prop-
erties of the underlying algebras, Ruiz and Tomforde were able to show that for a certain type of field
(those with no free quotients), there is such a result. In a manner similar to the computation of K0(LK(E))
for E ∈S , there is a way to relatively easily compute K1(LK(E)) as well.

Theorem 7.3.6. ([138, Theorem 7.1]) Suppose E,F ∈S , and suppose that K is a field with no free quo-
tients. Then LK(E) is Morita equivalent to LK(F) if and only if K0(LK(E))∼= K0(LK(F)) and K1(LK(E))∼=
K1(LK(F)).

The collection of fields having no free quotients includes algebraically closed fields, the field of real
numbers, finite fields, perfect fields of positive characteristic, and others. However, the field of rational
numbers Q is not included in this list. Indeed, the authors in [138, Example 10.2] give an example of
graphs E,F ∈ S for which K0(LQ(E)) ∼= K0(LQ(F)) and K1(LQ(E)) ∼= K1(LQ(F)), but LQ(E) is not
Morita equivalent to LQ(F). There are many open questions here. For instance, might there be an integer
N for which, if Ki(LK(E)) ∼= Ki(LK(F)) for all 0 ≤ i ≤ N, then LK(E) and LK(F) are Morita equivalent
for all fields K? Of note in this context is that, unlike the situation for graph C∗-algebras (in which the
aforementioned Bott periodicity yields that K0 and K1 are the only distinct K-groups, see the remark made
at the end of Section 6.2), there is no analogous result for the K-groups of Leavitt path algebras. Further,
although a long exact sequence for the K-groups of LK(E) has been computed in [23, Theorem 7.6] (as
mentioned in Chapter 6), this sequence does not yield easily recognizable information about Ki(LK(E)) for
i≥ 2.

Finally, we mention an intriguing result presented in [82] demonstrates that, if K is a finite exten-
sion of Q, then the pair consisting of (K0(LK(E)),K6(LK(E))) provides a complete invariant for the
Morita equivalence classes of Leavitt path algebras arising from graphs in S , while none of the pairs
(K0(LK(E)),Ki(LK(E))) for 1≤ i≤ 5 provides such.

Graded Grothendieck groups, and the corresponding Graded Classification Conjecture

The Algebraic Kirchberg Phillips Question, motivated by the corresponding C∗-algebra result, is not the
only natural classification-type question to ask in the context of Leavitt path algebras. Having in mind the
importance that the Z-grading on LK(E) has been shown to play in the multiplicative structure, Hazrat in
[92] has built the machinery which allows for the casting of an analogous question from the graded point
of view.

There is a very well-developed theory of graded modules over group-graded rings, which is especially
robust in case the group is Z, the case of interest for Leavitt path algebras. (For a general overview of these
ideas, see Hazrat’s book [94].) If A =⊕t∈ZAt is a Z-graded ring and M is a left A-module, then M is graded
in case M = ⊕i∈ZMi, and atmi ∈ Mt+i whenever at ∈ At and mi ∈ Mi. If M is a Z-graded A-module, and
j ∈ Z, then the suspension module M( j) is a Z-graded A-module, for which M( j) = M as A-modules, with
Z-grading given by setting M( j)i = M j+i for all i, j ∈ Z.

In the expected way, one can define the notion of a graded finitely generated projective module, and
subsequently build the monoid V gr of isomorphism classes of such modules, with ⊕ as operation. If [M] ∈
V gr, then [M( j)] ∈ V gr for each j ∈ Z, which yields a Z-action on V gr. In a manner analogous to the non-
graded case, one may define the graded Grothendieck group Kgr

i (A) for each i ≥ 0. Each of these groups
becomes a Z[x,x−1]-module, via the suspension operation.

From this graded-module point of view, one can now ask about structural information of theZ-graded K-
algebra LK(E) which might be gleaned from the Kgr

i groups. A reasonable initial question is to ask whether
the graded version of the Kirchberg Phillips Theorem holds. That is, suppose that E and F are finite graphs
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for which LK(E) and LK(F) are purely infinite simple, and suppose Kgr
0 (LK(E))∼=Kgr

0 (LK(F)) as Z[x,x−1]-
modules, via an isomorphism which takes [LK(E)] to [LK(F)]. Is it necessarily the case that LK(E)∼= LK(F)
as Z-graded K-algebras?

As it turns out, the purely infinite simple hypothesis is not the natural one to start with in the graded
context. In fact, Hazrat in [92] makes the following conjecture.

Conjecture 7.3.7. Let E and F be any pair of finite graphs and K any field. Then LK(E) ∼= LK(F) as Z-
graded K-algebras if and only if Kgr

0 (LK(E)) ∼= Kgr
0 (LK(F)) as Z[x,x−1]-modules, via an order-preserving

isomorphism which takes [LK(E)] to [LK(F)].

In [92, Theorem 4.8], Hazrat verifies Conjecture 7.3.7 in case the graphs E and F are polycephalic
(essentially, mixtures of acyclic graphs, or graphs which can be described as “multiheaded comets” or
“multiheaded roses” in which the cycles and/or roses have no exits.)

As described in Section 6.2, in work that predates the introduction of the general definition of Leavitt
path algebras, the four authors of [25] investigated the notion of a fractional skew monoid ring, which in
particular situations is denoted A[t+, t−,α]. Recast in the language of Leavitt path algebras, the discussion
in [25, Example 2.5] yields that, when E is an essential graph (i.e., has no sinks or sources), then LK(E) =
LK(E)0[t+, t−,α] for suitable elements t+, t− ∈ LK(E), and a corner isomorphism α of the zero component
LK(E)0.

When E is a finite graph with no sinks, then LK(E) is strongly graded [93, Theorem 2], which yields (by
a classical theorem of Dade) that the category of graded modules over LK(E) is equivalent to the category
of (all) modules over the zero component LK(E)0. Using this point of view, Ara and Pardo [33, Theorem
4.1] prove the following modified version of Conjecture 7.3.7.

Theorem 7.3.8. Let E and F be finite essential graphs. Write LK(E) = LK(E)0[t+, t−,α] as described
above. Then the following are equivalent.

(1) K0(LK(E)0) ∼= K0(LK(F)0) via an order-preserving K[x,x−1]-module isomorphism which takes
[1LK(E)0 ] to [1LK(F)0 ].

(2) There exists a locally inner automorphism g of LK(E)0 for which LK(F) ∼= LK(E)0[t+, t−,g ◦α] as
Z-graded K-algebras.

A complete resolution of Conjecture 7.3.7 currently remains elusive.

Connections to noncommutative algebraic geometry

One of the basic ideas of (standard) algebraic geometry is the correspondence between geometric spaces
and commutative algebras. Over the past few decades, significant research energy has been focused on
appropriately extending this correspondence to the noncommutative case; the resulting theory is called
noncommutative algebraic geometry.

Suppose A is a Z+-graded algebra (i.e., a Z-graded algebra for which An = {0} for all n < 0). Let Gr(A)
denote the category of Z-graded left A-modules (with graded homomorphisms), and let Fdim(A) denote
the full subcategory of Gr(A) consisting of the graded A-modules which equal the sum of their finite
dimensional submodules. Denote by QGr(A) the quotient category Gr(A)/Fdim(A). The category QGr(A)
turns out to be one of the fundamental constructions in noncommutative algebraic geometry. In particular,
if E is a directed graph, then the path algebra KE is Z+-graded in the usual way (by setting deg(v) = 0 for
each vertex v, and deg(e) = 1 for each edge e), and so one may construct the category QGr(KE).

Let Enss denote the graph gotten by repeatedly removing all sinks and sources (and their incident edges)
from E.

Theorem 7.3.9. ([142, Theorem 1.3]) Let E be a finite graph. Then there is an equivalence of categories

QGr(KE) ∼ Gr(LK(Enss)).

Moreover, since LK(Enss) is strongly graded, then these categories are also equivalent to the full category
of modules over the zero-component (LK(Enss))0.
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So the Leavitt path algebra construction arises naturally in the context of noncommutative algebraic
geometry.

In general, when the Z+-graded K-algebra A arises as an appropriate graded deformation of the standard
polynomial ring K[x0, ...,xn], then QGr(A) shares many similarities with projective n-space Pn; parallels
between them have been studied extensively. However, in general, an algebra of the form KE does not arise
in this way; and for these, it is much more difficult to connect to the geometric aspects of QGr(KE). In
specific situations there are some geometric perspectives available (see e.g., [143]), but the general case is
not well understood.
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for associative pairs. Comm. Algebra, 26(9):2987–3020, 1998.

81. John Franks. Flow equivalence of subshifts of finite type. Ergodic Theory Dynam. Systems, 4(1):53–66, 1984.
82. James Gabe, Efren Ruiz, Mark Tomforde, and Tristan Whalen. K-theory for Leavitt path algebras: Computation and

classification. J. Algebra, 433:35–72, 2015.
83. Stephen M. Gersten. K-theory of free rings. Comm. Algebra, 1:39–64, 1974.
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Z-grading in LK(E), 26
Z+, 3
◦, 4
`(µ), 4
≡[1], 169
≡det, 168
≡triple, 171
≥ for cycles, 127

197



198 Index

≥, 24
λi, 28
≤ for S-complete subsets, 30
≤ for S-complete subsets of Path(E), 30
≤, 24
≤ for idempotents, 14, 99
Mon, 81
G , 17
RG , 77
H , 24
Lgr(LK(E)), 45
M (E), 109
Mγ (E), 109
Mτ (E), 109
On, 135
V -monoid, 76
V (R), 90
µ∗, 5
⊕ for matrices, 99
FE(H) , 50
X , 24
π-regularity, 88
-, 99
→, 91
→1, 91
∼ for idempotents, 77
∼ in F\{0}, 91
/l

e, 38
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partial isometry, 132
path, 4
positive cone of a complex ∗-algebra, 132
positive cone of a monoid, 153
positive definite, 132
pre-C∗-algebra, 131
preorder on E0, 24
primary colors of Leavitt path algebras, 7
prime ideal, 107
prime ring, 107
prime spectrum, 107
primely generated monoid, 93
primitive ideal, 110
primitive idempotent, 88
primitive ring, 110
primitive spectrum, 107
projection, 132
properly infinite element, 100
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properly purely infinite ring, 100
purely infinite ring, 100
purely infinite simple ring, 75
Purely Infinite Simplicity Theorem, 75

quotient graph by a hereditary subset, 43
quotient graph incorporating breaking vertices, 44

range of a path, 4
real edge, 5
Realization Problem for von Neumann Regular Rings, 186
Reduction Theorem, 34
refinement monoid, 90
regular algebra of E, 186
regular supercoherent, 178
regular vertex, 4
Restricted Algebraic Kirchberg Phillips Theorem, 171
restriction graph, 37
right minimal idempotent, 54
right nonsingular ring, 38
right socle, 54
rose with n petals, 7
row-finite graph, 4

s-unital ring, 99
saturated subset, 24
self-adjoint ideal, 43
self-injective ring, 118
semiprime ring, 37
semiprimitive ring, 37
separative monoid, 90
separative ring, 91
set of local units, 6
set of matrix units, 54
simple monoid, 95
Simplicity Theorem, 68
Simplicity Theorem, revisited, 69
singular vertex, 4
sink, 4
skew Laurent polynomial algebra, 175

Smith normal form, 162
socle, 54
source, 4
source elimination graph, 167
source of a path, 4
stable rank, 122
stable rank closed by extensions, 126
stably isomorphic, 154
standard graph transformation, 163
state, 132
Steinberg algebra, 183
strong π-regularity, 88
Structure Theorem for Graded Ideals, 48
Structure Theorem for Ideals, 65

Toeplitz K-algebra, 8
transpose graph, 169
tree of a vertex, 24
Trichotomy Principle, 76

uniform dimension, 121
unimodular vector, 122
Uniqueness Theorems, 35
unitary, 132
unitization of a ring, 127
universal abelian group of an abelian monoid, 153
universal pre-C∗-algebra, 133
Universal Property of CX

K (E), 13
Universal Property of LK(E), 5
unperforated monoid, 94

vertex, 4
von Neumann regular element, 86
von Neumann regular ring, 86

Whitehead group, 157

zero component of CK(E), 27
zero component of LK(E), 27
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