Lec 11: Response Surface Methodology

Ying Li

December 6, 2011

Ying Li Lec 11: Response Surface Methodology

A⊒ ▶ ∢ ∃

Response Surface Methodology (RSM)

- A collection of mathematical and statistical techniques;
- Model and analysis of problems in which a response of interest;
- The objective is to optimize the response.

・ロン ・雪 ・ ・ ヨ ・ ・ ヨ ・ ・

æ

RSM is a sequential procedure

■ FIGURE 11.3 The sequential nature of RSM

- Factor screening
- Finding the region of the optimum
- Modeling & Optimization of the response

イロト イヨト イヨト イヨト

Response Surface Models

• Screening:

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_{12} x_1 x_2 + \varepsilon$$

• Steepest ascent:

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \varepsilon$$

Optimization

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_{12} x_1 x_2 + \beta_{11} x_1^2 + \beta_{22} x_2^2 + \varepsilon$$

∃ >

Steepest Ascent

- A procedure for moving sequentially from an initial "guess" towards to region of the optimum.
- Based on the fitted first-order model

$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x_1 + \hat{\beta}_2 x_2$$

・ロト ・回ト ・ヨト

A chemical engineer is interested in determining the operating conditions that maximize the yield of a process. Two controllable variables: reaction time (ξ_1) and reaction temperature (ξ_2) .

Natural Variables		Coded Variables		Response
Š 1	ξ ₂	<i>x</i> ₁	<i>x</i> ₂	y
30	150	-1	-1	39.3
30	160	-1	1	40.0
40	150	1	-1	40.9
40	160	1	1	41.5
35	155	0	0	40.3
35	155	0	0	40.5
35	155	0	0	40.7
35	155	0	0	40.2
35	155	0	0	40.6

TABLE 11.1

A first-order model may be fit to these data by least squares.

$$\hat{y} = 40.44 + 0.775x_1 + 0.325x_2$$

< 注→

Э

	Coded Variables		Natural Variables		Response
Steps	<i>x</i> ₁	x2	<u>ξ</u> 1	<u><u></u><u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u></u>	у
Origin	0	0	35	155	
Δ	1.00	0.42	5	2	
Origin + Δ	1.00	0.42	40	157	41.0
Origin + 2Δ	2.00	0.84	45	159	42.9
Origin $+ 3\Delta$	3.00	1.26	50	161	47.1
Origin + 4Δ	4.00	1.68	55	163	49.7
Origin + 5Δ	5.00	2.10	60	165	53.8
Origin + 6Δ	6.00	2.52	65	167	59.9
Origin + 7Δ	7.00	2.94	70	169	65.0
Origin + 8Δ	8.00	3.36	75	171	70.4
Origin + 9Δ	9.00	3.78	80	173	77.6
Origin $+ 10\Delta$	10.00	4.20	85	175	80.3
Origin + 11Δ	11.00	4.62	90	179	76.2
Origin + 12Δ	12.00	5.04	95	181	75.1

TABLE 11.3

Steepest Ascent Experiment for Example 11.1

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = = -の��

Natural Variables		Coded Variables		Response
Š 1	ξ2	<i>x</i> ₁	<i>x</i> ₂	y
80	170	-1	-1	76.5
80	180	-1	1	77.0
90	170	1	-1	78.0
90	180	1	1	79.5
85	175	0	0	79.9
85	175	0	0	80.3
85	175	0	0	80.0
85	175	0	0	79.7
85	175	0	0	79.8

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = = -の��

- Points on the path of steepest ascent are proportional to the magnitudes of the model regression coefficients.
- The direction depends on the sign of the regression coefficient.

Second-order model

$$y = \beta_0 + \sum_{i=1}^k \beta_i x_i + \sum_{i=1}^k \beta_{ii} x_i^2 + \sum_{i < j} \beta_{ij} x_i x_j + \epsilon$$
(11.4)

- These models are used widely in practice.
- Fitting the model is easy, some nice designs are available.
- Optimization is easy.
- There is a lot of empirical evidence that they work very well.

General solution for second-order model

$$y = \beta_0 + \sum_{i=1}^k \beta_i x_i + \sum_{i=1}^k \beta_{ii} x_i^2 + \sum_{i < j} \beta_{ij} x_i x_j + \epsilon$$
(11.4)

$$\hat{y} = \hat{\beta}_0 + \mathbf{x}'\mathbf{b} + \mathbf{x}'\mathbf{B}\mathbf{x}$$

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_k \end{bmatrix} \quad \mathbf{b} = \begin{bmatrix} \hat{\beta}_1 \\ \hat{\beta}_2 \\ \vdots \\ \hat{\beta}_k \end{bmatrix} \quad \text{and} \quad \mathbf{B} = \begin{bmatrix} \hat{\beta}_{11}, \hat{\beta}_{12}/2, \dots, \hat{\beta}_{1k}/2 \\ \hat{\beta}_{22}, \dots, \hat{\beta}_{2k}/2 \\ \vdots \\ \text{sym.} \qquad \hat{\beta}_{kk} \end{bmatrix}$$

イロト イヨト イヨト イヨト

The stationary point

$$\begin{split} \frac{\partial \hat{y}}{\partial \mathbf{x}} &= \mathbf{b} + \mathbf{2Bx} = \mathbf{0} \\ \mathbf{x}_s &= -\frac{1}{2} \mathbf{B}^{-1} \mathbf{b} \Leftarrow \text{the stationary point} \\ \hat{y}_s &= \hat{\beta}_0 + \frac{1}{2} \mathbf{x}'_s \mathbf{b} \end{split}$$

< 4 → < 2

The stationary point could represent a point of **maximum** response, a point of **minimum response**, or a **saddle point**.

Canonical Analysis

$$\mathbf{x}_s = -rac{1}{2}\mathbf{B}^{-1}\mathbf{b}$$
 $\hat{y}_s = \hat{eta}_0 + rac{1}{2}\mathbf{x}_s'\mathbf{b}$

The canonical form:

$$\hat{y} = \hat{y}_s + \lambda_1 \omega_1^2 + \lambda_2 \omega_2^2 + \cdot + \lambda_k \omega_k^2$$

the $\{\lambda_i\}$ are the eigenvalues or characteristic roots of the matrix **B**

A ■

The nature of the response surface can be determined from the stationary point & the signs and magnitudes of the $\{\lambda_i\}$.

- all positive: a minimum is found
- all negative: a maximum is found
- mixed: a saddle point is found

The response surface is steepest in the direction (canonical) corresponding to the largest absolute eigenvalue

Designs for the first-order model

$$y = \beta_0 + \sum_{i=1}^k \beta_i x_i + \varepsilon$$

orthogonal first-order designs

A first-order design is orthogonal is the off-diagonal elements of the $\boldsymbol{X}\boldsymbol{X}'$ matrix are all 0.

向下 イヨト イヨト

$$y = \beta_0 + \sum_{i=1}^k \beta_i x_i + \varepsilon$$

orthogonal first-order designs

A first-order design is orthogonal is the off-diagonal elements of the \mathbf{XX}' matrix are all 0.

- 2^k experiment
- 2^k experiment with center runs $(x_i = 0)$.
 - makes it possible to estimate the variance.
 - does not influence the estimates of β_i .
 - the estimate of β_0 is the ground mean.
- Simplex

Simplex

Simplex: a regularly sided figure with k + 1 vertices in k dimensions.

Figure: The simplex design for k = 2 and k = 3 variables

・ 同・ ・ ヨ・

$$y = \beta_0 + \sum_{i=1}^k \beta_i x_i + \sum_{i=1}^k \beta_{ii} x_i^2 + \sum_{i < j} \beta_{ij} x_i x_j + \epsilon$$
(11.4)

• Central composite design

- Box-Behnken design
- Face-centered design
- Equiradial design
- small composite design & hybrid design

Central composite design

The CCD consists of a 2^k factorial with n_F factorial runs, 2k axial or star runs, and n_c center runs.

Two parameters in such design: the distance α of the axial runs from the center; the number of the center points n_c

Rotatability

Rotatable

A second-order response surface design is rotatable if the variance of the predicted response $V[\hat{y}(x)]$ is the same at all the points of **x** that are at the same distance form the design center: $\alpha = (n_F)^{1/4}$

Rotatability

・ロト ・回ト ・ヨト ・ヨト

Э

Rotatability

A rotatable design gives the same prediction in all directions.

・ロト ・回ト ・ヨト

< ∃⇒

Spherical CCD

All factorial runs and axial runs have the same distance to the center: $\alpha = (k)^{1/2}$

 ∃ >

Spherical CCD

All factorial runs and axial runs have the same distance to the center: $\alpha = (k)^{1/2}$

k	n _F = 2 ^k	Rotatable α	Spherical α
2	4	1.41	1.41
3	8	1.68	1.73
4	16	2.00	2.00
5	32	2.38	2.24
6	64	2.83	2.45
7	128	3.36	2.65
8	256	4.00	2.83

Figure: The distance α between the axial points and the center

A 1

Box-Behnken Design

- Three-level designs for small number of runs.
- All points are on the distance $2^{1/2} = 0.707$ from the center.
- No points at the vertices.
- Either rotatable or nearly rotatable.

Face-centered cube

- The axial points are on the surface of the cube ($\alpha = 1$).
- Conveniently, because it only use three levels per factor.
- Not rotatable.

Face-centered cube

The face-centered cube is not rotatable.

Figure: The standard deviation in the predicted values $k = 3, n_c = 3$

A (1) < A (1)</p>

Equiradial design

- Design for two variables
- Rotatable

Scaled prediction variance (SPV):

$$\frac{NV[\hat{y}(x)]}{\sigma^2} = Nx'(X'X)^{-1}x$$

The variance dispersion graph (VDG) plot the maximum, the minimum and the average scaled prediction variance against the distance to the center.

Figure: VDG for three CCDs for k = 5. Design A contains $\alpha = 1.5$. Design R contains $\alpha = 2$. Design S contains $\alpha = \sqrt{5}$. Each contains a 2^{5-1} and three center runs.

Figure: VDG for three CCDs for k = 5. Design A contains $\alpha = 1.5$. Design R contains $\alpha = 2$. Design S contains $\alpha = \sqrt{5}$. Each contains a 2^{5-1} and three center runs.

Figure: for central composite design for k = 4 and $\alpha = 2$. Four or five central point ($n_c = 4or5$) gives a stable variance in the predicted values.

- **D-optimal design** for minimizing the variance of the model regression coefficients.min $|(X'X)^{-1}|$
- **G-optimal design** for minimizing the maximum prediction variance. min max $Var(\hat{y})$
- I-optimal design for its smallest possible value of the average prediction variance. min averageVar(ŷ)

Which Criterion Should I Use?

- For fitting a first-order model, D is a good choice
 - Focus on estimating parameters
 - Useful in screening
- For fitting a second-order model, I is a good choice
 - Focus on response prediction
 - Appropriate for optimization