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Which of the following statements are true about the 
“shortest path tree” resulting from BFS?

(a) It only contains the shortest path from s to t
(b) It contains the shortest paths from s to any vertex
(c) It contains the shortest paths from any vertex to t
(d) It contains all shortest paths in the graph
(e) Getting the s to t path out is constant time
(f) Getting the s to t path out is linear time
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Announcements
• P3 due next Wednesday, 8/05
• EX3 published this evening, due next Friday 8/07

- Will focus on the graph problems we’ve talked about this week
- Note: ramping up slightly in difficulty now that you’ve had practice with 

algorithmic analysis, recommend taking a look early!
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Learning Objectives

1. Describe the weighted shortest path problem and explain why BFS 
doesn’t work to solve it

2. Trace through Dijkstra’s algorithm on a graph showing intermediate 
steps at each step and implement Dijkstra’s algorithm in code (P4)

3. Evaluate inputs to (and modifications to) Dijkstra’s algorithm for 
correct behavior and efficiency based on the algorithm’s properties

4. Synthesize code to solve problems on a graph based on DFS, BFS, 
and Dijkstra’s traversals

After this lecture, you should be able to...
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Lecture Outline
• Review DFS, BFS, Unweighted Shortest Paths

• Weighted Shortest Path Problem

• Reductions: Weighted à Unweighted

• Dijkstra’s Algorithm
- Definition & Examples
- Implementing Dijkstra’s
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bfs(Graph graph, Vertex start) {
Queue<Vertex> perimeter = new Queue<>();
Set<Vertex> visited = new Set<>();  

perimeter.add(start);
visited.add(start);

while (!perimeter.isEmpty()) {
Vertex from = perimeter.remove();
for (Edge edge : graph.edgesFrom(from)) {

Vertex to = edge.to();
if (!visited.contains(to)) {

perimeter.add(to);
visited.add(to);

}
}

}
}

dfs(Graph graph, Vertex start) {
Stack<Vertex> perimeter = new Stack<>();
Set<Vertex> visited = new Set<>();  

...

Explore layer-by-layer: examine 
every node at a certain distance 
from start, then examine nodes that 
are one level farther

Follow a “choice” all the way to the 
end, then come back to revisit other 
choices

* Can also be implemented recursively; though be careful of stack overflow! 

DFS BFS

• BFS and DFS are just techniques for 
iterating! (think: for loop over an array)

- Need to add code that actually processes 
something to solve a problem

- A lot of interview problems on graphs can be 
solved with modifications on top of BFS or 
DFS! Very worth being comfortable with the 
pseudocode J
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Review  Using BFS for the Shortest Path Problem

(Unweighted) Shortest Path Problem

Given source vertex s and a target vertex t, 
how long is the shortest path from s to t? 

What edges make up that path?

• This is a little harder, but still totally 
doable! We just need a way to 
keep track of how far each node is 
from the start.

- Sounds like a job for?
- BFS!

...

Map<Vertex, Edge> edgeTo = ...
Map<Vertex, Double> distTo = ...

edgeTo.put(start, null);
distTo.put(start, 0.0);

while (!perimeter.isEmpty()) {
Vertex from = perimeter.remove();
for (Edge edge : graph.edgesFrom(from)) {
Vertex to = edge.to();
if (!visited.contains(to)) {
edgeTo.put(to, edge);
distTo.put(to, distTo.get(from) + 1);
perimeter.add(to);
visited.add(to);

}
}

}
return edgeTo;

}

Remember how we got to this 
point, and what layer this vertex 

is part of

The start required no edge to 
arrive at, and is on level 0
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Review BFS for Shortest Paths: Example

A

B

E

C

D

start
VISITED

PERIMETER
...

Map<Vertex, Edge> edgeTo = ...
Map<Vertex, Double> distTo = ...

edgeTo.put(start, null);
distTo.put(start, 0.0);

while (!perimeter.isEmpty()) {
Vertex from = perimeter.remove();
for (Edge edge : graph.edgesFrom(from)) {
Vertex to = edge.to();
if (!visited.contains(to)) {
edgeTo.put(to, edge);
distTo.put(to, distTo.get(from) + 1);
perimeter.add(to);
visited.add(to);

}
}

}
return edgeTo;

}

EDGETO

DISTTO

• The edgeTo map stores backpointers: each vertex 
remembers what vertex was used to arrive at it!

• Note: this code stores visited, edgeTo, and distTo as 
external maps (only drawn on graph for convenience). 
Another implementation option: store them as fields of the 
nodes themselves

0

1

1

2

2

A B C D E
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Review What about the Target Vertex?
• This modification on BFS didn’t mention the target 

vertex at all!
• Instead, it calculated the shortest path and distance 

from start to every other vertex
- This is called the shortest path tree

- A general concept: in this implementation, made up of 
distances and backpointers

• Shortest path tree has all the answers!
- Length of shortest path from A to D?

- Lookup in distTo map: 2
- What’s the shortest path from A to D?

- Build up backwards from edgeTo map: start at D, follow 
backpointer to B, follow backpointer to A – our shortest path 
is A à B à D

• All our shortest path algorithms will have this 
property

- If you only care about t, you can sometimes stop early!

A

B

E

C

D

start

EDGETO

DISTTO
0

1

1

2

2

Shortest Path Tree:
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Lecture Outline
• Review DFS, BFS, Unweighted Shortest Paths

• Weighted Shortest Path Problem

• Reductions: Weighted à Unweighted

• Dijkstra’s Algorithm
- Definition & Examples
- Implementing Dijkstra’s
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Our Graph Problem Collection

s-t Connectivity Problem

Given source vertex s and a target 
vertex t, does there exist a path 

from s to t?

Unweighted Shortest Path 
Problem

Given source vertex s and target 
vertex t, what path from s to t 

minimizes the number of edges? 
How long is that path, and what 

edges make it up?

Weighted Shortest Path Problem

Given source vertex s and target 
vertex t, what path from s to t 

minimizes the total weight of its 
edges? How long is that path, and 

what edges make it up?

NEW

SOLUTION
Base Traversal: BFS or DFS
Modification: Check if each vertex == t

SOLUTION
Base Traversal: BFS
Modification: Generate shortest path tree 
as we go

???



CSE 373 Summer 2020LEC 16: Dijkstra’s Algorithm

The Weighted Shortest Path Problem
• It’s lunchtime, and that Pagliacci slice 

isn’t going to eat itself – Suppose we 
want to find the fastest path from 
Meany Hall to the HUB

- Model as a graph: buildings & road meeting 
points are vertices, roads are edges

• Of course, want to take 
Asotin – Grant – King, not Stevens Way!

- Use edge weights to model distance, since 
not all edges have the same cost

- Would BFS give us the right answer here?

Stevens Way
0.7 Miles

NE Grant Lane
0.2 Miles

King Lane
0.05 Miles

Asotin Place
0.05 Miles

Meany Hall

HUB

Meany Hall

HUB

0.05 0.2

0.050.7
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Why does BFS work for unweighted graphs?

Key Intuition: BFS works because:
• IF we always process the closest vertices first,
• THEN the first path we discover to a new vertex will 

always be the shortest!

start E

D

A

B

C

F

Observation: The “First Try Phenomenon”
• BFS only enqueues each vertex once (makes it efficient)
• As soon as BFS enqueues a vertex, the final path to that 

vertex has been chosen! Never re-evaluate its path.

target

Example: For shortest path to C, why 
do we choose edge (B,C) and not (F,C)?
• Exactly because we visit B before F!

1

0

1

2

EDGETO

D ISTTO

VISITEDZ

1

BFS Tracking:
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Why doesn’t BFS work for weighted graphs?

E

D

A

B

C

F

100.0

200.0

1.0 1.0

1.0

1.0

start

• We want the path that minimizes the sum of edge 
weights
• A-D-E-F-C: total distance 4
• A-B-C: total distance 300.

• Do the edge weights affect how BFS runs?
• Nope! Exactly the same path chosen

target

EDGETO

D ISTTO

VISITEDZ

1

1

0

1

2
• Observation: still have “First Try Phenomenon”
• Key Intuition: yet BFS breaks because we no longer 

process the closest vertices first (that is, not closest 
according to the edge weights!)
• So we can’t rely on first path found being best 

anymore L

• Idea 1: Could we change the weighted graph into an 
unweighted graph?

BFS Tracking:



CSE 373 Summer 2020LEC 16: Dijkstra’s Algorithm

Lecture Outline
• Review DFS, BFS, Unweighted Shortest Paths

• Weighted Shortest Path Problem

• Reductions: Weighted à Unweighted

• Dijkstra’s Algorithm
- Definition & Examples
- Implementing Dijkstra’s
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Idea 1: Change into an unweighted graph
• We know BFS works on unweighted graphs

- If we can transform a weighted graph to unweighted, we can solve it!

• This idea is known as a reduction
- “Reduce” a problem you can’t solve to one you can
- Here, we’re trying to reduce BFS on weighted graphs to BFS on unweighted 

graphs
- We’ll revisit this concept later in the course!

A

B

C
D2.0

2.0

2.0

1.0

1.0

A

B

C

D
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A

B

C
D2.0

2.0

2.0

1.0

1.0

WEIGHTED GRAPHS UNWEIGHTED GRAPHS

A

B

C

D

A

B

C
D 2

A

B

C
D

2.0

2.0

2.0

1.0

1.0

2Transform output back into the 
original form, now with a solution

Run the algorithm:
Unweighted Shortest Paths

Transform input into a form 
we can feed into the algorithm

Weighted Graphs: An Example Reduction
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Idea 1: Change into an unweighted graph

• Unfortunately, looks like we can’t use this reduction here.
- Note: we’ll see good examples of reductions later on!

• Idea 2: Could we change the order that we visit nodes to take edge weights 
into account?

A

B

C

D0.01

1.5

𝜋

1.8

9.2

A

B

C

D500000

1

20000

899999

3000

Not possible to convert these 
to whole numbers of nodes

Even if we can convert, how long 
will converting take? That’s so 
many nodes to create.
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Lecture Outline
• Review DFS, BFS, Unweighted Shortest Paths

• Weighted Shortest Path Problem

• Reductions: Weighted à Unweighted

• Dijkstra’s Algorithm
- Definition & Examples
- Implementing Dijkstra’s
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Dijkstra’s Algorithm
• Named after its inventor, Edsger Dijkstra (1930-2002)

- Truly one of the “founders” of computer science
- 1972 Turing Award
- This algorithm is just one of his many contributions!
- Example quote: “Computer science is no more about computers than 

astronomy is about telescopes”

• The idea: reminiscent of BFS, but adapted to handle weights
- Grow the set of nodes whose shortest distance has been computed
- Nodes not in the set will have a “best distance so far”
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Dijkstra’s Algorithm: Idea

• Initialization:
- Start vertex has distance 0; all other vertices have distance ¥

• At each step:
- Pick closest unknown vertex v
- Add it to the “cloud” of known vertices
- Update “best-so-far” distances for vertices with edges from v

A B

D
C

F H

E

G

2 2 3

110 2
3

111
7

1

9
2

4 5

0

4

2

1

4??

12??

∞

∞

KNOWN

UNKNOWN
PERIMETER

start



CSE 373 Summer 2020LEC 16: Dijkstra’s Algorithm

dijkstraShortestPath(G graph, V start)
Set known; Map edgeTo, distTo;
initialize distTo with all nodes mapped to ∞, except start to 0

while (there are unknown vertices):
let u be the closest unknown vertex
known.add(u);
for each edge (u,v) from u with weight w:
oldDist = distTo.get(v)      // previous best path to v
newDist = distTo.get(u) + w  // what if we went through u?
if (newDist < oldDist):
distTo.put(v, newDist)
edgeTo.put(v, u)

Dijkstra’s Pseudocode (High-Level)

Similar to “visited” in BFS, 
“known” is nodes that are 
finalized (we know their 

path)

Dijkstra’s algorithm is all 
about updating “best-so-far” 

in distTo if we find shorter 
path! Init all paths to infinite.

Order matters: always visit 
closest first!

Consider all vertices 
reachable from me: would 

getting there through me be 
a shorter path than they 
currently know about? 

• Suppose we already visited B, distTo[D] = 7
• Now considering edge (C, D):

• oldDist = 7
• newDist = 3 + 1
• That’s better! Update distTo[D], edgeTo[D]

C D

B
A

KNOWN

PERIMETER

0
2

3 7??

2

3 5

1

start

u v

CO R R ECT ED
A FT ER  LECT UR E
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Dijkstra’s Algorithm: Key Properties

• Once a vertex is marked known, 
its shortest path is known

- Can reconstruct path by following 
back-pointers (in edgeTo map)

• While a vertex is not known, 
another shorter path might be 
found

- We call this update relaxing the 
distance because it only ever 
shortens the current best path

• Going through closest vertices 
first lets us confidently say no 
shorter path will be found once 
known

- Because not possible to find a 
shorter path that uses a farther 
vertex we’ll consider later

dijkstraShortestPath(G graph, V start)
Set known; Map edgeTo, distTo;
initialize distTo with all nodes mapped to ∞, except start to 0

while (there are unknown vertices):
let u be the closest unknown vertex
known.add(u)
for each edge (u,v) to unknown v with weight w:
oldDist = distTo.get(v)      // previous best path to v
newDist = distTo.get(u) + w  // what if we went through u?
if (newDist < oldDist):
distTo.put(v, newDist)
edgeTo.put(v, u)
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Dijkstra’s Algorithm: Example #1

23Order Added to 
Known Set:

Vertex Known? distTo edgeTo
A ¥

B ¥

C ¥

D ¥

E ¥

F ¥

G ¥

H ¥

A B

D
C

F H

E

G

2 2 3

110 2
3

111
7

1

9
2

4 5

¥ ¥ ¥

¥

¥

¥

¥

0
start
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Dijkstra’s Algorithm: Example #1

24Order Added to 
Known Set:
A

Vertex Known? distTo edgeTo
A Y 0 /

B £ 2 A

C £ 1 A

D £ 4 A

E ¥

F ¥

G ¥

H ¥

A B

D
C

F H

E

G

2 2 3

110 2
3

111
7

1

9
2

4 5

2?? ¥ ¥

1??

4??

¥

¥

0
start
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Dijkstra’s Algorithm: Example #1

25Order Added to 
Known Set:
A, C

Vertex Known? distTo edgeTo
A Y 0 /

B £ 2 A

C Y 1 A

D £ 4 A

E £ 12 C

F ¥

G ¥

H ¥

A B

D
C

F H

E

G

2 2 3

110 2
3

111
7

1

9
2

4 5

2?? ¥ ¥

1

4??

¥

12??

0
start
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Dijkstra’s Algorithm: Example #1

26Order Added to 
Known Set:
A, C, B

Vertex Known? distTo edgeTo
A Y 0 /

B Y 2 A

C Y 1 A

D £ 4 A

E £ 12 C

F £ 4 B

G ¥

H ¥

A B

D
C

F H

E

G

2 2 3

110 2
3

111
7

1

9
2

4 5

2 4?? ¥

1

4??

¥

12??

0
start
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Dijkstra’s Algorithm: Example #1

27Order Added to 
Known Set:
A, C, B, D

Vertex Known? distTo edgeTo
A Y 0 /

B Y 2 A

C Y 1 A

D Y 4 A

E £ 12 C

F £ 4 B

G ¥

H ¥

A B

D
C

F H

E

G

2 2 3

110 2
3

111
7

1

9
2

4 5

2 4?? ¥

1

4

¥

12??

0
start
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Dijkstra’s Algorithm: Example #1

28Order Added to 
Known Set:
A, C, B, D, F

Vertex Known? distTo edgeTo
A Y 0 /

B Y 2 A

C Y 1 A

D Y 4 A

E £ 12 C

F Y 4 B

G ¥

H £ 7 F

A B

D
C

F H

E

G

2 2 3

110 2
3

111
7

1

9
2

4 5

2 4 7??

1

4

¥

12??

0
start
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Dijkstra’s Algorithm: Example #1

29Order Added to 
Known Set:
A, C, B, D, F, H

Vertex Known? distTo edgeTo
A Y 0 /

B Y 2 A

C Y 1 A

D Y 4 A

E £ 12 C

F Y 4 B

G £ 8 H

H Y 7 F

A B

D
C

F H

E

G

2 2 3

110 2
3

111
7

1

9
2

4 5

2 4 7

1

4

8??

12??

0
start
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Dijkstra’s Algorithm: Example #1

30Order Added to 
Known Set:
A, C, B, D, F, H, G

Vertex Known? distTo edgeTo
A Y 0 /

B Y 2 A

C Y 1 A

D Y 4 A

E £ 11 G

F Y 4 B

G Y 8 H

H Y 7 F

A B

D
C

F H

E

G

2 2 3

110 2
3

111
7

1

9
2

4 5

2 4 7

1

4

8

11??

0
start
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Dijkstra’s Algorithm: Example #1

31Order Added to 
Known Set:
A, C, B, D, F, H, G, E

Vertex Known? distTo edgeTo
A Y 0 /

B Y 2 A

C Y 1 A

D Y 4 A

E Y 11 G

F Y 4 B

G Y 8 H

H Y 7 F

A B

D
C

F H

E

G

2 2 3

110 2
3

111
7

1

9
2

4 5

2 4 7

1

4

8

11

0
start
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Dijkstra’s Algorithm: Interpreting the Results
Now that we’re done, how do we get the path 
from A to E?
• Follow edgeTo backpointers!
• distTo and edgeTo make up the shortest 

path tree

32Order Added to 
Known Set:
A, C, B, D, F, H, G, E

Vertex Known? distTo edgeTo
A Y 0 /

B Y 2 A

C Y 1 A

D Y 4 A

E Y 11 G

F Y 4 B

G Y 8 H

H Y 7 F

A B

D
C

F H

E

G

2 2 3

110 2
3

111
7

1

9
2

4 5

2 4 7

1

4

8

11

0
start
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Review: Key Features
• Once a vertex is marked known, its shortest path is known

- Can reconstruct path by following backpointers
• While a vertex is not known, another shorter path might be found!

• The “Order Added to Known Set” is unimportant
- A detail about how the algorithm works (client doesn’t care)
- Not used by the algorithm (implementation doesn’t care)
- It is sorted by path-distance; ties are resolved “somehow”

• If we only need path to a specific vertex, can stop early once that 
vertex is known

- Because its shortest path cannot change!
- Return a partial shortest path tree
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Dijkstra’s Algorithm: Example #2

34Order Added to 
Known Set:

Vertex Known? distTo edgeTo
A ¥

B ¥

C ¥

D ¥

E ¥

F ¥

G ¥

A B

C
D

F

E

G

0 ¥
2

1
2 5

1
1

1

2 6
5 3

10

¥

¥

¥
¥

¥

start
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Dijkstra’s Algorithm: Example #2

35Order Added to 
Known Set:
A

Vertex Known? distTo edgeTo
A Y 0 /

B ¥

C £ 2 A

D £ 1 A

E ¥

F ¥

G ¥

A B

C
D

F

E

G

0 ¥
2

1
2 5

1
1

1

2 6
5 3

10

¥

¥

1??
2??

¥

start
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Dijkstra’s Algorithm: Example #2

36Order Added to 
Known Set:
A, D

Vertex Known? distTo edgeTo
A Y 0 /

B £ 6 D

C £ 2 A

D Y 1 A

E £ 2 D

F £ 7 D

G £ 6 D

A B

C
D

F

E

G

0 6??
2

1
2 5

1
1

1

2 6
5 3

10

2??

6??

1
2??

7??

start
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Dijkstra’s Algorithm: Example #2

37Order Added to 
Known Set:
A, D, C

Vertex Known? distTo edgeTo
A Y 0 /

B £ 6 D

C Y 2 A

D Y 1 A

E £ 2 D

F £ 4 C

G £ 6 D

A B

C
D

F

E

G

0 6??
2

1
2 5

1
1

1

2 6
5 3

10

2??

6??

1
2

4??

start
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Dijkstra’s Algorithm: Example #2

38Order Added to 
Known Set:
A, D, C, E

Vertex Known? distTo edgeTo
A Y 0 /

B £ 3 E

C Y 2 A

D Y 1 A

E Y 2 D

F £ 4 C

G £ 6 D

A B

C
D

F

E

G

0 3??
2

1
2 5

1
1

1

2 6
5 3

10

2

6??

1
2

4??

start
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Dijkstra’s Algorithm: Example #2

39Order Added to 
Known Set:
A, D, C, E, B

Vertex Known? distTo edgeTo
A Y 0 /

B Y 3 E

C Y 2 A

D Y 1 A

E Y 2 D

F £ 4 C

G £ 6 D

A B

C
D

F

E

G

0 3
2

1
2 5

1
1

1

2 6
5 3

10

2

6??

1
2

4??

start
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Dijkstra’s Algorithm: Example #2

40Order Added to 
Known Set:
A, D, C, E, B, F

Vertex Known? distTo edgeTo
A Y 0 /

B Y 3 E

C Y 2 A

D Y 1 A

E Y 2 D

F Y 4 C

G £ 6 D

A B

C
D

F

E

G

0 3
2

1
2 5

1
1

1

2 6
5 3

10

2

6??

1
2

4

start
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Dijkstra’s Algorithm: Example #2

41Order Added to 
Known Set:
A, D, C, E, B, F, G

Vertex Known? distTo edgeTo
A Y 0 /

B Y 3 E

C Y 2 A

D Y 1 A

E Y 2 D

F Y 4 C

G Y 6 D

A B

C
D

F

E

G

0 3
2

1
2 5

1
1

1

2 6
5 3

10

2

6

1
2

4

start
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Why Does Dijkstra’s Work?

X

KNOWN

8??

3

1

A

1

5

6??

Example:
• We’re about to add X to the known set
• But how can we be sure we won’t later find a 

path through some node A that is shorter to X?
• Because if we could, Dijkstra’s would explore A 

first

• Similar “First Try Phenomenon” to BFS

• How can we be sure we won’t find a shorter 
path to X later?

- Key Intuition: Dijkstra’s works because:
- IF we always add the closest vertices to “known” first,
- THEN by the time a vertex is added, any possible 

relaxing has happened and the path we know is always 
the shortest!

Dijkstra’s Algorithm Invariant
All vertices in the “known” set have the correct 
shortest pathIN
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Why Does Dijkstra’s Work?

• Similar “First Try Phenomenon” to BFS

• How can we be sure we won’t find a shorter 
path to X later?

- Key Intuition: Dijkstra’s works because:
- IF we always add the closest vertices to “known” first,
- THEN by the time a vertex is added, any possible 

relaxing has happened and the path we know is always 
the shortest!

Dijkstra’s Algorithm Invariant
All vertices in the “known” set have the correct 
shortest pathIN

VA
R
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Example:
• We’re about to add X to the known set
• But how can we be sure we won’t later find a 

path through some node A that is shorter to X?
• Because if we could, Dijkstra’s would explore A 

first
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When Doesn’t Dijkstra’s Work?

X
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Example:

• Which vertex do we add first?
- X, using edge 3, because 8 < 11
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When Doesn’t Dijkstra’s Work?

• Dijkstra’s Algorithm is not 
guaranteed to work on graphs 
with negative edge weights

- It can work, but is fooled when a 
negative edge “hides” behind a 
large edge weight

- Will still run, but give wrong answer

X

KNOWN

8

3

6

A

-5

5

11??

Example:

• Which vertex do we add first?
- X, using edge 3, because 8 < 11

• Is 8 the correct shortest path length to X?
- No! Going through A, we could have gotten a path 

of length 6

Dijkstra’s Algorithm Invariant
All vertices in the “known” set have the correct 
shortest pathIN

VA
R
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N

T 😵
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Lecture Outline
• Review DFS, BFS, Unweighted Shortest Paths

• Weighted Shortest Path Problem

• Reductions: Weighted à Unweighted

• Dijkstra’s Algorithm
- Definition & Examples
- Implementing Dijkstra’s
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Implementing Dijkstra’s
• How do we implement “let u be the closest unknown vertex”?

dijkstraShortestPath(G graph, V start)
Set known; Map edgeTo, distTo;
initialize distTo with all nodes mapped to ∞, except start to 0

while (there are unknown vertices):
let u be the closest unknown vertex
known.add(u)
for each edge (u,v) to unknown v with weight w:
oldDist = distTo.get(v)      // previous best path to v
newDist = distTo.get(u) + w  // what if we went through u?
if (newDist < oldDist):
distTo.put(v, newDist)
edgeTo.put(v, u)

• Would sure be 
convenient to store 
vertices in a structure 
that…

- Gives them each a 
distance “priority” value

- Makes it fast to grab the 
one with the smallest 
distance

- Lets us update that 
distance as we discover 
new, better paths

MIN PRIORITY QUEUE ADT
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Implementing Dijkstra’s: Pseudocode
• Use a MinPriorityQueue to 

keep track of the 
perimeter

- Don’t need to track entire 
graph

- Don’t need separate 
“known” set – implicit in 
PQ (we’ll never try to 
update a “known” vertex)

• This pseudocode is much 
closer to what you’ll 
implement in P4

- However, still some details 
for you to figure out!

- e.g. how to initialize distTo
with all nodes mapped to ∞

- Spec will describe some 
optimizations for you to 
make J

dijkstraShortestPath(G graph, V start)
Map edgeTo, distTo;
initialize distTo with all nodes mapped to ∞, except start to 0

PriorityQueue<V> perimeter; (initialize with start)

while (!perimeter.isEmpty()):
u = perimeter.removeMin()

for each edge (u,v) to v with weight w:
oldDist = distTo.get(v)      // previous best path to v
newDist = distTo.get(u) + w  // what if we went through u?
if (newDist < oldDist):

distTo.put(v, newDist)
edgeTo.put(v, u)
if (perimeter.contains(v)):

perimeter.changePriority(v, newDist)
else:

perimeter.add(v, newDist)

CO R R ECT ED
A FT ER  LECT UR E



CSE 373 Summer 2020LEC 16: Dijkstra’s Algorithm

Dijkstra’s Runtime
dijkstraShortestPath(G graph, V start)

Map edgeTo, distTo;
initialize distTo with all nodes mapped to ∞, except start to 0

PriorityQueue<V> perimeter; (initialize with start)

while (!perimeter.isEmpty()):
u = perimeter.removeMin()

for each edge (u,v) to v with weight w:
oldDist = distTo.get(v)      // previous best path to v
newDist = distTo.get(u) + w  // what if we went through u?
if (newDist < oldDist):

distTo.put(v, newDist)
edgeTo.put(v, u)
if (perimeter.contains(v)):

perimeter.changePriority(v, newDist)
else:

perimeter.add(v, newDist)

Θ(|𝑉|)

Θ(|𝑉|) iterations
Θ(log |𝑉|)

total Θ 𝐸 iterations

Θ log |𝑉|

Θ log |𝑉|

Θ 1
Θ |𝐸|log |𝑉|

Θ |𝑉|log |𝑉|
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Dijkstra’s Runtime
dijkstraShortestPath(G graph, V start)

Map edgeTo, distTo;
initialize distTo with all nodes mapped to ∞, except start to 0

PriorityQueue<V> perimeter; (initialize with start

while (!perimeter.isEmpty()):
u = perimeter.removeMin()

for each edge (u,v) to v with weight w:
oldDist = distTo.get(v)      // previous best path to v
newDist = distTo.get(u) + w  // what if we went through u?
if (newDist < oldDist):

distTo.put(v, newDist)
edgeTo.put(v, u)
if (perimeter.contains(v)):

perimeter.changePriority(v, newDist
else:

perimeter.add(v, newDist)

Θ(|𝑉|)

Θ(|𝑉|) iterations
Θ(log |𝑉|)

total Θ 𝐸 iterations

Θ log |𝑉|

Θ log |𝑉|

Θ 1
Θ |𝐸|log |𝑉|

Θ |𝑉|log |𝑉|
Θ 𝑉 log 𝑉 + |𝐸|log |𝑉|

Final result:

Why can’t we simplify further?
• We don’t know if |V| or |E| is 

going to be larger, so we don’t 
know which term will dominate.

• Sometimes we assume |E| is 
larger than |V|, so |E|log|V| 
dominates. But not always true!


