
CSE 373 Summer 2020LEC 16: Dijkstra’s Algorithm

CSE 373

Timothy Akintilo
Brian Chan
Joyce Elauria
Eric Fan
Farrell Fileas

Melissa Hovik
Leona Kazi
Keanu Vestil

Howard Xiao

Aaron JohnstonInstructor

TAs

Siddharth Vaidyanathan

L E C 1 6

Dijkstra’s
Algorithm

BEFORE WE START

pollev.com/uwcse373

Which of the following statements are true about the
“shortest path tree” resulting from BFS?

(a) It only contains the shortest path from s to t
(b) It contains the shortest paths from s to any vertex
(c) It contains the shortest paths from any vertex to t
(d) It contains all shortest paths in the graph
(e) Getting the s to t path out is constant time
(f) Getting the s to t path out is linear time

CSE 373 Summer 2020LEC 16: Dijkstra’s Algorithm

Announcements
• P3 due next Wednesday, 8/05
• EX3 published this evening, due next Friday 8/07

- Will focus on the graph problems we’ve talked about this week
- Note: ramping up slightly in difficulty now that you’ve had practice with

algorithmic analysis, recommend taking a look early!

CSE 373 Summer 2020LEC 16: Dijkstra’s Algorithm

Learning Objectives

1. Describe the weighted shortest path problem and explain why BFS
doesn’t work to solve it

2. Trace through Dijkstra’s algorithm on a graph showing intermediate
steps at each step and implement Dijkstra’s algorithm in code (P4)

3. Evaluate inputs to (and modifications to) Dijkstra’s algorithm for
correct behavior and efficiency based on the algorithm’s properties

4. Synthesize code to solve problems on a graph based on DFS, BFS,
and Dijkstra’s traversals

After this lecture, you should be able to...

CSE 373 Summer 2020LEC 16: Dijkstra’s Algorithm

Lecture Outline
• Review DFS, BFS, Unweighted Shortest Paths

• Weighted Shortest Path Problem

• Reductions: Weighted à Unweighted

• Dijkstra’s Algorithm
- Definition & Examples
- Implementing Dijkstra’s

CSE 373 Summer 2020LEC 16: Dijkstra’s Algorithm

bfs(Graph graph, Vertex start) {
Queue<Vertex> perimeter = new Queue<>();
Set<Vertex> visited = new Set<>();

perimeter.add(start);
visited.add(start);

while (!perimeter.isEmpty()) {
Vertex from = perimeter.remove();
for (Edge edge : graph.edgesFrom(from)) {

Vertex to = edge.to();
if (!visited.contains(to)) {

perimeter.add(to);
visited.add(to);

}
}

}
}

dfs(Graph graph, Vertex start) {
Stack<Vertex> perimeter = new Stack<>();
Set<Vertex> visited = new Set<>();

...

Explore layer-by-layer: examine
every node at a certain distance
from start, then examine nodes that
are one level farther

Follow a “choice” all the way to the
end, then come back to revisit other
choices

* Can also be implemented recursively; though be careful of stack overflow!

DFS BFS

• BFS and DFS are just techniques for
iterating! (think: for loop over an array)

- Need to add code that actually processes
something to solve a problem

- A lot of interview problems on graphs can be
solved with modifications on top of BFS or
DFS! Very worth being comfortable with the
pseudocode J

CSE 373 Summer 2020LEC 16: Dijkstra’s Algorithm

Review Using BFS for the Shortest Path Problem

(Unweighted) Shortest Path Problem

Given source vertex s and a target vertex t,
how long is the shortest path from s to t?

What edges make up that path?

• This is a little harder, but still totally
doable! We just need a way to
keep track of how far each node is
from the start.

- Sounds like a job for?
- BFS!

...

Map<Vertex, Edge> edgeTo = ...
Map<Vertex, Double> distTo = ...

edgeTo.put(start, null);
distTo.put(start, 0.0);

while (!perimeter.isEmpty()) {
Vertex from = perimeter.remove();
for (Edge edge : graph.edgesFrom(from)) {
Vertex to = edge.to();
if (!visited.contains(to)) {
edgeTo.put(to, edge);
distTo.put(to, distTo.get(from) + 1);
perimeter.add(to);
visited.add(to);

}
}

}
return edgeTo;

}

Remember how we got to this
point, and what layer this vertex

is part of

The start required no edge to
arrive at, and is on level 0

CSE 373 Summer 2020LEC 16: Dijkstra’s Algorithm

Review BFS for Shortest Paths: Example

A

B

E

C

D

start
VISITED

PERIMETER
...

Map<Vertex, Edge> edgeTo = ...
Map<Vertex, Double> distTo = ...

edgeTo.put(start, null);
distTo.put(start, 0.0);

while (!perimeter.isEmpty()) {
Vertex from = perimeter.remove();
for (Edge edge : graph.edgesFrom(from)) {
Vertex to = edge.to();
if (!visited.contains(to)) {
edgeTo.put(to, edge);
distTo.put(to, distTo.get(from) + 1);
perimeter.add(to);
visited.add(to);

}
}

}
return edgeTo;

}

EDGETO

DISTTO

• The edgeTo map stores backpointers: each vertex
remembers what vertex was used to arrive at it!

• Note: this code stores visited, edgeTo, and distTo as
external maps (only drawn on graph for convenience).
Another implementation option: store them as fields of the
nodes themselves

0

1

1

2

2

A B C D E

CSE 373 Summer 2020LEC 16: Dijkstra’s Algorithm

Review What about the Target Vertex?
• This modification on BFS didn’t mention the target

vertex at all!
• Instead, it calculated the shortest path and distance

from start to every other vertex
- This is called the shortest path tree

- A general concept: in this implementation, made up of
distances and backpointers

• Shortest path tree has all the answers!
- Length of shortest path from A to D?

- Lookup in distTo map: 2
- What’s the shortest path from A to D?

- Build up backwards from edgeTo map: start at D, follow
backpointer to B, follow backpointer to A – our shortest path
is A à B à D

• All our shortest path algorithms will have this
property

- If you only care about t, you can sometimes stop early!

A

B

E

C

D

start

EDGETO

DISTTO
0

1

1

2

2

Shortest Path Tree:

CSE 373 Summer 2020LEC 16: Dijkstra’s Algorithm

Lecture Outline
• Review DFS, BFS, Unweighted Shortest Paths

• Weighted Shortest Path Problem

• Reductions: Weighted à Unweighted

• Dijkstra’s Algorithm
- Definition & Examples
- Implementing Dijkstra’s

CSE 373 Summer 2020LEC 16: Dijkstra’s Algorithm

Our Graph Problem Collection

s-t Connectivity Problem

Given source vertex s and a target
vertex t, does there exist a path

from s to t?

Unweighted Shortest Path
Problem

Given source vertex s and target
vertex t, what path from s to t

minimizes the number of edges?
How long is that path, and what

edges make it up?

Weighted Shortest Path Problem

Given source vertex s and target
vertex t, what path from s to t

minimizes the total weight of its
edges? How long is that path, and

what edges make it up?

NEW

SOLUTION
Base Traversal: BFS or DFS
Modification: Check if each vertex == t

SOLUTION
Base Traversal: BFS
Modification: Generate shortest path tree
as we go

???

CSE 373 Summer 2020LEC 16: Dijkstra’s Algorithm

The Weighted Shortest Path Problem
• It’s lunchtime, and that Pagliacci slice

isn’t going to eat itself – Suppose we
want to find the fastest path from
Meany Hall to the HUB

- Model as a graph: buildings & road meeting
points are vertices, roads are edges

• Of course, want to take
Asotin – Grant – King, not Stevens Way!

- Use edge weights to model distance, since
not all edges have the same cost

- Would BFS give us the right answer here?

Stevens Way
0.7 Miles

NE Grant Lane
0.2 Miles

King Lane
0.05 Miles

Asotin Place
0.05 Miles

Meany Hall

HUB

Meany Hall

HUB

0.05 0.2

0.050.7

CSE 373 Summer 2020LEC 16: Dijkstra’s Algorithm

Why does BFS work for unweighted graphs?

Key Intuition: BFS works because:
• IF we always process the closest vertices first,
• THEN the first path we discover to a new vertex will

always be the shortest!

start E

D

A

B

C

F

Observation: The “First Try Phenomenon”
• BFS only enqueues each vertex once (makes it efficient)
• As soon as BFS enqueues a vertex, the final path to that

vertex has been chosen! Never re-evaluate its path.

target

Example: For shortest path to C, why
do we choose edge (B,C) and not (F,C)?
• Exactly because we visit B before F!

1

0

1

2

EDGETO

D ISTTO

VISITEDZ

1

BFS Tracking:

CSE 373 Summer 2020LEC 16: Dijkstra’s Algorithm

Why doesn’t BFS work for weighted graphs?

E

D

A

B

C

F

100.0

200.0

1.0 1.0

1.0

1.0

start

• We want the path that minimizes the sum of edge
weights
• A-D-E-F-C: total distance 4
• A-B-C: total distance 300.

• Do the edge weights affect how BFS runs?
• Nope! Exactly the same path chosen

target

EDGETO

D ISTTO

VISITEDZ

1

1

0

1

2
• Observation: still have “First Try Phenomenon”
• Key Intuition: yet BFS breaks because we no longer

process the closest vertices first (that is, not closest
according to the edge weights!)
• So we can’t rely on first path found being best

anymore L

• Idea 1: Could we change the weighted graph into an
unweighted graph?

BFS Tracking:

CSE 373 Summer 2020LEC 16: Dijkstra’s Algorithm

Lecture Outline
• Review DFS, BFS, Unweighted Shortest Paths

• Weighted Shortest Path Problem

• Reductions: Weighted à Unweighted

• Dijkstra’s Algorithm
- Definition & Examples
- Implementing Dijkstra’s

CSE 373 Summer 2020LEC 16: Dijkstra’s Algorithm

Idea 1: Change into an unweighted graph
• We know BFS works on unweighted graphs

- If we can transform a weighted graph to unweighted, we can solve it!

• This idea is known as a reduction
- “Reduce” a problem you can’t solve to one you can
- Here, we’re trying to reduce BFS on weighted graphs to BFS on unweighted

graphs
- We’ll revisit this concept later in the course!

A

B

C
D2.0

2.0

2.0

1.0

1.0

A

B

C

D

CSE 373 Summer 2020LEC 16: Dijkstra’s Algorithm

A

B

C
D2.0

2.0

2.0

1.0

1.0

WEIGHTED GRAPHS UNWEIGHTED GRAPHS

A

B

C

D

A

B

C
D 2

A

B

C
D

2.0

2.0

2.0

1.0

1.0

2Transform output back into the
original form, now with a solution

Run the algorithm:
Unweighted Shortest Paths

Transform input into a form
we can feed into the algorithm

Weighted Graphs: An Example Reduction

CSE 373 Summer 2020LEC 16: Dijkstra’s Algorithm

Idea 1: Change into an unweighted graph

• Unfortunately, looks like we can’t use this reduction here.
- Note: we’ll see good examples of reductions later on!

• Idea 2: Could we change the order that we visit nodes to take edge weights
into account?

A

B

C

D0.01

1.5

𝜋

1.8

9.2

A

B

C

D500000

1

20000

899999

3000

Not possible to convert these
to whole numbers of nodes

Even if we can convert, how long
will converting take? That’s so
many nodes to create.

CSE 373 Summer 2020LEC 16: Dijkstra’s Algorithm

Lecture Outline
• Review DFS, BFS, Unweighted Shortest Paths

• Weighted Shortest Path Problem

• Reductions: Weighted à Unweighted

• Dijkstra’s Algorithm
- Definition & Examples
- Implementing Dijkstra’s

CSE 373 Summer 2020LEC 16: Dijkstra’s Algorithm

Dijkstra’s Algorithm
• Named after its inventor, Edsger Dijkstra (1930-2002)

- Truly one of the “founders” of computer science
- 1972 Turing Award
- This algorithm is just one of his many contributions!
- Example quote: “Computer science is no more about computers than

astronomy is about telescopes”

• The idea: reminiscent of BFS, but adapted to handle weights
- Grow the set of nodes whose shortest distance has been computed
- Nodes not in the set will have a “best distance so far”

CSE 373 Summer 2020LEC 16: Dijkstra’s Algorithm

Dijkstra’s Algorithm: Idea

• Initialization:
- Start vertex has distance 0; all other vertices have distance ¥

• At each step:
- Pick closest unknown vertex v
- Add it to the “cloud” of known vertices
- Update “best-so-far” distances for vertices with edges from v

A B

D
C

F H

E

G

2 2 3

110 2
3

111
7

1

9
2

4 5

0

4

2

1

4??

12??

∞

∞

KNOWN

UNKNOWN
PERIMETER

start

CSE 373 Summer 2020LEC 16: Dijkstra’s Algorithm

dijkstraShortestPath(G graph, V start)
Set known; Map edgeTo, distTo;
initialize distTo with all nodes mapped to ∞, except start to 0

while (there are unknown vertices):
let u be the closest unknown vertex
known.add(u);
for each edge (u,v) from u with weight w:
oldDist = distTo.get(v) // previous best path to v
newDist = distTo.get(u) + w // what if we went through u?
if (newDist < oldDist):
distTo.put(v, newDist)
edgeTo.put(v, u)

Dijkstra’s Pseudocode (High-Level)

Similar to “visited” in BFS,
“known” is nodes that are
finalized (we know their

path)

Dijkstra’s algorithm is all
about updating “best-so-far”

in distTo if we find shorter
path! Init all paths to infinite.

Order matters: always visit
closest first!

Consider all vertices
reachable from me: would

getting there through me be
a shorter path than they
currently know about?

• Suppose we already visited B, distTo[D] = 7
• Now considering edge (C, D):

• oldDist = 7
• newDist = 3 + 1
• That’s better! Update distTo[D], edgeTo[D]

C D

B
A

KNOWN

PERIMETER

0
2

3 7??

2

3 5

1

start

u v

CO R R ECT ED
A FT ER LECT UR E

CSE 373 Summer 2020LEC 16: Dijkstra’s Algorithm

Dijkstra’s Algorithm: Key Properties

• Once a vertex is marked known,
its shortest path is known

- Can reconstruct path by following
back-pointers (in edgeTo map)

• While a vertex is not known,
another shorter path might be
found

- We call this update relaxing the
distance because it only ever
shortens the current best path

• Going through closest vertices
first lets us confidently say no
shorter path will be found once
known

- Because not possible to find a
shorter path that uses a farther
vertex we’ll consider later

dijkstraShortestPath(G graph, V start)
Set known; Map edgeTo, distTo;
initialize distTo with all nodes mapped to ∞, except start to 0

while (there are unknown vertices):
let u be the closest unknown vertex
known.add(u)
for each edge (u,v) to unknown v with weight w:
oldDist = distTo.get(v) // previous best path to v
newDist = distTo.get(u) + w // what if we went through u?
if (newDist < oldDist):
distTo.put(v, newDist)
edgeTo.put(v, u)

CSE 373 Summer 2020LEC 16: Dijkstra’s Algorithm

Dijkstra’s Algorithm: Example #1

23Order Added to
Known Set:

Vertex Known? distTo edgeTo
A ¥

B ¥

C ¥

D ¥

E ¥

F ¥

G ¥

H ¥

A B

D
C

F H

E

G

2 2 3

110 2
3

111
7

1

9
2

4 5

¥ ¥ ¥

¥

¥

¥

¥

0
start

CSE 373 Summer 2020LEC 16: Dijkstra’s Algorithm

Dijkstra’s Algorithm: Example #1

24Order Added to
Known Set:
A

Vertex Known? distTo edgeTo
A Y 0 /

B £ 2 A

C £ 1 A

D £ 4 A

E ¥

F ¥

G ¥

H ¥

A B

D
C

F H

E

G

2 2 3

110 2
3

111
7

1

9
2

4 5

2?? ¥ ¥

1??

4??

¥

¥

0
start

CSE 373 Summer 2020LEC 16: Dijkstra’s Algorithm

Dijkstra’s Algorithm: Example #1

25Order Added to
Known Set:
A, C

Vertex Known? distTo edgeTo
A Y 0 /

B £ 2 A

C Y 1 A

D £ 4 A

E £ 12 C

F ¥

G ¥

H ¥

A B

D
C

F H

E

G

2 2 3

110 2
3

111
7

1

9
2

4 5

2?? ¥ ¥

1

4??

¥

12??

0
start

CSE 373 Summer 2020LEC 16: Dijkstra’s Algorithm

Dijkstra’s Algorithm: Example #1

26Order Added to
Known Set:
A, C, B

Vertex Known? distTo edgeTo
A Y 0 /

B Y 2 A

C Y 1 A

D £ 4 A

E £ 12 C

F £ 4 B

G ¥

H ¥

A B

D
C

F H

E

G

2 2 3

110 2
3

111
7

1

9
2

4 5

2 4?? ¥

1

4??

¥

12??

0
start

CSE 373 Summer 2020LEC 16: Dijkstra’s Algorithm

Dijkstra’s Algorithm: Example #1

27Order Added to
Known Set:
A, C, B, D

Vertex Known? distTo edgeTo
A Y 0 /

B Y 2 A

C Y 1 A

D Y 4 A

E £ 12 C

F £ 4 B

G ¥

H ¥

A B

D
C

F H

E

G

2 2 3

110 2
3

111
7

1

9
2

4 5

2 4?? ¥

1

4

¥

12??

0
start

CSE 373 Summer 2020LEC 16: Dijkstra’s Algorithm

Dijkstra’s Algorithm: Example #1

28Order Added to
Known Set:
A, C, B, D, F

Vertex Known? distTo edgeTo
A Y 0 /

B Y 2 A

C Y 1 A

D Y 4 A

E £ 12 C

F Y 4 B

G ¥

H £ 7 F

A B

D
C

F H

E

G

2 2 3

110 2
3

111
7

1

9
2

4 5

2 4 7??

1

4

¥

12??

0
start

CSE 373 Summer 2020LEC 16: Dijkstra’s Algorithm

Dijkstra’s Algorithm: Example #1

29Order Added to
Known Set:
A, C, B, D, F, H

Vertex Known? distTo edgeTo
A Y 0 /

B Y 2 A

C Y 1 A

D Y 4 A

E £ 12 C

F Y 4 B

G £ 8 H

H Y 7 F

A B

D
C

F H

E

G

2 2 3

110 2
3

111
7

1

9
2

4 5

2 4 7

1

4

8??

12??

0
start

CSE 373 Summer 2020LEC 16: Dijkstra’s Algorithm

Dijkstra’s Algorithm: Example #1

30Order Added to
Known Set:
A, C, B, D, F, H, G

Vertex Known? distTo edgeTo
A Y 0 /

B Y 2 A

C Y 1 A

D Y 4 A

E £ 11 G

F Y 4 B

G Y 8 H

H Y 7 F

A B

D
C

F H

E

G

2 2 3

110 2
3

111
7

1

9
2

4 5

2 4 7

1

4

8

11??

0
start

CSE 373 Summer 2020LEC 16: Dijkstra’s Algorithm

Dijkstra’s Algorithm: Example #1

31Order Added to
Known Set:
A, C, B, D, F, H, G, E

Vertex Known? distTo edgeTo
A Y 0 /

B Y 2 A

C Y 1 A

D Y 4 A

E Y 11 G

F Y 4 B

G Y 8 H

H Y 7 F

A B

D
C

F H

E

G

2 2 3

110 2
3

111
7

1

9
2

4 5

2 4 7

1

4

8

11

0
start

CSE 373 Summer 2020LEC 16: Dijkstra’s Algorithm

Dijkstra’s Algorithm: Interpreting the Results
Now that we’re done, how do we get the path
from A to E?
• Follow edgeTo backpointers!
• distTo and edgeTo make up the shortest

path tree

32Order Added to
Known Set:
A, C, B, D, F, H, G, E

Vertex Known? distTo edgeTo
A Y 0 /

B Y 2 A

C Y 1 A

D Y 4 A

E Y 11 G

F Y 4 B

G Y 8 H

H Y 7 F

A B

D
C

F H

E

G

2 2 3

110 2
3

111
7

1

9
2

4 5

2 4 7

1

4

8

11

0
start

CSE 373 Summer 2020LEC 16: Dijkstra’s Algorithm

Review: Key Features
• Once a vertex is marked known, its shortest path is known

- Can reconstruct path by following backpointers
• While a vertex is not known, another shorter path might be found!

• The “Order Added to Known Set” is unimportant
- A detail about how the algorithm works (client doesn’t care)
- Not used by the algorithm (implementation doesn’t care)
- It is sorted by path-distance; ties are resolved “somehow”

• If we only need path to a specific vertex, can stop early once that
vertex is known

- Because its shortest path cannot change!
- Return a partial shortest path tree

CSE 373 Summer 2020LEC 16: Dijkstra’s Algorithm

Dijkstra’s Algorithm: Example #2

34Order Added to
Known Set:

Vertex Known? distTo edgeTo
A ¥

B ¥

C ¥

D ¥

E ¥

F ¥

G ¥

A B

C
D

F

E

G

0 ¥
2

1
2 5

1
1

1

2 6
5 3

10

¥

¥

¥
¥

¥

start

CSE 373 Summer 2020LEC 16: Dijkstra’s Algorithm

Dijkstra’s Algorithm: Example #2

35Order Added to
Known Set:
A

Vertex Known? distTo edgeTo
A Y 0 /

B ¥

C £ 2 A

D £ 1 A

E ¥

F ¥

G ¥

A B

C
D

F

E

G

0 ¥
2

1
2 5

1
1

1

2 6
5 3

10

¥

¥

1??
2??

¥

start

CSE 373 Summer 2020LEC 16: Dijkstra’s Algorithm

Dijkstra’s Algorithm: Example #2

36Order Added to
Known Set:
A, D

Vertex Known? distTo edgeTo
A Y 0 /

B £ 6 D

C £ 2 A

D Y 1 A

E £ 2 D

F £ 7 D

G £ 6 D

A B

C
D

F

E

G

0 6??
2

1
2 5

1
1

1

2 6
5 3

10

2??

6??

1
2??

7??

start

CSE 373 Summer 2020LEC 16: Dijkstra’s Algorithm

Dijkstra’s Algorithm: Example #2

37Order Added to
Known Set:
A, D, C

Vertex Known? distTo edgeTo
A Y 0 /

B £ 6 D

C Y 2 A

D Y 1 A

E £ 2 D

F £ 4 C

G £ 6 D

A B

C
D

F

E

G

0 6??
2

1
2 5

1
1

1

2 6
5 3

10

2??

6??

1
2

4??

start

CSE 373 Summer 2020LEC 16: Dijkstra’s Algorithm

Dijkstra’s Algorithm: Example #2

38Order Added to
Known Set:
A, D, C, E

Vertex Known? distTo edgeTo
A Y 0 /

B £ 3 E

C Y 2 A

D Y 1 A

E Y 2 D

F £ 4 C

G £ 6 D

A B

C
D

F

E

G

0 3??
2

1
2 5

1
1

1

2 6
5 3

10

2

6??

1
2

4??

start

CSE 373 Summer 2020LEC 16: Dijkstra’s Algorithm

Dijkstra’s Algorithm: Example #2

39Order Added to
Known Set:
A, D, C, E, B

Vertex Known? distTo edgeTo
A Y 0 /

B Y 3 E

C Y 2 A

D Y 1 A

E Y 2 D

F £ 4 C

G £ 6 D

A B

C
D

F

E

G

0 3
2

1
2 5

1
1

1

2 6
5 3

10

2

6??

1
2

4??

start

CSE 373 Summer 2020LEC 16: Dijkstra’s Algorithm

Dijkstra’s Algorithm: Example #2

40Order Added to
Known Set:
A, D, C, E, B, F

Vertex Known? distTo edgeTo
A Y 0 /

B Y 3 E

C Y 2 A

D Y 1 A

E Y 2 D

F Y 4 C

G £ 6 D

A B

C
D

F

E

G

0 3
2

1
2 5

1
1

1

2 6
5 3

10

2

6??

1
2

4

start

CSE 373 Summer 2020LEC 16: Dijkstra’s Algorithm

Dijkstra’s Algorithm: Example #2

41Order Added to
Known Set:
A, D, C, E, B, F, G

Vertex Known? distTo edgeTo
A Y 0 /

B Y 3 E

C Y 2 A

D Y 1 A

E Y 2 D

F Y 4 C

G Y 6 D

A B

C
D

F

E

G

0 3
2

1
2 5

1
1

1

2 6
5 3

10

2

6

1
2

4

start

CSE 373 Summer 2020LEC 16: Dijkstra’s Algorithm

Why Does Dijkstra’s Work?

X

KNOWN

8??

3

1

A

1

5

6??

Example:
• We’re about to add X to the known set
• But how can we be sure we won’t later find a

path through some node A that is shorter to X?
• Because if we could, Dijkstra’s would explore A

first

• Similar “First Try Phenomenon” to BFS

• How can we be sure we won’t find a shorter
path to X later?

- Key Intuition: Dijkstra’s works because:
- IF we always add the closest vertices to “known” first,
- THEN by the time a vertex is added, any possible

relaxing has happened and the path we know is always
the shortest!

Dijkstra’s Algorithm Invariant
All vertices in the “known” set have the correct
shortest pathIN

VA
R

IA
N

T

CSE 373 Summer 2020LEC 16: Dijkstra’s Algorithm

Why Does Dijkstra’s Work?

• Similar “First Try Phenomenon” to BFS

• How can we be sure we won’t find a shorter
path to X later?

- Key Intuition: Dijkstra’s works because:
- IF we always add the closest vertices to “known” first,
- THEN by the time a vertex is added, any possible

relaxing has happened and the path we know is always
the shortest!

Dijkstra’s Algorithm Invariant
All vertices in the “known” set have the correct
shortest pathIN

VA
R

IA
N

T

X

KNOWN

7??

3

1

A

1

5

6

Example:
• We’re about to add X to the known set
• But how can we be sure we won’t later find a

path through some node A that is shorter to X?
• Because if we could, Dijkstra’s would explore A

first

CSE 373 Summer 2020LEC 16: Dijkstra’s Algorithm

When Doesn’t Dijkstra’s Work?

X

KNOWN

8??

3

6

A

-5

5

11??

Example:

• Which vertex do we add first?
- X, using edge 3, because 8 < 11

CSE 373 Summer 2020LEC 16: Dijkstra’s Algorithm

When Doesn’t Dijkstra’s Work?

• Dijkstra’s Algorithm is not
guaranteed to work on graphs
with negative edge weights

- It can work, but is fooled when a
negative edge “hides” behind a
large edge weight

- Will still run, but give wrong answer

X

KNOWN

8

3

6

A

-5

5

11??

Example:

• Which vertex do we add first?
- X, using edge 3, because 8 < 11

• Is 8 the correct shortest path length to X?
- No! Going through A, we could have gotten a path

of length 6

Dijkstra’s Algorithm Invariant
All vertices in the “known” set have the correct
shortest pathIN

VA
R

IA
N

T 😵

CSE 373 Summer 2020LEC 16: Dijkstra’s Algorithm

Lecture Outline
• Review DFS, BFS, Unweighted Shortest Paths

• Weighted Shortest Path Problem

• Reductions: Weighted à Unweighted

• Dijkstra’s Algorithm
- Definition & Examples
- Implementing Dijkstra’s

CSE 373 Summer 2020LEC 16: Dijkstra’s Algorithm

Implementing Dijkstra’s
• How do we implement “let u be the closest unknown vertex”?

dijkstraShortestPath(G graph, V start)
Set known; Map edgeTo, distTo;
initialize distTo with all nodes mapped to ∞, except start to 0

while (there are unknown vertices):
let u be the closest unknown vertex
known.add(u)
for each edge (u,v) to unknown v with weight w:
oldDist = distTo.get(v) // previous best path to v
newDist = distTo.get(u) + w // what if we went through u?
if (newDist < oldDist):
distTo.put(v, newDist)
edgeTo.put(v, u)

• Would sure be
convenient to store
vertices in a structure
that…

- Gives them each a
distance “priority” value

- Makes it fast to grab the
one with the smallest
distance

- Lets us update that
distance as we discover
new, better paths

MIN PRIORITY QUEUE ADT

CSE 373 Summer 2020LEC 16: Dijkstra’s Algorithm

Implementing Dijkstra’s: Pseudocode
• Use a MinPriorityQueue to

keep track of the
perimeter

- Don’t need to track entire
graph

- Don’t need separate
“known” set – implicit in
PQ (we’ll never try to
update a “known” vertex)

• This pseudocode is much
closer to what you’ll
implement in P4

- However, still some details
for you to figure out!

- e.g. how to initialize distTo
with all nodes mapped to ∞

- Spec will describe some
optimizations for you to
make J

dijkstraShortestPath(G graph, V start)
Map edgeTo, distTo;
initialize distTo with all nodes mapped to ∞, except start to 0

PriorityQueue<V> perimeter; (initialize with start)

while (!perimeter.isEmpty()):
u = perimeter.removeMin()

for each edge (u,v) to v with weight w:
oldDist = distTo.get(v) // previous best path to v
newDist = distTo.get(u) + w // what if we went through u?
if (newDist < oldDist):

distTo.put(v, newDist)
edgeTo.put(v, u)
if (perimeter.contains(v)):

perimeter.changePriority(v, newDist)
else:

perimeter.add(v, newDist)

CO R R ECT ED
A FT ER LECT UR E

CSE 373 Summer 2020LEC 16: Dijkstra’s Algorithm

Dijkstra’s Runtime
dijkstraShortestPath(G graph, V start)

Map edgeTo, distTo;
initialize distTo with all nodes mapped to ∞, except start to 0

PriorityQueue<V> perimeter; (initialize with start)

while (!perimeter.isEmpty()):
u = perimeter.removeMin()

for each edge (u,v) to v with weight w:
oldDist = distTo.get(v) // previous best path to v
newDist = distTo.get(u) + w // what if we went through u?
if (newDist < oldDist):

distTo.put(v, newDist)
edgeTo.put(v, u)
if (perimeter.contains(v)):

perimeter.changePriority(v, newDist)
else:

perimeter.add(v, newDist)

Θ(|𝑉|)

Θ(|𝑉|) iterations
Θ(log |𝑉|)

total Θ 𝐸 iterations

Θ log |𝑉|

Θ log |𝑉|

Θ 1
Θ |𝐸|log |𝑉|

Θ |𝑉|log |𝑉|

CSE 373 Summer 2020LEC 16: Dijkstra’s Algorithm

Dijkstra’s Runtime
dijkstraShortestPath(G graph, V start)

Map edgeTo, distTo;
initialize distTo with all nodes mapped to ∞, except start to 0

PriorityQueue<V> perimeter; (initialize with start

while (!perimeter.isEmpty()):
u = perimeter.removeMin()

for each edge (u,v) to v with weight w:
oldDist = distTo.get(v) // previous best path to v
newDist = distTo.get(u) + w // what if we went through u?
if (newDist < oldDist):

distTo.put(v, newDist)
edgeTo.put(v, u)
if (perimeter.contains(v)):

perimeter.changePriority(v, newDist
else:

perimeter.add(v, newDist)

Θ(|𝑉|)

Θ(|𝑉|) iterations
Θ(log |𝑉|)

total Θ 𝐸 iterations

Θ log |𝑉|

Θ log |𝑉|

Θ 1
Θ |𝐸|log |𝑉|

Θ |𝑉|log |𝑉|
Θ 𝑉 log 𝑉 + |𝐸|log |𝑉|

Final result:

Why can’t we simplify further?
• We don’t know if |V| or |E| is

going to be larger, so we don’t
know which term will dominate.

• Sometimes we assume |E| is
larger than |V|, so |E|log|V|
dominates. But not always true!

