

S.A. – S.B. Titrations (Cont.)

Alternative work: Construct an **I-C-F table** (F = final). Remember that titration reactions go to completion so there is no equilibrium (E).

Example: A 50.00 mL solution of 0.0100 M NaOH is titrated with 0.100 M HCI. Calculate the pH of solution at the following volumes of HCI added: (a) 1.00, (b) V_e , and (c) 5.50 mL.

WORK: (a) when $V_a = 1.00 \text{ mL}$ Note: $V_{\text{total}} \text{ sol'n} = 51.00 \text{ mL}$

> mol added $H^+ = M_a \times V_a = 1.00 \times 10^{-4}$

 \succ initial mol OH⁻ = M_b x V_b = 5.00 x 10⁻⁴

 $\begin{array}{rcl} H^{+} & + & OH^{-} & \longrightarrow & H_{2}O \\ I \ (mol): & 1.00 \times 10^{-4} & 5.00 \times 10^{-4} & \text{liquid} \\ C \ (mol): & -1.00 \times 10^{-4} & -1.00 \times 10^{-4} & \text{liquid} \\ F \ (mol): & 0 & 4.00 \times 10^{-4} & \text{liquid} \\ \left[OH^{-}\right] & = \frac{mol \ OH^{-}}{V_{total}} = \frac{4 \times 10^{-4} \ mol}{0.05100 \ L} = 7.84 \times 10^{-3} \ M \quad \text{pOH} = 2.11; \ \text{pH} = 11.89 \\ \end{array}$

S.A. – S.B. Titrations (Cont.) Alternative work (Cont) WORK: (c) when V_a = 5.50 mL Note: V_{total} sol'n = 55.50 mL H+ OH-H₂O + I (mol): 5.50 x 10⁻⁴ 5.00 x 10⁻⁴ liquid C (mol): - 5.00 x 10⁻⁴ - 5.00 x 10⁻⁴ liquid F (mol): 0.50 x 10⁻⁴ 0 liquid $[H^+]_{x's} = \frac{mol \ H^+}{V_{var}} = \frac{0.5 \ x 10^{-4} \ mol}{0.05550 \ L} = 9.01 \ x 10^{-3} \ M$ pH = 3.05 10

W.A. – S.B. Titrations (Cont.) Region 1: Before the equivalence point (Cont.) (a) pH when $V_b = 0$ mL (Only HA in solution) Solution equilibria: $HA \xleftarrow{K_a} H^+ + A^-$ • Use K_a and F_{HA} to calculate pH (K_a = 1.80 x 10⁻⁴ for formic acid) $K_a = \frac{x^2}{F_{HA} - x}$ 1.80 x 10⁻⁴ = $\frac{x^2}{(0.0500 - x)}$ Solving for x quadratically we get: $x = [H^+] = 2.91 \times 10^{-3} M$ pH = 2.54 when $V_b = 0$ W.A. – S.B. Titrations (Cont.) Region 1: Before the equivalence point (Cont.) (b) pH when V_b = 10.00 mL \cdot Some HA have reacted to form A² \cdot Some HA have reacted to form A² \cdot Mixture of unreacted HA and A² = *a buffer*! Work: Use moles and I-C-F table \cdot Keep track of total vol. solution, V_{total} We have to know V_e first: $V_e = \frac{M_a \times V_a}{M_b} = [(0.0500 \text{ M})(25.00 \text{ mL})]/(0.0500 \text{ M}) \quad V_e = 25.00 \text{ mL}$ \cdot Thus, V_b < V_e, so the equiv. pt. has not been reached

initial mol HA = M _H = (0.0500 mol/L)(0.0 = 1.25 x 10 ⁻³ mol	_a x V _{HA} 2500 L)	mol OH ⁻ reacted = $M_b \times V_b$ = (0.0500 mol/L)(0.01000 L) = 5.00 x 10 ⁻³ mol		
Titration reaction:	HA +	OH ⁻ →	A ⁻ + H ₂ (C
Initial mol (I):	1.25 x 10 ⁻³	5.00 x 10 ⁻⁴	0	
Change (C):	- 5.00 x 10 ⁻⁴	- 5.00 x 10 ⁻⁴	+ 5.00 x 10 ⁻⁴	
Final mol (F):	7.50 x 10 ⁻⁴	0	5.00 x 10 ⁻⁴	
pH = 3.745 + log	$\left(\frac{5.00 \times 10^{-4}}{7.50 \times 10^{-4}}\right)$	pH = 3.569)	
				16

<text><text><text><text><text><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block>

Indicator	Transition range (pH)	Acid color	Base color	Preparation
Methyl violet	0.0-1.6	Yellow	Violet	0.05 wt% in H ₂ O
Cresol red	0.2 - 1.8	Red	Yellow	0.1 g in 26.2 mL 0.01 M NaOH. Then add ~225 mL H ₂ O.
Thymol blue	1.2 - 2.8	Red	Yellow	0.1 g in 21.5 mL 0.01 M NaOH. Then add ~225 mL H ₂ O.
Cresol purple	1.2 - 2.8	Red	Yellow	0.1 g in 26.2 mL 0.01 M NaOH. Then add ~225 mL H ₂ O.
Erythrosine, disodium	2.2-3.6	Orange	Red	0.1 wt% in H2O
Methyl orange	3.1-4.4	Red	Yellow	0.01 wt% in H ₂ O
Congo red	3.0-5.0	Violet	Red	0.1 wt% in H ₂ O
Ethyl orange	3.4-4.8	Red	Yellow	0.1 wt% in H ₂ O
Bromocresol green	3.8-5.4	Yellow	Blue	0.1 g in 14.3 mL 0.01 M NaOH. Then add ~225 mL H ₂ O
Methyl red	4.8-6.0	Red	Yellow	0.02 g in 60 mL ethanol. Then add 40 mL H ₂ O.
Chlorophenol red	4.8-6.4	Yellow	Red	0.1 g in 23.6 mL 0.01 M NaOH. Then add ~225 mL H ₂ O
Bromocresol purple	5.2-6.8	Yellow	Purple	0.1 g in 18.5 mL 0.01 M NaOH. Then add ~225 mL H ₂ O
p-Nitrophenol	5.6-7.6	Colorless	Yellow	0.1 wt% in H ₂ O
Litmus	5.0-8.0	Red	Blue	0.1 wt% in H2O
Bromothymol blue	6.0-7.6	Yellow	Blue	0.1 g in 16.0 mL 0.01 M NaOH. Then add ~225 mL H ₂ O
Phenol red	6.4-8.0	Yellow	Red	0.1 g in 28.2 mL 0.01 M NaOH. Then add ~225 mL H ₂ O
Neutral red	6.8-8.0	Red	Yellow	0.01 g in 50 mL ethanol. Then add 50 mL H ₂ O.
Cresol red	7.2-8.8	Yellow	Red	See above.
α-Naphtholphthalein	7.3-8.7	Pink	Green	0.1 g in 50 mL ethanol. Then add 50 mL H ₂ O.
Cresol purple	7.6-9.2	Yellow	Purple	See above.
Thymol blue	8.0-9.6	Yellow	Blue	See above.
Phenolphthalein	8.0-9.6	Colorless	Pink	0.05 g in 50 mL ethanol. Then add 50 mL H ₂ O.
Thymolphthalein	8.3-10.5	Colorless	Blue	0.04 g in 50 mL ethanol. Then add 50 mL H ₂ O.
Alizarin vellow	10.1 - 12.0	Yellow	Orange-red	0.01 wt% in H ₂ O
Nitramine	10.8-13.0	Colorless	Orange-brown	0.1 g in 70 mL ethanol. Then add 30 mL H ₂ O.
Tropaeolin O	11.1-12.7	Yellow	Orange	0.1 wt% in H ₂ O

© 2011 W. H. Freeman