Chapter 10

ACID-BASE TITRATIONS

Strong Acid-Strong Base Titrations

Abbreviations

$\mathrm{V}_{\mathrm{a}}=$ volume of strong acid, S.A.
$\mathrm{V}_{\mathrm{b}}=$ volume of strong base, S.B.
$\mathrm{V}_{\mathrm{e}}=$ vol. titrant acid or base needed to reach the equivalence point
Example: A 50.00 mL solution of 0.0100 M NaOH is titrated with 0.100 M HCl . Calculate the pH of solution at the following volumes of HCl added: $0,1.00$, V_{e}, and 5.50 mL .

Net ionic equation:

$\mathbf{H}^{+}+\mathrm{OH}^{-} \longrightarrow \mathrm{H}_{2} \mathrm{O} \quad$| What is K for this reaction at $25^{\circ} \mathrm{C} ?$ |
| :--- |
| $\mathrm{~K}=\mathbf{1} / K_{w}$ |

$>$

S.A. - S.B. Titrations (Cont.)

WORK: First you must determine V_{e}
Since the reaction stoichiometry is $1: 1$,

$$
\mathrm{mol} \mathrm{H}^{+}=\mathrm{mol} \mathrm{OH}^{-} \quad \text { at the equiv. pt. }
$$

Thus, $\quad M_{a} \times V_{a}=M_{b} \times V_{b}$
Since HCl is the titrant we substitute V_{e} for V_{a} :

$$
\mathrm{M}_{\mathrm{a}} \times \mathrm{V}_{\mathrm{e}}=\mathrm{M}_{\mathrm{b}} \times \mathrm{V}_{\mathrm{b}} \quad \text { At the equiv. pt. }
$$

or

$$
\mathrm{V}_{\mathrm{e}}=\frac{\mathrm{M}_{\mathrm{b}} \times \mathrm{V}_{\mathrm{b}}}{\mathrm{M}_{\mathrm{a}}} \xrightarrow{\mathrm{~V}_{\mathrm{e}}=\{(50.00 \mathrm{~mL})(0.0100 \mathrm{M})\} / 0.100 \mathrm{M} .}
$$

Substituting the given quantities we get: $V_{e}=5.00 \mathrm{ml}$

S.A. - S.B. Titrations (Cont.)

Calculate the solution pH at different V_{a} 's
Region 1: Before the equivalence point (When $\mathrm{V}_{\mathrm{a}}<\mathrm{V}_{\mathrm{e}}$)
What species is in solution?
$>$ There is unreacted NaOH in solution, so the pH is still basic
$>$ Amount of excess NaOH determines pH
(a) pH when $\mathrm{V}_{\mathrm{a}}=0$
$>$ Only 0.0100 M NaOH is solution,

$$
\mathrm{pOH}=-\log (0.0100 \mathrm{M})=2.00
$$

$$
\mathrm{pH}=12.00 \text { when } \mathrm{V}_{\mathrm{a}}=0
$$

S.A. - S.B. Titrations (Cont.)

Region 1: Before the equiv. pt. (Cont.)
(b) pH when $\mathrm{V}_{\mathrm{a}}=1.00 \mathrm{~mL}$
\Rightarrow Since $\mathrm{V}_{\mathrm{e}}=5.00 \mathrm{~mL}$, we know that $\mathrm{V}_{\mathrm{a}}=1.00 \mathrm{~mL}$ is only 20% of V_{e}
$>$ Thus, 80% of NaOH remains unreacted
$>$ But wait, the total volume of has been changed by addition of titrant!

S.A. - S.B. Titrations (Cont.)

WORK - Cont.
(b) pH when $\mathrm{V}_{\mathrm{a}}=1.00 \mathrm{~mL}$
$>$ Use changes in \# moles OH^{-}during titration with H^{+}to calc. pH

$$
\begin{aligned}
& {\left[\mathrm{OH}^{-}\right]=\left[\frac{\text { Initial } \mathrm{mol} \mathrm{OH}^{-}-\mathrm{mol} \mathrm{OH}^{-} \text {reacted }}{\mathrm{V}_{\text {tot }}}\right]_{=\text {mol Hol }^{+} \text {added }}} \\
& {\left[\mathrm{OH}^{-}\right]=\left(\frac{[(0.0100 \mathrm{M})(50.00 \mathrm{~mL})]-(0.100 \mathrm{M})(1.00 \mathrm{~mL})}{51.00 \mathrm{~mL}}\right)} \\
& {\left[\mathrm{OH}^{-}\right]=7.84 \times 10^{-3} \mathrm{M}} \\
& \mathrm{pH}=11.89 \text { when } \mathrm{V}_{\mathrm{a}}=1.00 \mathrm{~mL}
\end{aligned}
$$

S.A. - S.B. Titrations (Cont.)

Calculate the solution pH at different V_{a} 's

Region 2: At the equivalence point (When $\mathrm{V}_{\mathrm{a}}=\mathrm{V}_{\mathrm{e}}$)

What species is in solution?
$>$ Equimolar amounts of HCl and NaOH have reacted to form NaCl and $\mathrm{H}_{2} \mathrm{O}$
$>\mathrm{NaCl}$ is made of spectator ions, S.I. $=>$ gives neutral pH in solution

Thus, $\mathrm{pH}=7.00$ At the equivalence point

S.A. - S.B. Titrations (Cont.)

Region 3: Beyond the equivalence point (When $\mathrm{V}_{\mathrm{a}}>\mathrm{V}_{\mathrm{e}}$)
What species is in solution?
$>$ Excess titrant, H^{+}, determines solution pH
pH when $\mathrm{V}_{\mathrm{a}}=5.50 \mathrm{~mL}$
$>0.50 \mathrm{~mL}$ of H^{+}is in excess of V_{e}
$>$ Do not ignore dilution

$$
\begin{aligned}
& {\left[\mathrm{H}^{+}\right]_{\times \mathrm{s}}=\mathrm{M}_{\mathrm{a}} \times\left(\frac{\mathrm{V}_{\mathrm{a}}-\mathrm{V}_{\mathrm{e}}}{\mathrm{~V}_{\text {tot }}}\right)=(0.100 \mathrm{M})\left(\frac{0.50 \mathrm{~mL}}{(5.50+50.00) \mathrm{mL}}\right)} \\
& {\left[\mathrm{H}^{+}\right]_{\mathrm{x}^{\prime} \mathrm{s}}=9.01 \times 10^{-4} \mathrm{M} ; \mathrm{pH}=3.05 \quad \text { when } \mathrm{V}_{\mathrm{a}}>\mathrm{V}_{\mathrm{e}}}
\end{aligned}
$$

S.A. - S.B. Titrations (Cont.)

Alternative work: Construct an I-C-F table ($\mathrm{F}=$ final). Remember that titration reactions go to completion so there is no equilibrium (E).

Example: A 50.00 mL solution of 0.0100 M NaOH is titrated with 0.100 M HCl .
Calculate the pH of solution at the following volumes of HCl added: (a) 1.00, (b) V_{e}, and (c) 5.50 mL .

WORK: (a) when $\mathrm{V}_{\mathrm{a}}=\mathbf{1 . 0 0} \mathbf{~ m L} \quad$ Note: $\mathrm{V}_{\text {total }}$ sol'n $=51.00 \mathrm{~mL}$
$>$ mol added $\mathrm{H}^{+}=\mathrm{M}_{\mathrm{a}} \times \mathrm{V}_{\mathrm{a}}=1.00 \times 10^{-4}$
$>$ initial $\mathrm{mol} \mathrm{OH}^{-}=\mathrm{M}_{\mathrm{b}} \times \mathrm{V}_{\mathrm{b}}=5.00 \times 10^{-4}$

	$\mathrm{H}^{+}+$	OH	$\mathrm{H}_{2} \mathrm{O}$
I (mol):	1.00×10^{-4}	5.00×10^{-4}	liquid
C (mol):	-1.00×10^{-4}	-1.00×10^{-4}	liquid
F (mol):	0	4.00×10^{-4}	liquid
$\left[\mathrm{OH}^{-}\right]$	$=\frac{\mathrm{mol} \mathrm{OH}}{}{ }^{-}$	$=\frac{4 \times 10^{-4} \mathrm{~mol}}{0.05100 \mathrm{~L}}=$	$10^{-3} \mathrm{M}$

S.A. - S.B. Titrations (Cont.)

Alternative work (Cont)
WORK: (c) when $\mathrm{V}_{\mathrm{a}}=5.50 \mathrm{~mL}$
Note: $\mathrm{V}_{\text {total }}$ sol' $\mathrm{n}=55.50 \mathrm{~mL}$

$$
\mathrm{H}^{+}+\mathrm{OH}^{-} \longrightarrow \mathrm{H}_{2} \mathrm{O}
$$

I (mol): $\quad 5.50 \times 10^{-4} \quad 5.00 \times 10^{-4} \quad$ liquid
$\mathrm{C}(\mathrm{mol}):-5.00 \times 10^{-4}-5.00 \times 10^{-4} \quad$ liquid
$\mathrm{F}(\mathrm{mol}): \quad 0.50 \times 10^{-4} 0 \quad$ liquid

$$
\begin{aligned}
& {\left[\mathrm{H}^{+}\right]_{x^{\prime} \mathrm{s}}=\frac{\mathrm{mol} \mathrm{H}^{+}}{V_{\text {total }}}=\frac{0.5 \times 10^{-4} \mathrm{~mol}}{0.05550 \mathrm{~L}}=9.01 \times 10^{-3} \mathrm{M}} \\
& \mathrm{pH}=3.05
\end{aligned}
$$

S.A. - S.B. Titrations (Cont.)

Homework: Consider the titration of 25.00 mL of 0.100 M HBr with 0.200 M KOH . Calculate the pH at the following volumes of KOH added: 0, 8.00, 12.50 and 15.00 mL .

Titration Curves: Strong acid-strong base titration

Strong acid titrated with a strong base

Strong base titrated with a strong acid

$>\mathrm{pH}$ is acidic before the equiv. pt. (H^{+}in sol'n)
$\Rightarrow \mathrm{pH}=7$ at the equiv. pt.
$>\mathrm{pH}$ is basic (due to x 's OH beyond the equiv. pt.
$>\mathrm{pH}$ is basic before the equiv. pt. (OH in sol'n)
$>\mathrm{pH}=7$ at the equiv. pt.
$>\mathrm{pH}$ is acidic ($\mathrm{x}^{\prime} \mathrm{s} \mathrm{H}^{+}$beyond equiv. pt.

Weak Acid-Strong Base Titrations

HA Titrant (always)

Titration reaction: $\mathbf{H A}+\mathrm{OH}^{-} \longrightarrow \mathrm{A}^{-}+\mathbf{H}_{\mathbf{2}} \mathbf{O}$
Weak acid Titrant Conj. base
$>K=1 / K_{b(A))}=$ very large; Reaction goes to completion
Calculate the solution pH at different V_{a} 's
Example: Consider the titration of 25.00 mL of 0.0500 M formic acid with 0.0500 M NaOH . Calculate the pH of solution at the following volumes of NaOH added: $0,10.00, \mathrm{~V}_{\mathrm{e}}$, and 26.00 mL .

Region 1: Before the equivalence point (When $\mathrm{V}_{\mathrm{b}}<\mathrm{V}_{\mathrm{e}}$)
What species is in solution?
$>$ Only HA in solution, so the pH is acidic
$>$ Calculate pH from amount of HA that dissociated

W.A. - S.B. Titrations (Cont.)

Region 1: Before the equivalence point (Cont.)

(a) pH when $\mathrm{V}_{\mathrm{b}}=\mathbf{0} \mathrm{mL}$ (Only HA in solution)

Solution equilibria: $\mathrm{HA} \stackrel{\mathrm{K}_{\mathrm{a}}}{\rightleftarrows} \mathrm{H}^{+}+\mathrm{A}^{-}$
$>$ Use K_{a} and F_{HA} to calculate $\mathrm{pH} \quad\left(\mathrm{K}_{\mathrm{a}}=1.80 \times 10^{-4}\right.$ for formic acid $)$

$$
\mathrm{K}_{\mathrm{a}}=\frac{\mathrm{x}^{2}}{\mathrm{~F}_{\mathrm{HA}}-\mathrm{x}} \quad 1.80 \times 10^{-4}=\frac{\mathrm{x}^{2}}{(0.0500-\mathrm{x})}
$$

Solving for x quadratically we get:

$$
\begin{aligned}
& \mathrm{x}=\left[\mathrm{H}^{+}\right]=2.91 \times 10^{-3} \mathrm{M} \\
& \mathrm{pH}=2.54 \quad \text { when } \mathrm{V}_{\mathrm{b}}=0
\end{aligned}
$$

W.A. - S.B. Titrations (Cont.)

Region 1: Before the equivalence point (Cont.)

(b) pH when $\mathrm{V}_{\mathrm{b}}=10.00 \mathrm{~mL}$
$>$ Some HA have reacted to form A^{-}
$>$ Mixture of unreacted HA and $\mathrm{A}^{-}=\boldsymbol{a}$ buffer!
Work: Use moles and I-C-F table
$>$ Keep track of total vol. solution, $\mathrm{V}_{\text {total }}$

We have to know V_{e} first:

$$
V_{e}=\frac{M_{a} \times V_{a}}{M_{b}}=[(0.0500 \mathrm{M})(25.00 \mathrm{~mL})] /(0.0500 \mathrm{M}) \quad V_{e}=25.00 \mathrm{~mL}
$$

Thus, $\mathrm{V}_{\mathrm{b}}<\mathrm{V}_{\mathrm{e}}$, so the equiv. pt. has not been reached

$>$ Alternative work: Use of volume fractions
We have to know $V_{\text {e }}$ first:

$$
V_{e}=\frac{M_{a} \times V_{a}}{M_{b}}=[(0.0500 \mathrm{M})(25.00 \mathrm{~mL})](0.0500 \mathrm{M}) \quad \mathrm{V}_{\mathrm{e}}=25.00 \mathrm{~mL}
$$

Titration reaction:	$\mathrm{HA}+\mathrm{OH}^{-} \longrightarrow$	\longrightarrow	$\mathrm{A}^{-}+\mathrm{H}_{2} \mathrm{O}$		
Relative initial amounts:	$25 / 25$	$10 / 25$	0	--	
Change:	$-10 / 25$	$-10 / 25$		$+10 / 25$	--
Relative final amounts:	$15 / 25$	0	$10 / 25$	--	

$$
\begin{array}{r}
\mathrm{pH}=\mathrm{pK}_{\mathrm{a}}+\log \left(\frac{[\mathrm{A}]}{[\mathrm{HA}]}\right) \quad \mathrm{pH}=3.745+\log \left(\frac{10 / 25}{15 / 25}\right) \\
\mathrm{pH}=3.569 \text { when } \mathrm{v}_{\mathrm{b}}<\mathrm{v}_{\mathrm{e}}
\end{array}
$$

W.A. - S.B. Titrations (Cont.)

Region 2: At the equivalence point

pH when $\mathrm{V}_{\mathrm{b}}=\mathrm{V}_{\mathrm{e}}$
What species is in solution?
$>$ All the HA has been converted to \boldsymbol{A}^{-}, a weak base
> Hydrolysis of A^{-}will determine solution pH
Solution equilibria: $\mathrm{A}^{-}+\mathrm{H}_{2} \mathrm{O} \stackrel{\mathrm{K}_{\mathrm{b}}}{\rightleftarrows} \mathrm{HA}+\mathrm{OH}^{-}$
\Rightarrow First, calculate F_{A}, then use K_{b} and F_{A}. to calculate the pH of solution

$$
\begin{aligned}
& F_{A-}=\frac{\mathrm{mol} \mathrm{~A}}{\mathrm{~V}_{\text {tot }}}=\frac{\text { initial mol HA}}{V_{\text {tot }}}=\frac{(0.0500 \mathrm{M})(25.00 \mathrm{~mL})}{(25.00+25.00) \mathrm{mL}} \\
& F_{A^{-}}=0.0250 \mathrm{M}
\end{aligned}
$$

W.A. - S.B. Titrations (Cont.)

Region 2: At the equivalence point

pH when $\mathrm{V}_{\mathrm{b}}=\mathrm{V}_{\mathrm{e}}$ (Cont.)

$$
\begin{aligned}
& F_{A-}=0.0250 M \quad K_{b}=K_{w} /\left(1.80 \times 10^{-4}\right)=5.56 \times 10^{-11} \\
& K_{b}=\frac{y^{2}}{F_{A^{-}}-y}
\end{aligned}
$$

Substituting and solving for y gives:

$$
\begin{aligned}
& \mathrm{y}=\left[\mathrm{OH}^{-}\right]=1.18 \times 10^{-6} \mathrm{M} \\
& \mathrm{pOH}=5.93 \\
& \mathrm{pH}=8.07 \quad \text { At the equiv. pt. }
\end{aligned}
$$

$>$ pH at the equiv. pt. > 7 because A^{-}is a weak base

W.A. - S.B. Titrations (Cont.)

Region 3: Beyond the equivalence point (When $\mathrm{V}_{\mathrm{b}}>\mathrm{V}_{\mathrm{e}}$)
What species is in solution?
$>$ Excess titrant, $\mathrm{NaOH} ; 1.00 \mathrm{~mL}$ is in excess of V_{e}
$>\left[\mathrm{OH}^{-}\right]_{\times \text {'s }}$ determines solution pH

$$
\begin{aligned}
& {[\mathrm{OH}]_{x^{\prime} \mathrm{s}}=\mathrm{M}_{\mathrm{b}} \times\left[\frac{\mathrm{V}_{\mathrm{b}}-\mathrm{V}_{\mathrm{e}}}{\mathrm{~V}_{\text {tot }}}\right]=(0.0500 \mathrm{M}) \times(1.00 \mathrm{~mL} / 51.00 \mathrm{~mL})} \\
& {[\mathrm{OH}]_{x^{\prime} \mathrm{s}}=9.80 \times 10^{-4} \mathrm{M} ; \quad \mathrm{pOH}=3.01} \\
& \mathrm{pH}=10.99 \text { Beyond the equiv. pt. }
\end{aligned}
$$

W.A. - S.B. Titrations (Cont.)

Summary

(1) Before titration
$>$ Only HA in solution; Use K_{a} equil. to calculate pH
(2) Before the equiv. pt. $\left(\mathrm{V}_{\mathrm{b}}<\mathrm{V}_{\mathrm{e}}\right)$
\rightarrow Mixture of unreacted HA and $\mathrm{A}^{-}=$buffer

$$
\mathrm{pH}=\mathrm{pK}_{\mathrm{a}}+\log \left(\frac{[\mathrm{A}]}{[\mathrm{HA}]}\right) \quad \mathrm{pH}=\mathrm{pK}_{\mathrm{a}} \text { when } \mathrm{V}_{\mathrm{b}}=1 / 2 \mathrm{~V}_{\mathrm{e}}
$$

(3) At the equiv. pt. $\left(\mathrm{V}_{\mathrm{b}}=\mathrm{V}_{\mathrm{e}}\right)$
$>$ Only A^{-}in solution; Use K_{b} equil. to calculate pH
(4) Beyond the equiv. pt. $\left(\mathrm{V}_{\mathrm{b}}>\mathrm{V}_{\mathrm{e}}\right)$
$>$ Only excess OH^{-}titrant in solution, which determines pH

Titration Curve: Weak acid-strong base titration (versus strong acid-strong base titration)

Three major differences:

1. The weak-acid solution, HA, has a higher initial pH . (Less H^{+}per mol HA for a weak acid)
2. For HA, the pH rises more rapidly at the start, but less rapidly near the equiv. point => formation of buffer!
3. For HA , the pH at the equiv. point does not equal $7.00=>$ formation of A, a weak base!
http://www.chemicool.com/img1/graphics/titration-strong-weak.gif

Weak Base-Strong Acid Titrations

B
$\underbrace{\square}$
Titrant (always)

Net ionic equation: $\mathrm{B}+\mathrm{H}^{+} \longrightarrow \mathrm{BH}^{+}$
What is K for this reaction at $25^{\circ} \mathrm{C}$? $\quad K=\mathbf{1} / K_{a}$
$>$ Very large K ; reaction goes to completion
Region 1: Before the equivalence point
(a) Before titration
$>$ Only the weak base, B , is in solution
$>$ Use $\mathrm{K}_{\mathrm{b}(\mathrm{B})}$ equilibrium to calc. pH
(b) When $\mathrm{V}_{\mathrm{a}}<\mathrm{V}_{\mathrm{e}}$
$>$ Mixture of unreacted B and $\mathrm{BH}^{+}=a$ buffer!
$>$ Use the $\mathrm{H}-\mathrm{H}$ equation to calc. pH ; Use $\mathrm{pK}_{\mathrm{a}(\mathrm{BH}+)}$

W.B. - S.A. Titrations (Cont.)

Region 2: At the equivalence point

> All of B has reacted; Only BH^{+}, a weak acid, in solution
$>$ Use $\mathrm{K}_{\mathrm{a}(\mathrm{BH}+)}$ equil. to calculate pH

Region 3: Beyond the equivalence point

> Only excess titrant, H^{+}, in solution
$>\left[\mathrm{H}^{+}\right]_{x^{\prime} \mathrm{s}}$ determines pH of solution

Titration Curve: Weak base-strong acid titration

NOTES:

1. The weak base solution has a lower initial pH.
2. The pH drops more rapidly at the start, but less rapidly near the equivalence point.
3. The pH at the equivalence point does not equal 7.00 .
POINT OF EMPHASIS : The equivalence point for a weak base-strong acid titration has a pH < 7.00.

25

Titrations of Polyprotic Systems

Titration Curve: Weak diprotic acid-strong base titration

NOTES:

1. There are 2 breaks in the titration curve corresponding to successive deprotonation of the 2 acidic H's.
2. The volume of titrant at the 2nd equivalence point $V_{\mathrm{e} 2}$, is $2 \times \mathrm{V}_{\mathrm{e} 1}$. (Discussed in class in details)

Acid-Base Indicators

Here are the titrations of both a strong acid and a weak acid with a strong base, using methyl red and thymol blue as possible indicators.

$>$ In the strong acid titration (left), both indicators begin to change color at the equivalence point (50 mL of base) so both work equally well.
$>$ In the weak acid titration, thymol blue changes color at the equivalence point, but methyl red begins to change color after only 15 mL of base are added, which is far from the equivalence point, illustrating the importance of choosing an appropriate indicator.

Choosing an Acid-Base Indicator

Select an indicator whose transition pH overlaps with the steepest part of the titration curve
$>$ Example: Thymol blue works for the titration of acetic acid with NaOH , but methyl red does not.

Indicator	Transition range ($\mathbf{p H}$)	Acid color	Base color	Preparation
Methyl violet	0.0-1.6	Yellow	Violet	$0.05 \mathrm{wt} \%$ in $\mathrm{H}_{2} \mathrm{O}$
Cresol red	0.2-1.8	Red	Yellow	0.1 g in 26.2 mL 0.01 M NaOH . Then add $\sim 225 \mathrm{~mL} \mathrm{H} \mathrm{H}_{2} \mathrm{O}$.
Thymol blue	1.2-2.8	Red	Yellow	0.1 g in 21.5 mL 0.01 M NaOH . Then add $\sim 225 \mathrm{~mL} \mathrm{H}_{2} \mathrm{O}$.
Cresol purple	1.2-2.8	Red	Yellow	0.1 g in 26.2 mL 0.01 M NaOH . Then add $\sim 225 \mathrm{~mL} \mathrm{H} \mathrm{H}_{2} \mathrm{O}$.
Erythrosine, disodium	2.2-3.6	Orange	Red	$0.1 \mathrm{wt} \%$ in $\mathrm{H}_{2} \mathrm{O}$
Methyl orange	3.1-4.4	Red	Yellow	$0.01 \mathrm{wt} \%$ in $\mathrm{H}_{2} \mathrm{O}$
Congo red	3.0-5.0	Violet	Red	$0.1 \mathrm{wt} \%$ in $\mathrm{H}_{2} \mathrm{O}$
Ethyl orange	3.4-4.8	Red	Yellow	$0.1 \mathrm{wt} \%$ in $\mathrm{H}_{2} \mathrm{O}$
Bromocresol green	3.8-5.4	Yellow	Blue	0.1 g in 14.3 mL 0.01 M NaOH . Then add $\sim 225 \mathrm{~mL} \mathrm{H} \mathrm{H}_{2} \mathrm{O}$.
Methyl red	4.8-6.0	Red	Yellow	0.02 g in 60 mL ethanol. Then add $40 \mathrm{~mL} \mathrm{H}_{2} \mathrm{O}$.
Chlorophenol red	4.8-6.4	Yellow	Red	0.1 g in 23.6 mL 0.01 M NaOH . Then add $\sim 225 \mathrm{~mL} \mathrm{H} \mathrm{H}_{2} \mathrm{O}$.
Bromocresol purple	5.2-6.8	Yellow	Purple	0.1 g in 18.5 mL 0.01 M NaOH . Then add $\sim 225 \mathrm{~mL} \mathrm{H} \mathrm{H}_{2} \mathrm{O}$.
p-Nitrophenol	5.6-7.6	Colorless	Yellow	$0.1 \mathrm{wt} \%$ in $\mathrm{H}_{2} \mathrm{O}$
Litmus	5.0-8.0	Red	Blue	$0.1 \mathrm{wt} \%$ in $\mathrm{H}_{2} \mathrm{O}$
Bromothymol blue	6.0-7.6	Yellow	Blue	0.1 g in 16.0 mL 0.01 M NaOH . Then add $\sim 225 \mathrm{~mL} \mathrm{H}_{2} \mathrm{O}$.
Phenol red	6.4-8.0	Yellow	Red	0.1 g in 28.2 mL 0.01 M NaOH . Then add $\sim 225 \mathrm{~mL} \mathrm{H} \mathrm{H}_{2} \mathrm{O}$.
Neutral red	6.8-8.0	Red	Yellow	0.01 g in 50 mL ethanol. Then add $50 \mathrm{~mL} \mathrm{H} \mathrm{H}_{2} \mathrm{O}$.
Cresol red	7.2-8.8	Yellow	Red	See above.
α-Naphtholphthalein	7.3-8.7	Pink	Green	0.1 g in 50 mL ethanol. Then add $50 \mathrm{~mL} \mathrm{H} \mathrm{H}_{2} \mathrm{O}$.
Cresol purple	7.6-9.2	Yellow	Purple	See above.
Thymol blue	8.0-9.6	Yellow	Blue	See above.
Phenolphthalein	8.0-9.6	Colorless	Pink	0.05 g in 50 mL ethanol. Then add $50 \mathrm{~mL} \mathrm{H}_{2} \mathrm{O}$.
Thymolphthalein	8.3-10.5	Colorless	Blue	0.04 g in 50 mL ethanol. Then add $50 \mathrm{~mL} \mathrm{H} \mathrm{H}_{2} \mathrm{O}$.
Alizarin yellow	10.1-12.0	Yellow	Orange-red	0.01 wt\% in $\mathrm{H}_{2} \mathrm{O}$
Nitramine	10.8-13.0	Colorless	Orange-brown	0.1 g in 70 mL ethanol. Then add $30 \mathrm{~mL} \mathrm{H} \mathrm{H}_{2} \mathrm{O}$.
Tropaeolin O	11.1-12.7	Yellow	Orange	$0.1 \mathrm{wt} \%$ in $\mathrm{H}_{2} \mathrm{O}$

Harris, Quantitative Chemical Analysis, 8e
© 2011 W. H. Freeman

