
Lecture	01:	Introduc/on	
	

CSE	564	Computer	Architecture	
Summer	2017	

Department	of	Computer	Science	and	Engineering	
Yonghong	Yan	

yan@oakland.edu	
www.secs.oakland.edu/~yan	

1	

Copyright	and	Acknowledgement	
•  Most	slides	were	adapted	from	lectures	notes	of	the	two	textbooks	with	copyright	of	publisher	or	the	original	

authors	including		Elsevier	Inc,	Morgan	Kaufmann,	David	A.	PaIerson	and	John	L.	Hennessy.		
•  Some	slides	were	adapted	from	the	following	courses:		

–  UC	Berkeley	course	“Computer	Science	252:	Graduate	Computer	Architecture”	of	David	E.	Culler	Copyright	2005	
UCB	
•  hIp://people.eecs.berkeley.edu/~culler/courses/cs252-s05/	

–  Great	Ideas	in	Computer	Architecture	(Machine	Structures)	by	Randy	Katz	and	Bernhard	Boser	
•  hIp://inst.eecs.berkeley.edu/~cs61c/fa16/			

•  I	also	refer	to	the	following	courses	and	lecture	notes	when	preparing	materials	for	this	course	
–  Computer	Science	152:	Computer	Architecture	and	Engineering,	Spring	2016	by	Dr.	George	Michelogiannakis	from	

UC	Berkeley	
•  hIp://www-inst.eecs.berkeley.edu/~cs152/sp16/	

–  Computer	Science	252:	Graduate	Computer	Architecture,	Fall	2015	by	Prof.	Krste	Asanović	from	UC	Berkeley	
•  hIp://www-inst.eecs.berkeley.edu/~cs252/fa15/	

–  Computer	Science	S	250:	VLSI	Systems	Design,	Spring	2016	by	Prof.	John	Wawrzynek	from	UC	Berkeley	
•  hIp://www-inst.eecs.berkeley.edu/~cs250/sp16/	

–  Computer	System	Architecture,	Fall	2005	by	Dr.	Joel	Emer	and	Prof.	Arvind	from	MIT	
•  hIp://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-823-computer-system-architecture-

fall-2005/	
–  Synthesis	Lectures	on	Computer	Architecture	

•  hIp://www.morganclaypool.com/toc/cac/1/1		

•  The	uses	of	the	slides	of	this	course	are	for	educa/onal	purposes	only	and	should	be	
used	only	in	conjunc/on	with	the	textbook.	Deriva/ves	of	the	slides	must	
acknowledge	the	copyright	no/ces	of	this	and	the	originals.	Permission	for	
commercial	purposes	should	be	obtained	from	the	original	copyright	holder	and	the	
successive	copyright	holders	including	myself.	 2	

Contents	

•  Computers	and	computer	components	
•  Computer	architectures	and	great	ideas	in	history	and	now	
•  Performance	

3	

The	Computer	Revolu/on	

•  Progress	in	computer	technology	
–  Underpinned	by	Moore’s	Law		

•  Makes	novel	applicacons	feasible	
–  Computers	in	automobiles	
–  Cell	phones	
–  Human	genome	project	
–  World	Wide	Web	
–  Search	Engines	

•  Computers	are	pervasive	

4	

Classes	of	Computers	

•  Personal	Mobile	Device	(PMD)	
–  e.g.	smartphones,	tablet	computers	
–  Emphasis	on	energy	efficiency	and	real-cme	

•  Desktop	Compucng	
–  Emphasis	on	price-performance	

•  Servers	
–  Emphasis	on	availability,	scalability,	throughput	

•  Clusters	/	Warehouse	Scale	Computers	
–  Used	for	“Sogware	as	a	Service	(SaaS)”	
–  Emphasis	on	availability	and	price-performance	
–  Sub-class:		Supercomputers,	emphasis:		floacng-point	performance	and	

fast	internal	networks	

•  Embedded	Computers	
–  Emphasis:		price	

5	

The	PostPC	Era	

6	

The	PostPC	Era	

•  Personal	Mobile	Device	(PMD)	
–  BaIery	operated	
–  Connects	to	the	Internet	
–  Hundreds	of	dollars	
–  Smart	phones,	tablets,	electronic	glasses	

•  Cloud	compucng	
–  Warehouse	Scale	Computers	(WSC)	
–  Sogware	as	a	Service	(SaaS)	
–  Porcon	of	sogware	run	on	a	PMD	and	a	porcon	run	in	the	

Cloud	
–  Amazon	and	Google	

7	

Old	School	Computer	

8	

New	School	Computer	(#1)	

Personal	
Mobile	
Devices	

9	
9	

New	School	“Computer”	(#2)	

10	
10	

Components	of	a	Computer	

•  Same	components	for	
all	kinds	of	computer	
–  Desktop,	server,	

embedded	

•  Input/output	includes	
–  User-interface	devices	

•  Display,	keyboard,	mouse	
–  Storage	devices	

•  Hard	disk,	CD/DVD,	flash	
–  Network	adapters	

•  For	communicacng	with	other	
computers	

The	BIG	Picture	

Inside	the	Processor	(CPU)	

•  Funcconal	units:	performs	computacons	
•  Datapath:	performs	operacons	on	data	
•  Control:	sequences	datapath,	memory,	...	
•  Cache	memory	

–  Small	fast	SRAM	memory	for	immediate	access	to	data	

Apple A5

12	

A	Safe	Place	for	Data	

•  Volacle	main	memory	
–  Loses	instruccons	and	data	when	power	off	

•  Non-volacle	secondary	memory	
–  Magnecc	disk	
–  Flash	memory	
–  Opccal	disk	(CDROM,	DVD)	

Contents	

•  Computers	and	computer	components	
•  Computer	architectures	and	great	ideas	in	history	and	
now	

•  Performance	

14	

What	is	“Computer	Architecture”?	

15	

Applica'ons	

Instruccon	Set	
	Architecture	

Compiler	

Operacng	
System	

Firmware	

I/O	system	Instr.	Set	Proc.	

Digital	Design	
Circuit	Design	

Datapath	&	Control		

Layout	&	fab	
Semiconductor	Materials	

16	

The	Instruc/on	Set:	a	Cri/cal	Interface	

instruccon	set	

sogware	

hardware	

•  Properces	of	a	good	abstraccon	
–  Lasts	through	many	generacons	(portability)	
–  Used	in	many	different	ways	(generality)	
–  Provides	convenient		funcconality	to	higher	levels	
–  Permits	an	efficient	implementacon	at	lower	levels	

17	

Elements	of	an	ISA	

•  Set	of	machine-recognized	data	types	
–  bytes,	words,	integers,	floacng	point,	strings,	.	.	.	

•  Operacons	performed	on	those	data	types	
–  Add,	sub,	mul,	div,	xor,	move,	….	

•  Programmable	storage	
–  regs,	PC,	memory	

•  Methods	of	idencfying	and	obtaining	data	referenced	by	
instruccons	(addressing	modes)	
–  Literal,	reg.,	absolute,	relacve,	reg	+	offset,	…	

•  Format	(encoding)	of	the	instruccons	
–  Op	code,	operand	fields,	…	

Computer	Architecture	
How	things	are	put	together	in	design	and	implementa/on	

• Capabilices	&	Performance	Characterisccs	of	Principal	
Funcconal	Units	

– (e.g.,	Registers,	ALU,	Shigers,	Logic	Units,	...)	
• Ways	in	which	these	components	are	interconnected	
• Informacon	flows	between	components	
• Logic	and	means	by	which	such	informacon	flow	is	
controlled.	

• Choreography	of	FUs	to	realize	the	ISA	

18	

Great Ideas in Computer Architectures

1.  Design for Moore’s Law

2.  Use abstraction to simplify design

3.  Make the common case fast

4.  Performance via parallelism

5.  Performance via pipelining

6.  Performance via prediction

7.  Hierarchy of memories

8.  Dependability via redundancy

19	

Great	Idea:	“Moore’s	Law”	

	 	Gordon	Moore,	Founder	of	Intel	
•  1965:	since	the	integrated	circuit	was	invented,	the	number	of	

transistors/inch2	in	these	circuits	roughly	doubled	every	year;	
this	trend	would	concnue	for	the	foreseeable	future	

•  1975:	revised	-	circuit	complexity	doubles	every	two	years	

20	
Image	credit:	Intel	

Microprocessor	Transistor	Counts	1971-2011	&	
Moore's	Law	

21	

hcps://en.wikipedia.org/wiki/Transistor_count	

Moore’s	Law	trends	
•  More	transistors	=	↑	opportunices	for	exploicng	parallelism	in	the	

instruccon	level	(ILP)	
–  Pipeline,	superscalar,	VLIW	(Very	Long	Instruccon	Word),	SIMD	(Single	

Instruccon	Mulcple	Data)	or	vector,	speculacon,	branch	prediccon	
•  General	path	of	scaling	

–  Wider	instruccon	issue,	longer	piepline	
–  More	speculacon	
–  More	and	larger	registers	and	cache	

•  Increasing	circuit	density	~=	increasing	frequency	~=	increasing	
performance	

•  Transparent	to	users	
–  An	easy	job	of	gevng	beIer	performance:	buying	faster	processors	(higher	

frequency)	

•  We	have	enjoyed	this	free	lunch	for	several	decades,	however	(TBD)	
…	

22	

Great	Idea:	Pipeline	
Fundamental	Execu/on	Cycle	

23	

Instruc'on	
Fetch	

Instruc'on	
Decode	

Operand	
Fetch	

Execute	

Result	
Store	

Next	
Instruc'on	

Obtain	instruccon	from	
program	storage	

Determine	required	
accons	and	instruccon	
size	

Locate	and	obtain	
operand	data	

Compute	result	value	or	
status	

Deposit	results	in	storage	
for	later	use	

Determine	successor	
instruccon	

Processor	

regs	

F.U.s	

Memory	

program	

	
Data	
	

von	Neuman	
boIleneck	

Pipelined	Instruc/on	Execu/on	

24	

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

Reg A
LU

DMem Ifetch Reg

Reg A
LU

DMem Ifetch Reg

Reg A
LU

DMem Ifetch Reg

Reg A
LU

DMem Ifetch Reg

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 6 Cycle 7 Cycle 5

Great	Idea:	Abstrac/on	
(Levels	of	Representa/on/Interpreta/on)	

lw 			$t0,	0($2)	
lw 			$t1,	4($2)	
sw 			$t1,	0($2)	
sw 			$t0,	4($2)	

High	Level	Language	
Program	(e.g.,	C)	

Assembly		Language	
Program	(e.g.,	MIPS)	

Machine		Language	
Program	(MIPS)	

Hardware	Architecture	Descrip/on	
(e.g.,	block	diagrams)		

Compiler	

Assembler	

Machine	
Interpreta4on	

temp	=	v[k];	
v[k]	=	v[k+1];	
v[k+1]	=	temp;	

0000 1001 1100 0110 1010 1111 0101 1000
1010 1111 0101 1000 0000 1001 1100 0110
1100 0110 1010 1111 0101 1000 0000 1001
0101 1000 0000 1001 1100 0110 1010 1111 !

Logic	Circuit	Descrip/on	
(Circuit	Schema/c	Diagrams)	

Architecture	
Implementa4on	

Anything	can	be	represented	
as	a	number,		

i.e.,	data	or	instruccons	

25	

The	Memory	Abstrac/on	

•  Associacon	of	<name,	value>	pairs	
–  typically	named	as	byte	addresses	
–  ogen	values	aligned	on	mulcples	of	size	

•  Sequence	of	Reads	and	Writes	
•  Write	binds	a	value	to	an	address	
•  Read	of	addr	returns	most	recently	wriIen	value	bound	to	
that	address	

26	

address (name)
command (R/W)

data (W)

data (R)

done

Processor-DRAM	Memory	Gap	(latency)	

27	

µProc
60%/yr.
(2X/1.5yr)

DRAM
9%/yr.
(2X/10 yrs)

1!

10!

100!

1000!
19

80
!

19
81

!

19
83

!
19

84
!

19
85

!
19

86
!

19
87

!
19

88
!

19
89

!
19

90
!

19
91

!
19

92
!

19
93

!
19

94
!

19
95

!
19

96
!

19
97

!
19

98
!

19
99

!
20

00
!

DRAM

CPU!
19

82
!

Processor-Memory
Performance Gap:
(grows 50% / year)

Pe
rf

or
m

an
ce

Time

“Joy’s Law”

The	Principle	of	Locality	

•  The	Principle	of	Locality:	
–  Program	access	a	relacvely	small	porcon	of	the	address	space	

at	any	instant	of	cme.	
•  Two	Different	Types	of	Locality:	

–  Temporal	Locality	(Locality	in	Time):	If	an	item	is	referenced,	it	
will	tend	to	be	referenced	again	soon	(e.g.,	loops,	reuse)	

–  Spacal	Locality	(Locality	in	Space):	If	an	item	is	referenced,	
items	whose	addresses	are	close	by	tend	to	be	referenced	
soon		
(e.g.,	straightline	code,	array	access)	

•  Last	30	years,	HW		relied	on	locality	for	speed	

28	

P	 MEM	$	

Great	idea:	Memory	Hierarchy	
Levels	of	the	Memory	Hierarchy	

29	

CPU Registers
100s Bytes
<< 1s ns

Cache
10s-100s K Bytes
~1 ns
$1s/ MByte

Main Memory
M Bytes
100ns- 300ns
$< 1/ MByte

Disk
10s G Bytes, 10 ms
(10,000,000 ns)
$0.001/ MByte

Capacity
Access Time
Cost

Tape
infinite
sec-min
$0.0014/ MByte

Registers

Cache

Memory

Disk

Tape

Instr. Operands

Blocks

Pages

Files

Staging
Xfer Unit

prog./compiler
1-8 bytes

cache cntl
8-128 bytes

OS
512-4K bytes

user/operator
Mbytes

Upper Level

Lower Level

faster

Larger

Jim	Gray’s	Storage	Latency	Analogy:			
How	Far	Away	is	the	Data?	

30	
Registers

On Chip Cache
On Board Cache

Main Memory

Disk

1

2
10

100

Tape /Optical
 Robot

10 9

10 6

Lansing

This Campus

This Room
My Head

10 min

1.5 hr

2 Years

1 min

Pluto

2,000 Years

Andromeda

(ns)

Jim	Gray	
Turing	Award	
B.S.	Cal	1966	
Ph.D.	Cal	1969!	

The	Cache	Design	Space	

•  Several	interaccng	dimensions	
–  cache	size	
–  block	size	
–  associacvity	
–  replacement	policy	
–  write-through	vs	write-back	

•  The	opcmal	choice	is	a	compromise	
–  depends	on	access	characterisccs	

•  workload	
•  use	(I-cache,	D-cache,	TLB)	

–  depends	on	technology	/	cost	
•  Simplicity	ogen	wins	

31	

Associativity

Cache Size

Block Size

Bad

Good
Less More

Factor A Factor B

Great	Idea:	Parallelism	

32	

Defining	Computer	Architecture	

•  “Old”	view	of	computer	architecture:	
–  Instruccon	Set	Architecture	(ISA)	design	
–  i.e.	decisions	regarding:	

•  registers,	memory	addressing,	addressing	modes,	instruccon	operands,	
available	operacons,	control	flow	instruccons,	instruccon	encoding	

•  “Real”	computer	architecture:	
–  Specific	requirements	of	the	target	machine	
–  Design	to	maximize	performance	within	constraints:	cost,	

power,	and	availability	
–  Includes	ISA,	microarchitecture,	hardware	

33	

Computer	Architecture	Topics	

34	

Instruction Set Architecture

Pipelining, Hazard Resolution,
Superscalar, Reordering,
Prediction, Speculation,
Vector, Dynamic Compilation

Addressing,
Protection,
Exception Handling

L1 Cache

L2/L3 Cache

DRAM

Disks, WORM, Tape

Coherence,
Bandwidth,
Latency

Emerging Technologies
Interleaving
Bus protocols

RAID

VLSI

Input/Output and Storage

Memory
Hierarchy

Pipelining and Instruction
Level Parallelism

Network
Communication

O
th

er
 P

ro
ce

ss
or

s

Why	is	Architecture	Exci/ng	Today?	

35	

CPU	C
lock	S

peed
	+15%

/year
	

CPU	Speed	Flat	

Problems	of	tradi/onal	ILP	scaling	

•  Fundamental	circuit	limitacons1	
–  delays	⇑	as	issue	queues	⇑	and	mulc-port	register	files	⇑	
–  increasing	delays	limit	performance	returns	from	wider	issue	

•  Limited	amount	of	instruccon-level	parallelism1	

–  inefficient	for	codes	with	difficult-to-predict	branches	

•  Power	and	heat	stall	clock	frequencies	

36	

[1]	The	case	for	a	single-chip	mulcprocessor,	K.	Olukotun,	B.	Nayfeh,	L.	
Hammond,	K.	Wilson,	and	K.	Chang,	ASPLOS-VII,	1996.	

ILP	impacts	

37	

Simula/ons	of	8-issue	Superscalar	

38	

Power/heat	density	limits	frequency	

39	

•  Some	fundamental	physical	limits	are	being	reached	

We	will	have	this	…	

40	

41	

Revolu/on	is	happening	now	
•  Chip	density	is	

concnuing	increase	~2x	
every	2	years	
–  Clock	speed	is	not	
–  Number	of	processor	

cores	may	double	
instead	

•  There	is	liIle	or	no	
hidden	parallelism	(ILP)	
to	be	found	

•  Parallelism	must	be	
exposed	to	and	
managed	by	sogware	
–  No	free	lunch	

Source:	Intel,	Microsog	(SuIer)	and	
Stanford	(Olukotun,	Hammond)	

Single	Processor	Performance	

RISC

Move to multi-processor

42	

IBM	
BG/L

ASCI	White
Pacific

EDSAC	1
UNIVAC	1

IBM	7090
CDC	6600

IBM	360/195 CDC	7600

Cray	1

Cray	X-MP
Cray	2

TMC	CM-2

TMC	CM-5 Cray	T3D

ASCI	Red

1950 1960 1970 1980 1990 2000 2010

1	KFlop/s

1	MFlop/s

1	GFlop/s

1	TFlop/s

1	PFlop/s

Scalar

Super Scalar

Parallel

Vector

1941 1 (Floating Point operations / second, Flop/s)
1945 100
1949 1,000 (1 KiloFlop/s, KFlop/s)
1951 10,000
1961 100,000
1964 1,000,000 (1 MegaFlop/s, MFlop/s)
1968 10,000,000
1975 100,000,000
1987 1,000,000,000 (1 GigaFlop/s, GFlop/s)
1992 10,000,000,000
1993 100,000,000,000
1997 1,000,000,000,000 (1 TeraFlop/s, TFlop/s)
2000 10,000,000,000,000
2005 131,000,000,000,000 (131 Tflop/s)

Super Scalar/Vector/Parallel

(103)

(106)

(109)

(1012)

(1015)

2X	Transistors/Chip	
Every	1.5	Years		

The	trends	

43	

Recent	mul/core	processors	

44	

Recent	manycore	GPU	processors	

45	

�
�

An�Overview�of�the�GK110�Kepler�Architecture�
Kepler�GK110�was�built�first�and�foremost�for�Tesla,�and�its�goal�was�to�be�the�highest�performing�
parallel�computing�microprocessor�in�the�world.�GK110�not�only�greatly�exceeds�the�raw�compute�
horsepower�delivered�by�Fermi,�but�it�does�so�efficiently,�consuming�significantly�less�power�and�
generating�much�less�heat�output.��

A�full�Kepler�GK110�implementation�includes�15�SMX�units�and�six�64�bit�memory�controllers.��Different�
products�will�use�different�configurations�of�GK110.��For�example,�some�products�may�deploy�13�or�14�
SMXs.��

Key�features�of�the�architecture�that�will�be�discussed�below�in�more�depth�include:�

� The�new�SMX�processor�architecture�
� An�enhanced�memory�subsystem,�offering�additional�caching�capabilities,�more�bandwidth�at�

each�level�of�the�hierarchy,�and�a�fully�redesigned�and�substantially�faster�DRAM�I/O�
implementation.�

� Hardware�support�throughout�the�design�to�enable�new�programming�model�capabilities�

�

Kepler�GK110�Full�chip�block�diagram�

�
�

Streaming�Multiprocessor�(SMX)�Architecture�

Kepler�GK110)s�new�SMX�introduces�several�architectural�innovations�that�make�it�not�only�the�most�
powerful�multiprocessor�we)ve�built,�but�also�the�most�programmable�and�power�efficient.��

�

SMX:�192�single�precision�CUDA�cores,�64�double�precision�units,�32�special�function�units�(SFU),�and�32�load/store�units�
(LD/ST).�

�
�

Kepler�Memory�Subsystem�/�L1,�L2,�ECC�

Kepler&s�memory�hierarchy�is�organized�similarly�to�Fermi.�The�Kepler�architecture�supports�a�unified�
memory�request�path�for�loads�and�stores,�with�an�L1�cache�per�SMX�multiprocessor.�Kepler�GK110�also�
enables�compiler�directed�use�of�an�additional�new�cache�for�read�only�data,�as�described�below.�

�

�

64�KB�Configurable�Shared�Memory�and�L1�Cache�

In�the�Kepler�GK110�architecture,�as�in�the�previous�generation�Fermi�architecture,�each�SMX�has�64�KB�
of�on�chip�memory�that�can�be�configured�as�48�KB�of�Shared�memory�with�16�KB�of�L1�cache,�or�as�16�
KB�of�shared�memory�with�48�KB�of�L1�cache.�Kepler�now�allows�for�additional�flexibility�in�configuring�
the�allocation�of�shared�memory�and�L1�cache�by�permitting�a�32KB�/�32KB�split�between�shared�
memory�and�L1�cache.�To�support�the�increased�throughput�of�each�SMX�unit,�the�shared�memory�
bandwidth�for�64b�and�larger�load�operations�is�also�doubled�compared�to�the�Fermi�SM,�to�256B�per�
core�clock.�

48KB�Read�Only�Data�Cache�

In�addition�to�the�L1�cache,�Kepler�introduces�a�48KB�cache�for�data�that�is�known�to�be�read�only�for�
the�duration�of�the�function.�In�the�Fermi�generation,�this�cache�was�accessible�only�by�the�Texture�unit.�
Expert�programmers�often�found�it�advantageous�to�load�data�through�this�path�explicitly�by�mapping�
their�data�as�textures,�but�this�approach�had�many�limitations.��

•  ~3k	cores	

Current	Trends	in	Architecture	

•  Cannot	concnue	to	leverage	Instruccon-Level	
parallelism	(ILP)	
–  Single	processor	performance	improvement	ended	in	2003	

•  New	models	for	performance:	
–  Data-level	parallelism	(DLP)	
–  Thread-level	parallelism	(TLP)	
–  Heterogeneity		

•  These	require	explicit	restructuring	of	the	applicacon	

46	

Parallelism	

•  Classes	of	parallelism	in	applicacons:	
–  Data-Level	Parallelism	(DLP)	
–  Task-Level	Parallelism	(TLP)	

•  Classes	of	architectural	parallelism:	
–  Instruccon-Level	Parallelism	(ILP)	
–  Vector	architectures/Graphic	Processor	Units	(GPUs)	
–  Thread-Level	Parallelism	
–  Heterogeneity	

47	

Architectural	Challenges	

•  Massive	(ca.	4X)	increase	in	concurrency	
–  Mulccore	(4	-	<100)	à	Manycores	(100s	–	1ks)	

•  Heterogeneity		
–  System-level	(accelerators)	vs	chip	level	(embedded)	

•  Compute	power	and	memory	speed	challenges	(two	walls)	
–  500x	compute	power	and	30x	memory	of	2PF	HW	
–  Memory	access	'me	lags	further	behind	

48	

• Complex Digital ASIC Design • Activity 1 Case Study: Scalar vs. Vector Processors Activity 2

Course Motivation: Research Perspective

�
��

��
���

	�

��
��

��
���
��
��
��
�
�
�
�

��� ��� ��� ��� ���� ���� ��� ��� ����

��� ��� ��� ������� �� ��

�������

��
�������

������

����

� �����

������

!"�#���

"��$�����
�������

���%��

���

&�'
(�)

(�*�
!+(

�,���
�$����

'�����
'�+-��

�����
'.�� �

�/�0��
1'���

&��2$���
-�������

'.�� �

(�$3

�������

�4��5��2�6�&0�.&�
��7��8�9��1:*
�4��9��'.�� ���������$��
�4�6����� ����;�������2��<	��
�4��9��'"<���	��		5$�� <��5$�� �")

��������	

ECE 5950 Course Overview 18 / 35
Data$Processing$in$Exascale1class$Computing$Systems$$|$$April$27,$2011$$|$$CRM$4"

Three"Eras"of"Processor"Performance"

Single4Core""
Era"

S
in
gl
e1
th
re
ad
$$
Pe
rf
or
m
an
ce
$

?$

Time$

we#are#
here#

o"

Enabled$by:$
� �����
����	$
� Voltage$Scaling$
� MicroArchitecture$

$

Constrained$by:$
Power$
Complexity$

Multi4Core""
Era"

Th
ro
ug
hp
ut
$$
Pe
rf
or
m
an
ce
$

Time$
(##of#Processors)#

we#are#
here#

o"

Enabled$by:$
� �����
����	$
� DesireforThroughput$
� 20$years$ofSMParch$

$

Constrained$by:$
Power$
ParallelSWavailability$
Scalability$

Heterogeneous"
Systems"Era"

Ta
rg
et
ed
$A
pp
lic
at
io
n$
$

Pe
rf
or
m
an
ce
$

Time$
(Data1parallel#exploitation)#

we#are#
here#

o"

Enabled$by:$
� �����
����	$
� Abundant$data$parallelism$
� Power$efficient$GPUs$

$

Currently)constrained$by:$
Programming$models$
Communication$overheads$

Source:	Chuck	Moore,	Data	Processing	in	ExaScale-ClassComputer	Systems,	Salishan,	April	2011	

Exercise:	Inspect	ISA	for	sum	

•  cp	~yan/sum.c	~		(copy	sum.c	file	from	my	home	folder	to	your	
home	folder)	

•  gcc	-save-temps	sum.c	–o	sum	
•  ./sum	102400	

•  vi	sum.c	
•  vi	sum.s	
•  Or	check	from:	

–  hIps://passlab.github.io/CSE564/exercises/sum/	

•  View	them	from	H	drive	
•  Other	system	commands:	

–  cat	/proc/cpuinfo	to	show	the	CPU	and	#cores	
–  top	command	to	show	system	usage	and	memory	

49	

Backup	

50	

New-School	Machine	Structures	

•  Parallel	Requests	
Assigned	to	computer	
e.g.,	Search	“cats”	

•  Parallel	Threads	
Assigned	to	core	
e.g.,	Lookup,	Ads	

•  Parallel	Instruccons	
>1	instruccon	@	one	cme	
e.g.,	5	pipelined	instruccons	

•  Parallel	Data	
>1	data	item	@	one	cme	
e.g.,	Add	of	4	pairs	of	words	

•  Hardware	descripcons	
All	gates	funcconing	in	parallel	

at	same	cme	

51	

Smart	
Phone	

Warehouse
-Scale	

Computer	

SoLware								Hardware	

Harness	
Parallelism	&	
Achieve	High	
Performance	

Logic	Gates	
					

Core	 Core	…	

					Memory															(Cache)	

Input/Output	

Computer	

Main	Memory	

Core	

									Instruccon	Unit(s)	
	
	

							Funcconal	
Unit(s)	

A3+B3	A2+B2	A1+B1	A0+B0	

51	

Coping	with	Failures	

•  4	disks/server,	50,000	servers	
•  Failure	rate	of	disks:	2%	to	10%	/	year	

–  Assume	4%	annual	failure	rate	
•  On	average,	how	ogen	does	a	disk	fail?	

a)  1	/	month	
b)  1	/	week	
c)  1	/	day	
d)  1	/	hour	

52	

Coping	with	Failures	

•  4	disks/server,	50,000	servers	
•  Failure	rate	of	disks:	2%	to	10%	/	year	

–  Assume	4%	annual	failure	rate	
•  On	average,	how	ogen	does	a	disk	fail?	

a)  1	/	month	
b)  1	/	week	
c)  1	/	day	
d)  1	/	hour	 50,000	x	4	=	200,000	disks	

200,000	x	4%	=	8000	disks	fail	
365	days	x	24	hours	=	8760	hours	

53	

Great	Idea:		
Dependability	via	Redundancy	

•  Redundancy	so	that	a	failing	piece	doesn’t	make	the	whole	
system	fail	

1+1=2	 1+1=2	 1+1=1	

1+1=2	
2	of	3	agree	

FAIL!	

Increasing	transistor	density	reduces	the	cost	of	redundancy	
54	

Great	Idea:		
Dependability	via	Redundancy	

•  Applies	to	everything	from	datacenters	to	storage	to	
memory	to	instructors	
–  Redundant	datacenters	so	that	can	lose	1	datacenter	but	

Internet	service	stays	online	
–  Redundant	disks	so	that	can	lose	1	disk	but	not	lose	data	

(Redundant	Arrays	of	Independent	Disks/RAID)	
–  Redundant	memory	bits	of	so	that	can	lose	1	bit	but	no	data	

(Error	Correccng	Code/ECC	Memory)	

55	

Understanding	Computer	Architecture	

56	
de.pinterest.com	

End	of	Moore’s	Law?	

57	

Cost	per	transistor	
is	rising	as	transistor	
size	con/nues	to	

shrink	

