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Overview

1. Securities Structure

• Arrow-Debreu securities structure

• Redundant securities

• Market completeness

• Completing markets with options

2. Pricing (no arbitrage, state prices, SDF, EMM …)
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The Economy

• State space (Evolution of states)

Two dates: t=0,1

S states of the world at time t=1

• Preferences

U(c0, c1, …,cS)

 (slope of indifference curve)

• Security structure 

Arrow-Debreu economy

General security structure

0

s=1

s=2

s=S

…
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Security Structure
• Security j is represented by a payoff vector

• Security structure is represented by payoff matrix

• NB. Most other books use the transpose of X as payoff matrix.
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One A-D asset e1 = (1,0)

Payoff Space <X>

This payoff cannot be replicated!

Arrow-Debreu Security Structure in R2

)Markets are incomplete

c1

c2
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Add second A-D asset e2 = (0,1) to e1 = (1,0)

Arrow-Debreu Security Structure in R2

c1

c2
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Arrow-Debreu Security Structure in R2

Payoff space <X>

Any payoff can be replicated with two A-D securities

c1

c2

Add second A-D asset e2 = (0,1) to e1 = (1,0)
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Arrow-Debreu Security Structure in R2

Payoff space <X>

New asset is redundant – it does not enlarge the payoff space

c1

c2

Add second asset (1,2) to
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Arrow-Debreu Security Structure

• S Arrow-Debreu securities

• each state s can be insured individually 

• All payoffs are linearly independent

• Rank of X = S

• Markets are complete
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General Security Structure

Only bond Payoff space <X>

c1

c2
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General Security Structure

Only bond xbond = (1,1) Payoff space <X>

can’t be reached

c1

c2
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Add security (2,1) to bond (1,1)

General Security Structure

c1

c2
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•Portfolio of

• buy 3 bonds

• sell short 1 risky asset

General Security Structure

c1

c2

Add security (2,1) to bond (1,1)
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Payoff space <X>

Market are complete with security structure

Payoff space coincides with payoff space of

General Security Structure

Two assets span the payoff space

c1

c2
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• Portfolio: vector h 2 RJ  (quantity for each asset)

• Payoff of Portfolio h is j hj xj = h’X

• Asset span

<X> is a linear subspace of RS 

Complete markets <X> = RS

Complete markets if and only if rank(X) = S

Incomplete markets rank(X) <  S

Security j is redundant if xj = h’X with hj=0

General Security Structure
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Introducing derivatives

• Securities: property rights/contracts

• Payoffs of derivatives derive from payoff of 

underlying securities

• Examples: forwards, futures, call/put options

• Question:

Are derivatives necessarily redundant assets?
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Forward contracts
• Definition:  A binding agreement (obligation) to buy/sell 

an underlying asset in the future, at a price set today

• Futures contracts are same as forwards in principle except 

for some institutional and pricing differences

• A forward contract specifies:

 The features and quantity of the asset to be delivered

 The delivery logistics, such as time, date, and place

 The price the buyer will pay at the time of delivery

Today
Expiration

date
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Reading price quotes
Index futures

Expiration month

The open price

High of the day

Low of the day

Settlement price
(last transaction of the day)

Daily change

Lifetime high

Lifetime low

Open interest
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Payoff diagram for forwards

• Long and short forward positions on the S&R 500 index:
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Forward vs. outright purchase

• Forward + bond = Spot price at expiration - $1,020 +$1,020

= Spot price at expiration

Forward payoff Bond payoff
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Additional considerations (ignored)

• Type of settlement

 Cash settlement:  less costly and more practical

 Physical delivery:  often avoided due to significant costs  

• Credit risk of the counter party 

Major issue for over-the-counter contracts

• Credit check, collateral, bank letter of credit 

 Less severe for exchange-traded contracts

• Exchange guarantees transactions, requires collateral
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• A non-binding agreement (right but not an obligation) to 

buy an asset in the future, at a price set today

• Preserves the upside potential (     ), while at the same time 

eliminating the unpleasant (     ) downside (for the buyer)

• The seller of a call option is obligated to deliver if asked

Call options

Today
Expiration

date

or

at buyer’s choosing
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Definition and Terminology

• A call option gives the owner the right but not the 
obligation to buy the underlying asset at a predetermined 
price during a predetermined time period 

• Strike (or exercise) price: The amount paid by the option 
buyer for the asset if he/she decides to exercise

• Exercise: The act of paying the strike price to buy the asset

• Expiration: The date by which the option must be 
exercised or become worthless

• Exercise style: Specifies when the option can be exercised

 European-style:  can be exercised only at expiration date

 American-style:  can be exercised at any time before expiration

 Bermudan-style:  can be exercised during specified periods
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Reading price quotes
S&P500 Index options

Strike price
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Payoff/profit of a purchased call

• Payoff = max [0, spot price at expiration – strike price]

• Profit = Payoff – future value of option premium

• Examples 2.5 & 2.6:

 S&R Index 6-month Call Option

• Strike price = $1,000, Premium = $93.81, 6-month risk-free rate = 2%

 If index value in six months = $1100

• Payoff = max [0, $1,100 - $1,000] = $100

• Profit = $100 – ($93.81 x 1.02) = $4.32

 If index value in six months = $900

• Payoff = max [0, $900 - $1,000] = $0

• Profit = $0 – ($93.81 x 1.02) =  - $95.68
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Diagrams for purchased call

• Payoff at expiration • Profit at expiration
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• A put option gives the owner the right but not the 
obligation to sell the underlying asset at a predetermined 

price during a predetermined time period

• The seller of a put option is obligated to buy if asked

• Payoff/profit of a purchased (i.e., long) put:

 Payoff = max [0, strike price – spot price at expiration]

 Profit = Payoff – future value of option premium

• Payoff/profit of a written (i.e., short) put:

 Payoff = - max [0, strike price – spot price at expiration]

 Profit = Payoff + future value of option premium

Put options
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A few items to note

• A call option becomes more profitable when the underlying 

asset appreciates in value 

• A put option becomes more profitable when the underlying 

asset depreciates in value 

• Moneyness: 

 In-the-money option: positive payoff if exercised immediately

 At-the-money option: zero payoff if exercised immediately

 Out-of-the money option: negative payoff if exercised immediately
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Options and insurance

• Homeowner’s insurance as a put option:
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Equity linked CDs

 Assume $10,000 invested 

when S&P 500 = 1300

 Final payoff =

 where Sfinal= value of the 

S&P 500 after 5.5 years






















 17.01000,10$

1300

S
 0, max

final

• The 5.5-year CD promises to repay initial invested amount 

and 70% of the gain in S&P 500 index:

Fig. 2.14
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Option and forward positions
A summary
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Options to Complete the Market

Introduce call options with final payoff at T:

Stock’s payoff: (= state space)
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Options to Complete the Market

Together with the primitive asset we obtain

Homework: check whether this markets are complete.
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• Price vector p 2 RJ of asset prices

• Cost of portfolio h, 

• If pj  0 the (gross) return vector of asset j is the 

vector 

General Security Structure
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Overview

1. Securities Structure 
(AD securities, Redundant securities, completeness, …) 

2. Pricing

• LOOP, No arbitrage and existence of state prices

• Market completeness and uniqueness of state prices

• Pricing kernel q*

• Three pricing formulas (state prices, SDF, EMM)

• Recovering state prices from options
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Pricing

• State space (evolution of states)

• (Risk) preferences 

• Aggregation over different agents

• Security structure – prices of traded securities

• Problem:

• Difficult to observe risk preferences

• What can we say about existence of state prices
without assuming specific utility 
functions/constraints for all agents in the economy
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Vector Notation

• Notation: y,x 2 Rn

 y ¸ x  , yi ¸ xi for each i=1,…,n.

 y > x   , y ¸ x and y  x.

 y >> x , yi > xi for each i=1,…,n.

• Inner product
 y ¢ x = i yx

• Matrix multiplication
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Three Forms of No-ARBITRAGE

1. Law of one price (LOOP)
If h’X = k’X then p¢ h = p¢ k.

2. No strong arbitrage

There exists no portfolio h which is a strong 
arbitrage, that is h’X ¸ 0 and p ¢ h < 0.

3. No arbitrage

There exists no strong arbitrage 
nor portfolio k with k’ X > 0 and p ¢ k · 0.
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• Law of one price is equivalent to 

every portfolio with zero payoff has zero price.

• No arbitrage ) no strong arbitrage 

No strong arbitrage ) law of one price 

Three Forms of No-ARBITRAGE
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Pricing

• Define for each z 2 <X>, 

• If LOOP holds q(z) is a single-valued and linear 

functional. (i.e. if h’ and h’ lead to same z, then price has to be the same)

• Conversely, if q is a linear functional defined in 

<X> then the law of one price holds.
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• LOOP ) q(h’X) = p ¢ h

• A linear functional Q in RS is a valuation 

function if Q(z) = q(z) for each z 2 <X>.

• Q(z) = q ¢ z for some q 2 RS, where qs = Q(es), 

and es is the vector with es
s = 1 and es

i = 0 if i  s

es is an Arrow-Debreu security

• q is a vector of state prices

Pricing
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State prices q
• q is a vector of state prices if p = X q, 

that is pj = xj ¢ q for each j = 1,…,J

• If Q(z) = q ¢ z is a valuation functional then q is a vector 

of state prices

• Suppose q is a vector of state prices and LOOP holds. 

Then if z = h’X LOOP implies that

• Q(z) = q ¢ z is a valuation functional 

, q is a vector of state prices and LOOP holds
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q1

q2

p(1,1) =   q1 + q2

p(2,1) = 2q1 + q2

Value of portfolio (1,2)

3p(1,1) – p(2,1) = 3q1 +3q2-2q1-q2

= q1 + 2q2

State prices q

c1

c2
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The Fundamental Theorem of Finance

• Proposition 1. Security prices exclude 
arbitrage if and only if there exists a valuation 
functional with q >> 0.

• Proposition 1’. Let X be an J × S matrix, and 
p 2 RJ. There is no h in RJ satisfying h ¢ p · 0, 
h’ X ¸ 0 and at least one strict inequality if, 
and only if, there exists a vector q 2 RS with 

q >> 0 and p = X q.
No arbitrage , positive state prices
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Multiple State Prices q 

& Incomplete Markets

q1

q2

c1

c2

p(1,1)

Payoff space <X>

bond (1,1) only What state prices are consistent 

with p(1,1)?

p(1,1) = q1 + q2

One equation – two unknowns q1, q2

There are (infinitely) many.

e.g. if p(1,1)=.9

q1 =.45, q2 =.45 

or q1 =.35, q2 =.55
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<X>

q

complete markets

x1

x2

Q(x)
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Q(x)

<X>

q

p=Xq

incomplete markets

x1

x2
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<X>

qo

p=Xqo

incomplete markets

x1

x2

Q(x)
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Multiple q in incomplete markets

<X>

qv

q*

qo

p=X’q

Many possible state price vectors s.t. p=X’q.

One is special: q* - it can be replicated as a portfolio.

c2

c1
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Uniqueness and Completeness

• Proposition 2. If markets are complete, under no 

arbitrage there exists a unique valuation functional.

• If markets are not complete, then there exists 
v 2 RS with 0 = Xv. 

Suppose there is no arbitrage and let q >> 0 be a vector 

of state prices. Then q + a v >> 0 provided a is small 

enough, and p = X (q + a v). Hence, there are an infinite 

number of strictly positive state prices. 
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Four Asset Pricing Formulas

1. State prices pj = s qs xs
j

2. Stochastic discount factor pj = E[mxj]

3. Martingale measure pj = 1/(1+rf) Ep [xj]
(reflect risk aversion by 

over(under)weighing the “bad(good)” states!)

4. State-price beta model E[Rj] - Rf = bj E[R*- Rf]
(in returns Rj := xj /pj)

m1

m2

m3

xj
1

xj
2

xj
3

^
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1. State Price Model

• … so far price in terms of Arrow-Debreu (state) 

prices

10:37 Lecture 02 One Period Model

pj =
P
s qsx

j
s
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2. Stochastic Discount Factor

• That is, stochastic discount factor ms = qs/ps for all s.
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<X>

c1

2. Stochastic Discount Factor
shrink axes by factor

m

m*



Fin 501: Asset Pricing

Slide 2-6010:37 Lecture 05 State-price Beta Model

Risk-adjustment in payoffs
p = E[mxj] = E[m]E[x] + Cov[m,x]

Since 1=E[mR], the risk free rate is Rf = 1/E[m]

p = E[x]/Rf + Cov[m,x]

Remarks:

(i) If risk-free rate does not exist, Rf is the shadow risk free 
rate

(ii) In general Cov[m,x] < 0, which lowers price and 
increases return
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• Price of any asset

• Price of a bond 

3. Equivalent Martingale Measure
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… in Returns:  Rj=xj/pj

E[mRj]=1 Rf E[m]=1
) E[m(Rj-Rf)]=0

E[m]{E[Rj]-Rf} + Cov[m,Rj]=0

E[Rj] – Rf = - Cov[m,Rj]/E[m] (2)

also holds for portfolios h

Note: 

• risk correction depends only on Cov of payoff/return 
with discount factor.

• Only compensated for taking on systematic risk not 
idiosyncratic risk. 
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<X>

c1

4. State-price BETA Model
shrink axes by factor

m

m*

R*

p=1
(priced with m*)

R*=a m*

let underlying asset 

be x=(1.2,1)

c2
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4. State-price BETA Model

E[Rj] – Rf = - Cov[m,Rj]/E[m] (2)

also holds for all portfolios h and 

we can replace m with m*

Suppose (i) Var[m*] > 0 and (ii) R* = a m* with a > 0

E[Rh] – Rf = - Cov[R*,Rh]/E[R*] (2’)

Define bh := Cov[R*,Rh]/ Var[R*] for any portfolio h
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4. State-price BETA Model

(2) for R*: E[R*]-Rf=-Cov[R*,R*]/E[R*]
=-Var[R*]/E[R*]

(2) for Rh: E[Rh]-Rf=-Cov[R*,Rh]/E[R*]

= - bh Var[R*]/E[R*]

E[Rh] - Rf = bh E[R*- Rf]

where bh := Cov[R*,Rh]/Var[R*]

very general – but what is R* in reality?

Regression Rh
s = ah + bh (R*)s + es with  Cov[R*,e]=E[e]=0
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Four Asset Pricing Formulas

1. State prices 1 = s qs Rs
j

2. Stochastic discount factor 1 = E[mRj]

3. Martingale measure 1 = 1/(1+rf) Ep [Rj]
(reflect risk aversion by 

over(under)weighing the “bad(good)” states!)

4. State-price beta model E[Rj] - Rf = bj E[R*- Rf]
(in returns Rj := xj /pj)

m1

m2

m3

xj
1

xj
2

xj
3

^
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What do we know about q, m, ¼, R*?

• Main results so far

Existence iff no arbitrage

• Hence, single factor only

• but doesn’t famos Fama-French factor model has 3 factors?

• multiple factor is due to time-variation 

(wait for multi-period model)

Uniqueness if markets are complete

10:37 Lecture 02 One Period Model

^
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Different Asset Pricing Models

pt = E[mt+1 xt+1]               )

where mt+1=f(¢,…,¢) 

f(¢) = asset pricing model

General Equilibrium
f(¢) = MRS / p

Factor Pricing Model

a+b1 f1,t+1 + b2 f2,t+1

CAPM

a+b1 f1,t+1 = a+b1 RM

E[Rh] - Rf = bh E[R*- Rf]

where bh := Cov[R*,Rh]/Var[R*]

CAPM

R*=Rf (a+b1R
M)/(a+b1R

f) 
where RM = return of market portfolio
Is b1 < 0?



Fin 501: Asset Pricing

Slide 2-6910:37 Lecture 05 State-price Beta Model

Different Asset Pricing Models

• Theory

All economics and modeling is determined by 
mt+1= a + b’ f

Entire content of model lies in restriction of SDF

• Empirics

m* (which is a portfolio payoff) prices as well as m 
(which is e.g. a function of income, investment etc.)

 measurement error of m* is smaller than for any m 

Run regression on returns (portfolio payoffs)!
(e.g. Fama-French three factor model)
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specify

Preferences &

Technology

observe/specify

existing 

Asset Prices

State Prices q
(or stochastic discount 

factor/Martingale measure)

derive

Asset Prices

derive

Price for (new) asset

•evolution of states

•risk preferences

•aggregation

absolute 

asset pricing

relative

asset pricing

NAC/LOOP

LOOP

NAC/LOOP

Only works as long as market 

completeness doesn’t change
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• Suppose that ST, the price of the underlying portfolio (we 
may think of it as a proxy for price of “market portfolio”), 
assumes a "continuum" of possible values.

• Suppose there are a “continuum” of call options with 
different strike/exercise prices ) markets are complete

• Let us construct the following portfolio: 
for some small positive number e>0,
 Buy one call with

 Sell one call with

 Sell one call with

 Buy one call with .

e 
2TŜE

2TŜE 

2TŜE 

e 
2TŜE

Recovering State Prices from 

Option Prices
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E ST, )   e2 E ST, )   e2

E ST, ^ )  2

e

E ST, ^ ) +  2

  e2ST
^  2ST

^
ST
^ + 2ST

^ + + e2ST
^

^ ^

Payoff

TS

ST
C (

T ST
C (

T

ST
C (

TST
C (

T

Figure 8-2   Payoff Diagram: Portfolio of Options

Recovering State Prices … (ctd.)
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• Let us thus consider buying 1/e units of the portfolio. The

total payment, when , is , for

any choice of e. We want to let , so as to eliminate

the payments in the ranges and

.The value of 1/e units of this portfolio

is :

2TT2T ŜSŜ   1
1


e
e

0e

)
2

Ŝ,
2

Ŝ(S TTT


e




)
2

Ŝ,
2

Ŝ(S TTT e







         ee
e


2T2T2T2

ŜE,SCŜE,SCŜE,SC
T

ŜE,SC
1

Recovering State Prices … (ctd.)
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         ee 
e

e
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Taking the limit e! 0
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T
 

2
$ST

 
2

$ST

1

Payoff

TS

Divide by  and let ! 0 to obtain state price density as  2C/ E2.
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The value today of this cash flow is :

 
 

.
Ŝ,ŜS if 50000

Ŝ,ŜS if 0
CF

2T2TT

2T2TT
 ~

T


















Recovering State Prices … (ctd.)

Evaluating following cash flow
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Table 8.1  Pricing an Arrow-Debreu State Claim 

Payoff if ST = E C(S,E) Cost of 

position 7 8 9 10 11 12 13 C (C)= qs 

7 3.354           

          -0.895  

8 2.459          0.106 

          -0.789  

9 1.670 +1.670 0 0 0 1 2 3 4  0.164 

          -0.625  

10 1.045 -2.090 0 0 0 0 -2 -4 -6  0.184 

          -0.441  

11 0.604 +0.604 0 0 0 0 0 1 2  0.162 

          -0.279  

12 0.325          0.118 

          -0.161  

13 0.164           

  0.184 0 0 0 1 0 0 0   
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specify

Preferences &

Technology

observe/specify

existing 

Asset Prices

State Prices q
(or stochastic discount 

factor/Martingale measure)

derive

Asset Prices

derive

Price for (new) asset

•evolution of states

•risk preferences

•aggregation

absolute 

asset pricing

relative

asset pricing

NAC/LOOP

LOOP

NAC/LOOP

Only works as long as market 

completeness doesn’t change
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End of Lecture 02


