Lecture 02: One Period Model

Prof. Markus K. Brunnermeier

Overview

1. Securities Structure

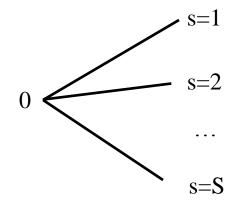
- Arrow-Debreu securities structure
- Redundant securities
- Market completeness
- Completing markets with options
- 2. Pricing (no arbitrage, state prices, SDF, EMM ...)

Princeton University

The Economy

- State space (Evolution of states)
 Two dates: *t*=0,1 *S* states of the world at time *t*=1
- Preferences

$$\Box U(c_0, c_1, \dots, c_S)$$
$$\Box MRS^A_{s,0} = -\frac{\partial U^A / \partial c^A_s}{\partial U^A / \partial c^A_0}$$



(slope of indifference curve)

Security structure
 Arrow-Debreu economy
 General security structure

Security Structure

- Security *j* is represented by a payoff vector $\begin{pmatrix} x_1^j, x_2^j, \dots, x_S^j \end{pmatrix}$
- Security structure is represented by payoff matrix

$$X = \begin{pmatrix} x_1^j & x_2^j & \cdots & x_{S-1}^j & x_S^j \\ x_2^{j+1} & x_2^{j+1} & \cdots & x_{S-1}^{j+1} & x_S^{j+1} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ x_1^{J-1} & x_2^{J-1} & \cdots & x_{S-1}^{J-1} & x_S^{J-1} \\ x_1^J & x_2^J & \cdots & x_{S-1}^J & x_S^J \end{pmatrix}$$

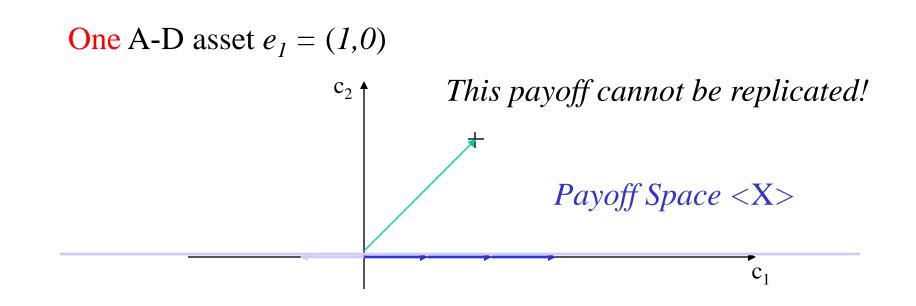
• NB. Most other books use the transpose of X as payoff matrix.

10:37 Lecture 02

One Period Model

7

Arrow-Debreu Security Structure in R^2



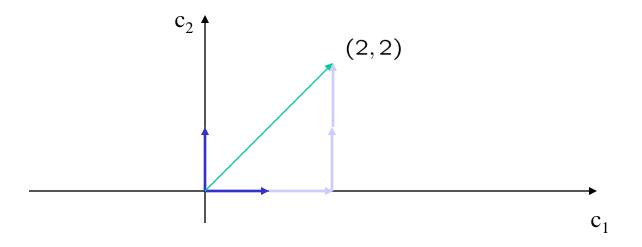
\Rightarrow Markets are **incomplete**

10:37 Lecture 02

One Period Model

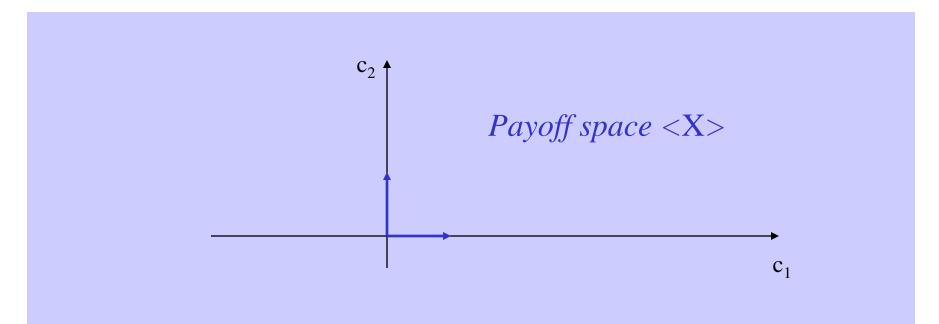
Arrow-Debreu Security Structure in R^2

Add second A-D asset $e_2 = (0,1)$ to $e_1 = (1,0)$



Arrow-Debreu Security Structure in R^2

Add second A-D asset $e_2 = (0,1)$ to $e_1 = (1,0)$



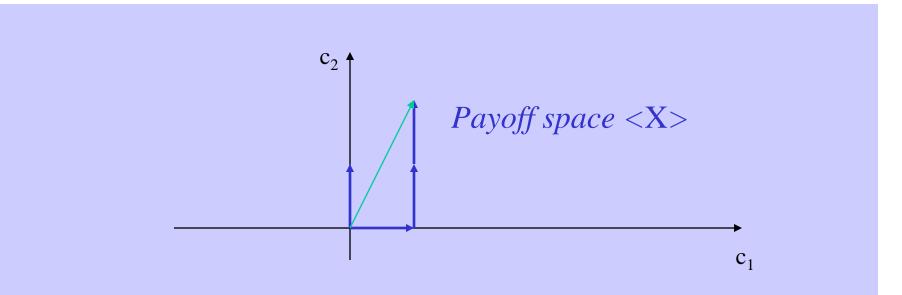
Any payoff can be replicated with two A-D securities

10:37 Lecture 02

One Period Model

Arrow-Debreu Security Structure in R^2

Add second asset (1,2) to $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$



New asset is **redundant** – *it does not enlarge the payoff space*

10:37 Lecture 02

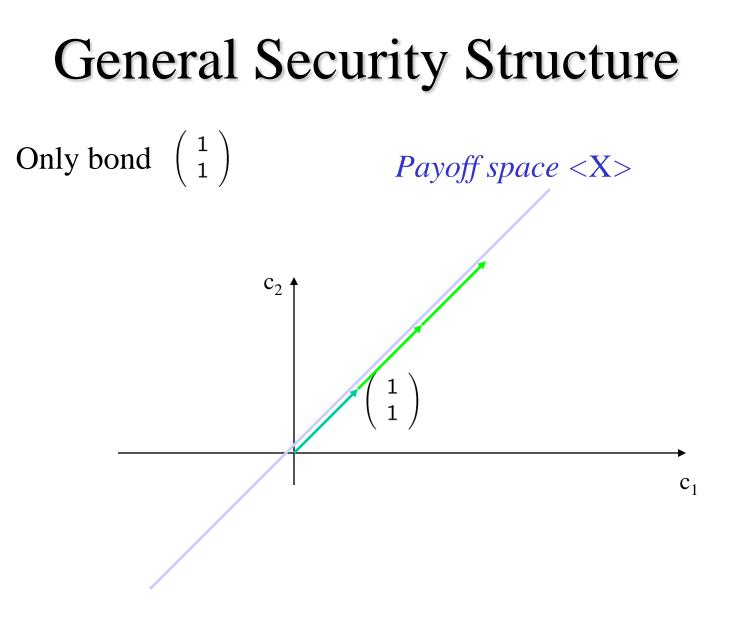
One Period Model

Arrow-Debreu Security Structure

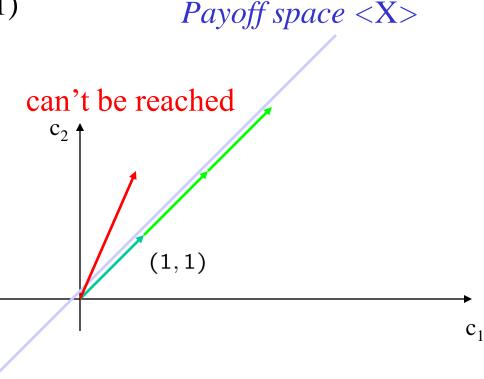
$$X = \begin{pmatrix} 1 & 0 & \cdots & 0 & 0 \\ 0 & 1 & \cdots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & 1 & 0 \\ 0 & 0 & \cdots & 0 & 1 \end{pmatrix}$$

• S Arrow-Debreu securities

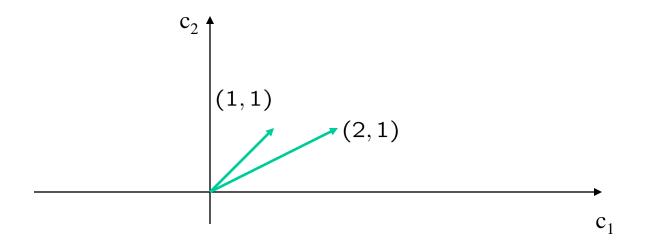
- each state *s* can be insured individually
- All payoffs are linearly independent
- Rank of X = S
- Markets are complete



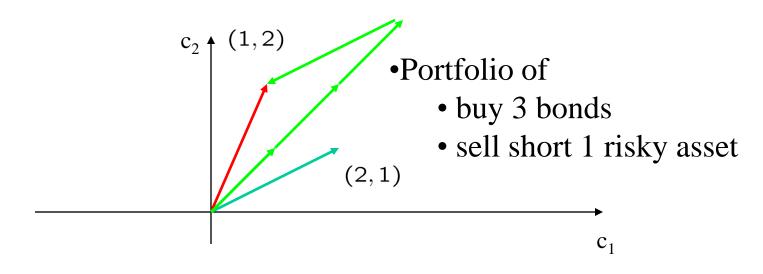
Only bond $x^{bond} = (1,1)$

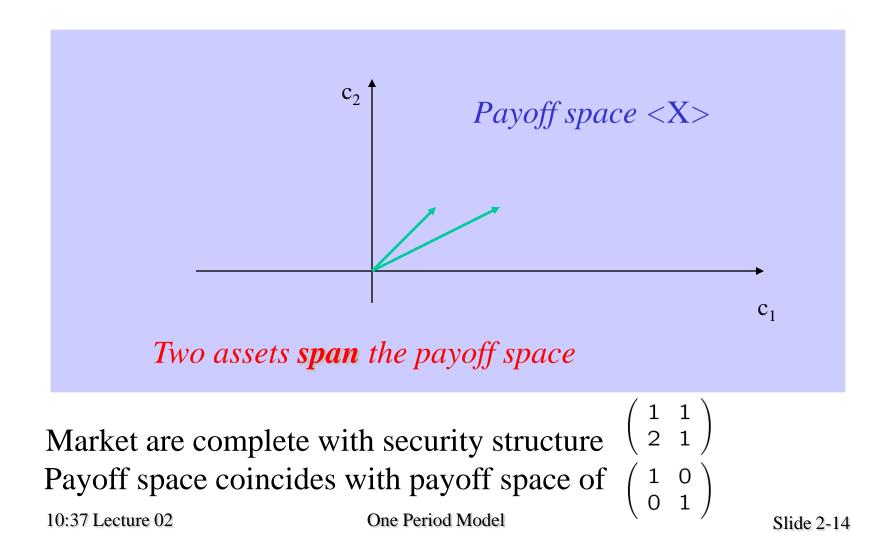


Add security (2,1) to bond (1,1)



Add security (2,1) to bond (1,1)





- Portfolio: vector $h \in R^J$ (quantity for each asset)
- Payoff of Portfolio h is $\sum_{j} h^{j} x^{j} = h' X$
- Asset span

 $\langle X \rangle = \{ z \in \mathbb{R}^S : z = h'X \text{ for some } h \in \mathbb{R}^J \}$

 \Box <X> is a linear subspace of R^S

 $\Box Complete markets <X> = R^{S}$

- $\Box Complete markets if and only if rank(X) = S$
- □ Incomplete markets

rank(X) < S

 \Box Security *j* is redundant if $x^j = h'X$ with $h^j = 0$

Introducing derivatives

- Securities: property rights/contracts
- Payoffs of derivatives *derive* from payoff of underlying securities
- Examples: forwards, futures, call/put options

• Question:

Are derivatives necessarily redundant assets?

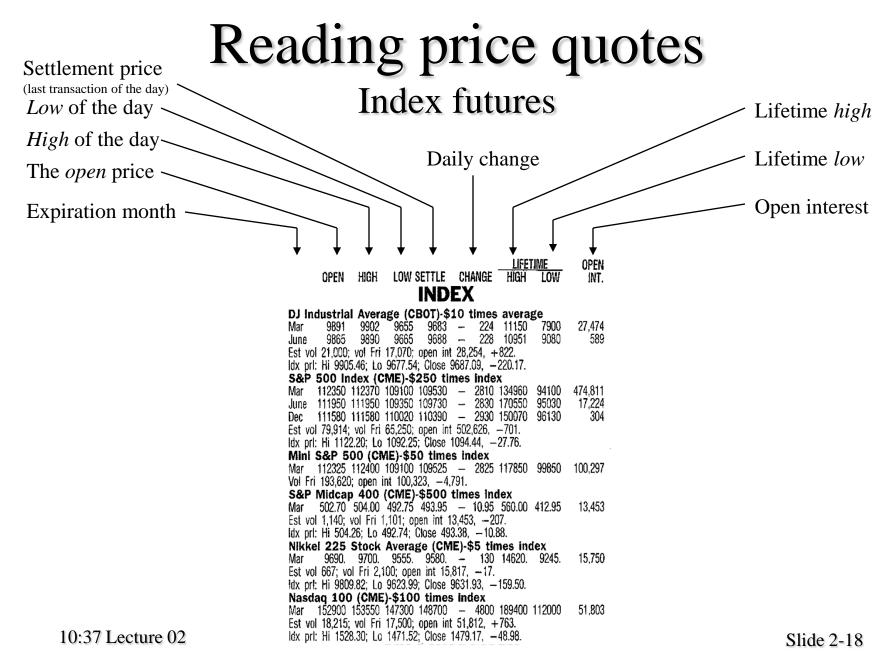
- 🦻

Forward contracts

- Definition: A binding agreement (obligation) to buy/sell an underlying asset in the future, at a price set today
- Futures contracts are same as forwards in principle except for some institutional and pricing differences
- A forward contract specifies:
 - $\hfill\square$ The features and quantity of the asset to be delivered
 - □ The delivery logistics, such as time, date, and place
 - \Box The price the buyer will pay at the time of delivery

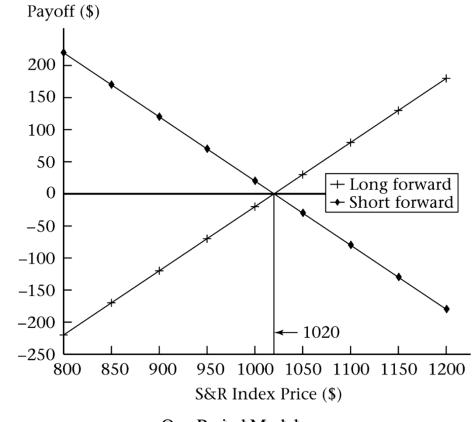


Princeton University



Payoff diagram for forwards

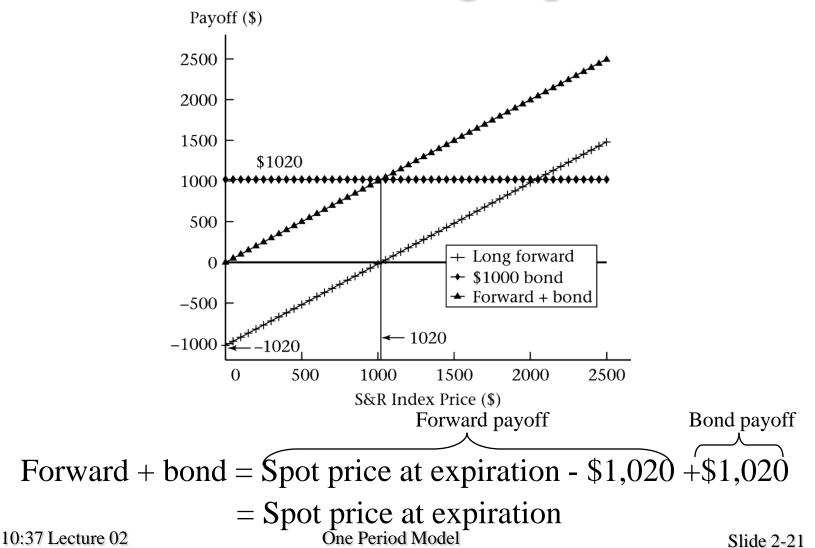
• Long and short forward positions on the S&R 500 index:



One Period Model

ullet

Forward vs. outright purchase



Additional considerations (ignored)

• Type of settlement

Cash settlement: less costly and more practical
Physical delivery: often avoided due to significant costs

• Credit risk of the counter party

□ Major issue for over-the-counter contracts

- Credit check, collateral, bank letter of credit
- Less severe for exchange-traded contracts
 - Exchange guarantees transactions, requires collateral

Call options

- A non-binding agreement (right but not an obligation) to buy an asset in the future, at a price set today
- Preserves the upside potential (19), while at the same time eliminating the unpleasant (20) downside (for the buyer)
- The seller of a call option is obligated to deliver if asked

Definition and Terminology

- A call option gives the owner the right but not the obligation to buy the underlying asset at a predetermined price during a predetermined time period
- Strike (or exercise) price: The amount paid by the option buyer for the asset if he/she decides to exercise
- Exercise: The act of paying the strike price to buy the asset
- Expiration: The date by which the option must be exercised or become worthless
- Exercise style: Specifies when the option can be exercised
 European-style: can be exercised only at expiration date
 American-style: can be exercised at any time before expiration
 Bermudan-style: can be exercised during specified periods

10:37 Lecture 02

Reading price quotes S&P500 Index options

Strike price					
STRIKE	↓ ↓	VOL. S&P5	LAST 00(spx	NET Chg.)	open Int.
Feb Feb Mar	1080 c 1080 p 1080 c	100 358 10	26.50 13 44	+ 8.00	5
Mar Feb	1080 p 1090 c	17 4	21.40 19	+ 6.00	412
Feb Mar	1090 p 1090 c	141 270	15.80 32	+ 9.00	279 302
Mar Feb Feb	1090 p 1100 c 1100 p	343 1,041 3,246	28 15 20.10	16.20 + 11.80	302 6,763 26,497
Mar Mar	1100 c 1100 p	4,439 8,235	20.10 27 33	- 15.00 + 12.50	19,083 30,294
Apr Apr	1100 c 1100 p	81 2,011	37 44	- 15.00 + 14.00	1,728 4,126
Feb Feb Feb	1110 c 1110 p 1120 c	1,316 1,032 805	9 27 6.30	- 15.00 + 15.50 - 9.80	738 1,472 1,057
Feb Mar	1120 c 1120 p 1120 c	225 838	33.50 18	+ 18.50	1,626 5,239
Mar Apr	1120 p 1120 c	953 150	43.50 33.50	- 6.50	5,095 10

- 🐬

Payoff/profit of a purchased call

- Payoff = *max* [0, spot price at expiration strike price]
- Profit = Payoff future value of option premium
- Examples 2.5 & 2.6:

□ S&R Index 6-month Call Option

• Strike price = \$1,000, Premium = \$93.81, 6-month risk-free rate = 2%

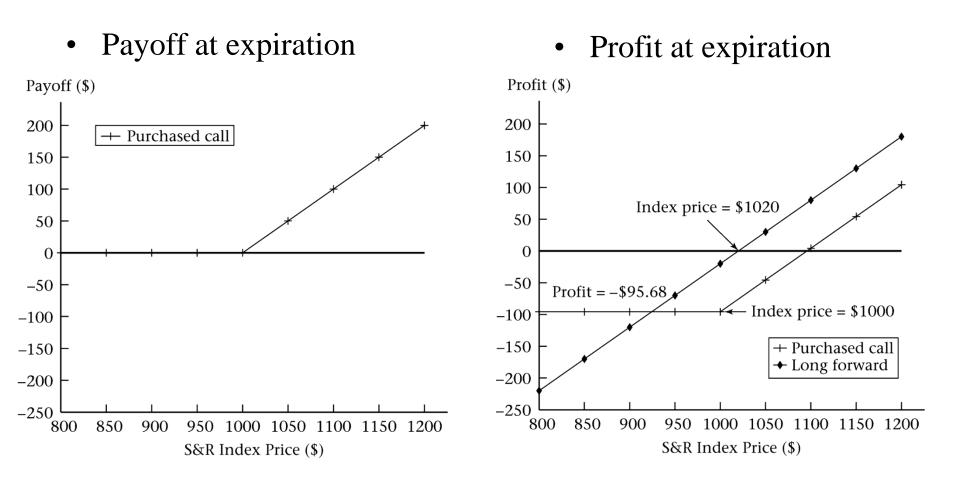
 \Box If index value in six months = \$1100

- Payoff = max [0, \$1, 100 \$1, 000] = \$100
- Profit = $100 (93.81 \times 1.02) = 4.32$

 \Box If index value in six months = \$900

- Payoff = max [0, \$900 \$1,000] = \$0
- Profit = $(93.81 \times 1.02) = -$

Diagrams for purchased call



10:37 Lecture 02

One Period Model

Put options

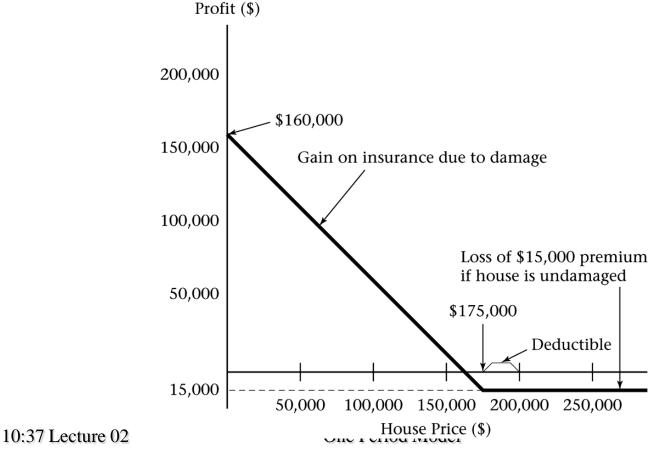
- A put option gives the owner the right but not the obligation to sell the underlying asset at a predetermined price during a predetermined time period
- The seller of a put option is obligated to buy if asked
- Payoff/profit of a purchased (i.e., long) put:
 Payoff = max [0, strike price spot price at expiration]
 Profit = Payoff future value of option premium
- Payoff/profit of a written (i.e., short) put:
 Payoff = max [0, strike price spot price at expiration]
 Profit = Payoff + future value of option premium

A few items to note

- A call option becomes more profitable when the underlying asset appreciates in value
- A put option becomes more profitable when the underlying asset depreciates in value
- Moneyness:
 - □ In-the-money option: positive payoff if exercised immediately
 - At-the-money option: zero payoff if exercised immediately
 - Out-of-the money option: negative payoff if exercised immediately

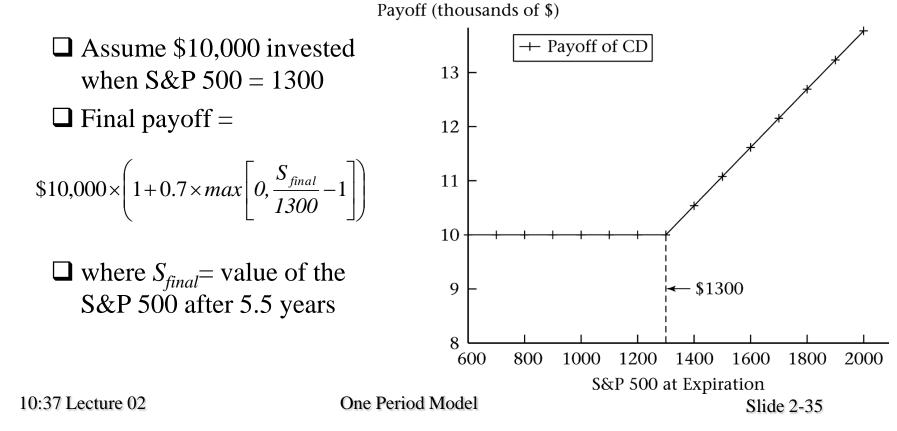
Options and insurance

• Homeowner's insurance as a put option:

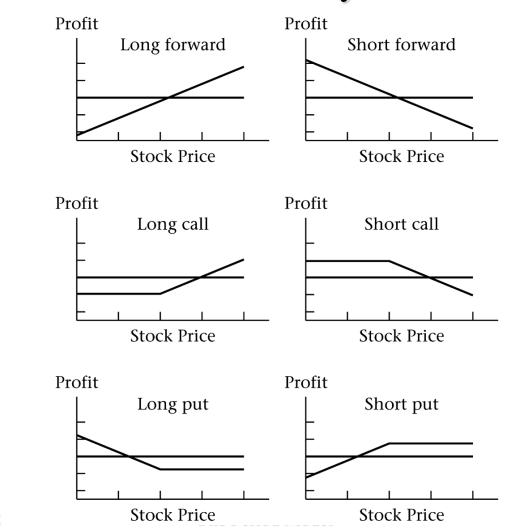


Equity linked CDs

• The 5.5-year CD promises to repay initial invested amount and 70% of the gain in S&P 500 index:



Option and forward positions A summary



10:37 Lecture 02

Slide 2-36

Options to Complete the Market

Stock's payoff: $x^j = (1, 2, \dots, S)$ (= state space)

Introduce call options with final payoff at T:

$$C_T = max\{S_T - E, 0\} = [S_T - E]^+$$

$$c_{E=1} = (0, 1, 2, \dots, S-2, S-1)$$

 $c_{E=2} = (0, 0, 1, \dots, S-3, S-2)$

$$c_{E=S-1} = (0, 0, 0, \dots, 0, 1)$$

Options to Complete the Market

Together with the primitive asset we obtain

Homework: check whether this markets are complete.

10:37 Lecture 02

One Period Model

Princeton University

General Security Structure

- Price vector $p \in R^J$ of asset prices
- Cost of portfolio *h*,

$$p \cdot h := \sum_j p^j h^j$$

• If $p^j \neq 0$ the (gross) return vector of asset *j* is the vector

$$R^j = \frac{x^j}{p^j}$$

Overview

1. Securities Structure

(AD securities, Redundant securities, completeness, ...)

- 2. Pricing
 - LOOP, No arbitrage and existence of state prices
 - Market completeness and uniqueness of state prices
 - Pricing kernel q^*
 - Three pricing formulas (state prices, SDF, EMM)
 - Recovering state prices from options

Pricing

- State space (evolution of states)
- (Risk) preferences
- Aggregation over different agents
- Security structure prices of traded securities
- Problem:
 - Difficult to observe risk preferences
 - What can we say about **existence of state prices** without assuming specific utility functions/constraints for all agents in the economy

Vector Notation

• Notation: $y, x \in \mathbb{R}^n$

 $\label{eq:second} \begin{gathered} \Box \ y \ge x \ \Leftrightarrow y^i \ge x^i \ \text{for each } i=1,\ldots,n. \\ \square \ y > x \ \Leftrightarrow y \ge x \ \text{and } y \ne x. \\ \square \ y >> x \ \Leftrightarrow y^i > x^i \ \text{for each } i=1,\ldots,n. \end{gathered}$

7

- Inner product $\Box y \cdot x = \sum_{i} yx$
- Matrix multiplication

Three Forms of No-ARBITRAGE

- 1. Law of one price (LOOP) If h'X = k'X then $p \cdot h = p \cdot k$.
- 2. No strong arbitrage

There exists no portfolio *h* which is a strong arbitrage, that is $h'X \ge 0$ and $p \cdot h < 0$.

3. No arbitrage

There exists no strong arbitrage nor portfolio *k* with k'X > 0 and $p \cdot k \le 0$.

Three Forms of No-ARBITRAGE

- Law of one price is equivalent to every portfolio with zero payoff has zero price.
- No arbitrage \Rightarrow no strong arbitrage No strong arbitrage \Rightarrow law of one price

Pricing

• Define for each $z \in \langle X \rangle$,

$$q(z) := \{p \cdot h : z = h'X\}$$

- If LOOP holds q(z) is a single-valued and linear functional. (i.e. if h' and h' lead to same z, then price has to be the same)
- Conversely, if *q* is a linear functional defined in <X> then the law of one price holds.

- 🦻

Pricing

- LOOP $\Rightarrow q(h'X) = p \cdot h$
- A linear functional Q in R^S is a valuation function if Q(z) = q(z) for each $z \in \langle X \rangle$.
- $Q(z) = q \cdot z$ for some $q \in R^S$, where $q^s = Q(e_s)$, and e_s is the vector with $e_s^s = 1$ and $e_s^i = 0$ if $i \neq s$ $\Box e_s$ is an Arrow-Debreu security
- q is a vector of state prices

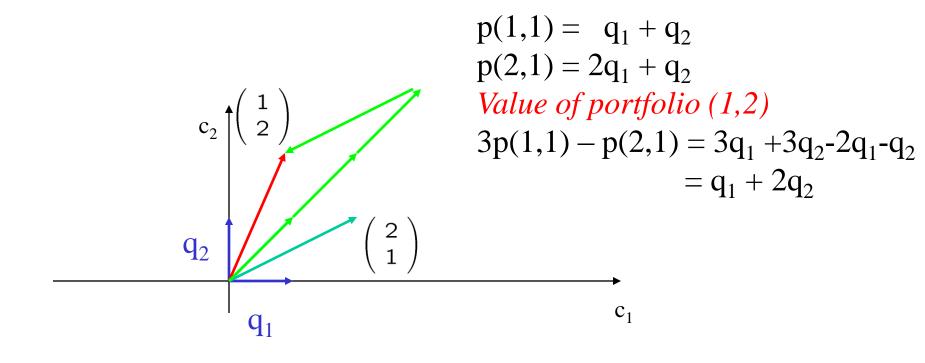
State prices q

- q is a vector of state prices if p = X q, that is $p^j = x^j \cdot q$ for each j = 1, ..., J
- If Q(z) = q · z is a valuation functional then q is a vector of state prices
- Suppose q is a vector of state prices and LOOP holds. Then if z = h'X LOOP implies that

$$q(z) = \sum_{j} h^{j} p^{j} = \sum_{j} (\sum_{s} x_{s}^{j} q_{s}) h^{j} =$$
$$= \sum_{s} (\sum_{j} x_{s}^{j} h^{j}) q_{s} = q \cdot z$$

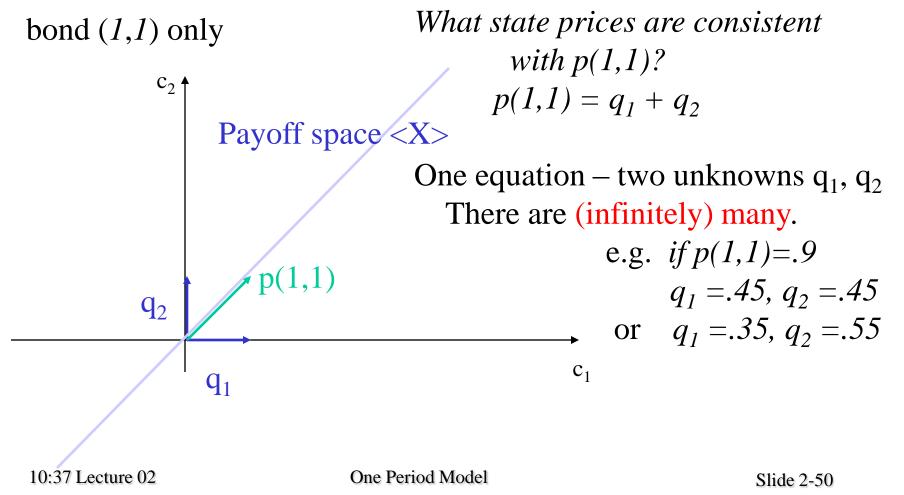
• $Q(z) = q \cdot z$ is a valuation functional \Leftrightarrow q is a vector of state prices and LOOP holds **Fin 501: Asset Pricing**

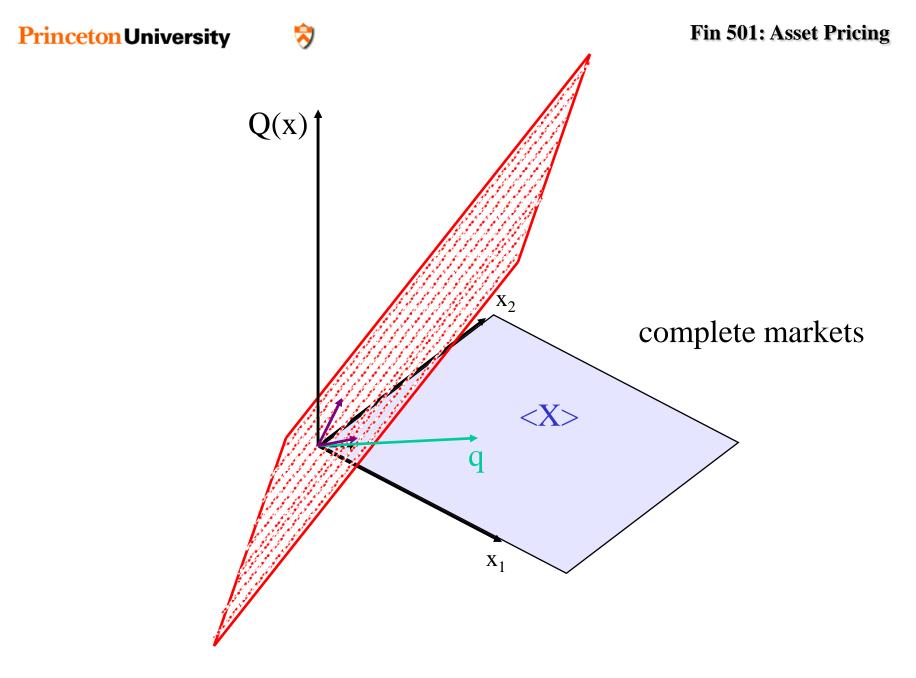
State prices q

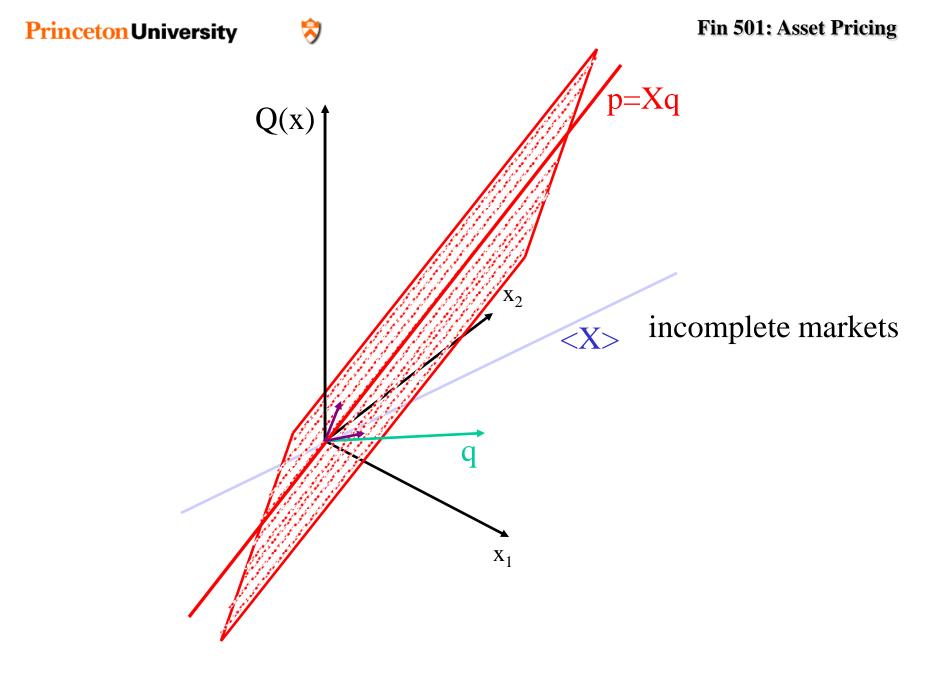


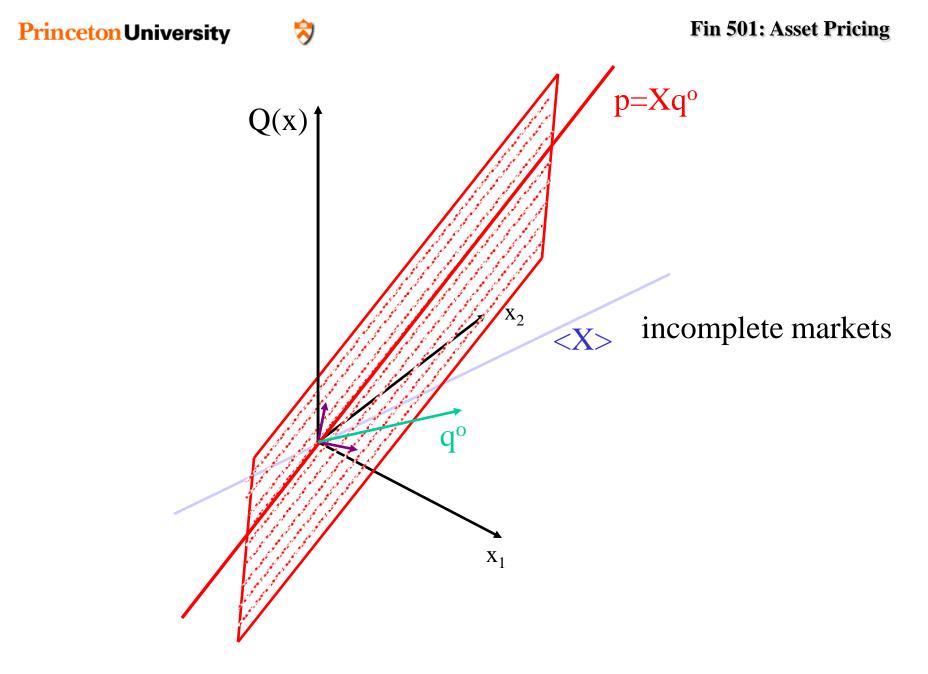
The Fundamental Theorem of Finance

- **Proposition 1.** Security prices exclude arbitrage if and only if there exists a valuation functional with q >> 0.
- **Proposition 1'.** Let *X* be an $J \times S$ matrix, and $p \in R^J$. There is no *h* in R^J satisfying $h \cdot p \leq 0$, $h'X \geq 0$ and at least one strict inequality if, and only if, there exists a vector $q \in R^S$ with $q \gg 0$ and p = X q. No arbitrage \Leftrightarrow positive state prices

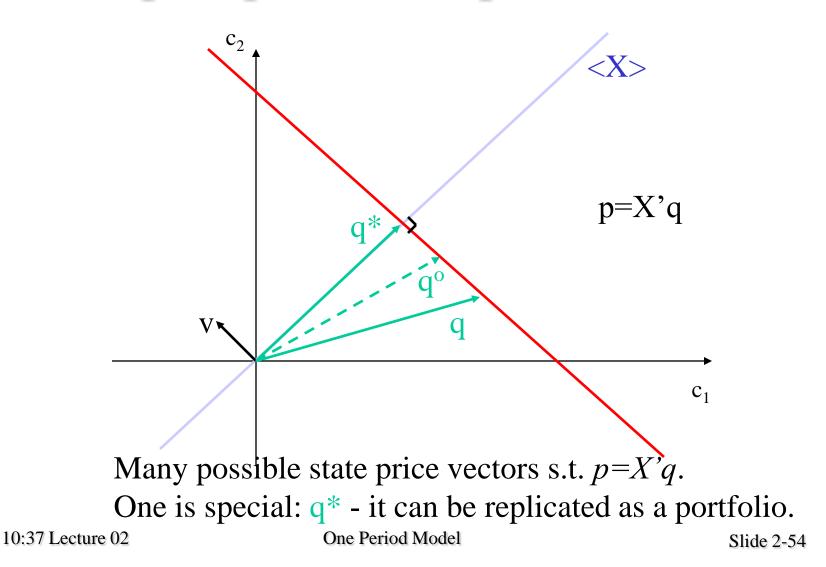








Multiple q in incomplete markets



Uniqueness and Completeness

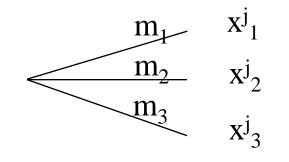
- **Proposition 2.** If markets are complete, under no arbitrage there exists a *unique* valuation functional.
- If markets are not complete, then there exists $v \in R^S$ with 0 = Xv.

Suppose there is no arbitrage and let q >> 0 be a vector of state prices. Then $q + \alpha v >> 0$ provided α is small enough, and $p = X (q + \alpha v)$. Hence, there are an infinite number of strictly positive state prices.

10:37 Lecture 02

Four Asset Pricing Formulas

- 1. State prices
- 2. Stochastic discount factor



 $p^{j} = \sum_{s} q_{s} x_{s}^{j}$

 $p^{j} = E[mx^{j}]$

3. Martingale measure

 $p^{j} = 1/(1{+}r^{f}) \; E_{\hat{\pi}} \left[x^{j} \right]$

(reflect risk aversion by
over(under)weighing the "bad(good)" states!)

4. State-price beta model $E[R^j] - R^f = \beta^j E[R^* - R^f]$ (in returns $R^j := x^j / p^j$) One Period Model Slide 2-56

3

1. State Price Model

• ... so far price in terms of Arrow-Debreu (state) prices

 $p^{j} = \sum_{s} q_{s} x_{s}^{j}$

3

2. Stochastic Discount Factor

$$p^{j} = \sum_{s} q_{s} x_{s}^{j} = \sum_{s} \pi_{s} \frac{q_{s}}{\frac{\pi_{s}}{m_{s}}} x_{s}^{j}$$

• That is, stochastic discount factor $m_s = q_s/\pi_s$ for all s.

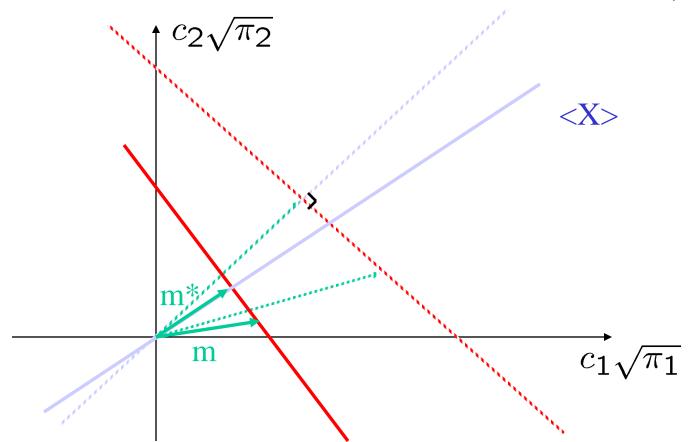
$$p^j = E[mx^j]$$

Fin 501: Asset Pricing

2. Stochastic Discount Factor

7

shrink axes by factor $\sqrt{\pi_s}$



Risk-adjustment in payoffs $p = E[mx^{j}] = E[m]E[x] + Cov[m,x]$

Since 1=E[mR], the risk free rate is $R^{f} = 1/E[m]$

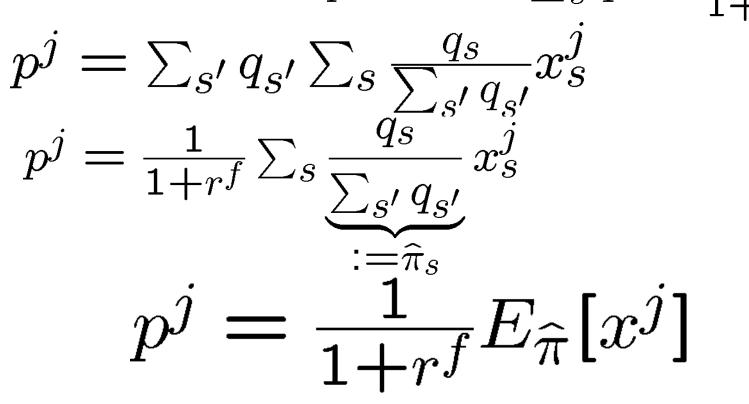
$\mathbf{p} = \mathbf{E}[\mathbf{x}]/\mathbf{R}^{\mathbf{f}} + \mathbf{Cov}[\mathbf{m},\mathbf{x}]$

Remarks:

- (i) If risk-free rate does not exist, R^f is the shadow risk free rate
- (ii) In general Cov[m,x] < 0, which lowers price and increases return 10:37 Lecture 05 State-price Beta Model Slide 2-60

3. Equivalent Martingale Measure

- Price of any asset $p^j = \sum_s q_s x_s^j$
- Price of a bond $p^{\text{bond}} = \sum_s q_s = \frac{1}{1+rf}$



... in Returns: $R^{j}=x^{j}/p^{j}$ $E[mR^{j}]=1$ $\Rightarrow E[m(R^{j}-R^{f})]=0$ $E[m]{E[R^{j}]-R^{f}} + Cov[m,R^{j}]=0$

$E[R^{j}] - R^{f} = - Cov[m,R^{j}]/E[m]$ (2) also holds for portfolios *h*

Note:

- risk correction depends only on Cov of payoff/return with discount factor.
- Only compensated for taking on systematic risk not idiosyncratic risk. 10:37 Lecture 05 State-price Beta Model Slide 2-62

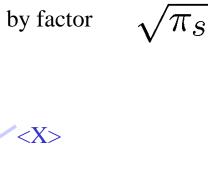
Fin 501: Asset Pricing

4. State-price BETA Model

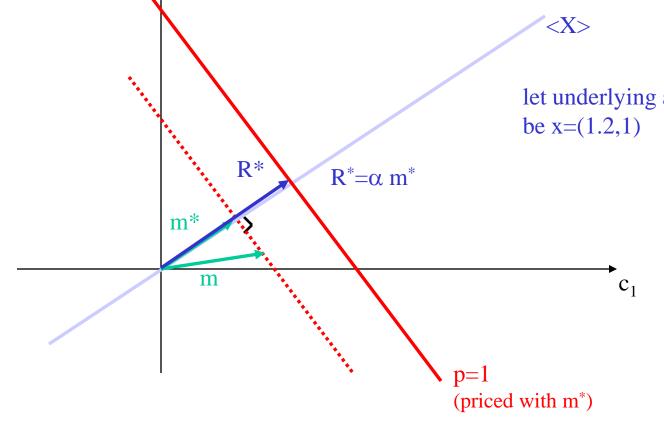
7

 c_2

shrink axes by factor



let underlying asset



4. State-price BETA Model

$$\begin{split} \mathbf{E}[\mathbf{R}^{j}] - \mathbf{R}^{f} &= - \operatorname{Cov}[\mathbf{m}, \mathbf{R}^{j}] / \mathbf{E}[\mathbf{m}] \quad (2) \\ & \text{also holds for all portfolios } h \text{ and} \\ & \text{we can replace } \mathbf{m} \text{ with } \mathbf{m}^{*} \\ & \text{Suppose (i) Var}[\mathbf{m}^{*}] > 0 \text{ and (ii) } \mathbf{R}^{*} = \alpha \text{ } \mathbf{m}^{*} \text{ with } \alpha > 0 \end{split}$$

$$E[R^{h}] - R^{f} = -Cov[R^{*}, R^{h}]/E[R^{*}]$$
 (2')

Define $\beta^h := Cov[R^*, R^h] / Var[R^*]$ for any portfolio *h*

10:37 Lecture 05

State-price Beta Model

4. State-price BETA Model

(2) for R^* : E[R^{*}]-R^f=-Cov[R^{*},R^{*}]/E[R^{*}] =-Var[R^{*}]/E[R^{*}] (2) for R^h : E[R^h]-R^f=-Cov[R^{*},R^h]/E[R^{*}] = - β^h Var[R^{*}]/E[R^{*}]

 $E[R^{h}] - R^{f} = \beta^{h} E[R^{*} - R^{f}]$ where $\beta^{h} := Cov[R^{*}, R^{h}]/Var[R^{*}]$ very general – but what is R^{*} in reality?

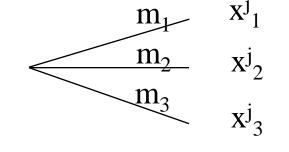
Regression $R_{s}^{h} = \alpha^{h} + \beta^{h} (R^{*})_{s} + \varepsilon_{s}$ with $Cov[R^{*},\varepsilon] = E[\varepsilon] = 0$

10:37 Lecture 05

State-price Beta Model

Four Asset Pricing Formulas

- 1. State prices
- 2. Stochastic discount factor



 $1 = \sum_{s} q_{s} R_{s}^{j}$

 $1 = E[mR^{j}]$

3. Martingale measure

 $1 = 1/(1+r^{f}) E_{\hat{\pi}}[R^{j}]$

(reflect risk aversion by
over(under)weighing the "bad(good)" states!)

4. State-price beta model $E[R^j] - R^f = \beta^j E[R^* - R^f]$ (in returns $R^j := x^j / p^j$) One Period Model Slide 2-66

What do we know about q, m, $\hat{\pi}$, R*?

• Main results so far

□Existence iff no arbitrage

- Hence, single factor only
 - but doesn't famos Fama-French factor model has 3 factors?
- wait for multi-period model)
- Uniqueness if markets are complete

10:37 Lecture 02

Different Asset Pricing Models

 $\begin{array}{ll} p_t = E[m_{t+1} \; x_{t+1}] & \Rightarrow & E[R^h] \text{ - } R^f = \beta^h \: E[R^* \text{ - } R^f] \\ \\ \text{where } m_{t+1} = f(\cdot, \ldots, \cdot) & \text{where } \beta^h := Cov[R^*, R^h] / Var[R^*] \end{array}$

 $f(\cdot) = asset pricing model$

7

General Equilibrium $f(\cdot) = MRS / \pi$

Factor Pricing Model

$$a+b_1 f_{1,t+1} + b_2 f_{2,t+1}$$

CAPM

$$a{+}b_1\;f_{1,t{+}1}{\,=\,}a{+}b_1\;R^M$$

CAPM

 $R^{*}=R^{f} (a+b_{1}R^{M})/(a+b_{1}R^{f})$ where R^{M} = return of market portfolio Is $b_{1} < 0$?
State-price Beta Model Slide 2-68

10:37 Lecture 05

Different Asset Pricing Models

• Theory

\Box All economics and modeling is determined by $m_{t+1} = a + b' f$

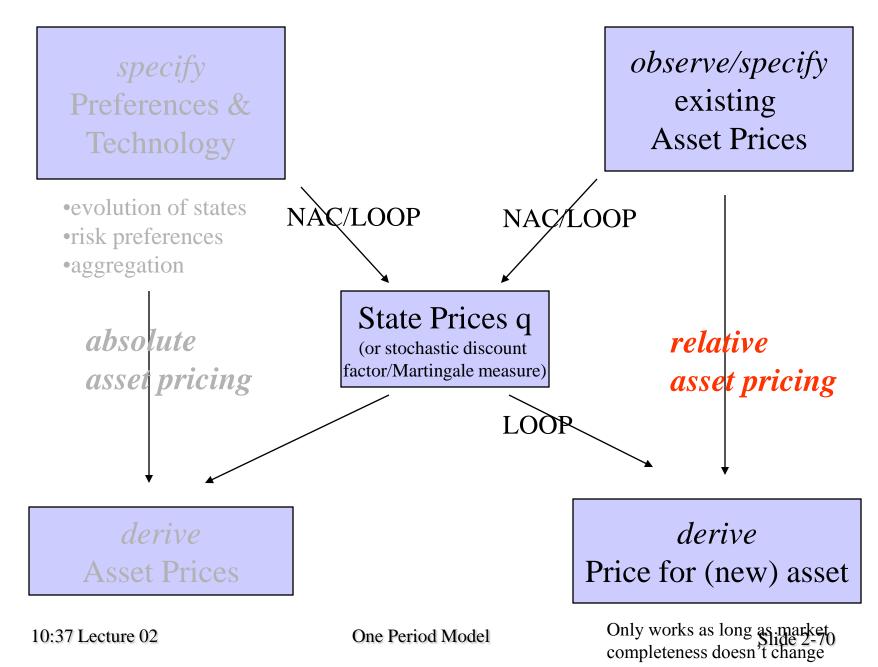
Dentire content of model lies in restriction of SDF

• Empirics

m* (which is a portfolio payoff) prices as well as m (which is e.g. a function of income, investment etc.)
measurement error of m* is smaller than for any m
Run regression on *returns* (portfolio payoffs)! (e.g. Fama-French three factor model)

10:37 Lecture 05

State-price Beta Model



Recovering State Prices from Option Prices

- Suppose that S_T , the price of the underlying portfolio (we may think of it as a proxy for price of "market portfolio"), assumes a "continuum" of possible values.
- Suppose there are a "continuum" of call options with different strike/exercise prices \Rightarrow markets are complete
- Let us construct the following portfolio: for some small positive number ε>0,
 □ Buy one call with E = Ŝ_T - δ/2 - ε
 □ Sell one call with E = Ŝ_T - δ/2
 □ Sell one call with E = Ŝ_T + δ/2
 □ Buy one call with E = Ŝ_T + δ/2 + ε

Recovering State Prices ... (ctd.)

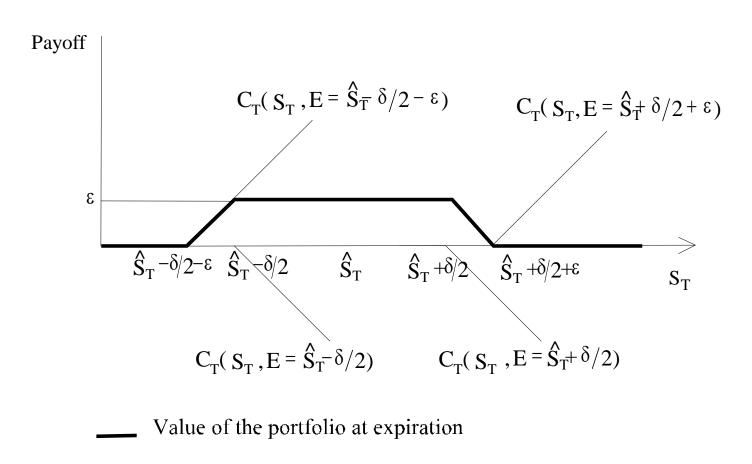


Figure 8-2 Payoff Diagram: Portfolio of Options

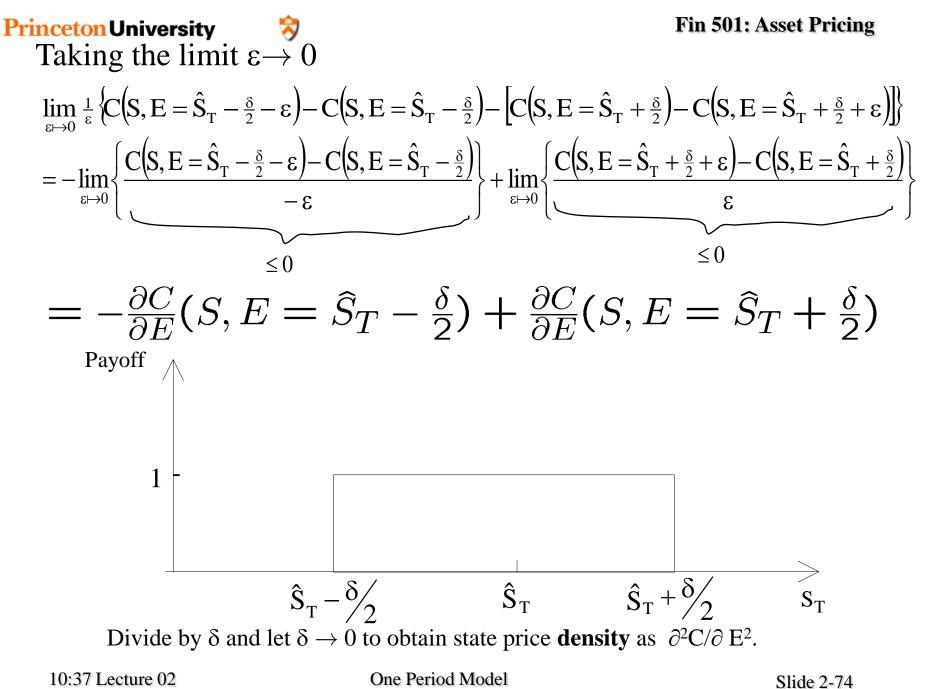
10:37 Lecture 02

Recovering State Prices ... (ctd.)

• Let us thus consider buying $\frac{1}{\epsilon}$ units of the portfolio. The total payment, when $\hat{S}_T - \frac{\delta}{2} \le S_T \le \hat{S}_T + \frac{\delta}{2}$, is $\epsilon \cdot \frac{1}{\epsilon} \equiv 1$, for any choice of ϵ . We want to let $\epsilon \mapsto 0$, so as to eliminate the payments in the ranges $S_T \in (\hat{S}_T - \frac{\delta}{2} - \epsilon, \hat{S}_T - \frac{\delta}{2})$ and $S_T \in (\hat{S}_T + \frac{\delta}{2}, \hat{S}_T + \frac{\delta}{2} + \epsilon)$. The value of $\frac{1}{\epsilon}$ units of this portfolio is :

$$\frac{1}{\varepsilon} \left\{ C\left(S, E = \hat{S}_{T} - \frac{\delta}{2} - \varepsilon \right) - C\left(S, E = \hat{S}_{T} - \frac{\delta}{2}\right) - \left[C\left(S, E = \hat{S}_{T} + \frac{\delta}{2}\right) - C\left(S, E = \hat{S}_{T} + \frac{\delta}{2} + \varepsilon \right) \right] \right\}$$

10:37 Lecture 02



10:37 Lecture 02

Recovering State Prices ... (ctd.)

Evaluating following cash flow

3

$$\tilde{CF}_{T} = \begin{cases} 0 \text{ if } S_{T} & \notin \left[\hat{S}_{T} - \frac{\delta}{2}, \hat{S}_{T} + \frac{\delta}{2}\right] \\ 50000 \text{ if } S_{T} & \in \left[\hat{S}_{T} - \frac{\delta}{2}, \hat{S}_{T} + \frac{\delta}{2}\right] \end{cases}.$$

The value today of this cash flow is :

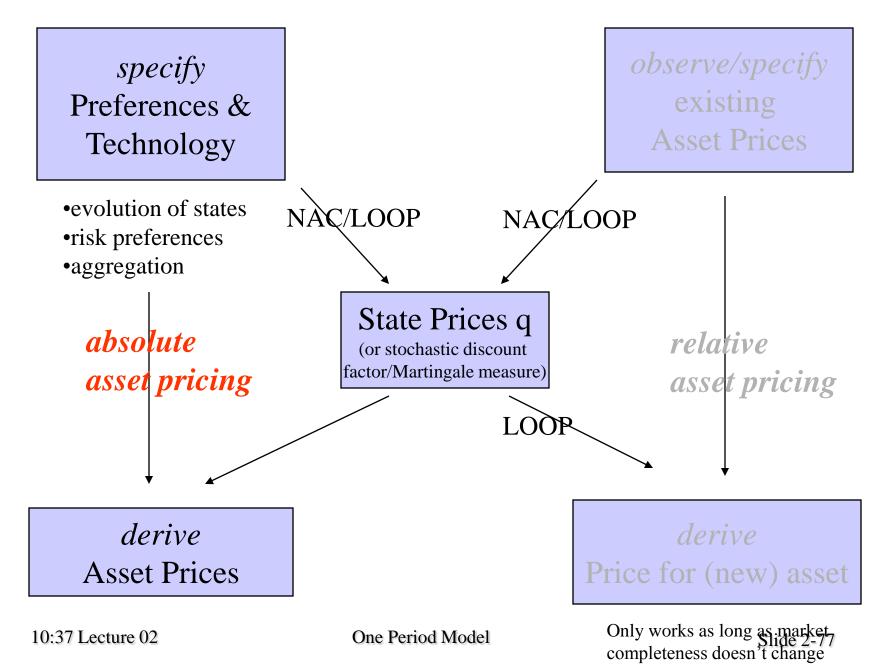
$$50000[\frac{\partial C}{\partial E}(S, E = \hat{S}_T + \frac{\delta}{2}) - \frac{\partial C}{\partial E}(S, E = \hat{S}_T - \frac{\delta}{2})]$$

$$q(S_T^1, S_T^2) = \frac{\partial C}{\partial E}(S, E = S_T^2) - \frac{\partial C}{\partial E}(S, E = S_T^1)$$

3

Table 8.1 Pricing an Arrow-Debreu State Claim

E	C(S,E)	Cost of	Payoff if $S_T =$								
		position	7	8	9	10	11	12	13	ΔC	$\Delta(\Delta C) = q_s$
7	3.354										
										-0.895	
8	2.459										0.106
										-0.789	
9	1.670	+1.670	0	0	0	1	2	3	4	0.707	0.164
										-0.625	
10	1.045	-2.090	0	0	0	0	-2	-4	-6		0.184
	0 - 60 - 6	0 - 60 - 6		0	0	0	0	_		-0.441	
11	0.604	+0.604	0	0	0	0	0	1	2	0.070	0.162
10	0.225									-0.279	0.110
12	0.325									0.161	0.118
13	0.164									-0.161	
15	0.104	0.184	0	0	0	1	0	0	0		



End of Lecture 02