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The MIPS Instruction Set 

•  Used as the example as introduction 
•  Stanford MIPS commercialized by MIPS 

Technologies (www.mips.com) 
•  Large share of embedded core market 

–  Applications in consumer electronics, network/storage 
equipment, cameras, printers, … 

–  Closed one to RISC-V 
•  Typical of many modern ISAs 

–  See MIPS Reference Data tear-out card, and Appendixes 
B and E in the reference textbook 
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Arithmetic Operations 

•  Add and subtract, three operands 
–  Two sources and one destination 
 add a, b, c  # a gets b + c 

•  All arithmetic operations have this form 

•  Design Principle 1: Simplicity favours regularity 
–  Regularity makes implementation simpler 
–  Simplicity enables higher performance at lower cost 
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Arithmetic Example 

•  C code: 

 f = (g + h) - (i + j); 

•  Compiled MIPS code: 

 add t0, g, h   # temp t0 = g + h 
add t1, i, j   # temp t1 = i + j 
sub f, t0, t1  # f = t0 - t1 
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Register Operands 

•  Arithmetic instructions use register operands 
•  MIPS has a 32 × 32-bit register file 

–  Use for frequently accessed data 
–  Numbered 0 to 31 
–  32-bit data called a �word� 

•  Assembler names 
–  $t0, $t1, …, $t9 for temporary values 
–  $s0, $s1, …, $s7 for saved variables 

•  Design Principle 2: Smaller is faster 
–  c.f. main memory: millions of locations 
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Register Operand Example 

•  C code: 
 f = (g + h) - (i + j); 
–  f, …, j in $s0, …, $s4 

•  Compiled MIPS code: 
 add $t0, $s1, $s2 
add $t1, $s3, $s4 
sub $s0, $t0, $t1 
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Memory Operands 
•  Main memory used for composite data 

–  Arrays, structures, dynamic data 
•  To apply arithmetic operations 

–  Load values from memory into registers 
–  Store result from register to memory 

•  Memory is byte addressed 
–  Each address identifies an 8-bit byte 

•  Words are aligned in memory 
–  Address must be a multiple of 4 

•  MIPS is Big Endian 
–  Most-significant byte at least address of a word 
–  c.f. Little Endian: least-significant byte at least address 
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Memory Operand Example 1 

•  C code: 
 g = h + A[8]; 
–  g in $s1, h in $s2, base address of A in $s3 

•  Compiled MIPS code: 
–  Index 8 requires offset of 32 

•  4 bytes per word 
 lw  $t0, 32($s3)    # load word 
add $s1, $s2, $t0 

offset	 base	register	
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Memory Operand Example 2 

•  C code: 
 A[12] = h + A[8]; 
–  h in $s2, base address of A in $s3 

•  Compiled MIPS code: 
–  Index 8 requires offset of 32 
 lw  $t0, 32($s3)    # load word 
add $t0, $s2, $t0 
sw  $t0, 48($s3)    # store word 
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Registers vs. Memory 
•  Registers are faster to access than memory 
•  Operating on memory data requires loads and stores 

–  More instructions to be executed 
•  Compiler must use registers for variables as much as 

possible 
–  Only spill to memory for less frequently used variables 
–  Register optimization is important! 
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Immediate Operands 

•  Constant data specified in an instruction 
 addi $s3, $s3, 4 

•  No subtract immediate instruction 
–  Just use a negative constant 
 addi $s2, $s1, -1 

•  Design Principle 3: Make the common case fast 
–  Small constants are common 
–  Immediate operand avoids a load instruction 
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The Constant Zero 

•  MIPS/RISC-V register 0 ($zero) is the constant 0 
–  Cannot be overwritten 

•  Useful for common operations 
–  E.g., move between registers 
 add $t2, $s1, $zero 
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Representing Instructions 

•  Instructions are encoded in binary 
–  Called machine code 

•  MIPS instructions 
–  Encoded as 32-bit instruction words 
–  Small number of formats encoding operation code 

(opcode), register numbers, … 
–  Regularity! 

•  Register numbers 
–  $t0 – $t7 are reg�s 8 – 15 
–  $t8 – $t9 are reg�s 24 – 25 
–  $s0 – $s7 are reg�s 16 – 23 
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MIPS R-format Instructions 

•  Instruction fields 
–  op: operation code (opcode) 
–  rs: first source register number 
–  rt: second source register number 
–  rd: destination register number 
–  shamt: shift amount (00000 for now) 
–  funct: function code (extends opcode) 

op rs rt rd shamt funct 
6 bits 6 bits 5 bits 5 bits 5 bits 5 bits 
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R-format Example 

 add $t0, $s1, $s2 

special $s1 $s2 $t0 0 add 

0 17 18 8 0 32 

000000 10001 10010 01000 00000 100000 

000000100011001001000000001000002	=	0232402016	

op rs rt rd shamt funct 
6 bits 6 bits 5 bits 5 bits 5 bits 5 bits 
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Hexadecimal 
•  Base 16 

–  Compact representation of bit strings 
–  4 bits per hex digit 

0 0000 4 0100 8 1000 c 1100 
1 0001 5 0101 9 1001 d 1101 
2 0010 6 0110 a 1010 e 1110 
3 0011 7 0111 b 1011 f 1111 

n  Example:	eca8	6420	
n  1110	1100	1010	1000	0110	0100	0010	0000	
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MIPS I-format Instructions 

•  Immediate arithmetic and load/store instructions 
–  rt: destination or source register number 
–  Constant: –215 to +215 – 1 
–  Address: offset added to base address in rs 

•  Design Principle 4: Good design demands good 
compromises 
–  Different formats complicate decoding, but allow 32-bit 

instructions uniformly 
–  Keep formats as similar as possible 

op rs rt constant or address 
6 bits 5 bits 5 bits 16 bits 
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Stored Program Computers 

•  Instructions represented in 
binary, just like data 

•  Instructions and data stored 
in memory 

•  Programs can operate on 
programs 
–  e.g., compilers, linkers, … 

•  Binary compatibility allows 
compiled programs to work 
on different computers 
–  Standardized ISAs 

The BIG Picture 
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Logical Operations 

•  Instructions for bitwise manipulation 

Operation C Java MIPS 
Shift left << << sll 

Shift right >> >>> srl 

Bitwise AND & & and, andi 

Bitwise OR | | or, ori 

Bitwise NOT ~ ~ nor 

n  Useful	for	extracFng	and	inserFng	groups	
of	bits	in	a	word	

§2.6 Logical O
perations 

20	



Shift Operations 

•  shamt: how many positions to shift  
•  Shift left logical 

–  Shift left and fill with 0 bits 
–  sll by i bits multiplies by 2i 

•  Shift right logical 
–  Shift right and fill with 0 bits 
–  srl by i bits divides by 2i (unsigned only) 

op rs rt rd shamt funct 
6 bits 6 bits 5 bits 5 bits 5 bits 5 bits 
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AND Operations 

•  Useful to mask bits in a word 
–  Select some bits, clear others to 0 

 and $t0, $t1, $t2 

0000 0000 0000 0000 0000 1101 1100 0000 

0000 0000 0000 0000 0011 1100 0000 0000 

$t2 

$t1 

0000 0000 0000 0000 0000 1100 0000 0000 $t0 
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OR Operations 

•  Useful to include bits in a word 
–  Set some bits to 1, leave others unchanged 

 or $t0, $t1, $t2 

0000 0000 0000 0000 0000 1101 1100 0000 

0000 0000 0000 0000 0011 1100 0000 0000 

$t2 

$t1 

0000 0000 0000 0000 0011 1101 1100 0000 $t0 
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NOT Operations 

•  Useful to invert bits in a word 
–  Change 0 to 1, and 1 to 0 

•  MIPS has NOR 3-operand instruction 
–  a NOR b == NOT ( a OR b ) 

 nor $t0, $t1, $zero 

0000 0000 0000 0000 0011 1100 0000 0000 $t1 

1111 1111 1111 1111 1100 0011 1111 1111 $t0 

Register	0:	always	
read	as	zero	

24	



Conditional Operations 
•  Branch to a labeled instruction if a condition is true 

–  Otherwise, continue sequentially 
•  beq rs, rt, L1 

–  if (rs == rt) branch to instruction labeled L1; 
•  bne rs, rt, L1 

–  if (rs != rt) branch to instruction labeled L1; 
•  j L1 

–  unconditional jump to instruction labeled L1 

§2.7 Instructions for M
aking D

ecisions 
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Compiling If Statements 
•  C code: 

 if (i==j) f = g+h; 
else f = g-h; 

–  f, g, … in $s0, $s1, … 
•  Compiled MIPS code: 

       bne $s3, $s4, Else 
      add $s0, $s1, $s2 
      j   Exit 
Else: sub $s0, $s1, $s2 
Exit: … 

Assembler	calculates	addresses	
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Compiling Loop Statements 
•  C code: 
 while (save[i] == k) i += 1; 

–  i in $s3, k in $s5, address of save in $s6 
•  Compiled MIPS code: 

 Loop: sll  $t1, $s3, 2 /* x4 */      
    add  $t1, $t1, $s6 
      lw   $t0, 0($t1) 
      bne  $t0, $s5, Exit 
      addi $s3, $s3, 1 
      j    Loop 
Exit: … 
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More Conditional Operations 

•  Set result to 1 if a condition is true 
–  Otherwise, set to 0 

•  slt rd, rs, rt 
–  if (rs < rt) rd = 1; else rd = 0; 

•  slti rt, rs, constant 
–  if (rs < constant) rt = 1; else rt = 0; 

•  Use in combination with beq, bne 
 slt $t0, $s1, $s2  # if ($s1 < $s2) 
bne $t0, $zero, L  #   branch to L 
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Branch Addressing 

•  Branch instructions specify 
–  Opcode, two registers, target address 

•  Most branch targets are near branch 
–  Forward or backward 

op rs rt constant or address 
6 bits 5 bits 5 bits 16 bits 

n  PC-relaFve	addressing	
n  Target	address	=	PC	+	offset	×	4	

n  PC	already	incremented	by	4	by	this	Fme	
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Jump Addressing 

•  Jump (j and jal) targets could be anywhere in text 
segment 
–  Encode full address in instruction 

op address 
6 bits 26 bits 

n  (Pseudo)Direct	jump	addressing	
n  Target	address	=	PC31…28	:	(address	×	4)	
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Target Addressing Example 

•  Loop code from earlier example 
–  Assume Loop at location 80000 

Loop: sll  $t1, $s3, 2 80000 0 0 19 9 4 0 

      add  $t1, $t1, $s6 80004 0 9 22 9 0 32 

      lw   $t0, 0($t1) 80008 35 9 8 0 

      bne  $t0, $s5, Exit 80012 5 8 21 2 

      addi $s3, $s3, 1 80016 8 19 19 1 

      j    Loop 80020 2 20000 

Exit: … 80024 
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Addressing Mode Summary 
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C Sort Example 
•  Illustrates use of assembly instructions for a C 

bubble sort function 
•  Swap procedure (leaf) 

 void swap(int v[], int k) 
{ 
  int temp; 
  temp = v[k]; 
  v[k] = v[k+1]; 
  v[k+1] = temp; 
} 

–  v in $a0, k in $a1, temp in $t0 

§2.13 A C
 S

ort E
xam

ple to P
ut It A

ll Together 
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The Procedure Swap 
swap: sll $t1, $a1, 2   # $t1 = k * 4 

      add $t1, $a0, $t1 # $t1 = v+(k*4) 

                        #   (address of v[k]) 

      lw $t0, 0($t1)    # $t0 (temp) = v[k] 

      lw $t2, 4($t1)    # $t2 = v[k+1] 

      sw $t2, 0($t1)    # v[k] = $t2 (v[k+1]) 

      sw $t0, 4($t1)    # v[k+1] = $t0 (temp) 

      jr $ra            # return to calling routine 

 

 

void swap(int v[], int k) 
{ 
  int temp; 
  temp = v[k]; 
  v[k] = v[k+1]; 
  v[k+1] = temp; 
} 
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The Sort Procedure in C 
•  Non-leaf (calls swap) 

 void sort (int v[], int n) 
 { 
   int i, j; 
   for (i = 0; i < n; i += 1) { 
     for (j = i – 1; 
          j >= 0 && v[j] > v[j + 1]; 
          j -= 1) { 
       swap(v,j); 
     } 
   } 
 } 

–  v in $a0, k in $a1, i in $s0, j in $s1 
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The Procedure Body 
         move $s2, $a0           # save $a0 into $s2 

         move $s3, $a1           # save $a1 into $s3 
         move $s0, $zero         # i = 0 

for1tst: slt  $t0, $s0, $s3      # $t0 = 0 if $s0 ≥ $s3 (i ≥ n) 

         beq  $t0, $zero, exit1  # go to exit1 if $s0 ≥ $s3 (i ≥ n) 
         addi $s1, $s0, –1       # j = i – 1 

for2tst: slti $t0, $s1, 0        # $t0 = 1 if $s1 < 0 (j < 0) 
         bne  $t0, $zero, exit2  # go to exit2 if $s1 < 0 (j < 0) 

         sll  $t1, $s1, 2        # $t1 = j * 4 

         add  $t2, $s2, $t1      # $t2 = v + (j * 4) 
         lw   $t3, 0($t2)        # $t3 = v[j] 

         lw   $t4, 4($t2)        # $t4 = v[j + 1] 

         slt  $t0, $t4, $t3      # $t0 = 0 if $t4 ≥ $t3 
         beq  $t0, $zero, exit2  # go to exit2 if $t4 ≥ $t3 

         move $a0, $s2           # 1st param of swap is v (old $a0) 

         move $a1, $s1           # 2nd param of swap is j 
         jal  swap               # call swap procedure 

         addi $s1, $s1, –1       # j –= 1 
         j    for2tst            # jump to test of inner loop 

exit2:   addi $s0, $s0, 1        # i += 1 

         j    for1tst            # jump to test of outer loop 

Pass	
params	
&	call	

Move	
params	

Inner	loop	

Outer	loop	

Inner	loop	

Outer	loop	

36	



sort:    addi $sp,$sp, –20      # make room on stack for 5 registers 

         sw $ra, 16($sp)        # save $ra on stack 

         sw $s3,12($sp)         # save $s3 on stack 

         sw $s2, 8($sp)         # save $s2 on stack 

         sw $s1, 4($sp)         # save $s1 on stack 

         sw $s0, 0($sp)         # save $s0 on stack 

         …                      # procedure body 

         … 

         exit1: lw $s0, 0($sp)  # restore $s0 from stack 

         lw $s1, 4($sp)         # restore $s1 from stack 

         lw $s2, 8($sp)         # restore $s2 from stack 

         lw $s3,12($sp)         # restore $s3 from stack 

         lw $ra,16($sp)         # restore $ra from stack 

         addi $sp,$sp, 20       # restore stack pointer 

         jr $ra                 # return to calling routine 

The Full Procedure 
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Arrays vs. Pointers 

•  Array indexing involves 
–  Multiplying index by element size 
–  Adding to array base address 

•  Pointers correspond directly to memory addresses 
–  Can avoid indexing complexity 

§2.14 A
rrays versus P

ointers 
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Example: Clearing and Array 

clear1(int array[], int size) { 
  int i; 
  for (i = 0; i < size; i += 1) 
    array[i] = 0; 
} 

clear2(int *array, int size) { 
  int *p; 
  for (p = &array[0]; p < &array[size]; 
       p = p + 1) 
    *p = 0; 
} 

       move $t0,$zero   # i = 0 

loop1: sll $t1,$t0,2    # $t1 = i * 4 

       add $t2,$a0,$t1  # $t2 = 

                        #   &array[i] 

       sw $zero, 0($t2) # array[i] = 0 

       addi $t0,$t0,1   # i = i + 1 

       slt $t3,$t0,$a1  # $t3 = 

                        #   (i < size) 

       bne $t3,$zero,loop1 # if (…) 

                           # goto loop1 

       move $t0,$a0    # p = & array[0] 

       sll $t1,$a1,2   # $t1 = size * 4 

       add $t2,$a0,$t1 # $t2 = 

                       #   &array[size] 

loop2: sw $zero,0($t0) # Memory[p] = 0 

       addi $t0,$t0,4  # p = p + 4 

       slt $t3,$t0,$t2 # $t3 = 

                       #(p<&array[size]) 

       bne $t3,$zero,loop2 # if (…) 

                           # goto loop2 
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Comparison of Array vs. Ptr 

•  Multiply �strength reduced� to shift 
•  Array version requires shift to be inside loop 

–  Part of index calculation for incremented i 
–  c.f. incrementing pointer 

•  Compiler can achieve same effect as manual use of 
pointers 
–  Induction variable elimination 
–  Better to make program clearer and safer 
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Summary 

Instruction class MIPS examples SPEC2006 Int SPEC2006 FP 
Arithmetic add, sub, addi 16% 48% 

Data transfer lw, sw, lb, lbu, 
lh, lhu, sb, lui 

35% 36% 

Logical and, or, nor, andi, 
ori, sll, srl 

12% 4% 

Cond. Branch beq, bne, slt, 
slti, sltiu 

34% 8% 

Jump j, jr, jal 2% 0% 
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Backup	
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ARM & MIPS Similarities 
•  ARM: the most popular embedded core 
•  Similar basic set of instructions to MIPS 

§2.16 R
eal S

tuff: A
R

M
 Instructions 

ARM MIPS 
Date announced 1985 1985 
Instruction size 32 bits 32 bits 
Address space 32-bit flat 32-bit flat 
Data alignment Aligned Aligned 
Data addressing modes 9 3 
Registers 15 × 32-bit 31 × 32-bit 
Input/output Memory 

mapped 
Memory 
mapped 
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Compare and Branch in ARM 

•  Uses condition codes for result of an arithmetic/logical 
instruction 
–  Negative, zero, carry, overflow 
–  Compare instructions to set condition codes without 

keeping the result 
•  Each instruction can be conditional 

–  Top 4 bits of instruction word: condition value 
–  Can avoid branches over single instructions 
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Instruction Encoding 
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The Intel x86 ISA 

•  Evolution with backward compatibility 
–  8080 (1974): 8-bit microprocessor 

•  Accumulator, plus 3 index-register pairs 
–  8086 (1978): 16-bit extension to 8080 

•  Complex instruction set (CISC) 
–  8087 (1980): floating-point coprocessor 

•  Adds FP instructions and register stack 
–  80286 (1982): 24-bit addresses, MMU 

•  Segmented memory mapping and protection 
–  80386 (1985): 32-bit extension (now IA-32) 

•  Additional addressing modes and operations 
•  Paged memory mapping as well as segments 

§2.17 R
eal S

tuff: x86 Instructions 
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The Intel x86 ISA 
•  Further evolution… 

–  i486 (1989): pipelined, on-chip caches and FPU 
•  Compatible competitors: AMD, Cyrix, … 

–  Pentium (1993): superscalar, 64-bit datapath 
•  Later versions added MMX (Multi-Media eXtension) instructions 
•  The infamous FDIV bug 

–  Pentium Pro (1995), Pentium II (1997) 
•  New microarchitecture (see Colwell, The Pentium Chronicles) 

–  Pentium III (1999) 
•  Added SSE (Streaming SIMD Extensions) and associated registers 

–  Pentium 4 (2001) 
•  New microarchitecture 
•  Added SSE2 instructions 
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The Intel x86 ISA 
•  And further… 

–  AMD64 (2003): extended architecture to 64 bits 
–  EM64T – Extended Memory 64 Technology (2004) 

•  AMD64 adopted by Intel (with refinements) 
•  Added SSE3 instructions 

–  Intel Core (2006) 
•  Added SSE4 instructions, virtual machine support 

–  AMD64 (announced 2007): SSE5 instructions 
•  Intel declined to follow, instead… 

–  Advanced Vector Extension (announced 2008) 
•  Longer SSE registers, more instructions 

•  If Intel didn�t extend with compatibility, its 
competitors would! 
–  Technical elegance ≠ market success 
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Basic x86 Registers 
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Basic x86 Addressing Modes 

•  Two operands per instruction 
Source/dest operand Second source operand 

Register Register 
Register Immediate 
Register Memory 
Memory Register 
Memory Immediate 

n  Memory	addressing	modes	
n  Address	in	register	

n  Address	=	Rbase	+	displacement	

n  Address	=	Rbase	+	2scale	×	Rindex	(scale	=	0,	1,	2,	or	3)	

n  Address	=		Rbase	+	2scale	×	Rindex	+	displacement	
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x86 Instruction Encoding 

•  Variable length encoding 
–  Postfix bytes specify 

addressing mode 
–  Prefix bytes modify 

operation 
•  Operand length, 

repetition, locking, … 
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Implementing IA-32 

•  Complex instruction set makes implementation difficult 
–  Hardware translates instructions to simpler 

microoperations 
•  Simple instructions: 1–1 
•  Complex instructions: 1–many 

–  Microengine similar to RISC 
–  Market share makes this economically viable 

•  Comparable performance to RISC 
–  Compilers avoid complex instructions 
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