Lecture 04-06: Programming with
OpenMP

Concurrent and Multicore Programming, CSE536

Department of Computer Science and Engineering
Yonghong Yan
yan@oakland.edu
www.secs.oakland.edu/~yan

Topics (Part 1)

* |Introduction

* Programming on shared memory system (Chapter 7)
@ OpenMP

* Principles of parallel algorithm design (Chapter 3)

®* Programming on shared memory system (Chapter 7)
— Cilk/Cilkplus (?)
— PThread, mutual exclusion, locks, synchronizations
* Analysis of parallel program executions (Chapter 5)
— Performance Metrics for Parallel Systems
* Execution Time, Overhead, Speedup, Efficiency, Cost

— Scalability of Parallel Systems
— Use of performance tools

Outline

OpenMP Introduction

Parallel Programming with OpenMP
— OpenMP parallel region, and worksharing
— OpenMP data environment, tasking and synchronization

OpenMP Performance and Best Practices
More Case Studies and Examples
Reference Materials

What is OpenMP

* Standard API to write shared memory parallel applications
in C, C++, and Fortran
— Compiler directives, Runtime routines, Environment variables

* OpenMP Architecture Review Board (ARB)
— Maintains OpenMP specification

— Permanent members

* AMD, Cray, Fujitsu, HP, IBM, Intel, NEC, PGlI, Oracle,
Microsoft, Texas Instruments, NVIDIA, Convey

— Auxiliary members

* ANL, ASC/LLNL, cOMPunity, EPCC, LANL, NASA, TACC, RWTH
Aachen University, UH

— http://www.openmp.org
* Latest Version 4.5 released Nov 2015

My role with OpenMP

Members

Permanent Members of the ARB:

AMD (Greg Stoner)

Convey Computer (Kirby Collins)
Cray (James Beyer/Luiz DeRose)
Fujitsu (Eiji Yamanaka)

HP (Sujoy Saraswati)

IBM (Kelvin Li)

Intel (Xinmin Tian)

NEC (Kazuhiro Kusano)

NVIDIA (Jeff Larkin)

Oracle Corporation (Nawal Copty)
Red Hat (Matt Newsome)

ST Microelectronics (Christian Bertin)
Texas Instruments (Andy Fritsch)

Auxiliary Members of the ARB:

ANL (Kalyan Kumaran)

ASC/LLNL (Bronis R. de Supinski)

BSC (Xavier Martorell)

cOMPunity (Barbara Chapman/Yonghong Yan)
EPCC (Mark Bull)

LANL (David Montoya)

NASA (Henry Jin)

ORNL (Oscar Hernandez)

RWTH Aachen University (Dieter an Mey)
SNL-Sandia National Lab (Stephen Olivier)

Texas Advanced Computing Center (Kent Milfeld)
University of Houston (Barbara Chapman/Deepak Eachempati)

OpenMP

http://www.openmp.org

“Hello Word” Example/1

#include <stdlib.h>
#include <stdio.h>

int main(int argc, char *argv[]) {

printf ("Hello World\n");

return (0) ;

“Hello Word” - An Example/2

#include <stdlib.h>
#include <stdio.h>

int main(int argc, char *argv[]) {
#pragma omp parallel
{ printf ("Hello World\n") ;
} // End of parallel region

return (0) ;

“Hello Word” - An Example/3

$ gcc —fopenmp hello.c

$ export OMP NUM THREADS=2
S ./a.

out

Hello World

Hello

$ export OMP NUM THREADS=4
$./a.

Hello
Hello
Hello
Hello

S

World

out

World
World
World
World

#include <stdlib.h>
#include <stdio.h>

int main(int argc, char *argv[]) {
#pragma omp parallel
{ printf ("Hello World\n") ;
} // End of parallel region

return (0) ;

}

OpenMP Components

Directives

Parallel region
Worksharing constructs
Tasking

Offloading

Affinity

Error Handing

SIMD

Synchronization

Data-sharing attributes

Runtime Environment

e Number of threads
Thread ID

e Dynamic thread
adjustment

* Nested parallelism
* Schedule

* Active levels

* Thread limit

* Nesting level

* Ancestor thread

* Team size

* Locking

e Wallclock timer

Environment Variable

Number of threads
Scheduling type

Dynamic thread
adjustment

Nested parallelism
Stacksize

|dle threads
Active levels

Thread limit

“Hello Word” - An Example/3

#include <stdlib.h>

#include <stdio.h>
#include
\

int main(int a(gc, char *argv[]) {

#pragma omp parallei::jk —————————————————— Directives

1
int thread id pe omp get thread num() ;
int num threads = omp get num threads(
\

printf ("Hello World from thread %d of %d\n",
thread id, num threads)\;
} \ \
\ \
\ \

return (0) ; A -
} Runtime Environment

“Hello Word” - An Example/4

$

$ gcc —fopenmp helloomp.c -0 helloomp

$ 1ls helloomp
helloomp

$
$ exportCOMP_NUM

-
s [/

Environment Variable

A
_THREADS=2 ¥~ -

$./helloomp

Hello World from thread 1 of 2

Hello World from thread 0 of 2,'
/

$

$ expo r@NUM_THREAD&D‘

$./helloom
Hello World from
Hello World from
Hello World from
Hello World from
$

$ export OMP_NUM
$./helloomp
Hello World from
Hello World from
Hello World from
Hello World from

thread 0@ of
thread 1 of
thread 3 of
thread 2 of

_THREADS=4

thread 1 of
thread 2 of
thread 3 of
thread 0 of

N e S =

S S S

Environment Variable: it is similar to
program arguments used to change
the configuration of the execution
without recompile the program.

NOTE: the order of print

11

The Design Principle Behind

{

Each printf iS a task int thread id = omp get thread num();

int num_ threads = omp get num threads()

printf ("Hello World from thread %d of %d\n",
thread id, num threads) ;

}

A parallel region is to claim a set of cores for computation
— Cores are presented as multiple threads

Each thread execute a single task
— Task id is the same as thread id
e omp_get_thread num()
— Num_tasks is the same as total number of threads
« omp_get_num_threads()

1:1 mapping between task and thread
— Every task/core do similar work in this simple example

12

OpenMP Parallel Computing Solution Stack

User layer

Prog. Layer
(OpenMP API)

Runtime library

OS/system

System layer

13

OpenMP Syntax

* Most OpenMP constructs are compiler directives using
pragmas.

— For C and C++, the pragmas take the form:
#pragma ...

®* pragma vs language
— pragma is not language, should not express logics

— To provide compiler/preprocessor additional
information on how to processing directive-
annotated code

— Similar to #include, #tdefine

14

OpenMP Syntax

* For Cand C++, the pragmas take the form:
#pragma omp construct [clause [clause]..]

®* For Fortran, the directives take one of the forms:
— Fixed form
*SOMP construct [clause [clause]..]
CSOMP construct [clause [clause]..]
— Free form (but works for fixed form too)
1SOMP construct [clause [clause]..]

* Include file and the OpenMP lib module

#include <omp.h>
use omp lib

15

OpenMP Compiler

* OpenMP: thread programming at “high level”.
— The user does not need to specify the details
* Program decomposition, assignment of work to threads
* Mapping tasks to hardware threads

* User makes strategic decisions

* Compiler figures out details

— Compiler flags enable OpenMP (e.g. —openmp, -xopenmp, -
fopenmp, -mp)

16

OpenMP Memory Model

v All threads have access to the
same, globally shared, memory

v Data can be shared or private

v Shared data is accessible by all
threads

v Private data can only be
accessed by the thread that
owns it

v Data transfer is transparent to
the programmer

v Synchronization takes place,
but it is mostly implicit

17

OpenMP Fork-Join Execution Model

Master thread spawns multiple worker threads as
needed, together form a team

Parallel region is a block of code executed by all
threads in a team simultaneously

Fork Join
\ l
!
\
Master thread \ K
\\ 0_\ I’
/ ’ ‘\ /’ \ " ¢ >
-~ ~ -~ N -~ ~
4\5 . /—/ \\5 . /,¢H\~ _/,>_

Worker threads

\ ! / A Nested
Parallel Regions Parallel region

18

OpenMP Parallel Regions

* |n C/C++: a block is a single statement or a group of statement

between { }
#pragma omp parallel #pragma omp parallel for
{ for(i=0;i<N;i++) {
id = omp_get_thread _num(); res[i] = big_calc(i);
res[id] = lots_of work(id); A[i] = BJi] + res]i];
} }

* In Fortran: a block is a single statement or a group of statements
between directive/end-directive pairs.

C$OMP PARALLEL C$OMP PARALLEL DO
10 wrk(id) = garbage(id) do i=1,N
res(id) = wrk(id)**2 res(i)=bigComp(i)
if(.not.conv(res(id)) goto 10 end do

C$SOMP END PARALLEL C$OMP END PARALLEL DO

19

Scope of OpenMP Region

A parallel region can span multiple source files.

bar.f
foo.f
C$OMP PARALLEL subroutine whoami
call whoami + external omp _get thread num
C$OMP END PARALLEL] integer iam, omp_get_thread_num

iam = omp_get thread num()
\ / C$OMP CRITICAL
lexical Dynamic extent print*,” Hello froN
extent of of parallel region C$OMP END CRITICAL—>
pargllel includes /exical return
region extent

Orphaned directives
can appear outside a
end parallel construct

20

SPMD Program Models

°* SPMD (Single Program, Multiple Data) for parallel regions
— All threads of the parallel region execute the same code
— Each thread has unique ID

* Use the thread ID to diverge the execution of the threads

— Different thread can follow different paths through the same
code

if(lmy_id==x){ }
else{ }

* SPMD is by far the most commonly used pattern for
structuring parallel programs
— MPI, OpenMP, CUDA, etc

21

Modify the Hello World Program so ...

°* Only one
— gcc —fof

#pragma omp parallel
{

}

int thread id = omp get thread num();
int num threads = omp get num threads();

if (thread id == 0)
printf ("Hello World from thread %d of %d\n",
thread id, num threads);
else printf("Hello World from thread %d\n",
thread id);

®* Only one thread read the total number of threads and all
threads print that inf¢ int num_threads = 99999;

#pragma omp parallel

{
int thread id = omp get thread num();

if (thread id == 0)
num threads = omp get num threads() ;

#pragma omp barrier

printf ("Hello World from thread %d of %d\n",
thread id, num_ threads);

Time

e

Active

Waiting

~ L

Barrier

#pragma omp barrier

PO P1 P2

Pn-1

Barrier l

l
i i

23

OpenMP Master

* Denotes a structured block executed by the master
thread

®* The other threads just skip it
— no synchronization is implied

#pragma omp parallel private (tmp)

{
do_many_things_together();

#pragma omp master
{ exchange boundaries by master only (); }

#pragma barrier
do_many_ other things together();

}

24

OpenMP Single

* Denotes a block of code that is executed by only one
thread.

— Could be master
* A barrieris implied at the end of the single block.

#pragma omp parallel private (tmp)

{
do_many things together();

#pragma omp single
{ exchange boundaries by one(); }

do_many_other things together();

}

25

Using omp master/single to

modify the Hello World Program so ...

* Only one thread prints the total number of threads

#pragma omp parallel
{

int thread id = omp get thread num();
int num_ threads = omp get num threads()

printf ("Hello World from thread %d of %d\n",
thread id, num threads);
}

®* Only one thread read the total number of threads and all
threads print that info

26

Distributing Work Based on Thread |
96 0[0 0 o -
RN

Sequential code for(i=0;i<N;i++) { a[i] = a[i] + bl[i]; }

cat /proc/cpuinfo

#pragma omp parallel shared (a, b)

{
int id, 1, Nthrds, istart, iend;
OpenMP parallel id = omp_get_thread_num();
region Nthrds = omp get num threads();

istart = id * N / Nthrds;
iend = (id+1) * N / Nthrds;

for(i=istart;i<iend;i++) { a[i] = a[i] + b[i]; }

27

Implementing axpy using OpenMP parallel

28

OpenMP Worksharing Constructs

* Divides the execution of the enclosed code region among
the members of the team

* The “for” worksharing construct splits up loop iterations
among threads in a team
— Each thread gets one or more “chunk” ->loop chuncking

#pragma omp parallel
#pragma omp for
for(i=0;i<N;i++){

work(i);
} By default, there is a barrier at the end of the “omp
for”. Use the “nowait” clause to turn off the barrier.

#pragma omp for nowait

“nowait” is useful between two consecutive,

independent omp for loops.
29

Sequential code

OpenMP parallel
region

OpenMP parallel
region and a
worksharing for
construct

Worksharing Constructs

for(i=0;i<N;i++) { a[i] = a[i] + b[i]; }

#pragma omp parallel shared (a, b)

{

int id, i, Nthrds, istart, iend;

id = omp_get _thread _num();

Nthrds = omp_get num_threads();

istart = id * N / Nthrds;

iend = (id+1) * N / Nthrds;
for(i=istart;i<iend;i++) { a[i] = a[i] + b[i]; }

#pragma omp parallel shared (a, b) private (i)
#pragma omp for schedule(static)
for(i=0;i<N;i++) { a[i] = ali] + bl[i]; }

30

OpenMP schedule Clause

* schedule (static | dynamic | guided [, chunk])
* schedule (auto | runtime)

static Distribute iterations in blocks of size "chunk" over the
threads in a round-robin fashion

dynamic | Fixed portions of work; size is controlled by the value of
chunk; When a thread finishes, it starts on the next portion of work

guided Same dynamic behavior as "dynamic", but size of the portion
of work decreases exponentially

auto The compiler (or runtime system) decides what is best to use;
choice could be implementation dependent

runtime | Iteration scheduling scheme is set at runtime through
environment variable OMP_SCHEDULE

31

OpenMP Sections

* Worksharing construct
* @Gives a different structured block to each thread

#pragma omp parallel

#pragma omp sections

{

#pragma omp section
x_calculation();

#pragma omp section
y_calculation();

#pragma omp section
z_calculation();

}

By default, there is a barrier at the end of the “omp sections”.

Use the “nowait” clause to turn off the barrier.

32

Loop Collapse

* Allows parallelization of perfectly nested loops without
using nested parallelism

* The collapse clause on for/do loop indicates how many
loops should be collapsed

ISomp parallel do collapse(2) ...
doi=il iu,is
doj=ijl,ju,js
do k = ki, ku, ks

end do
ISomp end parallel do

33

Exercise: OpenMP Matrix Multiplication

* Parallel version

* Parallel for version
— Experiment different schedule policy and chunk size
e #omp pragma parallel for
— Experiment collapse(2)

#pragma omp parallel shared (a, b) private (i)
#pragma omp for schedule(static)
for(i=0;i<N;i++) { a[i] = ali] + Dbl[i]; }

#pragma omp parallel for schedule(static) private (i)
num_threads(num_ths)

for(i=0;i<N;i++) { a[i] = a[i] + b[i]; }

Barrier

* Barrier: Each thread waits until all threads arrive.

#pragma omp parallel shared (A, B, C) private(id)
{

id=omp_get thread _num();

A[id] = big_calc1(id);
#pragma omp barrier
#pragma omp for

for(i=0;i<N:i++){C[i]=big_calc3(l,A)} <
#pragma omp for nowait

for(i=0;i<N;i++){ B[i]=big_calc2(C, i); }

AJid] = big_calc3(id); T~

}\ implicit barrier at the end no implicit barrier
of a parallel region due to nowait

implicit barrier at the
end of a for work-
sharing construct

Data Environment

* Most variables are shared by default

* Global variables are SHARED among threads

— Fortran: COMMON blocks, SAVE variables, MODULE
variables

— C: File scope variables, static

® But not everything is shared...

— Stack variables in sub-programs called from parallel regions
are PRIVATE

— Automatic variables defined inside the parallel region are
PRIVATE.

36

OpenMP Data Environment

double a[size][size], ;
#pragma omp parallel private (1)

shared data
a[size][size]
private data private data private data private data

TO T1 T2 TS\

b becomes undefined

37

OpenMP Data Environment

program sort subroutine work (index)
common /input/ A(10) common /input/ A(10)
integer index(10) integer index(*)

C$OMP PARALLEL real (10)
call work (index) integer count

C$OMP END PARALLEL save count

print*, index(1) .

A, index and count are
shared by all threads. | |

is local to each
thread | | |

A, index, count
38

Data Environment:
Changing storage attributes

* Selectively change storage attributes constructs using
the following clauses

— SHARED

— PRIVATE

— FIRSTPRIVATE
— THREADPRIVATE

* The value of a private inside a parallel loop and global
value outside the loop can be exchanged with
— FIRSTPRIVATE, and LASTPRIVATE

* The default status can be modified with:
— DEFAULT (PRIVATE | SHARED | NONE)

39

OpenMP Private Clause

* private(var) creates a local copy of var for each
thread.
— The value is uninitialized
— Private copy is not storage-associated with the original
— The original is undefined at the end

IS=0
C$OMP PARALLEL DO PRIVATE(IS)
DO J=1,1000
IS=IS+J
END DO
C$OMP END PARALLEL DO
print *, IS

40

OpenMP Private Clause

* private(var) creates a local copy of var for each

thread.

— The value is uninitialized
— Private copy is not storage-associated with the original
— The original is undefined at the end

IS=0

CSOMP PARALLEL DO PRIVATE(IS)

DO J=1,1000
IS=IS+J
END DO
C$OMP END PAR
print *, IS

IS was not
—nitialized

ALLEL DO

|S is undefined
here

41

Firstprivate Clause

* firstprivate is a special case of private.

— Initializes each private copy with the corresponding value
from the master thread.

IS=0
C$OMP PARALLEL DO FIRSTPRIVATE(IS)
DO 20 J=1,1000
IS=IS+J
20 CONTINUE
C$OMP END PARALLEL DO
print *, IS

42

Firstprivate Clause

* firstprivate is a special case of private.

— Initializes each private copy with the corresponding value
from the master thread.

IS=0
CSOMP PARALLEL DO FIRSTPRIVATE(IS)

DO 20 J=1,1000
IS = 1S+ J

20 CONTINUE

C$OMP END PARALLEY DO Each thread gets its own IS

print *, IS with an initial value of O

egardless of initialization, IS is
undefined at this point

43

Lastprivate Clause

* Lastprivate passes the value of a private from the last
iteration to the variable of the master thread

IS=0
C$OMP PARALLEL DO FIRSTPRIVATE(IS)
CSOMP& LASTPRIVATE(IS) . .
DO 20 J=1,1000 Is this code meaningful?

IS=1S +J

0CONTINUE ———— gets its own IS |

C$OMP END PARALLEL DO _ ezl
print *, IS with an initial value of O

\

|S is defined as its value at the last |

iteration (i.e. for J=1000)

44

OpenMP Reduction

e Here is the correct way to parallelize this code.

IS=0
C$OMP PARALLEL DO REDUCTION(+:1S)
DO 20 J=1,1000
IS=I1S+J
20 CONTINUE
print *, IS

Reduction NOT implies firstprivate,
where is the initial 0 comes from?

45

Reduction operands/initial-values

* Associative operands used with reduction

* |nitial values are the ones that make sense
mathematically

Operand | Initial value
+ 0
* 1
- 0
AND. All1's

Operand | Initial value
OR. 0
MAX 1
MIN 0

/l All0’ s

46

Exercise: OpenMP Sum.c

* Two versions
— Parallel for with reduction
— Parallel version, not using “omp for” or “reduction” clause

47

OpenMP Threadprivate

* Makes global data private to a thread, thus crossing
parallel region boundary
— Fortran: COMMON blocks
— C: File scope and static variables

* Different from making them PRIVATE
— With PRIVATE, global variables are masked.

— THREADPRIVATE preserves global scope within each
thread

* Threadprivate variables can be initialized using
COPYIN or by using DATA statements.

48

Threadprivate/copyin

You initialize threadprivate data using a copyin clause.

parameter (N=1000)
common/buf/A(N)
C$OMP THREADPRIVATE(/buf/)

C Initialize the A array
call init_data(N,A)

C$SOMP PARALLEL COPYIN(A)
... Now each thread sees threadprivate array A initialized

... to the global value set in the subroutine init_data()
C$OMP END PARALLEL

C$OMP PARALLEL
... Values of threadprivate are persistent across parallel regions
C$OMP END PARALLEL

49

OpenMP Synchronization

* High level synchronization:
— critical section
— atomic
— barrier
— ordered

* Low level synchronization
— flush

— locks (both simple and nested)

50

Critical section

®* Only one thread at a time can enter a critical section.

C$OMP PARALLEL DO PRIVATE(B)
C$OMP& SHARED(RES)
DO 100 I=1,NITERS

B = DOIT(I)
C$OMP CRITICAL

CALL CONSUME (B, RES)
C$OMP END CRITICAL
100 CONTINUE
C$OMP END PARALLEL DO

51

Atomic

Atomic is a special case of a critical section that can be
used for certain simple statements

It applies only to the update of a memory location

C$OMP PARALLEL PRIVATE(B)
B = DOIT(l)
tmp = big_ugly();
CSOMP ATOMIC
X =X+temp

C$SOMP END PARALLEL

52

OpenMP Tasks

Define a task:
— C/C++: #fpragma omp task
— Fortran: 'Somp task

* Ataskis generated when a thread encounters a task
construct

— Contains a task region and its data environment
— Task can be nested

e A task region is a region consisting of all code
encountered during the execution of a task.

e The data environment consists of all the variables
associated with the execution of a given task.

— constructed when the task is generated

53

Task completion and synchronization

* Task completion occurs when the task reaches the end of
the task region code

* Multiple tasks joined to complete through the use of task
synchronization constructs

— taskwait
— barrier construct int fib(int n) {
int x,y;
if (n <2) return n;
* taskwait constructs: else {
_ : #pragma omp task shared(x)
#pragma omp.taskwalt = fib(n-1);
— ISomp taskwait #pragma omp task shared(y)
y = fib(n-2);

#pragma omp taskwait
return x +y;

Example: A Linked List

while(my pointer) {

(void) do independent work (my pointer);

my pointer =

my pointer->next ;

} // End of while loop

Hard to do before OpenMP 3.0:
First count number of iterations, then
convert while loop to for loop

55

Example: A Linked List with Tasking

my pointer = listhead; OpenMP Task is specif ed here

#pragma omp parallel (executed in parallel)
! #pragma omp single nowait
while(my pointer)
#pragma omp task ftirstprivate(my_ pointer)
(void) do independent work (my_ pointer);
my pointer = my pointer->next ;

// End of single - no implied barrier (nowait)
} // End of parallel region - implied barrier

56

Ordered

* The ordered construct enforces the sequential order for a
block.

#pragma omp parallel private (tmp)
#pragma omp for ordered
for (I=0;i<N;i++){

tmp = NEAT _STUFF_IN_PARALLEL();
#pragma ordered

res += consum(tmp);

}

57

OpenMP Synchronization

* The flush construct denotes a sequence point where a
thread tries to create a consistent view of memory.

— All memory operations (both reads and writes) defined prior
to the sequence point must complete.

— All memory operations (both reads and writes) defined after
the sequence point must follow the flush.

— Variables in registers or write buffers must be updated in
memory.

* Arguments to flush specify which variables are flushed.
No arguments specifies that all thread visible variables
are flushed.

58

A flush example

e pair-wise synchronization.

integer ISYNC(NUM_THREADS)
C$OMP PARALLEL DEFAULT (PRIVATE) SHARED (ISYNC)
IAM = OMP_GET_THREAD_NUM()

ISYNC(IAM) =0
C$OMP BARRIER g/leaek?n;uvl\’/?itc;ther threads can
CALL WORK() . :
ISYNC(IAM) =1 ! I’/zall done; signal this to other threads

C$OMP FLUSH(ISYNC)

DO WHILE (ISYNC(NEIGH) .EQ. 0)
C$OMP FLUSH(ISYNC)

END DO \ Make sure the read picks up a
C$OMP END PARALLEL good copy from memory.

Note: flush is analogous to a fence in other shared
memory APlIs.

59

OpenMP Lock routines

* Simple Lock routines: available if it is unset.
omp_init_lock(), omp_set lock(),
omp_unset_lock(), omp_test lock(),
omp_destroy_lock()

* Nested Locks: available if it is unset or if it is set but owned

by the thread executing the nested lock function

omp _init_nest _lock(), omp _set nest lock(),
omp_unset_nest lock(), omp test nest lock(),
omp_ destroy nest lock()

60

OpenMP Locks

®* Protect resources with locks.

omp_lock t Ick;
omp _init_lock(&lck);
#pragma omp parallel private (tmp, id)
{
id = omp_get_thread _num();
tmp = do_lots_of work(id);
omp_set lock(&lck);
printf(“%d %d”, id, tmp);
omp_unset_lock(&lck);

Wait here for
your turn.

Release the lock so
——— the next thread gets

}
omp_destroy_lock(&Ick); a turn.

Free-up storage when done.

OpenMP Library Routines

* Modify/Check the number of threads

— omp_set_num_threads(), omp_get num_threads(),
omp_get _thread num(), omp _get max_threads()

* Are we in a parallel region?
— omp_in_parallel()

* How many processors in the system?
— omp_num_procs()

62

OpenMP Environment Variables

* Set the default number of threads to use.
— OMP_NUM THREADS int_literal

* Control how “omp for schedule(RUNTIME)” loop
iterations are scheduled.
— OMP_SCHEDULE “schedule[, chunk_size]”

63

Outline

* OpenMP Introduction

* Parallel Programming with OpenMP
— Worksharing, tasks, data environment, synchronization

* OpenMP Performance and Best Practices
® Case Studies and Examples
* Reference Materials

64

OpenMP Performance

Relative ease of using OpenMP is a mixed blessing

We can quickly write a correct OpenMP program,
but without the desired level of performance.

There are certain “best practices’ to avoid
common performance problems.

Extra work needed to program with large thread
count

65

Typical OpenMP Performance Issues

®* Overheads of OpenMP constructs, thread
management. E.g.

— dynamic loop schedules have much higher overheads than
static schedules

— Synchronization is expensive, use NOWAIT if possible

— Large parallel regions help reduce overheads, enable better
cache usage and standard optimizations

* QOverheads of runtime library routines
— Some are called frequently

* Load balance
® Cache utilization and false sharing

66

Overhead (Cycles)

Overheads of OpenMP Directives

1400000

1200000

1000000

800000

600000

400000

200000

OpenMP Overheads
EPCC Microbenchmarks
SGIl Altix 3600

B PARALLEL
m FOR
O PARALLEL FOR
B BARRIER
m SINGLE
O CRITICAL
(e & £ &7 B LOCK/UNLOCK
-_ aa A 4O ATOMIC EREL
(LT L &2 &7 = ORD
— S - - 2-—— LOCK/UNLOCK m ATOMIC
e & & £o
REDUCTION
-_—— ey o o & SINGLE =
A A Oy 485 S
> 7 ? 2 & PARALLEL FOR
- A O S5 &
- - aay & PARALLEL
2 4 8 16 32 64 128 256
Number of Threads

67

OpenMP Best Practices

* Reduce usage of barrier with nowait clause

#pragma omp parallel

{

#pragma omp for
for(i=0;i<n;i++)

#pragma omp for nowait
for(i=0;i<n;i++)

J

68

OpenMP Best Practices

#pragma omp parallel private(i)

{

}

#pragma omp for nowait
for(i=0;i<n;i++)
ali] +=bl[i];
#pragma omp for nowait
for(i=0;i<n;i++)
c[i] +=d[i];
#pragma omp barrier
#pragma omp for nowait reduction(+:sum)
for(i=0;i<n;i++)
sum += ali] + c[i];

69

OpenMP Best Practices

* Avoid large ordered construct
* Avoid large critical regions

#pragma omp parallel shared(a,b) private(c,d)

{

#pragma omp critical
{
a+=2%c;
c =d*d;
}
}

Move out this
Statement

70

OpenMP Best Practices

* Maximize Parallel Regions

#pragma omp parallel #pragma omp parallel
{ {
#pragma omp for #pragma omp for
for (...) { /* Work-sharing loop 1 */ } for (...) { /* Work-sharing loop 1 */ }
!
opt = opt + N; //sequential #pragma omp single nowait
H#pragma omp parallel opt = opt + N; //sequential
{
#pragma omp for #pragma omp for
for(...) { /* Work-sharing loop 2 */ } for(...) { /* Work-sharing loop 2 */ }
#pragma omp for #pragma omp for
for(...) { /* Work-sharing loop N */} for(...) { /* Work-sharing loop N */}

} }

71

OpenMP Best Practices

* Single parallel region enclosing all work-sharing loops.

for (i=0; i<n; i++)
for (j=0; j<n; j++)
pragma omp parallel for private(k)
for (k=0; k<n; k++) {
------ #pragma omp parallel private(i,j, k)
; {
for (i=0; i<n; i++)
for (j=0; j<n; j++)
#pragma omp for
for (k=0; k<n; k++) {

OpenMP Best Practices

Inner loop Smith-Waterman Sequence
Alignment Algorithm

OpenMP Best Practices

* Smith-Waterman Algorithm
— Default schedule is for static even = load imbalance

#pragma omp for

for(...)

for(...)
for(...)
for(...)
{ /* compute alignments */ }

#pragma omp critical

{. /* compute scores */ }

74

OpenMP Best Practices

Smith-Waterman Sequence Alignment Algorithm

#pragma omp for

B

100

100
| [unox_Tmers | 10 600
nnnnnn Speed . ——
[peedup 1000
——1Ideal
77 —
=5l fcamea draman]
R—— 1 T T : : : : :
o— 2 4 8 16 32 64 128
G
threads
nsparency ————(———

2 #pragma omp for dynamic(schedule, 1)

100

Speedup 10

2 4 8 16 32 64 128
threads

128 threads with 80% efficiency 75

OpenMP Best Practices

* Address load imbalances by selecting the best schedule and
chunk size

* Avoid selecting small chunk size when work in chunk is small.

Overheads of OpenMP For Static Scheduling Overheads of OpenMP For Dynamic Schedule
SGlI Altix 3600 SGI Altix 3600

80000

60000

Cycles)

Cycles

£ 40000
el
3
£ 30000 6 Chunksiz
>
O 20000

10000

1 2 4 8 16 32 64 128 256

76

OpenMP Best Practices

* Pipeline processing to overlap 1I/0 and computations

for (i=0; i<N; i++) {
ReadFromFile(i,...);

for(j=0; j<ProcessingNum; j++)
ProcessData(i, j);

WriteResultsToFile(i)
}

77

OpenMP Best Practices

* Pipeline Processing ~ #Pregmaomp paraliel

{ : .
* Pre-fetches 1/O #oragma omp single | O dealing with
{ ReadFromFile(0,...); } the last file

* Threads reading or
writin ﬁles . . for (i=0; i<N; i++) {
g Joins #pragma omp-single nowait
the CQmputaﬁons {if (i<N-I)'ReadFromFile(i+1,....); }

. . . . #pragma omp for schedule(dynamic)
The implicit barrier here for (j=0; j<ProcessingNum; j++)

is very important: 1) file ProcessChunkOfDatal(i, j);
| is finished so we can % -)

. rAgma omp singie nowal
write to file. 2) file i+1 is o o

| { WriteResultsToFile(i); }
read in SO we can }

process in the next }
loop iteration

78

OpenMP Best Practices

* single vs. master work-sharing
— master is more efficient but requires thread 0 to be available
— single is more efficient if master thread not available
— single has implicit barrier

79

Cache Coherence

* Real-world shared memory systems have caches between
memory and CPU

* Copies of a single data item can exist in multiple caches

* Modification of a shared data item by one CPU leads to
outdated copies in the cache of another CPU

Orieinal data tem —

e f—e—

Copy of data item .
in cache of CPU 0 Copy of data item
in cache of CPU 1

OpenMP Best Practices

CPUs Caches Memory

* False sharing
— When at least one thread write to a it
cache line while others access it E .
e Thread 0: =A[1] (read)
 Thread 1: A[0] = ... (write) Tl
* Solution: use array padding “ -

Int a[max_threads];
#pragma omp parallel for schedule(static,1)
for(int i=0; i<max_threads; i++)

ali] +=i;

Int almax_threads][cache_line_size];
#pragma omp parallel for schedule(static,1)
for(int i=0; i<max_threads; i++)
afi][0] +=i; "

Exercise: Feel the false sharing with axpy-papi.c

82

OpenMP Best Practices

* Data placement policy on NUMA architectures

Processor Processor

T

Local Access
(fast) Cache Coherent <«— Remote Access
(slower)

Interconnect

® First Touch Policy

— The process that first touches a page of memory causes
that page to be allocated in the node on which the process
IS running

83

NUMA First-touch placement/1

afo]

a[§9]

Processor Processor

Cache Coherent
Interconnect

int a[100]; «—

for (i=0; i<100; i++)
a[i] = 0;

First Touch
All array elements are in the memory of
the processor executing this thread

84

NUMA First-touch placement/2

a[0] a[50]

Processor Processor

a[i9] a[§9]

Cache Coherent
Interconnect

tpragma omp parallel for num threads(2)

for (1i=0; 1i<100; i++)
a[i] = 0;

First Touch
Both memories each have “their half” of
the array

85

OpenMP Best Practices

* First-touch in practice
— Initialize data consistently with the computations

#pragma omp parallel for
for(i=0; i<N; i++) {

ali] =0.0; b[i] =0.0; c[i] =0.0;
}
readfile(a,b,c);

#pragma omp parallel for
for(i=0; i<N; i++) {

ali] = b[i] + c[il;
}

86

OpenMP Best Practices

® Privatize variables as much as possible
— Private variables are stored in the local stack to the thread

®* Private data close to cache

double a[MaxThreads][N][N]
#pragma omp parallel for
for(i=0; i<xMaxThreads; i++) {
for(intj...)
for(int k...)
alilli1k] = ...

double a[N][N]
#pragma omp parallel private(a)

{
for(intj...)

for(int k...)
a[j]lk] = ...

87

OpenMP Best Practices

* CFD application psudo-code
— Shared arrays initialized incorrectly (first touch policy)

— Delays in remote memory accesses are probable causes by
saturation of interconnect

procedure diff_coeff() {
array allocation by master thread
initialization of shared arrays

PARALLEL REGION

{
loop lower_bn [id], upper_bn [id]
computation on shared arrays

88

OpenMP Best Practices
—e Array privatization

— Improved the performance of the whole program by 30%
— Speedup of 10 for the procedure, now only 5% of total time

* Processor stalls are reduced significantly

Stall Cycle Breakdown for Non-Privatized (NP) and
Privatized (P) Versions of diff_coeff
5.00E+10
4 50E+10
4.00E+10
w 350E+10 ENP
o 3.00E+10
o 2.50E+10 - goP
3 2:00E+10
1.50E+10 gNP-P
1.00E+10 A
5.00E+09 -
0.00E+00 -
° c c = 2 E
T .S 2% = o o
® c 9 go > < <
§ 58 8 5 82
§ o5 £8 T &F

OpenMP Best Practices

* Avoid Thread Migration
— Affects data locality

* Bind threads to cores.

* Linux:
— numactl —cpubind=0 foobar
— taskset —c 0,1 foobar

* SGI Altix
— dplace —x2 foobar

90

OpenMP Source of Errors

* Incorrect use of synchronization constructs

— Less likely if user sticks to directives
— Erroneous use of NOWAIT

* Race conditions (true sharing)
— Can be very hard to find

* Wrong “spelling” of sentinel
* Use tools to check for data races.

91

Outline

OpenMP Introduction

Parallel Programming with OpenMP
— Worksharing, tasks, data environment, synchronization

OpenMP Performance and Best Practices
Hybrid MPl/OpenMP

Case Studies and Examples

Reference Materials

92

Matrix vector multiplication

for (i=0; i<m; i++)
{
a[i] = 0.0;
for (j=0; j<n; J++)
af[i] += b[1][]J]l*cl]]-
}

> |

#pragma omp parallel for default (none) \
private(i,]j) shared(m,n,a,b,c)

for (i=0; i<m; i++)
{
a[i] = 0.0;
for (j=0; j<n; J++)
af[i] += b[1][]J]l*cl]]’

\J
i

> |

—-

Performance — 2-socket Nehalem

Performance (Mflop/s)

35000

30000

25000

20000

15000

10000

5000

%1 Thread
=#=2 Threads
V"4 Threads
-8 Threads
®=16 Threads

Speed-up is ~1.6x

only

‘-..

10 100 1000 10000
Memory Footprint (KByte)

A mgm
100000

L 4

1000000

94

2-socket Nehalem

hw thread 0
® -_m{hw thread 1
> S hw thread 0 ¢
qE, 1 hw thread 0 %
? hw thread 0
hw thread 0
> S hw thread 0 ¢
qE, B hw thread 0 %
£ S -_m{hwthreaﬂ =
h hw thread 0
-_m{ hw thread 1

10

11

12

13

14

15

Data initialization

#pragma omp parallel default(none) \
shared(m,n,a,b,c) private(i, j)
{
#pragma omp for
for (j=0; j<n; J++)
c[j] = 1.0;

> |

#pragma omp for
for (i=0; i<m; i++) v
{ |

a[i] = -1957.0; | ” o f
- - . Initialization will cause the allocation o
for =0, j<n; J++
(? . J i J) memory according to the first touch policy
b[i[]]] = 1;

} /*-- End of omp for --*/

} /*-- End of parallel region --*/

96

Exploit First Touch

Performance (Mflop/s)

35000

30000

25000

20000

15000

10000

5000

%1 Thread
~%-2 Threads
V"4 Threads
& 8 Threads
=16 Threads

N N ¢

Jf.-“

100 1000 10000 100000 1000000
Memory Footprint (KByte)

97

A 3D matrix update

K4 Q0 No data dependency on 'I

Q Therefore we can split the 3D
matrix in larger blocks and
process these in parallel

x(1i,j,k-1) + x(i,3J-1,k) *scale

98

The idea

K QO We need to distribute the M
iterations over the number
of processors

0 We do this by controlling
the start (I1S) and end (IE)
value of the inner loop

j o Each thread will calculate
these values for it's portion

of the work
do k = 2, n
do j =2, n
do 1 = is, 1ie
x(1,3,k) = x(1,3,k-1) + x(1i,3-1,k) *scale
end do
end do
end do

99

A 3D matrix update

do k =2, n
do j =2, n
!Somp parallel do default(shared) private(i) &
!Somp schedule (static)
doi=1, m
x(i,j,k) = x(i,j,k-1) + x(i,j-1,k) *scale
end do
ISomp end parallel do
end do
end do

Q This will cause the barrier to be

A
Q The loops are correctly nested for K Data Dependency Graph
serial performance
kl-——— ———. ".,hq'

Q Due to a data dependency on J and |
K, only the inner loop can be k-1 P
parallelized [T o

executed (N-1) 2 times S SR S

100

The performance

Performance (MF op/s)

350 Scaling is very poor

Inner loop over I has (as to be expected)
been parallelized

300

250

200

150

100

50

0 10 20 30 40 50 60

Number of threads

Dimensions : M=7,500 N=20
Footprint : ~24 MByte

101

Performance analyzer data

Name . Excl. User Incl. Excl.
Using 10 threads CPU User CPU Wall
sec. % sec. sec.
<Total> 10.590 100.0 10.590 1.550
__mt EndOfTask Barrier 5.740 54.2 5.740 0.240
~_mt_WaitForWork —> 3.860 36.4 3.860 0.
__mt MasterFunction_ 0.480 4.5 0.680 0.480
MAIN —~ 0.230 2.2 1.200 0.470
block 3d -- MP doall from line 14 [$dlAl4 = 3] 0.170 1.6 5.910 0.170¢—
block 3d e © 0.040 0.4 6.460 0.040 »
memset Q¥ 0.030 0.3 0.030 0.080 0
c® 9
. 02 3
Name Us’ng 20 threads b (1 Excl. User Incl. Excl. P
Q CPU User CPU Wall o
" sec. % sec. sec. 5
<Total> 47.120 100.0 47.120 2.900 D
__mt EndOfTask Barrier 5 25.700 54.5 25.700 0.980 §
__mt WaitForWork _ 19.880 42.2 19.880 0. >
__mt MasterFunction__ 1.100 2.3 1.320 1.100 &)’
MAIN 0.190 0.4 2.520 0.470
block_3d_ -- MP doall from line 14 [_$dlAl4.block 3d] 0.100 0.2 25.800 0.100 ¢
__mt setup _doJob_int 0.080 0.2 0.080 0.080
__mt setup_ job 0.020 0.0 0.020 0.020
block 3d 0.010 0.0 27.020 0.010

Question: Why is __mt_WaitForWork so high in the prof le ?

102

False sharing at work

!Somp parallel do default(shared) private(i) &
!Somp schedule(static)
doi=1, m
x(i,j,k) = x(i,j,k-1) + x(i,j-1,k)*scale
end do
!Somp end parallel do
P=1 P=2 P=4 P=8
v X False sharing increases as
X G V€ increase the number of
2 * threads
% A
\ %

103

Performance (Mf op/s)

Performance compared

10

20 30 40 50 60

Number of threads

For a higher value of M, the
program scales better

)4

The first implementation

use omp 1lib

= mod (m,nthreads)
(m-nrem) /nthreads

!Somp parallel default (none)é&

ISomp private (P,is,ie)

&

subroutine kernel (is,ie,m,n,x,scale)

do i = is, ie
x(i,j,k)=x(i,j,k-1)+x(i,j-1,k)*scale
end do
end do
end do

!Somp shared

(nrem,nchunk,m,n,x, scale)

P

omp get thread num()

if (
is
ie
else
is
ie

P

< nrem) then
1 + P*(nchunk + 1)
is + nchunk

1 + P*nchunk+ nrem
is + nchunk - 1

end if
call kernel(is,ie,m,n,x,scale)

!Somp end parallel

105

OpenMP version

! Somp
! Somp

! Somp

! Somp

! Somp

use omp lib

implicit none

integer :: is, ie, m, n
real (kind=8):: x(m,n,n), scale
integer 01, 3, k

parallel default (none) &
private (i, j,k) shared(m,n,scale, x)
do k = 2, n
do j =2, n
do schedule(static)
do i1 =1, m
x(i,j,k) = x(i,3j,k-1) + x(1i,j-1,k) *scale
end do
end do nowait
end do
end do
end parallel

106

Thread 0 Executes:

How this works

Thread 1 Executes:

k=2 parallel region k=2
j=2 j=2
do i = 1,m/2 . do i = m/2+1,m
x(i,2,2) = work sharlng x(1i,2,2) = ...
end do end do
=2 parallel region k=2
j= j=

do i=1,m/2
x(1i,3,2)
end do

work sharing

do i = m/2+1,m
x(1,3,2) = ...
end do

. etc ..

. etc ..

107

Performance

a We have set M=7500 N=20

e This problem size does not scale at all when we
explicitly parallelized the inner loop over 'I'

Q We have have tested 4 versions of this program

e Inner Loop Over 'I' - Our F rst OpenMP version

e AutoPar - The automatically parallelized version of
'kernel’

e OMP_Chunks - The manually parallelized version
with our explicit calculation of the chunks

e OMP_DO - The version with the OpenMP parallel
region and work-sharing DO

108

Performance (Mf op/s)

Performance

2500

2000

1500

OMP Chunks

1000

The auto-parallelizing
compiler does really well !

500

4

0
0

% Innerloop

10 20 30 40 50 60

Number of threads

109

Reference Material on OpenMP

* OpenMP Homepage www.openmp.org:

— The primary source of information about OpenMP
and its development.

* OpenMP User’s Group (cOMPunity) Homepage

— WWW.compunity.org:

e Books:

— Using OpenMP, Barbara Chapman, Gabriele Jost,
Ruud Van Der Pas, Cambridge, MA : The MIT Press
2007, ISBN: 978-0-262-53302-7

— Parallel programming in OpenMP, Chandra, Rohit,
San Francisco, Calif. : Morgan Kaufmann ; London :
Harcourt, 2000, ISBN: 1558606718

110

Standard OpenMP Implementation

* Directives implemented
via code modification and
insertion of runtime
library calls

— Basic step is outlining of code

in parallel region
Runtime library
responsible for managing
threads

— Scheduling loops

— Scheduling tasks

— Implementing

synchronization
Implementation effort is
reasonable

OpenMP Code Translation
int main(void) _INT32 main()

{ {

int a,b,c; ntab.;

#pragma omp parallel \
private(c)

do_sth(a,b,c);

return O;

}

/* microtask */

void __ompregion_main1()
{
| INT32 __mplocal_c;

/*shared variables are kept intact,
substitute accesses to private
variable*/

|do_sth(a, b, __mplocal_c);

}

/*OpenMP runtime calls */
| _ompc_fork(&__ompregion_main1

);

}

Each compiler has custom run-time support. Quality of the runtime system has major
impact on performance.

