
Lecture	04-06:	Programming	with	
OpenMP	

Concurrent	and	Mul<core	Programming,	CSE536	
	

Department	of	Computer	Science	and	Engineering	
Yonghong	Yan	

yan@oakland.edu	
www.secs.oakland.edu/~yan	

	

1	

Topics	(Part	1)	

•  IntroducAon	
•  Programming	on	shared	memory	system	(Chapter	7)	

–  OpenMP	
•  Principles	of	parallel	algorithm	design	(Chapter	3)		
•  Programming	on	shared	memory	system	(Chapter	7)	

–  Cilk/Cilkplus	(?)	
–  PThread,	mutual	exclusion,	locks,	synchroniza<ons	

•  Analysis	of	parallel	program	execuAons	(Chapter	5)	
–  Performance	Metrics	for	Parallel	Systems	

•  Execu<on	Time,	Overhead,	Speedup,	Efficiency,	Cost		
–  Scalability	of	Parallel	Systems	
–  Use	of	performance	tools	

2	

Outline	

•  OpenMP	IntroducAon	
•  Parallel	Programming	with	OpenMP	

–  OpenMP	parallel	region,	and	worksharing	
–  OpenMP	data	environment,	tasking	and	synchronizaAon	

•  OpenMP	Performance	and	Best	PracAces	
•  More	Case	Studies	and	Examples	
•  Reference	Materials	
	

3	

What	is	OpenMP	

•  Standard	API	to	write	shared	memory	parallel	applicaAons	
in	C,	C++,	and	Fortran	
–  Compiler	direcAves,	RunAme	rouAnes,	Environment	variables	

•  OpenMP	Architecture	Review	Board	(ARB)	
–  Maintains	OpenMP	specificaAon	
–  Permanent	members	

•  AMD,	Cray,	Fujitsu,	HP,	IBM,	Intel,	NEC,	PGI,	Oracle,	
MicrosoZ,	Texas	Instruments,	NVIDIA,	Convey	

–  Auxiliary	members	
•  ANL,	ASC/LLNL,	cOMPunity,	EPCC,	LANL,	NASA,	TACC,	RWTH	
Aachen	University,	UH	

–  h`p://www.openmp.org	
•  Latest	Version	4.5	released	Nov	2015	

4	

My	role	with	OpenMP	

5	

“Hello	Word”	Example/1	

#include <stdlib.h>
#include <stdio.h>

int main(int argc, char *argv[]) {

 printf("Hello World\n");

 return(0);
}

6	

“Hello	Word”	-	An	Example/2	

#include <stdlib.h>
#include <stdio.h>

int main(int argc, char *argv[]) {

 #pragma omp parallel
 {
 printf("Hello World\n");

 } // End of parallel region

 return(0);
}

7	

“Hello	Word”	-	An	Example/3	

$ gcc –fopenmp hello.c

$ export OMP_NUM_THREADS=2
$./a.out
Hello World
Hello World

$ export OMP_NUM_THREADS=4
$./a.out
Hello World
Hello World
Hello World
Hello World
$

8	

#include <stdlib.h>
#include <stdio.h>

int main(int argc, char *argv[]) {

 #pragma omp parallel
 {
 printf("Hello World\n");

 } // End of parallel region

 return(0);
}

OpenMP	Components	

9	

•  Parallel	region	

•  Worksharing	constructs	

•  Tasking	

•  Offloading	

•  Affinity	

•  Error	Handing	

•  SIMD	

•  SynchronizaAon	

•  Data-sharing	a`ributes	

•  Number	of	threads	

•  Thread	ID	

•  Dynamic	thread	
adjustment	

•  Nested	parallelism	

•  Schedule	

•  AcAve	levels	

•  Thread	limit	

•  NesAng	level	

•  Ancestor	thread	

•  Team	size	

•  Locking	

•  Wallclock	Amer	

•  Number	of	threads	

•  Scheduling	type	

•  Dynamic	thread	
adjustment	

•  Nested	parallelism	

•  Stacksize	

•  Idle	threads	

•  AcAve	levels	

•  Thread	limit	

Direc<ves	 Run<me	Environment	 Environment	Variable	

“Hello	Word”	-	An	Example/3	

#include <stdlib.h>
#include <stdio.h>
#include <omp.h>

int main(int argc, char *argv[]) {

#pragma omp parallel
 {
 int thread_id = omp_get_thread_num();
 int num_threads = omp_get_num_threads();

 printf("Hello World from thread %d of %d\n",
 thread_id, num_threads);
 }

 return(0);
}

10	

DirecAves	

RunAme	Environment	

“Hello	Word”	-	An	Example/4	

11	

Environment	Variable	

Environment	Variable:	it	is	similar	to	
program	arguments	used	to	change	
the	configuraAon	of	the	execuAon	
without	recompile	the	program.	

NOTE:	the	order	of	print	

The	Design	Principle	Behind 		

•  Each	prin^	is	a	task	

•  A	parallel	region	is	to	claim	a	set	of	cores	for	computa<on	
–  Cores	are	presented	as	mul<ple	threads	

•  Each	thread	execute	a	single	task	
–  Task	id	is	the	same	as	thread	id	

•  omp_get_thread_num()	
–  Num_tasks	is	the	same	as	total	number	of	threads	

•  omp_get_num_threads()	

•  1:1	mapping	between	task	and	thread	
–  Every	task/core	do	similar	work	in	this	simple	example	

12	

#pragma omp parallel
 {
 int thread_id = omp_get_thread_num();
 int num_threads = omp_get_num_threads();

 printf("Hello World from thread %d of %d\n",
 thread_id, num_threads);
 }

OpenMP	Parallel	Compu<ng	Solu<on	Stack	

13	

Pr
og
.	L
ay
er
	

(O
pe

nM
P	
AP

I)	

RunAme	library	

OS/system	

DirecAves,	
Compiler	 OpenMP	library	 Environment		

variables	

ApplicaAon	

End User	

Sy
st
em

	la
ye
r	

U
se
r	l
ay
er
	

OpenMP	Syntax	

14	

•  Most	OpenMP	constructs	are	compiler	direc+ves	using	
pragmas.	
–  For	C	and	C++,	the	pragmas	take	the	form:	
#pragma	…	

•  pragma	vs	language	
–  pragma	is	not	language,	should	not	express	logics	
–  To	provide	compiler/preprocessor	addi<onal	
informa<on	on	how	to	processing	direc<ve-
annotated	code	

–  Similar	to	#include,	#define	

OpenMP	Syntax	

15	

•  For	C	and	C++,	the	pragmas	take	the	form:	
#pragma omp construct [clause [clause]…]

•  For	Fortran,	the	direcAves	take	one	of	the	forms:	
–  Fixed	form	
	 	*$OMP construct [clause [clause]…]
 C$OMP construct [clause [clause]…]

–  Free	form	(but	works	for	fixed	form	too)	
!$OMP construct [clause [clause]…]

•  Include	file	and	the	OpenMP	lib	module	
#include <omp.h>
use omp_lib

OpenMP	Compiler	
•  OpenMP:	thread	programming	at	“high	level”.		

–  The	user	does	not	need	to	specify	the	details	
•  Program	decomposiAon,	assignment	of	work	to	threads	
•  Mapping	tasks	to	hardware	threads	

•  User	makes	strategic	decisions	
	
•  Compiler	figures	out	details	

–  Compiler	flags	enable	OpenMP	(e.g.	–openmp,	-xopenmp,	-
fopenmp,	-mp)	

16	

OpenMP	Memory	Model	

•  OpenMP	assumes	a	shared	memory	
•  Threads	communicate	by	sharing	variables.	
	
	

•  SynchronizaAon	protects	data	conflicts.	
–  SynchronizaAon	is	expensive.	
•  Change	how	data	is	accessed	to	minimize	the	need	for	synchronizaAon.		

17	

OpenMP	Fork-Join	Execu<on	Model	

•  Master thread spawns multiple worker threads as
needed, together form a team

•  Parallel region is a block of code executed by all
threads in a team simultaneously

18	

Parallel Regions

Master thread

A Nested
Parallel region

Worker threads

Fork Join

OpenMP	Parallel	Regions	

•  In	C/C++:	a	block	is	a	single	statement	or	a	group	of	statement		
between	{		}	

	
	

•  In	Fortran:	a	block	is	a	single	statement	or	a	group	of	statements	
between	direcAve/end-direcAve	pairs.		

19	

C$OMP PARALLEL
10 wrk(id) = garbage(id)
 res(id) = wrk(id)**2
 if(.not.conv(res(id)) goto 10
C$OMP END PARALLEL

C$OMP PARALLEL DO
 do i=1,N

 res(i)=bigComp(i)
 end do
C$OMP END PARALLEL DO

#pragma omp parallel
{
 id = omp_get_thread_num();
 res[id] = lots_of_work(id);
}

#pragma omp parallel for
for(i=0;i<N;i++) {
 res[i] = big_calc(i);
 A[i] = B[i] + res[i];
 }

20	

lexical
extent of
parallel
region

C$OMP PARALLEL
 call whoami
C$OMP END PARALLEL

Dynamic extent
of parallel region
includes lexical
extent

subroutine whoami
 external omp_get_thread_num
 integer iam, omp_get_thread_num
 iam = omp_get_thread_num()
C$OMP CRITICAL
 print*,’Hello from ‘, iam
C$OMP END CRITICAL
 return
end

+

Orphaned directives
can appear outside a
parallel construct

bar.f
foo.f

A parallel region can span multiple source files.

Scope	of	OpenMP	Region	

SPMD	Program	Models	

21	

•  SPMD	(Single	Program,	Mul<ple	Data)	for	parallel	regions	
–  All	threads	of	the	parallel	region	execute	the	same	code	
–  Each	thread	has	unique	ID	

•  Use	the	thread	ID	to	diverge	the	execuAon	of	the	threads	
–  Different	thread	can	follow	different	paths	through	the	same	

code	
	
				
	

•  SPMD	is	by	far	the	most	commonly	used	pa`ern	for	
structuring	parallel	programs	
–  MPI,	OpenMP,	CUDA,	etc	

 if(my_id == x) { }
 else { }

Modify	the	Hello	World	Program	so	…	

•  Only	one	thread	prints	the	total	number	of	threads	
–  gcc	–fopenmp	hello.c	–o	hello	

•  Only	one	thread	read	the	total	number	of	threads	and	all	
threads	print	that	info	

22	

#pragma omp parallel
 {
 int thread_id = omp_get_thread_num();
 int num_threads = omp_get_num_threads();

 if (thread_id == 0)
 printf("Hello World from thread %d of %d\n",
 thread_id, num_threads);
 else printf("Hello World from thread %d\n",
 thread_id);

 }

int num_threads = 99999;

#pragma omp parallel
 {
 int thread_id = omp_get_thread_num();

 if (thread_id == 0)
 num_threads = omp_get_num_threads();

 #pragma omp barrier

 printf("Hello World from thread %d of %d\n",
 thread_id, num_threads);
 }

Barrier	

23	

#pragma omp barrier 	

OpenMP	Master	

•  Denotes	a	structured	block	executed	by	the	master	
thread	

•  The	other	threads	just	skip	it	
–  no	synchronizaAon	is	implied	

24	

#pragma omp parallel private (tmp)
{

 do_many_things_together();
#pragma omp master

 { exchange_boundaries_by_master_only (); }
#pragma barrier
 do_many_other_things_together();
}

•  Denotes	a	block	of	code	that	is	executed	by	only	one	
thread.	
–  Could	be	master	

•  A	barrier	is	implied	at	the	end	of	the	single	block.	

25	

#pragma omp parallel private (tmp)
{

 do_many_things_together();
#pragma omp single

 { exchange_boundaries_by_one(); }
 do_many_other_things_together();

}

OpenMP	Single	

Using	omp	master/single	to		
modify	the	Hello	World	Program	so	…	

•  Only	one	thread	prints	the	total	number	of	threads	

•  Only	one	thread	read	the	total	number	of	threads	and	all	
threads	print	that	info	

26	

#pragma omp parallel
 {
 int thread_id = omp_get_thread_num();
 int num_threads = omp_get_num_threads();

 printf("Hello World from thread %d of %d\n",
 thread_id, num_threads);
 }

Distribu<ng	Work	Based	on	Thread	ID	

27	

for(i=0;i<N;i++) { a[i] = a[i] + b[i]; }

#pragma omp parallel shared (a, b)

{

 int id, i, Nthrds, istart, iend;
 id = omp_get_thread_num();
 Nthrds = omp_get_num_threads();
 istart = id * N / Nthrds;
 iend = (id+1) * N / Nthrds;
 for(i=istart;i<iend;i++) { a[i] = a[i] + b[i]; }

}

Sequential code

OpenMP parallel
region

cat	/proc/cpuinfo	

Implemen<ng	axpy	using	OpenMP	parallel	

28	

•  Divides	the	execuAon	of	the	enclosed	code	region	among	
the	members	of	the	team	

•  The	“for” worksharing	construct	splits	up	loop	iteraAons	
among	threads	in	a	team	
–  Each	thread	gets	one	or	more	“chunk”	->	loop	chuncking	

29	

						#pragma	omp	parallel	
						#pragma	omp	for		
						for	(i	=	0;	i	<	N;	i++)	{	

	work(i);	
						}				 By default, there is a barrier at the end of the “omp

for”. Use the “nowait” clause to turn off the barrier.

 #pragma omp for nowait

“nowait” is useful between two consecutive,
independent omp for loops.

OpenMP	Worksharing	Constructs	

Worksharing	Constructs	

30	

for(i=0;i<N;i++) { a[i] = a[i] + b[i]; }

#pragma omp parallel shared (a, b)

{

 int id, i, Nthrds, istart, iend;
 id = omp_get_thread_num();
 Nthrds = omp_get_num_threads();
 istart = id * N / Nthrds;
 iend = (id+1) * N / Nthrds;
 for(i=istart;i<iend;i++) { a[i] = a[i] + b[i]; }

}

#pragma omp parallel shared (a, b) private (i)
#pragma omp for schedule(static)

 for(i=0;i<N;i++) { a[i] = a[i] + b[i]; }

Sequential code

OpenMP parallel
region

OpenMP parallel
region and a
worksharing for
construct

•  schedule	(staAc	|	dynamic	|	guided	[,	chunk])	
•  schedule	(auto	|	runAme)	

31	

staAc	 Distribute	iteraAons	in	blocks	of	size	"chunk"	over	the	
threads	in	a	round-robin	fashion

dynamic Fixed	porAons	of	work;	size	is	controlled	by	the	value	of	
chunk;	When	a	thread	finishes,	it	starts	on	the	next	porAon	of	work

guided Same	dynamic	behavior	as	"dynamic",	but	size	of	the	porAon	
of	work	decreases	exponenAally

auto The	compiler	(or	runAme	system)	decides	what	is	best	to	use;	
choice	could	be	implementaAon	dependent

runAme IteraAon	scheduling	scheme	is	set	at	runAme	through	
environment	variable	OMP_SCHEDULE	

OpenMP	schedule	Clause	

OpenMP	Sec<ons		

•  Worksharing	construct	
•  Gives	a	different	structured	block	to	each	thread			

32	

#pragma omp parallel
#pragma omp sections
{
#pragma omp section

 x_calculation();
#pragma omp section

 y_calculation();
#pragma omp section

 z_calculation();
}

By default, there is a barrier at the end of the “omp sections”.
Use the “nowait” clause to turn off the barrier.

Loop	Collapse	

•  Allows	parallelizaAon	of	perfectly	nested	loops	without	
using	nested	parallelism	

•  The	collapse	clause	on	for/do	loop	indicates	how	many	
loops	should	be	collapsed	

33	

!$omp	parallel	do	collapse(2)	...	
do	i	=	il,	iu,	is	
				do	j	=	jl,	ju,	js	
								do	k	=	kl,	ku,	ks	
												
								end	do	
				end	do	
end	do	
!$omp	end	parallel	do	

Exercise:	OpenMP	Matrix	Mul<plica<on	

•  Parallel	version	
•  Parallel	for	version	

–  Experiment	different	schedule	policy	and	chunk	size	
•  #omp	pragma	parallel	for	

–  Experiment	collapse(2)	

34	

#pragma omp parallel shared (a, b) private (i)
#pragma omp for schedule(static)

 for(i=0;i<N;i++) { a[i] = a[i] + b[i]; }

#pragma omp parallel for schedule(static) private (i)
num_threads(num_ths)

 for(i=0;i<N;i++) { a[i] = a[i] + b[i]; }

gcc	-fopenmp	mm.c	-o	mm

Barrier	

•  Barrier:	Each	thread	waits	unAl	all	threads	arrive.	

35	

#pragma omp parallel shared (A, B, C) private(id)
{

 id=omp_get_thread_num();
 A[id] = big_calc1(id);

#pragma omp barrier
#pragma omp for

 for(i=0;i<N;i++){C[i]=big_calc3(I,A);}
#pragma omp for nowait

 for(i=0;i<N;i++){ B[i]=big_calc2(C, i); }
 A[id] = big_calc3(id);

} implicit barrier at the end
of a parallel region

implicit barrier at the
end of a for work-
sharing construct

no implicit barrier
due to nowait

•  Most	variables	are	shared	by	default	
•  Global	variables	are	SHARED	among	threads	

–  Fortran:	COMMON	blocks,	SAVE	variables,	MODULE	
variables	

–  C:	File	scope	variables,	staAc	
•  But	not	everything	is	shared...	

–  Stack	variables	in	sub-programs	called	from	parallel	regions	
are	PRIVATE	

–  AutomaAc	variables	defined	inside	the	parallel	region	are	
PRIVATE.	

36	

Data	Environment	

OpenMP	Data	Environment	

double a[size][size], b=4;
#pragma omp parallel private (b)
{ }

shared data
a[size][size]

T0 T1 T2 T3

private	data	
b’=?	

b becomes undefined

private	data	
b’=?	

private	data	
b’=?	

private	data	
b’=?	

37	

38	

 program sort
 common /input/ A(10)
 integer index(10)

C$OMP PARALLEL
 call work (index)

C$OMP END PARALLEL
 print*, index(1)

subroutine work (index)
common /input/ A(10)
integer index(*)
real temp(10)
integer count
save count
 ………… !

temp

A, index, count

temp temp

A, index, count

A, index and count are
shared by all threads.

temp is local to each
thread

OpenMP	Data	Environment	

Data	Environment:	
Changing	storage	aeributes	

•  SelecAvely	change	storage	a`ributes	constructs	using	
the	following	clauses	
–  SHARED	
–  PRIVATE	
–  FIRSTPRIVATE	
–  THREADPRIVATE	

•  The	value	of	a	private	inside	a	parallel	loop	and	global	
value	outside	the	loop	can	be	exchanged	with	
–  FIRSTPRIVATE,	and	LASTPRIVATE	

•  The	default	status	can	be	modified	with:	
–  DEFAULT	(PRIVATE	|	SHARED	|	NONE)	

39	

OpenMP	Private	Clause	

•  private(var)		creates	a	local	copy	of	var	for	each	
thread.	
–  The	value	is	unini+alized	
–  Private	copy	is	not	storage-associated	with	the	original	
–  The	original	is	undefined	at	the	end	

40	

 IS = 0
C$OMP PARALLEL DO PRIVATE(IS)
 DO J=1,1000

 IS = IS + J
 END DO
C$OMP END PARALLEL DO
 print *, IS

OpenMP	Private	Clause	

•  private(var)		creates	a	local	copy	of	var	for	each	
thread.	
–  The	value	is	unini+alized	
–  Private	copy	is	not	storage-associated	with	the	original	
–  The	original	is	undefined	at	the	end	

41	

 IS = 0
C$OMP PARALLEL DO PRIVATE(IS)
 DO J=1,1000

 IS = IS + J
 END DO
C$OMP END PARALLEL DO
 print *, IS

IS was not
initialized

IS is undefined
here

✗
✗

Firstprivate	Clause	

•  firstprivate	is	a	special	case	of	private.	
–  IniAalizes	each	private	copy	with	the	corresponding	value	

from	the	master	thread.	

42	

 IS = 0
C$OMP PARALLEL DO FIRSTPRIVATE(IS)
 DO 20 J=1,1000
 IS = IS + J
20  CONTINUE
C$OMP END PARALLEL DO
 print *, IS

Firstprivate	Clause	

•  firstprivate	is	a	special	case	of	private.	
–  IniAalizes	each	private	copy	with	the	corresponding	value	

from	the	master	thread.	

43	

 IS = 0
C$OMP PARALLEL DO FIRSTPRIVATE(IS)
 DO 20 J=1,1000
 IS = IS + J
20  CONTINUE
C$OMP END PARALLEL DO
 print *, IS

Regardless of initialization, IS is
undefined at this point

Each thread gets its own IS
with an initial value of 0

✔
✗

Lastprivate	Clause	

•  Lastprivate	passes	the	value	of	a	private	from	the	last	
iteraAon		to	the	variable	of	the	master	thread	

44	

 IS = 0
C$OMP PARALLEL DO FIRSTPRIVATE(IS)
C$OMP& LASTPRIVATE(IS)
 DO 20 J=1,1000

 IS = IS + J
20  CONTINUE
C$OMP END PARALLEL DO
 print *, IS

IS is defined as its value at the last
iteration (i.e. for J=1000)

Each thread gets its own IS
with an initial value of 0

✔ Is	this	code	meaningful?	

OpenMP	Reduc<on	

45	

l  Here is the correct way to parallelize this code.

 IS = 0
C$OMP PARALLEL DO REDUCTION(+:IS)
 DO 20 J=1,1000

 IS = IS + J
20 CONTINUE
 print *, IS

Reduction NOT implies firstprivate,
where is the initial 0 comes from?

Reduc<on	operands/ini<al-values	

•  AssociaAve	operands	used	with	reducAon	
•  IniAal	values	are	the	ones	that	make	sense	

mathemaAcally	

46	

Operand Initial value

+ 0

* 1

- 0

.AND. All 1’s

Operand Initial value

.OR. 0

MAX 1

MIN 0

// All 0’s

Exercise:	OpenMP	Sum.c	

•  Two	versions	
–  Parallel	for	with	reducAon	
–  Parallel	version,	not	using	“omp	for”	or	“reducAon”	clause	

47	

OpenMP	Threadprivate	

•  Makes	global	data	private	to	a	thread,	thus	crossing	
parallel	region	boundary	
–  Fortran:	COMMON		blocks	
–  C:	File	scope	and	staAc	variables	

•  Different	from	making	them	PRIVATE	
–  With	PRIVATE,	global	variables	are	masked.		
–  THREADPRIVATE	preserves	global	scope	within	each	

thread	
•  Threadprivate	variables	can	be	iniAalized	using

COPYIN or	by	using	DATA	statements.	

48	

Threadprivate/copyin		

49	

 parameter (N=1000)
 common/buf/A(N)
C$OMP THREADPRIVATE(/buf/)

C Initialize the A array
 call init_data(N,A)

C$OMP PARALLEL COPYIN(A)
 … Now each thread sees threadprivate array A initialized
 … to the global value set in the subroutine init_data()
C$OMP END PARALLEL
....
C$OMP PARALLEL
... Values of threadprivate are persistent across parallel regions
C$OMP END PARALLEL

•  You initialize threadprivate data using a copyin clause.

OpenMP	Synchroniza<on	

•  High	level	synchronizaAon:	
–  criAcal	secAon	
–  atomic	
–  barrier	
–  ordered	

•  Low	level	synchronizaAon	
–  flush	
–  locks	(both	simple	and	nested)	

50	

Cri<cal	sec<on	

•  Only	one	thread	at	a	Ame	can	enter	a	criAcal	secAon.	

51	

C$OMP PARALLEL DO PRIVATE(B)
C$OMP& SHARED(RES)

 DO 100 I=1,NITERS
 B = DOIT(I)

C$OMP CRITICAL
 CALL CONSUME (B, RES)

C$OMP END CRITICAL
100 CONTINUE
C$OMP END PARALLEL DO

Atomic	

•  Atomic	is	a	special	case	of	a	criAcal	secAon	that	can	be	
used	for	certain	simple	statements	

•  It	applies	only	to	the	update	of	a	memory	locaAon	

52	

C$OMP PARALLEL PRIVATE(B)
 B = DOIT(I)

 tmp = big_ugly();

 C$OMP ATOMIC
 X = X + temp

C$OMP END PARALLEL

OpenMP	Tasks	

Define	a	task:		
–  	 C/C++:	#pragma	omp	task	
–  	 Fortran:	!$omp	task	

53	

•  A	task	is	generated	when	a	thread	encounters	a	task	
construct		
–  Contains	a	task	region	and	its	data	environment	
–  Task	can	be	nested	

•  A	task	region	is	a	region	consisAng	of	all	code	
encountered	during	the	execuAon	of	a	task.	

•  The	data	environment	consists	of	all	the	variables	
associated	with	the	execuAon	of	a	given	task.	
–  constructed	when	the	task	is	generated	

Task	comple<on	and	synchroniza<on	

•  Task	comple<on	occurs	when	the	task	reaches	the	end	of	
the	task	region	code	

•  MulAple	tasks	joined	to	complete	through	the	use	of	task	
synchroniza<on	constructs	
–  taskwait	
–  barrier	construct	

•  taskwait	constructs:	
–  #pragma	omp	taskwait	
–  !$omp	taskwait	

54	

int	fib(int	n)	{	
				int	x,	y;	
				if	(n	<	2)		return	n;	
				else	{	
										#pragma	omp	task	shared(x)	
										x	=	fib(n-1);	
										#pragma	omp	task	shared(y)	
										y	=	fib(n-2);	
										#pragma	omp	taskwait	
										return	x	+	y;				
				}	
}	

Example:	A	Linked	List	

55	

An Overview of OpenMP

RvdP/V1 Tutorial IWOMP 2010 – CCS Un. of Tsukuba, June 14, 2010

Example - A Linked List

 while(my_pointer) {

 (void) do_independent_work (my_pointer);

 my_pointer = my_pointer->next ;

 } // End of while loop

Example:	A	Linked	List	with	Tasking	

56	

An Overview of OpenMP

RvdP/V1 Tutorial IWOMP 2010 – CCS Un. of Tsukuba, June 14, 2010

Example - A Linked List With Tasking
 my_pointer = listhead;

 #pragma omp parallel
 {
 #pragma omp single nowait
 {
 while(my_pointer) {
 #pragma omp task firstprivate(my_pointer)
 {
 (void) do_independent_work (my_pointer);
 }
 my_pointer = my_pointer->next ;
 }
 } // End of single - no implied barrier (nowait)
 } // End of parallel region - implied barrier

OpenMP Task is specifi ed here
(executed in parallel)

Ordered	

•  The	ordered	construct	enforces	the	sequenAal	order	for	a	
block.	

57	

#pragma omp parallel private (tmp)
#pragma omp for ordered
for (i=0;i<N;i++){
 tmp = NEAT_STUFF_IN_PARALLEL(i);
#pragma ordered
 res += consum(tmp);
}

OpenMP	Synchroniza<on	

•  The	flush	construct	denotes	a	sequence	point	where	a	
thread	tries	to	create	a	consistent	view	of	memory.	
–  All	memory	operaAons	(both	reads	and	writes)	defined	prior	

to	the	sequence	point	must	complete.		
–  All	memory	operaAons	(both	reads	and	writes)	defined	aZer		

the	sequence	point	must	follow	the	flush.	
–  Variables	in	registers	or	write	buffers	must	be	updated	in	

memory.	
•  Arguments	to	flush	specify	which	variables	are	flushed.	
No	arguments	specifies	that	all	thread	visible	variables	
are	flushed.	

58	

A	flush	example	

59	

l  pair-wise synchronization.

 integer ISYNC(NUM_THREADS)
C$OMP PARALLEL DEFAULT (PRIVATE) SHARED (ISYNC)

 IAM = OMP_GET_THREAD_NUM()
 ISYNC(IAM) = 0

C$OMP BARRIER
 CALL WORK()
 ISYNC(IAM) = 1 ! I’m all done; signal this to other threads

C$OMP FLUSH(ISYNC)
 DO WHILE (ISYNC(NEIGH) .EQ. 0)

C$OMP FLUSH(ISYNC)
 END DO

C$OMP END PARALLEL

Make sure other threads can
see my write.

Make sure the read picks up a
good copy from memory.

Note: flush is analogous to a fence in other shared
memory APIs.

OpenMP	Lock	rou<nes	
•  Simple	Lock	rouAnes:	available	if	it	is	unset.	

–  omp_init_lock(),	omp_set_lock(),		
omp_unset_lock(),	omp_test_lock(),	
omp_destroy_lock()	

•  Nested	Locks:	available	if	it	is	unset	or	if	it	is	set	but	owned	
by	the	thread	execuAng	the	nested	lock	funcAon	

–  omp_init_nest_lock(),	omp_set_nest_lock(),	
omp_unset_nest_lock(),	omp_test_nest_lock(),	
omp_destroy_nest_lock()	

60	

OpenMP	Locks	
•  Protect	resources	with	locks.	

61	

omp_lock_t lck;
omp_init_lock(&lck);
#pragma omp parallel private (tmp, id)
{
 id = omp_get_thread_num();
 tmp = do_lots_of_work(id);
 omp_set_lock(&lck);
 printf(“%d %d”, id, tmp);
 omp_unset_lock(&lck);
}
omp_destroy_lock(&lck);

Wait here for
your turn.

Release the lock so
the next thread gets
a turn.

Free-up storage when done.

OpenMP	Library	Rou<nes	
•  Modify/Check	the	number	of	threads	

–  omp_set_num_threads(),	omp_get_num_threads(),	
omp_get_thread_num(),	omp_get_max_threads()	

•  Are	we	in	a	parallel	region?	
–  omp_in_parallel()	

•  How	many	processors	in	the	system?	
–  omp_num_procs()	

62	

OpenMP	Environment	Variables	

•  Set	the	default	number	of	threads	to	use.	
–  OMP_NUM_THREADS	int_literal	

•  Control	how	“omp	for	schedule(RUNTIME)”	loop	
iteraAons	are	scheduled.	
–  OMP_SCHEDULE	“schedule[,	chunk_size]”	

63	

Outline	

•  OpenMP	IntroducAon	
•  Parallel	Programming	with	OpenMP	

–  Worksharing,	tasks,	data	environment,	synchronizaAon	
•  OpenMP	Performance	and	Best	PracAces	
•  Case	Studies	and	Examples	
•  Reference	Materials	
	

64	

OpenMP	Performance	

•  RelaAve	ease	of	using	OpenMP	is	a	mixed	blessing	
•  We	can	quickly	write	a	correct	OpenMP	program,	
but	without	the	desired	level	of	performance.	

•  There	are	certain	“best	pracAces” to	avoid	
common	performance	problems.	

•  Extra	work	needed	to	program	with	large	thread	
count	

			

65	

Typical	OpenMP	Performance	Issues		

66	

•  Overheads	of	OpenMP	constructs,	thread	
management.	E.g.	
–  dynamic	loop	schedules	have	much	higher	overheads	than	

staAc	schedules	
–  SynchronizaAon	is	expensive,	use	NOWAIT	if	possible	
–  Large	parallel	regions	help	reduce	overheads,	enable	be`er	

cache	usage	and	standard	opAmizaAons	
•  Overheads	of	runAme	library	rouAnes	

–  Some	are	called	frequently	
•  Load	balance	
•  Cache	uAlizaAon	and	false	sharing	

Overheads	of	OpenMP	Direc<ves	

0

200000

400000

600000

800000

1000000

1200000

1400000

O
ve

rh
ea

d
(C

yc
le

s)

1 2 4 8 16 32 64 128 256

PARALLEL

PARALLEL FOR

SINGLE

LOCK/UNLOCK

ATOMIC

Number of Threads

OpenMP Overheads
EPCC Microbenchmarks

SGI Altix 3600

PARALLEL

FOR

PARALLEL FOR

BARRIER

SINGLE

CRITICAL

LOCK/UNLOCK

ORDERED

ATOMIC

REDUCTION

67	

OpenMP	Best	Prac<ces	

•  Reduce	usage	of	barrier	with	nowait	clause	

#pragma	omp	parallel	
{	
			#pragma	omp	for	
			for(i=0;i<n;i++)	
				….	
			#pragma	omp	for	nowait	
			for(i=0;i<n;i++)	
}	

68	

OpenMP	Best	Prac<ces	

#pragma	omp	parallel	private(i)	
{	
			#pragma	omp	for	nowait	
			for(i=0;i<n;i++)	
						a[i]	+=b[i];	
			#pragma	omp	for	nowait	
			for(i=0;i<n;i++)	
						c[i]	+=d[i];	
			#pragma	omp	barrier	
			#pragma	omp	for	nowait	reducAon(+:sum)	
			for(i=0;i<n;i++)	
					sum	+=	a[i]	+	c[i];	
}		

69	

OpenMP	Best	Prac<ces	

•  Avoid	large	ordered	construct	
•  Avoid	large	criAcal	regions	

				#pragma	omp	parallel	shared(a,b)	private(c,d)	
				{	
								….	
									#pragma	omp	criAcal	
								{	
												a	+=	2*c;	
												c	=	d*d;	
								}	
				}	

Move out this
Statement 70	

OpenMP	Best	Prac<ces	

•  Maximize	Parallel	Regions	

#pragma	omp	parallel		
{	
				#pragma	omp	for	
				for	(…)	{		/*	Work-sharing	loop	1	*/	}	
}	
opt	=	opt	+	N;	//sequenAal	
#pragma	omp	parallel	
{	
				#pragma	omp	for	
				for(…)	{	/*	Work-sharing	loop	2	*/	}	
	
				#pragma	omp	for	
				for(…)	{	/*	Work-sharing	loop	N	*/}	
}	

#pragma	omp	parallel		
{	
				#pragma	omp	for		
				for	(…)	{		/*	Work-sharing	loop	1	*/	}	
	
				#pragma	omp	single	nowait	
				opt	=	opt	+	N;	//sequenAal	
	
				#pragma	omp	for	
				for(…)	{	/*	Work-sharing	loop	2	*/	}	
	
				#pragma	omp	for	
				for(…)	{	/*	Work-sharing	loop	N	*/}	
}				

71	

OpenMP	Best	Prac<ces	

•  Single	parallel	region	enclosing	all	work-sharing	loops.	
for	(i=0;	i<n;	i++)	
		for	(j=0;	j<n;	j++)	
					pragma	omp	parallel	for	private(k)	
					for	(k=0;	k<n;	k++)	{		
									……	
					}	

#pragma	omp	parallel	private(i,j,k)		
{	
			for	(i=0;	i<n;	i++)	
							for	(j=0;	j<n;	j++)	
											#pragma	omp	for	
											for	(k=0;	k<n;	k++)	{		
																	…….	
											}	
}	 72	

OpenMP	Best	Prac<ces	

73	

•  Address	load	imbalances	
•  Use	parallel	for	dynamic	schedules	and	
				different	chunk	sizes	
	
	

Smith-Waterman Sequence
Alignment Algorithm

OpenMP	Best	Prac<ces	

•  Smith-Waterman	Algorithm	
–  Default	schedule	is	for	staAc	even	àload	imbalance		

		

74	

	#pragma	omp	for		
				for(…)	
						for(…)	
									for(…)	
											for(…)	
																{	/*	compute	alignments	*/	}	
		#pragma	omp	criAcal	
				{.	/*	compute	scores	*/	}	
	

OpenMP	Best	Prac<ces	
Smith-Waterman Sequence Alignment Algorithm 

	

	

1

10

100

2 4 8 16 32 64 128

Speedup	

threads

100

600

1000

Ideal

1

10

100

2 4 8 16 32 64 128

Speedup	

threads

100

600

1000

Ideal

#pragma omp for

#pragma omp for dynamic(schedule, 1)

128 threads with 80% efficiency 75	

OpenMP	Best	Prac<ces	

0

10000

20000

30000

40000

50000

60000

70000

80000

O
ve

rh
ea

d
(in

 C
yc

le
s)

1 2 4 8 16 32 64 128 256

Default

2

8

32

128

Number of Threads

Chunk Size

Overheads of OpenMP For Static Scheduling
SGI Altix 3600

0

2000000

4000000

6000000

8000000

10000000

12000000

14000000

C
yc

le
s

1 2 4 8 16 32 64 128 256

1

4

16

64

Number of Threads

Chunk Size

Overheads of OpenMP For Dynamic Schedule
SGI Altix 3600

•  Address	load	imbalances	by	selecAng	the	best	schedule	and	
chunk	size	

•  Avoid	selecAng	small	chunk	size	when	work	in	chunk	is	small.	

76	

OpenMP	Best	Prac<ces	

•  Pipeline	processing	to	overlap	I/O	and	computaAons	
										

for	(i=0;	i<N;	i++)	{	
			ReadFromFile(i,…);	
	
			for(j=0;	j<ProcessingNum;	j++)	
							ProcessData(i,	j);	
	
			WriteResultsToFile(i)		
}	

77	

OpenMP	Best	Prac<ces	

#pragma	omp	parallel	
{	
				#pragma	omp	single	
				{	ReadFromFile(0,...);	}	
		
				for	(i=0;	i<N;	i++)	{	
								#pragma	omp	single	nowait	
								{	if	(i<N-1)	ReadFromFile(i+1,….);	}	
	
								#pragma	omp	for	schedule(dynamic)	
								for	(j=0;	j<ProcessingNum;	j++)	
												ProcessChunkOfData(i,	j);	
	
								#pragma	omp	single	nowait	
								{	WriteResultsToFile(i);	}	
				}		
}	

•  Pipeline	Processing	
•  Pre-fetches	I/O	
•  Threads	reading		or	
wriAng	files	joins	
the	computaAons	

The implicit barrier here
is very important: 1) file
i is finished so we can
write to file. 2) file i+1 is
read in so we can
process in the next
loop iteration

78	

For dealing with
the last file

OpenMP	Best	Prac<ces	

•  single	vs.	master	work-sharing	
–  master	is	more	efficient	but	requires	thread	0	to	be	available	
–  single	is	more	efficient	if	master	thread	not	available	
–  single	has	implicit	barrier	
	

79	

Cache	Coherence	

•  Real-world	shared	memory	systems	have	caches	between	
memory	and	CPU	

•  Copies	of	a	single	data	item	can	exist	in	mulAple	caches	
•  ModificaAon	of	a	shared	data	item	by	one	CPU	leads	to	
outdated	copies	in	the	cache	of	another	CPU	

Memory	

CPU	0	

Cache	

CPU	1	

Cache	

Original	data	item	

Copy	of	data	item	
in	cache	of	CPU	0	 Copy	of	data	item	

in	cache	of	CPU	1	

•  False	sharing	
–  When	at	least	one	thread	write	to	a	

cache	line	while	others	access	it	
•  Thread	0:		=	A[1]				(read)	
•  Thread	1:	A[0]	=	…	(write)	

•  SoluAon:	use	array	padding	

int a[max_threads];
#pragma omp parallel for schedule(static,1)
for(int i=0; i<max_threads; i++)
 a[i] +=i;

int a[max_threads][cache_line_size];
#pragma omp parallel for schedule(static,1)
for(int i=0; i<max_threads; i++)
 a[i][0] +=i;

OpenMP	Best	Prac<ces	

Getting OpenMP Up To Speed

RvdP/V1 Tutorial IWOMP 2010 – CCS Un. of Tsukuba, June 14, 2010

False Sharing

CPUs Caches Memory

A store into a shared cache line invalidates the other
copies of that line:

The system is not able to
distinguish between changes

within one individual line

81	

A	

T0	

T1	

Exercise:	Feel	the	false	sharing	with	axpy-papi.c	

82	

OpenMP	Best	Prac<ces	
•  Data	placement	policy	on	NUMA	architectures	

	
•  First	Touch	Policy	

–  The	process	that	first	touches	a	page	of	memory	causes	
that	page	to	be	allocated	in	the	node	on	which	the	process	
is	running	

	

Getting OpenMP Up To Speed

RvdP/V1 Tutorial IWOMP 2010 – CCS Un. of Tsukuba, June 14, 2010

A generic cc-NUMA architecture

83	

NUMA	First-touch	placement/1	

84	

Getting OpenMP Up To Speed

RvdP/V1 Tutorial IWOMP 2010 – CCS Un. of Tsukuba, June 14, 2010

About “First Touch” placement/1

for (i=0; i<100; i++)
 a[i] = 0;

a[0]
 :
a[99]

First Touch
All array elements are in the memory of

the processor executing this thread

int a[100];
Only	reserve	the	vm	

address	

NUMA	First-touch	placement/2	

85	

Getting OpenMP Up To Speed

RvdP/V1 Tutorial IWOMP 2010 – CCS Un. of Tsukuba, June 14, 2010

About “First Touch” placement/2

for (i=0; i<100; i++)
 a[i] = 0;

a[0]
 :
a[49]

#pragma omp parallel for num_threads(2)

First Touch
Both memories each have “their half” of

the array

a[50]
 :
a[99]

OpenMP	Best	Prac<ces	

•  First-touch	in	pracAce	
–  IniAalize	data	consistently	with	the	computaAons	
	

#pragma	omp	parallel	for	
for(i=0;	i<N;	i++)	{	
			a[i]	=	0.0;	b[i]	=	0.0	;	c[i]	=	0.0;		
}	
readfile(a,b,c);	
	
#pragma	omp	parallel	for	
for(i=0;	i<N;	i++)	{	
				a[i]	=	b[i]	+	c[i];	
}	

86	

•  PrivaAze	variables	as	much	as	possible	
–  Private	variables	are	stored	in	the	local	stack	to	the	thread	

•  Private	data	close	to	cache	

double	a[MaxThreads][N][N]	
#pragma	omp	parallel	for	
for(i=0;	i<MaxThreads;	i++)	{	
				for(int	j…)	
								for(int	k…)	
												a[i][j][k]	=	…	
}	

double	a[N][N]	
#pragma	omp	parallel	private(a)	
{	
	for(int	j…)	
			for(int	k…)	
							a[j][k]	=	…	
}	

OpenMP	Best	PracAces	

87	

OpenMP	Best	PracAces	

procedure	diff_coeff()	{	
						array	allocaAon	by	master	thread	
						iniAalizaAon	of	shared	arrays	
	
						PARALLEL	REGION		
						{	
											loop	lower_bn	[id]	,	upper_bn	[id]	
											computaAon	on	shared	arrays	
												…..			
						}	
}	

•  CFD	applicaAon	psudo-code	
–  Shared	arrays	iniAalized	incorrectly	(first	touch	policy)	
–  Delays	in	remote	memory	accesses	are	probable	causes	by	
saturaAon	of	interconnect	

88	

Stall Cycle Breakdown for Non-Privatized (NP) and
Privatized (P) Versions of diff_coeff

0.00E+00
5.00E+09
1.00E+10
1.50E+10
2.00E+10
2.50E+10
3.00E+10
3.50E+10
4.00E+10
4.50E+10
5.00E+10

D
-c

ac
h

st
al

ls

B
ra

nc
h

m
is

pr
ed

ic
tio

n

In
st

ru
ct

io
n

m
is

s
st

al
l

FL
P

 U
ni

ts

Fr
on

t-e
nd

flu
sh

es

C
yc

le
s NP

P
NP-P

OpenMP	Best	PracAces	
•  Array	privaAzaAon		

–  Improved	the	performance	of	the	whole	program	by	30%	
–  Speedup	of	10	for	the	procedure,	now	only	5%	of	total	Ame	

•  Processor	stalls	are	reduced	significantly	

89	

•  Avoid	Thread	MigraAon	
–  Affects	data	locality	

•  Bind	threads	to	cores.	
•  Linux:	

–  numactl	–cpubind=0	foobar	
–  taskset	–c	0,1	foobar	

•  SGI	AlAx	
–  dplace	–x2	foobar			

OpenMP	Best	PracAces	

90	

OpenMP	Source	of	Errors	

•  Incorrect	use	of	synchronizaAon	constructs	
–  Less	likely	if	user	sAcks	to	direcAves	
–  Erroneous	use	of	NOWAIT	

•  Race	condiAons	(true	sharing)	
–  Can	be	very	hard	to	find	

•  Wrong	“spelling”	of	senAnel	
•  Use	tools	to	check	for	data	races.	

91	

Outline	

•  OpenMP	IntroducAon	
•  Parallel	Programming	with	OpenMP	

–  Worksharing,	tasks,	data	environment,	synchronizaAon	
•  OpenMP	Performance	and	Best	PracAces	
•  Hybrid	MPI/OpenMP	
•  Case	Studies	and	Examples	
•  Reference	Materials	
	

92	

Matrix	vector	mul<plica<on	

93	

Getting OpenMP Up To Speed

RvdP/V1 Tutorial IWOMP 2010 – CCS Un. of Tsukuba, June 14, 2010

The Sequential Source

= *

j

i

Getting OpenMP Up To Speed

RvdP/V1 Tutorial IWOMP 2010 – CCS Un. of Tsukuba, June 14, 2010

The OpenMP Source

= *

j

i

Performance	–	2-socket	Nehalem	

94	

Getting OpenMP Up To Speed

RvdP/V1 Tutorial IWOMP 2010 – CCS Un. of Tsukuba, June 14, 2010

Performance - 2 Socket Nehalem

2-socket	Nehalem	

95	

Getting OpenMP Up To Speed

RvdP/V1 Tutorial IWOMP 2010 – CCS Un. of Tsukuba, June 14, 2010

A Two Socket Nehalem System

Data	ini<aliza<on	

96	

Getting OpenMP Up To Speed

RvdP/V1 Tutorial IWOMP 2010 – CCS Un. of Tsukuba, June 14, 2010

Data Initialization

= *

j

i

IniAalizaAon	will	cause	the	allocaAon	of	
memory	according	to	the	first	touch	policy	

Exploit	First	Touch	

97	

Getting OpenMP Up To Speed

RvdP/V1 Tutorial IWOMP 2010 – CCS Un. of Tsukuba, June 14, 2010

Exploit First Touch

A	3D	matrix	update	

Getting OpenMP Up To Speed

RvdP/V1 Tutorial IWOMP 2010 – CCS Un. of Tsukuba, June 14, 2010

Observation
 No data dependency on 'I'
 Therefore we can split the 3D

matrix in larger blocks and
process these in parallel

J
I

K

 98	

The	idea	

Getting OpenMP Up To Speed

RvdP/V1 Tutorial IWOMP 2010 – CCS Un. of Tsukuba, June 14, 2010

The Idea
K

J

I

ie is

 We need to distribute the M
iterations over the number
of processors

 We do this by controlling
the start (IS) and end (IE)
value of the inner loop

 Each thread will calculate
these values for it's portion
of the work

99	

A	3D	matrix	update	

100	

Getting OpenMP Up To Speed

RvdP/V1 Tutorial IWOMP 2010 – CCS Un. of Tsukuba, June 14, 2010

A 3D matrix update

 The loops are correctly nested for
serial performance

 Due to a data dependency on J and
K, only the inner loop can be
parallelized

 This will cause the barrier to be
executed (N-1) 2 times

Data Dependency Graph

J
j-1 j

k-1
k

I

K

101	

Getting OpenMP Up To Speed

RvdP/V1 Tutorial IWOMP 2010 – CCS Un. of Tsukuba, June 14, 2010

The performance

Dimensions : M=7,500 N=20
Footprint : ~24 MByte

Pe
rf

or
m

an
ce

 (M
flo

p/
s)

Inner loop over I has
been parallelized

Scaling is very poor
(as to be expected)

Number of threads

The	performance	

Performance	analyzer	data	

102	

Getting OpenMP Up To Speed

RvdP/V1 Tutorial IWOMP 2010 – CCS Un. of Tsukuba, June 14, 2010

Performance Analyzer data
scales som

ew
hat

do
 n

ot

sc
al

e
at

 a
ll

Using 10 threads

Question: Why is __mt_WaitForWork so high in the profi le ?

Using 20 threads

False	sharing	at	work	

103	
Getting OpenMP Up To Speed

RvdP/V1 Tutorial IWOMP 2010 – CCS Un. of Tsukuba, June 14, 2010

This is False Sharing at work !

no
 s

ha
rin

g

P=1 P=2 P=4 P=8

False sharing increases as
we increase the number of

threads

Performance	compared	

104	

Getting OpenMP Up To Speed

RvdP/V1 Tutorial IWOMP 2010 – CCS Un. of Tsukuba, June 14, 2010

Performance comparison

Number of threads

Pe
rf

or
m

an
ce

 (M
flo

p/
s)

For a higher value of M, the
program scales better

M = 7,500

M = 75,000

The	first	implementa<on	

Getting OpenMP Up To Speed

RvdP/V1 Tutorial IWOMP 2010 – CCS Un. of Tsukuba, June 14, 2010

The fi rst implementation

105	

OpenMP	version	

106	

Getting OpenMP Up To Speed

RvdP/V1 Tutorial IWOMP 2010 – CCS Un. of Tsukuba, June 14, 2010

Another Idea: Use OpenMP !

How	this	works	

107	

Getting OpenMP Up To Speed

RvdP/V1 Tutorial IWOMP 2010 – CCS Un. of Tsukuba, June 14, 2010

How this works on 2 threads

parallel region

work sharing

parallel region

work sharing

This splits the operation in a way that is
similar to our manual implementation

… etc …! … etc …!

Performance	

108	

Getting OpenMP Up To Speed

RvdP/V1 Tutorial IWOMP 2010 – CCS Un. of Tsukuba, June 14, 2010

Performance
 We have set M=7500 N=20

 This problem size does not scale at all when we
explicitly parallelized the inner loop over 'I'

 We have have tested 4 versions of this program
 Inner Loop Over 'I' - Our fi rst OpenMP version
 AutoPar - The automatically parallelized version of

'kernel'
 OMP_Chunks - The manually parallelized version

with our explicit calculation of the chunks
 OMP_DO - The version with the OpenMP parallel

region and work-sharing DO

Performance	

109	

Getting OpenMP Up To Speed

RvdP/V1 Tutorial IWOMP 2010 – CCS Un. of Tsukuba, June 14, 2010

The performance (M=7,500)

Dimensions : M=7,500 N=20
Footprint : ~24 MByte

Pe
rfo

rm
an

ce
 (M

flo
p/

s)

The auto-parallelizing
compiler does really well !

Number of threads

OMP DO

Innerloop

OMP Chunks

Reference	Material	on	OpenMP	

110	

•  OpenMP	Homepage	www.openmp.org:	
–  The	primary	source	of	informaAon	about	OpenMP	
and	its	development.	

•  OpenMP	User’s	Group	(cOMPunity)	Homepage	
– www.compunity.org:						

•  Books:	
– Using	OpenMP,	Barbara	Chapman,	Gabriele	Jost,	
Ruud	Van	Der	Pas,	Cambridge,	MA	:	The	MIT	Press	
2007,	ISBN:	978-0-262-53302-7	

–  Parallel	programming	in	OpenMP,	Chandra,	Rohit,	
San	Francisco,	Calif.	:	Morgan	Kaufmann	;	London	:	
Harcourt,	2000,	ISBN:	1558606718	

110	

•  DirecAves	implemented	
via	code	modificaAon	and	
inserAon	of	runAme	
library	calls	

–  Basic	step	is	outlining	of	code	
in	parallel	region	

•  RunAme	library	
responsible	for	managing	
threads	

–  Scheduling	loops	
–  Scheduling	tasks	
–  ImplemenAng	

synchronizaAon	
•  ImplementaAon	effort	is	

reasonable	

OpenMP Code Translation

int main(void)
{
int a,b,c;
#pragma omp parallel \
private(c)
do_sth(a,b,c);
return 0;
}

_INT32 main()
{
int a,b,c;
/* microtask */
void __ompregion_main1()
{
_INT32 __mplocal_c;
/*shared variables are kept intact,
substitute accesses to private
variable*/
do_sth(a, b, __mplocal_c);
}
…
/*OpenMP runtime calls */
__ompc_fork(&__ompregion_main1
);
…
}

Each	compiler	has	custom	run-Ame	support.	Quality	of	the	runAme	system	has	major	
impact	on	performance.	

Standard	OpenMP	Implementa<on	

