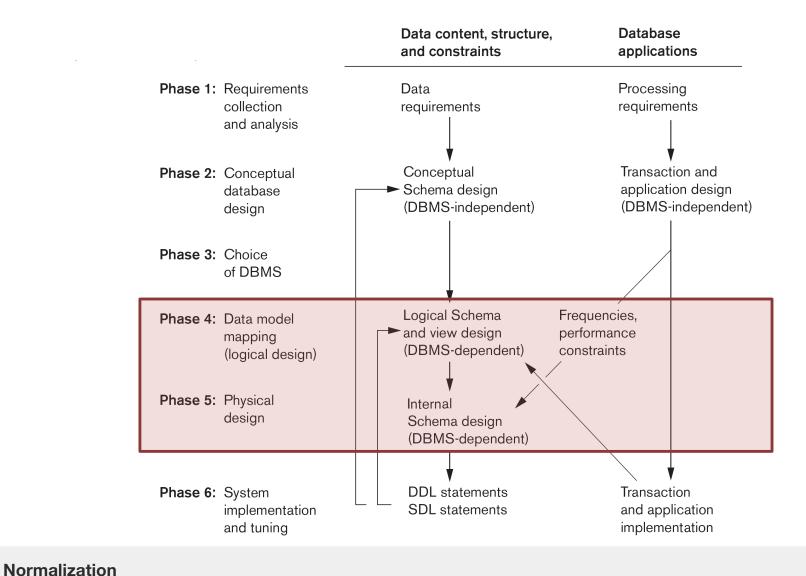

Normalization

Lecture 9



Outline

- 1. Context
- 2. Normalization Objectives
- 3. Functional Dependencies
- 4. Normal Forms
 - 1NF
 - 2NF
 - 3NF

Database Design and Implementation Process

Normalization

- Theory and process by which to evaluate and improve relational database design
- Typically divide larger tables into smaller, less redundant tables
- Spans both logical and physical database design

Objectives of Normalization

- Make the schema informative
- Minimize information duplication
- Avoid modification anomalies
- Disallow spurious tuples

Note: during physical tuning we may prioritize query execution speed and thus *denormalize* (e.g. OLTP vs. OLAP)

Example Schema

EMPLOYEE

Ename	<u>Ssn</u>	Bdate	Address	Dnumber
Smith, John B.	123456789	1965-01-09	731 Fondren, Houston, TX	5
Wong, Franklin T.	333445555	1955-12-08	638 Voss, Houston, TX	5
Zelaya, Alicia J.	999887777	1968-07-19	3321 Castle, Spring, TX	4
Wallace, Jennifer S.	987654321	1941-06-20	291Berry, Bellaire, TX	4
Narayan, Ramesh K.	666884444	1962-09-15	975 Fire Oak, Humble, TX	5
English, Joyce A.	453453453	1972-07-31	5631 Rice, Houston, TX	5
Jabbar, Ahmad V.	987987987	1969-03-29	980 Dallas, Houston, TX	4
Borg, James E.	888665555	1937-11-10	450 Stone, Houston, TX	1

DEPARTMENT

Dname	<u>Dnumber</u>	Dmgr_ssn
Research	5	3334455555
Administration	4	987654321
Headquarters	1	888665555

Straw Man Schema

Ename	<u>Ssn</u>	Bdate	Address	Dnumber	Dname	Dmgr_ssn
Smith, John B.	123456789	1965-01-09	731 Fondren, Houston, TX	5	Research	333445555
Wong, Franklin T.	333445555	1955-12-08	638 Voss, Houston, TX	5	Research	333445555
Zelaya, Alicia J.	999887777	1968-07-19	3321 Castle, Spring, TX	4	Administration	987654321
Wallace, Jennifer S.	987654321	1941-06-20	291 Berry, Bellaire, TX	4	Administration	987654321
Narayan, Ramesh K.	666884444	1962-09-15	975 FireOak, Humble, TX	5	Research	333445555
English, Joyce A.	453453453	1972-07-31	5631 Rice, Houston, TX	5	Research	333445555
Jabbar, Ahmad V.	987987987	1969-03-29	980 Dallas, Houston, TX	4	Administration	987654321
Borg, James E.	888665555	1937-11-10	450 Stone, Houston, TX	1	Headquarters	888665555

Make the Schema Informative

- Design a relational schema so that it is easy to explain its meaning
- Do not combine attributes from multiple entity types and relationship types into a single relation; semantic ambiguities will result and the relation cannot be easily explained
- Normalized tables, and the relationship between one normalized table and another, mirror realworld concepts and their interrelationships

Example Schema

What is this table about?

• Employees? Departments?

Ename	<u>Ssn</u>	Bdate	Address	Dnumber	Dname	Dmgr_ssn
Smith, John B.	123456789	1965-01-09	731 Fondren, Houston, TX	5	Research	333445555
Wong, Franklin T.	333445555	1955-12-08	638 Voss, Houston, TX	5	Research	333445555
Zelaya, Alicia J.	999887777	1968-07-19	3321 Castle, Spring, TX	4	Administration	987654321
Wallace, Jennifer S.	987654321	1941-06-20	291 Berry, Bellaire, TX	4	Administration	987654321
Narayan, Ramesh K.	666884444	1962-09-15	975 FireOak, Humble, TX	5	Research	333445555
English, Joyce A.	453453453	1972-07-31	5631 Rice, Houston, TX	5	Research	333445555
Jabbar, Ahmad V.	987987987	1969-03-29	980 Dallas, Houston, TX	4	Administration	987654321
Borg, James E.	888665555	1937-11-10	450 Stone, Houston, TX	1	Headquarters	888665555

Minimize Information Duplication

Avoid data redundancies

					Redun	dancy
EMP_DEPT				[
Ename	<u>Ssn</u>	Bdate	Address	Dnumber	Dname	Dmgr_ssn
Smith, John B.	123456789	1965-01-09	731 Fondren, Houston, TX	5	Research	333445555
Wong, Franklin T.	3334455555	1955-12-08	638 Voss, Houston, TX	5	Research	333445555
Zelaya, Alicia J.	999887777	1968-07-19	3321 Castle, Spring, TX	4	Administration	987654321
Wallace, Jennifer S.	987654321	1941-06-20	291 Berry, Bellaire, TX	4	Administration	987654321
Narayan, Ramesh K.	666884444	1962-09-15	975 FireOak, Humble, TX	5	Research	333445555
English, Joyce A.	453453453	1972-07-31	5631 Rice, Houston, TX	5	Research	333445555
Jabbar, Ahmad V.	987987987	1969-03-29	980 Dallas, Houston, TX	4	Administration	987654321
Borg, James E.	888665555	1937-11-10	450 Stone, Houston, TX	1	Headquarters	888665555

- Avoid excessive use of NULLs (e.g. fat tables)
 - Wastes space
 - Can make information querying/understanding complicated and error-prone

Avoid Modification Anomalies

An undesired side-effect resulting from an attempt to modify a table (that has not been sufficiently normalized)

Types of modifications:

- Insertion
- Update
- Deletion

Insertion Anomaly

Difficult or impossible to insert a new row

- Add a new employee
 - Unknown manager
 - Typo in department/manager info
- Add a new department
 - Requires at least one employee

_	0	D .			5	D
Ename	<u>Ssn</u>	Bdate	Address	Dnumber	Dname	Dmgr_ssn
Smith, John B.	123456789	1965-01-09	731 Fondren, Houston, TX	5	Research	333445555
Wong, Franklin T.	333445555	1955-12-08	638 Voss, Houston, TX	5	Research	333445555
Zelaya, Alicia J.	999887777	1968-07-19	3321 Castle, Spring, TX	4	Administration	987654321
Wallace, Jennifer S.	987654321	1941-06-20	291 Berry, Bellaire, TX	4	Administration	987654321
Narayan, Ramesh K.	666884444	1962-09-15	975 FireOak, Humble, TX	5	Research	333445555
English, Joyce A.	453453453	1972-07-31	5631 Rice, Houston, TX	5	Research	333445555
Jabbar, Ahmad V.	987987987	1969-03-29	980 Dallas, Houston, TX	4	Administration	987654321
Borg, James E.	888665555	1937-11-10	450 Stone, Houston, TX	1	Headquarters	888665555

Update Anomaly

Updates may result in logical inconsistencies

Change the department name/manager

Ename	<u>Ssn</u>	Bdate	Address	Dnumber	Dname	Dmgr_ssn
Smith, John B.	123456789	1965-01-09	731 Fondren, Houston, TX	5	Research	333445555
Wong, Franklin T.	333445555	1955-12-08	638 Voss, Houston, TX	5	Research	333445555
Zelaya, Alicia J.	999887777	1968-07-19	3321 Castle, Spring, TX	4	Administration	987654321
Wallace, Jennifer S.	987654321	1941-06-20	291 Berry, Bellaire, TX	4	Administration	987654321
Narayan, Ramesh K.	666884444	1962-09-15	975 FireOak, Humble, TX	5	Research	333445555
English, Joyce A.	453453453	1972-07-31	5631 Rice, Houston, TX	5	Research	333445555
Jabbar, Ahmad V.	987987987	1969-03-29	980 Dallas, Houston, TX	4	Administration	987654321
Borg, James E.	888665555	1937-11-10	450 Stone, Houston, TX	1	Headquarters	888665555

Deletion Anomaly

Deletion of data representing certain facts necessitates deletion of data representing completely different facts

• Delete James E. Borg

Ename	<u>Ssn</u>	Bdate	Address	Dnumber	Dname	Dmgr_ssn
Smith, John B.	123456789	1965-01-09	731 Fondren, Houston, TX	5	Research	333445555
Wong, Franklin T.	3334455555	1955-12-08	638 Voss, Houston, TX	5	Research	333445555
Zelaya, Alicia J.	999887777	1968-07-19	3321 Castle, Spring, TX	4	Administration	987654321
Wallace, Jennifer S.	987654321	1941-06-20	291 Berry, Bellaire, TX	4	Administration	987654321
Narayan, Ramesh K.	666884444	1962-09-15	975 FireOak, Humble, TX	5	Research	333445555
English, Joyce A.	453453453	1972-07-31	5631 Rice, Houston, TX	5	Research	333445555
Jabbar, Ahmad V.	987987987	1969-03-29	980 Dallas, Houston, TX	4	Administration	987654321
Borg, James E.	888665555	1937-11-10	450 Stone, Houston, TX	1	Headquarters	888665555

Disallow Spurious Tuples

Avoid relational design that matches attributes across relations that are not (foreign key, primary key) combinations because joining on such attributes may produce invalid tuples

Example Decomposition

CAR

ID	Make	Color
1	Toyota	Blue
2	Audi	Blue
3	Toyota	Red

CAR1

ID	Color
1	Blue
2	Blue
3	Red

February 15, 2018

Make	Color
Toyota	Blue
Audi	Blue
Toyota	Red

Natural Join

ID	Make	Color
1	Toyota	Blue
1	Audi	Blue
2	Toyota	Blue
2	Audi	Blue
3	Toyota	Red

Make

Toyota

Audi

Toyota

CAR1

ID	Color
1	Blue
2	Blue
3	Red

Color

Blue

Blue

Red

Additive Decomposition

CAR	ID	Make	Color
	1	Toyota	Blue
	2	Audi	Blue
	3	Toyota	Red

JOIN	ID	Make	Color
	1	Toyota	Blue
	1	Audi	Blue
	2	Toyota	Blue
	2	Audi	Blue
	3	Toyota	Red

Game Plan

- We are going to build up to a set of "tests" (*Normal Forms*) that will indicate degrees of design quality
- To do so, we must first formalize some notions regarding how data relates within a relation

Functional Dependency (FD)

In a relation *r*, a set of attributes **Y** is *functionally dependent* upon another set of attributes **X** ($X \rightarrow Y$) iff...

for all pairs of tuples t_1 and t_2 in *r*...

if $t_1[\mathbf{X}] = t_2[\mathbf{X}] \dots$

it MUST be the case that $t_1[\mathbf{Y}] = t_2[\mathbf{Y}]$

Normalization

FD Example (1)

	StudentID	Year	Class	Instructor
t_1	1	Sophomore	COMP355	Wu
t_2	2	Sophomore	COMP285	Wu
t_3	3	Junior	COMP355	Wu
t_4	3	Junior	COMP285	Wu
t_5	2	Sophomore	COMP355	Russo
t_6	4	Sophomore	COMP355	Russo

What FDs hold in the <u>current</u> state of this relation?

$$\{StudentID\} \rightarrow \{Year\}$$
$$\{StudentID, Class\} \rightarrow \{Instructor\}$$

FDs & Keys

 One <u>cannot</u> determine whether FDs hold for all relation states unless the meaning of and relationships among the attributes are known

FD Example (2)

	StudentID	Year	Class	Instructor
t_1	1	Sophomore	COMP355	Wu
t_2	2	Sophomore	COMP285	Wu
t_3	3	Junior	COMP355	Wu
t_4	3	Junior	COMP285	Wu
t_5	2	Sophomore	COMP355	Russo
t_6	4	Sophomore	COMP355	Russo

What FDs hold in the <u>current</u> state of this relation? $\{StudentID\} \rightarrow \{Year\}$ $\{StudentID, Class\} \rightarrow \{Instructor\}$

FDs & Keys

- One <u>cannot</u> determine whether FDs hold for all relation states unless the meaning of and relationships among the attributes are known
 - These are the "data dependencies" foreshadowed in Lecture 2 (Relational Model)
 - If you *do* have this domain knowledge, it is possible to identify candidate keys (minimal subsets of attributes that FD all attributes)
- One <u>can</u> state an FD does *not* hold given a relation state by identifying violating tuple(s)

FD Example (3)

	StudentID	Year	Class	Instructor
t_1	1	Sophomore	COMP355	Wu
t_2	2	Sophomore	COMP285	Wu
t_3	3	Junior	COMP355	Wu
t_4	3	Junior	COMP285	Wu
t_5	2	Sophomore	COMP355	Russo
t_6	4	Sophomore	COMP355	Russo
		↑		
				↑

 $\{StudentID\} \rightarrow \{Year\}$ $\{StudentID, Class\} \rightarrow \{Instructor\}$

Key(s): {*StudentID*, *Class*}

- Every student is classified as either a Freshman, Sophomore, Junior, or Senior.
- Students can take only a single section of a class, taught by a single instructor.

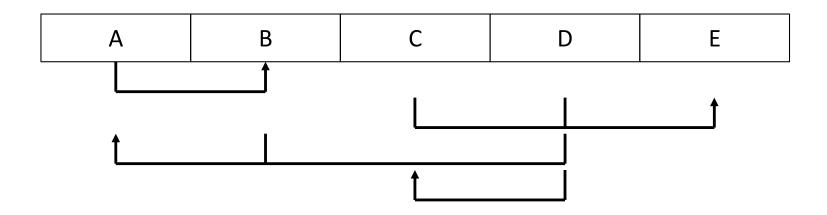
Normalization

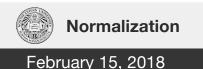
FD Example (4)

	StudentID	Year	Class	Instructor
t_1	1 Sophomore		COMP355	Wu
t_2	2	Sophomore	COMP285	Wu
t_3	3	Junior	COMP355	Wu
t_4	3	Junior	COMP285	Wu
t_5	2	Sophomore	COMP355	Russo
t_6	4	Sophomore	COMP355	Russo
$\{StudentID\} \not\rightarrow \{Instructor\}$			$\{Class\} \not\rightarrow \{\Sigma\}$	$Year\}$
$\{StudentID\} \not\rightarrow \{Class\}$			$\{Class\} \not\rightarrow \{S\}$	$StudentID\}$
$\left\{ \begin{array}{c} 1 \\ 1 \end{array} \right\}$	$Year\} \not\rightarrow \{Stuc$	$dentID\}$	$\{Class\} \not\rightarrow \{I$	[nstructor]
$\{Year\} \not\rightarrow \{Instructor\}$		$\{Instructor\} \not\rightarrow \{Class\}$		
$\left\{ \right\}$	$\{Year\} \not\rightarrow \{Class\}$		$\{Instructor\} \not\rightarrow \{Year\}$	
			$\{Instructor\}$	$\not \rightarrow \{StudentID$

FD Example (5)

	StudentID	Year	Class	Instructor
t_1	1	Sophomore	COMP355	Wu
t_2	2	Sophomore	COMP285	Wu
t_3	3	Junior	COMP355	Wu
t_4	3	Junior	COMP285	Wu
t_5	2	Sophomore	COMP355	Russo
t_6	4	Sophomore	COMP355	Russo

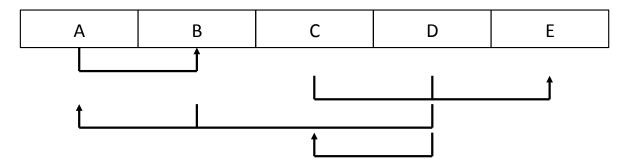

 $\{StudentID, Instructor\} \not\rightarrow \{Class\} \\ \{Year, Class\} \not\rightarrow \{Instructor\} \\ \{Year, Class\} \not\rightarrow \{StudentID\} \\ \{Class, Instructor\} \not\rightarrow \{StudentID\} \\ \{Class, Instructor\} \not\rightarrow \{Year\} \\ \{Year, Class, Instructor\} \not\rightarrow \{StudentID\} \\ \}$



Exercise

Consider the following visual depiction of the functional dependencies of a relational schema.

- 1. List all FDs in algebraic notation
- 2. Identify all key(s) of of this relation



Answer

Functional Dependencies Keys

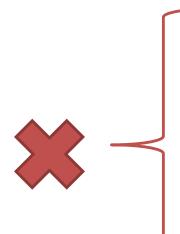
$$\begin{array}{ccc} A \to B & DA \\ CD \to E & DB \\ BD \to A \end{array}$$

 $D \to C$

Normalization Process

- Submit a relational schema to a set of tests (related to FDs) to certify whether it satisfies a normal form
- If it does not pass, decompose into smaller relations that satisfy the normal form
 - Must be non-additive (i.e. no spurious tuples!)
- The normal form of a relation refers to the highest normal form that it meets
 - As of 2002 the most constraining is 6NF
- The normal form of a database refers to the lowest normal form that any relation meets
 - Practically, a database is normalized if all relations \geq 3NF

1NF – First Normal Form


- The domain of an attribute must include only atomic values and that the value of any attribute in a tuple must be a single value from the domain of that attribute
- No relations within relations or relations as attribute values within tuples
- Considered part of the formal definition of a relation in the basic (flat) relational model

 In other words, an *implicit* constraint (Lecture 2)

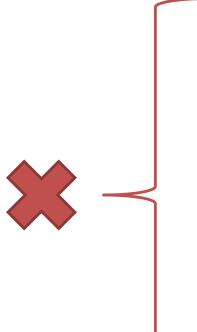
Northeastern University

1NF Violation (1)

DEPARTMENT

Dname	<u>Dnumber</u>	Dmgr_ssn	Dlocations
≜		1	A

DEPARTMENT


Dname	<u>Dnumber</u>	Dmgr_ssn	Dlocations
Research	5	333445555	{Bellaire, Sugarland, Houston}
Administration	4	987654321	{Stafford}
Headquarters	1	888665555	{Houston}

DEPARTMENT

Dname	<u>Dnumber</u>	Dmgr_ssn	Dlocation
Research	5	333445555	Bellaire
Research	5	333445555	Sugarland
Research	5	333445555	Houston
Administration	4	987654321	Stafford
Headquarters	1	888665555	Houston

1NF Violation (2)

EMP_PROJ		Projs		
	Ssn	Ename	Pnumber	Hours

EMP_PROJ

Ssn	Ename	Pnumber	Hours
123456789	Smith, John B.	1	32.5
L		2	7.5
666884444	Narayan, Ramesh K.	3	40.0
453453453	English, Joyce A.	1	20.0
L		22	20.0
333445555	Wong, Franklin T.	2	10.0
		3	10.0
		10	10.0
L		20	10.0
999887777	Zelaya, Alicia J.	30	30.0
L		10	10.0
987987987	Jabbar, Ahmad V.	10	35.0
L		30	5.0
987654321	Wallace, Jennifer S.	30	20.0
L		20	15.0
888665555	Borg, James E.	20	NULL

EMP_PROJ1

Ssn Ename

EMP_PROJ2

<u>Ssn</u> <u>Pnumber</u> Hours

Important FD Definitions

Trivial FD	$X \to Y, \ Y \subseteq X$
Non-Prime	An attribute that does not occur in any key (opposite: Prime)
Full FD	$X \to Y, \ \forall A \in X((X - \{A\}) \nrightarrow Y)$
Transitive FD	$X \to Z :: X \to Y \text{ and } Y \to Z$

2NF – Second Normal Form

- 1NF AND every non-prime attribute is fully FD on the primary key
 - Must test all FDs whose LHS is part of the PK
- To fix, decompose into relations in which non-prime attributes are associated only with the part of the primary key on which they are fully functionally dependent

2NF Example

<u>StudentID</u>	<u>Course</u>	Student	Address	
1	1 COMP570 555 Hu		ntington	
1	1 COMP285 555 Hur		ntington	
2	COMP570	610 Hu	ntington	
3	COMP355	Louis	Prang	
3	COMP553	Louis	Prang	
$\{StudentID, Course\} \rightarrow \{StudentAddress\}$				
$\{StudentID\} \rightarrow$	$\{StudentAddres$	<i>s</i> }	StudentID	Course
			1	COMP570
<u>StudentID</u>	StudentAddress		1	COMP285
1	555 Huntington		2	COMP570
2	610 Huntington		3	COMP355
3	Louis Prang		3	COMP553

2NF Can Suffer Update Anomalies

Year	Winner	Nationality
1994	Miguel Indurain	Spain
1995	Miguel Indurain	Spain
1996	Bjarne Riis	Denmark
1997	Jan Ullrich	Germany

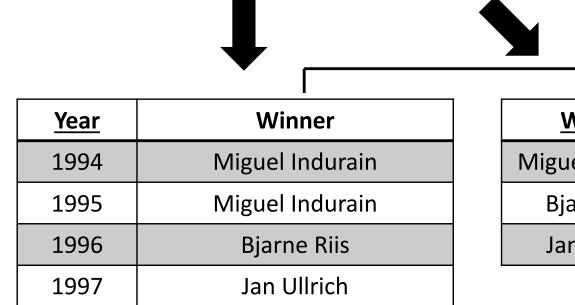
- Relation is in 2NF?
 Trivially true (why?)
- List all non-trivial FDs for this relation state

 $\{Year\} \rightarrow \{Winner, Nationality\}$

 $\{Winner\} \rightarrow \{Nationality\}$

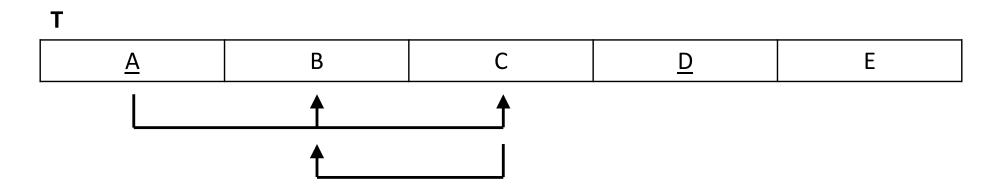
• What if we insert (1998, Jan Ullrich, USA)?

3NF – Third Normal Form


- 2NF AND every non-prime attribute is non-transitively dependent on every key "A non-key field must provide a fact about the key, the whole key, and nothing but the key. So help me Codd."
- To fix, decompose into multiple relations, whereby the intermediate non-key attribute(s) functionally determine other non-prime attributes

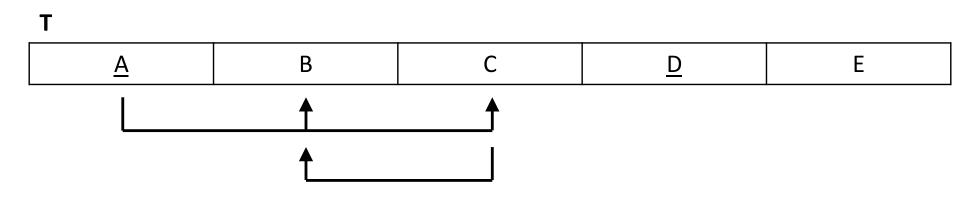
3NF Example

Year	Winner	Nationality	
1994	Miguel Indurain	Spain	V
1995	Miguel Indurain	Spain	
1996	Bjarne Riis	Denmark	
1997	Jan Ullrich	Germany	


 $Year \rightarrow Nationality \because$ $Year \rightarrow Winner$ and $Vinner \rightarrow Nationality$

Winner	Nationality
Miguel Indurain	Spain
Bjarne Riis	Denmark
Jan Ullrich	Germany

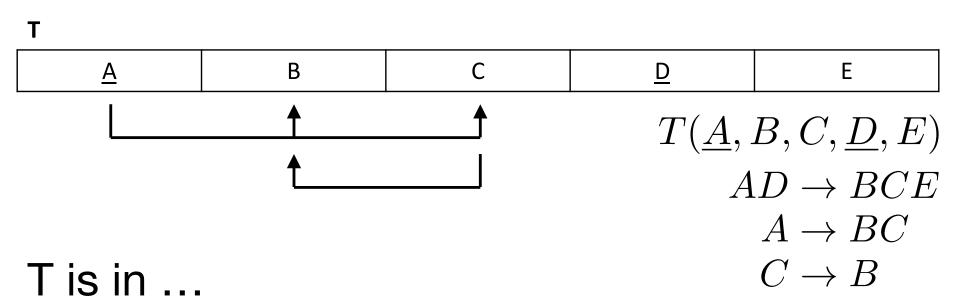
Exercise


Consider the schema for relation **T**, as well as all FDs. What is the normal form of **T**? If **T** violates 3NF, provide a 3NF decomposition that satisfies the FDs (including the primary key) and does not produce spurious tuples. Show and explain all steps of your analysis and decomposition (if applicable).

Northeastern University

CS3200 – Database Design · Spring 2018 · Derbinsky

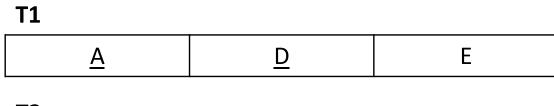
Answer (1)



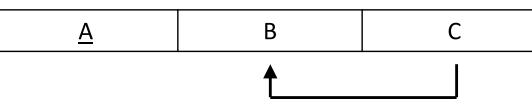
List non-trivial FDs $AD \rightarrow BCE$ $A \rightarrow BC$ $C \rightarrow B$

Written algebraically $T(\underline{A}, B, C, \underline{D}, E)$

Answer (2)



- Both B & C are FD on A
 Thus not fully FD on PK (All
 - Thus not fully FD on PK (AD)


Decompose!

Answer (3)

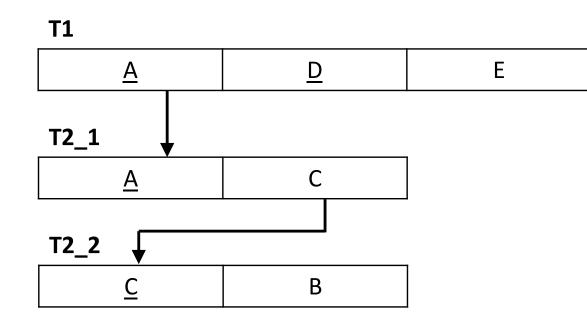
T2

T1 is in ...

- 2NF: E is fully FD on AD
- 3NF: No transitive FDs (trivially true)

T2 is in ...

- 2NF: B and C fully FD on A (trivially true)
- !3NF: B is transitively FD on A [via C]


Decompose!

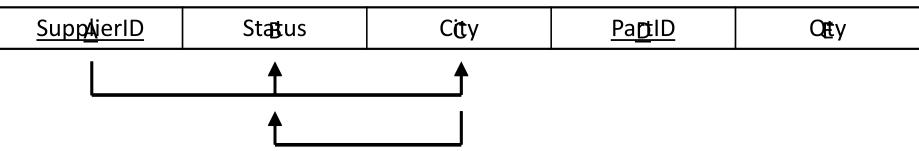
Normalization

 $\begin{array}{c} T1(\underline{A},\underline{D},E)\\ T2(\underline{A},B,C)\\\\ AD \rightarrow E\\\\ A \rightarrow BC\\\\ C \rightarrow B \end{array}$

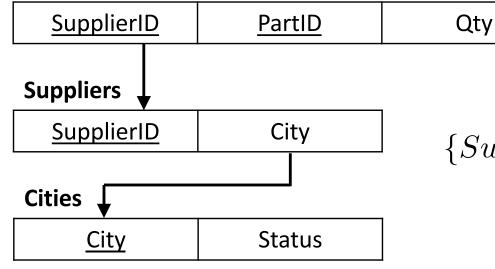
Answer (4)

Database is in 3NF

• Why?



$T1(\underline{A}, \underline{D}, E)$ $T2_1(\underline{A}, C)$ $T2_2(\underline{C}, B)$


 $\begin{array}{c} AD \to E \\ A \to C \\ C \to B \end{array}$

Answer (5)

\$upplies

Supplier_Parts

 $\{SupplierID, PartID\} \rightarrow \{Qty\}$ $\{SupplierID\} \rightarrow \{City\}$ $\{City\} \rightarrow \{Status\}$

Summary

- Normalization is the theory and process by which to evaluate and improve relational database design
 - Makes the schema informative
 - Minimizes information duplication
 - Avoids modification anomalies
 - Disallows spurious tuples
- Make sure all your relations are at least 3NF!
 - Higher normal forms exist
 - We may reduce during physical design

