Business Statistics

Lecture 1: Course Introduction & Descriptive Statistics

Goals for this Lecture

- Introduce professor & course
- Define some basic statistics terminology
 - Populations vs. samples
 - Descriptive vs. inferential statistics
- Numerical descriptive statistics
 - Measures of location
 - Measures of dispersion
- Short introduction to JMP

Contact Information

- Professor Ron Fricker
 - Phone: 831-869-8414
 - E-mail: rdfricker@nps.edu
 - Located in Monterey

Call or e-mail anytime!

A Little Bit About Me...

- Academic credentials
 - Ph.D. and M.A. in Statistics, Yale University
 - M.S. in Ops Research, The George Washington University
 - B.S. in Mathematics from the United States Naval Academy
- Teaching credentials
 - Started teaching post-graduate courses in mid-80s
 - Have taught at NPS, RAND Graduate School, and USC
- "Real world" credentials
 - Former active duty naval officer
 - Commercial managerial experience
 - Two defense-related organizations
 - One non-profit
- Can find out more at http://faculty.nps.edu/rdfricke/

Course Goals

- Be able to:
 - Apply basic statistical methods to business problems
 - Understand more advanced statistical techniques and how they are properly applied
 - Judge good statistics and statistical practice from bad
 - *Know* when to call in statistical experts

Course Outline

- Eleven lectures over nine class meetings:
 - Descriptive statistics
 - Basic probability
 - Confidence intervals
 - Hypothesis testing

- See the course syllabus for class policies
- Course website: http://faculty.nps.edu/rdfricke/Business_Stats.htm

Course Texts & Resources

Course texts:

- Business Statistics by Downing and Clark
- Basic Business Statistics: A Casebook by Foster, Stine and Waterman
- If supplemental reading is required, recommend Cartoon Guide to Statistics by Gonick and Smith
 - It's a rigorous treatment of the material, but done in a very accessible style
- Course software: Excel & JMP

Descriptive Statistics

- Numerical
 - Mean, median, mode
 - Variance standard deviation, range
- Graphical
 - Histograms
 - Boxplots
 - Scatter plots

Probability

- Basic concepts
- Discrete distributions
- Continuous distributions
- Conditional probability

Inferential Statistics

- Point Estimation
- Interval Estimation
 - E.g., confidence intervals
- Hypotheses testing
 - Testing sample means and variances

How to Study Statistics

- Do the reading in multiple passes
 - First skim for major ideas before the lecture
 - After the lecture, go back for details
 - Re-read as necessary to solidify concepts
- Do practice problems (homework)!
 - Only after first completing reading assignment
 - If necessary, make up simple data to see what equations are doing
- Don't just depend on your colleagues to explain the concepts to you...

How Not to Study for this Course

Calvin & Hobbes by Bill Watterson

"Statistics"

- "Statistics" has two uses in English:
 - Can mean "a collection of numerical data"
 - Also refers to a branch of mathematics that deals with the analysis of statistical data
- This class is all about the latter
 - Though we must use "collections of numerical data" to do our analyses

Why Study Statistics?

- The world is an uncertain place
 - Your company is recruiting a new CEO. What compensation should you offer?
 - What GMAT score do you need to get in to an MBA program?
- Statistics gives you the tools to make informed decisions in uncertain conditions

Statistics Uses Data

- Statistics attacks uncertainty with data
 - CEO: Salaries of other CEO's
 - GMAT: Other students' scores
- Statistics turns raw data into information that speaks to your question

Variability

- Statistics is *more* than tabulating numbers
- Data exhibit variability
 - CEO's have different backgrounds, work in different industries, etc.
 - Students vary in ability and luck
- Standard statistics question: "Given the data I have seen, what is the truth likely to be?"

Understanding and describing variability is one of the main jobs of statistics

Some Types of Variation

- Cross sectional
 - Data are a snapshot in time
 - Use one variable to explain another
- Time series (also called longitudinal)
 - Trend (long run changes)
 - Seasonality (retail sales up in December)
- Random
 - Not explained by anything
 - That's why we call it random!

Samples versus Populations

- A population consists of all possible observations
 - Example: All students enrolled in an MBA program
- A sample is a subset of the population
 - Example: Global MBA students are a sample of all MBA students
- A *random* sample is a subset not drawn in any systematic way from population

Samples versus Populations

Why Sample?

If we could see these:

- The TV viewing preferences for every individual in the US
- The diameter of every shaft ever produced by a manufacturing process
- The proportion of potential customers who know of your product

We wouldn't need these:

- Nielson survey of a sample of US television viewers
- The diameters of 100 shafts produced by the same process
- The proportion of individuals in a survey claiming knowledge of your product

 Collecting data for whole populations can be expensive and/or impossible
 20

Two Roles of Statistics

- Descriptive: Describing a sample or population
 - Numbers: (mean, variance, mode)
 - Pictures: (histogram, boxplot)
- Inferential: Using a sample to *infer* facts about a population
 - Making guesses (average income of MBA's)
 - Testing theories (does an MBA increase your income?)

A Descriptive Question:

What is the average CEO income <u>in our sample</u>?

An Inferential Question:

Given what we have observed, what can we say about the average CEO income <u>for the population</u>?₂₃

Types of Data

- Continuous: Can divide by any number and result still makes sense
 - Examples: Salary, height, weight, age, etc.
- Categorical:
 - Nominal: unordered categories
 - Example: Country of origin, product color
 - Ordinal: ordered categories
 - Example: Small, medium, large
- Different types described in different ways

Types of Data

Notation

- Capital roman letters usually represent an unknown quantity
 - Example: What the outcome of a dice roll?
 - Label this outcome "X"
 - X can be 1, 2, 3, 4, 5, or 6
- A small *i* subscripted on a letter represents a series of observations
 - Example: The dice is rolled many times
 - X_i is the outcome from the i^{th} roll

Notation

- A greek letter capital sigma (\sum) means to sum up
 - Subscripts tell what to sum
- Example:

$$\sum_{i=1}^{3} X_i = X_1 + X_2 + X_3$$

Continuous Data

- Numerical Summaries
 - Location:
 - Mean, median
 - Spread or variability:

Variance, standard deviation, range, percentiles, quartiles, interquartile range

- Graphical Descriptions
 - Histogram
 - Boxplot
 - Scatterplot

> Next class

Sample Mean (\overline{x})

- Sample average or sample mean
 - Often denoted by $\overline{\mathcal{X}}$ (spoken "x-bar")
- From previous example:

$$\overline{x} = \frac{1}{3} \sum_{i=1}^{3} x_i = \frac{x_1 + x_2 + x_3}{3}$$

In general: $\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$

Excel tip. Use the built-in function: = AVERAGE (*cell reference*)

Population Mean (μ)

- Population mean
 - Often denoted by μ (Greek letter "mu")

• In general: $\mu = \frac{1}{N} \sum_{i=1}^{N} x_i$

Excel tip. Built-in AVERAGE function works for both samples and populations

The Median

- The median is the "typical" value
- Steps to calculate the median:
 - Order your data from smallest to largest
 - If the number of data is odd, the middle observation is the median

• If the number is even, then the average of the two middle observations is the median

Excel tip. Built-in function: = MEDIAN (*cell reference*)

Mean vs. Median

- Both are measures of location or "central tendency"
 - But, median less affected by outliers
- Example:
 - Imagine a sample of data: 0, 0, 0, 1, 1, 1, 2, 2, 2
 - Median=mean=1
 - Another sample of data: 0, 0, 0, 1, 1, 1, 2, 2, 83
 - Median still equals 1, but mean=10!
- Which to use? Depends on whether you are:
 - characterizing a "typical" observation (the median)
 - or describing the average value (the mean)

Sample Variance (s²)

- Sample variance measures data variability
- For n observations, the sample variance is

$$s^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - \overline{x})^{2}$$

Excel tip. Built-in function for *sample variance* = VAR (*cell reference*)

Population Variance (σ^2)

- Population variance measures data variability too
- For N observations, the population variance is

$$\sigma^2 = \frac{1}{N} \sum_{i=1}^n (x_i - \overline{x})^2$$

Excel tip. Built-in function for *population variance* = VARP (*cell reference*)

Standard Deviation (s or σ)

- The standard deviation is the square root of the variance $S = \sqrt{S^2}$
- Also a measure of the variability
 - It's in the same units as the sample mean
 - For populations, the standard deviation is denoted $\sigma = \sqrt{\sigma^2}$

Excel tip. Built-in functions for the *sample standard deviation* = STDEV (*cell reference*) or = STDEVP (*cell reference*)

Calculating Variance and SD

- Variance:
 - Sample numbers: $1379 X_i$
 - Mean: (1+3+7+9)/4 = 5 $---\overline{X}$
 - Deviations from Mean: -4 -2 2 4 $-X_i X_i$
 - Squared: 16 4 4 16 +
 - Summed: 16+4+4+16 = 40 •
 - Divide by n-1: 40/3 = 13.3333
- Standard deviation:
 - SD = $\sqrt{13.333} = 3.65$

 $\left(X_{i} - \overline{X}\right)^{2}$

 $\sum (X_j - \overline{X})^2$

 $\frac{1}{1}\sum (X_i - \overline{X})^2$

i=1

The Range

- Range is another measure of variability
 - Denoted by R
- In words, it is the largest observation in the sample minus the smallest observation
 - Example: Imagine we collect the ages of students in the class
 - Data: 21, 23, 23, 25, 25, 26, 27, 31, 33, 33, 35
 - Range = 35 21 = 14

Other Measures of Variation

- Percentiles
 - *p*th percentile: value of *x* such that *p*% of the data is less than or equal to *x*
 - Special Percentiles:
 - Max: 100th percentile
 - Min: 0th percentile
 - Median: 50th percentile
 - Quartiles: 25th and 75th percentiles
- Interquartile Range (IQR):

IQR = 75th percentile - 25th percentile

Categorical Data

- Numerical Measures:
 - Mode: most commonly occurring value
 - Frequency table: how often each value occurs
- Graphics:
 - Bar chart of frequencies (histogram)
 - Mosaic chart (stacked bar chart)
 - Pareto chart

39

Mode

- Mode is the most frequently occurring value in the sample or population
 - It is the "typical" or "common" value
- For example, in the following data

 1, 1, 1, 1, 2, 2, 2, 3, 4, 5, 5, 6, 7

 the mode is "1"
 - "1" occurs 4 times
 - All other observations occur less than 4 times

Frequency Tables

- Tables of counts by two or more categorical variables
- Example: Executive compensation (Forbes94.jmp)

		MBA					
	Count	No	Yes				
	Aerospacedefense	15	4	19			
	Business	22	5	27			
	Capital goods	13	6	19			
	Chemicals	17	8	25			
	ComputersComm	46	21	67			
	Construction	7	4	11			
	Consumer	36	18	54			
	Energy	32	10	42			
	Entertainment	23	4	27			
	Financial	112	56	168			
	Food	45	17	62			
	Forest	12	7	19			
	Health	37	12	49			
	Insurance	43	11	54			
	Metals	14	4	18			
	Retailing	43	3	46			
	Transport	11	4	15			
	Travel	13	2	15			
	Utility	48	15	63			
		589	211	800			

Introduction to JMP

- Statistical analysis software
 - More powerful than Excel for statistical analyses

- Designed to facilitate analyses and to do advanced statistics
- Particularly good at interactive analyses
 - Interactive graphics
 - Delete points and repeat analysis
 - Conduct multiple analyses

Introduction to JMP

• Demonstration using GMAT case study (GMAT.jmp)

JMP (NAVAL POSTGR/	ADUATE	IENGAGENISADAELIN			_ _ ×			
File Edit Tables Rows Cols DOE Analyze Graph Tools View Window Help								
🗈 🗅 🚅 🗟 📾 📾 💼 🖪 ? 🕹 🌩 🖑 🎍 タ 🗲 + 🖻 〓 今 〇 🛛 GMAT								
GMAT		•			<u> </u>			
		•	GMAT					
		1	370					
		2	400					
Columns (1/0)	3	410					
⊿ GMAT		4	420					
		5	430					
		6	<mark>44</mark> 0					
Rows	3	7	440					
All rows	724	8	440					
Selected	0	9	450					
Excluded	0	10	460					
Hidden	0	11	460					
Labelled 0		12	470					
		13	470					

43

Remember the Notation

- Summation
 - $\boldsymbol{\Sigma}$ notation and subscripts
- Size
 - *n* denotes size of sample
 - *N* denotes size of population
- Knowns vs. unknowns
 - Small letters (i.e., "x"): quantity is known
 - Capital letters (i.e., "X"): quantity unknown
 - · Later we will call these random variables

People Will Believe Any Statistic...

Dilbert

What We've Covered

- Introduced professor & course
- Defined some basic statistics terminology
 - Populations vs. samples
 - Descriptive vs. inferential statistics
- Learned about some numerical descriptive statistics
 - Measures of location
 - Measures of dispersion
- Introduced JMP