Lecture 1: Course Introduction

CSE 222A: Computer Communication Networks Alex C. Snoeren

Lecture 1 Overview

- Class overview
 - Expected outcomes
 - Structure of the course
 - Policies and procedures
- A brief review of undergrad networking
 - High-level concepts
 - An end-to-end example

Logistics

- Instructor: Alex C. Snoeren
 - Office hours Tuesdays 11-12pm or by appointment
 - EBU3B 3114
- TA: Siva Radhakrishnan
 - Office hours Wed 1-3pm EBU3B B240A
- Course Web page:
 - http://www.cs.ucsd.edu/classes/wi13/cse222A-a/
 - Piazza is only for Q&A

Prereqs

- Undergrad networking course (e.g., CSE123)
 - You are welcome to take the course without prior background,
 - But, several parts of the course will be especially challenging
 - » You are responsible for doing the extra reading on your own
 - » Peterson & Davie are your friends—our undergrad textbook
- Systems programming experience
 - The term project will likely require significant implementation
 - This course will not teach you systems programming. The TA will help, but you need to learn it on your own if you don't already know it.

Expected Outcomes

- This course *will* teach you about network architecture
 - We will cover some classic literature for background
 - Focus mostly on recent developments in the field
- This course *will not* teach you the fundamentals
 - Layering, signaling, framing, MAC, switching, routing, naming, Internetworking, congestion control, router design, etc.
 - Take the undergrad course for the basics
- Similarly, we will not cover Web/Cloud services
 - CSE223B covers distributed systems design, the "cloud," etc.
 - You *will be able to* pick this up on your own with Google


CSE 222A Class Overview

- Course material taught through class lectures, paper readings, and term project
 - Lectures are *interactive*—attendance is crucial to success
- Course grade based upon:
 - Daily paper reviews
 - In-class quiz at end of term (based on lectures/readings)
 - Term project with paper and presentation
- Piazza discussion forums
 - The place to ask questions about lecture, papers, project, etc.
 - My first time using it, so please let me know if it's broken!

 Peterson and Davie, *Computer Networks: A systems Approach*, Morgan Kaufmann, 5th Edition, ISBN 978-0-12-385059-1

Paper reviews

- Written critique of each assigned reading
 - Submitted in advance of each class through an automated conference review system (HotCRP)
 - What are the biggest contributions of the paper?
 - What are the main shortcomings/issues with the work?
 - What are the implications of the described work?
- You should read others' reviews
 - Help you see other points of view
 - Available *after* you submit your review
- Graded on a 3-point scale
 - Our expectations will go up as the term progresses

Term Project

- Group project; teams of 2-3 people
 - Your chance to explore what networking research is like
 - The very best projects can—and do—result in publications
- List of project ideas on course Website
 - Will be posted shortly
- Several milestones to keep you on track
 - Topics of interest due Jan 22nd.
 - Teams formed January 24th.
 - Project proposal due February 5th.
- Final exam period will be a mini conference
 - You will prepare a report and a presentation

Grading

- Paper reviews: 15%
- Quiz: 35%
- Project: 40%
- Participation: 10%
 - Attendance and engagement in class discussion is crucial

• Before we start the material, any questions about the class structure, contents, etc.?

Networking in One Slide

- Protocols & Layering
 - Manage complexity by decomposing the tasks
 - Standardizing syntax and semantics to support interoperability
- Naming
 - Agreeing on how to describe a host, application, network, etc.
- Switching & Routing
 - Deciding how to get from here to there
 - Forwarding messages across multiple physical components
- Resource Allocation
 - Figuring out how to share finite bandwidth, memory, etc.

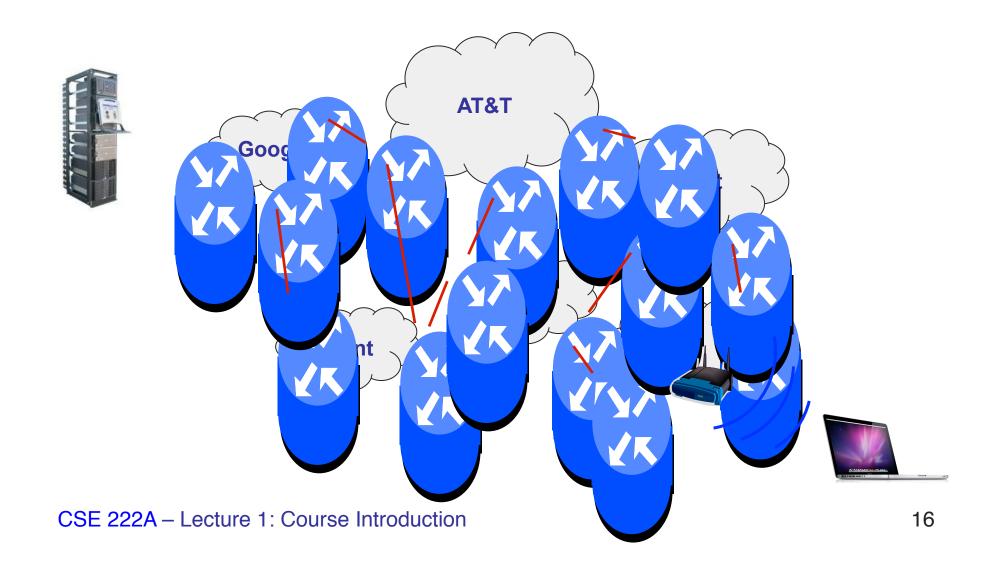
A "Simple" Task

• Send information from one computer to another

- Endpoints are called hosts
 - Could be computer, iPod, cel lphone, etc.
- The plumbing is called a link
 - We don't care what the physical technology is: Ethernet, wireless, cellular, etc.

CSE 222A - Lecture 1: Course Introduction

Measures of success


- How fast?
 - Bandwidth measured in bits per second
 - Often talk about KBps or Mbps Bytes vs bits
- How long was the wait?
 - Delay (one-way or round trip) measured in seconds
- How efficiently?
 - Overhead measured in bits or seconds or cycles or...
- Any mistakes?
 - Error rate measured in terms of probability of flipped bit

How long to send a message?

- Transmit time T = M/R + D
 - 10 Mbps Ethernet LAN (M=1KB)
 - » M/R=1ms, D ~=5us
 - 155 Mbps cross country ATM link (M=1KB)
 - » M/R = 50us, D ~= 40-100ms
- Where are the bits in the mean time?
 - In transit inside the network
- R*D is called the bandwidth delay product
 - How many bits can be "stored" be stored in transit
 - Colloquially, we say "fill the pipe"

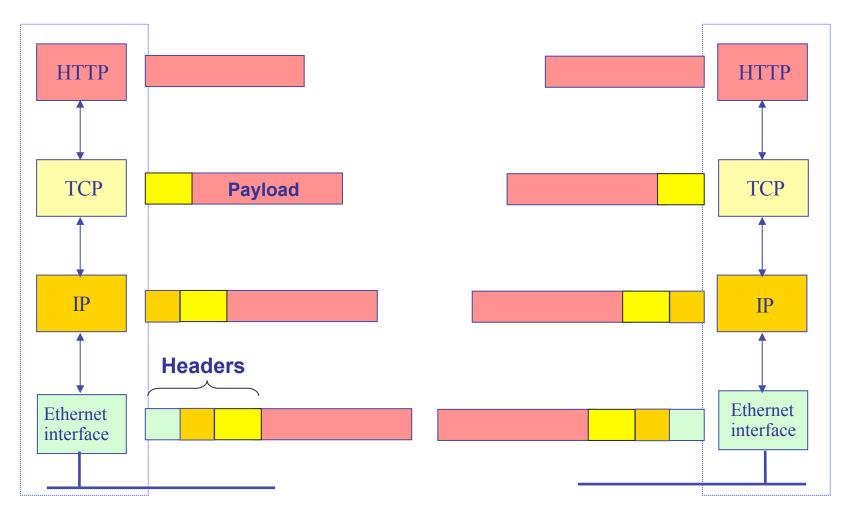
Is Not Really So Simple

Layering: A Modular Approach

- Sub-divide the problem
 - Each layer relies on services from layer below
 - Each layer exports services to layer above
- Interface between layers defines interaction
 - Hides implementation details
 - Layers can change without disturbing other layers
- Interface among peers in a layer is a protocol
 - If peers speak same protocol, they can interoperate

Protocol Standardization

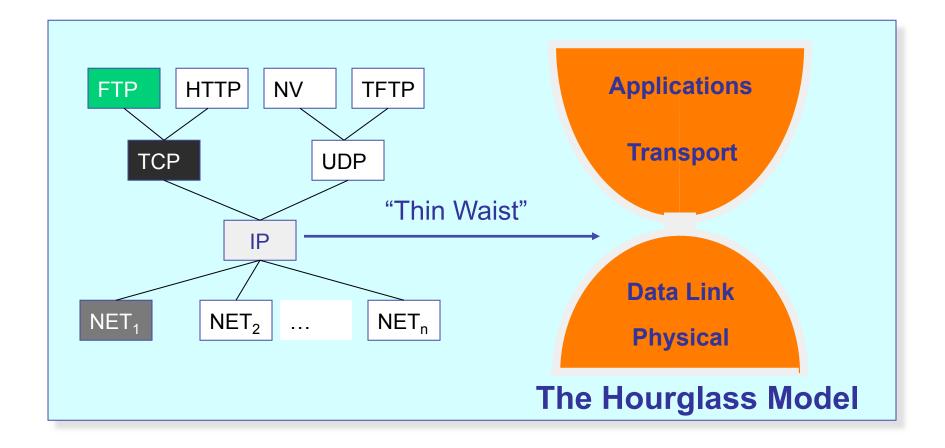
- Communicating hosts speaking the same protocol
 - Standardization to enable multiple implementations
 - Or, the same folks have to write all the software
- Internet Engineering Task Force
 - Based on working groups that focus on specific issues
 - Produces "Request For Comments" (RFCs)
 - » Rough consensus and running code
 - » After enough time passes, promoted to Internet Standards
- Other standards bodies exist
 - ISO, ITU, IEEE, etc.


TCP/IP Protocol Stack

host		host
НТТР	Application Layer	НТТР
ТСР	Transport Layer	ТСР
	router router	
IP	Network Layer	IP
	Ethernet interfaceSONET interLinkEthernet interfaceEthernet interfaceEthernet interface	Ethernet interface

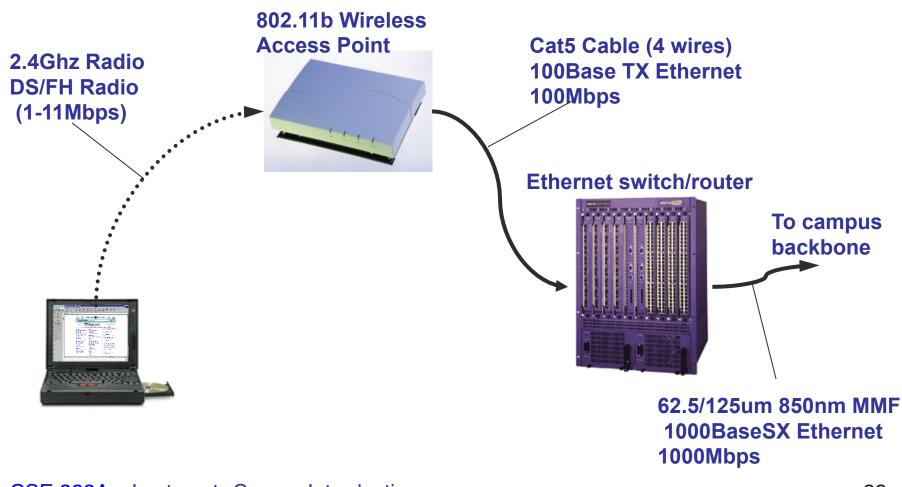
CSE 222A – Lecture 1: Course Introduction

Encapsulation



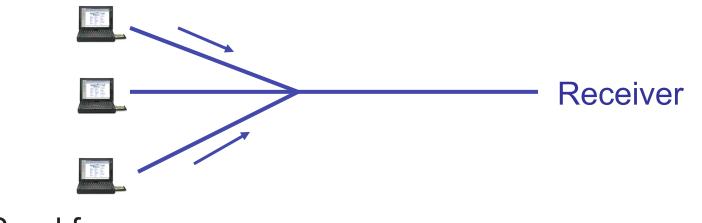
CSE 222A - Lecture 1: Course Introduction

20



Internet Protocol Suite

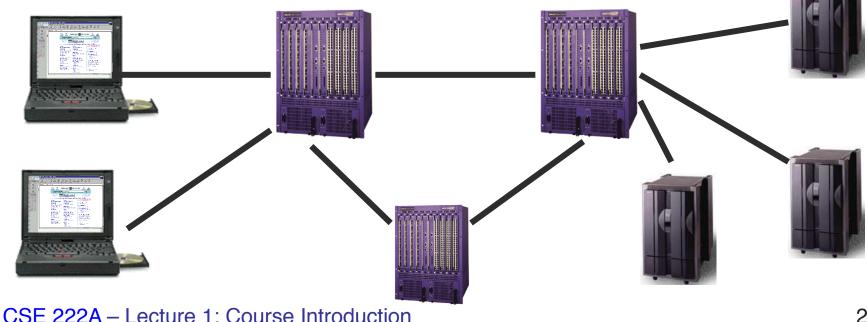
Physical layer



CSE 222A – Lecture 1: Course Introduction

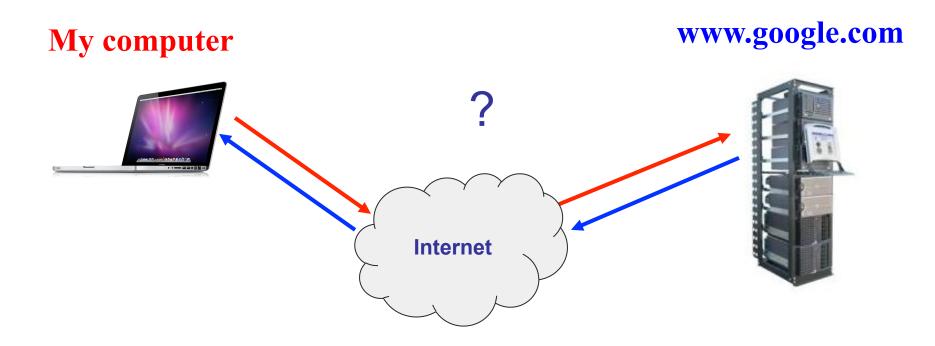
Link Layer (e.g. Ethernet)

- Break message into frames
- Media Access Control (MAC)
 - Can I send now? Can I send now?

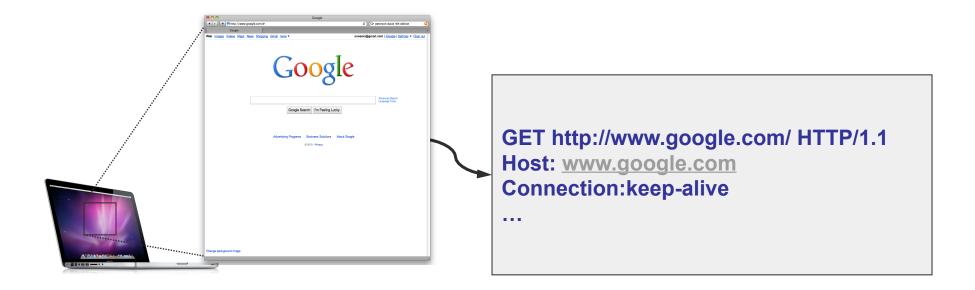


• Send frame

Connecting links


- Routers/Switches: moves bits between links
 - Circuit switching: guaranteed channel for a session (Telephone system)
 - Packet switching: statistical multiplexing of independent pieces of data (Internet)

Putting this all together


• **ROUGHLY**, what happens when I click on a Web page from UCSD?

Web request (HTTP)

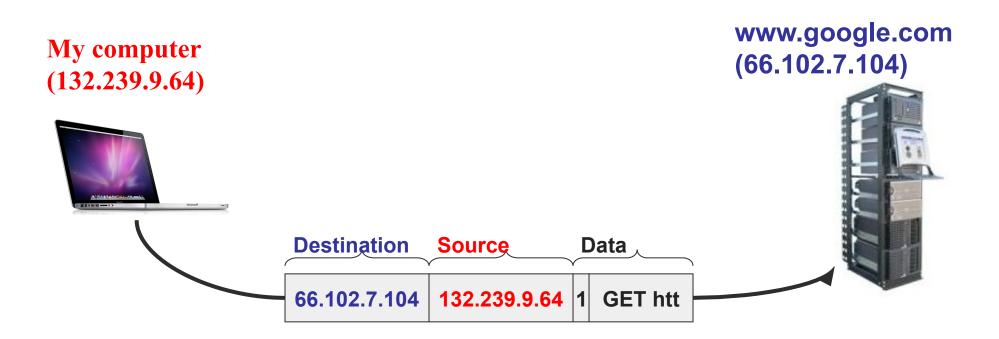
• Turn click into HTTP request

CSE 222A - Lecture 1: Course Introduction

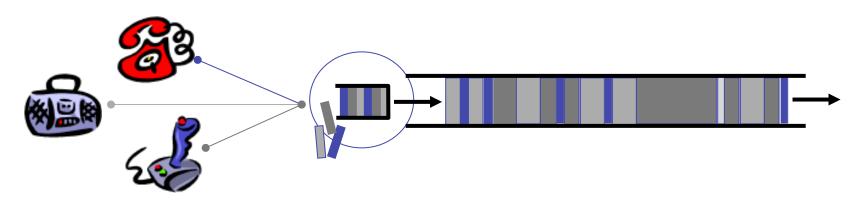
Name resolution (DNS)

• Where is www.google.com?

Data transport (TCP)


- Break message into packets (TCP segments)
- Should be delivered reliably & in-order

CSE 222A – Lecture 1: Course Introduction



Address each packet so it can traverse network and arrive at host

CSE 222A – Lecture 1: Course Introduction

- Sharing access to limited resources
 - E.g., a link with fixed service rate
- Simplest case: first-in-first out queue
 - Queue/serve packets in the order they arrive
 - Drop packets when the queue is full
- Anybody hear of "Network Neutrality"?

For Next Class...

- Browse the course web
 - http://www.cs.ucsd.edu/classes/sp13/cse222A-a/
- Read P&D Chapters 1 and 2
- Read and review Saltzer, Reed, and Clark '84
 - Submit review in HotCRP available by tomorrow
- Start thinking about term project ideas/groups
 - Suggestions available later this week