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Stationarity, stability, and invertibility

6. Stationarity, stability, and invertibility

Consider again a situation where the value of a time series at time t,
Xt , is a linear function of a constant term, the last p values of Xt , the
contemporaneous and last q values of a white noise process, denoted
by εt :

Xt = µ+

p∑
k=1

φkXt−k +

q∑
j=0

θjεt−j .

This process rewrites :

Φ(L)Xt︸ ︷︷ ︸
Autoregressive part

= µ+ Θ(L)εt︸ ︷︷ ︸
Moving average part

with Φ(L) = 1− φ1L− φ2L2 − · · · − φpLp and
Θ(L) = 1 + θ1L + · · ·+ θqLq.
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Stationarity, stability, and invertibility

Which conditions ?

Stationarity conditions regard the autoregressive part of the previous
(linear) time series model (ARMA(p,q) model).

Stability conditions also regard the autoregressive part of the previous
(linear) time series model (ARMA(p,q) model).

Stability conditions are generally required to avoid explosive solutions
of the stochastic difference equation : Φ(L)Xt = µ+ Θ(L)εt .

Invertibility conditions regard the moving average part
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Stationarity, stability, and invertibility

Implications of the stability (stationarity) conditions

If stability conditions hold, stationarity conditions are satisfied (the
converse is not true) and (Xt) is weakly stationary.

If the stochastic process (Xt) is stable (and thus weakly stationary),
then (Xt) has an infinite moving average representation (MA(∞)
representation) :

Xt = Φ−1(L) (µ+ Θ(L)εt)

= Φ−1(1)µ+ C (L)εt

=
µ

1−
∑p

k=1 φk
+
∞∑
i=0

ciεt−i

where the coefficients ci satisfy
∞∑
i=0
|ci | <∞.
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Stationarity, stability, and invertibility

This representation shows the impact of past shocks, εt−i , on the
current value of Xt :

dXt

dεt−i
= ci

This is an application of the Wold’s decomposition

Omitting the constant term, Xt and εt are linked by a linear filter in
which C (L) = Φ−1(L)Θ(L) is called the transfer function.

The coefficients (ci ) are also referred to as the impulse response
function coefficients.
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Stationarity, stability, and invertibility

If (Xt)t∈Z is weakly stationary but not stable, then (Xt) has the
following representation :

Xt = Φ−1(L) (µ+ Θ(L)εt)

= Φ−1(1)µ+ C (L)εt

=
µ

1−
∑p

k=1 φk
+

∞∑
i=−∞

ciεt−i .

where (cj) is sequence of constants with :

∞∑
i=−∞

|ci | <∞

The latter condition insures that (Xt)t∈Z is weakly stationary.

Florian Pelgrin (HEC) Univariate time series Sept. 2011 - Jan. 2012 6 / 40



Stationarity, stability, and invertibility

Determination of the stability and stationarity conditions

Definition

Consider the stochastic process defined by :

Φ(L)Xt = µ+ Θ(L)εt

with Φ(L) = 1− φ1L− φ2L2 − · · · − φpLp, Θ(L) = 1 + θ1L + · · ·+ θqLq,
and (εt) is a white noise process. This process is called stable if the
modulus of all the roots, λi , i = 1, · · · , p, of the (reverse) characteristic
equation :

Φ(λ) = 0⇔ 1− φ1λ− φ2λ
2 − · · · − φpλp = 0

are greater than one, |λi | > 1 for all i = 1, · · · , p.
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Stationarity, stability, and invertibility

Implications of the stability (stationarity) conditions

Invertibility is the counterpart to stationarity for the moving average
part of the process.

If the stochastic process (Xt) is invertible, then (Xt) has an infinite
autoregressive representation (AR(∞) representation) :

Θ−1(L)Φ(L)Xt = Θ−1(L)µ+ εt

or

Xt =
µ

1−
∑q

k=1 θk
+
∞∑
i=1

diXt−i + εt

where the coefficients di satisfy
∞∑
i=0
|di | <∞.
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Stationarity, stability, and invertibility

The AR(∞) representation shows the dependence of the current value
Xt on the past values of Xt−i .

The coefficients are referred as the d-weights of an ARMA model.

If the stochastic process (Xt) is not invertible, it may exist a
representation of the following form (omitting the constant term) as
long as the magnitude of any (characteristic) root of Θ(λ) does not
equal unity :

Xt =
∑
i 6=0

diXt−i + εt
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Stationarity, stability, and invertibility

Determination of the invertibility conditions

Definition

Consider the stochastic process defined by :

Φ(L)Xt = µ+ Θ(L)εt

with Φ(L) = 1− φ1L− φ2L2 − · · · − φpLp, Θ(L) = 1 + θ1L + · · ·+ θqLq,
and (εt) is a white noise process. This process is called invertible if the
modulus of all the roots, λi , i = 1, · · · , q, of the (reverse) characteristic
equation :

Θ(λ) = 0⇔ 1 + θ1λ+ θ2λ
2 + · · ·+ θqλ

q = 0

are greater than one, |λi | > 1 for all i = 1, · · · , q.
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Stationarity, stability, and invertibility

Three equivalent representations

Definition

A stable (and thus weakly stationary), invertible stochastic process,
Φ(L)Xt = µ+ Θ(L)εt has two other equivalent representations forms :

1 An infinite moving average representation :

Xt =
µ

1−
∑p

k=1 φk
+
∞∑
i=0

ciεt−i

2 An infinite autoregressive representation :

Xt =
µ

1−
∑q

k=1 θk
+
∞∑
i=1

diXt−i + εt
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Stationarity, stability, and invertibility

Each of these representations can shed a light on the model from a
different perspective.

For instance, the stationarity properties, the estimation of parameters,
and the computing of forecasts can use different representations forms
(see further).
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Stationarity, stability, and invertibility

Examples

1. An autoregressive process of order 1 :

(1− ρL)Xt = εt

where εt ∼WN(0, σ2
ε ) for all t.

The stability and (weak) stationarity of (Xt) depends on the (reverse)
characteristic root of Φ(λ) = 1− ρλ :

Φ(λ) = 0⇔ λ =
1

ρ
.

The stability condition writes :

|λ| > 1⇔ |ρ| < 1.

The stationarity condition writes :

|λ| 6= 1⇔ |ρ| 6= 1.
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Stationarity, stability, and invertibility

Therefore,

1 If |ρ| < 1, then (Xt) is stable and weakly stationary :

(1− ρL)−1 =
∞∑
k=0

ρkLk and Xt =
∞∑
k=0

ρkεt−k

2 If |ρ| > 1, then a non-causal stationary solution (Xt) exists :

(1− ρL)−1 = −
∞∑
k=1

ρ−kF k and Xt = −
∞∑
k=1

ρ−kεt+k

3 If |ρ| = 1, then (Xt) is not stable and stationary : (1− ρL) cannot be
inverted !
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Stationarity, stability, and invertibility

2. A moving average process of order 1 :

Xt = εt − θεt−1

where εt ∼WN(0, σ2
ε ) for all t.

(Xt) is weakly stationary irrespective of the characteristic root of
Θ(λ) = 1− θλ (why ?).
The invertibility of (Xt) depends on the (reverse) characteristic root of
Θ(λ) = 1− θλ :

Θ(λ) = 0⇔ λ =
1

θ
.

The invertibility condition writes :

|λ| > 1⇔ |θ| < 1.

and

Xt = −
∞∑
k=1

θkXt−k + εt .

Florian Pelgrin (HEC) Univariate time series Sept. 2011 - Jan. 2012 15 / 40



Identification tools

7. Identification tools

Need some tools to characterize the main properties of a time series.

Among others :

Autocovariance function

Autocorrelation function (ACF)

Sample autocorrelation function (SACF)

Partial autocorrelation function (PACF)

Sample partial autocorrelation function (SPACF)

Spectral density, etc.

Florian Pelgrin (HEC) Univariate time series Sept. 2011 - Jan. 2012 16 / 40



Identification tools

Keep in mind that one seeks to identify, estimate and forecast the
following ARMA(p,q) model :

Xt = µ+

p∑
i=1

φiXt−i +

q∑
k=0

θkεt−k

where θ0 = 0, εt ∼WN(0, σ2
ε ), p and q are unknown orders to

identify, (µ, φ1, · · · , φp, θ1, · · · , θq, σ2
ε ) are unknown parameters to

estimate (that depends on p and q).

The ACF and PACF functions are used to identify the appropriate
time series model :

1 The orders p and q can be identified by using the (sample)
autocorrelation and (sample) partial autocorrelation function.

2 The corresponding parameters can be then estimated using several
statistical procedures.
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Identification tools Autocovariances

The autocovariance function

Definition

The autocovariance function of a stationary stochastic process (Xt)t∈Z is
defined to be :

γ : Z→ R
h 7→ γX (h) = Cov(Xt ,Xt−h).

with :

γX (h) = γX (−h).
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Identification tools Autocovariances

Definition

An estimator of γX (h) (for h < T ) is defined to be :

γ̂X (h) =
1

T

T−h∑
t=1

(Xt − X̄T )(Xt+h − X̄T )

or

γ̂X (h) =
1

T − h

T∑
t=h+1

(Xt − X̄T )(Xt−h − X̄T ).
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Identification tools Autocovariances

Proposition

If (Xt)t∈Z is a second order stationary process with :

Xt = m +
∑
j∈Z

ajεt−j

where the εt ’s are i.i.d. with mean zero and variance σ2
ε ,
∑
j∈Z
|aj | <∞, and

E(ε4
t ) <∞, then (i) γ̂X (h) is an almost surely convergent and asymptotically

unbiased estimator, (ii) the asymptotic disbribution is given by :

√
T


γ̂X (0)− γX (0)
γ̂X (1)− γX (1)

...
γ̂X (h)− γX (h)

 `→ N (0,Ωγ)

where Ωγ = [Ωj,k ]0≤j,k≤h is such that :

Ωj,k =
+∞∑
`=−∞

γX (`) (γX (`− j + k) + γX (`− j − k)) .

�
Florian Pelgrin (HEC) Univariate time series Sept. 2011 - Jan. 2012 20 / 40



Identification tools Autocorrelations

The autocorrelation function

Definition

The autocorrelation function of a stationary stochastic process (Xt)t∈Z is
defined to be :

ρX (h) =
γX (h)

γX (0)
= Corr(Xt ,Xt−h)

∀h ∈ Z.

The autocorrelation function is obtained after re-scaling the
autocovariance function by the variance γX (0) = V(Xt).
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Identification tools Autocorrelations

Definition

The autocorrelation function of a (stationary) stochastic process (Xt)
satisfies the following properties :

1 ρX (−h) = ρX (h) ∀h

2 ρX (0) = 1

3 The range of ρX is [−1; 1].
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Identification tools Autocorrelations

The autocorrelation (respectively, autocovariance) function of a
moving average process of order q, MA(q), is always zero for orders
higher than q (|h| > q) : MA(q) process has no memory beyond q
periods.

The autocorrelation (respectively, autocovariance) function of a
stationary AR(p) process exhibits exponential decay towards zero
(but does not vanish for lags greater than p).

The autocorrelation (respectively, autocovariance) function of a
stationary ARMA(p, q) process exhibits exponential decay towards
zero : it does not cut off but gradually dies out as h increases.

The autocorrelation function of a nonstationary process decreases
very slowly even at very high lags, long after the autocorrelations
from stationary processes have declined to (almost) zero.
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Identification tools Autocorrelations

The sample autocorrelation function

Definition

Given a sample of T observations, x1, · · · , xT , the sample autocorrelation
function, denoted by (ρ̂X (h)), is computed by :

ρ̂X (h) =

T∑
t=h+1

(xt − µ̂)(xt−h − µ̂)

T∑
t=1

(xt − µ̂)2

where µ̂ is the sample mean :

µ̂ =
1

T

T∑
t=1

xt .
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Identification tools Autocorrelations

Proposition

If (Xt)t∈Z is a second order stationary process with :

Xt = m +
∑
j∈Z

ajεt−j

where the εt ’s are i.i.d. with mean zero and variance σ2
ε ,
∑
j∈Z
|aj | <∞, and

E(ε4
t ) <∞, then

√
T

 ρ̂X (1)− ρX (1)
...

ρ̂X (h)− ρX (h)

 `→ N (0,Ωρ) .
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Identification tools Partial autocorrelation

The partial autocorrelation function

The partial autocorrelation function is another tool for identifying the
properties of an ARMA process.

It is particularly useful to identify pure autoregressive process
(AR(p)).

A partial correlation coefficient measures the correlation between two
random variables at different lags after adjusting for the correlation
this pair may have with the intervening lags : the PACF thus
represents the sequence of conditional correlations.

A correlation coefficient between two random variables at different
lags does not adjust for the influence of the intervening lags : the
ACF thus represents the sequence of unconditional correlations.
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Identification tools Partial autocorrelation

Definition

The partial autocorrelation function of a stationary stochastic process
(Xt)t∈Z is defined to be :

aX (h) = Corr(Xt ,Xt−h | Xt−1, · · · ,Xt−h+1)

∀h > 0.
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Identification tools Partial autocorrelation

Definition

The partial autocorrelation function of order h is defined to be :

aX (h) = Corr
[
X̃t , X̃t−h

]
=

Cov
(

X̃t , X̃t−h

)
[
V
(

X̃t

)
V
(

X̃t−h

)]1/2

where

X̃t = Xt − EL(Xt | Xt−1, · · · ,Xt−h+1)

X̃t−h = Xt−h − EL(Xt−h | Xt−1, · · · ,Xt−h+1).

�
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Identification tools Partial autocorrelation

Definition

The partial autocorrelation function of a second order stationary stochastic
process (Xt)t∈Z satisfies :

aX (h) =
|R∗(h)|
|R(h)|

where R(k) is the autocorrelation matrix of order h définie par :

R(h) =


ρX (0) ρX (1) · · · ρX (h − 1)
ρX (1) ρX (0) · · · ρX (h − 2)

...
...

. . .
...

ρX (h − 1) ρX (h − 2) · · · ρX (0)


and R∗(h) is the matrix that is obtained after raplacing the last column

of R(h) by ρ = (ρX (1), · · · , ρX (k))t .
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Identification tools Partial autocorrelation

Definition

The partial correlation function can be viewed as the sequence of the h-th
autoregressive coefficients in a h-th order autoregression. Let ah` denote
the `-th autoregressive coefficient of an AR(h) process :

Xt = ah1Xt−1 + ah2Xt−2 + · · ·+ ahhXt−h + εt .

Then

aX (h) = ahh

for h = 1, 2, · · ·

Remark : The theoretical partial autocorrelation function of an AR(p)
model will be different from zero for the first p terms and exactly zero for
higher order terms (why ?).
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Identification tools Partial autocorrelation

The sample partial autocorrelation function

The sample partial autocorrelation function can be obtained by
different methods :

1 Find the ordinary least squares (or maximum likelihood) estimates of
ahh

2 Use the recursive equations of the autocorrelation function
(Yule-Walker equations) after replacing the autocorrelation coefficients
by their estimates (see further).

3 Etc.
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Identification tools Partial autocorrelation

Proposition

If (Xt)t∈Z is a second order stationary process with :

Xt = m +
∑
j∈Z

ajεt−j

where the εt ’s are i.i.d. with mean zero and variance σ2
ε ,
∑
j∈Z
|aj | <∞, and

E(ε4
t ) <∞, then

√
T

 âX (1)− rX (1)
...

âX (h)− rX (h)

 `→ N (0,Ωr ) .

�
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Identification tools Spectral analysis

Spectral analysis

Definition (Fourier transform of the autocovariance function)

Let (Xt) be a real-valued stationary process (with absolutely summable
autocovariance sequence). The Fourier transform of the autocovariance
function (γX (h)) exists and is given by ;

fX (ω) =
1

2π

h=+∞∑
h=−∞

γX (h)exp(−iωh)

=
1

2π

h=+∞∑
h=−∞

γX (h)cos(ωh)

=
1

2π
γX (0) +

1

π

h=+∞∑
h=1

γX (h)cos(ωh)

∀ω ∈ [−π;π].

Remark : THe sequence (γX (h)) can be recovered from the spectral
density through the inverse Fourier transform (injectivity theorem).
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Identification tools Spectral analysis

Properties :

1. The spectral density satsifies :

fX (ω) is continuous, i.e. | fX (ω) |= fX (ω),
fX (ω) is real-valued ;
fX (ω) is a nonnegative function (since the autocovariance function is
positive semidefinite).

2. fX (ω) = fX (ω + 2π) : fX is a periodic with period 2π.

3. fX (ω) = fX (−ω) ∀ω : fX is a symmetric even function.
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Identification tools Spectral analysis

Properties (cont’d) :

4. The variance satisfies :

V(Xt) = γX (0) =

∫ π

−π
fX (ω)dω

The spectrum fX (ω) may be interpreted as the decomposition of the
variance of a process.

The term fX (ω)dω is the contribution to the variance attributable to
the component of the process with frequencies in the interval
(ω, ω + dω).

A pick (in the spectrum) indicates an important contribution to the
variance.
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Identification tools Spectral analysis

Deriving the spectral density function

Definition (Autocovariance generating function)

For a given sequence of autocovariances γX (h), h = 0,±1,±2, cdots, the
autocovariance generating function is defined to be :

γX (L) =
+∞∑

h=−∞
γX (h)Lh

where L is the lag operator.
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Identification tools Spectral analysis

Proposition

Let (Xt)t∈Z denote a second order stationary process with :

Xt = m +
∑
j∈Z

θjεt−j

where the εt ’s are i.i.d. with mean zero and variance σ2
ε . The

autocovariance generating function is defined to be :

γX (L) = σ2
εΘ(L)Θ(L−1).

Florian Pelgrin (HEC) Univariate time series Sept. 2011 - Jan. 2012 37 / 40



Identification tools Spectral analysis

Definition

Let γX (L) and fX (ω) denote respectively the autocovariance generating
function and the spectrum :

γX (L) =
+∞∑

h=−∞
γX (h)Lh

fX (ω) =
1

2π

+∞∑
h=−∞

exp(−iωh)∀ω ∈ [−π;π].

Then

fX (ω) =
1

2π
γX (exp(−iω)).
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Identification tools Spectral analysis

Application : Consider a general stationary ARMA(p,q) model

Φp(L)Xt = µ+ Θq(L)εt

with Φp(L) = 1−
∑p

j=1 φjL
j and Θq(L) = 1 +

∑q
j=1 θjL

j sharing no
common factor and having their roots outside the unit circle. Then

γX (L) = σ2
ε

Θq(L)Θq(L−1)

Φq(L)Φq(L−1)

and

fX (ω) =
1

2π
γX (exp(−iω)) =

σ2
ε

2π

Θq(exp(−iω))Θq(exp(iω))

Φq(exp(−iω))Φq(exp(iω))

=
σ2
ε

2π

∣∣∣∣Θq(exp(−iω))

Φp(exp(−iω))

∣∣∣∣2 .
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Summary

Summary

Strong and weak stationarity

Stationarity/nonstationarity

White noise, Trend stationary processes, Difference stationary
processes (random walk)

Lag operator and writing of time series models

AR(∞) and MA(∞) representation

Autocovariance, (sample) autocorrelation, and (sample) partial
autocorrelation function

Spectral density.

Class of ARMA(p,q) processes.
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