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Administrivia



Teaching Staff

• Instructor

• John Owens | jowens@ece | www.ece/~jowens/

• Office hour: Kemper 3175, M 1–2

• TA

• Tracy Liu, yliu@ucdavis

• Office hour: Kemper 2243, T 2–3



Electronic Resources

• tinyurl.com/eec171-s09  (points to SmartSite) 

• Email class list (includes staff):

• eec171-s09@smartsite

• Email teaching staff:

• eec171-s09-staff@listproc

• Do not send mail to my personal account if you want a timely 
reply.

http://www.ece.ucdavis.edu/courses/s0/EEC170/
http://www.ece.ucdavis.edu/courses/s0/EEC170/


Classroom Time
• Class is MW 2–4

• 2–3:30: “Lecture”

• 3:30–4: “Discussion”

• In reality: merged together

• Discussion mostly will be used for lecture

• Also for problem solving (TAs), quizzes, etc.

• Small class—let’s make it interactive!

• Administrative announcements: In middle of class



Lecture Style
• Students prefer blackboard

• It’s hard to show complex diagrams on a blackboard 
though

• Plus I like slides better

• I’ll give you my notes—spend your time thinking not writing

• Might be using some Guided Notes

• Also will throw in some discussion questions

• Will use board when appropriate



Textbook

• John L. Hennessy and David Patterson, “Computer 
Architecture: A Quantitative Approach”, 4th edition (Morgan 
Kaufmann), 2007

• Don’t get the third edition



Grading

• 3 segments to class:

• Instruction level 
parallelism

• Thread level parallelism

• Data level parallelism

• Homework: 10% (3)

• Projects: 30% (3)

• Midterms: 15% each

• Final: 30% (cumulative)

• Goals:

• Reduce homework 
dependence

• Projects are important!



Course Philosophy

• Third time I’m teaching this class

• Here’s what I hope you’ll get for any given technique in 
this class:

• Understand what that technique is 

• Understand why that technique is important

• Not understand (necessarily) how that technique is 
implemented



Important Dates
• Midterms 

• M 27 April (concentrates on instruction-level parallelism)

• W 27 May (concentrates on thread-level parallelism)

• TA will administer exams

• Final

• W 10 June (6–8p)

• Cumulative

• Exams are open-book, open-note

• Makeups on midterms or final are oral only



Homework Turn-In
• Homework goes in 2131 Kemper

• Homework is due at noon

• Written homework must be done individually

• Homework and exam solutions will be handed out in 
class

• We’ll try to make solutions ASAP after due date

• Please do not pass these solutions on to other students

• Use of online solutions to homework/projects is cheating



Project Turnin

• Projects will be turned in electronically (SmartSite)

• Project deliverable will be a writeup

• Ability to communicate is important!

• Writeups will be short (1 page)

• PDF

• Projects are individual



Homework 0

• Due 5 pm Tuesday 

• Please link a photo to your SmartSite profile

• Give yourself a big head



What is cheating?
• Cheating is claiming credit for work that is not your 

own.

• Cheating is disobeying or subverting instructions of the 
instructional staff.

• Homework deadlines, online solutions, etc.

• It is OK to work in (small) groups on homework.

• All work you turn in must be 100% yours, and you must be 
able to explain all of it.

• Give proper credit if credit is due.



Things You Should Do
• Ask questions!

• Especially when things aren’t clear

• Give feedback!

• Email or face-to-face

• Tell me what I’m doing poorly

• Tell me what I’m doing well

• Tell the TA too

• Start projects early



Things You Shouldn’t Do
• Cheat

• Skip class (I’ll know when you’re not there!)

• Be late for class

• Read the paper in class

• Allow your cell phone to ring in class

• Ask OH questions without preparing

• Make sure you do the reading!

• Identifying what you have trouble with helps me



Getting the Grade You Want

• Come to class!

• Ask questions in class when you don’t understand

• Come to office hours (mine and Tracy’s)

• Start the hw and projects early

• Use the projects as a vehicle for learning

• Understand the course material



• This class was hard 

• I learned a lot 

• The work I did in this class was worthwhile 

• The instructor was fair 

• The instructor was effective 

• The instructor cared about my learning 

My Expectations



Review



The Big Picture

• Since 1946 all computers have had 5 components

Control

Datapath

Memory

Input

Output



What is “Computer Architecture”?

• Coordination of many 
levels of abstraction

• Under a rapidly changing 
set of forces

• Design, Measurement, 
and Evaluation

I/O systemInstr. Set Proc.

Compiler

Operating
System

Digital Design
Circuit Design

Instruction Set
 Architecture

Firmware

Datapath & Control 

Layout



Year Size
1980 64 Kb
1983 256 Kb
1986 1 Mb
1989 4 Mb
1992 16 Mb
1996 64 Mb

1999 256 Mb
2002 1 Gb
2005 4 Gb

Microprocessor Logic Density
DRAM chip capacity

• In ~1985 the single-chip processor (32-bit) and the single-board 
computer emerged

• => workstations, personal computers, multiprocessors have been riding this wave 
since
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Technology

In ~1985 the single-chip processor (32-bit) and the single-boardIn ~1985 the single-chip processor (32-bit) and the single-board
computer emergedcomputer emerged

• => workstations, personal computers, multiprocessors have been riding this
wave since

In the 2002+ timeframe, these may well look like mainframesIn the 2002+ timeframe, these may well look like mainframes
compared single-chip computer (maybe 2 chips)compared single-chip computer (maybe 2 chips)

Technology => dramatic change

ProcessorProcessor

• logic capacity: about 30% per year

• clock rate: about 20% per year

MemoryMemory

• DRAM capacity: about 60% per year (4x every 3 years)

• Memory speed: about 10% per year

• Cost per bit: improves about 25% per year

DiskDisk

• capacity: about 60% per year

• Total use of data: 100% per 9 months!

Network BandwidthNetwork Bandwidth

• Bandwidth increasing more than 100% per year!

The Performance Equation

Time = Clock Speed * CPI * Instruction CountTime = Clock Speed * CPI * Instruction Count

• = seconds/cycle * cycles/instr * instrs/program

• => seconds/program

““The only reliable measure of computer performance isThe only reliable measure of computer performance is
time.time.””

Technology



• Processor

• logic capacity: about 30% per year

• clock rate: about 20% per year

• Memory

• DRAM capacity: about 60% per year (4x every 3 years)

• Memory speed: about 10% per year

• Cost per bit: improves about 25% per year

• Disk

• capacity: about 60% per year

• Total use of data: 100% per 9 months!

• Network Bandwidth increasing more than 100% per year!

Technology rates of change



The Performance Equation

• Time = Clock Speed * CPI * Instruction Count

• = seconds/cycle * cycles/instr * instrs/program

• => seconds/program

• “The only reliable measure of computer performance is 
time.”



• Speedup due to enhancement E:

• Suppose that enhancement E accelerates a fraction F of 
the task by a factor S and the remainder of the task is 
unaffected:

• Design Principle:  Make the common case fast!

Amdahl’s Law

Speedup(E) =
Execution Time without E
Execution Time with E

=
Performance with E

Performance without E

Execution time (with E) = ((1− F ) + F/S) · Execution time (without E)

Speedup (with E) =
1

(1− F ) + F/S



Amdahl’s Law example

• New CPU 10X faster

• I/O bound server, so 60% time waiting for I/O

• Apparently, it’s human nature to be attracted by 10X 
faster, vs. keeping in perspective it’s just 1.6X faster

Speedupoverall =
1

(1− Fractionenhanced) + Fractionenhanced
Speedupenhanced

=
1

(1− 0.4) + 0.4
10

=
1

0.64
= 1.56



Basis of Evaluation
Pros Cons

• representative Actual Target 
Workload

• very specific
• non-portable

• difficult to run, or measure
• hard to identify cause

• portable
• widely used

• improvements useful 
in reality

Full Application 
Benchmarks

• less representative

• easy to run, early in 
design cycle

Small “kernel” 
benchmarks

• easy to “fool”

• identify peak 
capability and potential 

bottlenecks
Microbenchmarks • “peak” may be a long way 

from application performance



CPI

Inst. 
Count

Cycle 
Time

Evaluating Instruction Sets
• Design-time Metrics:

• Can it be implemented, in how long, at what cost?

• Can it be programmed?  Ease of compilation?

• Static Metrics:

• How many bytes does the program occupy in memory?

• Dynamic Metrics:

• How many instructions are executed?

• How many bytes does the processor fetch to execute the program?

• How many clocks are required per instruction?

• How “lean” a clock is practical?

• Best Metric: Time to execute the program!



MIPS Instruction Set
•  32-bit fixed format inst (3 

formats)

•  32 32-bit GPR (R0 contains 
zero); 32 FP registers (and HI 
LO)

• partitioned by software 
convention

•  3-address, reg-reg arithmetic 
instr.

•  Single address mode for load/
store: base+displacement

• no indirection, scaled

•  16-bit immediate plus LUI

•  Simple branch conditions

• compare against zero or two 
registers for =,≠

• no integer condition codes

•  Delayed branch

• execute instruction after a branch 
(or jump) even if the branch is 
taken

• Compiler can fill branch delay slot 
~50% of the time



RISC Philosophy
• Instructions all same size

• Small number of opcodes (small opcode space)

• Opcode in same place for every instruction

• Simple memory addressing

• Instructions that manipulate data don’t manipulate 
memory, and vice versa

• Minimize memory references by providing ample 
registers



Computer Arithmetic

• Bits have no inherent meaning: operations determine 
whether really ASCII characters, integers, floating point 
numbers

• 2’s complement

• Hardware algorithms for arithmetic:

• Carry lookahead/carry save addition (parallelism!)

• Floating point



What’s a Clock Cycle?

• Old days: ~10 levels of gates

• Today: determined by numerous time-of-flight issues + 
gate delays

• clock propagation, wire lengths, drivers

Latch
or

register

combinational
logic
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Pipelining Overview
• Pipelining doesn’t help latency 

of single task, it helps 
throughput of entire workload

• Pipeline rate limited by slowest 
pipeline stage

• Multiple tasks operating 
simultaneously using different 
resources

• Potential speedup = Number 
pipe stages

• Unbalanced lengths of pipe 
stages reduces speedup

• Time to “fill” pipeline and time 
to “drain” it reduces speedup

• Stall for Dependencies



Conventional Pipelined Execution Representation

IFetch Dcd Exec Mem WB

IFetch Dcd Exec Mem WB

IFetch Dcd Exec Mem WB

IFetch Dcd Exec Mem WB

IFetch Dcd Exec Mem WB

IFetch Dcd Exec Mem WB

Program Flow

Time



Why Pipeline? Because we can!
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Why is MIPS great for pipelining?
• All MIPS instructions same length

• Source registers located in same place for every 
instruction

• Overlap register fetch and instruction decode

• Simple memory operations

• MIPS: execute calculates memory address, memory load/store in next 
stage

• X86: can operate on result of load: execute calculates memory address, 
memory load/store in next stage, THEN ALU stage afterwards

• All instructions aligned in memory — 1 access for each 
instruction



Limits to pipelining 
• Hazards prevent next instruction from 

executing during its designated clock 
cycle

– Structural hazards: attempt to use 
the same hardware to do two 
different things at once

– Data hazards: Instruction depends 
on result of prior instruction still in 
the pipeline

– Control hazards: Caused by delay 
between the fetching of instructions 
and decisions about changes in 
control flow (branches and jumps).
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Focus on the Common Case
• Common sense guides computer design

• Since it’s engineering, common sense is valuable

• In making a design trade-off, favor the frequent case over the infrequent case

• e.g., Instruction fetch and decode unit used more frequently than multiplier, so optimize it 1st

• e.g., If database server has 50 disks / processor, storage dependability dominates system 
dependability, so optimize it 1st

• Frequent case is often simpler and can be done faster than the infrequent case

• e.g., overflow is rare when adding 2 numbers, so improve performance by optimizing more for 
the common case of no overflow 

• May slow down overflow, but overall performance improved by optimizing for the normal case

• What is frequent case and how much performance improved by making case faster? 
⇒ Amdahl’s Law 



Pipeline Summary

• Simple 5-stage pipeline: F D E M W

• Pipelines pass control information down the pipe just 
as data moves down pipe

• Resolve data hazards through forwarding.

• Forwarding/Stalls handled by local control

• MIPS I instruction set architecture made pipeline visible 
(delayed branch, delayed load)

• More performance from deeper pipelines, parallelism
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CPU Registers
100s Bytes

<2s ns
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Memory Hierarchy

• The Principle of Locality:

• Program access a relatively small portion of the address space at any 
instant of time.

• Temporal Locality: Locality in Time

• Spatial Locality: Locality in Space

• Three Major Categories of Cache Misses:

• Compulsory Misses: sad facts of life.  Example: cold start misses.

• Conflict Misses:  increase cache size and/or associativity.

• Capacity Misses: increase cache size



Design Philosophies Change

• Ekman et al., “An In-Depth Look at Computer Performance Growth”



Looking Forward



“Fast enough” ?

• 10 years ago: buy fastest computer you can afford

• Today: No longer the case

• No killer apps!

• 3D graphics, full-screen video, Internet, speech …

• You should invent some.



Gelsinger’s Law

• “New generation microarchitectures use twice as many 
transistors for a 40% increase in performance.”



Cost of Fabs

• Rock’s Law: Cost of fabs double every 4 years

• $3B for current fab

• Rise of fabless design houses

• Rise of for-hire fabs (TSMC, etc.)

• $3B fab means $6B in revenue is required



Looking To The Future
The Landscape of Parallel Computing Research: A

View from Berkeley

Krste Asanovic
Ras Bodik
Bryan Christopher Catanzaro
Joseph James Gebis
Parry Husbands
Kurt Keutzer
David A. Patterson
William Lester Plishker
John Shalf
Samuel Webb Williams
Katherine A. Yelick

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2006-183

http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-183.html

December 18, 2006



Power

• Old CW: Power is free, but transistors are expensive.

• New CW is the “Power Wall”: Power is expensive, but 
transistors are free. We can put more transistors on a 
chip than we have power to turn on. 



Power Limits Performance

• Bob says: We’re pushing perf & clk rates too hard

[courtesy of Bob Colwell]



Compute vs. Memory

• Old CW: Multiply is slow, but load and store is fast.

• New CW is the Memory Wall. Load and store is slow, but 
multiply is fast. Modern microprocessors can take 200 
clocks to access Dynamic Random Access Memory 
(DRAM), but even floating-point multiplies may take 
only four clock cycles. 



Computation vs. Communication
• 20 years ago: computation expensive, wires free

• To first order: ignore wire delay

• Light moves 1 foot/ns in vacuum

• Wires are also getting thinner

• Wire delay now significant even on chip!

• Moore’s Law implies:

• Computation gets cheaper

• Speed of light doesn’t change

• Compute don’t communicate!



Reliability and Test

• Design team size growing at Moore’s Law rates

• Processors:

• Getting larger

• Getting more complicated

• How to test processors?

• How to prove processor designs correct?



http://arstechnica.com/articles/paedia/cpu/
intel-future.ars/1

Intel Directions
• (Intel Developer Forum, September 2004)

• “What Intel announced at this IDF was no less than a total rethinking of their approach to 
microprocessors.”

• Moore’s-Law-driven performance scaling will come not from increases not in MHz ratings but 
in machine width.

• Power wall

• Threading

• MIPS/watt instead of MIPS

• Datasets are growing in size, and so are the network pipes that connect those datasets.

• Intel claims “doubling of digital data every 18 months”

• More integration? WiMax?



Instruction-Level Parallelism

• Old CW: We can reveal more instruction-level 
parallelism (ILP) via compilers and architecture 
innovation. Examples from the past include branch 
prediction, out-of-order execution, speculation, and 
Very Long Instruction Word systems. 

• This is our first three weeks.

• New CW is the “ILP wall”: There are diminishing returns 
on finding more ILP. 



Uniprocessor Performance

• Old CW: Uniprocessor 
performance doubles every 
18 months. 

• New CW is Power Wall + 
Memory Wall + ILP Wall = 
Brick Wall. In 2006, 
performance is a factor of 
three below the traditional 
doubling every 18 months 
that we enjoyed between 
1986 and 2002. The doubling 
of uniprocessor performance 
may now take 5 years.  



Why EEC 171?

• Old CW: Don’t bother parallelizing your application, as you can just wait a little while and 
run it on a much faster sequential computer. 

• New CW: It will be a very long wait for a faster sequential computer.

• Old CW: Increasing clock frequency is the primary method of improving processor 
performance. 

• New CW: Increasing parallelism is the primary method of improving processor 
performance.

• Old CW: Less than linear scaling for a multiprocessor application is failure. 

• New CW: Given the switch to parallel computing, any speedup via parallelism is a 
success. 


