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ML Applications need more than algorithms
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Learning Systems: this course
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What's this course

e Not about Learning aspect of Deep Learning (except for the first two)

e System aspect of deep learning: faster training, efficient serving, lower
memory consumption.
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Logistics

e Location/Date: Tue/Thu 11:30 am - 12:50pm MUE 153

e Join slack: https://uw-cse.slack.com dlIsys channel
e We may use other time and locations for invited speakers.
e Compute Resources: AWS Education, instruction sent via email.

e Office hour by appointment
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https://uw-cse.slack.com

Homeworks and Projects

e Two code assignments

e Group project

o Two to three person team
o Poster presentation and write-up
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A Crash Course on Deep Learning
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Elements of Machine Learning
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What's Special About Deep Learning
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End to End Training
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Ingredients in Deep Learning

e Model and architecture
e Objective function, training techniques
o  Which feedback should we use to guide the algorithm?

o Supervised, RL, adversarial training.

e Regularization, initialization (coupled with modeling)
o Dropout, Xavier

e Get enough amount of data
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Major Architectures
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Image Modeling and Convolutional Nets

s
I .
o p(cat)
u% S i p(dog)
| _ -
|
=

Layer 1 Layer2 Output

explore spatial information with convolution layers
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Breakthrough of Image Classification
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Evolution of ConvNets

 LeNet (LeCun, 1998)
— Basic structures: convolution, max-pooling, softmax
» Alexnet (Krizhevsky et.al 2012)
- RelLU, Dropout
» GoogleNet (Szegedy et.al. 2014)
- Multi-independent pass way (Sparse weight matrix)
* Inception BN (loffe et.al 2015)
- Batch normalization
« Residual net (He et.al 2015)
- Residual pass way
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Fully Connected Layer
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Convolution = Spatial Locality + Sharing
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Spatial Locality
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Convolution with Multiple Channels
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Source: http://cs231n.github.io/convolutional-networks/
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Pooling Layer

Can be replaced by strided convolution
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Source: http://cs231n.github.io/convolutional-networks/
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LeNet (LeCun 1998)
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AlexNet (Krizhevsky et.al 2012)
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Challenges: From LeNet to AlexNet

e Need much more data: ImageNet
e Alot more computation burdens: GPU

e Overfitting prevention
o Dropout regularization

e Stable initialization and training
o Explosive/vanishing gradient problems
o Requires careful tuning of initialization and data normalization
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RelLU Unit

* RelU y = max(z,0)

* Why RelLU?
- Cheap to compute
- Itis roughly linear..
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Dropout Regularization

e Randomly zero out neurons with A
probability 0.5 1

e During prediction, use expectation
value (keep all neurons but scale
output by 0.5)
L1
Dropout Mask @

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

hQ



Dropout Regularization

e Randomly zero out neurons with

probability 0.5 hl hQ hg h"i h5

e During prediction, use expectation
value (keep all neurons but scale
output by 0.5)
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GoogleNet: Multiple Pathways, Less Parameters

Filter
Filter concatenation
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1x1 convolutions 3x3 convolutions 5x5 convolutions 3x3 max pooling 4 convolidions ) ) T
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(a) Inception module, naive version (b) Inception module with dimension reductions

Figure 2: Inception module
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Vanishing and Explosive Value Problem

e Imagine each layer multiplies

Its input by same weight matrix
o W>1:exponential explosion
o W< 1: exponential vanishing

e In ConvNets, the weight are not tied, but

their magnitude matters
o Deep nets training was initialization sensitive

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

()

N

x1 = Wag

"

z. = Wha




Batch Normalization: Stabilize the Magnitude

Subtract mean
Divide by standard deviation
Output is invariant to input scale!

- Scale input by a constant

— Output of BN remains the same

Impact
- Easy to tune learning rate
- Less sensitive initialization

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Input: Values of x over a mini-batch: B = {z1._,};
Parameters to be learned: ~, 3
Output: {y; = BN, 5(z;)}

1 m
gB " — E T
m <
=1

// mini-batch mean

// mini-batch variance

- Ti; — B :
T — — 5 = // normalize
\/O'B + €

yi + 7Z; + B = BN, g(z;) // scale and shift

Algorithm 1: Batch Normalizing Transform, applied to
activation x over a mini-batch.

(loffe et.al 2015)




The Scale Normalization (Assumes zero mean)
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Residual Net (He et.al 2015)

e Instead of doing transformation

add transformation result to input

e Partly solve vanishing/explosive
value problem
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Evolution of ConvNets

 LeNet (LeCun, 1998)
— Basic structures: convolution, max-pooling, softmax
» Alexnet (Krizhevsky et.al 2012)
- RelLU, Dropout
» GoogleNet (Szegedy et.al. 2014)
- Multi-independent pass way (Sparse weight matrix)
* Inception BN (loffe et.al 2015)
- Batch normalization
« Residual net (He et.al 2015)
- Residual pass way
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More Resources

e Deep learning book (Goodfellow et. al)
e Stanford CS231n: Convolutional Neural Networks for Visual Recognition

e http://dlsys.cs.washington.edu/materials
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Lab1 on Thursday

e Walk through how to implement a simple model for digit recognition
using MXNet Gluon

e Focus is on data /0O, model definition and typical training loop

Familiarize with typical framework APIs for vision tasks

Before class: sign up for AWS educate credits
https://aws.amazon.com/education/awseducate/apply/

Create AWS Educate Starter Account to avoid getting charged
Will email out instructions, but very simple to DIY, so do it today!
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