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Learning objectives

• Provide a high level definition of program analysis and give examples of why it is 
useful.

• Sketch the explanation for why all analyses must approximate.

• Understand the course mechanics, and be motivated to read the syllabus.

• Describe the function of an AST and outline the principles behind AST walkers for 
simple bug-finding analyses. 

• Recognize the basic WHILE demonstration language and translate between WHILE 
and While3Addr. 
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What is this course about?

• Program analysis is the systematic examination of a program to determine its 
properties.

• From 30,000 feet, this requires:
o Precise program representations

o Tractable, systematic ways to reason over those representations. 

• We will learn:
o How to unambiguously define the meaning of a program, and a programming language.

o How to prove theorems about the behavior of particular programs.

o How to use, build, and extend tools that do the above, automatically.
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Why might you care?

• Program analysis, and the skills that underlie it, have implications for:
o Automatic bug finding.

o Language design and implementation.

o Program synthesis.

o Program transformation (refactoring, optimization, repair).
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https://github.com/marketplace?category=code-quality
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IS THERE A BUG IN THIS CODE?
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1./* from Linux 2.3.99 drivers/block/raid5.c */

2.static struct buffer_head *

3.get_free_buffer(struct stripe_head * sh, 

4. int b_size) {

5. struct buffer_head *bh;

6. unsigned long flags;

7. save_flags(flags);

8. cli(); // disables interrupts

9. if ((bh = sh->buffer_pool) == NULL)

10. return NULL;

11. sh->buffer_pool = bh -> b_next;

12. bh->b_size = b_size;

13. restore_flags(flags); // re-enables interrupts

14. return bh;

15.}

Example from Engler et al., Checking system rules Using 
System-Specific, Programmer-Written Compiler 
Extensions, OSDI ‘000

ERROR: function returns with 
interrupts disabled!
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1. sm check_interrupts {

2. // variables; used in patterns

3. decl { unsigned } flags;

4. // patterns specify enable/disable functions

5. pat enable = { sti() ; } 

6. | { restore_flags(flags); } ;

7. pat disable = { cli() ; }

8. //states; first state is initial

9. is_enabled : disable  is_disabled

10. | enable  { err(“double enable”); }

11.;

12. is_disabled : enable  is_enabled

13. | disable  { err(“double disable”); }

14.//special pattern that matches when

15.// end of path is reached in this state

16. | $end_of_path$ 

17. { err(“exiting with inter disabled!”); }

18.;

19.}

is_enabled

is_disabled

disable enable

enable  err(double enable)

end path  err(exiting with inter disabled)

disable  err(double disable)
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1./* from Linux 2.3.99 drivers/block/raid5.c */

2.static struct buffer_head *

3.get_free_buffer(struct stripe_head * sh, 

4. int b_size) {

5. struct buffer_head *bh;

6. unsigned long flags;

7. save_flags(flags);

8. cli(); // disables interrupts

9. if ((bh = sh->buffer_pool) == NULL)

10. return NULL;

11. sh->buffer_pool = bh -> b_next;

12. bh->b_size = b_size;

13. restore_flags(flags); // re-enables interrupts

14. return bh;

15.}

Example from Engler et al., Checking system rules Using 
System-Specific, Programmer-Written Compiler 
Extensions, OSDI ‘000

Initial state: is_enabled
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1./* from Linux 2.3.99 drivers/block/raid5.c */

2.static struct buffer_head *

3.get_free_buffer(struct stripe_head * sh, 

4. int b_size) {

5. struct buffer_head *bh;

6. unsigned long flags;

7. save_flags(flags);

8. cli(); // disables interrupts

9. if ((bh = sh->buffer_pool) == NULL)

10. return NULL;

11. sh->buffer_pool = bh -> b_next;

12. bh->b_size = b_size;

13. restore_flags(flags); // re-enables interrupts

14. return bh;

15.}

Example from Engler et al., Checking system rules Using 
System-Specific, Programmer-Written Compiler 
Extensions, OSDI ‘000

Transition to: is_disabled
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1./* from Linux 2.3.99 drivers/block/raid5.c */

2.static struct buffer_head *

3.get_free_buffer(struct stripe_head * sh, 

4. int b_size) {

5. struct buffer_head *bh;

6. unsigned long flags;

7. save_flags(flags);

8. cli(); // disables interrupts

9. if ((bh = sh->buffer_pool) == NULL)

10. return NULL;

11. sh->buffer_pool = bh -> b_next;

12. bh->b_size = b_size;

13. restore_flags(flags); // re-enables interrupts

14. return bh;

15.}

Example from Engler et al., Checking system rules Using 
System-Specific, Programmer-Written Compiler 
Extensions, OSDI ‘000

Final state: is_disabled
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1./* from Linux 2.3.99 drivers/block/raid5.c */

2.static struct buffer_head *

3.get_free_buffer(struct stripe_head * sh, 

4. int b_size) {

5. struct buffer_head *bh;

6. unsigned long flags;

7. save_flags(flags);

8. cli(); // disables interrupts

9. if ((bh = sh->buffer_pool) == NULL)

10. return NULL;

11. sh->buffer_pool = bh -> b_next;

12. bh->b_size = b_size;

13. restore_flags(flags); // re-enables interrupts

14. return bh;

15.}

Example from Engler et al., Checking system rules Using 
System-Specific, Programmer-Written Compiler 
Extensions, OSDI ‘000

Transition to: is_enabled
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1./* from Linux 2.3.99 drivers/block/raid5.c */

2.static struct buffer_head *

3.get_free_buffer(struct stripe_head * sh, 

4. int b_size) {

5. struct buffer_head *bh;

6. unsigned long flags;

7. save_flags(flags);

8. cli(); // disables interrupts

9. if ((bh = sh->buffer_pool) == NULL)

10. return NULL;

11. sh->buffer_pool = bh -> b_next;

12. bh->b_size = b_size;

13. restore_flags(flags); // re-enables interrupts

14. return bh;

15.}

Example from Engler et al., Checking system rules Using 
System-Specific, Programmer-Written Compiler 
Extensions, OSDI ‘000

Final state: is_enabled
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Behavior of interest…

• Is on uncommon execution paths.
o Hard to exercise when testing.

• Executing (or analyzing) all paths is infeasible

• Instead: (abstractly) check the entire possible state space of the program.
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What is this course about?

• Program analysis is the systematic examination of a program to determine its 
properties.

• From 30,000 feet, this requires:
o Precise program representations

o Tractable, systematic ways to reason over those representations. 

• We will learn:
o How to unambiguously define the meaning of a program, and a programming language.

o How to prove theorems about the behavior of particular programs.

o How to use, build, and extend tools that do the above, automatically.
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The Bad News: Rice's Theorem

"Any nontrivial property about the 
language recognized by a Turing 
machine is undecidable.“

Henry Gordon Rice, 1953
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Proof by contradiction (sketch)
Assume that you have a function that can determine if a program p has some nontrivial 
property (like divides_by_zero):

1. int silly(program p, input i) { 

2. p(i);

3. return 5/0; 

4. }

5. bool halts(program p, input i) {

6. return divides_by_zero(`silly(p,i)`);

7. }
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Error exists No error exists

Error Reported True positive
(correct analysis result)

False positive

No Error Reported False negative True negative
(correct analysis result)

Sound Analysis: 
reports all defects
-> no false negatives
typically overapproximated

Complete Analysis:
every reported defect is an actual defect 
-> no false positives
typically underapproximated
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Sound Analysis

All Defects

Complete 
Analysis

Unsound 
and 
Incomplete 
Analysis
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What is this course about?

• Program analysis is the systematic examination of a program to determine its 
properties.

• From 30,000 feet, this requires:
o Precise program representations

o Tractable, systematic ways to reason over those representations. 

• We will learn:
o How to unambiguously define the meaning of a program, and a programming language.

o How to prove theorems about the behavior of particular programs.

o How to use, build, and extend tools that do the above, automatically.
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What is this course about?

• Program analysis is the systematic examination of a program to determine its 
properties.

• Principal techniques:
o Dynamic:

 Testing: Direct execution of code on test data in a controlled environment.

 Analysis: Tools extracting data from test runs.

o Static:

 Inspection: Human evaluation of code, design documents (specs and models), modifications.

 Analysis: Tools reasoning about the program without executing it.

o …and their combination.
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Course topics
• Program representation

• Abstract interpretation: Use abstraction to 
reason about possible program behavior.
o Operational semantics.
o Dataflow Analysis
o Termination, complexity
o Widening, collecting
o Interprocedural analysis
o Datalog
o Control flow analysis

• Hoare-style verification: Make logical arguments 
about program behavior.
o Axiomatic semantics
o Separation logic: modern bug finding.

• Symbolic execution: test all possible executions 
paths simultaneously.
o Concolic execution
o Test generation

• SAT/SMT solvers

• Program synthesis

• Dynamic analysis

• Fuzzing

• Program repair

• Model checking (briefly) : reason exhaustively 
about possible program states.
o Take 15-414 if you want the full treatment!

• We will basically not cover types.
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Fundamental concepts

• Abstraction.
o Elide details of a specific implementation.

o Capture semantically relevant details; ignore the rest.

• The importance of semantics.
o We prove things about analyses with respect to the semantics of the underlying language.

• Program proofs as inductive invariants.

• Implementation
o You do not understand analysis until you have written several.
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Course mechanics
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When/what.

• Lectures 2x week (T,Th – hybrid in-person + virtual).
o Active learning exercise(s) in every class

o Lecture notes for review

• Recitation 1x week (Fr – virtual).
o Lab-like, very helpful for homework. 

o Be ready to work

• Homework, midterm exams, project.

• There is an optional textbook.  
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Communication

• We have a website and a Canvas site, with Piazza enabled.
o Follow the link from the main Canvas page/syllabus to sign up for Piazza.

• Please:
o Use Piazza to communicate with us as much as possible, unless the matter is sensitive. 

o Make your questions public as much as possible, since that’s the literal point of Piazza. 

• We have office hours! Or, by appointment.
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“How do I get an A?”

• 15% in-class participation and exercises

• 40% homework
o Both written (proof-y) and coding (implementation-y).
o First one (mostly coding) to be released by Friday!

• 25% midterm exam

• 20% final project
o There will be some options here.

• No final exam; exam slot used for project presentations.

• We have late days and a late day policy; read the syllabus.
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CMU can be a pretty intense place.

• A 12-credit course is expected to take ~12 hours a week.

• We aim to provide a rigorous but tractable course.
o More frequent assignments rather than big monoliths

o Midterm exam to cover core material from first half of course

• Please keep us apprised of how much time the class is actually taking and whether 
it is interfacing badly with other courses.
o We have no way of knowing if you have three midterms in one week.

o Sometimes, we misjudge assignment difficulty. 

• If it’s 2 am and you’re panicking…put the homework down, send us an email, and 
go to bed.
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What is this course about?

• Program analysis is the systematic examination of a program to determine its 
properties.

• From 30,000 feet, this requires:
o Precise program representations

o Tractable, systematic ways to reason over those representations. 

• We will learn:
o How to unambiguously define the meaning of a program, and a programming language.

o How to prove theorems about the behavior of particular programs.

o How to use, build, and extend tools that do the above, automatically.
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Our first representation: Abstract Syntax

• A tree representation of source code based on the language grammar.

• Concrete syntax: The rules by which programs can be expressed as strings of 
characters.
o Use finite automata and context-free grammars, automatic lexer/parser generators

• Abstract syntax: a subset of the parse tree of the program.

• (The intuition is fine for this course; take compilers if you want to learn how to 
parse for real.)

35(c) 2021 J. Aldrich, C. Le Goues, R. Padhye



WHILE abstract syntax
• Categories:

o S  ∈ Stmt statements
o a  ∈ Aexp arithmetic expressions
o x, y ∈ Var variables
o n  ∈ Num number literals
o P ∈ BExp boolean predicates
o l ∈ labels statement addresses (line numbers)

• Syntax:
o S ::= x := a | skip | S1 ; S2

| if P then S1 else S2 | while P do S
o a ::= x | n | a1 opa a2
o opa ::= + | - | * | / | …
o P ::= true | false | not P | P1 opb P2 | a1 opr a2
o opb ::=  and | or | …
o opr ::= < | ≤ | = | > | ≥ | ... 

Concrete syntax is 
similar, but adds things 
like (parentheses) for 
disambiguation during 
parsing
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Example WHILE program

y := x;
z := 1;
while y > 1 do 

z := z * y; 

y := y – 1
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Exercise: Building an AST

y := x;
z := 1;
while y > 1 do 

z := z * y; 

y := y – 1 
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Practice: Building an AST for C code

void copy_bytes(char dest[], char source[], int n) {

for (int i = 0; i < n; ++i)

dest[i] = source[i];

}
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Our first static analysis: AST walking

• One way to find “bugs” is to walk the AST, looking for particular patterns. 
o Walk the AST, look for nodes of a particular type

o Check the neighborhood of the node for the pattern in question. 

• Various frameworks, some more language-specific than others.
o Tension between language agnosticism and semantic information available.

o Consider “grep”: very language agnostic, not very smart. 

• One common architecture based on Visitor pattern:
o class Visitor has a visitX method for each type of AST node X

o Default Visitor code just descends the AST, visiting each node 

o To find a bug in AST element of type X, override visitX

• Other more recent approaches based on semantic search, declarative logic 
programming, or query languages.
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Example: shifting by more than 31 bits.

For each instruction I in the program

if I is a shift instruction

if (type of I’s left operand is int

&& I’s right operand is a constant

&& value of constant < 0 or > 31)

warn(“Shifting by less than 0 or more
than 31 is meaningless”)
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https://help.semmle.com/wiki/display/JAVA/Inefficient+empty+string+test
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Practice: String concatenation in a loop

• Write pseudocode for a simple syntactic analysis that warns when string 
concatenation occurs in a loop
o In Java and .NET it is more efficient to use a StringBuffer

o Assume any appropriate AST elements
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WHILE abstract syntax
• Categories:

o S  ∈ Stmt statements
o a  ∈ Aexp arithmetic expressions
o x, y ∈ Var variables
o n  ∈ Num number literals
o P ∈ BExp boolean predicates
o l ∈ labels statement addresses (line numbers)

• Syntax:
o S ::= x := a | skip | S1 ; S2

|   if P then S1 else S2 | while P do S
o a ::= x | n | a1 opa a2
o opa ::= + | - | * | / | …
o P ::= true | false | not P | P1 opb P2 | a1 opr a2
o opb ::=  and | or | …
o opr ::= < | ≤ | = | > | ≥ | ... 
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WHILE3ADDR:
An Intermediate Representation
• Simpler, more uniform than WHILE syntax

• Categories:
o I      ∈ Instruction instructions

o x, y ∈ Var variables

o n    ∈ Num number literals

• Syntax:
o I ::= x := n | x := y | x := y op z

| goto n | if x opr 0 goto n

o opa ::= + | - | * | / | …

o opr ::= < | ≤ | = | > | ≥ | ...

o P ∈ Num  I
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Practice: Translating to WHILE3ADDR

• Categories:
o I      ∈ Instruction instructions

o x, y ∈ Var variables

o n    ∈ Num number literals

• Syntax:
o I ::= x := n | x := y | x := y op z

|  goto n | if x opr 0 goto n

o opa ::= + | - | * | / | …

o opr ::= < | ≤ | = | > | ≥ | ...

o P ∈ Num  I
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All together: if statement
Practice: while statement



While3Addr Extensions (more later)
• Syntax:

o I ::= x := n | x := y | x := y op z

|  goto n | if x opr 0 goto n

|  x := f(y)

|  return x

|  x := y.m(z)

|  x := &p

|  x := *p

|  *p := x

|  x := y.f

|  x.f := y
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For next time

• Get on Piazza and Canvas

• Answer the survey (location, time zone, in-person interest) we will send you!

• Read lecture notes and the course syllabus

• Homework 1 will be released later this week, and is due next Thursday.

• Discussion: what works well for remote/hybrid instruction?
o Suggestions for Lecture?  Recitations?  Homework?

o Feel free to forward suggestions after class too
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