
Lecture 1: Introduction to
Program Analysis
17-355/17-655/17-819: Program Analysis

Rohan Padhye and Jonathan Aldrich

February 2, 2021

* Course materials developed with Claire Le Goues

1(c) 2021 J. Aldrich, C. Le Goues, R. Padhye

Introductions

2(c) 2021 J. Aldrich, C. Le Goues, R. Padhye

Prof. Jonathan AldrichProf. Rohan Padhye TA Priya Varra

Learning objectives

• Provide a high level definition of program analysis and give examples of why it is
useful.

• Sketch the explanation for why all analyses must approximate.

• Understand the course mechanics, and be motivated to read the syllabus.

• Describe the function of an AST and outline the principles behind AST walkers for
simple bug-finding analyses.

• Recognize the basic WHILE demonstration language and translate between WHILE
and While3Addr.

3(c) 2021 J. Aldrich, C. Le Goues, R. Padhye

What is this course about?

• Program analysis is the systematic examination of a program to determine its
properties.

• From 30,000 feet, this requires:
o Precise program representations

o Tractable, systematic ways to reason over those representations.

• We will learn:
o How to unambiguously define the meaning of a program, and a programming language.

o How to prove theorems about the behavior of particular programs.

o How to use, build, and extend tools that do the above, automatically.

4(c) 2021 J. Aldrich, C. Le Goues, R. Padhye

Why might you care?

• Program analysis, and the skills that underlie it, have implications for:
o Automatic bug finding.

o Language design and implementation.

o Program synthesis.

o Program transformation (refactoring, optimization, repair).

5(c) 2021 J. Aldrich, C. Le Goues, R. Padhye

6(c) 2021 J. Aldrich, C. Le Goues, R. Padhye

7(c) 2021 J. Aldrich, C. Le Goues, R. Padhye

https://github.com/marketplace?category=code-quality

8
(c) 2021 J. Aldrich, C. Le Goues, R. Padhye

9
(c) 2021 J. Aldrich, C. Le Goues, R. Padhye

10(c) 2021 J. Aldrich, C. Le Goues, R. Padhye

IS THERE A BUG IN THIS CODE?

11(c) 2021 J. Aldrich, C. Le Goues, R. Padhye

1./* from Linux 2.3.99 drivers/block/raid5.c */

2.static struct buffer_head *

3.get_free_buffer(struct stripe_head * sh,

4. int b_size) {

5. struct buffer_head *bh;

6. unsigned long flags;

7. save_flags(flags);

8. cli(); // disables interrupts

9. if ((bh = sh->buffer_pool) == NULL)

10. return NULL;

11. sh->buffer_pool = bh -> b_next;

12. bh->b_size = b_size;

13. restore_flags(flags); // re-enables interrupts

14. return bh;

15.}

Example from Engler et al., Checking system rules Using
System-Specific, Programmer-Written Compiler
Extensions, OSDI ‘000

ERROR: function returns with
interrupts disabled!

12(c) 2021 J. Aldrich, C. Le Goues, R. Padhye

1. sm check_interrupts {

2. // variables; used in patterns

3. decl { unsigned } flags;

4. // patterns specify enable/disable functions

5. pat enable = { sti() ; }

6. | { restore_flags(flags); } ;

7. pat disable = { cli() ; }

8. //states; first state is initial

9. is_enabled : disable is_disabled

10. | enable { err(“double enable”); }

11.;

12. is_disabled : enable is_enabled

13. | disable { err(“double disable”); }

14.//special pattern that matches when

15.// end of path is reached in this state

16. | end_of_path

17. { err(“exiting with inter disabled!”); }

18.;

19.}

is_enabled

is_disabled

disable enable

enable err(double enable)

end path err(exiting with inter disabled)

disable err(double disable)

13(c) 2021 J. Aldrich, C. Le Goues, R. Padhye

1./* from Linux 2.3.99 drivers/block/raid5.c */

2.static struct buffer_head *

3.get_free_buffer(struct stripe_head * sh,

4. int b_size) {

5. struct buffer_head *bh;

6. unsigned long flags;

7. save_flags(flags);

8. cli(); // disables interrupts

9. if ((bh = sh->buffer_pool) == NULL)

10. return NULL;

11. sh->buffer_pool = bh -> b_next;

12. bh->b_size = b_size;

13. restore_flags(flags); // re-enables interrupts

14. return bh;

15.}

Example from Engler et al., Checking system rules Using
System-Specific, Programmer-Written Compiler
Extensions, OSDI ‘000

Initial state: is_enabled

14(c) 2021 J. Aldrich, C. Le Goues, R. Padhye

1./* from Linux 2.3.99 drivers/block/raid5.c */

2.static struct buffer_head *

3.get_free_buffer(struct stripe_head * sh,

4. int b_size) {

5. struct buffer_head *bh;

6. unsigned long flags;

7. save_flags(flags);

8. cli(); // disables interrupts

9. if ((bh = sh->buffer_pool) == NULL)

10. return NULL;

11. sh->buffer_pool = bh -> b_next;

12. bh->b_size = b_size;

13. restore_flags(flags); // re-enables interrupts

14. return bh;

15.}

Example from Engler et al., Checking system rules Using
System-Specific, Programmer-Written Compiler
Extensions, OSDI ‘000

Transition to: is_disabled

15(c) 2021 J. Aldrich, C. Le Goues, R. Padhye

1./* from Linux 2.3.99 drivers/block/raid5.c */

2.static struct buffer_head *

3.get_free_buffer(struct stripe_head * sh,

4. int b_size) {

5. struct buffer_head *bh;

6. unsigned long flags;

7. save_flags(flags);

8. cli(); // disables interrupts

9. if ((bh = sh->buffer_pool) == NULL)

10. return NULL;

11. sh->buffer_pool = bh -> b_next;

12. bh->b_size = b_size;

13. restore_flags(flags); // re-enables interrupts

14. return bh;

15.}

Example from Engler et al., Checking system rules Using
System-Specific, Programmer-Written Compiler
Extensions, OSDI ‘000

Final state: is_disabled

16(c) 2021 J. Aldrich, C. Le Goues, R. Padhye

1./* from Linux 2.3.99 drivers/block/raid5.c */

2.static struct buffer_head *

3.get_free_buffer(struct stripe_head * sh,

4. int b_size) {

5. struct buffer_head *bh;

6. unsigned long flags;

7. save_flags(flags);

8. cli(); // disables interrupts

9. if ((bh = sh->buffer_pool) == NULL)

10. return NULL;

11. sh->buffer_pool = bh -> b_next;

12. bh->b_size = b_size;

13. restore_flags(flags); // re-enables interrupts

14. return bh;

15.}

Example from Engler et al., Checking system rules Using
System-Specific, Programmer-Written Compiler
Extensions, OSDI ‘000

Transition to: is_enabled

17(c) 2021 J. Aldrich, C. Le Goues, R. Padhye

1./* from Linux 2.3.99 drivers/block/raid5.c */

2.static struct buffer_head *

3.get_free_buffer(struct stripe_head * sh,

4. int b_size) {

5. struct buffer_head *bh;

6. unsigned long flags;

7. save_flags(flags);

8. cli(); // disables interrupts

9. if ((bh = sh->buffer_pool) == NULL)

10. return NULL;

11. sh->buffer_pool = bh -> b_next;

12. bh->b_size = b_size;

13. restore_flags(flags); // re-enables interrupts

14. return bh;

15.}

Example from Engler et al., Checking system rules Using
System-Specific, Programmer-Written Compiler
Extensions, OSDI ‘000

Final state: is_enabled

18(c) 2021 J. Aldrich, C. Le Goues, R. Padhye

Behavior of interest…

• Is on uncommon execution paths.
o Hard to exercise when testing.

• Executing (or analyzing) all paths is infeasible

• Instead: (abstractly) check the entire possible state space of the program.

19(c) 2021 J. Aldrich, C. Le Goues, R. Padhye

What is this course about?

• Program analysis is the systematic examination of a program to determine its
properties.

• From 30,000 feet, this requires:
o Precise program representations

o Tractable, systematic ways to reason over those representations.

• We will learn:
o How to unambiguously define the meaning of a program, and a programming language.

o How to prove theorems about the behavior of particular programs.

o How to use, build, and extend tools that do the above, automatically.

20(c) 2021 J. Aldrich, C. Le Goues, R. Padhye

The Bad News: Rice's Theorem

"Any nontrivial property about the
language recognized by a Turing
machine is undecidable.“

Henry Gordon Rice, 1953

21(c) 2021 J. Aldrich, C. Le Goues, R. Padhye

Proof by contradiction (sketch)
Assume that you have a function that can determine if a program p has some nontrivial
property (like divides_by_zero):

1. int silly(program p, input i) {

2. p(i);

3. return 5/0;

4. }

5. bool halts(program p, input i) {

6. return divides_by_zero(`silly(p,i)`);

7. }

22(c) 2021 J. Aldrich, C. Le Goues, R. Padhye

Error exists No error exists

Error Reported True positive
(correct analysis result)

False positive

No Error Reported False negative True negative
(correct analysis result)

Sound Analysis:
reports all defects
-> no false negatives
typically overapproximated

Complete Analysis:
every reported defect is an actual defect
-> no false positives
typically underapproximated

23(c) 2021 J. Aldrich, C. Le Goues, R. Padhye

Sound Analysis

All Defects

Complete
Analysis

Unsound
and
Incomplete
Analysis

24(c) 2021 J. Aldrich, C. Le Goues, R. Padhye

What is this course about?

• Program analysis is the systematic examination of a program to determine its
properties.

• From 30,000 feet, this requires:
o Precise program representations

o Tractable, systematic ways to reason over those representations.

• We will learn:
o How to unambiguously define the meaning of a program, and a programming language.

o How to prove theorems about the behavior of particular programs.

o How to use, build, and extend tools that do the above, automatically.

25(c) 2021 J. Aldrich, C. Le Goues, R. Padhye

What is this course about?

• Program analysis is the systematic examination of a program to determine its
properties.

• Principal techniques:
o Dynamic:

 Testing: Direct execution of code on test data in a controlled environment.

 Analysis: Tools extracting data from test runs.

o Static:

 Inspection: Human evaluation of code, design documents (specs and models), modifications.

 Analysis: Tools reasoning about the program without executing it.

o …and their combination.

26(c) 2021 J. Aldrich, C. Le Goues, R. Padhye

Course topics
• Program representation

• Abstract interpretation: Use abstraction to
reason about possible program behavior.
o Operational semantics.
o Dataflow Analysis
o Termination, complexity
o Widening, collecting
o Interprocedural analysis
o Datalog
o Control flow analysis

• Hoare-style verification: Make logical arguments
about program behavior.
o Axiomatic semantics
o Separation logic: modern bug finding.

• Symbolic execution: test all possible executions
paths simultaneously.
o Concolic execution
o Test generation

• SAT/SMT solvers

• Program synthesis

• Dynamic analysis

• Fuzzing

• Program repair

• Model checking (briefly) : reason exhaustively
about possible program states.
o Take 15-414 if you want the full treatment!

• We will basically not cover types.

27(c) 2021 J. Aldrich, C. Le Goues, R. Padhye

Fundamental concepts

• Abstraction.
o Elide details of a specific implementation.

o Capture semantically relevant details; ignore the rest.

• The importance of semantics.
o We prove things about analyses with respect to the semantics of the underlying language.

• Program proofs as inductive invariants.

• Implementation
o You do not understand analysis until you have written several.

28(c) 2021 J. Aldrich, C. Le Goues, R. Padhye

Course mechanics

29(c) 2021 J. Aldrich, C. Le Goues, R. Padhye

When/what.

• Lectures 2x week (T,Th – hybrid in-person + virtual).
o Active learning exercise(s) in every class

o Lecture notes for review

• Recitation 1x week (Fr – virtual).
o Lab-like, very helpful for homework.

o Be ready to work

• Homework, midterm exams, project.

• There is an optional textbook.

30(c) 2021 J. Aldrich, C. Le Goues, R. Padhye

Communication

• We have a website and a Canvas site, with Piazza enabled.
o Follow the link from the main Canvas page/syllabus to sign up for Piazza.

• Please:
o Use Piazza to communicate with us as much as possible, unless the matter is sensitive.

o Make your questions public as much as possible, since that’s the literal point of Piazza.

• We have office hours! Or, by appointment.

31(c) 2021 J. Aldrich, C. Le Goues, R. Padhye

“How do I get an A?”

• 15% in-class participation and exercises

• 40% homework
o Both written (proof-y) and coding (implementation-y).
o First one (mostly coding) to be released by Friday!

• 25% midterm exam

• 20% final project
o There will be some options here.

• No final exam; exam slot used for project presentations.

• We have late days and a late day policy; read the syllabus.

32(c) 2021 J. Aldrich, C. Le Goues, R. Padhye

CMU can be a pretty intense place.

• A 12-credit course is expected to take ~12 hours a week.

• We aim to provide a rigorous but tractable course.
o More frequent assignments rather than big monoliths

o Midterm exam to cover core material from first half of course

• Please keep us apprised of how much time the class is actually taking and whether
it is interfacing badly with other courses.
o We have no way of knowing if you have three midterms in one week.

o Sometimes, we misjudge assignment difficulty.

• If it’s 2 am and you’re panicking…put the homework down, send us an email, and
go to bed.

33(c) 2021 J. Aldrich, C. Le Goues, R. Padhye

What is this course about?

• Program analysis is the systematic examination of a program to determine its
properties.

• From 30,000 feet, this requires:
o Precise program representations

o Tractable, systematic ways to reason over those representations.

• We will learn:
o How to unambiguously define the meaning of a program, and a programming language.

o How to prove theorems about the behavior of particular programs.

o How to use, build, and extend tools that do the above, automatically.

34(c) 2021 J. Aldrich, C. Le Goues, R. Padhye

Our first representation: Abstract Syntax

• A tree representation of source code based on the language grammar.

• Concrete syntax: The rules by which programs can be expressed as strings of
characters.
o Use finite automata and context-free grammars, automatic lexer/parser generators

• Abstract syntax: a subset of the parse tree of the program.

• (The intuition is fine for this course; take compilers if you want to learn how to
parse for real.)

35(c) 2021 J. Aldrich, C. Le Goues, R. Padhye

WHILE abstract syntax
• Categories:

o S ∈ Stmt statements
o a ∈ Aexp arithmetic expressions
o x, y ∈ Var variables
o n ∈ Num number literals
o P ∈ BExp boolean predicates
o l ∈ labels statement addresses (line numbers)

• Syntax:
o S ::= x := a | skip | S1 ; S2

| if P then S1 else S2 | while P do S
o a ::= x | n | a1 opa a2
o opa ::= + | - | * | / | …
o P ::= true | false | not P | P1 opb P2 | a1 opr a2
o opb ::= and | or | …
o opr ::= < | ≤ | = | > | ≥ | ...

Concrete syntax is
similar, but adds things
like (parentheses) for
disambiguation during
parsing

36(c) 2021 J. Aldrich, C. Le Goues, R. Padhye

Example WHILE program

y := x;
z := 1;
while y > 1 do

z := z * y;

y := y – 1

37(c) 2021 J. Aldrich, C. Le Goues, R. Padhye

Exercise: Building an AST

y := x;
z := 1;
while y > 1 do

z := z * y;

y := y – 1

38(c) 2021 J. Aldrich, C. Le Goues, R. Padhye

Practice: Building an AST for C code

void copy_bytes(char dest[], char source[], int n) {

for (int i = 0; i < n; ++i)

dest[i] = source[i];

}

39(c) 2021 J. Aldrich, C. Le Goues, R. Padhye

Our first static analysis: AST walking

• One way to find “bugs” is to walk the AST, looking for particular patterns.
o Walk the AST, look for nodes of a particular type

o Check the neighborhood of the node for the pattern in question.

• Various frameworks, some more language-specific than others.
o Tension between language agnosticism and semantic information available.

o Consider “grep”: very language agnostic, not very smart.

• One common architecture based on Visitor pattern:
o class Visitor has a visitX method for each type of AST node X

o Default Visitor code just descends the AST, visiting each node

o To find a bug in AST element of type X, override visitX

• Other more recent approaches based on semantic search, declarative logic
programming, or query languages.

40(c) 2021 J. Aldrich, C. Le Goues, R. Padhye

Example: shifting by more than 31 bits.

For each instruction I in the program

if I is a shift instruction

if (type of I’s left operand is int

&& I’s right operand is a constant

&& value of constant < 0 or > 31)

warn(“Shifting by less than 0 or more
than 31 is meaningless”)

41(c) 2021 J. Aldrich, C. Le Goues, R. Padhye

42

https://help.semmle.com/wiki/display/JAVA/Inefficient+empty+string+test

(c) 2021 J. Aldrich, C. Le Goues, R. Padhye

43(c) 2021 J. Aldrich, C. Le Goues, R. Padhye

44
(c) 2021 J. Aldrich, C. Le Goues, R. Padhye

Practice: String concatenation in a loop

• Write pseudocode for a simple syntactic analysis that warns when string
concatenation occurs in a loop
o In Java and .NET it is more efficient to use a StringBuffer

o Assume any appropriate AST elements

45(c) 2021 J. Aldrich, C. Le Goues, R. Padhye

WHILE abstract syntax
• Categories:

o S ∈ Stmt statements
o a ∈ Aexp arithmetic expressions
o x, y ∈ Var variables
o n ∈ Num number literals
o P ∈ BExp boolean predicates
o l ∈ labels statement addresses (line numbers)

• Syntax:
o S ::= x := a | skip | S1 ; S2

| if P then S1 else S2 | while P do S
o a ::= x | n | a1 opa a2
o opa ::= + | - | * | / | …
o P ::= true | false | not P | P1 opb P2 | a1 opr a2
o opb ::= and | or | …
o opr ::= < | ≤ | = | > | ≥ | ...

46(c) 2021 J. Aldrich, C. Le Goues, R. Padhye

WHILE3ADDR:
An Intermediate Representation
• Simpler, more uniform than WHILE syntax

• Categories:
o I ∈ Instruction instructions

o x, y ∈ Var variables

o n ∈ Num number literals

• Syntax:
o I ::= x := n | x := y | x := y op z

| goto n | if x opr 0 goto n

o opa ::= + | - | * | / | …

o opr ::= < | ≤ | = | > | ≥ | ...

o P ∈ Num I

47(c) 2021 J. Aldrich, C. Le Goues, R. Padhye

Practice: Translating to WHILE3ADDR

• Categories:
o I ∈ Instruction instructions

o x, y ∈ Var variables

o n ∈ Num number literals

• Syntax:
o I ::= x := n | x := y | x := y op z

| goto n | if x opr 0 goto n

o opa ::= + | - | * | / | …

o opr ::= < | ≤ | = | > | ≥ | ...

o P ∈ Num I

48(c) 2021 J. Aldrich, C. Le Goues, R. Padhye

All together: if statement
Practice: while statement

While3Addr Extensions (more later)
• Syntax:

o I ::= x := n | x := y | x := y op z

| goto n | if x opr 0 goto n

| x := f(y)

| return x

| x := y.m(z)

| x := &p

| x := *p

| *p := x

| x := y.f

| x.f := y

49(c) 2021 J. Aldrich, C. Le Goues, R. Padhye

For next time

• Get on Piazza and Canvas

• Answer the survey (location, time zone, in-person interest) we will send you!

• Read lecture notes and the course syllabus

• Homework 1 will be released later this week, and is due next Thursday.

• Discussion: what works well for remote/hybrid instruction?
o Suggestions for Lecture? Recitations? Homework?

o Feel free to forward suggestions after class too

50(c) 2021 J. Aldrich, C. Le Goues, R. Padhye

