
Lecture 1: Introduction,
Types & Expressions

(Chapter 1, Section 2.6)

CS 1110
Introduction to Computing Using Python

[E. Andersen, A. Bracy, D. Gries, L. Lee, S. Marschner, and W. White]

http://www.cs.cornell.edu/courses/cs1110/2018sp

http://www.cs.cornell.edu/courses/cs1110/2018sp
Sections
- Please go only to the Section you are enrolled in
- See our Section Swapping Station on Piazza:

https://piazza.com/class/jckqwmqflaz6i?cid=10

Enrollment
- There is a lot of turnover in the first week. Don’t give up!
- Perhaps another class meets your needs?
http://www.cs.cornell.edu/courses/cs1110/2018sp/resources/alternatives.php

AEW Workshops (ENGRG 1010) Open to all students.
Additional (optional) discussion course. Small group,

collaborative learning. Non-remedial. Highly recommended.
http://www.cs.cornell.edu/courses/cs1110/2018sp/resources/aew.php

CS 1110 Spring 2018: Announcements

2

HandoutSlide

Like philosophy, computing qua computing is worth
teaching less for the subject matter itself and more for
the habits of mind that studying it encourages.

The best way to encourage interest in computing in
school is to ditch the vocational stuff …, give the kids
a simple programming language, and then get out of
the way and let them experiment. For some, at least, it
could be the start of a life-long love affair.

“Teach computing, not Word”, the Economist
http://www.economist.com/blogs/babbage/2010/08/computing_schools

Interlude: Why learn to program?
(subtly distinct from, although a core part of, CS / IS)

3

Interlude (continued)

4

[T]he seductive intellectual core of… programming:
here is a magic black box. [T]ell it to do whatever you
want, within a certain set of rules, and it will do it; within
the confines of the box you are more or less God, your
powers limited only by your imagination. But the price of
that power is strict discipline: you have to really know
what you want, and you have to be able to express it
clearly in a formal, structured way that leaves no room for
the fuzzy thinking and ambiguity found everywhere else in
life…

…The ability to make the machine dance to any tune
you care to play is thrilling.

Benjamin Van Doren, CALS
• bird lover since 3rd grade
• learned programming as a freshman in

CS1110 Spring 2013
• helped create dataset for paper he co-

authored: "Approximate Bayesian Inference
for Reconstructing Velocities of Migrating
Birds from Weather Radar"

• won Best Paper Award at AAAI 2013

Oh the places you’ll go! (with 1110)

5

• BA, German Studies; BS, Symbolic Systems
• MS, Computer Science
• PhD, Computer Science
• Research Scientist, Intel Labs
• Principal Lecturer, WUSTL
• Co-Author of “All of Programming”
• Google Play Book, Coursera Course!
• Senior Lecturer, Cornell University
• CS 1110, 3410, 4410/4411
• ACSU Faculty of the Year, 2016
• Engineering Teaching Award, 2017

About Professor Bracy

6

Lifetime achievement awards:
• Association for the Advancement of Artificial Intelligence, 2013
• Association for Computational Linguistics, 2017

In the press: New York Times, All Things Considered,
Washington Post, etc.

Engineering teaching awards 1999, 2002, 2014;
Carpenter Memorial Advising Award 2009

• A.B. Cornell ’93, Ph.D. Harvard ’97
Lowest grade ever…?

About Professor Lee

7

What you see: What you don’t see:

Who does what?

8
http://www.catonmat.net/blog/front-end-vs-back-end-comic/

Outcomes:
• Fluency: (Python) procedural programming
• Use assignments, conditionals, & loops
• Create Python modules & programs

• Competency: object-oriented
programming
• Recognize and use objects and classes

• Knowledge: searching & sorting algorithms

Why should you take CS 1110?

9

CS 1110: Python
• No programming

experience necessary
• No calculus
• Non-numerical

problems
• More about software

design

Intro Programming Classes Compared (1)

10

CS 1112: MATLAB
• No programming

experience necessary
• 1 semester of calculus
• Engineering-type

problems
• Less about software

design

Both serve as a pre-requisite to CS 2110

CS 1133: Python
Short Course

• No programming
experience necessary
• No calculus
• Very basics of

programming
• Already full! L

Intro Programming Classes Compared (2)

11

CS 1380: Data
Science For All

• No programming
experience necessary
• No calculus
• Less programming

than 1110, but also:
data visualization,
prediction, machine
learning

Low overhead
• Little to learn before you start “doing”
• Easier for beginners
• Designed with “rapid prototyping” in mind

Highly relevant to non-CS majors
• NumPy and SciPy heavily used by scientists

A modern language
• Popular for web applications (e.g. Facebook apps)
• Applicable to mobile app development

Why Python?

12

http://www.cs.cornell.edu/courses/cs1110/2018sp

LOOK FOR THE SPRING 2018 PEGASUS!

No Pegasus? à wrong semester

Notice: link to CMS, not Blackboard

Course Website

13

cs1110-prof@cornell.edu
• Includes: two profs, head TAs
• Main correspondence. Don’t email only one prof, or both

separately

cs1110-staff@cornell.edu
• Includes: both profs, admin assistant, graduate TAs, head

consultants
• “Emergency contact number.” Nobody at office hours;

Lab has no printouts, etc.

Piazza: not required, but fast (link on class website)

Email from us: please check your spam filters for mail from
AWB93, LJL2, cs1110-prof, or with [CS1110] in the subject line.

Communication

14

HandoutSlide

Lectures:
• Not just talking! Demos, clicker questions, etc.
• Every Tuesday/Thursday (9:05 or 11:15)
• Attend either, 11:15 is recorded by VideoNote
• Handouts (including this one!) posted to website

afternoon before class
• Slides and code posted to the website after class

Lectures

15

HandoutSlide

Please, no cell phones during lecture
(except for during a Clicker question)

• guided exercises with TAs & consultants
• Start Tuesday, January 30
• Go to the lab section you are registered for. We can’t

maintain workable staff/student ratios otherwise.
• Need a different Section? See our Section Swapping Station

on Piazza: https://piazza.com/class/jckqwmqflaz6i?cid=10

• Not enrolled in a lab section? Don’t panic. Do the lab on your
own. If a lab section opens up, check it in then.

• Handouts posted to the website the Monday before
• Mandatory. Missing > 2 can lower your final grade.

Lab Sections (aka Sections)

16

HandoutSlide

ACCEL Labs

17

• Enter from front
• Walk to staircase on left
• Go up the stairs

Computers available for you to use whenever labs are
open (see website FAQ). Bring a USB stick to save your
work b/c you can’t save files on these machines.

Textbook. Think Python, 2nd ed. by Allen Downey
• Supplemental; does not replace lecture
• Available for free as PDF or eBook
• First edition is for the Python 2 (bad!)

iClicker. Optional but useful.
• Will periodically ask questions during lecture
• Not part of the grade à no registration
• We do support REEF Polling.

Python. Necessary if using your own computer
• See course website for how to install

Class Materials

18

HandoutSlide

sash means 2nd ed

1. Read textbook
• Chapter 1
• Sections 2.1-2.3, 2.5

2. (If using your own
computer) Install Python
following our
instructions:
http://www.cs.cornell.edu/courses/cs1110
/2018sp/materials/python.php

3. Look at first lab handout
(available Monday)

4. (optional) Join Piazza, a
Q&A forum

Things to do before next class

19

Everything is on website!
• Class announcements
• Consultant calendar
• Reading schedule
• Lecture slides
• Exam dates
• Piazza instructions
Check it regularly:

www.cs.cornell.edu/
courses/cs1110/2018sp/

HandoutSlide

• Designed to be used from
the “command line”
• OS X/Linux: Terminal
• Windows: Command Prompt
• Purpose of the first lab

• Install, then type “python”
• Starts the interactive mode
• Type commands at >>>

• First experiments:
evaluate expressions

Getting Started with Python

20>>> terminal time >>>

This class uses Python 3
• Welcome to the cutting edge!
• Eyes open, please!

What data might we want to work with?
(What’s on your computer?)

Storing and Computing Data

21

42

3.0 * 108

0.00001

“apple”

“Tower Road”

True

False

14850
“awb93”

An expression represents something
• Python evaluates it (turns it into a value)
• Similar to a calculator

Examples:
• 2.3

• (3 * 7 + 2) * 0.1

Expressions

22

HandoutSlide

Literal
(evaluates to self)

An expression with four
literals and some operators

A set of values & operations on these values
• Examples of operations: +, –, /, *
• Meaning of operations depends on type

Types

23

HandoutSlide

Memorize this definition!

Command: type(<value>)

Example:

>>> type(2)
<type 'int'>

How to tell the Type of a Value

24>>> terminal time >>>

Values: (approximations of) real numbers
• With a “.”: a float literal (e.g., 2.0)
• Without a decimal: an int literal (e.g., 2)

Operations: +, –, *, /, **, unary –
Notice: operator meaning can change from type to type

Exponent notation useful for large (or small) values
• –22.51e6 is –22.51 * 106 or –22510000
• 22.51e–6 is 22.51 * 10–6 or 0.00002251

Type: float (floating point)

25

A second kind
of float literal

HandoutSlide

Python stores floats as binary fractions
• Integer mantissa times a power of 2
• Example: 1.25 is 5 * 2–2

Can’t write most real numbers this way exactly
• Similar to problem of writing 1/3 with decimals
• Python chooses the closest binary fraction it can

Approximation results in representation error
• When combined in expressions, the error can get worse
• Example: 0.1 + 0.2

Floating Point Errors

26

mantissa exponent

>>> terminal time >>>

Values:…, –3, –2, –1, 0, 1, 2, 3, 4, 5, …
More Examples:: 1, 45, 43028030
(no commas or periods)

Operations: +, –, *, **, /, //, %, unary –

Type: int (integers)

27

multiply to power of

division (technically a float
operator)

HandoutSlide

integer division

>>> terminal time >>>

Values: True, False
• Boolean literals True and False (must be capitalized)

Operations: not, and, or
• not b: True if b is false and False if b is true
• b and c: True if both b and c are true; False otherwise
• b or c: True if b is true or c is true; False otherwise

Often come from comparing int or float values
• Order comparison: i < j i <= j i >= j i > j
• Equality, inequality: i == j i != j

Type: bool (boolean)

28

"=" means something else!

HandoutSlide

Booleans expressions sound like English, but
subtle differences cause problems:
• In English, “A = B and C” often means “A = B and A = C”

Example: “Ithaca is cold and snowy”
• Means: “Ithaca is cold” and “Ithaca is snowy”
• Does not mean: “Ithaca is cold” and…. “snowy”

Python requires fully specified Boolean expressions

• In English, “A or B” often means “A or B but not both”
Example: “I’ll take CS 1110 or CS 1112” (but not both)
In Python, “A or B” always means “A or B or both”

Boolean Misconceptions

29

Type: str (string) for text

30

Values: any sequence of characters
Operation(s): + (catenation, or concatenation)
Again: operator + changes from type to type

String literal: sequence of characters in quotes
• Double quotes: " abcex3$g<&" or "Hello World!"
• Single quotes: 'Hello World!'

Concatenation applies only to strings
• "ab" + "cd" evaluates to "abcd"
• "ab" + 2 produces an error

HandoutSlide

>>> terminal time >>>

