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reading is The Statistical Analysis of Failure Time Data by Kalbfleisch and Prentice.
Grading: Based on attendance, class notes (students write their notes for one lecture as a LaTex
document), occasional homework, and a group poster project at the end of the term.

Survival Analysis

Survival analysis is the branch of statistics concerning time-to-event data. Specialized techniques
exist for situations where there is only partial information about the times-to-events. For example,
the data could record the time until recurrence of cancer in patients, but instead of having times for
each patient we may only know that some patients had no recurrence for at least five years.

Notation

• T = Survival time. T is a nonnegative random variable.

• F(t) = P(T ≤ t). F is the cumulative distribution function (cdf).
F(t)=0 for t ≤ 0, F(t) → 1 as t →∞, F is nondecreasing, and F is right continuous.

• S(t) = 1-F(t) = Survival function.

• dF(t) = P(t-dt ≤ T ≤ t), for dt infintesimal. dF(t) = f(t)dt if F continuous with Lebesgue
density f, and dF(t) = F(t) - F(t−) if F is a discrete cdf.

• If T1, ..., Tn are iid observations of T, then Fn(t) = 1
nΣn

i=1I(Ti ≤ t) and Sn(t) = 1−Fn(t) are the
empirical cdf and the empirical survival function. If all observations are unique and T(1), ..., T(n)

denote the sorted observations in increasing order, then Fn(t) = 0 for t <= T(1), Fn(t) = i
n for

T(i) ≤ t < T(i+1), and Fn(t) = 1 for t ≥ T(n). When the observations are unique, we also have
that dFn(t) = 1/n if t ∈ {T1, ..., Tn} and dFn(t) = 0 zero otherwise.
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• λ(t) = Hazard function.
If T is continuous, the Lebesgue hazard is λ(t) = f(t)

S(t) = limδ→0
P (T∈(t,t+δ])/δ

P (T≥t)

= limδ→0
(F (t)−F (t−δ))/δ

S(t) = limδ→0P (T ∈ (t, t+ δ]|T ≥ t)/δ
If F is discrete, the discrete hazard is λ(t) = P (T = t|T ≥ t).
When T represents the time until a failure, λ(t) represents the probability of instantaneous
failure given that no failure has occured in [0, t).

• Λ(t) = Cumulative hazard function.
Λ(t) =

∫ t

0
1

S(s−)dF (s), and dΛ(s) = 1
S(s−)dF (s) = P (T ∈ [s− ds, s])/P (T ≥ s).

Relationship between the hazard and survival functions

If T is discrete at 0 ≤ t1 < t2 < ... < tm <∞, then S(t) =
∏
{j:tj≤t} (1-dΛ(tj)).

In general, S(t) =
∏

(0,t](1 − dΛ(s)). Here
∏

(0,t] denotes a product integral, defined as the limiting
product

∏
{j:tj≤t} (1-dΛ(tj)) for a sequence of partition intervals of (0, t] of the form {(0, t1], (t1, t2], ..., (tm−1, tm]}

such that max{j:1<j≤m}(tj − tj−1) → 0.

Lecture 2, Notes by Daniel Rubin
January 23, 2004

The hazard and survival functions in the discrete setting

We claimed in the last lecture that S(t) =
∏
{j:tj≤t}(1 − dΛ(t)) if T is discrete with support on

t1 < t2 < ... < tm <∞. Below we prove this assertion.

Recall that dΛ(s) = dF (s)
S(s−) . In the discrete setting S(tj−) = S(tj−1), F (tj−) = F (tj−1), and

dF (tj) = F (tj) − F (tj−) = F (tj) − F (tj−1). This gives that (1 − dΛ(t)) = 1 − F (tj)−F (tj−1)
S(tj−1)

=
S(tj−1)−F (tj)+F (tj−1)

S(tj−1)
= 1−F (tj−1)−F (tj)+F (tj−1)

S(tj−1)
= 1−F (tj)

S(tj−1)
= S(tj)

S(tj−1)
. Now let ti be the largest of the

t1, ..., tm that does not exceed t, and note that S(ti) = S(t) because T is discrete. Also let t0 = 0
and observe that S(t0) = 1. Finally, we see that

∏
{j:tj≤t}(1 − dΛ(t)) =

∏
{j:1≤j≤i}(1 − dΛ(t)) =∏

{j:1≤j≤i}
S(tj)

S(tj−1)
= S(ti)

S(t0)
= S(ti) = S(t).

The hazard and survival functions in the continuous setting

If T is continuous then S(t) = exp(−Λ(t)) = exp(−
∫ t

0
dF (s)
S(s) ). We prove this assertion below.

d
ds log(S(s)) = − f(s)

S(s) = −λ(s)

=⇒ log(S(t)) = log(S(t))−log(1) = log(S(t))−log(S(0)) =
∫ t

0
d
ds log(S(s))ds =

∫ t

0
−λ(s)ds = −Λ(t)

=⇒ S(t) = exp(−Λ(t))
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Estimation of the hazard

Suppose T1, ..., Tn are iid and continuous, there is no censoring, and we want to estimate λ(t) non-
parametrically. We recall that λ(t) = f(t)

S(t) because T is continuous, and then use nonparametric
density estimation for the numerator and the empirical survival function for the denominator.

There are many ways to perform density estimation, but a popular method is kernel density es-
timation. For this technique we choose a positive number h to be the bandwidth, a density K(•)
centered at zero to be the kernel, and estimate f(t) by fn,h(t) = 1

nhΣn
i=1K(Ti−t

h ). Typically the
density estimates have less bias but more variance as h is decreased toward zero.

Choice of bandwidth in density estimation

The accuracy of kernel density estimation will depend on the choice of bandwidth. Whether it is
preferable use a small or large bandwidth depends on the true density, and likelihood cross-validation
is a method for adaptively choosing a good bandwidth. Before discussing this further, we must give
an aside about inequalities in probability.

Let f0 denote the true density function of T, and f denote some estimate of this function. We first
introduce Shannon’s Inequality, which states that

∫
log( f(t)

f0(t)
)f0(t)dt ≤ log

∫ f(t)
f0(t)

f0(t)dt. This is a
special case of Jensen’s Inequality, which states that if g is concave then Ef0g(T ) =

∫
g(t)f0(t)dt ≤

g(
∫
tf0(t)) = g(Ef0T ). Shannon’s Inequality comes from letting g(t) = log(t), and noting that g(t)

is concave.

We next define the risk of f as R(f) = −Ef0 log(f(T )). Now, R(f0) − R(f) =
∫

[log(f(t)) −
log(f0(t))]f0(t)dt =

∫
log( f(t)

f0(t)
)f0(t)dt ≤ log

∫ f(t)
f0(t)

f0(t)dt = log
∫
f(t)dt = log(1) = 0, by Shan-

non’s Inequality, implying that R(f) ≥ R(f0) for any f.
Because the risk is minimized at the true density, our intuition is that the kernel density estimate

fn,h best approximating f0 will be the one with the smallest risk: that is, we would like to choose
as bandwidth

h0 = arg min
h
−int log fn,h(T )dF0(T ).

Since the expectation is unknown, this bandwidth is unknown as well. A seemingly natural way to
estimate h0 is to replace the expectation by the empirical mean:

hn,naive = arg min− 1
n

n∑
i=1

log fn,h(Ti).

However, it follows that this maximum is achieved at h = 0, which is clearly not a good bandwidth.
Apparently, estimating the risk of a candidate density estimator fn,h with the empirical risk estimate
is not a good idea: this is due to the fact that fn,h is itself already a function of the data.

Likelihood cross-validation deals with this problem by estimating the conditional risk
∫

log fn,h(T )dF0(T )
by splitting the sample in a training and validation sample, applying the kernel denisty estimator
to the training sample, and estimating its conditional risk only with the validation sample. This
so called cross-validated risk estimate provides now a sensible criteria for bandwidht selection, and
more general, for selection among any set of candidate density estimators such as model-specific
maximum likelihood estimators.
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Data Adaptive Estimation of a Density

Let T1, · · ·, Tn be i.i.d. observations from distribution density f0. Given a kernel K, such as
K(x) = I(−1 ≤ x ≤ 1)/2, we have as candidate density estimators:

fn,h(t) =
1
nh

n∑
i=1

K(
Ti − t

h
)

Let Pn denote the empirical distribution, i.e. the probability distribution which puts probability 1
n on

each Ti, i = 1, · · · , n. Estimators can always be viewed as a function of the empirical distribution Pn.
In particular, the kernel density estimator can be viewed as the following function of the empirical
distribution:

Ψh(Pn) =
∫

1
h
K(

T − t

h
)dPn(T ) = fn,h(t).

Here, we note that for any function h(T )∫
h(T )dPn(T ) =

n∑
i=1

h(Ti)
1
n

=
1
n

n∑
i=1

h(Ti)).

The estimators Pn → Ψh(Pn), indexed by a bandwidth choice h, are candidate density estimators
of f0.

Definition of the cross-validation selector hn

Let Bn ∈ {0, 1}n be a random n-dimensional vector.

Bn(i) =
{

1 Ti is put in validation sample
0 Ti is put in training sample

In other words, {Ti : Bn(i) = 1} is validation sample and {Ti : Bn(i) = 0} is training sample. Let

p =
∑n

i=1Bn(i)
n

denote the proportion of the n observations which are in the validation sample. Let P 0
n,Bn

be
the empirical distribution of training sample, and P 1

n,Bn
be the empirical distribution of validation

sample. The cross-validation selector of h can now be defined as:

hn ≡ argmin
h
EBn

∫
− log[Ψh(P 0

n,Bn
)](T )dP 1

n,Bn
(T )

= argmin
h

1
V

∑
B∈{B:B1,···,BV }

− 1
np

∑
i:Bi=1

log Ψh(P 0
n,Bn

)(Ti)

The idea behind this selector is driven by the fact that

f0 = argmin
f
−
∫

log f(T )dF0(T ) = Ef0 − logf(T )
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where f → −
∫

log f(T )dF0(T ) is called a risk function w.r.t. to the loss function L(T, f) =
− log f(T ). Given the bandwidth selection hn, we estimate f0 with the corresponding kernel density
estimator Ψ̂hn

(Pn), or equivalently,

fn,hn(T ) =
1
nhn

n∑
i=1

K(
Ti − t

hn
)

Some Parametric Models for f0

(1) log(T ) ∼ N(µ, σ2) µ, σ2 unknown, log normal model
(2) T ∼ λ exp(−λT ) λ unknown, exponential model
(3) P (log T ≤ t) = 1

1+e−( t−µ
σ

)
µ, σ unknown, log-logistic model. That is, model (1) assumes that

log T is normally distributed, while model (3) assumes that log T has a logistic distribution.
Models (1) and (3) are very similar, since the maximal difference between a normal density and
corresponding logistic density is smaller than 0.02.

Maximum Likelihood Estimator for Parametric Models

Let x1, · · ·, xn be i.i.d. observations of X ∼ fθ ∈ {fθ : θ ∈ Θ ⊂ RK}. {fθ : θ ∈ Θ ⊂ RK} is the
parametric model, θ = (θ1, · · · θK) is a finite (K) dimensional parameter, and Θ is the parameter
space.

The maximum likelihood estimator is defined as follows:

θn = argmax
θ

1
n

n∑
i=1

log fθ(xi)

If the log-likeihood is a differentiable function of θ at the MLE θn, then θn solves the so called K
score equations:

0 =
∂

∂θj

1
n

n∑
i=1

log fθn+(δ1,···,δK)(xi)|δ=0

=
1
n

n∑
i=1

∂

∂θj
log fθ(xi)|θ=θn

=
1
n

n∑
i=1

∂

∂θj
fθ(xi)|θ=θn

/fθn
(xi)

=
1
n

n∑
i=1

Uj(θn)(xi)

Uj(θ)(x) = ∂
∂θj

log fθ(x), j = 1, · · · ,K. The K-variate function

U(θ)(x) = (U1(θ)(x), · · · , UK(θ)(x))

is called the score function. Newton-Raphson Algorithm
Define H(θ) = (H1(θ), · · · ,HK(θ)), and θ = (θ1, · · · , θK).
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The Newton-Raphson algorithm is an iterative algorithm which aims to solve the K-dimensional
equation H(θ) = 0. For example, in order to solve the score equations 1/n

∑
i U(θ)(Xi) = 0, one

sets H(θ) = 1/n
∑

i U(θ)(Xi). The k-th Newton-Raphson step is defined by:

θk+1 = θk − (
∂

∂θ
H(θ)|θ=θk)−1H(θk)

One starts this algorithm with a choice θ0, and iterates the above equation till convergence.
For example, in the special case that H(θ) = 1/n

∑
i U(θ)(Xi), we have

θk+1 = θk − (
∂

∂θ

1
n

n∑
i=1

U(θ)(xi)|θ=θk)−1 1
n

n∑
i=1

U(θk)(xi)

It is general practice, to modify the NR algorithm for solving equations H(θ) = 0 with the so
called line-search ingredient w.r.t. to a criteria (in the case of score equations, this would be the
log-likelihood) one aims to maximize. Namely, one does not necessarily accept the update θk+1, but
first verifies if the update increases the wished criteria. For example, in the case of solving the score
equations, we do the following: If loglik(θk+1) 6≤ loglik(θk), then take αθk + (1 − α)θk+1 for an α
so that loglik(αθk + (1− α)θk+1) > loglik(θk).

Lecture 4, January 28, 2004
Properties of ML estimators

Nisha Mulakken

X ∼ fθ, θ ⊂ Θ ⊂ RK where θ is (θ1, θ2, ..., θk)

Score function:
U(θ)(X) = d

dθ logfθ(X) = ( d
dθ1

logfθ(X), ..., d
dθk

logfθ(X))t

Property of Score function:
Efθ

(θ)(X) = 0
proof:

Let k = 1∫
U(θ)(X)fθ(X)dx

=
∫

d
dθ fθ(X)dx

fθ(X) fθ(X)dx
=
∫

d
dθfθ(X)dx

= d
dθ

∫
fθ(X)dx

= d
dθ1 = 0

Information Matrix:
I(θ)kxk = Efθ

[U(θ)(X)U(θ)(X)t]

Thus, I(θ)(j, l) = E[Uj(θ)(X)Ul(θ)(X)] = COVfθ
(Uj(θ)(X), Ul(θ)(X))

We also have that I(θ) = −E d
dθU(θ)(X)

This follows from the identity:
Efθ

d
dθj
Ul(θ)(X) = −Efθ

[Uj(θ)(X)Ul(θ)(X)]
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d
dθ [U1(θ)...Uk(θ)]t =


d

dθ1
U1(θ) d

dθ2
U1(θ) · · · d

dθk
U1(θ)

...
...

...
...

d
dθ1

Uk(θ) d
dθ2

Uk(θ) · · · d
dθk

Uk(θ)


In other words:

−Efθ
[ d2

dθjdθl

logfθ(X)] = I(θ)(j, l)

Cramer-Rao Lower Bound for assymptotic variance:

Let θjn be an uniformly unbiased estimator of θj

Eθθjn = θj for all θ ∈ Θ
Then var(θjn) ≥ (I(θ)−1(j, j))/n for any uniformly unbiased estimator. A generalization of this
statement is the following: var(atθn) ≥ atI(θ)−1a, where a>θn ≡ a1θ1n + a2θ2n + ...+ atθtn denotes
a linear combination of the j-specific estimators.

Example estimators:
Consider the parametric family N(µ, σ2). A possible estimator of the true µ is given by µn = 2.
This is not a uniformly unbiased estimator
Another estimator is µn = X = 1

n

∑n
i=1 xi, which is a uniformly unbiased estimator:

Eµ,σ2X = µ under all normal densities fµ,σ2 .
Example:
Consider the exponential family of densities f(x) = λexp(−λx) indexed by λ. Given i.i.d. data
x1, ..., xn, the maximum likelihood estimator of λ is given by λMLE = 1

1
n

∑n

i=1
xi

This is shown as follows: fλ(x) = λexp(−λx)
logfλ(x) = logλ− λx
Uλ(x) = d

dλ logfλ(x) = 1
λ − x

Score Equation∑n
i=1 Uλ(xi) = 0 is solved by λn = 1

x , which is thus the ML estimator

Do we have: Efλ
λn = λ ?

Efλ
( 1

X
) = 1

λ?
Most likely not, since identities such as E1/Y = 1/EY for a given random variable Y are rare.

Most ML estimators (with one well known exception the MLE of µ in the Normal family) are
not unbiased. What we want is for the estimator to be close to the truth. To do this, we want
to minimize the mean squared error (MSE). This means both bias and variance are important to
consider.

MSE(θjn)
= Efθ

(θjn − Eθj)2 + Efθ
(θjn − θj)2

= var(θjn) + bias2(θjn)

Asymptotically Linear Estimator

data: x1, ..., xniid ∼ fθ,n
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An estimator θn is an asymptotically linear estimator with influence curve IC(X|θ) where
Eθ[IC(X|θ)] = 0, and IC(X|θ) = IC1(X|θ), ..., ICk(X|θ) if :
θn − θ = − 1

n

∑n
i=1 IC[xi|θ] + op( 1√

n
)

Definition:
Rn = op( 1√

n
) if

√
nRn → 0 in probability for n converging to infinity.

In general:
Rn = op(a(n)) if Rn

a(n) → 0 in probability for n converging to infinity.

Note: IC(Xi|θ) measures influence of observation Xi on the estimator

Thus,√
n(θn − θ) ∼= 1√

n

∑n
i=1 IC[xi|θ]

By the CLT, this converges to the distribution N(0,Σ = E[IC(X|θ)IC(X|θ)t])
Consequently, the influence curve can be used to estimate Σ and thereby provide confidence intervals
and regions for the unknown parameter vector θ.

Influence curves are very convenient for asymptotic inference of estimators. For example, given
a k-dimensional vector of influence curves corresponding with a set of k estimators, the influence
curve of a (e.g. non-linear) function of this set of estimators is given by the gradient of the function
applied to the influence curves. In particular, the difference of two estimators of two parameters has
as influence curve the difference of the two estimator-specific influence curves.

Given two asymptotically linear estimators, the relative efficiency of these two estimators is given
by the ratio of the variances of their influence curves.

Lecture 5
February 2, 2004
Jessica G. Young

ASYMPTOTICALLY LINEAR ESTIMATORS (CONT’D)

Suppose we have X1, ..., Xn i.i.d observations of X ∼ fθ: θ ∈ Θ ⊂ Rk

θn is an asymptotically linear estimator of θ with influence curve

IC(X|θ) = (IC1(X|θ), ..., ICk(X|θ))

if
√
n(θn − θ) =

1√
n

n∑
i=1

IC(Xi|θ) + op(I)
D=⇒N(0,Σkxk = E[IC(X|θ)IC(X|θ)T ])

We estimate the k × k-covariance matrix Σ by

Σn =
1
n

n∑
i=1

ÎC(Xi)ÎC(Xi)T

where ÎC(Xi) is the estimated influence curve. A typical estimate is the substitution estimate
obtained by replacing θ by θn: ÎC(X) = IC(X|θn).
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Alternatively,

Σn =
1
n

n∑
i=1

[ÎC(Xi)−
1
n

n∑
i=1

ÎC(Xi)][ÎC(Xi)−
1
n

n∑
i=1

ÎC(Xi)]T

The asymptotic 0.95 confidence interval for θj is given by: θjn ± 1.96
√

Σn(j,j)√
n

. That is, the

probability that θj ∈ [θjn − 1.96
√

Σn(j,j)√
n

, θjn + 1.96
√

Σn(j,j)√
n

] −→
n→∞

0.95, which is equivalent with

P [−1.96 <
√
n

(θjn − θj)
Σn(j, j)

< 1.96] −→
n→∞

0.95

As an aside, we can use the complete estimated multivariate limit distribution N(0,Σn) to

construct a simultaneous confidence interval of the type θjn ± δ
√

Σn(j,j)√
n

, wherer δ is chosen so that

the simultaneous probability that θj ∈ θjn ± δ

√
Σn(j,j)√

n
converges to 0.95 for n→∞.

Hypothesis testing =⇒ H0 : θj = θj0

For testing H0 : θj = θj0 , reject if θj0 6∈ θjn ± 1.96
√

Σn(j,j)√
n

Relative Efficiency

Suppose we have θn1, θn2, which are two asymptotically linear estimators of µ ∈ R with influence
curves IC1(X), IC2(X). Let σ2

j = VARICj(X), j = 1, 2.
Then the asymptotic relative efficiency R of the two estimators is defined as

R ≡ var(IC1(X))
var(IC2(X))

=
σ2

1

σ2
2

.

To interpret this relative efficiency, we consider its relation to the width of the confidence intervals
for θ based on these two estimators respectively. The half-width of a 0.95-confidence interval θnj ±
1.96 ∗ σj√

n
based on ICj is given by 1.96 σj√

n
, j = 1, 2. Thus, if one wishes this width to be equal to

ε, then one obtains the following corresponding required sample size:

1.96
σ1√
n1

= ε =⇒ n1(ε) = (1.96
σ1

ε
)2

1.96
σ2√
n2

= ε =⇒ n2(ε) = (1.96
σ2

ε
)2

So the sample size needed to get precision ε will depend on σ1 and σ2. Specifically,

n1(ε)
n2(ε)

=
σ2

1

σ2
2

= R

For example, if R = 3, you would need 3 times the sample size to get the same precision using the
’bad’ versus ’good’ estimator.

Examples of influence curves using standard δ-method:

Example
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x̄ = 1
n

∑n
i=1 xi is an asymptotically linear estimator of µ = EX with IC(X) = (x− µ).

Why is this the influence curve for x̄? Because if we take the average of this function over all
values of X, we get

√
n(x̄− µ); that is we get x̄ minus the parameter it is estimating. Specifically,

√
n(x̄− µ) =

1√
n

n∑
i=1

(xi − µ) =
1√
n

n∑
i=1

IC(Xi|µ) D=⇒
n→∞

N(0, σ2 = var(x− µ));σ2
n =

1
n

n∑
i=1

(xi − x̄)2

Example

X1, . . . , Xn ∼ fλ(x) = λe−λx

λn = 1
X̄

and λ = 1
µ , where µ = EX.

First, we can write λn − λ = f(x̄)− f(µ) ∼= f ′(µ)× (x̄− µ) (Delta method)
The Delta method states that for a given real-valued function f : IR → IR f(x+h)−f(x) ∼= f ′(x)h

if h is small.
This allows us to write f(xn) − f(x) ∼= f ′(x)(xn − x) if xn is close to x. In words, if we

have a function of an estimator minus a function of the parameter it’s estimating, we can always
approximate this difference as the derivative of the function of the parameter (at the true parameter
value) multiplied by the difference between the estimator and the truth.

In our example, λn = f(x̄), λ = f(µ), where f(y) = 1
y . So,

f ′µ(x̄− µ) = − 1
µ2

(x̄− µ) = − 1
µ2

[
1
n

n∑
i=1

(xi − µ)] =
1
n

n∑
i=1

− 1
µ2

(xi − µ)

We have now shown that λn − λ is an empirical mean of i.i.d. random variables 1/µ2(X − µ) in
the first order.

Thus, the influence curve of λn is given by

IC(X|λ) = − 1
µ2

(x− µ) = −λ2(x− 1
λ

)

so, √
n(λn − λ) D=⇒N(0, σ2 = var(IC(X|λ)))

The asymptotic variance of λn can be obtained by:

σ2
n =

1
n

n∑
i=1

IC2(Xi|λn)

=
1
n

n∑
i=1

(λ2
n(xi −

1
λn

))2

=
1
n

n∑
i=1

λ4
n(xi −

1
λn

)2

So λn ± 1.96 σn√
n

is an asymptotic 0.95 confidence interval for λ.
λn is a maximum likelihood estimator and should be efficient so var(λn) should be equal to

I(λ)−1.

What if we want to estimate µ = E(Xk)?
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µn = 1
n

∑n
i=1 x

k
i so IC(X|µ) = xk

i − µ
(this is because, as in the first example, we can write:

√
n(µn − µ) = 1√

n

∑n
i=1(x

k
i − µ)).

So, in general, if µ = E[h(X)], for some h, then µn = 1
n

∑n
i=1 h(xi) is asymptotically linear and

IC(X|µ) = h(x)− µ.

Example

X1, . . . .Xn i.i.d X, σ2 = var(X) = EX2 − (EX)2 = µ2 − (µ1)2 where µj = EXj , j = 1, 2

σ2
n =

1
n

n∑
i=1

(xi − x̄)2 = µ2n − µ2
1n

where

µjn =
1
n

n∑
i=1

xj
i for j = 1, 2

Again by the Delta method,

f(z + h)− f(z) = ḟ(z) · h

=
∂f

∂z1
h1 +

∂f

∂z2
h2 + . . .+

∂f

∂zk
hk

For this example it follows,
f(µ1, µ2) = µ2 − µ2

1

ḟ = (
∂f

∂µ1
,
∂f

∂µ2
) = (−2µ, 1)

We can further write,

µ1n − µ1 =
1
n

n∑
i=1

xi − µ1

µ2n − µ2 =
1
n

n∑
i=1

x2
i − µ2

Thus,

σ2
n − σ2 = f(µ1n, µ2n)− f(µ1, µ2)

= ḟ(µ1n − µ1, µ2n − µ2)
= −2µ1(µ1n − µ1) + (µ2n − µ2)

=
1
n

n∑
i=1

[−2µ1(xi − µ1) + x2
i − µ2]

By the above, σ2
n is an asymptotically linear estimator of σ2 with influence curve IC(X|µ1, µ2) =

−2µ1(x− µ1) + x2 − µ2.
We can then get the variance of σ2 using the techniques illustrated above.

Lecture 6, Sunduz Keles
Xin Zhao, Feb 4,2004

11



1 Censored Data and Model Selection

1.1 Background

Survival data Survival analysis is the collection of statistical procedures for data analysis for
which the outcome variable of interest is time until an event occurs. We have see the following type
of survival data. T1, T2, ...., Tn are i.i.d. observatios of T . T is typically time to occurrence of some
event. Events include death, disease, relapse, recovery. Time≡ Survival time. Event≡ failure

In practice, we may not observe each of the Ti’s. For example, at the end of the study we might
only know that a subject is still alive. That is, the subject’s survival time is right-censored. In
generally, there are three causes for censoring: 1) a person does not experience the event before the
study ends; 2) a person is lost to follow-up during the study period; 3) a person withdraws from
the study because of death or some other reason (e.g., adverse drug reaction, car accident). Note
that the complete survival time interval has been cut off at the right side, although data can also
be left-censored. Most survival data is right-censored. We will consider right-censored data in this
class.

Right censored data structure Observed Data structure: O = (T̃ = min(T,C),∆) We observe
n i.i.d. observations (T̃1,∆1), ...., (T̃n,∆n) of O. We note that the observed data structure is a
function of (T,C). We will denote the marginal distribution functions of T and C with F and G,
respectively.

1.2 Model

Full Data Model: Model for F . is called a full data model.
Censoring Mechanism model: Model for conditional distribution G of C | T is called the censoring
mechanism or conditional censoring distribution.

Note: You can imagine that assumptions on full data model and censoring mechanism have a
tremendous effect on the inference problems that we face.

Example 1, Exponential density Assume that T follows an exponential distribution, and that
C is independent of T with unspecified marginal distribution. We will now compute the likelihood
for one observation:

P (T̃ = t,∆ = 1) = P (T = t, C > t) = P (T = t)P (c > t) = fλ(t)G(t),

where fλ(t) = P (T = t), and G(t) = 1−G(t). Similarly,

P (T̃ = t,∆ = 0) = P (T > t,C = t) = g(t)Sλ(t).

Thus the likelihood for n observations is given by:

L(λ,G | (T̃i,∆i), i = 1, ..., n) = Πn
i=1

[
fλ(T̃i)G(T̃i)

]∆i
[
Sλ(T̃i)g(T̃i)

]1−∆i

.

Thus, the loglikelihood for n observations is given by:

logL(λ,G | (T̃i,∆i), i = 1, ..., n) =
n∑

i=1

∆i log fλ(T̃i)+
n∑

i=1

(1−∆i) log fλ(T̃i)+
n∑

i=1

(1−∆i) log g(T̃i)+
n∑

i=1

∆i logG(T̃i).

12



The goal is to estimate the exponential parameter λ. We need to solve d
dλ logL(λ,G | (T̃i,∆i), i =

1, ..., n) = 0 w.r.t. λ. Recall fλ(T̃i) = λ exp(−λT̃i), Sλ(T̃i) = exp(−λT̃i). Thus, the solution of the

score equations is given by: λn =
∑

i
∆i∑

i
T̃i

.

We also note that the information is given by I(λ) = P (∆=1)
λ2 . Thus, the Cramer-Rao lower

bound is given by: I(λ)−1 = λ2

P (∆=1) . A simple estimate of the information matrix is given by:

i(λn) =
1
n

∑
i ∆i

λn2
.

Example, Histogram regression with uncensored survival data The full data structure
is now X = (T,W ), where W is a vector of baseline covariates. The parameter of interest is the
conditional expectation:

Ψ0 = E[log T |W ], or Ψ0 = E[T |W ].

Suppose that we observe n i.i.d. observations of X.
Construction of histogram regression estimators of Ψ0: Let K be the number of bins. For

each bin, the estimator of the mean survival time is the empirical mean of the survival times with
covariates W in that bin. Give the number of bins k, we have now a defined a histogram regression
estimator of ψ0 which we will denote with Ψk(Pn), k = 1, ....,K.

How do we choose the number of bins? Choose among estimators Ψ1(Pn), .....,Ψk(Pn) ?

Cross-validation. Let L(X,Ψ) = [T − Ψ(w]2. Define Bn ∈ (0, 1}n as an n dimensional random
vector. Let {i : Bn(i) = 1} be the validation sample, and let {i : Bn(i) = 0} be the training sam-
ple. Let P 0

n,Bn
, P 1

n,Bn
be the empirical distributions of the training sample and validation sample,

respectively.
If one would observe X1, . . . , Xn, then a cross-validated conditional risk estimate of the estimator

Pn → Ψk(Pn) is defined as:

θ̂n(1−p)(k) = EBn
[

1
np

∑
i

I(Bn(i) = 1)L(Xi,Ψk(· | P 0
nBn))].

PH 240B Notes For Feb 9th 2004, Srikesh G. Arunajadai

Theorem: Asymptotic Linearity of Maximum Likelihood Estimate (MLE)

Let X1, . . . , Xn be i.i.d sample from the distribution X ∼ fθ0 , θ ∈ Θ ⊂ Rk where Θ is the
parameter space and θ0 denotes the true parameter value.
Let θn be the MLE:

θn = argmaxθ

n∑
i=1

logfθ (x)

The influence curve of θn is given by

I(θ0)
−1
U(θ0)(Xi)

where

I(θ0)(x) = E

[
∂2

∂θ2
logfθ(x)

]∣∣∣∣
θ=θ0

(1)

= E
[
U(θ)(X)U(θ)(X)T

]
(2)

13



is the information matrix of dimension k × k and

U(θ)(X) =
∂

∂θ
logfθ(X)

Under regularity conditions

θn − θ0 =
1
n

n∑
i=1

I(θ0)
−1
U(θ0)(Xi) + op

(
1√
n

)
Hence √

n(θn − θ0)⇒N
(
0,
∑

= I(θ)−1
)

for n→∞: that is, the
√
n-standardized difference θn−θ0 converges in distribution to the normal dis-

tribution with mean zero and variance equal to the variance of the influence curve I(θ0)
−1
U(θ0)(X)

of θn.
Note

E
[
I(θ0)

−1
U(θ0)(X)

] [
I(θ0)

−1
U(θ0)(X)

]T
= I(θ0)

−1
E
[
U(θ0)(X)U(θ0)(X)T

]
I(θ0)

−1 (3)

= I(θ0)
−1
I(θ0)I(θ0)

−1 (4)

= I(θ0)
−1 (5)

Proof

Consistency of θn

0 ≤
∫
log

(
fθ0(x)
fθn(x)

)
dPθ0(x) (6)

0 ≤
∫
log

(
fθ0(x)
fθn

(x)

)
d(Pθ0 − Pn)(x) +

∫
log

(
fθ0(x)
fθn

(x)

)
dPn(x), (7)

where Pθ denotes the probability distribution corresponding with the density fθ so that dPθ(x) =
fθ(x)dλ(x) in the case that fθ denotes a density of Pθ w.r.t. a measure λ.

The function log
(

fθ0 (x)

fθn (X)

)
is not a fixed function of X but a random function of X. Hence we

cannot use the law of large numbers to prove that the first term converges to zero in probability.
However, we can bound the first term by the supremum over the collection of functions {X →
log
(

fθ0 (X)

fθ(X)

)
: θ}, and then employ a uniform law of large numbers, as established in empirical

process theory (e.g., van der Vaart, Wellner, 1996). Also the second term is less then or equal to
zero as it can be written as follows.∫

logfθ0(x)dPn(x)−
∫
logfθn

(x)dPn(x) ≤ 0

as the second integral uses the maximum likelihood estimate. Hence, we have

0 ≤
∫
log

(
fθ0(x)
fθn(x)

)
d(Pθ0 − Pn)(x) +

∫
log

(
fθ0(x)
fθn(x)

)
dPn(x) (8)

0 ≤ Supθ∈Θ

∣∣∣∣∫ log

(
fθ0(x)
fθ(x)

)
d(Pθ0 − Pn)(x)

∣∣∣∣ . (9)
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The latter term can be handled by empirical process theory.
Definition: A class F = {f : x→ R} of real valued functions of X is called a uniform Glivenco-

Catelli (GC) class if

Supf∈F

∣∣∣∣∣ 1n
n∑

i=1

[f(xi)− Ef(x)]

∣∣∣∣∣→ 0

converges in probability to 0 when n→∞
Empirical process theory provides many examples of such classes. Thus if

F ≡
{
x→ log

(
fθ0(x)
fθn(x)

)
: θ ∈ Θ

}
is a GC class then we have shown that

dKL (fθn
, fθ0) ≡

∫
log

fθn
(X)

fθ0(X)
dPθ0(X) → 0

when
n→∞

.
Example Given a function f : R2 → R we define the uniform sectional variation norm as follows

‖ f ‖= Max

[
supX2

∫
|df(∂X1, X2) |, supX1

∫
|df(X1, ∂X2) |,

∫
|f(X1, X2) |

]
.

If there exists a M such that
G = {f : ‖ f ‖v ≤M <∞}

then G is a GC class.
Thus, for example, if each of the functions in F has uniform sectional variation norm bounded by

a universal constantM <∞, then we have proved dKL(fθn
, fθ0) → 0 in probability for n→∞. Since

the L1(Pθ0)-norm ‖fθn
− fθ0‖θ0,1 ≡

∫
| fθn

− fθ0 | (x)dPθ0(x), and L2(Pθ0)-norm ‖fθn
− fθ0‖θ0,2 ≡√∫

(fθn
− fθ0)2dPθ0 can be bounded by the Kullback-Leibler divergence dKL(fθn

, fθ0), under the
condition that fθ0 is uniformly bounded away from zero, the converges in Kullback-Leibler divergence
implies the convergence L1 and L2 norm of fθn to fθ0 . This proves consistency of fθn to fθ0 . In
order to prove consistency of θn to θ0 one needs to be able to write θ as a continuous function of fθ.

Lecture of February 11, 2004, Oliver Bembom

Asymptotic Linearity of the MLE θn

Let X1, ..., Xn be i.i.d. with X ∼ Pθ0 . Let H(θ, P ) ≡ Ep [U(θ)(X)] ∈ IRk, with U(θ)(X) =
d
dθ log fθ(X) ∈ IRk. Then we know:

(1) H(θ0, Pθ0) = Eθ0 [U(θ0)(X)] =
∫

d

dθ0
log fθ0(X)dFθ(X) =

∫ d
dθ0

fθ0(X)
fθ0(X)

fθ0(X)dX

15



=
d

dθ0

∫
fθ0(X)dX =

d

dθ0
1 = 0

(2) H(θn, Pn) =
1
n

n∑
i=1

U(θn)(Xi) =
1
n

n∑
i=1

d

dθn
log fθn

(Xi) =
1
n

[
d

dθn

n∑
i=1

log fθn
(Xi)

]
= 0

where (2) follows since θn is defined as that θ ∈ Θ that maximizes
∑n

i=1 log fθ(Xi). An estimator
that is defined as the solution under the empirical distribution of an equation that holds for the true
θ0 under fθ0 is called an M-estimator. MLE are thus part of this class of M-estimators. The proof
of asymptotic linearity given here applies in fact to any M-estimator.Using (1) and (2), we get

(3) H(θn, Pθ0)−H(θ0, Pθ0) = − [H(θn, Pn)−H(θn, Pθ0)]

We will use a first-order Taylor series expansion for the term on the left, and results from em-
pirical process theory for the term on the right. Since H : IRk → IRk, we review the definition of
the derivative in this setting: We say that g : IRk → IRk is differentiable at a ∈ IRk if there exists a
linear transformation ġ : IRk → IRk such that

lim
x→a

‖g(x)− g(a)− ġ(a)(x− a)‖
‖x− a‖

= 0

where ‖x‖ =
(∑n

i=1 x
2
i

)1/2 is the Euclidean norm. Note that ġ can represented as a k×k matrix.
Note also that this definition implies that

g(x)− g(a) = ġ(a)(x− a) + o(‖x− a‖)

i.e. g(x)− g(a) can be written as a linear approximation plus a remainder term which tends to
0 even when divided by ‖x− a‖.In our case, we have H : IRk → IRk with

d

dθ
H(θ, Pθ0)

∣∣∣∣
θ=θ0

=
d

dθ
EPθ0

[U(θ)(X)]
∣∣∣∣
θ=θ0

= EPθ0

[
d

dθ
U(θ)(X)

]∣∣∣∣
θ=θ0

= −I(θ0)

Using that θ → H(θ, Pθ0) is thus differentiable at θ0 we can write
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H(θn, Pθ0)−H(θ0, Pθ0) =
d

dθ
H(θ, Pθ0)

∣∣∣∣
θ=θ0

(θn−θ0)+o(‖θn−θ0‖) = −I(θ0)(θn−θ0)+o(‖θn−θ0‖)

Substituting this into the left-hand side of (3) and writing out the right-hand side, we get

−I(θ0)(θn − θ0) = − 1
n

n∑
i=1

[
U(θn)(Xi)−

∫
U(θn)(X)dPθ0(X)

]
+ o(‖θn − θ0‖)

Assuming that I−1(θ0) exists, we have that

θn − θ0 = I−1(θ0)

[
1
n

n∑
i=1

[
U(θn)(Xi)−

∫
U(θn)(X)dPθ0(X)

]]
+ o(‖θn − θ0‖)

For the term inside the outer square brackets, we use the following result from empirical process
theory:

If F = {X → U(θ)(X) : θ ∈ Θ} is a so-called Donsker class (this is for example true if ∃M <
∞ such that ∀ θ ∈ Θ : ‖U(θ)‖v ≤M) and

∫
[U(θn)(X)− U(θ0)(X)]2 dPθ0(X) −→ 0 in probability

then

1
n

n∑
i=1

[
U(θn)(Xi)−

∫
U(θn)(X)dPθ0(X)

]
=

1
n

n∑
i=1

[
U(θ0)(Xi)−

∫
U(θ0)(X)dPθ0(X)

]
+op

(
1√
n

)

Note that the proof of consistency of the MLE from last lecture implies the second assumption
of this result. Hence under the assumption that F is a Donsker class, we have

θn − θ0 = I−1(θ0)

[
1
n

n∑
i=1

[
U(θ0)(Xi)−

∫
U(θ0)(X)dPθ0(X)

]]
+ op

(
1√
n

)
+ o(‖θn − θ0‖)

17



=
1
n

n∑
i=1

I−1(θ0)
[
U(θ0)(Xi)− EPθ0

U(θ0)(X)
]
+ op

(
1√
n

)
+ o(‖θn − θ0‖)

=
1
n

n∑
i=1

I−1(θ0)U(θ0)(Xi) + op

(
1√
n

)
+ o(‖θn − θ0‖)

In order to prove asymptotic linearity of the MLE, we need to show that the last term o(‖θn−θ0‖)
is also op

(
1√
n

)
. Note that the above implies that

θn − θ0 = Op

(
1√
n

)
+ op

(
1√
n

)
+ o(‖θn − θ0‖) = Op

(
1√
n

)
+ o(‖θn − θ0‖)

since the asymptotic normal distribution of

√
n

[
1
n

n∑
i=1

I−1(θ0)U(θ0)(Xi)

]

is bounded in probability. This implies that

θn − θ0 = Op

(
1√
n

)

and hence that

o(‖θn − θ0‖) = op

(
1√
n

)

Thus we have proved that

θn − θ0 =
1
n

n∑
i=1

I−1(θ0)U(θ0)(Xi) + op

(
1√
n

)

Hence the MLE is asymptotically linear with influence curve given by
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IC(X) = I−1(θ0)U(θ0)(X)

Explanation of op and Op notation

1. We say that a sequence of real numbers f(n) is o(1) if limn→∞f(n) = 0, i.e. if

∀ ε > 0 ∃N : ∀n ≥ N |f(n)| < ε

We say that a sequence of real numbers f(n) is o (g(n)) if the sequence f(n)
g(n) is o(1).

2. We say that a sequence of real numbers f(n) is O(1) if f(n) is bounded, i.e. if

∃M <∞ : ∀n |f(n)| ≤M

We say that a sequence of real numbers f(n) is O (g(n)) if the sequence f(n)
g(n) is O(1).

3. We say that a sequence of random variables R(n) is op(1) if R(n) tends to 0 in probability as
n→∞, i.e. if

∀ δ ∀ ε ∃N : ∀ n ≥ N P (|R(n)| > ε) < δ

A sequence of random variables R(n) is op (h(n)) if the sequence R(n)
h(n) is op(1).

4. We say that a sequence of random variables R(n) is Op(1) if it is bounded in probability, i.e.
if

lim sup
n

P (|R(n)| > M) → 0 as M →∞

We say that a sequence of random variables R(n) is Op (h(n)) if the sequence R(n)
h(n) is Op(1).
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Simultaneous confidence regions for θ0

Definition: Let A = QΛQT be the spectral decomposition of an n × n matrix A (Q is orthonor-
mal and Λ diagonal). Then define the square-root of A as

A
1
2 = QΛ

1
2QT

Note:

A
1
2A

1
2 = QΛ

1
2QTQΛ

1
2QT = QΛ

1
2 Λ

1
2QT = QΛQT = A

Suppose
√
n(θn − θ0) =⇒ N(0,Σ) in distribution. This implies that

√
n(θn − θ0)
σn

=⇒ N(0, ρ) in distribution

where σn is an estimate of
√

Σ(j, j) for j = 1, ..., n, and ρ is the correlation matrix corresponding
to Σ. Let ρ−

1
2 be the square-root of ρ−1. Then

ρ−
1
2

(√
(n)(θn − θ0)

σn

)
=⇒ N(0, I) in distribution

Proof: Let Z be a random n-vector with covariance matrix Σ and A be an n× n matrix of real
numbers. Then

cov(AZ) = E
[
AZZT AT

]
= AΣAT

In particular, if Z ∼ N(0, ρ) then AZ ∼ N(0,AρAT ). For A = ρ−
1
2 we get

cov(ρ−
1
2 Z) = ρ−

1
2 ρ(ρ−

1
2 )T = ρ−

1
2 ρ

1
2 ρ

1
2 ρ−

1
2 = I

Thus ρ−
1
2 Z ∼ N(0, I).

Class Notes: February 18, 2004, Merrill Birkner
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X1, . . . , Xn i.i.d. X ∼ fθ0 θ0 ∈ θ ⊂ Rk

√
n(θn − θ0) = 1√

n

∑n
i=1 IC(Xi|θ0) + op(1) D⇒ N(0,Σ0 = E[IC(X|θ0)IC(X|θ0)T ])

√
n(θn−θ0)

σn

D⇒ N(0, ρ0 = correlation(Σ)) where σn = ˆvar(IC(X|θ0))

The above is a standardization, by dividing by the standard error.
Elliptical Confidence Region
Let ρ−1

0 be the inverse of ρ0

Let ρ−1
0 = TDTT be the eigenvalue decomposition:

where T is a matrix of eigenvectors and D is a diagonal matrix.
Define ρ−1/2

0 = T
√
DT

** It is the square root of ρ−1
0 . Then, ρ−1/2

0 (
√

n(θn−θ0)
σn

) D⇒ N(0, I). This implies that:

Pr(||ρ−1/2
0 ( sqrtn(θn−θ0)

σn
)||2 ≤ X 2

k,0.95) → 0.95,
where X 2

k,0.95 is the 0.95 quantile of a X 2
k .

**and the Euclidian norm is defined as follows: ||x|| =
√∑k

j=1 x
2
j

Rectangular 0.95 Confidence Region
After standardization, we are looking for a constant a such that:
Pr(Maxj |

√
n(θn−θ0)

σn
| < a) n→∞→ 0.95. Then, Pr(θ0j ∈ (θnj ± aσnj√

n
)∀j = 1...k) → 0.95.

Therefore, components with large standard errors will have wider confidence intervals.
Thus,
θ : θj ∈ (θnj ± aσnj√

n
), j = 1...k → 0.95.

This is a 0.95 Confidence Region for θ0
How can we get this? We can simulate from N(0, ρ0) distribution:
By Simulation:
Choose a equal to the 0.95 quantile (q0.95) of the E ≡Maxj=1..k|Wj |, where W ∼ N(0, ρ0)
Simulate 20,000 vectors (size k) from N(0, ρ0)
Take the maximum value of each vector; therefore you end up with 20,000 maximum values.
Now you want to take the 0.95 quantile of this vector, length 20,000, of maximums.
We can do this by:

1. Simulate N=20,000 ~W1, ~W2, ..., ~WN ∼ N(0, ρ0)

2. Create N: E1 = Maxj |W1j |, E2 = Maxj |W2j |, ...EN = Maxj |WNj |

3. Compute 0.95 quantile of E1....EN . This is q0.95

How to Simulate from a MVN distribution.
Simulating from N(0, ρ0). Let U be such that UTU = ρ0. U can be chosen to be equal to the

Choleski decomposition.
**Note: In R (chol(ρ0))
Then UZ ∼ N(0, UUT = ρ0) where Z ∼ N(0, I)

An Application:
Suppose you want to find the confidence region of a survival function with probability 0.95. You
want a simultaneous confidence region. With probability 0.95 you want the entire survival curve in
that ’envelope’
Example: T1, ....., Tn i.i.d. T ∼ f0
S0(t) = P (T > t)
Let θ0 = (S0(t1)....S0(tk)) be the parameter vector of interest.
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How to estimate this?
θn = (S0(t1)....S0(tk)) where Sn(t) = 1

n

∑n
i=1 I(Ti > t)

θn − θ0 = 1
n

∑n
i=1 IC(Ti|θ0)

where IC(T |θ0) = [I(T > t1)− S0(t1), .....I(T > tk)− S0(tk)]T

note: the vector IC has no remainder.
Thus:

√
n(θn − θ0)

D⇒ N(0,Σ0 = E[IC(T |θ0)IC(T |θ0)T ])
How to estimate the influence curve? First, estimate the influence curve: ˆIC(T ) = IC(T |θn).
Σn = 1

n

∑n
i=1

ˆIC(Ti) ˆIC(Ti)T .
Remember that: IC(T |θn) = [I(T > t1)− S0(t1), .....I(T > tk)− S0(tk)]T For every person you

are going to create an IC vector and take a sample standard covariance (Σn)
Then you will plot θn: the survival curve.
To find the cut-off a we need to standardize (and therefore work with a common cut-off)
ρ0n= correlation matrix corresponding to Σn

thus,
√

n(θn−θ0)
σn

∼ N(0, ρ0n) where σ2
n = var( ˆIC(T )) or the diagonal of Σn

In order to find the constant, we need the 0.95 quantile (q̂0.95) of:
Maxj |Wj | where W ∼ N(0, ρ0n)

We then want to use the Cholesky decomposition of ρ0n (described earlier in notes)
UZ ∼ N(0, ρ0n): we want to find U

You will come up with a number for a. For example q̂0.95 = 3
In a point wise calculation, this value would be equal to 1.96 (since that is the 0.95 quantile of a
N(0,I).

Thus, θnj ± q̂0.95
σnj√

n
is a simultaneous confidence region. (j=1...k)

One can plot the survival function (Survival versus Time) and then plot the simultaneous confidence
’envelope’ around the estimated survival function (θn or Sn). The confidence region should be closer
to θn on the two extremes of the plot and further away in the middle of the survival function. Since
it is Bernoulli, it will not be equally placed and therefore thinner on the ends. The survival curve
will lay in the envelope with probability 0.95.

Lecture 14, Kathryn Steiger, February 27, 2004.

General Approach for Construction of an Estimator

Our Model

We observe X1, . . . , Xn i.i.d. observations of X ∼ P ∈M.
The parameter of interest is a function of the actual distribution of the data. In other words, a

parameter of the distribution of the data mapped from the model to the outcome space.
θ ◦M → D (e.g., D might be the euclidean space)
So in particular, we can ask – what is the parameter value of the Truth?

θ0 = θ(P0) (10)

But we already have a mapping from the data generating distribution to the truth so we can use
the empirical distribution.

Let Pn be the empirical distribution. Let φ be a mapping defined on any P, in particular Pn s.t.

φ(P ) = θ(p), P ∈M

22



We wish to find an extension of that parameter s.t. it applies to the empirical distribution. Now
we can estimate θ0 with substitution estimator

θn = φ(Pn) (11)

Example

Suppose X ∼ fθ0 , θ0 ∈ Θ ⊂ IRK . For model identifiability, let θ0 be a parameter of interest of fθ0 .
Define θ(P ) = arg maxθ∈Θ

∫
Logfθ(x)dP (x).

Note: if we plug in

φ(Pθ0) = arg min
θ∈Θ

∫
Logfθ(x)dPθ0(x) (12)

this goes to fθ0 = Θ0 (Recall P (A) = P (X ∈ A) =
∫
A f(x)dx)

We can also apply to the empirical

φ(Pn) = arg max
θ∈Θ

1
n

n∑
i=1

Logfθ(Xi) (13)

Log Likelihood – Maximum Likelihood

There are usually many possible phi’s outside of the model. The moment we put P into the model
it’s just the mean.

Example

X ∼ P0 ∈M. θ(P0) = EP0φ(P ) =
∫
xdP (x), θn = φ(Pn) =

∫
X dPn(x), θn = X̄.

Right Censored Data: Kaplan-Meier as a substitute estimator

We observe:

Oi = (min(T,W )),∆i = I(T ≤ C)); T⊥C, T̃ ∼ F0, C ∼ G0 (14)

We wish to estimate:

θ0 = S0(t) = 1− F0(t) (15)

We want to find a φ s.t. if applied to the data we get back the survival function.

φ(PF0,G0) = S0(t) (16)

[Question: Is this a parameter at this point? – No – that would be true only in the Full data
model. Here we have Right Censored data.]

We start with the following:

S0(t) =
∏

s∈(0,t)

(
1− P (T ∈ [s, s+ ds])
P (T ≥ s, C ≥ s)

)
By : C⊥T
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S0(t) =
∏

s∈(0,t)

(
1− P (T ∈ [s, s+ ds], C ≥ s), c ≥ s

P (T ≥ s, c ≥ s)

)

S0(t) =
∏

s∈(0,t)

(
1− PF0G0(T̃ ∈ [s, s+ ds],∆ = 1),

PF0G0(T̃ ≥ s)

)
Now we have written the survival function in terms of the observed data. Next we plug in the
empirical by defining some subdistributions.

P1(t) = P (T̃ ≤ t,∆ = 1)
P0(t) = P (T̃ ≤ t,∆ = 0)

So we have:

S0(t) =
∏

s∈(0,t)

(
1− P1(ds)

1− [(P0 + P1)(s)]

)
S0(t) = φ(P0, P1)

Survival function as φ of distribution of the data.

P1n(t) =
1
n

n∑
i=1

I(T̃i ≤ t,∆i = 1)

P0n
(t) =

1
n

n∑
i=1

I(T̃i ≤ t,∆i = 0)

Now our estimator is :

Sn(t) = φ(P0n
, P1n

)

Sn(t) =
∏

s(0,t)

(
1− [ 1

n

∑n
i=1 I(T̃i = s,∆i = 1)]

1
n

∑n
i=1 I(T̃i ≥ s)

)

Sn(t) =
∏

{j:tj≤t}

(
1− [ 1

n

∑n
i=1 I(T̃j = tj ,∆i = 1]∑n
i=1 I(T̃i ≥ tj)

)

Sn(t) =
∏

{j:tj≤t}

(
1− dj

nj

)
This is the Kaplan-Meier estimator.

For any such 2 distributions – any distribution of the data can be indexed. So the unnivari-
ate Right-censored data model is a nonn-parametric model. Whenever a model is locally nonn-
parametric, any consistent estimator is asymptotically efficient.

Another estimator uses the general trick - inverse probability censored data mapping (IPCD).

S0(t) = E0 I(T ≤ t) = E0
I(T̃ ≤ t)∆
Ḡ0(T̃ )

Ḡ0(T ) = 1−G0 = P (C > t)

S0(t) =
1
n

∑n
i+1 I(T̃i ≤ t)

ḠKM (T̃i)
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ḠKM is Kaplan-Meier estimator based on T̃i, (1−∆i), i = 1, . . . , n.
IPCD will be discussed further next lecture.

Raul Aguilar Schall

General approach for constructing an estimator

Consider the following Observations

Oi = (min(Ti, Ci),∆i = I(Ti ≤ Ci),Wi) i = 1, . . . , n i.i.d.

Full data: T̃i = min(Ti, Ci)
Xi = (Ti,Wi) i = 1, . . . , n
(T,W ) ∼ Fx

C | X ∼ G(· | X) ≡ P (C ≤ · | X)
O ≡ PFx,G

Now, the parameter of interest is ϕ0 = E[T |W ] or equivalent E[log T |W ]

Coarsening at random on the censoring mechanism:T⊥C |W

Set k : # of bins. From previous results we have

ϕk(w | ln) =
k∑

n=1

{
I(w in hth bin)∑n

i=1 I(wi in hth bin)

[
n∑

i=1

I(w in hth bin)Ti

]}

Notice that if k = 1 then the previous equation reduces to 1
n

∑n
i=1 Ti

There is a problem with the used model. It only considers observed dat and acctually that is not
the case we want to approach, since we also have censored data. It turns out that we do not have
an estimator if we want to do histogram regression.

Assume for a second that we do have such estimators and want to choose among them using
crossvalidation as we did before.

Choosing among estimators .
Consider the following set up
ϕ1(· | Pn), . . . , ϕk(· | Pn) 1, . . . , k bins
L(X | ϕ) = [T − ϕ(w)]2

θ(k) = EFX
L(X | ϕ)

Bn ∈ {0, 1}n random vector
i : Bn(i) = 1 validation sample
i : Bn(i) = 0 training sample

P 0
n,Bn

, p1
n,Bn
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The estimators would be of the form

θ̂n(1−p)(k) = EBn

[
1
np

n∑
i=1

I(Bn(i) = 1)L(Xi, ϕk(· | P 0
n,Bn

))

]

L
(
Xi, ϕk(· | P 0

n,Bn
)
)

=
[
Ti − ϕk(wi, P

0
n,bn

)
]2

This does not work for censoring data because the equation needs all Ti, which we don’t observe.
The problems arrise within the Loss function.

Consider the following set up
X1, . . . , Xn i.i.d. X ∼ Fx

Then µ ≡ µ(Fx) and η ≡ η(Fx)

Definition: D(X | µη)
EFxD(X | µ(Fx), η(Fx)) = 0

Then the estimating equation looks like:
1
n

∑n
i=1D(Xi | µη̂) = 0 ⇒ µ̂

example 1 :
T1, . . . , Tn T ∼ FX i.i.d.
µ = S(t) = P (T > t)
D(X | µ) = I(T > t)− µ

this is the estimating function we are claiming and it clearly depends on the observed values and
the parameter of interest. Now we need to prove that its expected value equals zero

EFX
D(X | µ) = E[I(T t)− µ]

= E[I(T t)]− µ

= P (T t)− µ

= 0

example 2 :
µ = E[T ]
D(X | µ) = T − µ

EFX
D(X | µ) = E[T ]− E[µ]

= µ− µ

= 0

Thus, µ̂ = 1
n

∑n
i=1 Ti .
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D(X | µ) is known as the full data estimating function.

Now let us move to right censored data
Observed data : O1, . . . , On i.i.d Oi ≡ T̃i = min(Ti, Ci)
∆1, . . . ,∆n ∆i = I(Ti ≤ Ci)
T ∼ FX

C ∼ G
O ∼ PFX ,G

µ = I(T > t)
G(· | X) = P (C > · | X)D(X | µ) = I(T > t)− µ

Inverse probability of censoring weighted mapping (IPCW mapping) D(X | µ) = I(T t)−
µ

IC(O | D,µ,G) = D(X|µ)·∆
G(T |X)

which is the observed data estimating function

This estimating function equals zero if censoring occured, and, it equals D(X | µ)/Ḡ(T | X) if
censoring did not occur.

Now we have to see if this estimating function has E[IC] = 0 under the true distribution of the
data

EPFX ,G
IC(O | D,µ,G) = EPFX ,G

[
D(X | µ) ·∆
G(T | X)

]
= EFX

[
EG

[
D(X | µ) ·∆
G(T | X)

|X
]]

= EFX

[
D(X | µ) ·∆
G(T | X)

E(∆ | X)
]

Notice E(∆ | X) = 0 · P (∆ = 0 | X) + 1 · P (∆ = 1 | X)
= P (C ≥ T | X) = G(T | X)

Thus the last term of the previous expectation reduces to EFX
[D(X | µ)] = 0. One regularity

condition we need for all the previous work is

G(· | X) > δ > 0 in the support of X.

Now, obtaining an estimator for G(T | X) we get the following

1
n

n∑
i=1

[I(Ti > t)− µ]∆i

Gn(Ti | X)
= 0

we will get a consistent estimator as long as we get a consistent estimator Gn.

The new histogram regression estimator for censored data looks like

ϕk(w | Pn) =
k∑

n=1

{
I(w in hth bin)∑n

i=1 I(wi in hth bin)

[
n∑

i=1

I(w in hth bin) · Ti ·∆i

Gn(Ti | X)

]}
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ϕ0 = E [T | wε[wi, wi+1]]
D(X) = I(wε[wi, wi+1])T − ϕ0

E[D(X)] = E[I(wε[wi, wi+1])T ]− ϕ0

= E[T | wε[wi, wi+1]]− ϕ0

= 0

The questions that arrieses naturally is if we can get a cross-valitadion risk estimator with cen-
sored data. In order to do so, we need to find a new Loss function.
Remember that L(X,ϕ) = [T − ϕ(w)]2 is the full data Loss function. Now we need the correspond-
ing to the observed data

IC(O | G,L(·, ϕ)) = L(X,ϕ)∆

G(T |X)

Then

θ̂n(1−p)(k) = EBn

[
1
np

n∑
i=1

I(Bn(i) = 1)
L(Xi, ϕk(· | P 0

n,Bn
))∆i

Gn(Ti | Xi)

]

notice that this new cross-validation risk depends again on G.

Lecture Notes
February 23, 2004

Scribe: Ritu Roydasgupta

Let X1, X2, ..., Xn be i.i.d. observations having distribution fθ where θ ∈ Θ ⊂ RK

H0 : θ = θ0

I. Likelihood Ratio Test:

Ln(θ) = L(θ|X1, X2, ..., Xn) =
n∏

i=1

fθ(Xi) =
argmax

θ ∈ Θ
n∑

i=1

log fθ(Xi)

Let θn be the maximum likelihood estimator for this parametric model.
Then the test statistic is given by

−2 log
Ln(θ0)
Ln(θn)

= 2[logLn(θn)− logLn(θ0)]

Under regularity conditions,

−2 log
Ln(θ0)
Ln(θn)

H0∼ χ2
K

Proof:
Second order Taylor series expansion is given by

f(x) = f(x0) +
d

dx
f(x)|x=x0(x− x0) + (x− x0)

t d
2

dx2
f(x)|x=x0(x− x0)
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where f : RK→R
We apply this to f(θ) = log Ln(θ) with x⇔ θ0, x0 ⇔ θn. Thus,

log Ln(θ0)− log Ln(θn) =
d

dθ
log Ln(θ)|θ=θn

(θ0 − θn) +
√
n(θ0 − θn)t

d2

dθ2 log Ln(θ)|θ=θn

2n
√
n(θ0 − θn)

= 0 −
√
n(θ0 − θn)t

I(θ0)
√
n(θ0 − θn)/2 D= − χ2

K / 2,

since − 1
n

d2

dθ2
log Ln(θ)|θ=θn

is an estimate of I(θ0),

ZK×1 ∼ N(0K×1,
∑

K×K

) so that Zt
−1∑

Z ∼ χ2
K and

√
n(θ0 − θn) = I(θ0)

II. Score Test:
1√
n

n∑
i=1

U(θ0)(Xi)
H0∼ N(0, I(θ0))

U(θ)(X) =
d

dθ
log fθ(X)

so that [
1√
n

n∑
i=1

U(θ0)(Xi)

]t

I−1(θ0)

[
1√
n

n∑
i=1

U(θ0)(Xi)

]
H0: θ=θ0∼ χ2

K

III. Chi Square Test:
√
n(θ0 − θn)t

I(θ0)
√
n(θ0 − θn) H0: θ=θ0∼ χ2

K

as
√
n(θ0 − θn) H0∼ N(0, I−1(θ0))

We could use I(θn) or another estimate of I(θ) (the true information matrix).

E.g.: H0 : P = P0

Test Statistic usually used √
n(P̂ − P0)
P0(1− P0)

∼ N(0, 1)

estimates standard error incorrectly.
Test Statistic √

n(P̂ − P0)
P̂ (1− P̂ )

estimates standard error correctly.
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Which has more power ?

Right Censored Data

Let T1, T2, ..., Tn be i.i.d. observations of T ∼ F0 (cdf) and censoring times C1, C2, ..., Cn be i.i.d.
observations of C ∼ G0

F0(t) = P (T≤t)
S0(t) = 1 − F0(t)
G0(t) = P (C≤t)
G0(t) = 1 − G0(t)

Only assumption: C and T are independent.
We are interested in estimating S0.
We observe that (

T̃i = min(Ti, Ci),∆i = I(Ti≤Ci)
)
∼ PF0,G0 , i = 1, 2, ..., n

That is, distribution of (T̃ ,∆) is indexed by F0, G0

This is a semi-parametric model as there are some assumptions like C and T are independent but
F0 and G0 can be any cdfs.

PF,G(t,∆ = 1) = P (T̃ = t,∆ = 1) = P (T = t, T≤c) = P (T = t, C > t) = dF (t)G(t−)

PF,G(t,∆ = 0) = P (T̃ = t,∆ = 0) = P (C = t, T > t) = dG(t)S(t)

Likelihood:

L(F,G|(T̃i,∆i); i = 1, 2, ..., n) =
n∏

i=1

PF,G(T̃i,∆i)

=
n∏

i=1

[
dF (T̃i)G(T̃i)

]∆i
[
S(T̃i)dG(T̃i)

]1−∆i

=
n∏

i=1

[
dF (T̃i)

∆i

S(T̃i)
1−∆i

] n∏
i=1

[
G(T̃i)

∆i

dG(T̃i)
1−∆i

]
This is the factorization of likelihood into relevant F-part and irrelevant G-part.

log L(F,G|(T̃i,∆i), i = 1, 2, ..., n) =
n∑

i=1

∆ilog dF (T̃i) +
n∑

i=1

(1−∆i)log S(T̃i) + G− part

Maximization of F does not depend on G-part.
Relevant log likelihood is given by the function

ln(F ) =
n∑

i=1

∆ilog dF (T̃i) +
n∑

i=1

(1−∆i)log S(T̃i)
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Let the non-parametric maximum likelihood estimate,

NPMLE = Fn ≡
argmax

F ln(F ),

F is any cdf. Can we calculate this in closed form ?

Step 1: Show that F → ln(F ) is maximized at a discrete F with support t1 < t2 < ... < tm, m≤n,
where the tj ′s are the distinct observed failure times.

Step 2:
dF (T̃i) ≡ dΛ(T̃i)S(T̃i−)

Re-parameterize ln(F ) in terms of hazard function:
The number of failures at tj is given by

dj =
n∑

i=1

I(T̃i = tj)∆i

dF (t̃i) = dΛ(t̃i)S(t̃i−)

S(t) =
∏

s in (0,t]

(1− d∆(s))

So,

ln(F ) = ln(λ1, λ2, ..., λm)

=
n∑

i=1

∆ilog dF (T̃i) +
n∑

i=1

(1−∆i)log S(T̃i−)

=
n∑

i=1

∆ilog(dΛ(T̃i)S(T̃i−)) +
n∑

i=1

(1−∆i)log S(T̃i−)

=
n∑

i=1

∆ilog(dΛ(T̃i)) +
n∑

i=1

∆ilog(S(T̃i−)) +
n∑

i=1

log S(T̃i−) −
n∑

i=1

∆ilog S(T̃i−)

=
n∑

i=1

∆ilog(dΛ(T̃i)) +
n∑

i=1

log S(T̃i−)

=
m∑

j=1

dj logλj +
n∑

i=1

log

 ∏
{j:tj<T̃i}

(1− d∆(tj))


=

m∑
j=1

dj logλj +
n∑

i=1

∑
{j:tj<T̃i}

log(1− λj)

Let ~λn = (λ1n, λ2n, ..., λmn) be the set of λ’s that gives the maximum of ln(λ1, λ2, ..., λm).

d

dλk
l(λ1, λ2, ..., λm) = 0
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⇒ d

dλk

 m∑
j=1

dj logλj +
n∑

i=1

∑
j:tj<T̃i

log(1− λj)

 = 0

⇒ dk

λk
− 1

1− λk

n∑
i=1

I(T̃i > tk) = 0

⇒ dk

λk
=

1
1− λk

n∑
i=1

I(T̃i > tk)

⇒ 1
λk

− 1 =
1
dk

n∑
i=1

I(T̃i > tk)

⇒ 1
λk

=
1
dk

n∑
i=1

I(T̃i > tk) +
dk

dk

⇒ λkn =
dk

dk +
∑n

i=1 I(T̃i > tk)
, k = 1, 2, ...,m

This is the MLE of ln(λ1, λ2, ..., λm).
Class Notes: February 25, 2004

(T̃i = min(Ti, Ci),4i = I(Ti ≤ Ci)) i=1. . . n
T ∼ Fo

So(t) = 1− Fo(t) = P (T > t)

Log likelihood:
ln(F ) =

∑n
i=1 log[dF (T̃i)]4i + log(S(T̃i)(1−4i)

F is discrete on ti < . . . < tn, these represent failure times
dF (T̃i) = S(T̃−i )λ(T̃i), *every F has a corresponding hazard*

Note:

λ(t) =
dF (t)
S(t)

=

{
0 if t ∈ {ti, . . . , tn}
dF (t)

S(t−
j

)
if t = tj

dF (T̃i) = S(T̃−i )λ(T̃i) = Π(1− λj)
S(t) = Π(1− dΛ(s)), from before

Thus, we have
ln(F ) =

∑n
i=1 log(λ(T̃i))4i + log[Π(1− λi){j:tj<T̃j}

=
∑m

j=1 log(λj)dj +
∑n

i=1

∑
j:tj<T̃j

log(1− λj)
= ln(λ1 . . . λm)

We can find the maximum likelihood estimator by maximizing:
(λ1 . . . λm) → ln(λ1 . . . λm)

Setting d
dλj

ln(λ1 . . . λm) = 0 j = 1 to m
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give us the closed form solutions (score equations)

λjn = dj

dj+
∑m

i=1
I(T̃i>tj)

= dj

nj

represents number of people at risk at time tj

The corresponding MLE of So(t): Sn(t) = Πj:tj≤t(1− λjn) = Πj:tj≤t(1− dj

nj
)

- the Kaplan-Meier estimate

Use Greenwoods Formula to find estimate of variance -
Derivation uses the delta-method:

Working model: F is discrete on fixed points t1 < . . . < tm
λn = (λ1n . . . λmn) is the MLE of λ in this parametric model

Sn(t) = Πj:tj<t(1− λjn) = g(λn)
Sn(t) = Πj:tj<t(1− λjo) = g(λo)

Delta-method - use Taylor expansion:
Sn(t)− So(t) = g(λn)− g(λo) = a(λo)T (λn − λo)m×1

a(λo) = gradient of g at λo

a(λo)T = d
dλ1

g(λ), . . . , d
dλm

g(λ)|λ=λo

In this working model:
√
n(λn − λo) → N(0, I(λo)−1)

Now use: var a(λo)T (
√
n(λn − λo))

= a(λo)T I(λo)−1a(λo)

So, var
√
n(Sn(t)− So(t)) ≈ a(λo)T I(λo)−1a(λo)

–Greenwood’s Formula–

Note: We needed the gradient and the information matrix.
Step 1: Find a(λo)T

Step 2: Find I(λo)
log P (T̃ = t,4 = δ) = log (dΛ(t))δ+ log S(t−)
=
∑m

j=1 I(t = tj) log (λj)δ +
∑

j:tj<t log (1− λj)
Another derivative or cov of scores gives the information matrix.

Note: the information matrix is diagonal, all cross derivatives are 0. i.e. d
dλ1

d
λ2

= 0

Uj(λ) = d
dλj

log Pλ(T̃ ,4) = I(T̃=tj)4
λj

+ I(T̃>tj)
1−λj

. Additionally, for j6=k d2

dλjdλk
log Pλ(T̃ ,4) = 0.

Ijj(λ) = −E( d
dλj

Uj(λ)(T̃ ,4)) = E( I(T̃=tj)4
λ2

j

+ I(T̃>tj)
(1−λj)2

)

Thus, I(λ) = diag (I11(λ) . . . Imm(λ))
or I−1 = 1

diags , i.e. inverse of each diagonal element
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dg
dλj

= −I(tj ≤ t) S(t)
1−λj

Gradient,
a(λo)T = −(I(t1 ≤ t) S(t)

1−λ1
, . . . , I(tm ≤ t) S(t)

1−λm
)

Some algebra gives,
σ2 = S2(t)

∑
tj≤t I

−1
jj (λo) 1

(1−λoj)2

To estimate σ2 use Kaplan-Meier,
σ̂2 = n2(Sn(t)2)

∑
tj≤t

dj

nj(nj−dj)

var Sn(t) ≈ nSn(t)
∑

tj≤t
dj

nj(nj−dj)

This suggests that C.I.’s will be ’wider at the tails’.

C.I. = Sn(t)± 1.96 σ̂√
n

is aymptotic 0.95 C.I. for So(t)

Need Influence Curve to get simultaneous C.I.’s
- more about this next time!

Locally efficient estimation when death is reported with
delay, Alan Hubbard

March 3, 2004
Notes by Kelly Moore

Description

CDC and California State Office of AIDS collect data on date of AIDS diagnosis. This data set is
cross-referenced with hospital registry data on mortality. The result is data with some
demographic variables, a little direct health information (CD4 count for some) and date of death
for some subjects. Goal: Want to estimate survival by cohorts (year of diagnosis) to see trends in
survival over time.

Data Structure

• Let T be the failure time of interest, e.g., time from AIDS diagnosis to death.

• Let C be censoring time, e.g., time from AIDS diagnosis to date of data collection.

• Let V be the time of failure reporting, e.g., time at which death of subject is reported.

• Let X(u) = [W,R(u), R(u) ∗ I(T ≤ t)], where R(u) = I(V ≤ u) and W is a vector of baseline
covariates.

• µ = F (t) = P (T ≤ t).

• Full Data is: X̄(V )

• Observed Data is: Y = (T̃ = min(V,C),∆ = I(T̃ = V ), X̄(T̃ ))
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• Note, this is the same as the right-censoring data structure already discussed in class.

Ignoring Delay

If one ignores delay and treats the time of analysis as the censoring time say by performing
Kaplan-Meier on the data:
Y = (T̃ = min(T,C),∆ = I(T̃ = T ))
then some subjects will be treated as if T > C when in fact, V > C and T < C.
Thus, the Kaplan-Meier estimator for F (t) = I(T ≤ t) will be biased low (or S(t) biased high).

Assumptions

There are 2 assumptions on censoring for the estimators:
1) G(c|X) ≡ P (C < c|X) = G(c|W )
2) I(T≤t)

Ḡ(V |W )
> 0

FX almost everywhere, where Ḡ(c|W ) ≡ P (C ≥ c|W )
The second assumption implies that, given V, there has to be positive probability C > V if
I(T ≤ t).

Simple estimator in case of no covariates (W)

The nonparametric full-data estimating equation is: I(T ≤ t)− µ
Use the same, old IPCW trick:

E

(
I(T ≤ t)∆

Ḡ(T̃ |X)

)
= F (t)

In this case E[∆|X] = P (C ≥ V |X) = Ḡ(V )

IPCW Estimator

This leads to the following estimator:

Fn(t) =
1
n

n∑
i=1

I(Ti ≤ t)∆i

Ḡn(T̃i)
(∗)

where Ḡn(T̃i) is the Kaplan-Meier estimator of the censoring distribution based on n observations
of:

(T̃ = min((V,C), 1−∆))

and V now plays the role of the censoring variable.
If there is no delay (so V = T ), then (∗) reduces to the Kaplan-Meier estimator.
Like the Kaplan-Meier estimator, this IPCW estimator (in absence of covariates) is efficient.
Heuristic proof is that if G is estimated efficiently assuming only CAR, then the IPCW estimator
is efficient.
In this case, the Kaplan-Meier is the NPMLE estimator of censoring assumes only
CAR[G(c|X) = G(c)].
More detailed proof in paper.
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Inference - Influence curve

Robins and Rotnizky (1992) show that the influence curve for the IPCW estimator is:

IC(Y |FX , F (t), G) = IC0(Y |F (t), G)−Π(IC0(Y |F (t), G)|T2)

where

IC0(Y |F (t), G) =
I(T ≤ t)∆
Ḡ(V )

− F (t)

and T2 is the tangent space of the scores for estimation of G under independent censoring.
Robins (1996) showed that T2 for Kaplan-Meier is:∫

h(u)dM(u) : h

Estimating the influence curve

The influence curve for the IPCW estimator is:

IC(Y |FX , F (t), G) =
I(T ≤ t)∆
Ḡ(V )

− F (t) +
∫
F (t|T̃ > u)

dM(u)
Ḡ(u)

where
dM(u) = I(C ∈ du,∆ = 0)−

∫
Λc(du)I(T̃ > u)

This can be estimated as:

IC(Yi|FX,n, Fn(t), Gn) =
I(Ti ≤ t)∆i

Ḡn(Vi)
− Fn(t) +

(1−∆)Fn(t|T̃ > Ci)
Ḡn(Ci)

−
∑

uj<T̃i

Fn(t|T̃ > uj)
λn(uj)
Ḡn(uj)

Finally, estimate Fn(t|T̃ > u) be repeating the IPCW sample for each censoring time (u) using
only those subjects for which T̃ > u
The variance of the IPCW estimator can be estimated as:

σ̂2(t) =
1
n

n∑
i=1

IC2(Yi|FX,n, Fn(t), Gn)

Of course, this whole procedure is typically repeated for many t.

Long Delays

For more recent cohorts, there is the real possibility that the delay in reporting will be much
greater than the censoring support. Because chronological censoring time is fixed in this case, it is
easy to define the maximum possible censoring time, say τ .
If there is a chance of having T < t but V > τ , then the IPCW estimator is no longer consistent.

E

(
I(T ≤ t∆)
Ḡ(V )

)
= E

(
I(T ≤ t)
Ḡ(V )

E[∆|V ]
)
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E[∆|V ] =
∫
I(C > V )dG(c) = I(V < τ)Ḡ(V )

so,

E

(
I(T ≤ t∆)
Ḡ(V )

)
= P (T ≤ t, V < τ)

Note:

F (t) =
P (T ≤ t, V < τ)
P (V < τ |T ≤ t)

so if one knew (or could estimate) P (V < τ |T ≤ t), then consistent estimation could be salvaged.
In the AIDS survival case, earlier cohorts can be used to estimate this probability for later cohorts
(assuming reporting mechanism does not change over time).

Regression with Delay of Reporting

Now consider a regression problem of the form:

log T = β0 + β1X + e

with E(e|X) = 0 and X a covariate of interest.
With uncensored data, a consistent estimating equation is based on simple least-squares, or:

min
β̂

n∑
i=1

(log T − β0 − β1X)2

which is solved by:
β̂ = (XTX)−1XTY

where Y = log T .

Weighted Regression

Now, must alter estimating equation to be consistent under censoring with reporting delay.
As it was in estimating the marginal survival distribution, the additional weight is:

∆i

Ḡn(T̃i)

the weights and estimator are:

Wi =
∆i

Gn(T̃i)
β̂W = (XTWX)−1XTWY

Simulation

Below is simulation with:

1. Analysis time fixed at 8 months

2. AIDS dx is exponential, λ = 0.25
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3. Covariate, X ∼ U(0, 1)

4. Death, T = exp(X + e), e ∼ N(0, 0.5)

5. V = T + U , U ∼ exponential, λ = 0.5

Code used to simulate data

x<-runif(1000,0,1)
T<-exp(x+rnorm(1000,0,0.5))
V<-T+pmin(rexp(1000,2),0.5)
cc<-rexp(1000,rate=1/4)
CC<-ta-cc
# Get rid of people whose dx is > analysis time
x<-x[CC>0]
V<-V[CC>0]
T<-T[CC>0]
CC<-CC[CC>0]
ttilde<-pmin(V,CC)
censor<-as.numeric(V<CC)
invcens<-1-censor

Code used to analyze simulated data

## Survival Time
surv.cens<-survfit(Surv(ttilde,invcens)~1)

## Get 1-Gn(V)
cens.prob<-get.at.surv.times(surv.cens,ttilde)

## Make weights
cwts<-censor/cens.prob

## Linear regression of logT on x
logt<-log(T)
init.lm<-lm(logt~x,weights=cwts)

Function to get censoring survival distribution at all

get.at.surv.times<-function(surv.cens, times)
{
#
# surv.cens is an object created by survfit
# times is a vector of times at which you want
# an estimate of the survival function
#

nt <- length(times)
outs <- rep(0, nt)
survv <- summary(surv.cens)$surv
ns <- length(survv)
timev <- summary(surv.cens)$time
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for(i in 1:nt) {
if(times[i] < timev[1]) {

outs[i] <- 1
}
else if(times[i] >= timev[ns]) {

outs[i] <- survv[ns]
}
else {

outs[i] <- survv[timev == max(timev[timev <= times[i]])][1]
}

}
no <- length(outs[outs == 0])
outs[outs == 0] <- rep(survv[ns - 1], no)
return(outs)
}

Lecture notes for March 10, 2004
Hideaki Nakamura

hideakin demog.berkeley.edu

2 Functional Derivative

(T̃ = Min(T,C),∆ = I(T ≤ C))

S(t) = P (T > t) =
∏

s∈(0,t]

(
1− P1(ds)

P (s−)

)
, where

P1(t) = P (T̃ ≤ t,∆ = 1), P (t) = P (T̃ ≤ t), P (t) = P (T̃ > t)

Sn(t0) =
∏

s∈(0,t0]

(
1− P1n(ds)

Pn(s−)

)

P1n(t) =
1
n

n∑
i=1

I(T̃i ≤ t,∆i = 1), Pn(t) =
1
n

n∑
i=1

I(T̃i > t)

Define ϕ(P1, P ) =
∏

s∈(0,t0]

(
1− P1(ds)

P (s−)

)
Then, S(t0) = ϕ(P1, P ), Sn(t0) = ϕ(P1n, Pn)

Sn(t0)− S(t0) = ϕ(P1n, Pn)− ϕ(P1, P )

= ϕ̇1(P1, P )(P1n − P1) + ϕ̇2(P1, P )(Pn − P )

Here, we use functional delta-method, which is a generalization of delta-method.
Review: Delta-method: This is a first-order approximation.
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f(θn)− f(θ0) =
d

dθ
f(θ) · (θn − θ0) +O(||θn − θ0||)

where
d

dθ
f(θ) =

(
d

dθ1
f,

d

dθ2
f, . . . ,

d

dθk
f

)
We would like to define a derivative of ϕ in the direction h.
Example1: f : R → R

d

dε
f(x+ εh)|ε=0 = f ′(x) · h

This is the simplest case (Linear mapping).
Example2: 2-dim case. f : R2 → R

f(θ, θi) ~h =
(
h1

h2

)
d

dε
f(~θ + εh)|ε=0 =

d

dθ1
f(θ)h1 +

d

dθ2
f(θ)h2 =

(
d

dθ1
f(θ),

d

dθ2
f(θ)

)(
h1

h2

)
Define

ϕ̇1(P1, P )(h1) =
d

dε
ϕ(P1 + εh1, P )|ε=0 = lim

ε→0

ϕ(P1 + εh1, P )− ϕ(P1, P )
ε

Similarly,

ϕ̇2(P1, P )(h) =
d

dε
ϕ(P1, P + εh)|ε=0

(P1n − P1)(·) =
1
n

n∑
i=1

[
I(T̃i ≤ t,∆i = 1)− P1(·)

]
=

1
n

n∑
i=1

f1(·|T̃i,∆i)

Thus, by linearity of ϕ̇1(P1, P ),

ϕ̇1(P1, P )(P1n − P1) = ϕ̇1(P1, P )

(
1
n

n∑
i=1

f1(·|T̃i,∆i)

)
=

1
n

n∑
i=1

ϕ̇1(P1, P )
[
f1(·|T̃i,∆i)

]
A mapping ϕ̇ is linear :

ϕ̇(αh1 + βh2) = α · ϕ̇(h1) + β · ϕ̇(h2)

For example, Is ϕ̇(h)(t) =
∫ t

0
h(s)s2ds linear? ——– Yes, it is.

ϕ̇(αh1 + βh2) =
∫ ·

0

(α(h1)(s) + β(h2)(s))s2ds =

α

∫ ·

0

(h1)(s)s2ds+ β

∫ ·

0

(h2)(s)s2ds = α · ϕ̇(h1) + β · ϕ̇(h2)

Similarly,

ϕ̇2(P1, P )(Pn − P ) = ϕ̇2(P1, P )

(
1
n

n∑
i=1

f(·|T̃i)

)
=

1
n

n∑
i=1

ϕ̇2(P1, P )
(
f(·|T̃i)

)
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where (Pn − P )(·) =
1
n

n∑
i=1

(
I(T̃i > ·)− P (·)

)
=

1
n

n∑
i=1

f(·|T̃i)

Thus,

Sn(t0)− S(t0) ∼=
1
n

n∑
i=1

[
ϕ̇1(P1, P )

(
f1(·|T̃i,∆i)

)
+ ϕ̇2(P1, P )

(
f(·|T̃i)

)]
=

1
n

n∑
i=1

IC(T̃i,∆i|P1, P )

In this way, we can get IC. Once we get IC, we can compute 95-confidence interval, simultaneous
confidence region, and so on. Now, we would like to find ϕ̇1 and ϕ̇2.
Example: (T̃i,∆i), i = 1, 2, . . . , n

Λ(t) =
∫ t

0

Λ(ds) =
∫ t

0

P1(ds)
P (s−)

= ϕ∗(P1, P )

Λn(t) =
∫ t

0

P1n(ds)
Pn(s−)

= ϕ∗(P1n, Pn)

Λn(t)− Λ(t) = ϕ∗(P1n, Pn)− ϕ∗(P1, P ) = ϕ̇∗1(P1n − P1) + ϕ̇∗2(Pn − P ), where

ϕ̇∗1(h1) =
d

dε
ϕ∗(P1 + εh1, P )|ε=0

ϕ̇∗2(h) =
d

dε
ϕ∗(P1, P + εh)|ε=0

d

dε
ϕ∗(P1 + εh1, P ) =

d

dε

∫ t

0

(P1 + εh1)(ds)
P (s−)

=
∫ t

0

h1(ds)
P (s−)

d

dε
ϕ∗(P1, P + εh)|ε=0 =

d

dε

∫ t

0

P1(ds)
(P + εh)(s−)

|ε=0

= −
∫ t

0

P1(ds)
{(P + εh)(s−)}2

· h(s−)|ε=0 = −
∫ t

0

h(s−)P1(ds)
{P (s−)}2

ϕ̇∗1(P1n − P1) =
∫ t

0

(P1n − P1)(ds)
P (s−)

=
1
n

n∑
i=1

∫ t

0

I(T̃i ≤ ds,∆i = 1)
P (s−)

−
∫ t

0

P1(ds)
P (s−)

ϕ̇∗2(Pn − P ) = −
∫ t

0

(Pn − P )(s−)
P1(ds)

{P (s−)}2
= − 1

n

n∑
i=1

∫ t

0

I(T̃i ≥ s)
P1(ds)

{P (s−)}2
+
∫ t

0

P1(ds)
P (s−)
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Thus,

Λn(t)− Λ(t) =
1
n

n∑
i=1

[
I(T̃i ≤ t,∆i = 1)

P (T̃i−)
−
∫ Min(t,T̃i)

0

P1(ds)
{P (s−)}2

]

=
1
n

n∑
i=1

IC∗(T̃i,∆i|P1, P )

Now, we could get IC of cumulative hazard. Next time, we will apply chain rule for functional
derivative, and get influence curve of survival function.

Estimation of Influence Curve of Kaplan Meier using functional derivative
3/15/04

Joseph Poj Gavinlertvatana

Objective:
Derive the influence curve for Kaplan-Meier estimate by writing Kaplan-Meier minus truth as

functional derivative of empiral minus truth in first order

Recall setup:
Observe: (T̃ = min(T, c),∆ = I(T ≤ c)), assume T ⊥ c

Parameter of interest:
S(t) = P (T ≥ t) =

∏
s∈(0,t)(1−

∂p1(s)
p̄(s−) )

where p1(t) = P (T̃ ≤ t,∆ = 1) and p̄(t) = P (T̃ > t)
S(t) = Φ(p1, pn) estimated by Sn(to) = Φ(p1n, p̄n)

Recall when we did directional derivative last time:
Φ(p1, pn) = Φ2[Φ1(p1, pn)]
where Φ1(p1, pn) =

∫ .

0
∂p1(s)
p̄(s−) = Λ(·)

and Φ2(Λ) =
∏

s∈(0,t0)
(1− ∂Λ(s))

Φ(p1, pn) maps data into cumulative hazard
Φ2(Λ) maps cumulative hazard into survival

For influence curve, we need to find the directional deriv:
Φ̇(h1, h̄) = ∂

∂εΦ(p1 + εh1, p̄+ εh̄)

Since Φ(p1, pn) is a composite function, we use the chain rule:
Φ̇(h1, h̄) = Φ̇2[Φ̇1(h1, h̄)]
where Φ̇1(h1, h̄) = ∂

∂εΦ1(p1 + εh1, p̄+ εh̄) |ε=0=
∫ t

0
h1(∂s)
p̄(s−) −

∫ t

0
h̄(s−)p1(∂s)

[p̄(s−)]2

and Φ̇2(g) = ∂
∂εΦ2(Λ + εg) |ε=0

To get Φ̇2(g), we use a telescoping trick
e.g.

a1a2 − b1b2 = (a1 − b1)b2 + a1(a2 − b2)
a1a2a3 − b1b2b3 = (a1 − b1)b2b3 + a1(a2 − b2)b3 + a1a2(a3 − b3)

In general:
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∏k
j=1 aj −

∏k
j=1 =

∑k
j=1[(

∏j−1
l=1 al)(aj − bj)(

∏k
l=j+1 bl)]

Continuing, we get:
Φ̇2(g) = lims→0

Φ2(Λ+εg)−Φ2(Λ)
ε

= limε→0

∏
sε(0,t0)

[1−(Λ+εg)(s)]−
∏

sε(0,t0)
[1−∂Λ(s)]

ε
(using telescoping)

= limε→0

∫
sε(0,t0)

[
∏

uε(0,s)
(1−∂(Λ+εg)(u))][1−∂(Λ+εg)(s)−1+∂(Λ)(s)][

∏
uε(s,t0)

(1−∂Λ(u))]

ε
= limε→0−

∫
sε(0,t0)

[
∏

uε(0,s)(1− ∂(Λ + εg)(u))][∂g(s)][
∏

uε(s,t0)
(1− ∂Λ(u))]

= −
∫

sε(0,t0)
[
∏

uε(0,s)(1− ∂(Λ)(u))][∂g(s)][
∏

uε(s,t0)
(1− ∂Λ(u))]

= −
∫

sε(0,t0)

∏
uε(0,t0)

(1−∂(Λ)(u))
(1−∂(Λ)(s)) ∂g(s)

= −
∏

uε(0,t0)
(1− ∂(Λ)(u))

∫ t0
0

∂g(s)
(1−∂(Λ)(s))

= −S(t0)
∫ t0
0

∂g(s)
(1−∂(Λ)(s))

If Λ(s) is continuous, then ∂Λ(s) = 0, so
= −S(t0)g(t0)

So by plugging in g = Φ̇1(h1, h̄)
Φ̇(h1, h̄) = −S(t0)

∫ t0
0

∂Φ̇1(h1,h̄)
1−∂Λ(s)

= S(t0)
∫ t0
0

1
1−∂Λ(s) [

h1(∂s)
p̄(s−) −

h̄(s−)

(̄p)2(s−)
∂p1(s)]

So, finally, we can write Kaplan-Meier minus truth in first order:
Sn(t0)− S(t0) ∼= Φ̇(p1n − p1, (̄p)n − p̄)
= −S(t0)[

∫ t0
0

1
∂Λ(s)

∂p1n

p̄(s−) −
∫ t0
0

p̄n

p̄2(s−)∂p1(s)]

= −S(t0)[
∫ t0
0

1
∂Λ(s)

∂(p1n−p1)
p̄(s−) −

∫ t0
0

1
∂Λ(s)

(p̄n−p̄)(s−)
p̄2(s−) ∂p1(s)]

And we make this into a sample average:
= 1

n

∑n
i=1−S(t0)[

∫ t0
0

1
1−∂Λ(s)

∂I(T̃iε∂s,∆i=1)
p̄(s−) −

∫ t0
0

1
1−∂Λ(s)

I(Ti≥s)
p̄2(s−) ∂p1(s)]

Finally, we get the influence curve:
Sn(t0)− S(t0) ∼= 1

n

∑n
i=1−S(t0)[

I(T̃i≤t0,∆i=1)

(1−∂Λ((̃T )i))p̄(T̃i−)
−
∫min(t0,T̃i)

0
1

1−∂Λ(s)
∂p1(s)
p̄2(s−) ]

recall that ∂Λ(T̃i) = ∂p1(T̃ )
p̄

Lecture notes
March 29, 2004

Vera Klimkovsky
klimkovsky@yahoo.com

QUANTILE ESTIMATION
BASED ON RIGHT-CENSORED DATA

Data:
(T̃ = min(T,C),∆ = I(T ≤ C))

where C ⊥ T (C and T are independent), C ∼ G, T ∼ F
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Parameter of interest:

θ(F ) = F−1(p), where p ∈ (0, 1) and F−1(p) = inf{x : F (x) ≥ p}

Estimation:

Fn = 1− Sn, and Snis Kaplan-Meier estimator. θn = θ(Fn) = F−1
n (p)

Now, how do we do the inference?
We need to estimate IC.
θn − θ = θ(Fn)− θ(F ) ∼= θ̇(Fn − F ) (using Delta Method)
Take a directional derivative:
θ̇ = d

dεθ(F + ε · h)
∣∣
ε=0

For simplicity, let Fε = F+εh, θε = θ(Fε), and y = F (θε). Also, note that Fε(θε) = F (θε)+εh(θε)
Then,

θ̇ =
d

dε
θ(F + ε · h)

∣∣
ε=0

θ̇ = lim
ε→0

θ(Fε)− θ(F )
ε

= lim
ε→0

F−1
ε (p)− F−1(p)

ε
= lim

ε→0
[−F

−1Fε(θε)− F−1F (θε)
ε

]

Substituting y into the expression of limit, and using the fact that

F−1(y + εh)− F−1(y) ∼=
d

dy
F−1(y) · εh

, we get

θ̇(h) = lim
ε→0

[
−F

−1(y + εh(θε))− F−1(y)
ε

]
= lim

ε→0

[
−

d
dyF

−1(y) · εh(θε)

ε

]

= − lim
ε→0

d

dy
F−1(y)

∣∣∣
y=F (θε)

· h(θε)

= − d

dy
F−1(y)

∣∣∣
y=F (θ)

· h(θ)

= − 1
f(θ)

h(θ) = − 1
f(F−1(p))

h(F−1(p))

Note: Above we differentiated the inverse function.
What is the derivative of F−1?
Recall:

F−1(F (y)) = y

Differentiate both sides with respect to y:

d

dy
F−1F (y) = 1

Applying Chain Rule:
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(F−1)′(F (y)) · F ′(y) = 1, note: F ′(y) ≡ f(y)

So,

(F−1)′(F (y)) =
1

f(y)

Thus,

(F−1)′(z) =
1

f(F−1(z))

Now we are ready for the influence curve.
Applying the first order Taylor expansion:

θn − θ ∼=
−1
f(θ)

(Fn − F )(θ) =
1

f(θ)
(Sn − S)(θ)

∼=
1

f(θ)
1
n

n∑
i=1

ICKM (T̃i,∆i

∣∣θ)

=
1
n

n∑
i=1

1
f(θ)

ICKM (T̃i,∆i

∣∣θ)

=
1
n

n∑
i=1

−1
f(θ)

S(θ)

[
I(T̃i,∆i = 1)

p̄(θ)
−
∫ min(θ,T̃i)

0

dP1(S)
P̄ 2(S)

]

fn(θ) =
Fn(θ + h)− Fn(θ − h)

2h

(Another way to construct confidence interval is to use bootstrap method. However, there are
situations when the bootstrap method fails.)

SELF-CONSISTENCY EQUATION
FOR CENSORED DATA

X ∼ Fn, C|X ∼ G(·|X) where distribution function G is called a censoring mechanism.
We observe: Y = ϕ(C,X) ∼ PFX ,G

A random set C(Y ) is called a coarsening of X if Pr(X ∈ C(Y )) = 1
(1)

Y = (T̃ ,∆)

C(T̃ ,∆) =

{
{T̃}, if ∆ = 1
(T̃ ,∞), if ∆ = 0
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(2)

Y = (C, I(T < C))

C(T̃ ,∆) =
{

(−∞, C), if ∆ = 1
(C,∞), if ∆ = 0

We say C(Y ) satisfies coarsening at random (CAR) if
Pr(X = x|Y = y) = Pr(X = x|X ∈ C(y)).

Equivalenty, Pr(Y = y|X = x) is constant for x ∈ C(y).
Suppose we have n iid: Y1, . . . , Yn. We want to estimate FX(A) = Pr(X ∈ A).
Full data:

FX,n =
1
n

n∑
i=1

I(Xi ∈ A)

Censored data:

FX,n(A) =
1
n

n∑
i=1

E [I(Xi ∈ A|Yi)]

Or

FX,n(A) =
1
n

n∑
i=1

EFX,n
[I(Xi ∈ A|Xi ∈ C(Yi))]

=
1
n

n∑
i=1

PFX,n
(Xi ∈ A

∣∣Xi ∈ C(Yi))

=
1
n

n∑
i=1

PX,n(Xi ∈ A ∩ C(Yi))
PFX,n

(X ∈ C(Yi))

Thus,

FX,n(A) =
1
n

n∑
i=1

PX,n(Xi ∈ A ∩ C(Yi))
PFX,n

(X ∈ C(Yi))︸ ︷︷ ︸
This is called a self-consistency equation

If we enforce FX,n to be discrete on {X1, . . . , Xm} with point masses p1n . . . pmn, then pj,n =
PFX,n

(X = xj)

pj,n =
1
n

n∑
i=1

pj,nI(xi ∈ C(Yi))∑
xl∈C(Yi)

pl,n

for j = 1, . . . ,m
The following algorithm can be used to solve this equation:

pk+1
j,n =

1
n

n∑
i=1

pk
j,nI(xi ∈ C(Yi))∑

xl∈C(Yi)
pk

l,n

where the iteration start with p0 = (p0
1,n, . . . , p

0
m,n).
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Truncation
Notes by Keith Betts

March 17, 2004

Situation

Survival time T has distribution F
Truncation time C∗ has distribution G∗

T and C∗ are independent
Observe n i.i.d. observations of (T ′, C∗′) with distribution (T, C∗) | T > C∗

We want to estimate S(t) = Pr(T > t).

Example

Population of HIV infected patients
T = TDeath − TAIDS

C∗ = 1988− TAIDS where C∗ = 0 if TAIDS > 1988
Sample is from (T, C∗) | T > C∗

Define P (s) = Pr(T ′ ≥ s)
Define P̄ (s) = Pr(T ′ ≥ s, C∗′ < s)

S(t) = Pr(T > t) =
∏

s∈(0,t)

1− Pr(T ∈ (s, s+ ds))
Pr(T ≥ s)

=
∏

s∈(0,t)

1− Pr(T ∈ (s, s+ ds), C∗ < s)
Pr(T ≥ s, C∗ < s)

=
∏

s∈(0,t)

1− Pr(T ∈ (s, s+ ds), C∗ < s | T > C∗)
Pr(T ≥ s, C∗ < s | C∗)

=
∏

s∈(0,t)

1− Pr(T ′ ∈ (s, s+ ds), C∗′ < s)
Pr(T ′ ≥ s, C∗′ < s)

=
∏

s∈(0,t)

1− Pr(T ′ ∈ (s, s+ ds))
Pr(T ′ ≥ s, C∗′ < s)

=
∏

s∈(0,t)

1− P (s)
P̄ (s)

≡ ϕ(P (s), P̄ (s))

Essientially, we have proved Identifiability.

Trouble arises if P̄ (s) = Pr(T ′ ≥ s, C∗′ < s) = 0
This occurs if C∗ < s is never true.
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Assuming that Pr(C∗ < s) > 0 for s ∈ (0, t), Identifiability is shown.

We now focus on the task of constructing estimators.
Define Pn(s) = 1

n

∑n
i=1 I(T

′
i ≤ s)

Define P̄n(s) = 1
n

∑n
i=1 I(T

′
i ≥ s, C∗′i < s)

We have shown that S(t) = ϕ(P, P̄ )
Therefore, Sn(t) = ϕ(Pn, P̄n)
This is the Product Limit Estimator for truncated data.

We will now turn our attention to obtaining the Influence Curve.
Using the Functional Delta Method:

Sn(t)− S(t) ≈ ϕ̇(Pn − P, P̄n − P̄ )

where ϕ̇(h, h̄) =
d

dε
ϕ(P + εh, P̄ + εh̄)|ε=0 = −S(t)[

∫ t

0

h(ds)
P̄ (s)

−
∫ t

0

h̄(s)dP (s)
P̄ 2(s)

]

Thus, h = Pn − P, h̄ = P̄n − P̄

Sn(t)− S(t) ≈ 1
n

n∑
i=1

−S(t)[
∫ t

0

I(T ′i ∈ (s, s+ ds)−
∫ t

0

I(T ′i ≥ s, C∗′i < s)
dP (s)
P̄ 2(s)

≈ 1
n

n∑
i=1

−S(t)[
I(T ′i ≤ t)
P̄ (T ′i )

−
∫ t

0

I(T ′i ≥ s, C∗′i < s)
dP (s)
P̄ 2(s)︸ ︷︷ ︸

IC(T ′i , C
∗′
i , | P, P̄ , t)

Truncation with Right Censoring

Assume:
T ⊥ (C,C∗)
T ∼ F
C∗ ∼ G∗

C ∼ G
We observe (T̃ = min(T,C),4 = I(T ≤ C), C∗)) | T > C∗, C > C∗

Where (T ′, C ′, C∗′) has distribution (T,C,C∗) | T > C∗, C > C∗

Define T̃ ′ = min(T ′, C ′) and 4′ = I(T ′ ≤ C ′)

We want to estimate S(t) = Pr(T > t)
Express S(t) as distribution of data based on n i.i.d. (T̃ ′i ,4′

i, C
∗′
i ) for i = 1, . . . , n

S(t) = Pr(T > t) =
∏

s∈(0,t)

(1− Pr(T = s)
Pr(T ≥ s)

)

=
∏

s∈(0,t)

(1− Pr(T = s, C∗ < s,C > s)
Pr(T ≥ s, C∗ < s,C > s)

)

48



=
∏

s∈(0,t)

(1− Pr(T = s, C∗ < s,C > s|T > C∗, C > C∗)
Pr(T ≥ s, C∗ < s,C > s|T > C∗, C > C∗)

)

=
∏

s∈(0,t)

(1− Pr(T̃ ′ = s,4′ = 1, C∗′ < s)
Pr(T̃ ′ ≥ s, C∗′ < s)

)

≈ ϕ(P1, P̄ )
where P1(s) = Pr(T̃ ′ ≤ s,4′ = 1)

P̄ (s) = Pr(T̃ ′ ≥ s, C∗′ < s)

Thus, S(t) = ϕ(P1, P̄ )
Sn(t) = ϕ(P1n, P̄n)

where P1n(s) =
1
n

n∑
i=1

I(T̃ ′i ≤ s,4′
i = 1)

and P̄n(s) =
1
n

n∑
i=1

I(T̃ ′i ≤ s, C∗′i < s)

Using the Functional Delta Method

Sn(t)− S(t) ≈ ϕ̇(P1n − P1, P̄1n − P̄1)

where ϕ̇(h1, h̄) = −S(t)[
∫ t

0

h1(ds)
P̄ (s)

−
∫ t

0

h̄(s)dP (s)
P̄ 2(s)

]

Sn(t)− S(t) ≈ 1
n

n∑
i=1

−S(t)[
∫ t

0

I(T̃ ′i = s,4′
i = 1)

P̄ (s)
−
∫ t

0

I(T̃ ′i ≥ s, C∗′i < s)
dP1(s)
P̄ 2(s)

]

≈ 1
n

n∑
i=1

−S(t)[
∫ t

0

I(T̃ ′i = s,4′
i = 1)

P̄ (T ′i )
−
∫ t

0

I(T̃ ′i ≥ s, C∗′i < s)
dP1(s)
P̄ 2(s)

]︸ ︷︷ ︸
IC(T ′i , C

∗′
i | P1, P̄ , t)

Quantiles of F

With right censored data, the mean is difficult to estimate.
A natural method of comparison is using Quantiles.

Assume:
T ∼ F
θ = F−1(p), p ∈ (0, 1)
θn = F−1

n (p), where Fn = 1− Sn

Notice:
θ = ϕ(F ) ≡ F−1(p)
θn = ϕ(Fn)
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Use the functional Delta method:

θn − θ ≈ ϕ̇(Fn − F )

where ϕ̇(n) =
d

dε
ϕ(F + εh)|ε=0

θn − θ ≈ ϕ̇(
1
n

n∑
i=1

ICi(.))

≈ 1
n

n∑
i=1

ϕ̇(ICi(.))︸ ︷︷ ︸
IC of θn

Lecture notes, Peter Dimitrov, March 31

3 The EM-Algorithm For Computing The MLE of a Full
Data Model Based on Censored Data

Let X1, X2, . . . , Xn be n i.i.d. observations drawn from a full data distribution FX with density fθ.
Let the observed data Y1 = φ (C1, X1) , Y2 = φ (C2, X2) , . . . , Yn = φ (C2, Xn) be n i.i.d. observations
Y = φ (C,X) ∼ Pfθ,G ≡ Pθ,G, where the random variable C represents the censoring onX (note that
C and X may not necessarily be univariate R.V.). Let G ≡ GC|X denote the censoring mechanism.

Let C (Y ) be the coarsening of X implied by Y : CY ≡ C (Y ) is a subset of domain (X) such that
Pr (X ∈ C (Y )) = 1. We’ll assume for the rest of this lecture that CY satisfies the so-called Coars-
ening At Random (CAR) condition: Pr (Y = y |X = x) is constant for x ∈ C (Y ) . Alternatively the
condition can be expressed as that the coarsening mechanism (i.e. the conditional density g of the
conditional distribution G′ (·|X) of the observed data Y given X) is CAR if it’s a function of Y only.
In other words knowing what the value of the random variable X is, does not in any way provide
more info on the observed data Y , including the censoring mechanism G.

Assuming CAR, the likelihood for an individual observation factorizes into a part that depends on
the censoring mechanismG and a part that doesn’t: Pθ,G (Y = y) = Pfθ

(X ∈ C (Y ))PG (Y = y |X = x) .
Hence, the log-likelihood of Y1, Y2, . . . , Yn under CAR simplifies to:

Loglik (Y1, Y2, . . . , Yn | θ,G) =
n∑

i=1

logFθ (C (Yi)) +
n∑

i=1

logPG (Yi|Xi) ,

which is maximized by the MLE estimator:

θn = arg max
θ

n∑
i=1

logFθ (C (Yi)) .

Note that Fθ (C (Yi)) is an alternative form for
∫

C(Y )
fθ (x) dx.

In the most general case, the model for Fθ is non-parametric , and θn is found using the
Expectation-Maximization algorithm, or EM-alg for short, which is described below:

1. Initialize θ with some value θ0;
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2. For k = 1, 2, . . . repeat until convergence:

θk+1 = arg max
θ
Eθk [log fθ (X1, . . . , Xn) |Y1, . . . , Yn] .

The EM algorithm performs repeatedly two steps: first, for θk - fixed, the conditional expecta-
tion of the the observed data log-likelihood is calculated, which simultaneously imputes the miss-
ing/censored data as well. This is followed by finding which value of θ maximizes the full-data
likelihood using the newly imputed values of X and setting the θk+1 to that value.

The EM-alg always converges to a local maximum. In the case of X being distributed with
density from the exponential family of distributions:

fθ (x) = exp [p (θ)K (x) + S (x) + q (θ)]

the EM-alg reduces to:

θk+1 = arg max
θ

n∑
i=1

Eθk [log fθ (Xi) |Xi ∈ C (Yi)]

= arg max
θ

n∑
i=1

Eθk [log fθ (Xi) |Yi]

= arg max
θ

n∑
i=1

Eθk [p (θ)K (Xi) + S (Xi) + q (θ) |Yi]

= arg max
θ

n∑
i=1

{p (θ)Eθk [K (Xi) |Yi] + Eθk [S (Xi) |Yi] + q (θ)}

= arg max
θ

{
p (θ)

n∑
i=1

Eθk [K (Xi) |Yi] +
n∑

i=1

Eθk [S (Xi) |Yi] + nq (θ)

}
= arg max

θ
{p (θ)Kn (Y1, . . . , Yn) + Sn (Y1, . . . , Yn) + nq (θ)} ,

where Kn (Y1, . . . , Yn) ≡
∑n

i=1Eθk [K (Xi) |Yi] and Sn (Y1, . . . , Yn) ≡
∑n

i=1Eθk [S (Xi) |Yi].
Now, compare the above with the full data MLE based on X1, . . . , Xn:

θFull = arg max
θ

n∑
i=1

log fθ (Xi)

= arg max
θ

{
p (θ)

n∑
i=1

K (Xi) +
n∑

i=1

S (Xi) + nq (θ)

}
= arg max

θ
{p (θ)Kn (X1, . . . , Xn) + Sn (X1, . . . , Xn) + nq (θ)} ,

where Kn (X1, . . . , Xn) ≡
∑n

i=1K (Xi) and Sn (X1, . . . , Xn) ≡
∑n

i=1 S (Xi). Hence, in the case of
distribution from the exponential family, knowing how to find the full data MLE directly translates
in knowing how to find the observed data MLE: replace K (Xi) with the conditional expectation
Eθk [K (Xi) |Yi] and iterate.

NPMLE based on censored data

Let X1, X2, . . . , Xn be n i.i.d. X ∼ FX ∈ M, where M is non-parametric, and Y1, Y2, . . . , Yn be n
i.i.d. observations Y = φ (C,X) ∼ PFX ,G. Assume CAR on G. As in the case when we were dealing
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with finite dimensional real-valued parameter, we maximize the log-likelihood ratio of the observed
data:

FX,n = arg max
FX

n∑
i=1

logFX (C (Yi)) .

Suppose we restrict to or know that FX domain is a finite and discrete set of points {x1, . . . , xm}:
FX ∈ D =

{
p = (p1, . . . , pm) :

∑m
j=1 pj = 1

}
. Hence, FX is a multinomial distribution M (n, p1, . . . , pm).

Let nj =
∑n

i=1 I (Xi = xj). Thus we can use the general EM-alg, because the multinomial distribu-
tion is a member of the exponential family of distributions.

1. In step k = 0 initialize p0 = (1/m, . . . , 1/m);

2. For k = 1, 2, . . . until convergence:

pk+1 = arg max
p

Epk [log fp (n1, . . . , nm) |Y1, . . . , Yn]

= arg max
p

Epk

 m∑
j=1

nj log pj |Y1, . . . , Yn


= arg max

p

m∑
j=1

Epk [nj |Y1, . . . , Yn] log pj .

Setting

∂

∂pj

 m∑
j=1

Epk [nj |Y1, . . . , Yn] log pj

 = 0,

and using the constraint
∑
pj = 1 leads to the following result:

pk+1
j =

1
n
Epk [nj |Y1, . . . , Yn]

=
1
n
Epk

[
n∑

i=1

I (Xi = xj) |Y1, . . . , Yn

]

=
1
n

n∑
i=1

Ppk [Xi = xj |Yi]

=
1
n

n∑
i=1

Ppk (Xi = xj) I (xj ∈ C (Yi))∑
l p

k
l I (xl ∈ C (Yi))

, j = 1, . . . ,m

which is an example of a self-consistency equation introduced in the previous lecture.

NPMLE found using EM-alg is not necessarily consistent. One such interesting example is the
NPLME of the bivariate survival function subject to censoring. Typically, this kind of problems
arise in studies of twins with a certain disease. Let T = (T1, T2) be the bivariate survival time of a
randomly drawn twin pair from a population with unknown survival distribution S0 to be estimated.
Assume that each pair is subject to right censoring which will be denoted with C = (C1, C2). For
each twin we observe the minimum of the censoring and survival time, as well as if the observation
is censored or not:

Yi ≡
(
T̃i, Di

)
, T̃i =

(
T̃i1, T̃i2

)T

, Di = I (Ti1 ≤ Ci1, Ti2 ≤ Ci2) , i = 1, . . . , n.
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The data can be thought of as occupying points, half-lines and quadrants in the plane as shown in
fig. 1 below.

Assuming that the model for bivariate survival function is non-parametric, the NPMLE satisfies
the self-consistency equations solved by the EM-alg. In the initialization step, the algorithm assigns
mass of 1/n for each observation. Then for all censored pairs, i.e. those that are represented as
half-lines and quadrants, their mass is redistributed over the associated region of coarsening C (Yi),
according to an estimate of the conditional distribution which is obtained over all uncensored ob-
servations that fall into C (Yi). This is repeated with the new masses until the algorithm converges.
If the time is on a continuous scale then the half-lines a.s. do not contain any (uncensored) ob-
servations, hence the conditional distribution for singly-censored observations can not be estimated
properly, and as a consequence the NPMLE for bivariate right-censored data is inconsistent.

In series of papers Van der Laan[1994, 1995] proposed a way to repair the consistency of the
NPMLE, by employing the following strategy: for each of the singly-censored observations replace
the half-line with (half-)strip of width h parallel to the half-line (as shown in the picture) and estimate
the conditional distribution from all uncensored observations with bigger time-to-event than that of
the singly-censored observation, hence allowing the EM-alg to redistribute the mass 1/n over such
a half-strip. This estimator is asymptotically efficient when h→∞ and is asymptotically unbiased
even if h is fixed.
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Notes on Estimating Functions Daniel Rubin, April 15, 2004

What is an Estimating Function

Suppose that X1, ..., Xn ∼ FX ∈ M iid, that µ(FX) ∈ Rk is a euclidean parameter of inter-
est, and that η(FX) is a nuisance parameter. Then D(X|µ, η) ∈ Rk is an estimating function if
EFX

[D(X|µ(FX), η(FX)] = 0. That is, if the function evaluated at the true parameters has expecta-
tion zero. If η̂ is an estimate of η, then the estimating function estimate of µ(FX) is the µn solving
1
n

∑n
i=1D(Xi|µ, η̂) = 0.

Background on Tangent Spaces

Let ε→ Fε be a one-dimensional parametric submodel of M, going through FX at ε = 0. Recall that
the score vector of this submodel is defined as s(X) = d

dε logfε(X) ∈ L2
0(FX). Here L2

0(FX) is the
Hilbert space of all functions of X with mean zero and finite variance under FX , and the tangent space
T (FX) is defined as the linear closure of all possible scores in this Hilbert space. A very important
space in efficiency theory is TNUIS ⊂ T , called the nuisance tangent space, which is the linear closure
in L2

0(FX) of all scores of submodels Fε such that d
dεµ(Fε) = 0. The interpretation of such submodels

is that local fluctuations from the truth only change η and not µ. Finally, we define the orthogonal
complement of the nuisance tangent space as T⊥NUIS(FX) = {h ∈ L2

0(FX) : 〈h(X), s(X)〉 = 0
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∀s(X) ∈ TNUIS(FX)}, where 〈h(X), s(X)〉 = EFX
[h(X)T s(X)] is the inner product of h(X) and

s(X) in L2
0(FX).

Relationship Between Estimating Functions and Tangent Spaces

It has been shown by van der Laan and Robbins that in a very strong sense, the only estimat-
ing functions of interest are those that are members of T⊥NUIS . For such estimating functions
D(X|µ, η), it can be shown that if Fε is a submodel whose score is in the nuisance tangent space,
then d

dεEFX
[D(X|µ(Fε), η(Fε))] = 0 at ε = 0. This property can be used to show that if η̂ is consistent

for η, then under regularity conditions the solution µn of 1
n

∑n
i=1D(Xi|µ, η̂) = 0 is asymptotically

linear for µ(FX) with influence curve IC = −[ d
dεEFX

[D(X|µ(FX), η(FX)]−1D(X|µ(FX), η(FX)).

Another property of the nuisance tangent space T⊥NUIS is that it contains the linear span of all
components of all gradients. Here a gradient is a random variable l(X) such that if Fε has score s(X)
then limε→0

1
ε (µ(Fε)−µ(FX)) = 〈l(X), s(X)〉. In general there can be many different gradients, but

the unique gradient in the tangent space T (FX) is called the canonical gradient. If an asymptoti-
cally linear estimator has an influence curve equal to the canonical gradient, then the estimator is
efficient, meaning that it has better asymptotic performance than any other regular estimator.

Example: Survival Analysis with no Censoring

Let T ∼ F be a survival time, where M is a completely nonparametric model. Here F can be
any cdf of a nonnegative random variable. Let µ(F ) = F (t) be the parameter of interest, for
fixed t. In this example there is no nuisance parameter η. Consider the parametric submodel
fε(T ) = (1 + εh(T ))f(T ), where

∫
h(T )dF (T ) = 0 but h is otherwise arbitrary. Note that the score

of this submodel is h(T), so the tangent space is all of L2
0(T ), which immediately tells us that any

asymptotically linear estimate is efficient because its influence curve must be in this tangent space.
We now formally calculate T⊥NUIS , the orthogonal complement of the nuisance tangent space.

d
dεµ(Fε)|ε=0 = limε→0

1
ε (µ(Fε)− µ(F )) = limε→0

1
ε

∫ t

0
(fε(T )− f(T ))dT

= limε→0
1
ε

∫ t

0
εh(T )f(T )dT =

∫ t

0
h(T )dF (T ) =

∫
(I(T ≤ t)− F (t))h(T )dF (T )

= 〈I(T ≤ t)− F (t), h(T )〉

Setting this derivative to zero and solving for h gives the nuisance tangent space. Thus, TNUIS =
{h(T ) ∈ L2

0(T ) : h(T ) ⊥ I(T ≤ t) − F (t)}. Taking the orthogonal complement of this space gives
that T⊥NUIS = [I(T ≤ t)−F (t)], where [•] denotes the linear span. Hence, D(T |µ) = I(T ≤ t)−µ is
in T⊥NUIS , and it is an estimating function because it clearly has mean zero under the truth. Because
T⊥NUIS is the span of a single random variable, we can check that using any estimating function from
this space gives the same estimator, which is just µn = 1

n

∑n
i=1 I(Ti ≤ t). We conclude from our

previous results that µn is asymptotically linear (which we already could see without any efficiency
theory), and it is efficient because it is the unique estimating function estimate over all estimating
functions in T⊥NUIS .

Notes by Melinda Teng
April 14, 2004

Estimating functions in regression
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Suppose
Y = m(Z | B) + ε

where Y denote the outcome, Z is the vector of covariates, and B denote the regression parameters.
Rewriting as ε(B) = Y − m(Z | B), we assume that E[K(ε | B) | Z] = 0 for a given monotone
increasing function x −→ K(x). For example, when K(ε) = ε, we have m(Z | B0) = E[Y | Z]; when
K(ε) = I(ε > 0)− 1/2, we have m(Z | B0) = Med[Y | Z]; when K(ε) = I(ε > 0)− (1− p), we have
m(Z | B0) = p− th quantile of Y | Z.

Let us now define
Dh(Y,Z,B) = h(Z)K(ε(B))

to be the class of all estimating functions for B, and Bn(h) be a solution of

0 =
n∑

i=1

Dh(Yi, Zi, B)

=
n∑

i=1

h(Zi)K(Yi −m(Zi | B))

where h(.) can be any vector function.

Now,

Bn(h)−B0 ≈
1
n

n∑
i=1

C−1(h)Dh(Yi, Zi, B0)

where C(h) = −
[

δ
δBE0[h(Z)K(ε(B))]

]
.

Let

hopt(Z) =
δ

δBm(Z | B)
V ar[K(ε) | Z]

,

and hn be an estimator of hopt according to a (guessed) model of E[K(ε)2 | Z]. If Bn is a solution
of

0 =
n∑

i=1

hn(Zi)K(εi(B)),

then Bn − B0 ≈ 1
n

∑n
i=1 C

−1(h?)h?(Zi)K(εi(B)) where h? is the limit of h. In addition, note that
Bn is asymptotically linear, and is an efficient estimator of B0 if hn −→ hopt.

Right-censored data structure

Let X(t) denote a time-dependent full data structure process of interest, and T denote the end-
point of this process. A full data structure is defined as X = X̄(T ) = (X(t) : t ≤ T ). The observed
data structure (what we can observe) is defined as O = (T̃ = min(T,C),4 = I(T ≤ C), X̄(T̃ )) where
C is a censoring variable. We denote the distribution of the observed data structure by PFX ,GC|X

where GC|X represents the distribution of the censoring mechanism.

Under CAR (Coarsening At Random) assumption, for t < T , we have

λC(t | X) = m(t, X̄(t))
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for some function m.

Lecture of April 19, 2004, Zheng Yin

4 Right Censored Data Structure (Cont’d)

Let X(t) denote the time-dependent full data process of interest, and T be an endpoint of this
process. Then the full data structure is defined as

X = X̄(T ) ≡ (X(t) : t ≤ T ) = (X(s), s ≤ T ) ∼ FX

We observe data O = (T̃ = min(T,C),∆ = I(T ≤ C), X̄(T̃ )) = φ(C,X), where C is a censoring
variable for a known φ. Then we have O ∼ PFX ,GC|X .
The full data model: FX ∈MF .

eg .MF = {FX : E(log T |X) = m(Z|β)}, Z ∈ X(0)

Or if MF is nonparametric, eg. (2). MF = {FX : λT |Z(t|Z) = λ0(t)eβZ}.

To find the full data distribution, we need the parameter of interest: µ : MF → Rk, eg.

µ(FX) = EFX
(log T |Z), µ(FX) = PFX

(T > t0), µ(FX) = β

CAR: for t < T, λC|X(t|X) = m(t, X̄(t)) for some function m.
Let FX be part of f(o) = LFX

(o)g(o|X), then the likelihood can be written as

L(FX) = fX(X̄(T ))∆fX(X̄(T̃ ))1−∆ = [
T∏

t=0

P (X(t)|X̄(t−))]∆[
T̃∏

t=0

P (X(t)|X̄(t−))]1−∆

The content in the square bracket is the probability of seeing X(t) given the past.

Example: Observed data O : (T̃ ,∆,W ), where W is baseline covariates. By CAR, C ⊥ T |W .
Let MF = nonparametric, µ(FT,W ) ≡ P (T > t0). Then we can use Kaplan-Meier estimator P̂ (T >
t0|W = w): because EWP (T > t0|W ) = P (T > t0), then

P̂ (T > t0) =
1
n

n∑
i=1

P̂ (T > t0|W = wi) =
k∑

j=1

nj

n
P̂ (T > t0|W = xj)

when W is discrete with outcome x1, . . . , xk.
However, whenW is continuous or has many categories, the situation will be much more complicated.
By the curse of dimensionality, we can only construct sensible estimators of µ(FX) by making model
assumptions on either λC(t|X) or fX(x).
Define A(t) = I(T̃ ≤ t,∆ = 0) which is a counting process of censoring. Then the partial likelihood
is given by

LG(T̃ ,∆, X̄(T̃ )) =
T̃∏
t

E(∂A(t)|X̄(t), Ā(t−))∂A(t)(1− E(∂A(t)|X̄(t−), Ā(t−)))1−∂A(t)
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We can model the intensity of A(t) w.r.t. (X̄A(t), Ā(t−)).
With a multiplicative intensity model:

E(∂A(t)|Ā(t−), X̄(t)) = I(T̃ ≥ t)λ0(t)eαL(t)

where λ0(t)eαL(t) = Pr(C = t|C ≥ t, X̄(t)). Then L(t) = f(X̄(t)) for some function f , XA(t) =
X(min(t, T̃ )).
If censoring A(t) only jumps at discrete times t1 < t2 < · · · < tM , then using logistic model

E(∂A(t)|Ā(tj−), X̄(tj)) = I(T̃ ≥ t)
1

1 + e−f(L(tj)|α)

where −f(L(tj)|α) could be −α1(tj) + α2L(tj).
Note, by CAR, E(∂A(t)|Ā(t) = 0, X̄(t)) = P (C = t|C ≥ t, X̄(t)) = λC|X(t|X).

Class Notes: Merrill Birkner, April 21, 2004

Observed data:

O = (T̃ = min(T,C),∆ = I(T ≤ C), X̄(T̃ )) = Φ(C,X) ∼ PFx,G,

where X(t) = (I(T ≤ t), L(t)).
The Full data model MF and let µ(FX) be the full data parameter.

For example:

1. MF is nonparametric µ(FX) = ρ(L1, L2)

2. MF = {FX : EFX
(Y −m(Z|β0)|Z) = 0}, µ(FX) = β0

This is equivalent to mean regression.

3. MF = {FX : EFX
(K(Y −m(Z|β0)|Z) = 0)}, µ(FX) = β0.

This is equivalent, for example, to median/quantile regression[depending on K]

4. MF = {FX : λT |Z(t|Z) = λ0(t)exp(β0Z)}, µ(FX) = β0

This is the Cox proportional hazards model.

What is Y? It could be log survival, and therefore log(t).
In general Y = f(X̄(T )) for some f
*********************************************************************
Question: If there is no censoring, what is the parameter of interest? What are full data estimating
functions for the parameter of interest µ(FX)?
Full data estimating functions Dh(X,µ|η), where h ∈ H is an index ranging over an index set.

We are looking for the orthoganol complement of the nuisance scores in L2
0(P0).

For example, if MF = {FX : EFX
(K(ε(β0))|Z) = 0} and β0 is the paramter of interest, then the

class of estimating functions is given by

Dh(X,β) = h(Z)K(ε(β)),

where h can be any function of Z.
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In a nonparametric model with µ = P (T > t), there is only one estimating function D(x, µ) =
I(T > t)− µ. Similarly, if in the nonparametric model the paraeter of interest is given by µ(Fx) =
ρ(L1, L2) =

∫
E(L1(t)L2(t))w(t)dt, then we can find the single estimating function as the influence

curve of an ad hoc (empirical) estimator of this parameter.

MF = {FX : E(dN(t)|Z, N̄(t)) = I(T > t)λ0(t)exp(βZ)},

where N(t) = I(T ≤ t) Now, the class of estimating functions is given by

Dh(X,β|λ) =
∫
h(t, Z)dMλ0,β

(t),

where dM(t) = dN(t)−E(dN(t)|Z, N̄(t)). This can be argued by noting that the model corresponds
with a Bernoulli regression at each fixed t.

In the above equation, the nuisance parameter is the baseline hazard λ0

Refer to Chapter 2 of van der Laan and Robins
*******************************************************************
What do we do when there is censoring?
*First it is important to understand the parameter of interest in the full data world.
We need the CAR assumption: λC|X(t|X) = m(t, X̄(t)) for a function m.
Why don’t we use this MLE based on a completely specified full data model? We are only interested
in certain parameters and the MLE makes model assumptions. The person who does MLE did not
model the parameter of interest. Putting down model of a small piece of data structure.
Marginal distribution of t: µ(Fx) = P (T > t0)

Notes re. Maximum Likelihood vs Previously Mentioned Method

• The Maximum Likelihood method factorizes the full data and censoring, but it does not care
about censoring. This is equivalent to a Bayesian point of view where one does not care about
the other part of the likelihood.

• We also know that the censoring is independent of survival and covariates. One who performs
only the maximum likelihood method cannot do KM on all of those levels.

• The maximum likelihood is asymptotically efficient if it works, but the MLE in this case
(when taking into account censoring and multiple covariates [with potentially many levels]) it
is biased. This is refered to as the curse of dimensionality.

• The ML tries to be globally efficient and therefore it breaks down when the model becomes
too high dimensional.

• KM within every cell unbiased and very variable. You increase the variance when you increase
the dimensions.

• A person who performs the maximum likelihood method needs to model the error distribution.
We do not have to assume a parametric model for the error distribution.

• Double Robust: If either the censoring model or likelihood is correct you get a consistent
locally efficient estimator.
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IPCW Estimating Functions:

Dh(X,µ)
∆

Ḡ(T |X)
,

where Ḡ(t−|X) = exp(−
∫ t

0
λ(s|x)ds. We can estimate the censoring mechanism by modelling the

censoring intensity E(dA(t)|Ft) and fitting the corresponding partial likelihood Πt(E(dA(t)|Ft)dA(t)(1−
E(dA(t))|Ft)1−dA(t).

It is a function of the observed data but after taking the conditional expectation, given X, you
get back the estimating function of the full data. That is why it is unbiased, because it is unbiased
in the full data world.

Estimating Functions for Right Censored Data, Keith Betts, April 23, 2004

Define the observed data structure as:

O = (T̃ = min(T,O,4 = I(T ≤ C), X̄(T̃ ))) ∼ PFx

Model is just as Model Right Censored data

X = (T, X̄(T )) ∼ Fx ∼MF

C | X ∼ GC|X ∈ GCAR

λC(t | X) = M(t, X̄(t))

Define µ(Fx) as a paramter defined on MF

IPCW-estimating functions

Define the full data estimating functions as:

Dh(X,µ | η)

The IPCW estimate is
Dh(X,µ | η) 4

Ḡ(T | X)

where Ḡ(T | X) = exp−
∫ inf

0
λC(s|X)if C is continuous

and Ḡ(T | X) =
∏

s∈(0,t)(1− λCX
(s | X)) in general.

Suppose Dh(X,µ | η) =
∫
h(t, Z̄(t))∂Mβ,λ0

where ∂Mβ,λ0 = ∂N(t)− E[∂N(t) | N̄(t−), Z̄(t)]∫
h(t, Z̄(t)) is like the sum of unbiased estimates

Use Inverse Weighting

Dh(X,µ | η)
∫ [

h(t, Z̄(t))∂Mβ,λ0

I(T̃ ≥ t)
Ḡ(t | X)

]
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This corresponds to every line getting weight Ḡ(t | X)
These weights are time dependent

In the continuous case, could use Cox PH with weights.

In discrete case (using logistic regression):
Define N(t) = I(T ≤ t) as the risk of jumping at time t

P (∂N(tj) = 1 | N̄(tj−) = 0, Z) =
1

1 + expβ0+β1tj+β2Z︸ ︷︷ ︸
M(t, Z | β)

The optimal estimating function for logistic regression is:

T∑
tj

∂
∂βM(tj , Z | β)

M(tj , Z | β)(1−M(tj , Z | β))
[∂N(tj)−M(tj , Z | β)]

Which can alternatively be written as:

T∑
tj

∂
∂βM(tj , Z | β)

M(tj , Z | β)(1−M(tj , Z | β))
[∂N(tj)− I(N(tj))]

If events only happen at certain time points, glm solves this equation.
This is in the Full data world (No Censoring)
Suppose N(t) is a repeated process

Pr(∂N(tj) = 1 | N̄(tj), Z) =
1

1 + expβ0+β1tj+β2Z+β3f(N̄(tj))

where f(N̄(tj)) is a function of the past
This is efficient in the full data world.

Suppose the counting process is not observed until the end of the study
That it was Censored in a random manner.
IPCW:

∑
j=0

I(T̃ > tj)
Ḡ(tj | X)

∂
∂βM(tj , Z | β)

M(tj , Z | β)(1−M(tj , Z | β))
[∂N(tj)− I(N(tj)at risk)(M(tj , Z | β))]

Suppose the data was of the form:

∂N(tj) tj Z W (tj)
0 . . .
0 . . .
1 . . .
0 . . .
...

...
...

...
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In any software package, use GLM (logistic link)
Add weights to deal with censoring

Emperical mean of Estimating Equation

IC0(O | G,Dh(. | µ, η)) ≡ Dh(X,µ | η)

This maps full data ⇒ observed data
The mapping depends on the censoring mechanism.

Example: Suppose we wish to estimate the Marginal Survival function

µ = Pr(T > t)

µn =
n∑

i=1

I(Ti > t)4i

Ḡ(Ti | X)

There are three possible approaches

1. Use Kaplan-Meier to estimate µ

2. Use Kaplan-Meier to estimate Ḡ

3. Use Cox PH to estimate Ḡ

The third method is the most efficient, especially when there are covariates
Example:
Suppose age is a covariate
Censoring is completely independent
One should still include covariates important to the outcome in the model for Ḡ.
Software Confidence Intervals are conservative (computed as if Ḡ known)
To get better Confidence Intervals either compute the Influence Curve or do the Bootstrap

Multiplicative Intensity Models
Matthew Sylvester

April 28, 2004

Counting Processes Data: (T̃ = min(T,C),∆ = I(T ≤ C), X̄(T̃ )), where T is the endpoint, C
is the censoring time and X̄(T̃ ) is any data that might be collected on a person until time T̃ .

Suppose X(t) = (N∗
1 (t), . . . , N∗

k (t), L(t)),
where Nh(t) is a counting process, h=1,. . . ,k denotes the index of that process and ∗ denotes that
it is based on the full data. L(t) is a time-dependent covariate process. Note that there might be
several jumps when moving to the next state and that all counting processes stop jumping at T.
That is, N∗

h(t) = N∗
h(min(t, T )).
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Examples

1. Consider multiple counting processes

N∗
h(t) = I(Th ≤ t), h = 1, . . . , k

where T1, . . . , Tk refer to distinct counting processes (i.e. the time to certain events). For
example, T1 might refer to the time to AIDS while T2 refers to the time to death. This might
mean that the first process jumps when AIDS is contracted and that the second process jumps
at death or T .

2. Now consider just one counting process

N∗(t) =
k∑

j=1

I(Tj ≤ t)

that jumps whenever the events occur. For example, for asthmatic children, T1 might be the
time to the first attack, T2 might be the time to the second attack, etc.

3. Consider the Simplest Case
N∗(t) = I(T ≤ t)

that jumps at death.

Observed Data

Nh(t) = N∗
h(min(t, T̃ )),where h = 1, . . . , k

We have the history:

F(t) = (X̄(min(t, T̃ )), Ā(min(t, T̃ )), A(t) = I(C ≤ t))

When t = ∞, we see the full data past.

Multiplicative Intensity Models Suppose we have coarsening at random (CAR). We can get an
intensity with respect to history when we are trying to model the probability of a counting process
jumping given the past:

Nhwith history F(t) :

E(∂Nh(t) | F(t)) ≡ λh(t | F(t)),

For t < T ,

λc(t | X) = m(t, X̄(t)),
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which is reasonable if censoring is only determined by the past.
Then the intensity of the observed counting process is:

E(∂Nh(t) | Ft) = I(T̃ ≥ t)E(∂Nh(t) | F(t), T̃ ≥ t)

= I(T̃ ≥ t)E(∂N∗
h(t) | X̄(t), T̃ ≥ t, C ≥ t)

CAR

= (I(T̃ ≥ t)E(∂N∗
h(t) | X̄(t), T̃ ≥ t)

where we are conditioning on the full data past, and the censoring only depends on the past. We
are assuming censoring does not depend on covariates not included, but this assumption becomes
weaker as more covariates are put in the past. Note that the multiplicative intensity model can only
be applied to the individual counting processes, of which every subject might have several (failure,
infection, etc.)

If there are no covariates, the baseline hazard of dying now given that the person has not died
yet and censoring has not occurred yet is given by:

P (T = t | T ≥ t, C ≥ t)

which is what we would estimate with the Cox proportional hazards model with no covariates. If
there is independent censoring, this reduces to P (T = t | T ≥ t).

Now, if we would like to estimate the intensity with respect to a subset of the past:

E(∂Nh(t) | N̄h(t−), Z(t−)),

where (Nh(t), Z(t) ⊂ X(t)).

If censoring is independent of the past, this is consistent, but inefficient. If we have CAR for the
original data, we can use IPCW: ∫

h(t), Z̄(t−))∂M(t)
I(T̃ ≥ t)
Ḡ(t | X)

.

Or, ∫
h(t), Z̄(t−))∂M(t)

I(T̃ ≥ t)Ḡ(t | Z̄(t))
Ḡ(t | X)

where we use cox proportional hazards to model the hazard of censoring mechanism. However, even
when it is known that this is one, we should still estimate because it is more efficient.

Now, when we are adjusting for the entire past, the IPCW is not necessary. We implement it
when we have just Z(t) where Z(t) is not the whole past. For example, we might just have the
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treatment arm. Now, for the partial likelihood approach, we need to throw in everything that might
be informative of censoring. We need to keep adjusting for confounding.

More on Multiplicative Intensity Models When the counting process is continuous(i.e. it can
jump at any point in time), assume:

λh(t | F(t−)) = Yh(t)E(∂Nh(t) | F(t), Yh(t) = 1)
= Yh(t)λ0h(t)exp(βhZh(t)

where Yh(t) is defined as the indicator that Nh(t) is still at risk of jumping at time t, F(t) indicates
the past, λ0h(t) indicates the baseline hazard, Zh(t) is a function of F(t), and is composed of covari-
ates thought predictive of the counting process jumping, and βh denotes the regression coefficients.

For the special case of proportional hazards with one counting process and setting the history of
censoring equal to Ā(min(t, T̃ ) :

N(t) = I(T̃ ≤ t,∆ = 1)

F(t) = (N̄(t),W, Ā(min(t, T̃ ))

where we are only adjusting for the baseline covariates.

Then,

E(∂N(t) | F(t)) = I(T̃ ≥ t)λ0(t)exp(βW )

= I(T̃ ≥ t)(∂N(t) | T ≥ t, C ≥ t,W )
C ⊥ T |W

= P (T = t | T ≥ t,W )

which is the Cox proportional hazards model. Then, Cox proportional hazards assumes that
λT |W (t | W ) = λ0(t)exp(βW ), a proportional hazards assumption. The ratio of two will not be
dependent on time, a restrictive assumption. Our method is more general, and we do not need to
make this assumption. Then W can be a function of time. This means that we can do data-adaptive
work by pluggin on other basis functions for W, etc.

Maximum Likelihood Estimation We are interested in estimating the baseline hazards and
coefficients β.

Give every counting process its own covariates. Then, we can create a long vector that has the
real values when counting process 1 occurs and 0’s when counting process 2 occurs, for example.

λh(t | F(t−)) = Yh(t)λ0h(t)exp(βZh(t)),

where we choose the covariate so that it reduces to what is wanted.
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Example We have β1W1 and β2W2.
Then, set Z1 = (W1, 0), Z2 = (0,W2), and β = (β1, β2)
We then have,

βTZ1 = (β1β2)
(
W1

0

)
= β1W1

βTZ2 = (β1β2)
(

0
W2

)
= β2W2

The partial likelihood of (N1, . . . , Nk) with respect to F(t−) is defined as:

LP (Λh, β | F(inf)) =
∏

t

k∏
h=1

λh(t | F(t))∂Nh(t)(1− λ·(t | F(t−))1−∂N·(t)

where:

N·(t) ≡
k∑

h=1

Nh(t)

and

λ·(t | F(t−)) = E(∂N·(t) | F(t−)) =
k∑

h=1

λh(t | F(t−))

If something jumps, we use the intensity of the counting process; otherwise, we use one minus
the intensity.

So, for the maximum likelihood estimate over the parameter fixing the coefficients and maximiz-
ing over the baseline hazards:

LP (Λh, β | O1, . . . , On) =
n∏

i=1

∏
t

k∏
h=1

λh(t | F(t))∂Nh(t)(1− λi(t | F(t−))1−∂Ni(t)

and only keep track of counting processes at time t where Oi, i = 1 . . . n are the observations.
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