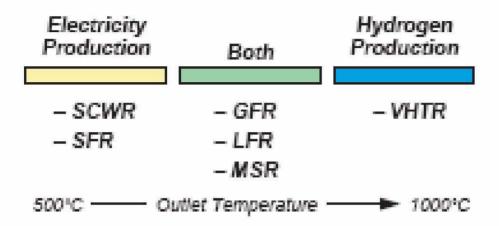
22.39 Integration of Reactor Design, Operations, and Safety


Lecture 1:

Nuclear Energy System Strategies

Sept. 6, 2006

Prof. Neil Todreas MIT

Missions and Economics for Generation IV

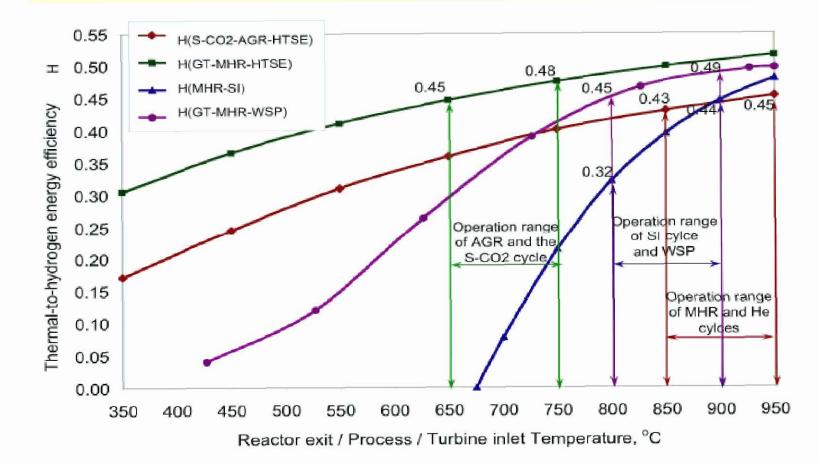
A Technology Roadmap for Generation IV Nuclear Energy Systems, US DOE GIF-002-00, p. 17, Dec. 2002

Near Term Deployment and Generation IV Concepts

	Outlet Temperature	Pressure			
Thermal Spectrum					
VHTR	1000 C	7 MPa			
SCWR	510 C	25 MPa			
MSR	700 C (850 C)	< 0.1 psi			
Fast Spectrum					
GFR	850 C	7 MPa (He) 20 MPa (CO ₂)			
LFR	~ 550 C; 800 C	0.1 MPa			
SFR	530 C – 550 C	0.1 MPa			
Near Term Deployment					
PWR	324 C	15.5 MPa			
BWR	288 C	7.17 MPa			

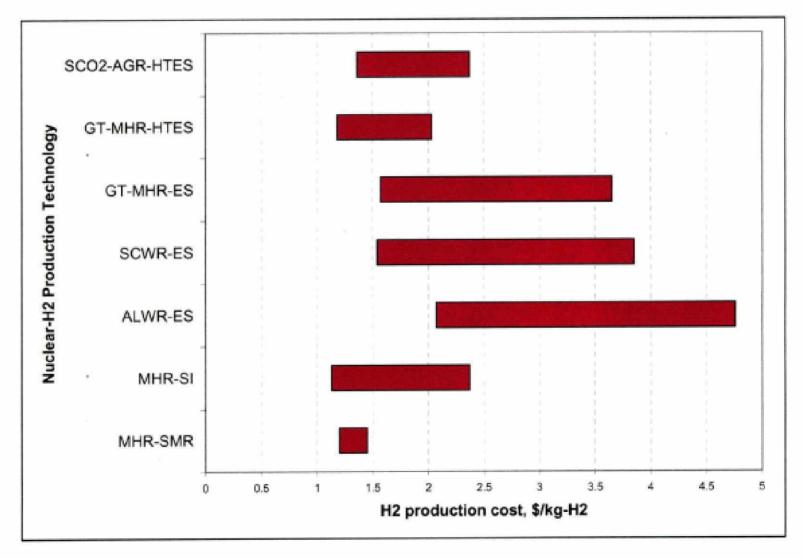
US Nuclear Strategy to 2050 (with Horizon to 2100) Example Strategies (Not a Complete List)

<u>Strategy</u>	Reactors	Electricity	<u>Waste</u>	<u>Hydrogen</u>
1	ALWRs	LWR	Yucca Mountain (open and expand)	Low Temperature Electrolysis
2	ALWRsCONFU	LWR	Thermal Transmutation of Actinides	Low Temperature Electrolysis
3	ALWRsSFR	SFR cost reduction	Fast Transmutation of Actinides	High Temperature Electrolysis
4	ALWRsGFR	GFR cost effectiveness	Fast Transmutation of Actinides	High Temperature Electrolysis
5	ALWRs – VHTR GFR	GFR and VHTR cost effectiveness	Fast Transmutation of Actinides	Very High Temperature Hydrogen Processes
6 etc.	Etc. with LFR, MSR, SCWR			


Note: CONFU's are thermal LWRs with partial fertile free cores which can transmute actinides

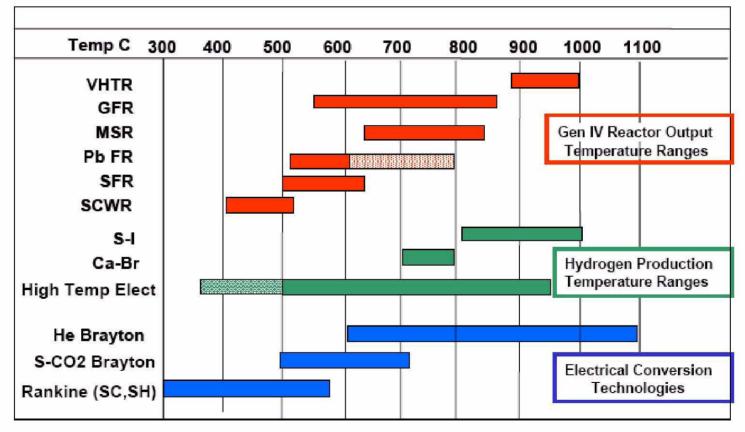
Advanced Reactor Technology Candidates for Hydrogen Production

Advanced Reactor Technology	$T_{outlet} (^{\circ}C)$	η_{th} (%)
Helium Gas Cooled Reactor, GT-MHR	850-950	45-48
Supercritical CO ₂ Cycle with i.e. S-AGR	650-750	47-51
Super Critical Water Reactor, SCWR	400-600	38-45
Advanced Light Water Reactors, ALWR	285-320	32-34
Advanced High Temperature Reactor, AHTR	750-1000	NE
Lead Bismuth Cooled Reactor, HMCR	540-570	NE


Yildiz & Kazimi, MIT-NES-TR-001, Sept. 2003

Hydrogen Production Energy Efficiency Comparison of the thermal-to-hydrogen efficiency of the HTSE, SI and WSP related technologies as a function of temperature

M. Kazimi, Aug. 23, 2006, Cambridge, Massachusetts


Overall Economic Results for the Alternative Nuclear Hydrogen Technologies

Yildiz & Kazimi, MIT-NES-TR 001, Sept. 2003

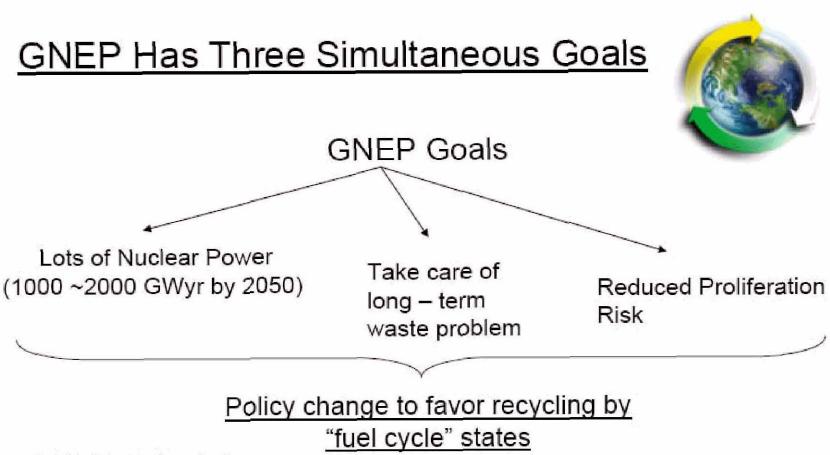
Generation IV Energy Conversion

- Electrical generation Gen IV Energy Conversion Program
- Hydrogen production Nuclear Hydrogen Initiative (NHI)

Courtesy of Paul Pickard. Used with permission.

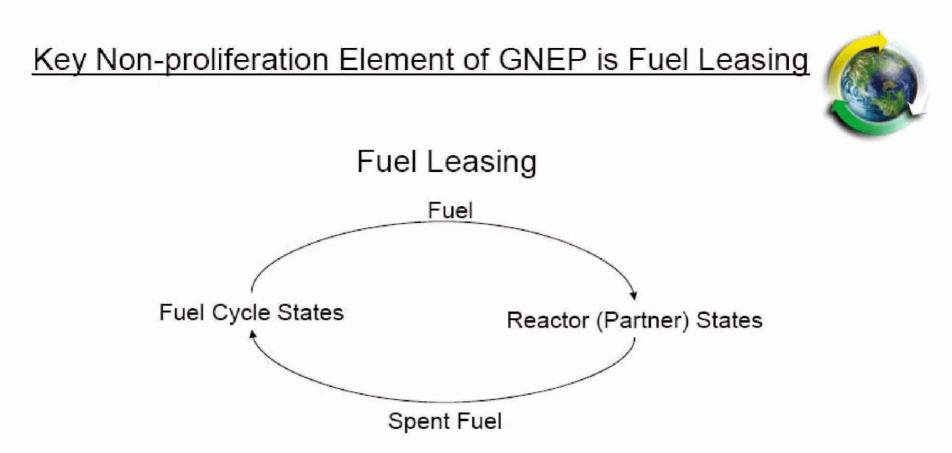
P. Pickard, 2004

What is GNEP?



This morning, I want to speak to you about one part of this initiative: our plans to expand the use of safe and clean nuclear power. Nuclear power generates large amounts of low-cost electricity without emitting air pollution or greenhouse gases.

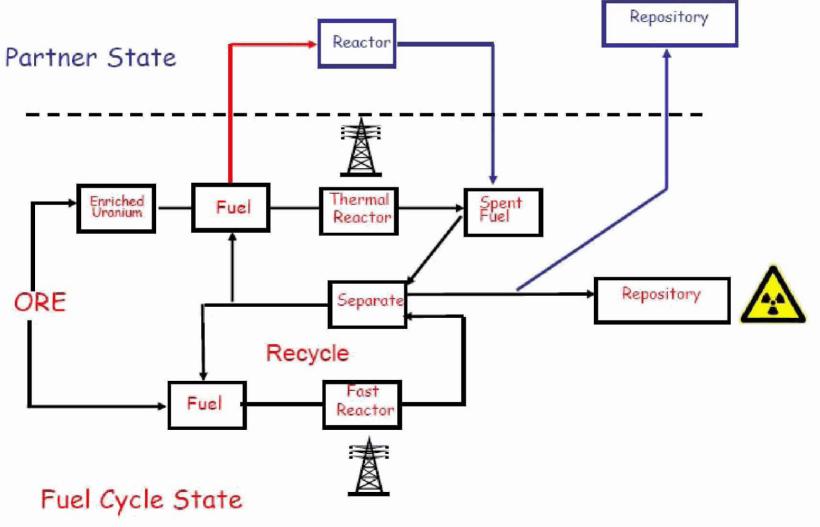
....my Administration has announced a bold new proposal called the **Global Nuclear Energy Partnership**. Under this partnership, America will work with nations that have advanced civilian nuclear energy programs, such as France, Japan, and Russia. Together, <u>we will develop and deploy</u> <u>innovative</u>, advanced reactors and new methods to recycle spent nuclear <u>fuel</u>. This will allow us to <u>produce more energy</u>, <u>while dramatically reducing</u> <u>the amount of nuclear waste and eliminating the nuclear byproducts</u> that unstable regimes or terrorists could use to make weapons.


> President George W. Bush Radio Address: February 18, 2006

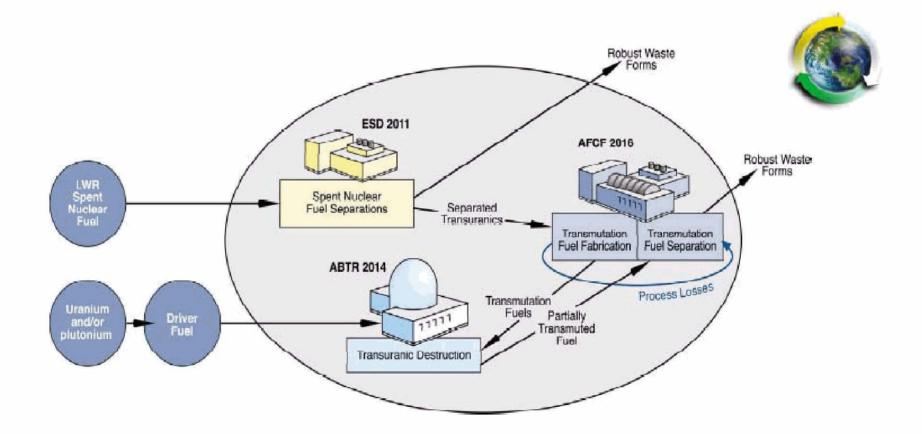
GNEP Principles:

Global Issues require global solutions

Spent Fuel is an asset to be managed – not a waste.



GNEP Fuel Leasing Principles:


- Encourage expansion of nuclear power
- Should make "commercial" sense
- Consistent with Nuclear Non-Proliferation Treaty

Possible Fuel Leasing Configuration

Proposed U.S. GNEP Technology Demonstration Facilities

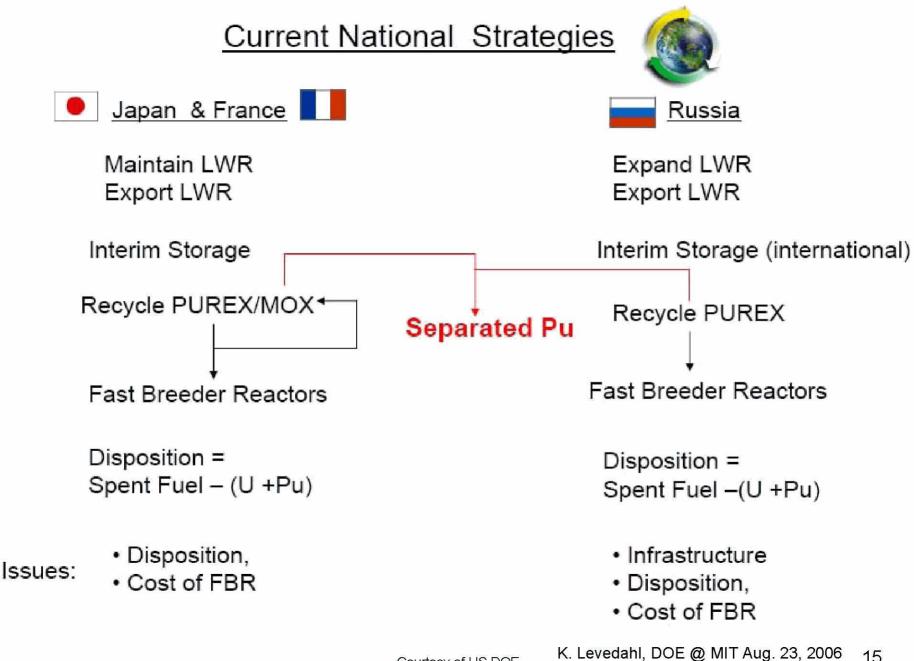
Available for Cooperative Research

Countries Approached by U.S. to be possible Fuel Cycle States

France – active follow-up Japan – active follow-up United Kingdom (In midst of Government Energy Study) Russia – active follow-up China - follow up May 22-23, 2006

~ 100 Countries briefed at International Atomic Energy Agency

Science Attaches briefed in DC:


Russia, UK, France, China, Japan, S. Korea, Canada, Italy, Switzerland, Finland, Germany, Australia, South Africa, Netherlands, Brazil, Argentina, Indonesia, Turkey, Greece, Croatia, Norway, Nigeria, Israel, Viet Nam

Detailed Discussion with Canada, South Korea

Open to discussions with all interested states.

International Response Positive

Courtesy of US DOE. K. Levedahl, DOE @ MIT Aug. 23, 2006 14

Courtesy of US DOE.

15

Current National Strategies

<u>China</u>

Expand LWR (a lot)

Await Energy Study

Interim Storage

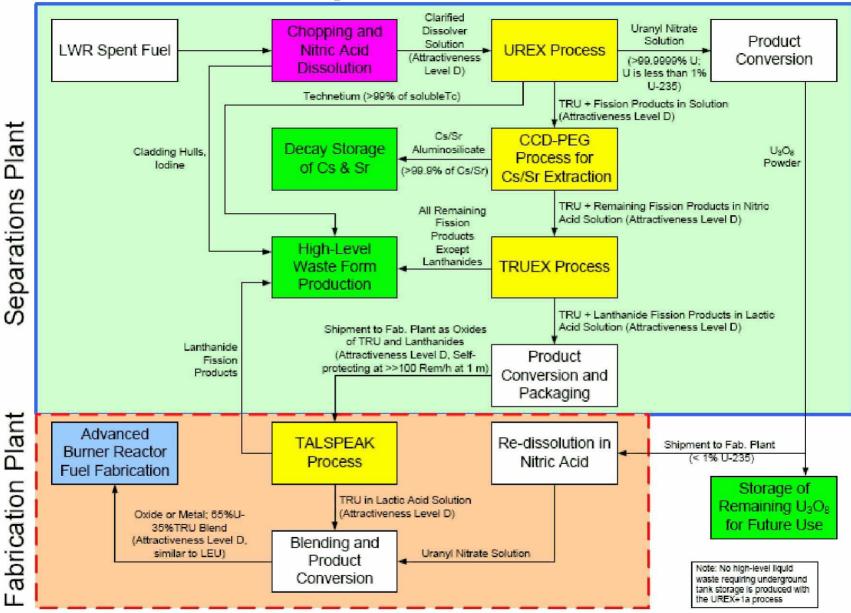
Recycle PUREX Fast Breeder Reactors

Disposition = Spent Fuel –(U +Pu)

- Infrastructure
- Disposition,
- Cost of FBR

In his speech at a CBI dinner last night, Blair said nuclear plants were back on the agenda "with a vengeance" in the bid to tackle climate change and dependence on unreliable fossil fuel supplies.

17th May 2006


- 1. Expand LWR → NP-2010 / Energy Policy Act
- Export (L)WR → Small Reactors

5. Minimize Waste disposition to repository

- Disposition = Spent fuel w/o (U Cs Sr + Actinides)
- 1 x Yucca Mountain sufficient for long term
- 6. Establish reliable fuel services [to "reactor states"]
- 7. Enhanced nuclear safeguards technologies [NNSA and IAEA roles]

GNEP Advanced Separations: UREX+1a

K. Levedahl, DOE @ MIT Aug. 23, 2006 Courtesy of US DOE. 18

MIT Study Recommended Strategy

Expand LWR - production tax credits

Interim Storage

R&D on recycle (especially simulation)

Disposition = Spent Fuel

Yucca Mountain/Deep Bore Holes

Bottom Lines

- Nuclear Power essential as a tool to alleviate global warning
- Will need government support to get nuclear re-started: finance
- No need to recycle now ~ decades away
- 4. Begin Fuel Leasing Regime

Alternative NGO Nuclear Strategies

Garwin UCS Expand LWR Expand Search for U (seawater) No Recycle Interim Storage - 100 years Anywhere Research on Fast Reactors (Likes Fuel Leasing)

Disposition: Spent Fuel Competitive Commercial Mined Repositories

Photos of Richard Garwin and bookcover Megawatts and Megatons removed due to copyright restrictions

http://www.ucsusa.org/global_warming/

K. Levedahl, DOE @ MIT Aug. 23, 2006 Courtesy of US DOE. 20

So, what do we do next?

Government to solve the "tragedy of the commons" that is nuclear waste:

- Is there a business model?
 - Cost of Separation
 - Transuranic Fuel
 - Cost of Burner Reactors

Proposed steps:

- GNEP technology demonstrations
- R&D including simulations